
External mask based depth and light field camera

Dikpal Reddy
NVIDIA Research
Santa Clara, CA

dikpalr@nvidia.com

Jiamin Bai
University of California, Berkeley

Berkeley, CA
bjiamin@eecs.berkeley.edu

Ravi Ramamoorthi
University of California, Berkeley

Berkeley, CA
ravir@eecs.berkeley.edu

Abstract

We present a method to convert a digital single-lens-
reflex (DSLR) camera into a high resolution consumer depth
and light field camera by affixing an external aperture mask
to the main lens. Compared to the existing consumer depth
and light field cameras, our camera is easy to construct with
minimal additional costs and our design is camera and lens
agnostic. The main advantage of our design is the ease of
switching between an SLR camera and a native resolution
depth/light field camera. Using an external mask is an im-
portant advantage over current light field camera designs
since we do not need to modify the internals of the camera
or the lens. Our camera sequentially acquires the angular
components of the light field of a static scene by changing
the location of the aperture in the mask. A consequence
of our design is that the external aperture causes heavy
vignetting in the acquired images. We calibrate the mask
parameters and estimate multi-view scene depth under vi-
gnetting. In addition to depth, we show light field appli-
cations such as refocusing and defocus blur at the sensor
resolution.

1. Introduction
Consumer depth cameras using coded light [21] and

time-of-flight [10] have become extremely popular and have
lead to an improved performance in computer vision appli-
cations. These active depth acquisition techniques, com-
pared to passive techniques like stereo, provide robustness
in low light and are accurate but are relatively expensive,
consume significant power and have limited range. As an
alternative, light field cameras are an emerging technology
for capturing scene depth. The increasing importance of
this passive depth acquisition technology is illustrated by
the emergence of light field camera companies like Lytro
[1], Raytrix [2] and Pelican Imaging [3]. Light field cam-
eras are a generalization of stereo cameras and sample the
angular variation in the incident light fields in addition to
the usual spatial variation. It has been shown recently in
[9] that light fields captured at wide baseline by SLR cam-
eras can provide high quality depth information. Though
light field cameras have so far been used primarily for con-
sumer photography and scientific imaging, their potential

as an enabling technology for computer vision is immense
[5]. In addition to depth acquisition, the angular informa-
tion captured by light field cameras could improve many
computer vision problems such as segmentation, stabiliza-
tion and material classification. However, the current light
field cameras have poor spatial resolution [1] due to spatio-
angular tradeoff or are significantly expensive [2]. In this
paper we propose a method to convert a high spatial resolu-
tion DSLR camera, into a native resolution depth and light
field camera.

Our new light field and depth camera is built with a
DSLR camera and an external aperture mask cut from black
paper as shown in Figure 1. The external mask affixed to
the main camera lens acts as a modulator, allowing only
light rays within a small solid angle. We capture angular
information in the incident light field by changing the mask
sequentially, allowing a different set of solid angles at each
instance. Our light field camera is very easy to construct
(making paper aperture masks takes less than an hour) with
minimal marginal cost, provides the option of switching be-
tween a regular and light field camera and provides a high
resolution depth. Furthermore, our design altogether avoids
accessing the internals of the lens, redesigning the optics
and redesigning the basic camera processing such as demo-
saicing and color processing [20].

Our design is motivated by the ideas of programmable
aperture [12], external modulation [7] and mask-based
modulation [16]. However, our design is significantly easier
to implement, uses no additional optical elements and does
not tinker with the lens system. This makes our design par-
ticularly attractive as a consumer depth camera since any
existing DSLR camera can be converted into a light field
camera with high resolution depth with just an additional
aperture mask. The key insight of our paper is that it is not
necessary to place the mask in the aperture plane of the lens
to capture angular information of the light field. A simi-
lar mask affixed external to the lens can capture the angular
variation in the light field as well. Our assumption is that the
scene is significantly farther from the aperture plane than
the mask from the aperture plane which is often true except
in macro photography.

