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Abstract

For a directed graph G, a t-identifying code is a subset S ⊆ V (G)
with the property that for each vertex v ∈ V (G) the set of vertices of
S reachable from v by a directed path of length at most t is both non-
empty and unique. A graph is called t-identifiable if there exists a t-
identifying code. This paper shows that the de Bruijn graph ~B(d, n) is
t-identifiable for n ≥ 2t−1, and is not t-identifiable for n ≤ 2t−2. This
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paper also proves that a t-identifying code for t-identifiable de Bruijn
graphs must contain at least dn−1(d − 1) vertices. Constructions are
given to show that this lower bound is achievable for t-identifying
codes when n ≥ 2t. Further a (possibly) non-optimal construction is
given when n = 2t−1. Additionally, with respect to ~B(d, n) this paper
proves upper and lower bounds on the size of a minimum t-dominating

set (a subset with the property that every vertex is at distance at most
t from the subset), that the minimum size of a directed resolving set

(a subset with the property that every vertex of the graph can be
distinguished by its directed distances to vertices of S) is dn−1(d− 1),
and that if d > n the minimum size of a determining set (a subset S
with the property that the only automorphism that fixes S pointwise
is the trivial automorphism) is

⌈

d−1
n

⌉

.

1 Introduction

First introduced in 1998 [9], an identifying code for a graph G is a subset
S ⊆ V (G) with the property that for each v ∈ V (G) the subset of vertices
of S that are adjacent to v is non-empty and unique. That is, each vertex
of the graph is uniquely identifiable by the non-empty subset of vertices of
S to which it is adjacent. Note that not all graphs have an identifying code;
those that do are called identifiable. A graph fails to be identifiable if and
only if it contains a pair of vertices with the same closed (in-)neighborhood;
such vertices are called twins. Extending these definitions to t-identifying
and t-twins is easy and is covered in Section 3. Identifying codes can be
quite useful in applications. For example, an identifying code in a network
of smoke detectors allows us to determine the exact location of a fire given
only the set of detectors that have been triggered. However, the problem of
finding identifying codes is NP-Hard [5]. The computational cost has so far
limited the real-world use of identifying codes.

The directed de Bruijn graph ~B(d, n) is a directed graph in which the
vertices are strings of length n from an alphabet A with d letters, and with
a directed arc from vertex x1x2 . . . xn to vertex x2 . . . xna for each a ∈ A.
When looking for a graph model for applications, it is useful to choose a
graph with relatively few edges, but many short paths between any pair of
vertices [2]. The de Bruijn graphs have both of these desirable properties.
In addition, given an arbitrary pair of vertices in a de Bruijn graph, there

2



Identifying Code

Dominating Set Determining Set

Resolving Set

Figure 1: Vertex Subset Relationships

are routing algorithms that, with high probability, create a path of length
O(logn) between the pair [13]. The properties of de Bruijn graphs enable
some problems that are NP-complete on general graphs, such as the Hamilton
cycle problem, to be computationally solvable on de Bruijn graphs [14]. We
will see that for most directed de Bruijn graphs, the construction of minimum
t-identifying codes is indeed solvable (when they exist).

Other vertex subsets that we consider for de Bruijn graphs in this pa-
per are dominating sets, resolving sets, and determining sets. Dominating
sets provide complete coverage for a graph, while resolving sets provide an
identification of vertices in graphs using relative distances. Finally, deter-
mining sets provide a set of vertices that is only fixed pointwise by the trivial
automorphism. These types of subsets are also useful in applications. For
example, resolving sets have been used in aiding the navigation of robots
when distances to sufficient landmarks are known [10], and determining sets
are useful in graph distinguishing which can reduce graph symmetry to en-
hance recognition. These different vertex subsets are interrelated, as shown
in Figure 1. For example, each resolving set and identifying code is also a
determining set, but not vice-versa. This is discussed more fully in Section
4.1 and Section 4.3.

In Section 2, we give careful definitions necessary for working with di-
rected de Bruijn graphs. In Section 3, we prove that for every t-identifiable
de Bruijn graph, any t-identifying code must contain at least dn−1(d−1) ver-
tices. We prove by construction that this bound is achievable for t-identifying
codes when n ≥ 2t. For n = 2t− 1 we show the existence of a t-identifying
code of size dn−1(d−1)+dt, which may or may not be optimal size. Further-

more, when n ≤ 2t− 2, we are able to show that ~B(d, n) has no t-identifying
code due to the existence of t-twins. In Section 4 we study dominating
sets, directed resolving sets, and determining sets for ~B(d, n). Section 4.2

gives a proof that the minimum size of a directed resolving set for ~B(d, n) is
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dn−1(d − 1), and Section 4.3 that the minimum size of a determining set is
⌈

d−1
n

⌉

.

2 Definitions

We will be considering various types of vertex subsets on the class of directed
de Bruijn graphs. The following definitions will be useful in working with
this class of graphs. We will use the notation [x] = {1, 2, . . . , x}.

Definition 2.1. Let Ad = {0, 1, . . . , d−1} and let An
d be the set of all strings

of length n made up of letters of A. When d is clear from context we will
use A and An respectively.

Definition 2.2. The directed de Bruijn graph, denoted ~B(d, n), has
vertex set An

d . An edge from vertex x1x2 . . . xn to vertex y1y2 . . . yn exists if
and only if x2x3 . . . xn = y1y2 . . . yn−1.

Definition 2.3. The concatenation of two strings x = x1x2 . . . xi and
y = y1y2 . . . yk is given by x⊕ y = x1x2 . . . xiy1y2 . . . yk.

Definition 2.4. The concatenation of sets of strings S and T is given
by S ⊕ T = {x⊕ y | x ∈ S and y ∈ T}.

Definition 2.5. The prefix of a string x = x1x2 . . . xn is the substring
x1x2 . . . xn−1, denoted by x−.

Definition 2.6. The suffix of a string x = x1x2 . . . xn is is the substring
x2x3 . . . xn, denoted by x+.

Definition 2.7. When discussing substrings of a string x1x2 . . . xn, we will
use the notation x(a : b) to denote the substring xaxa+1 . . . xb.

Definition 2.8. If a string x = x1x2 . . . xn contains a constant substring
x(a, b) = zz . . . z, then we will denote the consecutive letters as zb−a, the
constant raised to the power denoting length. This will also be used for
repeated substrings, such as 0101 . . . 01 = (01)k.

Definition 2.9. Let w = w1 . . . wn ∈ An
d . Define w(t,m) = w

(t,m)
1 . . . w

(t,m)
n

such that:

w
(t,m)
i =

{

wt +m (mod d), if i = t;
wi, otherwise.

4



Definition 2.10. Let w = w1 . . . wn ∈ An
d and ℓ ∈ Z

+ such that n ≥ 2ℓ.
Then we say that w has period length ℓ if wi = wi+ℓ for all i ∈ [n− ℓ]. If we
have n < 2ℓ, then we say that w has almost period length ℓ.

