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1 SUMMARY 

From September, 2012, through August, 2015, Team TRACLabs participated in the 
DARPA Robotics Challenge (DRC).  DARPA created the DRC in order to spur 
development of robotic technologies that will be useful in disaster relief and recovery 
efforts.  In order to maximize participation from teams with various capabilities, four 
possible tracks for involvement were offered: two funded (A&B), two not (C&D); two 
involving Atlas robots (B&C), two using their own robot designs (A&D). Of these, 
TRACLabs entered “Track B”, which comprised software teams that received 
government funding to develop user interfaces and robot control methods for controlling 
an Atlas humanoid robot.   

In June, 2013, Tracks B and C competed to control a virtual Atlas in a cloud-based 
simulated environment.  This Virtual Robotics Challenge (VRC) tested the teams with 
five runs each of three different tasks: hose (manipulation), terrain (locomotion), and 
vehicle (both).  Network communications were degraded so that teams had to rely on a 
combination of autonomy and operator control.  The TRACLabs entry treated the VRC as 
primarily a human-robot interaction (HRI) problem, embedded in a systems integration 
(SI) problem.  By enabling the human operator to make all high-level decisions, and 
using off-the-shelf software where possible, we were able to focus resources on critical 
capabilities, such as network management.  Team TRACLabs scored 30 out of 60 points, 
placing 4th of the 22 teams that qualified to participate in the VRC.  The top six teams got 
further DARPA funding and an Atlas robot for the next round of the competition. 

In December, 2013, nine Track A and seven Atlas teams competed in Miami, FL, 
using “live” robots in the DRC Trials.  Each team attempted eight challenge tasks, each 
of which had three subtasks.  Accomplishing all three subtasks without a robot fall earned 
a bonus point on that task. Team TRACLabs spent much of the time between the VRC 
and the DRC Trials learning how to house, use, and control a 350-pound hydraulic 
humanoid. We continued our reliance on HRI and SI, using walking and balancing 
behaviors created by Boston Dynamics (BDI), developing good algorithms for 
manipulator control, and developing graphical user interfaces that provided good 
situational awareness to the human operator in order to make informed strategic 
decisions. Once again, strong network management was a critical part of our success, as 
we placed 6th of the 16 teams that qualified – good enough to earn another 18 months of 
funding and compete in the DRC Finals. 

In June, 2015, 23 teams met in Pomona, CA, to compete in the DRC Finals.  These 
included many new international entries from Korea, Japan, and Europe.  The Finals 
required teams to attempt all eight challenge tasks in a row in one hour, which was much 
more stringent than the Trials.  The robots had to be tetherless and without a safety rope, 
which was particularly troubling for the Atlas teams.  During the time between the Trials 
and the Finals, the seven Atlas robots were redesigned to remove the power and data 
tether, add a degree of freedom in each arm, and strengthen the back and legs.  Team 
TRACLabs completely redesigned the operator interface, developed much better control 
of the arms, collaborated with both IHMC and MIT, and designed working solutions to 
all eight challenge tasks.  Due to the nature of the new network shaping, we developed 
stronger autonomy for the robot, although maintaining the ability for the operator to 
interrupt execution and adjust parameters when desired. TRACLabs placed 9th out of the 
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23 teams at the Finals, and 4th of seven Atlas teams.  We were the highest-ranking Atlas 
team to use BDI’s controllers for walking and balancing. 

We learned a lot about humanoid robotics during this three-year project, and 
produced some useful techniques that should push forward the boundary of the discipline.  
We developed relationships with scientists from other teams that we hope will grow 
stronger in the future as we all look for ways to collaborate and nurture this new field of 
robotics toward maturity.  This report chronicles our process of development through the 
VRC, DRC Trials, and DRC Finals, discussing the technologies we used and the 
strategies we employed to score so highly in each competition. 
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2 INTRODUCTION 
 
In 2012, the Defense Advanced Research Projects Agency (DARPA) introduced the 

DARPA Robotics Challenge (DRC). This program encouraged the development of 
technologies for semi-autonomous robots capable of service in disaster scenarios. 
Specifically, “to advance the current state of the art in the enabling technologies of 
supervised autonomy in perception and decision-making, mounted and dismounted 
mobility, dexterity, strength, and platform endurance” in “complex tasks in dangerous, 
degraded, human-engineered environments” [DARPA, 2012]. The DRC is the latest in a 
series of DARPA-sponsored robotics competitions that began with the “Grand 
Challenges” for autonomous driving in 2004 and 2005, and the Urban Challenge in 2007. 
Unlike those competitions, however, which required fully autonomous robots, the DRC 
encouraged teams to keep a human operator “in the loop”, sharing autonomy between the 
robot and the operator.   

The DRC involved three major rounds of competition for software teams:  The 
Virtual Robotics Challenge (VRC), which took place online in June, 2013, the DRC 
Trials, which took place in Homestead, FL, in December 2013, and the DRC Finals, 
which took place in Pomona, CA, in June 2015.  In this report, we do not further motivate 
the DRC, since that has been done eloquently by DARPA already. Instead, the rest of this 
introductory section is devoted to describing the components of the DRC that influenced 
design decisions by Team TRACLabs. Section 3 details those design decisions in the 
context of the three rounds of competition. Section 4 describes the results of Team 
TRACLabs’ entry into the competitions, and Section 5 contains concluding remarks. 

 

2.1 Four Tracks 
 
 In order to maximize participation in the DRC, DARPA created four separate tracks: 

• Track A: Teams funded by DARPA to produce complete solutions 
(hardware and software).  

• Track B: Teams funded by DARPA to produce software only (operator 
interfaces, software architecture, and robot control). 

• Track C: Software-only, but without government funding 
• Track D: Complete solutions, but without government funding. 

Tracks A and B started receiving funding in September, 2012. 
 
Tracks B and C competed in the VRC in June, 2013. The top six teams from that 

competition (regardless of Track B or C) were given DARPA funding and an Atlas robot 
to compete in the DRC Trials. From that point on, they were referred to as “Track B/C”. 
For various reasons, seven Track B/C teams received partial or full DARPA funding and 
competed with an Atlas in the DRC Trials. 

The top eight teams from the DRC Trials received continued government funding to 
proceed to the DRC Finals in June, 2015.  Although only five Atlas teams placed in the 
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top eight, several of the next-ranked teams recombined, some funding was rearranged, 
and all seven Atlas teams proceeded to the DRC Finals. 

After the DRC Trials, the most logical grouping of the teams was between those with 
an Atlas and those with a different robot.  DARPA aggressively pursued participation 
from abroad, so that although some of the sixteen teams dropped out after the DRC Trials 
(for instance, NASA-JSC’s Valkyrie), 25 teams qualified for the DRC Finals, including 
seven Atlas teams and 18 others.  Of these, 23 competed in the DRC Finals in Pomona. 

 

2.2 Eight Challenge Tasks 
 
Based on analysis of the disaster environment at Fukushima, DARPA chose eight 

representative challenge tasks.  Together, these tasks exercise many aspects of robot 
capability, including manipulation, locomotion (both mounted and unmounted), decision-
making, strength, and perception.  Loosely, these tasks are: 

 
• Vehicle: The robot must enter a vehicle, drive it to a pre-determined 

destination, and egress the vehicle.  
• Terrain: The robot must traverse rough terrain. 
• Debris: The robot must clear debris from a doorway. 
• Door: The robot must open a door and go through the doorway. 
• Ladder: The robot must climb a ladder or staircase. 
• Wall: The robot must cut through a wall using a tool. 
• Hose: The robot must acquire a hose nozzle, transport it, and connect it to a 

standpipe. 
• Valve: The robot must turn a valve. 

 
These eight tasks formed the basis for all three competitions: the VRC, DRC Trials, 

and DRC Finals.   

2.3 Atlas Overview 
Atlas is a hydraulic humanoid robot developed for the DRC by Boston Dynamics, 

Inc. (BDI). Its design is a derivative of BDI’s Petman robotic platform, and it underwent 
improvements and modifications for most of the duration of this competition.   

2.3.1 Hardware 
At the start of the competition, Atlas was nearly 2 meters tall and weighed about 150 

kg.  It had 28 actuated joints: two six-degree-of-freedom (DOF) arms, two 6-DOF legs 
(three in hip, one in knee, and two in ankle), three in the back, and one “tilt” DOF in the 
neck. It has two flat feet. By the end of the competition, much of the hardware had been 
upgraded or replaced, and the two distal hydraulic joints on each arm had been replaced 
by three electric joints.  
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The original, virtual Atlas used in the VRC is shown in Figure 1. Note the highly 
exposed head and lack of internal “organs”.   

For manipulation, 3-fingered hands from iRobot and 4-fingered hands from Sandia 
National Labs were offered initially.  As the competition progressed, DARPA eased 
restrictions and many teams designed or purchased their own grippers.  Based on this, 
DARPA provided passive hooks for the Trials and additional active grippers from 
Robotiq and SRI for the Finals. Simulated Sandia hands are also shown in figure 1. 

The first (Trials) live version of Atlas had a large tether that provided power, data, 
and cooling water to the robot from a large blue box/radiator situated nearby. Most 
people felt that these robots could not sustain or recover from a fall, so they were kept on 
a safety belay rope at all times.  If the robot fell and applied tension to the rope, an 
“intervention” was called, which cost five minutes and returned the robot to a reset area. 
In the event of a scoring tie, the team with fewer interventions was ranked higher. 

The second (Finals) version had a battery pack, wireless communication, and on-
board cooling, and thus no power&data tether.  However, teams were not given batteries 
for development and had to use an off-board battery emulator, which supplied power to 
the robot via a power tether with a diameter of about an inch. 

BDI distributed shoulder and chest pads to the Atlas teams because safety belays 
were not allowed during the Finals. Unfortunately, the shoulder pads widened the robot 
enough that it could not walk forward through the door, so few teams used them. 

2.3.2 Sensors 
Wrists and ankles are equipped with 3-axis and 6-axis force-torque sensors, 

respectively. An inertial measurement unit (IMU) mounted to its pelvis provides robot 
pose information.  All joints provide position feedback – some provide it for both before 
and after the transmission. 

The Multisense-SL head, developed by Carnegie Robotics, Inc., provided most of the 
non-proprioceptive sensing. The unit contains illuminators, its own IMU, a LIDAR 
single-scan laser scanner on a controllable continuously-rotating spindle, and a stereo pair 
of cameras.  It also contains an FPGA for stereo calculations that produces depth maps. 

A pair of side-facing fisheye cameras was added to the sides of the robot. The 
images from these cameras could be used by a human operator for situational awareness, 
but were too warped for most machine vision techniques. 

 

2.3.3 Software 
BDI provided low-level Atlas control code and exposed an Application 

Programming Interface (API) for teams to connect their software to the robot.  Everybody 
had to use this, as it provided basic access to starting and stopping the system, 
proprioceptive sensor data, and joint commanding. 

BDI also provided optional balancing and walking capabilities..  Some teams chose 
to use these behaviors, whereas others chose to develop their own “full body” controllers 
and handle balancing and walking in their own way. 

BDI did not expose the source code for any of their software. 
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The head and the hands each had their own API that was independent from BDI’s 
API.  Most of these used the Robot Operating System (ROS) as their basic middleware. 

 

2.4 Virtual Robotics Competition (VRC) 
The VRC took place from June 18th to June 20th, 2013.  In order to compete in the 

VRC, teams had to first qualify by demonstrating several simple capabilities in the virtual 
environment by May 15th. 

The VRC exercised three of the eight challenge tasks: Vehicle, Terrain, and Hose.  
Software teams (Tracks B and C) had to develop operator control stations and robot 
control code that could successfully cause a simulated Atlas robot to accomplish these 
tasks within DARPA-provided virtual worlds. DARPA expected that the teams that 
performed well in the VRC should be able to transition their software to a physical Atlas 
robot fairly quickly. 

Each team performed five 30-minute runs of each of the three tasks for a total of 15 
independent runs.  The run configurations differed by small changes to the simulated 
world and significant changes to the communications restrictions. 

In every run, the robot started in an identical “starting pen”.  For two minutes, there 
was no network shaping and teams could perform initialization routines. They could not 
sense the configuration of the world until the robot had walked out of the starting pen. 

A run would be terminated due to “robot damage” if the center-of-gravity of the 
robot sustained three or more acceleration events characteristic of a fall. 

 

 
Figure 1: Virtual Atlas in the "hills" segment of the Terrain task of the VRC. 
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2.4.1 Virtual Atlas overview 
The virtual Atlas is shown in Figure 1. This simulated robot had all expected degrees 

of freedom and exposed BDI’s full API, including BDI’s balancing and walking 
behaviors. 

2.4.2 Communications and computer setup 
For each run of the VRC, four computers were allocated in Amazon’s cloud.  The 

“Sim” computer ran the simulated world (and robot), and was not accessible to the teams. 
Two “Field Computers” were available for teams to upload whatever software they 
wished – control or perception processing or strategic.  The Field computers could 
interact with the robot on the Sim computer via the established robot API.  The fourth 
cloud computer was a network shaper that introduced 500ms of latency into all 
communication between the team’s Operator Control Station (OCS) and the Field 
computers. 

The OCS could be any computer or collection of computers used by the team to 
interact with the Field computers, and thereby the robot. 

The Network Shaper did not limit bandwidth between the OCS and Field computers, 
but did impose a limit to the total number of bits transmitted. Both up and down links had 
independent limits, and when a team reached the limit, that link was blocked.  The five 
uplink limits ranged from 115,200 bits to 29,491,200 bits – a factor of 256.  The 
downlink limits ranged from approximately 59Mbits to 944Mbits. 

 

2.4.3 Gazebo simulation 
DARPA hired the Open Source Robotics Foundation (OSRF) to produce the 

simulation environment for the VRC.  OSRF started with the Gazebo 3D simulation 
environment being used by Willow Garage and the PR2 research community and 
dramatically improved it for the VRC.  Gazebo is open source, includes a robust physics 
engine and high quality graphics, and provides a variety of APIs for developers. Figure 1 
is a representative image from one of the simulated worlds of the VRC. 

