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Abstract—Echo state neural networks (ESNs) provide an
efficient classification technique for spatiotemporal signals. The
feedback connections in the ESN topology enable feature ex-
traction of both spatial and temporal components in time series
data. This property has been used in several application domains
such as image and video analysis, anomaly detection, and speech
recognition. In this research, we explore a hardware architec-
ture for realizing ESN efficiently in power-constrained devices.
Specifically, we propose a scalable computational architecture
applied to speech-emotion recognition. Two different topologies
are explored, with memristive synapses. The simulation results
are promising with a classification accuracy of ≈ 96% for two
distinct emotion statuses.

Keywords—Reservoir Computing, Echo State Networks, Mem-
ristors, Speech Emotion Recognition

I. INTRODUCTION

Echo State Network(ESN) is a class of reservoir com-
puting model presented by Jaeger et.al. in 2001 [1]. ESNs
are considered as partially-trained Artificial Neural Networks
(ANNs) with a recurrent network topology. They are used for
spatiotemporal signal processing problems, where signals are
processed based on their behavior in time series windows.
The ESN model is inspired by the emerging dynamics of
how the brain handles temporal stimuli. It consists of an
input layer, a reservoir layer and an output layer (see Fig.
1). The reservoir layer, is the heart of the network, with
rich recurrent connections. These connections are randomly
generated and each connection has a random weight associated
with it. Once generated, these random weights are never
changed during training or testing phases of the network. The
output layer of the ESN linearly combines the desired output
signal from the rich variety of excited reservoir layer signals.
The central idea is that only the network to the output layer
connection weights have to be trained, using simple linear

The material and results presented in this paper have been cleared for public 
release, unlimited distribution by AFRL, case number 88ABW-2015-0832. 
Any opinions, findings and conclusions or recommendations expressed in this 
material are those of the authors and do not necessarily reflect t he v iews of 
AFRL or its contractors.

regression algorithms. Another reservoir model, known as liq-
uid state machine, provides a biologically plausible model for
generating computations in cortical microcircuits.In contrast,
ESN provides a high performance mathematical framework
for solving a number of engineering tasks. Specifically, they
can be applied to recurrent artificial neural networks without
internal noise. ESNs have simplified training algorithms com-
pared to other recurrent ANNs and are more efficient than
kernel-based methods (e.g.: Support Vector Machines) due to
their ability to incorporate temporal stimuli. Because of its
recurrent connections, the output of the reservoir depends on
the current input state and all previous input states within
the system memory. The recurrent connections within the
reservoir layer of the ESNs enable extracting both spatial and
temporal components in the time series data. This attractive
feature has been used in several applications that deal with
spatiotemporal problems. Software implementations of ESN
have been effective in diverse applications such as emotion
recognition [2], forecasting of water inflow for a hydropower
plant [3], natural language analysis [4], motion identification
[5], speech recognition [6], and many more (see [7] for a
review). However, the software models are not efficient for
embedded and low-end processing environments, where power
dissipation is critical to the operation of the devices. To address
this, we propose a computational architecture of the ESN that
enables portability and power efficiency by exploiting the use
of emerging memristive devices. Specifically, the synapses are
implemented using memristors. The neuron circuits used in
this architecture are composed of current-mode designs,which
are inherently low power. Two different ESN architecture
topologies are explored with the memristive circuits, ring
and random topology. The architecture is tuned and modeled
for a speech-emotion recognition with 96% classification
accuracy. Such models are proven to be efficient for several
applications . For example, it has been demonstrated in audi-
tory modeling that identifying and recognizing the emotional
status of a person is crucial for designing effective next-
generation human-computer interaction interface [2]. The rest
of the paper is organized as follows. ESN training algorithm is
discussed in section II. Section III provides an overview of the
hardware architecture and the synapse circuit design. Section
IV discusses speech emotion recognition application and the
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architecture. Section V presents the results for the proposed
architecture and Section VI presents conclusions.

Fig. 1. Echo State Networks consist of three layers: input layer, reservoir
layer and output layer.