The placement of the mask in front of the lens, removed
from the aperture plane, causes the captured images to be
heavily vignetted as shown in Figure 1. We explain the vi-
gnetting mathematically in Section 3 and show that each



a) Mask setup b) Captured Images

c) Refocusing e) Recovered Depthd) All Focus Image

Figure 1. a) Our setup: DSLR camera and external paper mask b) Acquired vignetted images corresponding to different 5 × 5 mask sub-
apertures c) Examples of synthetic refocusing (zoom into the PDF to see the out-of-focus areas in each image) d) An all-in-focus image at
the central sub-aperture. Notice the absence of any vignetting. e) Estimated scene depth at the central sub-aperture.

image captures a sloped slice of the light field as shown
in Figure 2. A programmable aperture camera [12] on the
other hand captures a horizontal slice of the same light field.

We use a mask with a 5 × 5 sub-aperture array to ac-
quire the light-field of a static scene. From the 5× 5 views
we estimate multi-view scene depth with occlusion reason-
ing. The depth estimation is particularly hard since each
captured image is vignetted and has only a limited field-of-
view (f.o.v) of the lens. Our problem is akin to the multi-
view depth estimation problem described by Kang et al.[8]
with the constraint that we need to rely on robust photocon-
sistency measures due to vignetting. The lack of a single
image with full f.o.v. necessitates the depths estimated at
each image to be fused together to create single depth im-
age for the scene.

If the scene is nearly Lambertian, using the estimated
depth and occlusions we can interpolate intermediate views
between a captured 5 × 5 array of images to generate finer
sampling of the light field as shown in Section 5. The cap-
tured vignetted images can then be transformed into non-
vignetted, all-focus images through a simple resampling of
the light field space. The finely sampled light field also al-
lows us to achieve alias free digital refocusing.

In this paper we have presented traditional light field ap-
plications such as depth estimation, refocusing and all-focus
images but the information provided by light fields is much
richer and goes beyond imaging applications. We foresee
light field data improving many computer vision applica-
tions such as segmentation, stabilization, material classifi-
cation and recognition.

We note that currently our design is applicable only for
static scenes since we cycle through 5×5 array of apertures.
Further, our reconstruction technique is computationally ex-
pensive since the multi-view passive stereo requires signif-
icant disparity search and regularization. Nevertheless, we
believe the advantages offered by our simple design, flexi-
bility and little marginal costs make this approach exciting

as a consumer depth camera. In summary, our contributions
are:

1. A consumer depth and light field camera design which
can be built easily and flexibly from a DSLR camera
and an external paper mask with little marginal costs.

2. Estimating high resolution depth under vignetting and
limited field-of-view enabling view interpolation and
light field reparameterization.

2. Related Work
Depth cameras and reconstruction: Since light field cam-
eras are a generalization of stereo cameras, they inherit the
advantages and disadvantages of the passive depth estima-
tion techniques compared to the active methods such as
coded light imaging and ToF imaging. i.e. they involve little
marginal cost, can work in bright scenes, are not power hun-
gry and have large range but are computationally expensive,
perform poorly in low light and have low depth sensitivity.
But since our light field camera is built upon a high reso-
lution DSLR it achieves the high native spatial resolution
unlike most consumer depth cameras. Recently [9] showed
that high quality depth can be recovered from finely sam-
pled light fields but the datasets were acquired over a sig-
nificantly wide baseline and required external camera cali-
bration. Since our capture uses a single center-of-projection
no external camera calibration is needed.