Despite intense efforts by OSRF, the simulator was plagued with problems and 
occasional unrealistic behaviors by robot and environment throughout the nine months of 
development leading to the VRC. Although it reached a level of maturity by the date of 
the competition that was adequate, the teams sometimes had to tailor their robot 
behaviors to the quirks of the simulation, leading to activity that would not work at all 
with a real robot. 
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Figure 2: Walking task. From left: Starting pen and flat ground, mud pit, hills, 
and rubble. (From VRC Tech Guide Release 1.) 

2.4.4 Walking task 

The Walking Task consisted of four different terrains: (1) flat ground; (2) mud pit; 
(3) hills; and (4) rubble. See Figure 2 for a representative aerial view of a Walking Task 
world. The team scores a point for each gate traversed after leaving the starting pen 
platform. 

Although BDI’s walking controller was very good at flat terrain, it was not capable 
of traversing these terrains without falling. 
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Figure 3: Aerial view of Driving Task. (From VRC Tech Guide Release 1.) 

Figure 4: View of starting location of vehicle for driving task. The robot must 
get into the vehicle and use the steering wheel and pedals to drive it to the finish line 
while avoiding obstacles. (From VRC Tech Guide Release 1.) 
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2.4.5 Driving task 

The Driving Task consisted of four subtasks: (1) to enter the vehicle; (2) to drive the 
vehicle along a roadway avoiding obstacles; (3) to get out of the vehicle; and (4) to walk 
across a finish line (See Figure 3). Each subtask earned one point. 

The vehicle was modeled on the Polaris Ranger EV (See Figure 4). If the vehicle left 
the road or hit an obstacle, or the robot sustained “damage” (see Section 2.4), the run 
terminated. 

Although some teams managed to create a script that got the robot into the vehicle in 
a manner that allowed them to drive (generally on the passenger side), the Atlas design 
and size relative to the Polaris made this very challenging. This concern was well-
founded, as the physical Atlas hardware and Polaris were also nearly incompatible. 

Figure 5: Closeup of Hose task, with hose, standpipe, and valve. (From VRC Tech 
Guide Release 1.) 

2.4.6 Hose task 

The Hose task consisted of four subtasks: (1) to lift the hose nozzle; (2) to mate the 
nozzle with a standpipe; (3) to connect the nozzle to the standpipe by threading it on; and 
(4) to turn a valve on the wall.  (See Figure 5.) As with the other tasks, each subtask was 
worth one point. 

This task probably strained the simulation more than the others, as Gazebo struggles 
with multiple complex dynamic object-to-object contact interactions. 
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2.4.7 Scoring  
 
Five instances of each virtual world were created with slightly varying parameters 

that discouraged hard automation.  Within each, four subtasks were each worth a point 
for a total possible score of 5*4*3 = 60 points. 

2.5 DRC Trials 
The DRC Trials took place in Homestead, FL, from December 17th to 21st, 2013.  

Teams arrived on Tuesday, Dec. 17th. Robot checkout, arena walkthroughs, comms 
checkout, and dress rehearsals took place Tuesday through Thursday.  Each team 
competed once per event – eight events spread out over Friday and Saturday.  Teams 
packed up and departed Saturday night, Dec. 21st. 

Seven Track B/C teams were given “live” Atlas robots and proceeded to the DRC 
Trials, where they faced nine Track A teams.  The Atlas teams received their robots in 
August of 2013, giving them approximately four months to transition from virtual to live 
robot and tackle the new tasks. 

The Trials used all eight of the challenge tasks.  Each team got one 30-minute chance 
to score up to three points per task, with a bonus point awarded for completing all three 
subtasks without falling or assistance from the field team. 
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Figure 6: Closeup of Atlas torso and head. Note the upward tilted shoulder roll 
joints and side-facing SA cameras at the neckline. 
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Figure 7: Side view of the Trials version of Atlas. Note the large black tether for 
power, data, and cooling water. 

2.5.1 Atlas 

Teams that earned Atlas robots were invited to Boston for Atlas training and to see 
the new robot in mid-July, 2013.  Once the teams had demonstrated that they had the 
required support equipment and a lab facility that could house the robot, BDI sent them a 
robot and BDI techs installed it and checked it out.  The Trials version of the robot is 
shown in Figures 6 and 7. No changes were made to the robot during the four months 
between delivery and DRC Trials except repairs.   

Pairs of both iRobot and Sandia hands were delivered with the robot. Both are cable-
driven, with the iRobot hands using strong fishing line and the Sandia hands using 
stranded metal cabling.  It turned out that the tendons in the Sandia hands were not user-
serviceable, whereas the iRobot tendons were.  Furthermore, Sandia techs themselves 
were not able to repair a finger with a broken tendon – all they could do was replace it 
with a spare.  For this reason, very few teams used the Sandia hands in the competition. 

As the Trials approached, DARPA relaxed the restriction on what hands were 
permitted during the Trials, allowing teams to purchase their own, or use other end 
effectors of their own design.  Furthermore, BDI fabricated passive hooks for all Atlas 
teams.  Teams were allowed to change end effectors between the various tasks – provided 
that they carry all the end effectors with them for all the tasks.  In Figure 7, the black bag 
on top of Atlas’s head contains a collection of end effectors. 
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2.5.2 Communications and computers 

The computer architecture for the Trials was similar to that of the VRC, except that 
the Field Computers were physically present in each team’s “garage”.  A network shaper 
called the “Mini-Maxwell”, made by InterWorking Labs, was placed between the Field 
computers and the OCS. A fast network connected the Field computers to the robot.  

The Mini-Maxwell imposed two different communications regimens, switching 
every minute.  In the “good comms”  phase, the bandwidth was 1Mbit/sec and the latency 
was 100ms round trip.  Under “bad comms”, the bandwidth was 100kbit/sec and latency 
was 1000ms round trip. 

Figure 8: Trials driving course.  The vehicle must slalom through the 250-foot 
course from the start area on the left to the end zone on the right. (From DRC Trials 
Task Description Release 11.) 

2.5.3 Vehicle task 

In the Vehicle task, robots were allowed to start in the vehicle.  One point was 
awarded for driving the complete length of the course (See Figure 8).  Two more points 
were given for egress and walking out of the end zone. Most teams that attempted this 
task decided to forego the possibility of the egress points and strap their robot into the 
vehicle.  

This was especially true for Atlas teams, as none had found a reliable method of 
egressing the vehicle without a fall, and the risk of damage from a fall was too great.  
This is the only one of the eight tasks where Atlas robots were required to act without a 
safety belay rope. 
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Figure 9: Terrain task. The robot starts at the right and proceeds over the 
ramps, then the herringbone cinderblock pattern, then the flat stairs, then the 
slanted stairs.  (From DRC Trials Task Description Release 11.) 

2.5.4 Terrain task 

The Terrain task consisted of progressively harder terrain for the robot to walk over. 
(See Figure 9.)  One point was awarded when a robot traversed the ramps and 
herringbone pattern, another after going up and down the flat stairs, and the third after 
going up and down the slanted stairs.  Teams could choose any path through the terrain 
they wanted. 

2.5.5 Ladder task 

For the Ladder task, teams had a choice of handrail configurations and angle of 
incline (60 or 75 degrees).  The first point was awarded for having all points of contact at 
or above the first step.  The second point was for the fourth step, and the final point was 
for all points of contact on the landing. (See Figure 10.) 

2.5.6 Debris task 
In the Debris task, a collection of planks of wood were arranged in a pre-defined 

pattern in a metal truss and placed in front of a doorway (See Figure 11).  Teams earned 
the first point for removing any five items of debris, and the second point for another five 
pieces of debris.  Having done this, a team could earn the third point by walking through 
the doorway. 
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Figure 10: Ladder task. (From DRC Trials Task Description Release 11.) 

Figure 11: Debris in front of a doorway. (From DRC Trials Task Description Release 11.) 
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Figure 12: Door task. Robot starts at the right and must traverse three doors. 

(From DRC Trials Task Description Release 11.) 

 
Figure 13: Wall task.  The robot must pick up a drill and cut a triangle out of a 

(drywall) wall. (From DRC Trials Task Description Release 11.) 

2.5.7 Door task 
 
In the Door task, the robot must traverse three doors for one point each.  The first is a 

push door, the second is a pull door, and the third is a pull door with a spring causing it to 
close.  All three doors have lever handles. (See Figure 12.) 
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2.5.8 Wall task 
 
In the Wall task, the robot must pick up a drill, turn it on, and use it to cut a 

triangular hole in a sheet of drywall.  One point was awarded for each side of the triangle, 
unless the cut strayed beyond the boundary of the triangle. To get the third point, the 
robot also had to punch out the triangle.  (See Figure 13.) 

 

 
Figure 14: The Valve task consisted of three valves.  One lever handle and two 

wheel handles. (From DRC Trials Task Description Release 11.) 

 

 
Figure 15: Hose task.  The robot must acquire the nozzle on the reel on the left, 

walk to the standpipe on the right and connect the hose to the wye. (From DRC Trials Task 
Description Release 11.) 
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2.5.9 Valve task 
 
In the Valve task, the robot must turn a lever valve 90 degrees and two circular valve 

handles a full revolution.  Each valve handle successfully negotiated is worth one point. 
(See Figure 14.) 

2.5.10 Hose task 
 
The robot must acquire the nozzle of a hose on a reel, walk to a wye standpipe, and 

thread the hose onto the wye.  The first point was awarded when the robot crossed a line 
on the ground while holding the nozzle.  The second point was for touching the nozzle to 
the wye, and the third point was for threading the nozzle onto the wye. (See Figure 15.) 

2.6 DRC Finals 
 
The DRC Finals took place in Pomona, CA, during the week from May 31st to June 

7th, 2015. Teams were welcomed to the event offsite on Sunday, May 31st, and got access 
to the garages onsite on Monday, June 1st.  Vehicle shakeout, course walkthrough, 
comms check, and dress rehearsal took place Monday through Thursday.  Competition 
runs were Friday and Saturday, with the better run determining the score for a team.  
Teams vacated the garages on Sunday, June 7th. 

 
In the DRC Finals, the eight challenge tasks were modified: The Vehicle task was 

divided into Driving and Egress, the Debris and Terrain tasks were presented as a choice 
of one or the other, the ladder was replaced with stairs, and the Hose task was eliminated.  
One “surprise” task was added, which was actually one of a handful of known 
manipulation tasks, such as pulling a lever or pushing a button.  

 
DARPA increased the difficulty substantially for this competition: 
 
1. Robots were required to be tetherless, meaning wireless comm and battery only. 
2. No safety belay: robots recovered from falls or ended run. 
3. As many tasks as possible were performed in a single run. 
4. The field team was not allowed to interact with the robot (e.g., no hand changes.) 
5. Some tasks must be performed in a certain order. 
6. The robot must traverse the driving course first, either by driving or walking. 
 
The network shaping was once again different from all previous iterations.  It seem 

much worse than the others. 
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Figure 16: Final Atlas configuration for the DRC Finals. Note the battery pack 

and electric forearms. The orange cable provided power from an off-board battery 
emulator. 
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2.6.1 Finals Atlas overview 
In the 18 months between Trials and Finals, the Atlas was significantly overhauled.  
 
1. Many of the hydraulic actuators in the legs and back were upgraded with stronger 

pistons.  
2. The kinematic configuration of the shoulders was modified to provide a better 

overlap of the dexterous workspaces of the two arms within the field of view of the 
Multisense head. 

3. The distal two hydraulic joints in each arm were replaced with an electric forearm, 
which had three degrees of freedom. 

4. The SA cameras were moved up to the same height as the Multisense head, and 
angled slightly forward. 

5. Two Robotiq hands and one SRI hand were provided to all Atlas teams. 
6. A wireless router was installed on-board the robot, communicating with a partner 

router off-board. 
7. Due to potential network issues from the wireless communication, three computers 

were installed on the robot for high-frequency feedback control and perception signal 
processing. 

8. The cooling system was redesigned to be entirely on-board, with a cooling fan 
behind the head. 

9. Chest and shoulder pads were given to the teams to help protect the robot in falls. 
Few, if any, teams used the shoulder pads. 

10. A battery pack was installed as a backpack. Due to the dangerous nature of 
lithium ion batteries and their schedule for design and manufacturing, teams were given 
an off-board battery emulator with a large orange cable to provide power to the robots.  
The battery pack was weighted to approximate the expected mass distribution of the true 
battery. Teams never operated with the actual battery except during the Dress Rehearsal 
and the two competition runs.  

11. Teams were allowed to add their own hardware to the robot, subject to the 
constraint that BDI would not service it. 

 
See Figure 16 for an image of the Finals Atlas (with orange battery emulator cable).  

This particular configuration has two Robotiq hands, and is lacking the chest pad that was 
used during the Finals. 

 
Figure 17 shows an image of the Finals arena.  The starting line is at the far end of 

the sand driveway on the right side.  The robot may drive or walk (no drive or egress 
points) to the finish area, which is the paved part nearest the door.  If driving, the robot 
may egress or be removed by a reset (no egress point). Next, the robot must open the 
white door and walk through it, at which point it is considered to be “indoors”.  

Tasks in order from right to left are: Valve (the valve wheel is on the dark vertical 
pipe under the left side of the Jumbotron); Wall (two pairs of drills on left side, drywall to 
their right); Mystery (electric/magnetic coupler); Terrain and Rubble; and Stairs outside 
the exit, all the way to the right. 
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In Figure 18, we show the flow chart of possible task activity. In the Finals, robots 
had to attempt either the Terrain or Rubble tasks to get to the exit. 

Figure 17: Task arena. Driving track is on the right, leading to the Door. From 
right to left indoors: Valve, Wall, Mystery, Terrain/Rubble, and (beyond the exit to 
the left) Stairs. 
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Figure 18: Robots must either drive or walk (bypass) the driving course to get 
to the door.  Once through the door, tasks may be attempted in any order until 
exiting the building and attempting the Stairs task. (From DRC Finals Rule Book.) 