Definition 2.11. Let w ∈ An
d , and suppose that w has period length ℓ, and

does not have period length k for any k < ℓ. Then w is called ℓ-periodic.

Definition 2.12. Let w ∈ An
d . If there exists some ℓ > n

2
and word w′ ∈

A2ℓ−n
d such that w ⊕ w′ is ℓ-periodic, then w is called almost ℓ-periodic.

We now provide some lemmas regarding string properties that will be
used later in the paper.

Lemma 2.13. [7] Let ℓ1 > ℓ2 and w be a word of length n ≥ ℓ1 + ℓ2 −
gcd(ℓ1, ℓ2). If w has periods (or almost periods) of length ℓ1 and ℓ2 , then w
has a period of length gcd(ℓ1, ℓ2).

Lemma 2.14. [3] Let ℓ1 ≥ ℓ2 and w be a word of length n ≥ ℓ1 + ℓ2. If w
has a period (or almost period) of length ℓ1 and w(k,m) has a period of length
ℓ2 for some m ∈ Ad, then there is m′ ∈ Ad such that w(k,m′) has a period of
length gcd(ℓ1, ℓ2).

Lemma 2.15. Let w ∈ An
d such that w is ℓ1-periodic or almost ℓ1-periodic.

Let m ∈ [d − 1] and also k ∈ [n] with k ≤ n − ℓ1 or k > ℓ1. Then for
any ℓ2 < n

2
with ℓ1 ≥ ℓ2 and n ≥ ℓ1 + ℓ2, it is not possible that w(k,m) is

ℓ2-periodic.

Proof. We proceed by contradiction, and suppose that w(k,m) is ℓ2-periodic.
We have two cases. First, if k > ℓ1, then by Lemma 2.14, there exists some
m′ ∈ Ad such that w(k,m′) has period of length gcd(ℓ1, ℓ2). Then we have the
following chain of equalities.

wk = wk−ℓ1 since w has a period of length ℓ1
= wk−ℓ2 since w(k,m′) has a period of length gcd(ℓ1, ℓ2)

= w
(k,m)
k since w(k,m) has a period of length ℓ2

Hence this is a contradiction. For our second case, when k ≤ n− ℓ1, we note
the following.

wk = wk+ℓ1 = wk+ℓ2 = w
(k,m)
k

This is also a contradiction. Therefore we must have that w(k,m) is not ℓ2-
periodic.
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Lemma 2.16. Let w ∈ An
d such that w has period length ℓ1 for some ℓ1 <

n
2
.

For all m ∈ [d− 1] and for all i, j, k ∈ [n] with i ≤ k ≤ j, and for all ℓ2 ≤ ℓ1
with j − i + 1 ≥ ℓ1 + ℓ2 and with either k ≥ i + ℓ1 or k ≤ j − ℓ1, we must
have that w(k,m)(i, j) does not have period ℓ2.

Proof. Define w′ = w(i, j) and w′(k−i,m) = w(k,m)(i, j), and then apply Lemma
2.15 to compare the two strings.

Lemma 2.17. Let n = 2t and let u ∈ An
d . If u has period length t and for

some ℓ < t and m ∈ Ad, we find that u′ = u(t,m)(t+1−ℓ : n−1) is ℓ-periodic,
then we must have that ℓ divides t and u′ ⊕ (un +m) has period ℓ.

Proof. First, we note that Um =
(

u(t,m)
)(n,m)

clearly has period length t,
and so Um(t + 1− ℓ : n− 1) has almost period length t. Additionally, since
Um(t+ 1− ℓ : n− 1) = u′, we know that Um(t + 1 − ℓ : n− 1) is ℓ-periodic.
Hence by Lemma 2.13, Um(t+1−ℓ : n−1) has period of length p = gcd(t, ℓ).
However since u′ is given to be ℓ-periodic, the minimum period length is ℓ
and so we must have that p = ℓ and thus ℓ divides t.

To show that u′⊕(un+m) has period ℓ, we note that u′ has period ℓ, and

that u′
ℓ = u

(t,m)
t = ut+m. Having period ℓ implies that u′

k = ut+m for all k
that is divisible by ℓ. Since un+m is the (t+ ℓ)th letter in u′⊕ (un+m), and
this is divisible by ℓ, we need that un+m = ut+m in order for u′⊕ (un+m)
to have period ℓ. But this is given to be true since u has period t.

3 Identifying Codes

We begin by building up to the definition of an identifying code. This requires
careful definitions of directed distance and t-balls.

Definition 3.1. The directed distance from vertex u to vertex v in a graph
G is given by ~d(u, v), and is defined as the length of the shortest directed
path from u to v in G.

Definition 3.2. Let v ∈ V (G). The open in-neighborhood of v is given by
N−(v) = {u ∈ V (G) | (u, v) ∈ E(G)}, and the closed in-neighborhood
is given by N−[v] = N−(v) ∪ {v}.

Note that out-neighborhoods are defined analogously, but will not be
needed in this paper.

6
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Figure 2: A 1-identifying code in the graph ~B(2, 3) (black vertices). A 2-
identifying code in this graph requires all vertices but one of {000, 111}, and
there are no t-identifying codes for t ≥ 3.

Definition 3.3. The in-ball of radius t centered at vertex v is the set:
B

−

t (v) = {u ∈ V (G) | ~d(u, v) ≤ t}. and the out-ball of radius t centered

at vertex v is the set: B+

t (v) = {u ∈ V (G) | ~d(v, u) ≤ t}.

The two following lemmas are useful in working with distances in ~B(d, n)
and their proofs are self-evident.

Lemma 3.4. In ~B(d, n) there is a directed path of length t ≤ n from x to y
if and only if x(t+ 1 : n) = y(1 : n− t). That is, if and only if the rightmost
n− t letters of x are the same as the leftmost n− t letters of y.

Lemma 3.5. In ~B(d, n) if vertices x 6= y have the same prefix, then for all

u 6= {x, y}, ~d(u, x) = ~d(u, y). In particular, B−
t (x) \ {x} = B−

t (y) \ {y} for
all t ≤ n.

Definition 3.6. Given a subset S ⊂ V (G), the S t-identifying set for
vertex v is given by IDS(v) = B−

t (v) ∩ S.

Definition 3.7. A t-identifying code is set S ⊆ V (G) such that each vertex
has a unique, non-empty t-identifying set. That is, for every u ∈ V (G),
IDS(u) 6= ∅, and for all pairs u, v ∈ V (G) we have IDS(u) 6= IDS(v). The
variable t is referred to as the radius of the identifying code. See Figure 2
for an identifying code in the graph ~B(2, 3).

In the above definitions, if t is omitted from the notation (i.e. identifying
code instead of t-identifying code), then it is assumed that t = 1.