Our depth estimation procedure relies on constructing a
disparity space image (DSI) by reparameterizing the light
field (refocusing) and searching for the best focus or pho-
toconsistency of pixels in the array images. The stereo cor-
respondence chapter in Szeliski’s book [15] provides an ex-
cellent overview of different techniques available for depth.
During multi-view depth estimation, for each image view
we warp the other views to this image and estimate the
depth by using a varying spatio-temporal window as de-
scribed in Kang et al. [8]. The occlusions are reasoned from
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Figure 2. a) The scene with axis uo and u = µuo in the conjugate plane where µ is the spatial magnification, the axis s in the aperture
plane, the axis mo in the external mask plane and the corresponding axis m in the virtual mask plane. The light field is parameterized as
L(u, s) and the colored scene points have corresponding colored support lines in b) and c). b) The modulation by mask with a sub-aperture
k is shown by a sloped band with the slope −ρ given by ρ = dm

d−dm
. Since the mask sub-aperture band has a limited spatial extent, the

image Ik(u) at the sensor is vignetted and has a limited f.o.v. c) When the mask is in the aperture plane, m = s, the band is horizontal and
there is no vignetting.

the depth estimates by checking for photoconsistency across
views. For spatial consistency of depth and to fill the holes
in textureless regions we use graph cut techniques based on
MRFs [6]. Since the angular dimension is not finely sam-
pled with our 5 × 5 sub-aperture mask, the epipolar plane
image (EPI) based techniques for depth estimation [4],[17]
cannot be applied to our data.
Comparison with existing light field designs: Our light
field camera design is novel and builds on the theory and
design principles laid out in the previous light field cameras.
A good overview of the sampling of the plenoptic function
can be found in the survey work by Wetzstein et al. [18]
and Zhou et al. [22]. We use the terminology in Zhou et al.
[22] to classify the previous light field capture methods into
three classes: sensor side modulation, aperture modulation
and object side modulation.
Sensor side modulation: The basic idea of sensor-side mod-
ulation is to project the angular information of the light field
onto the spatial dimension. This is accomplished by using
either lenslet arrays [4, 14, 13] or masks [16] in front of the
sensor. These techniques usually leave high-frequency pat-
terns making demoisaicing and color processing hard [20].
Furthermore, lenslets introduce optical aberrations. More
importantly, these techniques require significant modifica-
tions to the hardware that offers no flexibility to switch
between capturing light fields or regular images. Our de-
sign fundamentally avoids any internal access and is easy
to construct, flexible and requires no reinvention of camera
processing.
Aperture modulation: Modulation in the aperture plane [12]
does not project the angular dimension of the light field on
the sensor, preserving the full resolution of the spatial di-
mension. Instead angular resolution is gained by sacrificing
temporal resolution. Levin et al. [11] proposed a coded
aperture technique for depth estimation but it was not used
for light field capture. These techniques require the lens
body to be accessed to place the mask in the optical path-
way, since the aperture plane in a regular lens system is in-
side the lens. Our design shows that the angular resolution

can be sampled even by placing the mask external to the lens
in front of the camera instead of the aperture plane [12]. We
note that the vignetting encountered in Liang et al. [12] is
primarily due to cosine falloff whereas the vignetting in our
camera is a consequence of our design.
Object side modulation: External modulation offers flex-
ibility and avoids reinventing camera processing. An ex-
ample which avoids temporal tradeoff is by Georgiev et al.
[7]. They use an external concave lens array with prisms to
achieve spatio-angular tradeoff by packing the angular in-
formation contiguously. Nevertheless their system requires
careful engineering of the external lens system and the ad-
ditional relay lens can be bulky. The additional optical el-
ements also change the effective focal length of the system
and also introduce aberrations.

The closest design to our camera is the lensless two plane
mask based camera by Zomet and Nayar [23]. Their design
allows wider applications than light field capture but suffers
from image quality due to lack of a lens [12]. On the other
hand, our design introduces no additional optical elements
and can be built from simple opaque paper with easy post
capture calibration. Our external mask also allows the use
of different aperture sizes and configurations without mod-
ifying the effective focal length.