II. ESN TRAINING ALGORITHM

Three main sets of weights are associated with the ESNs
(Fig. 2). The weights at the input and reservoir layers are
randomly generated. These layers are used to extract temporal
features of the input signal. They can be thought of as an
internal pre-process step that prepares the signal for the actual
processing layer where the classification is learned at the
readout layer. Fig. 2 also shows the propagation of the signals
through the ESNs. The input signal to the ESN u(n) is pre-
processed at the input and reservoir layers to extract the
temporal featured signal x(n) which is fed to the readout layer
to complete the classification process. Considering that the
input and reservoir layers are not actual parts of this process,
their weights are not trained which makes training the ESNs
much easier than other types of recurrent neural networks.

The goal of the training algorithm is to calculate the
weights at the output layer based on the dynamic re-
sponse(states) of the reservoir layer [8]. The states of the
reservoir layer are calculated based on the input vectors and
the weights of the input and reservoir layer as shown in (1).

x(n+1) = f res (Winu(n+1)+Wxx(n)) (1)

where u(n) is the ESN input, Win is the weight matrix between
the input layer and reservoir, Wx is the weight matrix between
the neurons within the reservoir, and f res is the reservoir’s
activation function. The states of the reservoir for all input
vectors are used as an input to a supervised training to calculate
the output weights Wout. The normal equation is used to
implement the supervised training of ESNs (2).

Wout = (Y.X′)(X.Y′) (2)

where X is a matrix concatenating all states of the reservoir
and Y is a matrix of all training outputs.The process for
training the ESN can be explained through the following steps:

1) At initialization, randomly generate the weights for
the input and reservoir layers (Win and Wx)

2) Drive the next input vector u(n+1) to the input layer
3) Calculate the response of the reservoir layer by (1)
4) Save the response in a matrix (X)
5) Repeat step 2-4 for all input vectors
6) Calculate output weights based on normal equation

(2)

Fig. 2. Echo State Networks abstract structure. How signals propagate
through the ESN and the effects of different weight sets in the network.

Once the weights of the output layer are calculated, the
network is ready and the state of the reservoir layer is used to
calculate the output of the network as shown in (3).

y(n+1) = f out (Woutx(n+1)) (3)

where y(n+ 1) is the output of the network, Wout is the
weight matrix at the readout layer and f out is the readout
layer’s activation function.

III. ESN IN HARDWARE

Hardware implementations of ESNs are more effective
in meeting the critical requirements of applications, such as
therapeutic devices and body sensors, in terms of power
consumption, processing speed, and area requirements. Current
mode circuits, which draw extremely low power, are used for
this purpose. From a circuit point of view, an ESN consists
of a number of neurons connected by a set of synapses in a
specific pattern. Therefore, the primitives required to build an
ESN are:

• Architectural topology of the reservoirs

• Input and output processing layers

• Memristive synapse circuit models

• Neuron circuit models

A. Architectural topology of the reservoirs

Topology is defined by the interconnection pattern within
the reservoir nodes. Implementing ESN reservoirs with com-
plex topologies incurs a large hardware cost from the stand-
point of routing complexity, area overhead, and power con-
sumption. Two hardware friendly topologies were explored in
this work, random and ring. Random topology (Fig. 3(b)) is
the native pattern of interconnections in which the nodes are
randomly connected based on varied degree of connectivity.
A dense hardware architecture is needed to implement this
type of topology. The second topology is the ring shaped
interconnection (Fig. 3(a)), introduced in [9]. In this topology
each node is connected to only two neighbors. Due to its low
degree of connectivity, it can be easily realized in hardware.
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(a)

(b)

Fig. 3. Block level representations of the two ESN topologies that are
explored.(a) Ring topology and (b) Random topology.