Note that not every graph has a t-identifying code for each t. In particular
if the graph has two vertices with equal in-balls of radius t, then the graph

7



has no t-identifying code. The topic of such ‘t-twins’ and the resulting non-
existence of t-identifying codes is covered in Theorem 3.13.

Theorem 3.8. If ~B(d, n) is a t-identifiable graph, then the size of any t-
identifying code is at least dn−1(d− 1).

Proof. Choose t ≤ n and a 6= b in A. Suppose that for some w ∈ An−1,
neither x = w ⊕ a nor y = w ⊕ b is a set S. Since x and y share a prefix,
by Lemma 3.5, B−

t (x) \ {x} = B−
t (y) \ {y}. Since neither x nor y is in S,

IDS(x) = IDS(y). Thus S is not a t-identifying code. Thus for each w ∈ An−1,
a t-identifying code must contain, at least, all but one of w ⊕ a for a ∈ A.
Thus a t-identifying code for ~B(d, n) must have size at least dn−1(d− 1).

Note that the result above is independent of the radius t. An interesting
consequence of this is the fact that increasing the radius of our identifying
code does not produce any decrease in the size of a minimum identifying
code. For example, consider the potential application of identifying codes
in sensor networks. One might think that by increasing the sensing power
(which corresponds to the radius of the identifying code) we would be able to
place fewer sensors and thus incur a savings overall. However, Theorem 3.8
implies that providing more powerful (and thus more expensive) sensors does
not allow us to place fewer sensors. Thus we should use sensors that have
sensing distance equivalent to radius one. In fact, in the case of 2-identifying
codes in ~B(2, 3), we actually require an extra vertex for a minimum size of
seven!

The remainder of this section is organized as follows. We first provide
a construction of an optimal t-identifying code for ~B(d, n) with t ≥ 2, and
n ≥ 2t in Theorems 3.9 and 3.10. Following the proof of this result, we
highlight some variations that provide identifying codes for several other
instances. Finally, we highlight an alternative construction for 1-identifying
codes for all ~B(d, n) when d 6= 2 and n is odd.

Theorem 3.9. Suppose that n ≥ 5, d ≥ 2, t ≥ 2, and n ≥ 2t. Then the
following set S is an optimal t-identifying code of size dn−1(d−1) in ~B(d, n).

S =
{

x ∈ An
d | for some m and ℓ ≤ t, x(t,m)(t + 1− ℓ : n− 1) is ℓ-periodic,

but x(t,m)(t + 1− ℓ : n− 1)⊕ (xn +m) is not.
}

∪
{

x ∈ An
d | xt 6= xn and x(t,m)(t+ 1− ℓ : n− 1)

is not ℓ-periodic for any m and ℓ ≤ t}

8



Proof. First, let us note that for all x ∈ An
d , if x

(t,m)(t+1− ℓ : n) has period
ℓ for any m and ℓ ≤ t, then x 6∈ S.

Let x be given, and define xi to be the ith coordinate of x. We also define
the following string xij .

xij(k) =







i, if k = t;
j, if k = n;
x(k), otherwise.

In other words, xij is the string x1 . . . xt−1ixt+1 . . . xn−1j.
Next, we note that xij(t+1− ℓ : n−1) = x(t,i−xt)(t+1− ℓ : n−1), which

implies by Lemma 2.16 that xij(t + 1 − ℓ : n − 1) is ℓ-periodic for at most
one ℓ ≤ t = n

2
and for at most one i ∈ Ad.

Next, suppose that xab(t + 1 − ℓ : n) is ℓ-periodic and consider xij . We

note that x
(t,a−i)
ij (t+1− ℓ : n−1) = xab(t+1− ℓ : n−1), which is ℓ-periodic.

Hence xij is a member of S if and only if x
(t,a−i)
ij (t1 − ℓ : n− 1)⊕ (j + a− i)

is not ℓ-periodic. In other words, if and only if i− j 6≡ a− b mod d. On the
other hand, if xij(t + 1 − ℓ : n − 1) is not ℓ-periodic for any ℓ and i ∈ Ad,
then xij ∈ S if and only if i 6= j. Hence, there is exactly one j ∈ Ad such
that xaj 6∈ S, and similarly there is exactly one i ∈ Ad such that xib 6∈ S.
These pairings tell us that dn−1 strings are not in S, leaving the cardinality
of S at dn − dn−1, or dn−1(d− 1).

Now that we have established the cardinality of S, we must show that no
two nodes have the same identifying sets. Let x, y ∈ ~B(d, n), and consider
their identifying sets, called I(x) and I(y), respectively. Let k be the smallest
index such that xk 6= yk.

k = 1: Without loss of generality, we may assume that x1 = 0 and y1 = 1.
Observe that we have the following strings contained in the identifying
sets.

x′ = 0t−1 ⊕ 0⊕ x(1 : n− t) ∈ B−
t (x),

x′′ = 0t−1 ⊕ 1⊕ x(1 : n− t) ∈ B−
t (x),

y′ = 1t−1 ⊕ 1⊕ y(1 : n− t) ∈ B−
t (y), and

y′′ = 1t−1 ⊕ 0⊕ y(1 : n− t) ∈ B−
t (y).

Note that x′ 6∈ B−
t (y) and y′ 6∈ B−

t (x), since B
−
t (x) does not contain any

vertices beginning with 1t+1 and B−
t (y) does not contain any vertices

beginning with 0t+1. Next, we notice that at least one {x′, x′′} is in S.

9



To see this, we note that x′′ = x′(t,1). By the same point, we must have
that at least one of y′, y′′ is a member of S.

Next, we note that if at least one of x′, y′ is a member of S, we can
use that string to separate y. Otherwise, if either x′′ 6∈ B−

t (y) ∩ S or
y′′ 6∈ B−

t (x) ∩ S, we can separate x and y with the given string. As a
last resort, we consider the case in which we have x′′ ∈ B−

t (y) ∩ S and
y′′ ∈ B−

t (x) ∩ S. Then we must have:

x′′ = 0t−1 ⊕ y(1 : n− t+ 1),

y′′ = 1t−1 ⊕ x(1 : n− t + 1),

as x′′
t is the only 1 in x′′(1 : t+ 1) and y′′t is the only 0 in y′′(1 : t + 1).

From this, we get the following string equalities:

x(1 : n− t) = y(2 : n− t+ 1),

y(1 : n− t) = x(2 : n− t+ 1).

From these string equalities, we see that xi = yi+1 = xi+2 and yi =
xi+1 = yi+2 for all i = 1, 2, ..., n−t−1, and so x(1 : n−t) and y(1 : n−t)
are both 2-periodic (since x1 6= y1 we cannot have 1-periodic). Hence,
x′′(t− 1 : n) = 0⊕ 1⊕ x(1 : n− t) is also 2-periodic (recall that x1 = 0
and y1 = 1), so x′′ 6∈ S. Hence we must have x′ ∈ S, and so we may
use x′ to separate x and y.