2.6.2 Communications and computers 
As noted in #6 and #7 in Section 2.6.1 above, three computers were installed on the 

robot.  These were used for high-frequency feedback control and perception processing.  
Teams were also allowed one off-board Field Computer, which had unrestricted 
communication to the robot, albeit over a wireless link. Field Computers for all teams sat 
in a secure closet at the competition, with limited physical access for the teams, although 
they were accessible via the network.   

Operator control stations were in the team garages, and could consist of one or 
several computers, with one or several monitors, subject to an upper bound on total 
power consumed. 

Communication between the OCS and the Field computer/robot used two Ethernet 
connections: one was high bandwidth, but subject to network shaping, and the other was 
very low bandwidth, but was not subject to network shaping. 

Communication between the OCS and the Field computer/robot was divided into two 
categories: 
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Outdoor activity consisted of the Driving, Egress, Door (up until the robot crossed 
the threshold), and Stairs (after the robot crossed the gate at the other end of the arena) 
tasks. There was no network shaping in this mode. 

Indoor activity covered the Valve, Wall, Mystery, and Terrain/Rubble tasks.  In this 
mode, the main comms link was subject to intermittent 1-second bursts of full bandwidth 
alternating with periods of total comms blackout that lasted up to 30 seconds.  The 
average duration of the blackouts got shorter from 30 seconds to zero as run time 
progressed from Start to 45 minutes.  After that, there was full communication regardless 
of the location of the robot. 

2.6.3 Driving task 
If the team was attempting the Driving task, they were allowed five minutes to 

modify the Polaris vehicle, provided no power tools were used.  These modifications 
could include additions to the vehicle, such as running boards or steering mechanisms or 
car seats, or replacements to parts, such as the hood. Many Atlas teams had elaborate 
setups to help them negotiate the physical mismatch between the Atlas and the Polaris. 
The starting pose of the Atlas had to be such that its center-of-mass was within the body 
of the Polaris. 

The Polaris was velocity-limited, and would not move unless the accelerator pedal 
was pressed, avoiding the need for braking.  Reverse gear was not allowed. 

The team was required to use the robot to turn the steering wheel and press the 
accelerator to cause the Polaris to traverse the driving track, avoiding contact with the 
barriers and arriving on the paved End Zone.  One point was awarded for successfully 
crossing the line into the End Zone with the Polaris.  Because the End Zone was on the 
edge of the Homestead track apron, there was a noticeable slant back toward the sand that 
the vehicle had to overcome in order to finish this task. 

Once in the End Zone, the team could request that the vehicle be disabled, 
preventing further motion. 

Teams had the option of “Bypassing” the Driving task by traversing the 200-foot 
sand track without the Polaris.  The track consisted of compacted sand, which was 
watered at the start of the day, but during the day, unpredictable pockets of sand became 
loose, making it quite a challenge for walking or small-wheeled robots. No point was 
awarded for bypassing. 

2.6.4 Egress task 
Once the vehicle was disabled, a team could choose to try to egress the vehicle.  

Once all points of contact for the robot were within the marked square outside the Door, a 
point was awarded.  The robot did not need to be standing to receive the point.  Many 
Atlas teams had elaborate additions to the Polaris to assist in egress. 

A team could choose to reset from the Vehicle, sacrificing five minutes and a chance 
to receive the Egress point in return for lower risk of falling.  Both MIT and TRACLabs 
had Atlas falls on Egress in one of their runs, showing the danger of this task. 
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2.6.5 Door task 
This task required the robot to open the door and walk through the doorway.  The 

door had a lever handle on the left and opened away from the robot. Due to the slant of 
the racetrack apron, once the door was ajar, it swung completely open. A point was 
awarded when all points of contact were across the threshold.  This was also the start of 
the “indoor” mode. 

2.6.6 Valve task 
The robot must turn the valve wheel one full revolution counterclockwise. One point 

was awarded upon completion. 

2.6.7 Wall task 
The robot must acquire one of two types of drill, activate the drill, and completely 

remove a circle that is marked on the drywall. A point is awarded when the segment of 
drywall containing the circle has been completely removed. DARPA requested that teams 
do “something sensible” with the drills after that, but there was no penalty for dropping 
the drill, nor reward for spending the effort not to. 

2.6.8 Mystery task 
The Mystery task changed from day to day, but was announced the previous evening. 

For the dress rehearsal, it was a push button.  For Day One, it was a breaker box lever, 
and for Day Two, it was removing a magnetic connector from one receptacle and placing 
it in another.  A point was awarded upon completion of the task. 

2.6.9 Debris/Terrain task 
Teams were given the choice between traversing uneven terrain consisting of a set of 

uneven cinderblocks, or wading through a disorganized collection of debris.  Teams with 
walking robots tended to favor the Terrain, whereas those with wheeled robots preferred 
the Debris. 

All robots had to accomplish one or the other before proceeding to the exit and the 
Stairs. 

2.6.10 Stair task 
After the robot crossed through the exit archway, the comms were switched back to 

“outdoor” mode.  The robot had to climb up a set of four steps.  A point was awarded 
when all points of contact were at or above the top platform.  Contact with the railing was 
acceptable.   

An interesting arena design choice was evident here.  Whereas the End Zone for 
Driving, the Door, and all the indoor tasks inherited a significant slope from the racetrack 
apron, the Stair apparatus was levelled against gravity.  This meant that there was a five 
to ten degree angle difference between the ground and the first step, meaning that the 
right end of the first step was up to about two inches higher than the left. 



Approved for Public Release; Distribution Unlimited 
26 

3 METHODS, ASSUMPTIONS, AND PROCEDURES 

In this section, we detail the various techniques used by Team TRACLabs to 
approach the task of using an Atlas – simulated or live – to accomplish the challenge 
tasks.  In preparing for all three competitions, our governing philosophy has incorporated 
two main ideas: (1) Whenever possible, rely on the human operator for high-level 
strategic decisions, including interpretation of complex sensor data; and (2) Use off-the-
shelf solutions if they exist.   

Common components of the software architecture produced by TRACLabs for each 
competition were: 

1. User interface, including both functional and task-specific windows,
2. Network management, handling the relevant type of network shaping,
3. Robot control strategies, including inverse kinematics and trajectory planning.

3.1 VRC 

We decided to rely on BDI’s controllers for walking and balancing in the VRC, 
enabling us to focus on development of the Operator Interface, control algorithms, and 
manipulation activities. 

3.1.1 Infrastructure 
Inverse kinematics.  
TRACLabs developed a novel algorithm for controlling the Atlas manipulators via 

Inverse Kinematics (IK). This algorithm greatly improved KDL IK solutions and speed. 
It used nearest neighbors from forward kinematics to speed up inverse kinematics, which 
makes Cartesian commanding of remote assets more tolerable. 

1. Run forward kinematics for each arm offline for the entire configuration space.
a. Arm only: fine resolution in joint space
b. Arm + back joints: slightly coarser resolution
c. Ignore Cartesian poses behind robot’s pelvis

2. Save four hash tables (left/right arm, left/right arm + back joints) where the
Cartesian pose from forward kinematics maps to all possible joint solutions. 

3. Load each hash table at runtime on robot computer and populate four kd-trees with
the 3D position from each Cartesian pose. 

4. When IK for a left/right hand is needed, find the nearest neighbors to the desired
x,y,z using the kd-tree 

a. Find union of 100 closest neighbors and all neighbors within 2cm.
b. Always try only arms first, as back motions in Atlas are not desired while

balancing during manipulation 

5. Lookup all joint configurations that can reach the nearest neighbor positions
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6. Run KDL
a. IK solver using the joint configurations as initial seeds KDL solver runs at least

100 times 
b. KDL solver returns VERY quickly due to the small search space
c. In practice 100 solves takes ~0.1 seconds

7. Score all IK solutions

8. Any number of scoring metrics can be used
a. Penalize back motions; Penalize near limits;

i. Reward small motions

9. Use best solution
a. If no solutions exist, and the user has allowed, the robot may simply use the

neighbor with the closest orientation to the desired Cartesian pose. 

Communications. 
We decided to use ROS for all our process communications.  Because ROS has a 

handshaking protocol at startup for each message, there was the danger of using too many 
of our allotted bits during startup.  To avoid this, and to keep tight control on the amount 
of data transferred, all messages passed through a single “gatekeeper” ROS process on 
each side of the shaped comm link.  The Operator had the ability to set the rate at which 
each important message came through, with the fastest rate being 1Hz and the slowest 
being “pull”, meaning the message was not sent unless the Operator specifically 
requested it. 

Point Clouds. 
We projected the 3D point cloud onto the two-axis planes and then compressed and 

sent those. On the OI side, we reconstructed the point cloud from these images.  This 
process reduced the amount of data sent by a factor of about 100, without much loss of 
data.  Since the human operator was interpreting the images on the OI side, this worked 
well for us. The compression algorithm is outlined here: 

1. Full point cloud: ~11MB.
2. Local, sparsified point cloud: ~5MB.
3. Manipulation task “height” and “forward facing” 2D projections: ~300 KB

together. 
4. Zlib compressed 2D projections: ~52KB together. This is about 1% of the local

sparsified point cloud! 
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Figure 19: Operator Interface. Tab for the grasping functionality. 

 
Figure 20: Joint scripting tab. 

3.1.2 Operator Interface 
The Operator Interface (OI) had separate tabs for the different tasks and important 

functionality. Figure 19 shows the tab for the grasping functionality. Figure 20 shows the 
joint scripting tab, where the Operator could create a precise joint-level sequence of 
commands and save them for later use. 

The task tabs consisted of buttons that triggered appropriate joint scripts or 
behaviors. 
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Figure 21: Operator Interface. Walking tab, showing the ability to produce a 

series of walking waypoints in the XY projection of the point cloud. 
 
Always visible on the left side of the OI were some system information and widgets 

for setting the downlink rates for various messages. Across the top, important 
functionality was always available, such as halting the current action, or 
connect/disconnect communication.  (See Figures 19 and 20.) 

 

3.1.3 Walking task 
Because BDI’s walking behavior was not robust enough to traverse the different 

terrains in the Walking Task, we developed a set of innovative crawling algorithms that 
avoided falls while traversing the course, and scripts that transitioned between them 
smoothly. 

For exiting the starting pen and walking to the first gate, BDI’s walking was 
sufficient. We gave the Operator the ability to place waypoints in a reconstructed 3D 
point cloud, and the system would then produce an appropriate set of footfalls for the 
BDI walking controller. This capability was exposed on the “Walking tab”, and was used 
whenever we needed to move the robot from one place to another on flat ground. 

We developed a repeatable script that would cause the robot to get up from a fall.  
The robot moved through a sequence of poses, ultimately balancing on its feet.  At that 
point, we could transition into BDI’s STAND mode, and from there into their walking 
behavior. 

Mud. To traverse the mud pit after the first gate, we had a behavior that caused the 
robot to lie down on its back without triggering a fall.  From there, we had a locomotion 
behavior that was essentially a “dry land backstroke” that moved the robot forward, and 
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two slightly modified versions of it that rotated the robot clockwise and 
counterclockwise. Combining these, the Operator was able to drive the robot into the 
mud pit, through the mud, and up the slope on the other side.  Although the mud was 
opaque from the top down, it was transparent from below, so we were able to see the first 
gate and use it as a reference while “swimming” through the mud. 

Hills.  Once we had exited the mud, we transitioned from backstroke pose to “frog” 
pose.  This pose had the robot resting on all four limbs, supported by the fingers and toes. 
By executing a fast spring-like motion, the robot was able to hop forward without 
triggering a fall event.  Again, we also created clockwise and counterclockwise versions 
so the Operator had full control of the trajectory.  

Rubble.  The frog behavior was also successful in traversing the rubble. The 
operator had to be careful not to leap into a standing cinderblock, as this shock to the 
head was sometimes enough to trigger a fall event. 

The top two images in Figure 22 show the backstroke behavior entering and exiting 
the mud pit.  The bottom two images show the frog behavior in the Hills and Rubble 
portions of the task. 

 

 
Figure 22: Top two: Atlas entering and leaving the mud pit using the 

"backstroke" behavior.  Bottom two: Atlas using the "frog" behavior in the hills 
(left) and rubble (right). 

 

3.1.4 Driving Task 
We spent much time attempting to figure out a way to get Atlas to enter the vehicle 

in a manner that would permit driving.  However, in the end we were not able to find a 
script that could accomplish this task. 

As a fallback, we developed a script that got the robot into the seat of the vehicle far 
enough that it got the first point for the task fairly consistently.  To do this, the robot 
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walked close to the vehicle and put both arms through the roll bars – one on either side of 
the passenger doorway.  Next, the arms moved together down and back, essentially 
dragging the robot off its feet and horizontally onto the seat.  By curling the legs up 
behind the body, the pelvis moved far enough into the vehicle to trigger the point. 

3.1.5 Hose task 
We developed robust “operator-in-the-loop” methods for picking up the hose and for 

turning the valve. We developed a tab on the OI that provided the Operator with the 
ability to make small adjustments to the 6-DOF pose of the nozzle, but even so, with the 
updates coming at most once per second, found it incredibly difficult to line the nozzle up 
well enough to mate with the receptacle. We were not able to develop a method of 
threading the nozzle onto the receptacle, once it was mated. 

3.2 DRC Trials 
When we placed highly enough in the VRC to get an Atlas robot, we rented 

additional lab space to house the robot and the many challenge task apparatuses we knew 
we would need to develop strategies for all eight tasks. We received the robot in early 
August, 2013, and thus had about four months to prepare for the DRC Trials. 

 

 
Figure 23: High-level system diagram. 

3.2.1 Infrastructure 
Figure 23 shows the high-level system diagram for our processes on the computers. 

Each of the four functional categories outlined with a dashed line has characteristic issues 
relevant to the DRC Trials. 
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3.2.1.1 Networking software 
The communications throttling described in Section 2.5.2 led to some ROS 

handshaking problems. Communication within ROS is performed with topics, or named 
connections, that transmit messages of a specific data type.  ROS nodes, or computational 
units, connect to arbitrary sets of topics that supply the requisite data for each node’s 
operation.  Nodes open connections to other nodes by querying a white-pages service 
called a “ROS master”; the master provides network location information and negotiates 
connection parameters, enabling direct connections between nodes. 