B. Memristive Synapse Circuits

A memristor is a non-volatile variable resistor, with state-
dependent Ohms Law where its resistance depends on the
internal state GAMA [10]. Memristors have been widely used
to implement synaptic circuits [11, 12] due to their small
footprint, simple device structure, and most importantly zero
static power dissipation[13]. Two synaptic circuits were used
in this work. The inhibitory synapse (Fig. 4(a)) draws current
away from a post-synaptic neuron, similar to GABAergic
synapse in the biological brain. The excitatory synapse (Fig.
4(b)) supplies current to the post-synaptic neuron, similar
to glutamatergic synapse in biological brain. In both the
inhibitory and excitatory synapses, two memristors in parallel
divide the input current based on the memristors conductance.
Consequently the weight is given as a ratio of conductances as
in (4). The output currents inhibit or excite the post-synaptic
neuron.

w−(+) =
G2(4)

G1(3)+G2(4)
, (4)

where w is the weight of the synapse and G = 1/R is the
conductance of memristor in Fig. 4.

C. Neuron Circuits

A current-mode neuron circuit with sigmoid (’s’) shaped
activation function is used in this design (Fig. 5). This circuit
consists of a MOSFET differential pair and a current mirror.
The transistor M2 of the differential pair is grounded which
makes the output current iout dependent only on the input
current iin. The input resistance Rin can be used to adjust

out_neg

-VSS

i

iin

G1 G2

M1 M2 M3

Circuit 
symbol:

(a)

M4 M5 M6

G3 G4

iin

iout_pos

VDD

Circuit 
symbol:

(b)

Fig. 4. (a) Inhibitory memristive synapse circuit and (b) excitatory memristive
synapse circuit. These circuits are inspired by the function of biological
inhibitory (e.g. GABAergic) and excitatory (e.g. glutamatergic) synapses with
ionotropic receptors.

the sigmoid slope. The current flow in the differential pair is
mirrored to the output through the transistor M5.

iin

Rin

VDD

-VSS

iout

Imax

M3 M4

M1 M2

M5

Fig. 5. Neuron circuit for the reservoir and output layers of the ESN with a
sigmoid (’s’) shaped activation function.

IV. SPEECH EMOTION RECOGNITION

In speech emotion recognition, the emotional status of a
human such as anger, fear, happiness etc. are determined based
on the speech signals. Human-computer interaction is a classi-
cal application of emotion recognition [14]. This property can
facilitate better human-computer interaction. Using speech for
emotion recognition is simpler and requires less computational
resources compared to other inputs such as facial expressions.
The Berlin database of Emotional Speech was used for training
and learning purposes. The database is publicly available at
htt p : //www.expressive− speech.net/. In this database, ten
actors (five male and five female) recorded 800 utterances. Ten
different daily used German sentences were recorded in seven
different emotional statuses (anger, joy, sadness, fear, disgust
and boredom, and neutral). The utterances were recorded at
16 kHz sampling frequency with 16 bits resolution.

A. Feature Extractor

Selection of features associated with emotions is an impor-
tant step before feeding inputs into the ESN. These features
should be independent of the speaker or lexical content. In
speech, emotion is communicated over varying of temporal
dynamics of the audio signal [15]. The human ear processes the
tone as a non-linear function of the voice frequency. It linearly
processes the frequencies below 1000 Hz; but its perception
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of frequencies more than 1000 Hz is logarithmic. To extract
the emotion content as nearest as the human method, the
Mel frequency scale is used [16]. Fig. 6 shows a schematic
representation of the feature extractor used in this work. The
input audio signal x(n) is divided into shorter pieces of 1600
samples. These pieces are overlapped with 640 samples. The
Fast Fourier Transform X(k) of those vectors are passed to the
different Mel-Filter bands. The limits of the eight bands are
selected to mimic the human auditory system. The frequency
responses of these triangular filters are calculated based on (5).

Fig. 6. Block diagram of the feature extractor used in this work. The input is
an audio signal and the final output is the energy corresponding to the emotion
contents of the input signal.

Hi[k] =


2(k−bi)

(di−bi)−(ci−bi)
, if bi ≤ k ≤ ci

2(di−k)
(di−bi)−(di−ci)

, if ci ≤ k ≤ di

0, otherwise

(5)

where i is the index of the filter, Hi is the response of the ith
filter. bi, ci and di are the start, center and end limits of the
ith filter.