2 ≤ k ≤ n− t: We know that there must exist some s such that x1 . . . xs−1 =
y1 . . . ys−1, and these substrings are constant. Without loss of generality
we may assume that x1 . . . xs−1 = 0s−1 = y1 . . . ys−1 and xs = 1, and so
2 ≤ s ≤ k. Define the following strings.

y′ = 1t ⊕ y(1 : n− t) and

y′′ = 1t−1 ⊕ 0⊕ y(1 : n− t)

As we saw in the previous case, we have that {y′, y′′} ⊆ B−
t (y) and

{y′, y′′} ∩ S 6= ∅. Now consider an arbitrary vertex v ∈ B−
t (x). Since

xs−1xs = 01 and 2 ≤ s ≤ k ≤ n− t, we know that v(i− 1 : i) = 01 for
some i ∈ [s, s+ t].

Additionally, we consider y′ and i ∈ [2, s+t−1]. For i ≤ t, we know that
y′(i− 1 : i) = 11, and for i = t+ 1, we have that y′(i− 1 : i) = 10, and
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finally for t+2 ≤ i ≤ s+ t− 1 we have y′(i− 1 : i) = 00. Similarly, for
i ∈ [2, s+ t− 1], we must have y′′(i− 1 : i) ∈ {00, 10, 11}. This implies
that y′(1 : s+t−1) and y′′(1 : s+t−1) do not contain the substring 01,
and so if y′ or y′′ is a member of B−

t (x), we must have either d(y′, x) = t
or d(y′′, x) = t, respectively. Hence we must have y′t+i = xi or y

′′
t+i = xi

for i ∈ [1, n− t], and therefore that xk = y′t+k = y′′t+k = yk, which is a
contradiction. Thus neither y′ nor y′′ can be a member of B−

t (x), and
hence both strings separate x and y.

k > n− t: Since we must have x1 = y1, we may assume without loss of
generality that x1 = y1 6= 0. Define the following strings.

u = 0n−k ⊕ x(1 : k) and

v = 0n−k ⊕ y(1 : k)

Clearly we have u ∈ B−
t (x) and v ∈ B−

t (y). Additionally, we have
u(1 : n − 1) = v(1 : n − 1) and un = xk 6= yk = vn. Note that this
implies that for a = xt−n+k we have u = ua,xk

and v = ua,yk with
xk 6= yk. By our argument at the very beginning of the proof, at most
one of these can lie outside of S, and so we must have {u, v} ∩ S 6= ∅.

We now have two cases. First, if both u 6∈ B−
t (y) and v 6∈ B−

t (x),
then any string from {u, v} ∩ S separates x and y, and we are done.
Otherwise, assume without loss of generality that u ∈ B−

t (y). Then we
must have u = w ⊕ y(1 : p) for at least one p ∈ [n − t, n]. Take p to
be the largest such p possible. Since y1 6= 0 = ui for all i ∈ [1, n− k],
we must have p ≤ k. Additionally, if p = k then we have y(1 : k) =
y(1 : p) = x(1 : k), which is a contradiction since yk 6= xk. This implies
that we must have p < k. Hence we must have the following string of
equalities:

0n−k ⊕ x(1 : k) = u

= w ⊕ y(1 : p)

= w ⊕ x(1 : p).

Thus we have x(k − p + 1 : k) = x(1 : p), or xi = xk−p+i for i =

11



1, 2, . . . , p. Additionally we note the following equalities hold:

2(k − p) = 2k − 2p

≤ 2k − 2(n− t)

≤ k + 2t− n

≤ k.

Hence since xi = xk−p+i for i ∈ [1, p] and 2(k − p) ≤ k, we know that
x(1 : k) has period (k − p). In fact, since we chose p to be maximum,
x(1 : k) is (k − p)-periodic.

Next, we show that u(t+1− (k− p) : n) is also (k− p)-periodic. First,
we note the following inequalities:

n− (t+ 1− (k − p)) + 1 = n− t+ k − p

≥ 2(k − p).

The last line comes from the facts: n−t ≥ t ≥ n−p ≥ k−p. Hence our
string length is at least 2(k− p), and from our previous paragraphs, so
long as u(t+1− (k− p) : n) is contained in u(n− k+1 : n) = x(1 : k),
we know that it must have period (k − p). For this we note that

t + 1− (k − p) ≥ (n− p) + 1− (k − p) = n− k + 1,

and so u(t+1− (k− p) : n) indeed has period (k− p), and thus u 6∈ S,
except if (n−1)− (t+1− (k−p))+1 < 2(k−p). In this case we must
have k − p = t, k = n = 2t, and p = t.

If u(t,m)(t+1−ℓ : n−1) is ℓ-periodic for some ℓ < k−p = t andm, then
by Lemma 2.17 we must have that u(t,m)(t+1−ℓ : n−1)⊕(un+m) is also
ℓ-periodic, and hence u 6∈ S. On the other hand, if u(t,m)(t+1−ℓ : n−1)
is not ℓ-periodic for any ℓ < t and m, then we note that un = u2t = ut,
so again u 6∈ S. Therefore in all cases we have u 6∈ S, so we must have
v ∈ S.

All that remains is to show that v 6∈ B−
t (x). We note that if v ∈ B−

t (x),
then y(1 : k) is ℓ-periodic for some ℓ ≤ k + t − n (using the same
argument as we used to show that x(1 : k) was (k− p)-periodic). Since

x(1 : k) = (y(1 : k))(k,m) for some m, by Lemma 2.15 it is not possible
that both x(1 : k) and y(1 : k) are periodic. Hence we must have
v 6∈ B−

t (x), and so we may use v to separate x and y.
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When we combine the previous theorem with the following result, we have
a complete set of constructions for optimal t-identifying codes in ~B(d, n) with
t ≥ 2 and n ≥ 2t.

Theorem 3.10. Let n > 3 and S = An
d \ {x1ax3x4 . . . xn−1a | a ∈ Ad}.

If n is even, then S is a 2-identifying code for ~B(d, n). If n is odd, then

S ′ = (S ∪ {(ab)
n−1
2 b | a 6= b ∈ A2}) \ {(ab)

n−1
2 a | a 6= b ∈ A2} is a 2-

identifying code for ~B(d, n). In both these cases, the 2-identifying code is of
optimal size dn−1(d− 1).

Proof. Consider an arbitrary string x = x1x2x3 . . . xn ∈ An
d , and define the

set T = IDS(x). We’ll consider the contents of T in four cases based on the
equality of x1, xn−1 and of x2, xn. First let C = {ax−− | a ∈ A \ {xn−2}}.

Case 1. If x2 = xn and x1 = xn−1, then T = A⊕C. Thus |T | = d2− d.