Figure 24: Network detail diagram.  Each computer has its own ROS Master, 
which manages local connections between ROS nodes. All connections across the 
degraded network go through a Single UDP Pipe. 

Typical ROS operation proved problematic for the Trials. In the VRC, teams were 
allowed a setup period with unconstrained communication before each task began. This 
makes sense conceptually, since any disaster relief robot will presumably start its activity 
in a place with good communications. However, in the DRC Trials, network constraints 
were always active. As described above, when initializing a ROS system, a node contacts 
the master for each topic (i.e., connection), obtains information about the endpoint node, 
then establishes a connection to the endpoint. The constant low bandwidth and high 
latency at the Trials made standard multiple cross-network “handshaking” impractical 
unless explicitly handled. 

The network-specific software architecture shown in Figure 24 extends the one we 
created for the VRC. Some VRC techniques transferred directly to the Trials: bandwidth 
reduction via data compression, data type downsizing (e.g., using 32- instead of 64-bit 
floats, replacing strings with enumeration constants), and other methods described later in 
this section. Also retained was the message management client/server pair, which 
provides a single connection between the User and Field computers. The message  
manager provides a per-topic throttling mechanism by which the user is able to set a 
periodic transmission rate, “pull” individual messages on request, or turn off data 
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transmission altogether. Our VRC setup is augmented for the DRC Trials in three ways: 
(1) multiple masters, (2) the use of a single UDP pipe (SUP) pair, and (3) ping nodes. 

To circumvent the handshaking problem, we configured each computer to run its 
own master. However, a standard ROS system has no mechanism by which masters can 
exchange information; establishing local, per-machine masters means that white-pages 
queries are limited to local, per-machine nodes. The addition of the SUP pair resolved the 
issue by providing a single channel “bridge” between masters that allows creation of a 
“proxy” for nodes located on the other machine. The ping nodes, one on each machine 
that monitor the current network state and relay it to other nodes on that machine, were a 
final step that added a level of intelligence to message caching. Knowledge of the current 
network state allowed holding messages that would saturate the connection until adequate 
network resources existed. While the system self-monitored to make sure network traffic 
would be successful, the operator was also assured that the freshest data available (that 
could successfully be transmitted) was received. 

 

 
Figure 25: The TRACLabs Operator Interface. (A) controls for connection and 

always-available robot commands; (B) common network and robot state, command 
feedback, and message management; and (C) task-oriented interfaces.  Regions (A) 
and (B) are visible at all times, whereas (C) can be changed by selecting a tab. 

 

3.2.1.2 Operator Interface 
The OI is the only means of interaction between the user and the (remote) robot. In 

an environment where severe network constraints sit in opposition to timely situational 
awareness and robot control, success demands that the OI handle data well on two levels: 
processing and presentation. Data processing is supplied by a modular, multi-threaded, 
and extensible Qt-based infrastructure developed at TRACLabs. Its integration with the 
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networking components assures that network resources are well-utilized so that data can 
be presented for operator interaction. 

 
Systems views 
 
In the OI’s presentation role, a key principle is to show only the information and 

commands relevant to the current activity, yet have the full complement easily accessible 
to the operator if and when desired. There is a (small) set of information and commands 
to which an operator should always have immediate access (e.g., network state, robot 
“kill” switch), referred to here as the system views, that occupy the areas labeled (A) and 
(B) in Figure 25. 

Area (A) provides both connection controls and access to a set of the most 
commonly used commands. Clicking “Connect” causes the OI to join the ROS system, 
after which the “Stop” button and controls to its right become active. The team’s 
experience, both in the VRC and in preparing for the Trials, was that the included 
commands were used so often, and across so many of the tasks, that they should always 
be available and accessible to the operator. 

Experience dictated a similar lesson concerning the display of state information and 
basic network control, shown in Area (B). The top section displays the network and robot 
status, while the middle section shows feedback from commands sent (generally as a 
percent completed). Unlike the mostly passive sections above it, the bottom section 
provides the means to control specific data rates using the message manager in terms of 
messages per second, or single message requests if zero. Since the system views are 
always visible, the operator always has the option of adjusting data reception to either a 
periodic rate or reducing network traffic to near nothing and getting only the data 
required at the time it is needed. 

 

 
Figure 26: Activity-specific OI tab for low-level joint control. 
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Activity-specific views 
 
Activity-specific views are selected via one of the tabs along the bottom of the OI 

and appear in area (C) of Figure 25. Shown is the first of four views discussed in this 
section: the ROBOT-STATE-CHANGE tab, which accesses the BDI-supplied hardware 
API. Specifically, the API functionality is divided into three columns and includes 
turning the hydraulic pump on and off, connecting and disconnecting the on-robot 
network, and engaging the various behavior controllers provided by BDI. In addition, 
there are buttons for writing log files to disk for BDI analysis and low-level robot 
calibration. 

The next activity-specific tab is one for low-level JOINT-CONTROL, shown in 
Figure 26. Joints appear in one of five groups, divided according to robot body-section 
(one for back/neck and one each for left/right arms and legs). Each individual joint is 
represented with a selection check-box, description, and slider control. In addition, some 
convenience controls proved useful: arrow buttons between columns are used to easily 
transfer settings between left and right joints for symmetry purposes, while clearing or 
marking all the joint selections in a particular group can be done by a single button click. 
The right column of the display provides a workspace that enables configuration 
modification, naming, sequencing (including time delays), saving, and sending to the 
robot. Values can be set by recalling a configuration or pulled from the current joint 
values of the robot. Although this type of low-level joint control is time consuming and 
relatively difficult to use, it is useful in some situations, and many of the commonly used 
commands were created this way. 

The WALKING tab shown in Figure 27 is used for multi-step stepping and walking. 
Most of the display is occupied by a camera image on the left and a height map on the 
right. Described in more detail in Section 3.3, it is sufficient here to understand that 
height maps are a 2D grid representation of the 3D space surrounding the robot. The map 
for walking is a “top-down” (or X-Y plane) view, where each grid cell is associated with 
both grayscale and Z-axis height data, obtained from the camera and LIDAR, 
respectively. The operator can change the grid size and resolution to any one of four 
settings at will, and toggle between color and height as desired. The controls for selecting 
the camera source, map size, map coloring, and step-type appear across the top, while 
stepping parameters (e.g., stride width) appear in a column to the right. Shown in the 
figure is a path of waypoints for the walk step-type, originating at the robot’s current 
position (the circle nearest the bottom), specified by clicking on the map. Four other step-
types are available, each with a distinctive display indicating the selected step-type: (1) 
turning (a magenta arrow), (2) side-stepping (yellow “cross-hairs”), (3) back-step (no 
visual indicator), and (4) double-step (a magenta line whose ends indicate left/right foot 
placement). In general, only “walking” and “turning” with default parameter values were 
used frequently, although the other options were readily available to the operator. 
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Figure 27: The activity-specific tab for multi-step movement (walking, turning, 

and side- or back-stepping). 
The final activity-specific tab is WALL-SHAPE, developed for specifying a 

geometric shape on a wall. It has almost the same presentation as the WALK tab, but 
only the top row of controls is included and the height map displays a “front” (or Y-Z 
plane) view. Replacing the step-type selection are a button to detect a vertical surface, a 
toggle for choosing left or right hand, and two data entry boxes for entering “offset” 
distances. Whereas clicking on the map for the “walking” step-type specifies a sequence 
of waypoints that define a path, the sequence here defines a trajectory, parallel to the 
map’s plane, for a hand (or tool-tip) to trace. There are two distinct capabilities developed 
specifically for the WALL task: (1) run-time detection of the vertical surface and its 
relative pose to the robot, and (2) providing an offset for the distance of both the 
trajectory from the surface and the initial and final hand locations normal to the surface.  
The techniques worked well and, in fact, could also be applied to the DOOR task. 
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Figure 28: The functional OI tab for working in 3D space. 

Figure 29: Functional OI tab for stepping. 
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Figure 30: OI window encapsulating the RViz "camera view", which overlays 
information on a camera image, alongside operator controls for incremental 
individual Cartesian movements. 

Functional views 

Functional views also appear in area (C) of Figure 25 and are selected via one of the 
tabs along the bottom of the OI. The visual structure of the functional view has a camera 
image and two height maps arranged in a column to the left, a 3D visualization and 
controls to modify the viewing options to the right, and an activity specific set of controls 
across the top. The top map (middle of the column) always displays the “top-down” (X-Y 
plane) viewpoint, while the bottom map can be changed as desired to display any one of 
the “front” (Y-Z plane) or “side” (X-Z plane, to either left or right) maps. The 3D 
visualization is a component of ROS’s Qt-based Robot Visualization (RViz) tool, which 
integrated fairly easily with the other OI components. 

Figures 28 and 29 shows the MANIPULATION tab as it is used for opening a door 
and for precision foot placement, respectively. Whereas the activity-specific WALL-
SHAPE and WALKING tabs from the previous section provided a way to specify a 
(coarse) trajectory, these tabs are used to move to a precise location in 3D space. The 
coupled relationship of the maps and point cloud reinforce one another: choosing a 2D 
point from each of the maps (which overlap in space and share a common axis) defines a 
point in 3D space. This is demonstrated by the “cross-hair” lines drawn on the maps, with 
the resultant location of the “rings and arrows” interactive marker that appears on the 3D 
representation. 

This tab has some highly desirable capabilities not found in the activity-specific tabs, 
notably the more precise poses, inclusion of a robot avatar, the ability to “fly around” the 
3D world, and a visual method of determining orientation by aligning the planes of the 
interactive marker with a human-estimated feature in the point cloud. 

Finally, Figure 30 shows an extension of the 3D visualization referred to as a 
CAMERA-VIEW. It shows an image that is fixed from the perspective of one of the head 
cameras, overlaying the reconstructed point cloud, “rings and arrows” interactive marker, 
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and other visual data representations from the 3D view. The controls to the left allow an 
operator to enter individual incremental Cartesian adjustments to the interactive marker. 
This view is not shown by default, but can be called up with a single button click if the 
operator requires additional environmental context. 

Figure 31: Functional schematic showing the various components used in 
perception. 

3.2.1.3 Perception 
The hardware configuration of Atlas presents some unique challenges. Issues with its 

perceptual capabilities generally fall into two categories: those that are inherent in the 
given hardware and those that only become issues for remote operation under the 
imposed network constraints. The following discusses both types of perception issues. 
Figure 31 shows the block diagram for the perception components. 

Hardware-related perceptual issues 

The most pernicious issue we experienced has been a lack of adequate real-time 3D 
perception. While the stereo camera pair in the Carnegie Robotics head can provide a 
point cloud from 1 megapixel images at 30Hz, not only is the 45-degree FOV too narrow 
to provide the desired environmental context, but the cloud it produces is noisy and has 
large gaps. The alternative, which we chose, is to obtain a front-facing 3D point cloud 
from the spinning LIDAR. In practice, real-time maneuvers present a problem: if the 
LIDAR spins slowly, it takes a prohibitively long time to get a full sweep of the 
environment, whereas if it spins quickly, large portions of the environment are skipped 
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and critical information is missed. Our solution is to maintain a level of point cloud 
persistence through aggregation over time. 

Maintaining perceptual persistence requires accurate odometry. That is, integrating 
new sensor readings depends intimately on having an accurate record of a reading’s 
location and time. While Atlas’ IMU provides a fairly accurate measurement of its 
absolute 3-DOF orientation, only an estimate of absolute position is available. This 
estimate is accurate during predictable action, such as taking slow, stable steps, but 
degrades significantly when performing highly dynamic movements, as happens when 
using BDI’s walk mode. Presumably, this is due to error introduced by events that cannot 
be accounted for in the algorithm (e.g., foot slippage, temporary loss of ground contact, 
etc.). 

A third issue we encountered was an inability to focus the sensors on close-in 
manipulation due to a confluence of sensor coverage and joint kinematics issues. The 
sensor head is mounted on a single joint attached to the top of the torso and can only 
pitch up and down; from the waist up, the robot has no side-to-side rotation joints, such 
that the center of the chest is always aligned horizontally with the sensor head. While 
sometimes awkward, this setup might be adequate for manipulation–except that the 
kinematic restrictions of the arms often makes it physically impossible to both “look at” 
and manipulate an object at the same time. This problem was recognized during the VRC, 
after which the (fisheye) SA cameras were added to Atlas. While significantly helping 
human operators, the resultant SA images are difficult to use for two reasons. On the one 
hand, the high distortion near the image edges (due to the fisheye lenses) is so great that 
standard computer vision techniques fail. On the other hand, although the relatively small 
distortion near the image center could be inverted, the cameras are mounted rigidly to the 
robot body, and cannot generally be pointed directly at an object being manipulated. 

To overcome most of these problems, we simply reduced movement speed. Doing so 
resulted in good-enough proprioception-based position estimation, allowing a simple 
aggregation of laser scans into a cohesive 3D model of the world. Furthermore, slow 
movement had the added benefit that it reduced effects of sensor lag. Also, in cases 
where the environment to be manipulated was out of the FOV of the head cameras, the 
operator used the point cloud and SA cameras to manually estimate the location of 
objects. 

Network-related perceptual issues 

By necessity, communication between the User and Field computers had to be 
severely limited. The fact that our general approach to the competition was essentially 
human-in-the-loop magnified the impact. In practice, reducing the data flow amounted to 
the reduction of two data types: camera images and point clouds. While other data types 
were a concern (e.g., joint states, command feedback, force sensors), their combined 
bandwidth is dwarfed by that required for images and point clouds. A brief discussion of 
reducing camera images follows, while the remainder of the section details the method 
applied to handling point clouds. 

The high-resolution images produced by the various cameras individually require 
more bandwidth than is available. The obvious solution is to greyscale, downsample, and 
compress them to a manageable size, even though there is a significant impact on image 
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quality. However, our reliance on human interpretation makes it imperative that images 
be of high enough quality for the task at hand. By default, images are simply not sent 
over the network until requested and, when they are, apply a very high compression level. 
Extending the team’s approach of human-reliance, both the image rate and its 
compression level can be changed by the operator during task execution as desired. 