The amplitude spectrum of the signals analyzed by the Mel-
Filter is calculated based on the responses of the frequency
of the filter bands and the absolute value of the FFT H(k)
(Equaion 6). This process ends with eight different signals and
each signal is analyzed with FFT to calculate the final features.
Based on the length and overlapped values of the input pieces,
the extraction frequency is 25Hz.

m(i) =
K

∑
k=0

Hi[k] |X [k]| (6)

Fig. 7 shows the final features of ten neutral and ten anger
statuses. It shows that the response of the third-eighth Mel-
Filter bands for the neutral status is very low while the anger
statues shows high responses at these bands. This difference
is the key to the classification.

B. Simulation Methodology

The synapses and the neuron circuits were simulated in
HSPICE. The results were analyzed to build an ideal behav-
ioral model of these circuits. Based on these models, the whole
system was emulated in MATLAB, for a realistic simulation.
Using this approach we were able to analyse the system in
detail and find the appropriate parameters to enhance the
accuracy. The proposed ESN design was used to classify two
emotion statuses (Neutral and Anger). The restricted analysis
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al

Speech Emotion Features

Fig. 7. Ten randomly chosen final emotion features for neutral and anger
statuses. The length of each of the signal depends on the length of the actual
input audio signal to the feature extractor.

of two emotional states was chosen to simplify hardware
testing and reservoir parameters optimization. A total of 156
audio signals were used for both training and testing purposes (
110 for training and 46 for testing). The system was tested with
different parametric values as explained in the next section.

V. RESULTS AND ANALYSIS

Repeated sets of simulations were conducted to find the
best values of the size of the reservoir, degree of connectiv-
ity and the short memory parameter alpha. 1000 individual
simulation runs were conducted with different reservoir sizes
(10-500) and degrees of connectivity(5-100%). Fig. 8 shows
the testing accuracy of each simulation. It was found that the
190 node reservoir with 20% degree of connectivity has the
best accuracy. These values were used to conduct another
experiment to find the best Alpha value. The experiment
included 100 distinct simulation runs with different Alpha
values (0.01-1.0). Fig. 9 shows results of this experiment where
the best testing accuracy was achieved when Alpha value
≈0.25.

Number of Nodes Connectivity[%]

A
cc

ur
ac

y 
[%

]

Accuracy vs Reservoir Nodes and Connectivity

Fig. 8. The effects of the number of nodes within the reservoir and the
degree of connectivity of those nodes on the testing accuracy at Alpha ≈0.25
The best accuracy is observed at ≈190 nodes and ≈ 20 % connectivity.

One readout layer node was sufficient to classify the two
emotional status (Neutral and Anger). The output of this node
is compared against a threshold value to calculate the final
binary output (Fig. 10). Different threshold values were used to
enhance the classification accuracy. Fig. 11 shows best training
and testing accuracy versus different threshold values. Both
training and testing reached ≈96% accuracy.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
4



Alpha Value

Fig. 9. The short memory parameter Alpha verses testing accuracy at 190
reservoir nodes with 20 % connectivity. Best accuracy is observed at Alpha
≈0.25.

Fig. 10. The expected output of the test case and the actual output of the
ESN before and after comparing with the threshold value.

VI. CONCLUSIONS

This work introduces a computational architecture of the
ESN using memristive circuits for real-time speech emotion
recognition. Using only two memristors, the synapses have
captured the accurate weight values in the Ring topology.This
design successfully recognizes two emotional status (Neutral
and Anger) with ≈96% accuracy. A total of 156 audio signals
were used for both training and testing purposes.The effect
of reservoir learning rate, number of nodes, and degree of
connectivity is also studied. Future work will focus on rec-
ognizing additional emotional statuses (such as joy, sadness,
fear, disgust and boredom) and improving the accuracy by
considering the latency in the output signal.
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