Multiple cameras in an array can be used to capture light
fields with a wide baseline (in addition to other applica-
tions) and was demonstrated by Stanford’s camera array
[19]. However, this system is expensive, not portable and
requires careful synchronization and calibration.
Parameterization and calibration: We parameterize the
light field with two planes at aperture and the sensor like in
the previous mask based design [16], [12]. We show that
an external mask is mathematically equivalent to a scaled
and inverted internal mask close to the aperture plane. Each
image is a sloped slice of the light field in the two plane
parameterization and the angle is given by the ratio of the
distance between the mask to aperture and sensor [16]. We
calibrate the mask to determine the mask offset from the
principal point and the aperture plane axes.



3. Mask Modulation and Calibration
We first present the basics of light fields and external

mask modulation with a 2D light field. Consider the scene
shown in Figure 2(a) where the camera is imaging the scene
and a mask with sub-aperture is placed in front of the main
lens. We parameterize the light field external to the cam-
era as Lo(uo, s) and the light field internal to the camera
as simply L(u, s) where s is the axis at the aperture plane
and uo and u are axes in the conjugate object and sensor
planes respectively. The distances d0 and d of the planes u0

and u from the aperture plane s are related by the thin lens
equation 1

d0
+ 1

d = 1
f where f is the effective focal length

of the lens system. Since the sensor captures a magnified
(and inverted) image of the light field, we have u = µuo
where µ = − d

d0
is the spatial magnification. This means

that the internal light field is a scaled and flipped version of
the external light field. The image captured at the sensor is
an integration of the light field over the aperture plane i.e.
I(u) =

∫
s
L(u, s).

The external mask is a 5 × 5 grid of sub-apertures at-
tached to the lens. We sequentially acquire 25 images by
opening each of these sub-apertures. Note that a coded aper-
ture [12] acquisition would provide better noise properties
but that is not the focus of this paper. Like the light field,
the external mask axis mo in the mask plane has a virtual
flipped and scaled mask axis m in the virtual mask plane
inside the camera. Hence, we consider only the light field
inside the camera and investigate the effect of the internal
mask sub-aperture on the light field. Let the distance from
the aperture axis s to the mask axis m be dm. We define the
ratio ρ = dm

d−dm relating the axis s, m and u as

s = −ρu+m(1 + ρ). (1)

The mask sub-aperture modulates the light field and the
modulation is shown as a sloped band in the light field space
with slope −ρ in Figure 2(b). The modulated light field is
given by

Lk(u, s) =

(k+0.5)∆∫
m=(k−0.5)∆

L(u, s)δ(s+ ρu− (1 + ρ)m) ds.

(2)
When the mask is in the aperture plane [12] as shown in
Figure 2(c), ρ = 0 and s = m.

The image captured with the kth sub aperture open is
Ik(u) =

∫
s
Lk(u, s). Since the modulation band does not

span the entire sensor range, the image Ik(u) is vignetted
and has a limited f.o.v. as illustrated in Figure 2. Note that
as the f-number of the camera increases, the f.o.v. decreases
since the modulation band has smaller range in s, thus re-
stricting the range in u. As the sub-aperture k changes, the
modulation band shifts in both u and s resulting in a shifted
f.o.v. and a parallax shift.

Consider the three colored points in the scene at different
depths in Figure 2(a). The support of the three points in the
light field space is given by the sloped lines. The point in

Calibration @ f5.6

m

n

Figure 3. Overlayed im-
ages captured at f5.6 with
the central sub-aperture of
the 5 × 5 mask and sub-
apertures above and next to
it. We calibrate the offset,
orientation and the shift in
f.o.v. in pixels by localiz-
ing the blob centers.

focus has support parallel to the s axis. This implies that
the integration of the light field at the sensor induces no
blur of the point. The point farther from the camera has
a negative slope and the point closer to the camera has a
positive slope resulting in defocus blur in the image. The
slope of the lines give the distance of the point from the
focal plane. Determining the depth of the points is nothing
but estimating the slope of the lines in the light field space
from the vignetted images Ik(u) and is discussed in Section
4.