A full 3D point cloud, potentially consisting of millions of points, simply cannot be 
transferred over the network under competition conditions. To provide an accurate 
representation of the environment with a small enough data size, the continuous 3D point 
cloud is “flattened” into one or more 2D, discretized projections, or “height maps”. Given 
the spatial frame definition in which the X-axis points straight out in front of the robot, 
the Y-axis corresponds to the left and right sides, and the Z-axis represents height, 
projections on the X-Y, Y-Z, and X-Z planes yield “top-down” (transverse), “forward” 
(coronal), and “side” (sagittal) views, respectively. A fixed-size grid, with cell sizes of 
some constant resolution, is overlaid on the continuous-valued projection, grouping the 
points in each 2D grid cell. Points in each cell are analyzed to find the minimal or 
(maximal) value along the third dimension, which provides both a height and color for 
the cell. Prior to transmission, a compression algorithm is applied to the result to further 
minimize data size. 

Once received, a height map can be displayed directly as an image (e.g., Figure 27) 
or unpacked to reconstruct a colored 3D point cloud (e.g., Figures 28 and 29). Since the 
grid size and resolution of a specific map may not be suitable for a particular task, several 
pre-configured map sizes have been defined that have proven sufficient for all DRC tasks 
(ranging from a coarse 128x128 grid with a 0.8m resolution to a highly detailed 240x240 
grid with an 8mm resolution that can be selected by the operator as desired). Empirical 
results indicate that transfer of the full point cloud would require messages that averaged 
around 600KB in size, while the height maps generally averaged around 10KB each. 
While all of the transverse, coronal, and sagittal maps are available, any or all could be 
turned on or off at will, and the message rate of each could be set independently. 
Practically speaking, the sagittal maps were used only sparingly if at all; for many tasks, 
only the transverse (e.g., walking or stepping) or coronal (e.g., wall cutting) maps were 
required, providing a huge reduction in the bandwidth used. 



Approved for Public Release; Distribution Unlimited 
42 

Figure 32: Schematic diagram showing the Control module from Figure 23. 

3.2.1.4 Control 
The overall control architecture is shown in Figure 32. 

Mobility/walking 

A robust walking controller for a humanoid robot is very challenging to develop, but 
is clearly necessary in order to be able to execute tasks successfully with Atlas. One of 
the advantages the Track B & C teams had over Track A teams was that we did not need 
to develop our own walking controller, since BDI provided a robust one. In a way, this 
was also a disadvantage, as we could not examine the software or algorithms, nor make 
any low-level changes to the controller. It is essentially a “black box”. For Team 
TRACLabs, the advantages outweighed the disadvantages, and we used the BDI 
controllers very effectively to accomplish the Trials tasks. Other Track B teams with 
more experience with balancing, walking, and whole-body control looked at using their 
own walking and balancing controllers. 

BDI provides two controllers for mobility: 

(1) Quasi-static Stepping Mode: In this mode, Atlas transfers its Center of Mass 
(CoM) over the footprint of one foot in such a way that it can balance on that foot while 
lifting the other off the ground. It then lifts the other foot and places it at a new location 
on the ground, and then finally shifts its CoM back to a more balanced location between 
the two feet. This mode is useful when the desired foot placements are on a surface that is 
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not horizontal, such as when traversing over the ramp or randomly oriented flat surfaces 
in the Terrain task. At any moment, robot motion could freeze and the robot would 
simply balance exactly where it is. Unfortunately, the robot must sway sideways quite a 
lot to get the CoM over each foot, and it may collide with the environment around it if 
obstacles are nearby. Thus, for instance, it is impractical to use this mode to walk through 
a doorway. 

(2) Dynamic Motion Walking Mode: Here, the Atlas transitions dynamically 
between steps in the standard falling inverted pendulum motion of human walking. This 
mode requires several pre-planned steps ahead of time, and needs to know which is the 
final step, so it can halt the momentum of the body. It is fairly robust to external 
environmental disturbances, such as brushing against a doorway while walking through 
it, but is definitely not quasi-static: if the robot were to freeze in the middle of executing 
this motion, it would fall. 

We created several higher-level walking and stepping modes that make use of BDI’s 
controllers. These are rotate-and-move, only rotate, only move to the side or backwards, 
and two-step (directly forward or backwards), and are available as options on the 
WALKING tab, shown in Figure 27.  Moreover, the operator may specify various 
parameters associated with the steps, such as stride length, swing height, and step 
duration, by entering the desired values in the OI. In the case of flat, even terrain, the 
operator can specify a destination point in the map rendered in the OI and our foot 
placement planner, based on linear interpolation, would determine the steps. The Atlas 
would then execute the steps autonomously. This is a good example of the semi-
autonomous control mentioned in the DRC objectives. For more complicated tasks, such 
as walking over uneven terrain, the operator specifies the target pose for the sole of the 
foot for each step using interactive markers, as shown in Figure 29. 

Manipulation 

In both the VRC and the Trials, manipulation required trajectory planning, which in 
turn requires a fast and robust inverse kinematics (IK) solver. During the VRC, we found 
that the third-party Kinematics and Dynamics Library (KDL) [Bruyninckx and Soetens, 
2002] did not perform well. It often failed to find solutions for poses that were actually 
reachable, and rarely could deal with singularities in joint space. This made it nearly 
impossible to generate long trajectories and approximate Cartesian motion, because the 
probability was very low that solutions would be found all along a trajectory. 

Furthermore, when solutions were found, it took longer than we liked to find them. 
These issues are primarily caused by the fact that the KDL solver’s performance is highly 
dependent on the seed value joint configuration. If the seed configuration is close to the 
real solution, the solver typically converges to the real solution much faster than with a 
random seed. In an attempt to find better seeds, and thereby make KDL usable, we 
developed a lookup-table (LUT) method for finding joint configurations that would place 
the end effector near where we wanted it. This LUT method worked well enough for the 
VRC. 

In our LUT implementation, millions of forward kinematic solutions are  recomputed 
offline, creating a map from Cartesian space to joint space. These joint space/Cartesian 
space pairs are stored in a database, which is loaded into memory at run time. Databases 
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are created for four kinematic chains: one each from the pelvis to the left and right hands, 
and one each from the upper torso to the left and right hands. The user selects the 
appropriate database to search when creating a trajectory. The databases are parsed into 
kd-trees to support a Cartesian-space search that returns the 100 nearest neighbors to 
serve as joint configuration seeds for KDL. Although finding a reasonable solution was 
much more likely with a selection of seeds known to be near the pose, the IK still failed 
too often. To further decrease failures, an option to ignore the orientation error was added 
that would instead choose the solution only considering the closest position. 

While preparing for the DRC Trials, we tried out another third-party solver (IKFast 
[Diankov, 2008]) as well as the precomputed LUT system we developed for the VRC. 
Neither worked well enough to perform the tasks in the Trials. We found that they 
illustrated several problems with rigid IK solvers in general. 

Figure 33: Example of a trajectory (red arrows) and solution (lighter, green 
arrows) generated by our algorithm. Notice how closely the green arrows match the 
red arrows. 

Many robotic manipulators, including Atlas, are unable to reach some subset of 6-
DOF poses within their workspace. These pockets of unreachable space make it difficult 
to plot a Cartesian path between two poses, because it is not obvious which poses along 
the way will be unattainable. Typically, however, strict Cartesian motion with high 
precision is not required. For instance, grasping a hose a few millimeters higher than 
expected, or at a slightly different angle, is often sufficient for the desired outcome. An 
“error tolerance”, potentially task-dependent, is therefore useful. Unfortunately, KDL and 
IKFast do not support such functionality in a controlled manner (you can increase an 
overall epsilon error value, but can give no direction as to where that epsilon may be 
applied). 

In addition to the problems caused by insufficient configuration space is one of 
unpredictability. Even with perfect IK solutions, a robot may not interact with the real 
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world the same way every time it performs a task — tools and other objects will be 
grasped in different ways and may shift during use. This motivates the concept of 
controlling a dynamic tool frame offset that can be set after a grasp is made, and can shift 
over time to match reality. This would be very difficult to implement in IKFast or our 
previous LUT scheme, since it would require numerous copies of the solver/LUT for all 
possible perturbations of the tool/object. 

Most IK solvers also have very little flexibility in terms of the kinematic chains that 
can be used. This is a problem because there are often situations where you only want to 
move a subset of your joints. For instance, when moving a single arm, most of the joints 
are available to the solver, including leg and back joints. However, when performing a 
dual arm manipulation, the leg and back joints must support the combined effort of both 
arms. We also often found it useful to lock two of the back joints during most 
manipulation actions to make it easier for Atlas to keep his balance. IKFast and our LUT 
method require offline computation for each chain to be used. IKFast also requires the 
number of unknown joints to match the selected IK mode, forcing the operator to 
manually set/search the remaining joints if there are more than the solver is prepared to 
handle. KDL has trouble finding solutions when you try to force a joint to remain 
constant. 

To solve these issues, we developed a flexible simulated annealing algorithm similar 
to [Dutra et al., 2008], which optimizes joint positions using a cost function based on the 
quality of the forward kinematic solution. However, our algorithm differs in five ways: 

1. To find a solution at any via-point, we use the solution to the previous via-point as
the starting point of the search. Since our trajectories consist of a large number of via-
points interpolated in Cartesian space, each via-point is very close to the next. This means 
that the distance in Cartesian space that the solver must move is small, and therefore the 
distance in joint space is likely to also be small, often resulting in significantly faster 
solution times. 

2. We limit the search space for the simulated annealing algorithm to only the range
of joint positions that can be reached within the time allotted for the movement while 
traveling at less than the maximum velocity for the joint. Decreasing the search space 
increases search speed, especially for long kinematic chains. 

3. We add a “movement factor” term, which allows the user to favor large
movements in some joints over others, or even disallow movement in a joint completely. 

4. We incorporate user-defined tolerances for all six Cartesian degrees of freedom
into our cost function, which allows the solver to accept imperfect solutions in the event 
that an exact solution does not exist within the robots configuration space. This is 
frequently the case with Atlas. 

5. We add filtering to the trajectory as a whole by first “tightening” each solution
toward the one before it (minimizing the distance in joint space between subsequent 
poses), and then low pass filtering each joint’s full trajectory individually to reduce high 
frequency noise. 

Since this method incorporates error tolerance into the solver’s cost function, a wide 
range of tolerance options can be implemented. It only needs the forward kinematic 
solution for the arm, making it trivial to add and modify tool frames as necessary. For the 
same reason, it also has no problem handling complex chains or locked joint positions. 
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To supplement the IK solver, two different Cartesian space via-point generators 
accept options of straight-line Cartesian motion and arced Cartesian motion. The user 
also has the option of real-time Cartesian space control by means of continuously moving 
a 6-DOF Cartesian waypoint. At the lowest level, the body control system accepts direct 
joint commands, as well as enumerations to preset joint-level trajectories. The hands are 
controlled by a tight loop using only sensors in the hands themselves to allow for an 
independent system capable of several simple grasps that conform to objects in the hands. 
Refer to Figure 32 for a pictorial representation and Figure 33 for a visual example. 

3.2.2 Vehicle task 

We decided not to pursue the Vehicle task fairly early in the four-month 
development period.  Initially, the robots were expected to enter the vehicle before 
driving, and we felt that we did not have the resources to solve that problem.  We would 
have needed to purchase a Polaris to be able to develop the ingress and egress scripts, and 
our experience on the VRC made us wonder whether we could do it even then.   

3.2.3 Terrain task 

Difficulties to overcome in this task include the robot’s kinematic limits, perceptual 
limits, and OI capabilities. Kinematic limit issues are encountered because it is physically 
impossible to perform certain movements (e.g., step from one skewed platform to another 
in certain configurations). 

For autonomous stepping, a set of foot placements is generated using the normals of 
perceived step-surface planes. Experience dictated that this failed too often to rely on as a 
competitive strategy, due to both perception and mobility issues. Instead, we chose to 
utilize the OI capabilities, relying on the operator’s ability to choose foot placements. For 
each step, the operator matched a pose marker with their interpretation of the point cloud 
(see Figure 29). The robot then placed the foot at the commanded location with the 
commanded pose. 

We used the iRobot hands for this task. We did not use them for manipulation, but 
rather they were the heaviest hands in our bag, and we wanted to lower the center of mass 
as much as possible. 

3.2.4 Ladder task 

The primary difficulty to overcome proved to be the robot’s mechanical and 
kinematic limits, although the mechanical limits of the hands also contributed. Climbing 
the ladder facing away from the ladder was impossible because the tether collided with 
the ladder. Climbing facing toward the ladder using BDI’s stepping/balancing controller 
was also impossible, because raising a foot during the step motion caused the knee to 
collide with the next step on the ladder. Neither the iRobot nor Sandia hands could 
adequately support the forces required when grasping the railing. This left the BDI hooks 
as the best available option, but these could not practically be used on the handrails, so 
needed to hook around the steps of the ladder itself. Together, these limitations implied 
that a scripted full-body motion, and possibly custom hands, would be needed in order to 
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ascend the ladder. It was apparent that other Atlas teams experienced the same issues; 
teams that scored points all seemed to use replacement hands or custom hooks of their 
own design and full-body joint-level scripting. 

Unfortunately, we received the hook hands less than three weeks before we shipped 
Atlas to the Trials, and were not able to script a successful step-climbing behavior in 
time. As a “fallback” option, we decided on an unorthodox method to score one point. A 
joint-level script was created in which the BDI hooks were engaged on the fourth step; 
the support provided was enough to keep Atlas stable while sliding the knees over the 
first step, resulting in a kneeling position with feet raised off the ground. This pose was 
sufficient for the first point, but no further climbing was possible. 

We used the BDI hooks for this task, in order to attach to the fourth step. 

3.2.5 Debris task 

Difficulties to overcome for this task included kinematic, mechanical, and perceptual 
limits. The conventional method of removing obstacles piece-by-piece was subject to all 
the difficulties in various ways. Simply getting Atlas into a position to perceive specific 
objects for manipulation was difficult due to the perceptual issues outlined above. In 
addition, both the iRobot and Sandia hands were too weak to securely grip and hold an 
object unless grasped near its center of mass. Available arm configurations severely 
limited reachable locations. This was further exacerbated when accounting for the 
orientations necessary for grasp points. Furthermore, the arms did not reach the ground 
with Atlas in a squatting position: pitching the back joint beyond a certain point threw 
Atlas off-balance. Other Atlas teams all used custom manipulation devices that extended 
hand reach and improved hand strength. 