Case 2. If x2 6= xn and x1 = xn−1, then T = (A ⊕ C) ∪ {x}. If
x ∈ A ⊕ C then x+ = ax−− for some a ∈ A \ {xn−2}. In this case,we have
x2x3 · · ·xn = ax1x2 · · ·xn−2. This implies that we have x1 = x3 = x5 = · · · ,
and also that x2 = x4 = x6 = · · · . Since this case requires that x1 = xn−1,
we must have that either n is even or that x1 = x2 = x3 = · · · = xn. In
either case, this contradicts our assumption that x2 6= xn. Thus x 6∈ A ⊕ C,
and we conclude that |T | = d2 − d+ 1.

Case 3. If x2 = xn and x1 6= xn−1, then T = A ⊕ {C ∪ {x−}}. If
x− = ax−− for some a ∈ A\{xn−2}, then ax1x2 · · ·xn−2 = x1x2 · · ·xn−1. This
implies that we have x1 = x2 = x3 = · · · = xn−2 = xn−1. This contradicts
our assumption that x1 6= xn−1. Thus x− 6= ax−− for any a ∈ A \ {xn−2},
and we conclude that |T | = d2.

Case 4. If x2 6= xn and x1 6= xn−1, then T = (A ⊕ {C ∪ {x−}}) ∪ {x}.
As in Case 3, since x1 6= xn−1,A⊕{C ∪{x−}} contains d2 distinct elements.
Let us consider whether x ∈ A ⊕ {C ∪ {x−}}. If not, then |T | = d2 + 1.
There are two cases to consider.

a. If x ∈ A ⊕ C, then x+ = x−. In this case, we must have that
x2x3x4 · · ·xn = x1x2 · · ·xn−1, which implies that we have the following chain
of equalities: x1 = x2 = x3 = · · · = xn−1 = xn. This contradicts the
assumptions that x2 6= xn and x1 6= xn−1. Thus, this case does not occur.
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b. If x ∈ A ⊕ {x−}, then x+ = ax−− for some a ∈ A. Then
x2x3 · · ·xn = ax1x2 · · ·xn−2. This implies that x1 = x3 = x5 = · · · , and
also that x2 = x4 = x6 = · · · . If n is even, this contradicts our assumptions
that x2 6= xn and x1 6= xn−1. Thus for even n, this case does not occur. For
n odd, this case only occurs if x ∈ {(ab)

n−1
2 a}.

Thus, if n is even, or n is odd and x 6∈ {(ab)
n−1
2 a}, we can see that

T = IDS(x) completely determines the string x. In particular, given T we can
decide which case we are in based on |T |. We can then determine x1, . . . , xn

based on the content of T . Thus in these cases S is an identifying code.

However, if n is odd, and x ∈ {(ab)
n−1
2 a} we must change S to get an

identifying code. Note that B−
2 ((ab)

n−1
2 a)∪{(ab)

n−1
2 b} = B−

2 ((ab)
n−1
2 b). Since

our set S contains vertices of the form (ab)
n−1
2 a but not (ab)

n−1
2 b, these two

types of vertices must have identical identifying sets with respect to S. Thus
by adding the vertices in {(ab)

n−1
2 b}, we are able to create distinct identifying

sets with respect to S ∪ {(ab)
n−1
2 b}. However, we note that we now have

the vertices of {(ab)
n−1
2 b} and {(ab)

n−1
2 a} in our identifying code, but that

B+
2 ((ab)

n−1
2 a) ∪ {b(ba)

n−1
2 } = B+

2 (b(ba)
n−1
2 ). This implies that the inclusion

of both (ab)
n−1
2 b and (ab)

n−1
2 a in our identifying code is only necessary if they

are required to identify vertex (ab)
n−1
2 a from vertex b(ba)

n−1
2 . So, as long as

we can identify (ab)
n−1
2 a differently from b(ba)

n−1
2 without using b(ba)

n−1
2 , we

need only include (ab)
n−1
2 b and not (ab)

n−1
2 a in our identifying code. Since

these two vertices have disjoint in-balls of radius 2 for n > 3, they must have
distinct 2-identifying sets. Thus S ′ is a 2-identifying code in this case.

Finally, we provide additional constructions of identifying codes. Theo-
rems 3.11 and 3.12 have proofs very similar to that of Theorem 3.9, so we
omit them here.

Theorem 3.11. Assume that d ≥ 2, and n ≥ 3. Then the following subset
S is an optimal 1-identifying code of size dn−1(d− 1) in ~B(d, n).

S =
{

x ∈ An
d | for some m and ℓ ∈ {1, 2}, x(1,m)(1 : n− 1) is ℓ-periodic or

almost ℓ-periodic, but x(1,m)(1 : n− 1)⊕ (xn +m) is not.
}

∪
{

x ∈ An
d | x1 6= xn and x(1,m)(1 : n− 1)

is not ℓ-periodic for any m and ℓ ∈ {1, 2}}
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Theorem 3.12. Assume that d ≥ 2. Then the following subset S is a t-
identifying code of size dn−1(d−1)+dt in the directed de Bruijn graph ~B(d, n),
if n = 2t− 1 ≥ 5.

S ={x ∈ An
d | for some m and l < t− 1: x(t,m)(t+ 1− l : n− 1) is l-periodic,

but x(t,m)(t+ 1− l : n− 1)⊕ (xn +m) is not.}

∪
{

x ∈ An
d | xt 6= xn and x(t,m)(t + 1− l : n− 1) is not l-periodic

for any m and l < t− 1.}

∪

{x ∈ An
d | x

(t,m)(1 : n− 1) is almost t-periodic, for some m.}

We note that the construction in Theorem 3.12 is not optimal. To find
an optimal t-identifying code when n = 2t − 1 is an open problem to be
considered in the future. For the cases when n < 2t−1, we have the following
theorem.

Theorem 3.13. There is no t-identifying code in the directed de Bruijn graph
~B(d, n) when n ≤ 2t− 2.

Proof. Let u = 0n−t ⊕ 1⊕ 0t−2 ⊕ 1 and v = 0n−t ⊕ 1⊕ 0t−2 ⊕ 0. Since B−
t (u)

and B−
t (v) contain all vertices that end with 0n−t or 0n−t ⊕ 1 ⊕ 0k where

k = 0, 1, . . . , n− t−1, u and v are t-twins. Thus
−→
B (d, n) has no t-identifying

code.

As an additional treat for the reader, we provide a simple construction
for 1-identifying codes in ~B(d, n) whenever we have either d > 2 or n odd.

Theorem 3.14. If n is odd, or n is even and d > 2, then

S = An
d \ {a⊕An−2

d ⊕ a | a ∈ Ad}

is an identifying code for ~B(d, n). Further this identifying code has optimal
size (d− 1)dn−1.

Proof. Define S as in the statement of the theorem. First, we will see that the
identifying set for every vertex has size either d or d−1. Let x = x1x2 . . . xn,
then

N−(x) ∩ S = {A ⊕ x1x2 . . . xn−1} \ {xn−1x1x2 . . . xn−1}.
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If x1 = xn, then IDS(x) = N−(x)∩S has size d− 1. Whereas, if x1 6= xn,
then IDS(x) = {x} ∪N−(x) ∩ S has size d.