In 4D, the light field is represented as L(u, v, s, t) with
the mask plane defined by axis m and n. For simplicity we
choose the aperture axes s, t to align with the mask axes m,
n which may not be aligned with the sensor axes u, v.
Mask calibration: We need to calibrate the masks so that
we can determine the axis of the sub-apertures. In practice,
a 2D mask center can be offset from the principal point and
the mask axes m and n may not align with the image axes
u and v. We capture calibration images of a diffuse white
board to estimate the offset of the mask center by measuring
the shift in f.o.v in pixels and estimate the mask axis rota-
tion. We pick f5.6 and photograph the white screen with
mask locations at the center and one each along the axes as
shown in Figure 3 to localize the vignetted image centers
accurately. The center image gives the offset from the prin-
cipal point. The images along different axes gives the direc-
tion of the mask axis with respect to the sensor axis and the
shift in pixels along the axis gives the f.o.v. shift in pixels.
The offset, f.o.v. shift and axis rotation allow us to achieve
physically accurate refocusing and depth estimation.

4. Depth Estimation
Depth estimation of the scene underlies many of the ap-

plications of light fields such as view interpolation, alias-
free refocusing and multi-view image fusion. But estimat-
ing the depth from vignetted images acquired by an exter-
nal mask is challenging. In this section we first briefly de-
scribe the previous approaches to light field depth estima-
tion. We pose the problem of estimating scene depth as
that of aligning the sensor axis with the light field gradient.
Based on this formulation we present our approach to multi-
view depth estimation and depth fusion under vignetting.
Previous light field depth estimation: Depth of scene
points from 4D light field L(u, v, s, t) can be determined by
estimating the gradient of their support in the epipolar plane
image (EPI) L(u, s) and L(v, t) as described in [4]. This
approach was improved by Wanner et al. [17] by further
reasoning about occlusions in the EPI using a structure ten-
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Figure 4. a) The scene with blue and red occluding lines. To estimate depth we reparameterize the sensor plane by a factor α to u′. The
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the new sensor plane u′ is perpendicular to the blue border in L(u′, s). The right edges of the blue region are now aligned in the warped
image. Depth estimation is simply searching for α which aligns the image intensities in the warped images.

sor framework. Both the methods were designed for finely
sampled angular dimensions (s, t). When the angular sam-
ples are limited, the depth of the scene points is estimated
through traditional stereo matching techniques. Liang et al.
[12] perform multi-view depth estimation at each of the sub-
aperture images Ik(u) and occlusion is reasoned between
every pair of neighboring views.

In this paper, we have access to L(u,m) and not L(u, s).
Hence we estimate depth with L(u,m) and explain our
method in terms of L(u,m) as well.
Depth estimation as light field alignment: In multi-view
stereo, the depth of the scene at a reference view is esti-
mated by warping the other views to that view and check-
ing for photoconsistency of the scene points. The warping
is a homography transformation corresponding to a virtual
scene depth [8]. In light fields, the homography transforma-
tion corresponding to a virtual depth is simply a reparame-
terization to a virtual sensor plane u′ as shown in Figure
4(b) and 4(c).

Lα(u
′,m) = L(αu+ (1− α)m,m). (3)

The reparameterization factor α indicates the scene depth.
α > 1 corresponds to moving u′ away from the aperture
plane bringing the virtual depth closer and α < 1 corre-
sponds to moving the virtual depth farther. When the light
field is reparameterized, the images Ik(u) are warped to
Ikα(u