Although we experimented with several custom hand options, we found that we 
could not reliably grasp the debris. Instead, we devised a different technique for debris 
clearing that we call “plowing”. Experiments proved that BDI’s dynamic motion walking 
controller was quite resilient–short, fast, shuffle-steps served to push the truss and debris 
out of the marked area. This motion generally led to the loss of balance and a fall, but 
often succeeded in moving a lot of the debris first.  

We used the BDI hooks for this task. Although our strategy did not require 
manipulation, these were the longest end effectors we had in case we needed to try to 
reach a piece of debris. 

3.2.6 Door task 

Difficulties to overcome for this task included robot control/stability, perceptual 
limits, and OI capabilities. Simply locating the latch, positioning the hand, and 
identifying when the door was unlatched involved the perception and OI. However, the 
overwhelming challenge turned out to be maintaining robot stability when making 
contact with a solid object: pushing or pulling in opposition to an obstacle affects robot 
balance, with too much force resulting in a fall. 

The stability issue is clearly demonstrated in both door opening (including turning 
the latch and opening the door) and threshold crossing. When turning a latch, avoiding 
unbalancing forces requires a hand trajectory that moves with the latch’s plane of 
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rotation. When opening a door, it requires a trajectory in a direction in which the door 
“gives”. In either case, force exerted against a solid object by misdirected motion causes 
the robot to fall. The issue occurs in threshold crossing also, usually as a matter of 
colliding with the solid door frame. Assuming use of one of the BDI locomotion 
controllers outlined above, the robot can either side-step or walk straight across the 
threshold. At approximately 32 inches, Atlas’s shoulder-to-shoulder width is greater than 
its depth from front to back, making collisions less likely with side-stepping. 

However, in addition to taking considerably longer than walking, side-stepping 
causes a lot of side-to-side robot “sway”; the line of robot travel must be very well 
aligned to avoid contact at the furthest leaning angles. Other Atlas teams typically used 
either the iRobot or Sandia hands to grasp the door latch, then chose side-stepping to 
cross the door threshold. 

Rather than use any of the DARPA supplied hands, we used the mounting plates as 
our arm end effectors. The inspiration for this stemmed from the frustration of 
consistently snapping iRobot finger tendons when experimenting with door-opening 
techniques. We discovered that the minor lip of the plates provided a recess that the door 
handles fit into nicely, while their circular shape allowed them to slide down the length of 
the latch after turning. The plates worked better than the BDI hooks, which were difficult 
to position in a way that gained purchase on the latch and were difficult to remove once 
“hooked”. We used the trajectory method of arm motion explained above to turn the 
latch, fine-tuned if necessary using the manipulation method also described above. 
Scripted motions served to open the door once unlatched, and to put the arms in a 
configuration that minimized the shoulder width before using dynamic walking to cross 
the threshold. We also encountered an environment issue–a breeze blew the second door 
shut after we unlatched and started to open it. 

We used no hands for this task, relying on the bare mounting plates instead. 

3.2.7 Wall task 

Both robot control and kinematic limits presented difficulty, with hand control 
presenting a particularly tough problem. Pushing a rotary tool sideways through a wall 
exerts considerable forces and torques. Without a relatively constant tool-tip position 
relative to the wrist, the drill would shift and the resulting cut would drift outside the 
lines. Maintaining the tool-tip position requires a very strong grip; the default hand-force 
limits were not strong enough, yet the likelihood of snapping tendons increased 
dramatically when they were increased. Besides grip issues, finding correct kinematic 
solutions for cut trajectories was difficult. Some other Atlas teams used custom hands to 
resolve the grip issues. 

We chose to use the “gun-style” drill, as it was both easier to switch on and had a 
second handle for stability. We also selected the iRobot over the Sandia hands, both for 
their stronger grip and easier repair. While we experimented with a dual-arm strategy, it 
proved too unreliable and too often resulted in hand damage for actual competition.  

We mounted two iRobot hands for this task, although we only used the left one 
during execution. The second hand was there in case we broke a tendon on the first. 
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3.2.8 Valve task 

Difficulties encountered include robot stability, kinematic limits, and UI capabilities. 
As with the Wall task, robot stability was affected by solid-body contact, while the 
kinematic limits made it difficult to find adequate arm trajectories. The effect on robot 
stability was especially noticeable on the 8” handwheel, for which friction increased 
significantly as the valve reached its closed state and required more force to turn. To 
address kinematic limits, we identified two particular techniques for valve turning: (1) 
specifying hand positions, either one-by-one or as a sequence, and (2) calculating an arc 
of the circle with the same radius as the valve, centered on the valve’s axis to describe 
end-effector motion. Both techniques tested the OI capabilities, especially when the 
hands blocked perception. Other teams used custom rod-like end-effectors that not only 
reduced perception blockage, but were easier to insert between valve spokes than the 
available end-effectors. 

Partly to avoid hand damage and partly to reduce perceptual blockage, we used the 
“nubs” supplied with Atlas as end-effectors. (These ordinarily serve to protect the wrist 
force/torque sensors.) Their rounded rubber construction provided protection, had a low 
profile, and had a high degree of friction. We used both valve-turning techniques, chosen 
by the operator to match the situation. 

We used two nubs in place of hands, and used both during execution. 

3.2.9 Hose task 
Difficulties included robot stability, perceptual limits, robot control, and OI 

capabilities. Maintaining robot stability was essentially making sure the robot did not trip 
over the hose when walking to the wye. The latter three issues all came into play to 
varying degrees when manipulating the hose. 

We approached both the walking and hose-handling as exemplars of robot 
locomotion and fine-grained manipulation, respectively. Positioning the robot used the 
multi-step UI described, while handling the hose relied on the manipulation OI. 

We used the iRobot hands for this task. 

3.3 DRC Finals 

3.3.1 Infrastructure 

1. It became apparent early in the time between DRC Trials and Finals that DARPA
management really wanted the teams to attempt the Vehicle task.  Thus, we purchased a 
Polaris vehicle to investigate that task.  The vehicle was modified to have a remote kill 
switch and to have six e-stop buttons mounted on all corners. 

2. We doubled the size of our Atlas lab to accommodate the Polaris, greater mobility
for Atlas, and stringing tasks together. 

3. We purchased a lightweight Aluminum gantry and a 480V 3-phase electric
generator for taking Atlas outdoors. 
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4. The robot was shipped back to BDI in November, 2014, and we had a fully
functional robot back in our lab by the end of March, 2015.  From then until the Finals, it 
was plagued with failures that each required downtime until BDI could send a tech to fix 
it.  The faulty valve seals were particularly troubling, since BDI clearly knew of the 
problem, and that there were many seals on the robot destined to fail.  Nevertheless, they 
only replaced the one that failed the first two times they came out.  Finally, they offered 
to replace the whole set less than two weeks before the competition. We assume there 
was an issue with supply, but this was still frustrating. 

3.3.2 Collaborations 

We worked closely with IHMC to try to integrate their full-body control into our 
software architecture.  Just before the robot was shipped back to BDI, we were able to 
run their code on our computers and control our robot through our OI using it.  
Unfortunately, our strategy relied on using BDI’s mode API, and IHMC’s code did not 
have a way for us to use that functionality.  This was partly due to BDI not exposing the 
necessary components to IHMC, but the impression we got was that neither party was 
truly interested in solving this problem.  In the end, we had to abandon this line of 
development. 

We also worked with Maurice Fallon of MIT, to integrate their 3D localization code.  
Although this line of development also looked promising, it too ultimately failed.  It 
seems that sophisticated software tends to have such brittle and precise requirements for 
the code and even hardware that surrounds it that it is extremely difficult to integrate two 
such systems together in a meaningful way without gutting one of them. 

3.3.3 Software modifications – dead ends 

We tried many software paths that were ultimately not used in the Finals. 

3.3.3.1 Adaptive control 

We explored using adaptive control to solve our modeling issues and facilitate 
coping with future hardware changes.  We also hoped that this technique would enable 
more robust contact control, due to its ability to absorb disturbances.  Although we had 
some success with steady-state regulation, we were not able to generalize this method to 
trajectory tracking, and eventually decided it was not appropriate for the given hardware. 

3.3.3.2 Autonomous walking over rough terrain 

We developed perception techniques that enabled the robot to choose its footfall 
placements autonomously.  This work makes heavy use of the Point Cloud Library (PCL) 
for point cloud filtering and plane segmentation. 
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The general idea is to make an occupancy grid for every plane found, rejecting 
planes that are tilted too far from horizontal to be good stepping surfaces.  Thus, if you 
had a checkerboard of cinderblocks, you would get two occupancy planes: one at the 
height of the tops of the cinderblocks, and one at the lower level.  Figures 34 and 35 show 
the state of this work. 

Figure 34: (top) Simulated terrain environment; (bottom) with simulated 
LIDAR scan. 
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Figure 35: Two views of the planes that have been found in this environment.  
Different colors indicated the different planes identified. 

3.3.3.3 Navigation 

The BDI-supplied odometry for Atlas works reasonably well over short distances 
when we are using the BDI-supplied quasi-static stepping behavior, but is not very robust 
for more dynamic motions, such as their dynamic walking.  We tried implementing visual 
odometry and SLAM for Atlas using the LIDAR and stereo vision from the Carnegie 
Robotics Head, in order to improve the quality of robot odometry. As a byproduct, we 
hoped to be able to use these same algorithms to provide navigation Odometry for the 
vehicle motions when the robot is driving. 

Visual Odometry 
The YouTube link below points to a video that shows the results of visual Odometry 

to accumulate the sensor scan data as the vehicle is driven around the building that 
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houses our lab. After a drive of several hundred meters, the final orientation is off by 
perhaps ten degrees, but the location is very good relative to the starting location. 

https://www.youtube.com/watch?v=zc7L_yUIylU 

SLAM (Simultaneous Localization and Mapping) 

6-DOF SLAM in an arbitrary, unstructured environment is very difficult without 
high end sensing equipment, such as those produced by Velodyne.  Even in such cases, 
the approaches that work best are restricted to the 2D plane (3DOF: X,Y,Theta). In the 
case of a high degree of freedom bipedal robot, commonly used algorithms for SLAM 
break down under continuous orientation and height changes of the sensor frame. Using 
as many as possible of the available sensors on the Atlas robot, we devised a scheme for 
registering the stereo clouds and laser scans with each other, and localizing ourselves 
with the cloud. See Figure 36. 

Figure 36: SLAM architecture 
The general idea is to probabilistically match stereo cloud to stereo cloud across time 

by means of a gaussian particle filter around each of the six degrees of freedom. Checks 
for error are heuristically biased, but are fundamentally simple least squares errors. A 
similar approach is used to match laser scans to the now-aggregated stereo cloud. The 
results of each particle filter instance are fed into a Kalman Filter which can be queried at 
any point for the ‘best guess’ current odometry. The system can also go back in time and 
quickly recheck past registrations as new data comes in and is able to go back and correct 
for past errors. The goal here is to optimize for correctness, rather than performance. This 

https://www.youtube.com/watch?v=zc7L_yUIylU
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is still a work in progress. A high-fidelity SLAM scheme such as this will solve many 
problems throughout our system, and is a key capability for long-term autonomous 
procedure execution. 

Once we determined that the Operator would be able to handle driving without visual 
odometry or SLAM, these promising projects were abandoned for other more pressing 
concerns. 

3.3.3.4 Gesture recognition 
We explored several ways for the operator to interact with the computer on two 

levels: (1) We want the operator to be able to manipulate objects in the 3D virtual world 
in an intuitive manner; (2) The operator needs to be able to send administrative 
commands: changing interface modes, choosing data inputs, sending commands, etc.   

For both of these, we used the Kinect to sense the joint values of the operator.  The 
Kinect uses generic skeletal kinematic constraints to determine where key parts of the 
arms and body are located.   

Manipulation 
We will track both hands of the operator, and how they relate to the shoulders.  

These two poses will enable the operator to use two-handed grasps to manipulate 3D 
targets and objects in the virtual world. 

Gestures 
We have developed a novel method of parsing motions into gestures, classifying 

them, and associating those gestures with different desired actions.  Currently, we are 
identifying pointing, waving, and swiping, but this can be extended to other gestures. 
This work is in its early stages, but shows a lot of promise. Figure 37 illustrates a 
skeleton model and the ego-sphere representation of a wave gesture.   

Ultimately, we did not use this technology in the Finals because we were able to 
accomplish what we needed without it, and we never fully solved the problem of the 
immersed operator not being able to use the keyboard and mouse. 
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Figure 37: (Left) An example of the skeleton model produced by a Kinect sensor 
and Openni skeleton tracking software during a wave gesture. The model is 
composed of 15 skeleton markers, located at the corner of a 3D axis representation: 
a head, neck, a and torso, and two shoulders, elbows, hands, hips, knees, and feet. 
(Right): A representation of the beginning of a wave gesture, encapsulated in its 
limb-centric spherical space. A shoulder is located at the sphere center, with lines 
showing the connection to an elbow and hand. Blue and red dots represent the 
location where the sphere surface and projection of a ray from shoulder to hand 
coincide at a certain time step. Starting near the bottom, the series of dots shows the 
trajectory of limb motion for a person initially in a resting state through the 
beginning of a wave. 

3.3.4 Software developments 

During this period, we continued developing various aspects of our control software 
architecture for the Atlas robot.  These have not all led to useable results, but we have 
learned a lot about the capabilities of the machine.  In this section, we briefly describe 
various activities under this heading.  