From this it is clear that every vertex has a non-empty identifying set.
However we must also show that every identifying set is unique. Suppose
there are two distinct vertices x, y ∈ V ( ~B(d, n)) such that IDS(x) = IDS(y).
Call their identical identifying set T . We look at the two cases, |T | = d and
|T | = d− 1, separately below.

Suppose that |T | = d. Then {x, y} ⊆ T by our assumption on T and our

earlier reasoning. Since x 6= y, this means that ~B(d, n) contains both directed
arcs x → y and y → x. This allows us to conclude that {x, y} = {(ab)k, (ba)k}
for some distinct a, b ∈ A with k = n/2. In particular we must have n even.
Below are the precise identifying sets for x and y.

IDS((ab)
k) = {(ab)k, (ba)k} ∪ {c(ab)k−1a | c ∈ A \ {a, b}}

IDS((ba)
k) = {(ab)k, (ba)k} ∪ {c(ba)k−1b | c ∈ A \ {a, b}}

If d > 2 these two identifying sets are in fact different, which is a contra-
diction.

Suppose that |T | = d − 1. Then neither x nor y is in T , which means
neither is in S. However since their identifying sets are identical, this means
that they have identical first neighborhoods. By definition of first neigh-
borhoods, this means that x and y have the same prefix but different final
letters. By then definition of S, one of x, y (if not both) is a member of S,
which is a contradiction.

4 Dominating, Resolving, and Determining

Sets

In this section we examine other types of vertex sets which identify or classify
vertices up to some graph property. The properties used to define these sets
are adjacency, distance, and automorphisms.

4.1 Dominating Sets

Definition 4.1. A (directed) t-dominating set is a subset S ⊆ V (G) such
that for all v ∈ V (G) we have B−

t (v) ∩ S 6= ∅. That is, S is a (directed)
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t-dominating set if every vertex in G is within (directed) distance t of some
vertex in S. We denote the size of a minimum t-dominating set in a graph
G by γt(G).

Note that by definition every identifying code is also a dominating set,
but not conversely.

Theorem 4.2. [11] For d ≥ 2, n ≥ 1, γ1( ~B(d, n)) =
⌈

dn

d+1

⌉

.

In [11] a construction of a minimum dominating set for ~B(d, n) is given.
Key to this construction is the fact that every integer m corresponds to a
string (base d) in Z

n
d , that we call Xm. The construction utilizes a special

integer m defined by:

m =

{

dn−2 + dn−4 + · · ·+ dn−2k + · · ·+ d2 + 1 mod dn, if n is even;
dn−2 + dn−4 + · · ·+ dn−2k + · · ·+ d3 + d mod dn, if n is odd.

Let D = {m,m + 1, . . . , m + ⌈ dn

d+1
⌉ − 1}. Now let S be the set of strings

{Xi | i ∈ D}. Then S is a minimum size dominating set for ~B(d, n).

Next we provide constructions for t-dominating sets. While others have
considered some variations of t-dominating sets (such as perfect dominating
sets in [12]), it does not appear that the general t-dominating sets have been
considered in the directed de Bruijn graph.

Theorem 4.3. The set S ∪ {0n} where

S = {x ∈ An
d | xk(t+1) 6= 0 for some k ∈ Z+ and xi = 0 for all i < k(t + 1)}

is a t-dominating set of size

1 + dn−t−1(d− 1)

(

1− d−(t+1)⌊ n

t+1⌋

1− d−(t+1)

)

in ~B(d, n).

Proof. Let x be a vertex in An
d . Assume that there are k zeros at the begin-

ning of x, but not k + 1 zeros, i.e. x = 0n or x = 0k ⊕ a ⊕ x(k + 2 : n) for
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some a 6= 0. Let l ∈ [0, t] be an integer so that k + l ≡ t (mod t + 1), i.e.
k + l = t +m(t+ 1) = (m+ 1)(t+ 1)− 1 for some m ≥ 0. Now

0l ⊕ x(1 : n− l) = 0l ⊕ 0k ⊕ a⊕ x(k + 2 : n− l) = 0k+l ⊕ a⊕ x(k + 2 : n− l)

belongs to S except if k + l ≥ n. If k + l ≥ n, then 0n−k ⊕ x(1 : k) = 0n ∈
S ∪ {0n} dominates x. Therefore every vertex is dominated by S ∪ {0n}.

There are dn−k(t+1) · (d− 1) vertices which begin with exactly k(t+1)− 1
zeros. Moreover, every vertex of S \ {0n} begins at most n − 1 zeros. This
needs that k(t + 1) < n or 1 ≤ k ≤

⌊

n
t+1

⌋

. Finally, 0n is added to the
dominating set S ∪ {0n}. Therefore the size of S ∪ {0n} is

1 +

⌊ n

t+1⌋
∑

i=1

dn−i(t+1) · (d− 1)

= 1 + dn(d− 1)

⌊ n

t+1⌋
∑

i=1

(

d−t−1
)i

= 1 + dn(d− 1)






−1 +

⌊ n

t+1⌋
∑

i=0

(

d−t−1
)i







= 1 + dn(d− 1)

(

−1 +
1− (d−t−1)⌊

n

t+1⌋+1

1− d−(t+1)

)

= 1 + dn(d− 1)





d−(t+1) −
(

d−(t+1)
)⌊ n

t+1⌋+1

1− d−(t+1)





= 1 + dn−t−1(d− 1)

(

1− d−(t+1)⌊ n

t+1⌋

1− d−(t+1)

)

.

This result gives us the following lower bound on the size of a t-dominating
set in ~B(d, n).

Theorem 4.4. Bounds on the size of a t-dominating set in ~B(d, n) are given
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by:

γt( ~B(d, n)) ≥















1 + dn−t−1(d− 1)

(

1−d
−(t+1)⌊ n

t+1⌋
1−d−(t+1)

)

if n ≡ t (mod t + 1)

dn−t−1(d− 1)

(

1−d
−(t+1)⌊ n

t+1⌋
1−d−(t+1)

)

otherwise.

Proof. Suppose that the set S ′ is a t-dominating set in ~B(d, n). Choose a ∈

Ad\{0} and i ∈ Z so that i ≤ n
t+1

, and w ∈ A
n−i(t+1)
d . Let x = w⊕a⊕0i(t+1)−1.

We note that B−
t (x) contains the following elements.

B−
t (x) =

{

y | y = w′ ⊕ w ⊕ a⊕ 0i(t+1)−1−k for some k ∈ [0, t], w′ ∈ Ak
d

}

Note that for all v 6= x such that v = v′ ⊕ b ⊕ 0j(t+1)−1 with b ∈ [d −

1], j ≤ n
t+1

, and v′ ∈ A
n−j(t+1)
d , we must have that B−

t (x) ∩ B−
t (v) = ∅.