′) as illustrated in Figure 4. In Figure 4(b), the red and
blue lines in the scene correspond to regions which intersect
in the light field L(u, s). As the sub-aperture k is changed,
the blue and red regions in the image Ik(u) move closer to
each other with the blue region finally occluding the red re-
gion. The right edge of the blue region in image Ik(u) is
also shifting right. When the light field is reparameterized
as shown in Figure 4(c), the right edges of the blue region
across different views align. Since blue is closer to the cam-
era, the factor α > 1 . This corresponds to moving the sen-

sor axis u′ away and rotating the light field anti-clockwise.
In other words we search for α which makes the axis u′
perpendicular to the blue line in Lα(u′,m). Likewise, we
search for α which makes the red line perpendicular to u′.
Multi-view stereo under vignetting: In our camera, the
sub-aperture images Ik(u) are vignetted and have limited
f.o.v. of the scene. We describe the multi-view depth es-
timation under vignetting in Figure 5. Since the vignetted
pixels are unreliable, we do not use those pixels for depth
estimation and the depth is estimated at only the non-
vignetted pixels. All masked images Ik(u) are warped (an
affine transformation) to Ikα(u

′) by a factor α corresponding
to a virtual depth. Note that the pixel u′ in Ikrα (u′) changes
with changing α. To estimate the scene depth at a reference
kr, we apply another affine transformation to all views to
ensure that Ikrα (u′) = Ik(u) for every α. This additional
warping is only for practical purposes and helps avoid the
problem of tracking pixels u of Ikr across different α.

Next, we construct a disparity space image (DSI)
D(u, α, kr) [15] to estimate the depth at the view kr. DSI at
pixel u of sub-aperture image kr quantifies the photoconsis-
tency of other views at that pixel when the views are warped
by factor α. The DSI is constructed as

D(u, α, kr) =
∑
k

f(Ikrα (u), Ikα(u)) (4)

The function f() is a robust measure of photoconsistency
which measures the difference in color as well as image gra-
dients at the pixel across views and is given by

f(I1(u), I2(u)) = (1−λ)|I1(u)−I2(u)|+λ|∇uI1(u)−∇uI2(u)|.
(5)

In Equation (4), temporal selection [8] is done at each pixel
to weed out poor view matches (such as vignetted regions
of some views) and remove their contribution to DSI.
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Depths from multiple views Fused Depth

Figure 6. To generate the full depth at a reference view we warp the
depth at other views to the reference view and perform visibility
reasoning to handle occlusions.

The depth dkr (u) at the reference view kr is then given
by

dkr (u) = argmin
α

D(u, α, kr). (6)

We then employ a standard MRF based depth estimation
[15] to ensure spatial consistency and to fill holes in the
smooth regions. The unary potential at pixel u is given by

E(u) = D(u, αu). (7)

and the smoothness constraints between neighboring pixels
u1 and u2 is

E(u1, u2) =
1

|I(u1)− I(u2)|
max(|αu1

− αu2
|, σ) (8)

Multi-view depth fusion: The depth dkr (u) estimated at
reference kr is limited to non-vignetted pixels and corre-
sponds to only a fraction of the f.o.v. of the scene. But
different views k have different f.o.v. regions. Hence we
use the depth of the scene points from other views to com-
plete the depth information at kr. The procedure shown in
Figure 6 warps the depth dk(u) at pixel u to the view kr by
an affine transformation corresponding to the virtual scene

depth dk(u). Note that some scene points occluded in view
kr will be visible in other views. This causes conflict in the
depth estimates in the occluding regions when other views
are warped to kr. We resolve the conflict in such regions
by performing visibility reasoning i.e. we simply take a
minimum of all warped depths. The combined depths from
different views at the central view is shown in Figure 6.