3.3.4.1 Higher-level joint PID loops 
The standard BDI controller is hard-coded to use the input-side encoders for all 

joints. Unfortunately, the input-side encoders are not very accurate, and do not always 
provide the actual position of the joints. Therefore, we wrote our own joint position 
control code to use the output-side encoders, which are much more reliable.  This new 
control code enables us to more accurately control joint positions and thus achieve more 
accurate Cartesian locations for the end effectors. 
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3.3.4.2 Characterization of feed-forward terms for torque and velocity 
The combined velocity/torque output of each hydraulic actuator is a nonlinear 

function of the command signal, and differs for each joint.  In addition, the distribution 
between velocity and torque varies depending on environmental factors. (For example, if 
you’re pushing into a wall or a joint limit, velocity is forced to zero and everything is 
converted to torque.) 

We collected data for each joint and produced functional models that take desired 
velocity and torque and produce an appropriate command signal. These models enable 
much better control of robot joint values.  During this work, we found a discrepancy in 
the standard models for Atlas, where the steady-state torque predictions did not match 
observations.   

3.3.4.3 MATEC Control Architecture 
The Multi-Appendage Torque and Environment Contact (MATEC) control suite 

contains ROS-based software designed to perform precise multi-contact behaviors such 
as balancing, locomotion, and whole body manipulation. By incorporating this software 
suite into our control architecture, we will be able to switch cleanly between different 
controllers. The open-source code may be found at 
https://bitbucket.org/Jraipxg/matec_control (develop branch). 

Figure 38: MATEC Architecture overview. 

3.3.4.4 Overall architecture 
MATEC control uses a distributed, layer-based architecture in which each 

component runs concurrently as a separate ROS node. This structure decreases 
computation-induced latency in layers closer to the hardware (e.g. the loop rate and 
latency of the inverse dynamics node is not affected by any higher level control that may 
take more time to compute) at the expense of increasing latency to layers farther away 
from the hardware. This is beneficial because the stability of fast low level controllers 
(e.g. dynamics compensation) is often more sensitive to latency than that of high level 
controllers / planners (e.g. planning what footsteps to take). Using this architecture also 
allows for more flexibility in terms of what control is running; New behavior nodes can 
be started / stopped on the fly without disrupting control so long as they notify the 
Orchestrator, and individual components can easily be exchanged as new algorithms are 
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developed. All communication within the architecture other than actionlib is done using 
shared memory for low latency. See Figure 38. 

The current layer organization is as follows: 

1. Tasks ("walk here" or "grab that thing there")
2. Open-loop Interpolators (Ensure that set points don't change faster than the

hardware can handle)
3. Decoupled Behaviors (Joint position control, CoM control, etc.)
4. Orchestrator (Prioritizer that also coordinates with the behaviors to ensure smooth

transitions between controllers)
5. Inverse Dynamics Controller (Ideally, makes the underlying system look like a

bunch of decoupled double integrators to everything above)
6. Low level, robot specific control (Deal with unmodelled dynamics)

3.3.4.5 Tasks 
Tasks are high-level state machines designed to accomplish a specific tasks, and are 

intended to be the primary interface to MATEC. Each task exposes an actionlib server 
interface which can connect to another task or external code. Every task connects to one 
or more interpolators and is responsible for notifying the orchestrator when it needs to 
switch between controllers. 

A simple state machine for a "step here" task might include a pattern of four actions: 
shift_weight → lift_foot → move_foot → place_foot.  Low level behaviors, like 

shifting the center of mass, are accessed via interpolators, each of which reports its status 
and completion state to facilitate correctly timed state transitions. Tasks can combined 
hierarchically as components in other tasks to create more complex, higher-level tasks. 
For example, "fetch me the coffee over there" is just a walk task, a grab task, and another 
walk. 

3.3.4.6 Interpolators 
The interpolator nodes expose an actionlib interface that allows the user to specify an 

array of time-stamped via-points that the underlying behavior should attempt to achieve. 
Each interpolator is paired with a behavior; though any given interpolator type can be 
used with many different behaviors (e.g. two instances of the same Cartesian interpolator 
node could be used to set the position of the CoM and the pose of an end effector). While 
a goal is active, the interpolator connects to its associated behavior via a streaming 
interface and outputs a mostly-open-loop "carrot" dictated by some interpolation method. 
A simple example of this would be a joint space interpolator controlling a single joint. An 
example actionlib goal might specify that the joint should move from wherever it is to 
angle 0.2 rad at time 1, then 0.5 rad at time 3 and finally 0.1 rad at time 6. The 
interpolator would stream the carrot to the behavior controller at a constant rate for a total 
of six seconds. The carrot will be equal to the goal value at the times specified in the 
actionlib goal, but will typically be different in between those via-points.  

There are currently two interpolator types: Joint-space and Cartesian-space. As their 
names suggest, the joint-space interpolator interpolates a set of joints in joint space. The 
goal consists of a set of joint-space via-points for some subset of the joints assigned to the 



Approved for Public Release; Distribution Unlimited 
58 

interpolator. The Cartesian-space interpolator interpolates a pose in Cartesian space. The 
goal is simply a set of poses through which you want a particular ROS “tf frame” to pass. 
Interpolators can be constrained with maximum values for velocity, acceleration, and / or 
jerk, depending on the interpolation method. If these constraints are set below the actual 
physical limitations (e.g. even at max torque, a particular joint will not accelerate faster 
than 1.0 rad/s/s), it will be much more likely that the hardware will actually be able to 
achieve the goal. Currently only the maximum velocity constraint has been implemented 
for all interpolators. 

This is also the category into which realtime teleoperation interfaces would fall. A 
teleoperation node should replace an interpolator, and send a carrot directly to a behavior. 

3.3.4.7 Interpolation Methods 
There are several interpolation methods that can be used by an interpolator. At 

present, the interpolation method is hard-coded, but there will eventually be a parameter 
or service interface. Trapezoidal velocity and doubles trajectories will be added in the 
future as well. 

Minimum Jerk 
This method uses a trajectory for jerk that is smooth except at the beginning and end 

and small in magnitude, which makes the acceleration, velocity, and position functions 
very smooth. This one is the easiest for a real actuator to follow, so it is currently in use 
in both nodes. Currently, this method is only set up to move to a single target and will 
ignore intermediate via-points in a goal array. 

Linear 
This method uses simple linear interpolation between the via-points and constant 

velocity between segments. 

3.3.4.8 Behaviors 
Behaviors are feedback loops that cause some desired behavior to occur. Each 

behavior controls a subset of the robot's joints and assumes that each joint's acceleration 
has been decoupled from the others (i.e., no joint's acceleration will affect any others). 

Each behavior must register with the orchestrator, provide a tare service, and provide 
joint accelerations for every joint it controls. Aside from those requirements, a behavior 
can implement any kind of controller. Currently, we have implemented tolerant Cartesian 
pose control and joint position control. 

3.3.4.9 Orchestrator 
The orchestrator handles controller prioritization and smooth controller transitioning. 

It attaches to all the behaviors and aggregates all their commands into a single whole-
body dynamics command, containing position, velocity, and acceleration set points for 
every joint.  

Priorities are positive integers, with smaller numbers indicating higher priority than 
larger numbers (zero is the highest priority). The combined command is currently created 
by copying the behavior command with the highest priority for each joint. Eventually a 
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more intelligent prioritization scheme might be used that smoothly combines behaviors 
with different priorities, possibly similarly to Luis Sentis’s WBC.  

Behaviors can be reprioritized via a service call to switch between controllers. For 
instance, to switch from joint position control to end-effector pose control on the same set 
of joints, you simply change the priorities such that the pose control behavior is higher 
priority than the joint position control. The 

Orchestrator determines which joints will need to change controllers, and 
automatically tares the relevant behaviors to ensure a smooth transition. 

3.3.4.10 Inverse Dynamics 
The inverse dynamics solver is the core component of MATEC. It converts the 

decoupled accelerations and external forces calculated by higher level control into 
coupled actuator torques. This means that in the ideal case, it perfectly calculates the 
torques required to remove the effect of one joint's acceleration on another and removes 
the effects of gravity and external forces as well, essentially decoupling the joints.  It will 
also try to calculate velocity and position set points from acceleration (currently by Euler 
integration) if they are not provided by higher-level control, since they are often needed 
for low level feedback control. 

The current default implementation uses a Recursive Newton Euler Algorithm 
(RNEA) based inverse dynamics solver. Using RNEA is much more computationally 
efficient than solving the closed-form dynamics because it solves the problem recursively 
to avoid multiplying large matrices. However, such approaches are inherently model-
dependent. If the model is incorrect, the torques output by the solver will not cause the 
desired joint accelerations. This results in more coupling between the joints than desired, 
potentially even more coupling than would be present if you had not attempted to 
compensate for the dynamics. 

This can be overcome in many cases by integrators and / or high gain control, but the 
system as a whole will be much more stable the closer the model matches reality. 

3.3.4.11 Adaptive Control 
In order to improve robustness against modelling errors, MATEC contains a node 

that implements an adaptive control version of RNEA (still in development), based on 
Slotine's 1991 work in this area. There are twelve parameters adapted per link: six inertia 
values, three center of mass, one total mass, and two for coulomb and viscous friction. 
The adaptive law is based on both joint tracking error and torque prediction error and 
assumes that the robot's kinematics are known. 

The node currently works very well for position regulation in simulation (i.e. going 
to a fixed position and staying there), exhibiting stable joint error convergence even when 
the adapted parameters are initialized within an order of magnitude of their true values 
(e.g. if the true mass was 10kg, the error will converge if the initial estimate is anywhere 
within [1kg,100kg]). However, the parameters rarely converge to their true values, even 
in simulation. Instead they converge to parameters that are statically equivalent at the set 
point. This often results in very poor behavior when trying to track a trajectory. An early 
form of the controller was shown to perform reasonably well on the real Atlas robot. The 
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joint positions got close to their set points (~0.005 rad error in the best case) and used 
much less feedback torque than a high gain PID loop. 

Another downside of this adaptive controller is that it requires full state set points 
(position, velocity, and acceleration) for every joint. Traditional inverse dynamics solvers 
require only desired joint accelerations, so this places a greater burden on higher level 
control. 

3.3.4.12 Low Level Control 
Low level control refers to the interface to the actual hardware, which often involves 

some form of control loop to track a position, velocity, acceleration, or torque command. 
It is technically not a part of MATEC, but can affect its stability. 

MATEC outputs a full state command containing positions, velocities, accelerations, 
and torques for every joint in the robot. The low level controllers should follow one or 
more state components, but don’t necessarily have to track them all. For instance, 
MATEC is currently being used on Atlas by tracking the position and velocity set points 
instead of the torque set points. 

The performance of all higher level controllers can be affected by the performance of 
these low level controllers. For example, given relatively slow torque tracking and 
nonzero latency, the torque commands sent from a PID controller may end up out of 
phase with the current torque produced, leading to oscillations and even instability. 

3.3.4.13 Tolerant Cartesian space control 
This algorithm uses a combination of inverse-Jacobean-based velocity solutions, as 

well as heuristics and a simplified random gradient descent. It is similar to our previous 
work, which used aspects of simulated annealing and gradient descent (SA-GD) to 
calculate real-time position and velocity commands that servo the current pose of the end 
effector to a desired target.   

The target poses are specified in the global frame, so that movements caused by 
other active controllers (such as balancing), or external forces, are less-likely to affect the 
Cartesian task. 

As with our previous SA-GD work, tolerance deadbands are introduced to reduce 
oscillations and instability near kinematic singularities. 

 

3.3.4.14 Analyzed KDL  
One of the recurring problems we have dealt with in various ways is the inverse 
kinematics for Atlas’s arms.  ROS is associated with an open-source kinematics library 
called the Kinematics and Dynamics Library (KDL: http://www.orocis.org/kdl).  We have 
tested this extensively on Atlas.  KDL uses the pseudo inverse of the Jacobian to solve for 
IK. We know that the pseudo inverse method is a least squares solution for computing the 
joint angles given the Cartesian coordinates and the partial derivative of each coordinate 
with respect to each joint angle variable. Since this is an approximate solution, KDL 
iterates until a Cartesian coordinate within permissible tolerance bounds is found. At each 
iteration, the Cartesian coordinate solution from the previous iteration is taken as the 
seed. KDL refers to this iterative method of determining the permissible closest Cartesian 
coordinate as the Newton-Raphson (NR) method.  

http://www.orocis.org/kdl
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3.3.4.15 Affordance Templates 
After shipping the robot to BDI, we began updating our Operator Interface and 

exploring new user interface modalities.  We successfully applied our Affordance 
Template (AT) approach to a simplified Atlas simulation, and are extending the AT 
framework to allow for multiple, customizable trajectories for each template.  For 
example, a valve template can have a two-handed clockwise turn trajectory for a robot 
that can manipulate the object in front of it (i.e., R2), or a right-handed trajectory off to 
its side for a robot such as Atlas.  

3.3.5 More software improvements 
As we got closer to the Finals, and the hardware took on its final configuration, we 

made many incremental improvements to the software. 

3.3.5.1 Low-level robot modeling and control 

• Improved dynamics simulation
o Modified gazebo to use a plugin and replaced the dynamics with a fast

implementation of Featherstone's rigid body dynamics algorithms
o Commanded torques are converted to accelerations and integrated using

RK45 for significantly improved stability
o The plugin also allows direct control of joint position and velocity (perfect

control without dynamics) for easier testing of algorithms that only act on
kinematics

• Recursive dynamics compensation and kinematic evaluation on
reconfigurable trees

o Graph-based representation of robot model allows fast generation of the
tree models used by most dynamics algorithms

o Loads from urdf model
o Generated trees can be used to solve floating base hybrid dynamics

problems (i.e. forward dynamics on some joints and inverse on others) and
calculate kinematic / spatial motion / wrench transforms, center of mass,
Jacobians, etc.