Hence each of these types of strings must dominated by a different element
of S ′, and so we must have the following lower bound on |S ′|. Define A =
{

v | v = v′ ⊕ b⊕ 0j(t+1)−1 with b ∈ [d− 1], j ≤ n
t+1

, v′ ∈ A
n−j(t+1)
d

}

.

|S ′| ≥ |A|

=

⌊ n

t+1
⌋

∑

j=1

dn−j(t+1) · (d− 1)

= dn−t−1(d− 1)

(

1− d−(t+1)⌊ n

t+1⌋

1− d−(t+1)

)

Finally, we consider the string 0n and note that

B−
t (0

n) = {z | z = z′ ⊕ 0n−s with z′ ∈ As
d, s ≤ t}.

When we compare B−
t (0

n) with B−
t (x), we note that since a 6= 0 we must

have that the closest element of B−
t (x) to 0n is x itself. Next we note that

the string closest to 0n in the set A will occur when j = ⌊ n
t+1

⌋. This will
give us the string with the most 0’s packed at the right end. Finally, if
n ≡ p mod t+ 1, then this string looks like v′ ⊕ b⊕ 0n−p−1 with v′ ∈ Ap

d and
b 6= 0. If p = t, then we are still unable to reach 0n, and so we must have at
least one additional string in S ′ to cover 0n.
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Figure 3: A directed resolving set in the graph ~B(2, 3) (black vertices).

4.2 Resolving Sets

Definition 4.5. A directed resolving set is a set S such that for all
u, v ∈ V (G) there exist s ∈ S so that ~d(s, u) 6= ~d(s, v). The directed
metric dimension is the minimum size of a directed resolving set. An
example of a directed resolving set in ~B(2, 3) is given in Figure 3.

Note that this definition is not quite the same as that given in [6] (which

requires that there exist s ∈ S so that ~d(u, s) 6= ~d(v, s)). Our definition
corresponds better to the definitions of domination and of identifying codes
for directed graphs that are used in this paper.

Theorem 4.6. The directed metric dimension for ~B(d, n) is dn−1(d− 1).

Proof. The following shows that for each w ∈ An−1 a directed resolving set
for ~B(d, n) must contain (at least) all but one of the vertices with prefix w.
Suppose that w ∈ An−1, and i 6= j ∈ A so that neither of w ⊕ i, w ⊕ j is
in our set S. Note that if x, y ∈ V ( ~B(d, n)), with x 6= y, then the distance
from x to y is completely determined by x− (and y+). Since neither w ⊕ i

nor w⊕ j is in S, and both have the same prefix, ~d(w⊕ i, x) = ~d(w⊕ j, x) for
all x ∈ S. Thus S is not a directed resolving set. Thus for every w ∈ An−1,
S must contain (at least) all but one of the strings w ⊕ j for j ∈ A. Thus
|S| ≥ dn−1(d − 1). Since {w ⊕ 0 | w ∈ An−1} can easily be shown to be a
directed resolving set, we have the desired equality.

The combination of Theorem 3.8 and Theorem 4.2 yields:

Corollary 4.7. The directed metric dimension for ~B(d, n) is equal to the

minimum size of a t-identifying code for ~B(d, n) if 2t ≤ n.
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Figure 4: A minimum size determining set for ~B(2, 3) (black vertex).

4.3 Determining Sets

In this section we will use a determining set to help us illustrate the auto-
morphism group of ~B(d, 2), study the relationship between Aut( ~B(d, n− 1))

and Aut( ~B(d, n)) and use the result to find the determining number for each
~B(d, n). First let’s recall some definitions.

Definition 4.8. An automorphism of a graph G is a permutation π of
the vertex set such that for all pairs of vertices u, v ∈ V (G), uv is an edge
between u and v if and only if π(u)π(v) is an edge between π(u) and π(v).
An automorphism of a directed graph G is a permutation π of the vertex
set such that for all pairs of vertices u, v ∈ V (G), uv is an edge from u to
v if and only if π(u)π(v) is an edge from π(u) to π(v). One automorphism
in the binary (directed or undirected) de Bruijn graph is a map that sends
each string to its complement.

Definition 4.9. [4] A determining set for G is a set S of vertices of G
with the property that the only automorphism that fixes S pointwise is the
trivial automorphism. The determining number of G, denoted Det(G) is
the minimum size of a determining set for G. See Figure 4 for an example.

Note that an alternate definition for a determining set is a set S with the
property that whenever f, g ∈ Aut(G) so that f(s) = g(s) for all s ∈ S, then
f(v) = g(v) for all v ∈ V (G). That is, every automorphism is completely
determined by its action on a determining set.

Notice that since for both directed resolving sets and for identifying codes,
since each vertex in a graph is uniquely identified by its relationship to the
subset by properties preserved by automorphisms, the subset it also a de-
termining set. Thus every directed resolving set and every identifying code
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is a determining set. However, though domination is preserved by automor-
phisms, vertices are not necessarily uniquely identifiable by their relationship
to a dominating set. Thus a dominating set is not necessarily a determin-
ing set. However, the relationships above mean that the size of a minimum
determining set must be at most the size of a minimum identifying code or
the directed metric dimension. For de Bruijn graphs we have shown that the
latter numbers are rather large. Does this mean that the determining num-
ber is also large. We will see in Corollary 4.13 that the answer for directed
de Bruijn graphs is a resounding ‘No’.

Lemma 4.10. S = {00, 11, 22, 33, . . . , (d − 1)(d − 1)} is a determining set

for ~B(d, 2).

Proof. Suppose that σ ∈ Aut( ~B(d, 2)) fixes S pointwise. That is, σ(ii) = ii

for all i ∈ A. Choose ij 6= rs ∈ V ( ~B(d, 2)). Then either i 6= r or j 6= s (or

both). If i 6= r then ~d(ii, rs) = 2 which is distinct from ~d(ii, ij) = 1. Since an
automorphism of a directed graph must preserve directed distance, σ(ij) 6= rs

if i 6= r. If j 6= s, then ~d(rs, jj) = 2 which is distinct from ~d(ij, jj) = 1.
Thus, again using that σ preserves directed distance, σ(ij) 6= rs if j 6= s.

Thus, σ(ij) = ij for all ij ∈ V ( ~B(d, 2)) and therefore σ is the identity map
and S is a determining set.

Note that we are using directed distances both from and to elements of
the set S. Thus S does not fit the definition of a directed resolving set for
~B(d, 2) (by [6], this would require that each vertex v ∈ V (G) be distinguished
by it directed distance to the vertices of the resolving set). However directed
distances both to and from a set can be used in determining automorphisms
of a directed graph.

Lemma 4.11. Aut( ~B(d, 2)) ∼= Sym(Ad).