5. Applications
High spatial resolution depth and light fields are a rich

source of information about the plenoptic function and po-
tentially useful for many computer vision applications such
as segmentation, stabilization and recognition [5]. In this
paper we restrict our focus to light field imaging applica-
tions [1] and hope the emergence of light field cameras
will spur research in their use in computer vision applica-
tions as well. The estimation of dense scene depth at the
sensor resolution allows us to implement the standard light
field applications [1] despite the lower angular resolution
of our captured light field. We use the depth of the scene
points to fuse images from multiple views to achieve an all-
in-focus image. Multi-view depth information also makes
occlusion reasoning easy, enabling view interpolation be-
tween the sub-aperture views. The interpolated views allow
us to overcome the aliasing in the angular dimension en-
abling alias-free refocusing.
All-in-focus images: Examples of all-in-focus images are
shown in Figure 1 and Figure 9. Since each view is vi-
gnetted, the all-in-focus image is created by borrowing pix-
els from different views. Using the depth information at
the source view, we determine the amount of warp needed
to transform the source image to the reference view. But a
naive warp of the images to the reference view will cause
tearing artifacts. To prevent that, we reason about the pix-
els which will be occluded in the reference view. The depth
information at both these views allows us to determine the
occlusions and disocclusions through visibility reasoning.
We use the estimated occlusion map along with the required
warp to propagate pixel values to the reference view creat-



a) k = (2,2) b) k = (2.5,2.5) c) k = (3,3)

Di�erence |(a) - (b)| Di�erence |(b) - (c)|

Figure 7. The view k = (2.5, 2.5) has been interpolated from
the views k = (2, 2) and k = (3, 3) and visualized through the
difference images. White areas denote the least difference and
colored areas have high difference. Notice that the difference is
larger only at the farther and nearer ends of the scene where the
motion is largest.

Front Focused Image Back Focused Image

Comparison at red window Comparison at green window
Figure 8. Digital refocusing done at two different scene depths.
Notice that the refocused images are not aliased despite the low
angular resolution since we integrate over the interpolated views.

ing a seamless all-in-focus image.
View Interpolation: Given the all-in-focus images be-
tween two neighboring views we interpolate the interme-
diate views. Figure 7 shows the interpolated view k =
(2.5, 2.5) between the sub-aperture views k = (2, 2) and
k = (3, 3). The interpolated image has been visualized
through difference images. Notice that the difference is
larger at the farther and closer parts of the scene where the
motion is largest. We note that the knowledge of depth al-
lows alias-free interpolation compared to ghosting seen in a
simple alpha blending. We discuss this more in the supple-
mentary material and also provide videos of smooth transi-
tion in viewpoints along interpolated views.
Refocusing: We refocus at different depths of the scene by
warping the light field to the virtual sensor position u′ and
then integrate over the synthetic aperture window W .

Iα(u
′) =

∑
m∈W

Lα(u
′,m). (9)

In Figure 8, we show the refocusing at two different scene

depths. Notice that the scene has no aliasing despite limited
angular resolution of our camera since we integrate over the
interpolated views.

6. Conclusions
We presented a novel consumer depth and light field

camera built with a DSLR camera and an external mask.
The key feature of our design is the ability to convert any
camera into a light field camera at will and extract high res-
olution depth with minimal marginal costs. We hope that
this design will be a starting point for further investigation
into simple, easy-to-build consumer depth and light field
capture devices which can be used for solving a wide range
of computer vision problems. The sampling of the angular
resolution of the light field, in addition to high resolution
depth, also provides additional information to improve the
quality of vision applications such as segmentation, track-
ing and classification and we hope to explore this in future
work. In this paper we demonstrated that our design allows
acquisition of quality depth information even with a small
baseline of the lens aperture, enabling imaging applications
such as refocusing and multi-view all-in-focus images.

Our method currently captures the light field of a static
scene at full sensor resolution. Since we capture the differ-
ent sub-apertures sequentially, we tradeoff temporal resolu-
tion to gain angular resolution. We adopted a multi-view
stereo reconstruction framework for depth estimation due
to limited f.o.v and small angular resolution of the acquired
light field. This makes our depth estimation computation-
ally expensive and hence our reconstruction is not real-time.
The design of a sequence of external mask patterns which
makes the acquisition fast and exploration of fast multi-
view depth algorithms are an avenue for future work.
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