Proof. Let σ ∈ Sym(Ad). Define ϕσ on V ( ~B(d, n)) by applying σ to each
vertex coordinate-wise. That is ϕσ(ab) = σ(a)σ(b). It is easy to show that
ϕσ preserves directed edges and thus is an automorphism. Further, distinct
permutations in Sym(Ad) produce distinct automorphisms since they act
differently on the vertices of the determining set S defined above. Thus we
have an injection Sym(Ad) →֒ Aut( ~B(d, 2)).

Since the vertices of S are precisely the vertices with loops, every auto-
morphism of ~B(d, 2), must preserve S setwise. This provides the necessary

injection from Aut( ~B(d, 2)) →֒ Sym(A). Thus, Aut( ~B(d, 2)) ∼= Sym(Ad).
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Note that we can consider the automorphisms of ~B(d, 2) as permutations
of the loops, but we can simultaneously consider them as permutations of
the symbols in the alphabet Ad. It can be useful to view the automorphisms
in these two different ways.

Note that as shown in [1], ~B(d, n) can be built inductively from ~B(d, n−1)

in the following way. The vertex x1 . . . xn ∈ V ( ~B(d, n)) corresponds to the

directed edge from x1 . . . xn−1 to x2 . . . xn in ~B(d, n− 1). The directed edge
~B(d, n) from x1 . . . xn → x2 . . . xnxn+1 corresponds to the directed 2-path

x1 . . . xn−1 → x2 . . . xn → x3 . . . xn+1 in ~B(d, n − 1). That is, ~B(d, n) is the

directed line graph of the directed graph ~B(d, n− 1). Thus, by [8] (Chapter

27, Section 1.1), Aut( ~B(d, n−1)) = Aut( ~B(d, n)) ∼= Sym(A). In the following
paragraphs we see detail this correspondence.

Suppose that ϕ ∈ Aut( ~B(d, n)). Since ϕ preserves directed edges, we
know that both ϕ(x1 . . . xn) = a1 . . . an and ϕ(x2 . . . xn+1) = b1 . . . bn if and
only if a2 = b1, . . . , an = bn−1. Thus if ϕ(x1 . . . xn−1xn) = a1 . . . an−1an then
for every b ∈ A, ϕ(x1 . . . xn−1z) = a1 . . . an−1c for some c ∈ A. In particular,

this allow us to define an automorphism ϕ′ ∈ Aut( ~B(d, n − 1)) correspond-

ing to ϕ ∈ Aut( ~B(d, n)). Define ϕ′ by ϕ′(x1 . . . xn−1) = a1 . . . an−1 where
ϕ(x1 . . . xn) = a1 . . . an−1. By the preceding discussion, ϕ′ is well-defined. It

is also clearly a bijection on vertices of ~B(d, n − 1). Consider x1 . . . xn−1

and x2 . . . xn−1xn, the initial and terminal vertices of a directed edge in
~B(d, n − 1). Since ϕ preserves directed edges if ϕ(x1 . . . xn) = a1 . . . an−1an
then for any z ∈ A, ϕ(x2 . . . xnz) = a2 . . . anw for some w ∈ A. By defini-
tion of ϕ′,ϕ′(x1, . . . xn−1) = a1 . . . an−1 and ϕ′(x2 . . . xn) = a2 . . . an. Thus ϕ′

preserves the directed edge. Thus we get Aut( ~B(d, n)) →֒ Aut( ~B(d, n− 1)).

In the other direction, suppose we are given ϕ′ ∈ Aut( ~B(d, n− 1)). Since

ϕ′ preserves directed edges, and directed edges of ~B(d, n − 1) are precisely

the vertices of ~B(d, n), ϕ′ defines a map on vertices of ~B(d, n). That is, (with
some abuse of notation)

ϕ(x1 . . . xn) = ϕ(x1 . . . xn−1 → x2 . . . xn)

= ϕ′(x1 . . . xn−1 → x2 . . . xn)

= ϕ′(x1 . . . xn−1) → ϕ′(x2 . . . xn).

Thus, given ϕ′(x1 . . . xn−1) = a1 . . . an−1 then ϕ′(x2 . . . xn) = a2 . . . an for
some an ∈ A and we define ϕ(x1 . . . xn) = a1 . . . an. Further, since ϕ′ pre-
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serves directed 2-paths, ϕ preserves directed edges. Thus we get

Aut( ~B(d, n− 1)) →֒ Aut( ~B(d, n)).

Since the automorphisms of ~B(d, 2) are permutations of the loops, and of

the symbols of A, by induction, so are the automorphisms of ~B(d, n) for all
n. Thus we have proved the following.

Theorem 4.12. Aut( ~B(d, n)) ∼= Sym(Ad) for all n ≥ 2.

Corollary 4.13. Det( ~B(d, n)) =
⌈

d−1
n

⌉

.

Proof. Let S be a minimum set of vertices in which each letter of Ad−1 occurs
at least once. It is easy to see that |S| =

⌈

d−1
n

⌉

. Any permutation of Ad

that acts nontrivially on any letter of Ad must act non-trivially on any string
containing that letter. Thus if σ ∈ PtStab(S), then σ must fix every letter
contained in any string in S. Thus σ fixes 0, 1, . . . , d−1 and therefore also d.
We can conclude that σ is the identity in both Sym(Ad) and in Aut( ~B(d, n)

and therefore S is a determining set. Thus Det( ~B(d, n)) ≤
⌈

d−1
n

⌉

.

Further if |S| <
⌈

d−1
n

⌉

then fewer than d − 1 letters of Ad are used in
strings in S. If a, b ∈ Ad are not represented in S, then the transposition (a b)

in Sym(Ad) is a non-trivial automorphism of ~B(d, n) that fixes S pointwise.
Thus S is not a determining set.

Thus for directed de Bruijn graphs, the determining number and the
directed metric dimension can be vastly different in size.

5 Future Work

There are several directions that future work in this research area could take.
The first is to continue the research on identifying codes in directed de Bruijn
graphs. One key result missing from this paper is the determination of the
size of a minimum t-identifying code in the graph ~B(d, n) when t = 2n − 1.

It would be ideal to determine both a formula for which graphs ~B(d, n) are
t-identifiable for a given t, as well as constructions when it is known that
such an identifying code exists.

An alternative direction for future research is to consider these same
vertex subsets (identifying codes, dominating sets, resolving sets, and de-
termining sets) on the undirected de Bruijn graph. Little work has been
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done and even foundational results like the size of a minimum dominating
set are currently missing. Basic Matlab programs have shown that many
more undirected de Bruijn graphs are t-identifiable than directed, and also
that the minimum size of an identifying code is much smaller. For example,
through brute force testing we have determined that the minimum size of a
1-identifying code in B(2, 5) is 12, whereas in the directed graph ~B(2, 5) we
have shown that the minimum size is 16.

Finally, variations on the concept of identifying code would be useful for
real-world applications. For example, one type of variation known as a k-
robust identifying code allows for up to k sensor (identifying code vertex)
failures without disruption of the identifying code properties.
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