• Sliding mode joint state observer
o Generates time-synced joint position, velocity, and acceleration

trajectories intended to facilitate learning the dynamics model
o Uses full robot acceleration prediction based on measured torques, with

sliding mode terms for additional robustness
o Successfully tracks ground-truth position, velocity, and acceleration

trajectories in simulation, even with random noise added and induced
mass/inertia modeling error up to 50% of the true values

o Did not work as well in real life because both the dynamics model and
torque sensing are inaccurate. Had to turn the sliding terms up so high to
compensate that there was little actual benefit to using it over a simple low
pass filter, other than acceleration generation
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• Reconfigurable robot modeling 
o Set up model files so that we can change-out hands and other attachments 

by setting flags in a launch file 
o Enforced a consistent naming scheme for end effectors so that our 

manipulation code can adapt seamlessly when an arbitrary hand is used 
o The launch files also automatically spawn the appropriate drivers / sim 

plugins for whatever hardware is attached according to the model 
• Minimal-latency atlas hardware interface for improved low level control 

o Rewrote our hardware interface to use fewer threads and streamlined code 
o Primary control thread now has a dedicated cpu core and is run as the 

highest priority thread on that system 
o Latency to the robot is around 3ms, which is close to optimal for the 

system 

• System identification for the newly upgraded Atlas. 

3.3.5.2 Operator Interface 

• Improved goal-space manipulation planning, partial integration with 
affordance templates (see Figure 39) 

o Developed new planner node that incorporates both Cartesian 
interpolation and planning 

o Allows user intervention and visualization of plans 
o Supports a wider range of manipulation tasks than the previous incarnation 

and more fully supports goal-space planning 
 Commands consist of a set of segments 
 Each segment specifies a set of joints that the planner can use to 

move each of an arbitrary number of tools from an initial set of 
goal regions to a final set of goal regions in a synchronized, 
Cartesian-linear fashion 

 Goal regions are currently specified as 12-dof regions (min and 
max xyzRPY) around an arbitrary frame, but may later be 
extended to arbitrary polygons in 6D space 

o Interpolation is performed using minimum-jerk splining for extremely 
smooth Cartesian position, velocity, and acceleration trajectories 

o Plan is solved using a combination of Jacobian-transpose and random 
sampling techniques 

o Plan waypoints are generated at control rate (1khz) to ensure proper 
execution 

o Images show some planning paths (the teal boxes are the part it was able 
to solve, orange is the part that failed, the boxes visualize some of the 
goal-space regions that make up the plan) and viable dual-arm 
configurations (solved independently for now) 
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Figure 39: Goal-space planner interface using RViz. 

• Added RViz panels with buttons for simple commands 
o The two panels on the right in Figure 1 (StateChangePanel and 

ScriptPanel).  

3.3.5.3 Further description of important Operator Interface improvements in RViz 
 
Interactive Controls GUI: Primarily worked on simplification of operator 

interface.  This has included the consolidation of all RViz interactive markers for arm, 
hand, walking, and script-execution controls as well as the creation of a new, lightweight 
Interactive Controls GUI that can be added to the side of the RViz window.  That gives a 
streamlined way of controlling the RViz interactive markers over using nested right-click 
menus.  The Interactive Controls GUI provides dynamic of the following features: 

 
- creating Cartesian 6-DOF RViz interactive markers for controlling the position of 

arbitrary chains, 
- an interface for planning first, inspecting the resulting path via virtual robot overlays 

in RViz, and then executing if acceptable to the operator, 
- the ability to mask certain joints out in the plan requests (for example, not using the 

back pitch joint when moving a hand to a location), 
- the ability to set position and orientation tolerances from a set of acceptable bounds 

(e.g., ignore roll or orientation entirely, move within two centimeter of the specified 
goal, etc.), 

- the ability to control how much feedback is displayed to the user when planning.  For 
example the operator has the ability to request a visualization of just the final robot 
configuration or a visualization of the entire path it would take to get there.  This will 
allow flexible response to bandwidth limitations.     
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Path Planner Abstraction: An improvement to the underlying interface of the IC 
GUI allows the operator to choose from multiple path planning algorithms/libraries to use 
for the robot.  Current planners include our custom tolerance-based planner as well as 
MoveIt!  This allows the front-end GUI and RViz markers to be robot/planner generic 
and should be able to be used on multiple platforms beyond Atlas.  For instance, this 
approach has been tested on the Robonaut 2 platform using MoveIt! as part of other 
ongoing projects TRACLabs has with NASA-JSC. 

 
Navigation/Footstep Path Planner Operator Interface:     The Interactive 

Controls GUI also provides the ability to quickly drop navigation waypoints in the RViz 
environment, and plan paths (including footstep locations) through these waypoints.  If 
the operator finds the path acceptable, they can submit it for execution.  If not, waypoints 
can be adjusted, added or deleted.  Individual footstep adjustments can be made based on 
sensor feedback in case the autonomous footstep planner makes mistakes. 

 

 
Figure 40: Footstep planning interface. The Operator places the target 

cylinders, and the planner produces a set of footstep placements.  The Operator may 
adjust the footsteps as desired. 

Affordance Template Improvements:  The affordance template framework is 
being improved to handle the tolerance and joint mask features specified above, and is 
almost complete.  Improvements have also been made to allow more flexible (and 
dynamic) hand allocation (in case hands break or are swapped). 

3.3.5.4 Infrastructure 

• Improved handling of network issues and preparation for Finals    
o Set up various elements of our code base to work under the prescribed 

network structure. 
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o Developed the transport for passing our data between computers, to
support developing, deploying, and running the code across multiple
computers.

o Set up internal lab network to the 10.6.2.x, 10.6.3.x subnets that can talk to
each other the same way as at the Testbed in South Carolina.

o Set up run scripts that easily configure and startup the network shaping
from a third computer on the robot-side of the setup.

o Set up a new low-level networking scheme to handle the low-bandwidth
network.

3.3.6 Final software modifications 

3.3.6.1 Executor 
We developed an Executor capable of sequencing robot actions.  These actions could 

be completely hard-coded, or could take parameters.  The Executor enabled us to 
accomplish about half the tasks autonomously, after initial setup, but the Operator could 
intervene between steps if desired to tweak parameter values (a form of adjustable 
autonomy).   

The Operator interface to the Executor had hotkeys that provided shortcuts for task 
marker placement, plus task-based constraints on Operator movement of the markers to 
reduce user error. 

3.3.6.2 Manipulation planning 
We developed a Goal-Space planner that allowed under-constrained task 

specification for more robust trajectory planning from various initial conditions. 
Manipulation stance locations were discovered by rapid random guesses until planning 
was completed successfully.  Several pre-computed poses or pose transitions were stored 
as scripts and made accessible to the trajectory planner for speed. 

3.3.6.3 Locomotion planning 
Our flat-ground step planner optimizes the number of steps across three planning 

methods (turn-go-turn, Hermite spline, sidestep) and various parameterizations (stride 
width, turn out, starting foot) to find the fastest path to a specified goal. 

For non-flat terrain, the user specified the angles for the foot placements.  This was 
used in Egress and Rough Terrain. 

3.3.6.4 Control 
Our low-level control could be described as “Hydraulic-fluid-flow-based semi-

recursive adaptively-gravity-compensated sliding mode joint space control augmented 
with PID, feedforward velocity, feedforward acceleration, and backlash-filtered 
embedded control.” However, not all control components were used with all joints. 
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We used semi-compliant joint position control, with mostly minimum-jerk-
interpolated trajectories in Cartesian and joint space with acceleration and velocity 
bounds.   

We calibrated joints manually at startup using the output-side encoders, and mostly 
operated at high pressure (2500 psi). 

3.3.6.5 Visualization / OI 
We used four monitors to display useful information to a single robot Operator.  We 

displayed the SA cameras in upper monitors, but the primary tool for our OI is Rviz – the 
ROS visualization tool.  We used multiple interactive panels for the various types of 
commands that we could send, and presented augmented reality in the primary Rviz 
window.  Most data was visualized in 3D as point clouds or 3D overlays on images. 

We used mouse-movable 6-DOF markers for manual tele-operation of end effector 
target positions, as well as footstep placement adjustments, and generation of multi-
waypoint stepping paths.  Keyboard shortcuts snapped the markers to the point cloud for 
faster Operator input. 

A heads-up display (HUD) showed critical data, such as battery life, planner state, 
etc. 

The “Prophesy” animation showed the results of combined locomotion and 
manipulation before plans were committed to action.  A paper about Prophesy has been 
accepted at the 2015 Humanoids conference. 

3.3.6.6 Networking 
To manage the degraded network, we used two ROS masters: one on each side of the 

“long haul” link, and carefully controlled all data passing between them. 

We used UDP on the burst link (mostly for perception data), and TCP on the small 
pipe (mostly for commands). 

By streaming random samples of point clouds and re-aggregating the data on the OI 
side, we were able to provide decent data during blackouts. 

3.3.7 Hardware Modifications 
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3.3.7.1 Polaris Modifications 

 
Figure 41: Polaris XP 900 with modifications for development of driving task 

algorithms. 
We purchased a Polaris Ranger XP 900 EPS vehicle for development and practice 

for the Vehicle Task.  This vehicle was modified to limit the speed of the vehicle to 10 
mph.  A wireless emergency stop (E-stop) was designed and installed for remotely 
disconnecting the main power from the batteries.  E-stop buttons were installed around 
the perimeter of the vehicle. 

The roll cage was modified to easily allow the robot to exit the vehicle with minimal 
interference.  The seats were modified to allow additional room for the robot, and to 
allow the robot to easily slide along the seat for egress.  The cushions of the original seats 
take up too much room and are too soft for the robot to move without being torn.  The 
modified seats are ¾ inch plywood with a vinyl material cover.  

A mount was constructed in the vehicle to support the head of the Atlas robot to 
simulate its position when the robot is sitting on the seat.  This enabled us to gather 
sensor data without needing the full robot in the vehicle. 

3.3.7.2 End Effectors 
 
We developed a compliant “Pogo” hand for the left arm (See Figure 42).  This 

consisted of two nested pieces of PVC tubing, approximately 9 inches long, with a 
bungee connecting them.  This hand was used for opening the door, pushing the door (if 
necessary), turning the valve, turning on the drill, and flipping the breaker switch.  We 
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investigated a passive left hand fairly early on, because the power pass-through cable in 
our left forearm did not work.  After a time, we felt we had a satisfactory passive 
solution, so fixing this aspect of our left forearm became low-priority for BDI. 

 
We used a Robotiq hand on the right arm.  This was used for steering and holding 

the drill in the wall task.  We felt it was too unwieldy for the door handle or small valve 
handles. 

3.3.7.3 Car Modifications 
 
The driving and egress tasks were likely to be the most difficult tasks for our team, 

as we do not have the expertise or resources to develop the software necessary to perform 
these two tasks without major hardware modifications. These two tasks are especially 
difficult because our robot was never designed with the ability to sit down, let alone get 
up from sitting, in mind. The vehicle chosen by DARPA is relatively small, with less 
legroom than a typical sedan, adding to the challenge. We aimed to solve most of the 
technical challenges associated with these tasks with hardware, rather than software. 

We chose to forsake driving by any obvious, conventional, or visually appealing 
means in favor of making the egress task as easy as possible, as the egress would be the 
most difficult out of any of the tasks. Based on the specifications provided by DARPA, 
we chose to place the robot sitting sideways with legs outside of the vehicle and feet on 
an added step, so that the robot can simply transfer its weight onto its feet, stand up, and 
step out. To help keep the robot in place during driving, we added a “booster seat” in the 
form of the robot’s “buttocks” (or rather, the robot’s “lack of buttocks”).  

 
After establishing how and where the robot will be situated to best accomplish the 

egress task, the next step was to bring the driving controls (steering wheel and gas pedal) 
over to where the robot can reach them. The steering wheel controls are placed near the 
robot’s right shoulder. A 1:1 transmission made out of a combination of regular and 
flexible drive shafts, mounted by bearings on wood connects the steering wheel to a 
custom handle that the robot can grasp. The accelerator pedal controls are placed where 
the robot’s left arm can easily rest. Another custom handle connects to the drive pedal 
through a bicycle brake cable.  

Testing of the egress task showed us that it would be far more reliable if we added 
another step in addition to the first. The second step folds up to decrease the car’s width 
while driving, but can be deployed by having the robot simply tear some masking tape 
that holds it in place. Upon being deployed, the second step falls to the ground. 

3.3.7.4 Miscellaneous 
 
We added a shoulder webcam to assist in driving by providing the Operator with a 

view of the steering wheel. 
 
We used extension cables to move the wireless access point antennas away from 

critical areas, so they would not hit the door frame or get tangled in the belay rope. 
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Figure 42: Atlas balancing on the upper step added to the Polaris. Marked on 

the left are the attachments for steering control.  On the right are the attachments 
for accelerator control. 

3.3.8 Grasp affordances and autonomous reach 
 
Researchers from our partner, Northeastern University, implemented a new perception 

algorithm on the Atlas robot for localizing handle-like grasp affordances in three dimensional 
point clouds. The algorithm searches point clouds for neighborhoods that appear graspable, 
checking that there is sufficient clearance around them to accommodate an enveloping grasp. The 
advantage of this kind of algorithm is that it does not require foreknowledge of what the object it 
is picking up looks like. It is only concerned with finding locations that are amenable to being 
grasped. Figure 43 shows an example of these grasp affordances found on a DRC ladder. 

With this new algorithm, we were able to create a semi-autonomous grasping solution that 
was integrated into the TRACLabs DRC OI to reduce the time it takes for an Atlas operator to 
pick something up. With the press of a button, the user can command the robot to search for grasp 
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affordances in the robot’s workspace. The robot then returns the grasp orientations it finds, and 
the operator has only to select one and hit the send button to trigger an automated grasp action 
plan. The plan includes the choice of which arm to use, commands to open and close the hand at 
the correct times, and the proper trajectories to follow to avoid hitting the object with the hand’s 
fingers on the approach. Figures 44 and 45 show the new UI section for automated grasping in 
action. Figure 46 shows the robot successfully acquiring a drill using grasp affordances. 

 

 
Figure 43: Grasp affordances found on a DRC ladder. Without the handle 

detection/grasping algorithm, the operator would have to manually position a six 
degree of freedom marker several times to fine tune a grasp configuration, and 
manually command the hands to open and close at the appropriate time. 

 

 
Figure 44: Grasp orientations for the operator to choose from on the DRC 

ladder. 
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Figure 45: Grasp orientations on a DRC drill. 

 
 

 
Figure 46: Successful automated grasp of a drill. 

3.3.9 Driving task 
 
As mentioned above, we first situated the robot in a pose in the vehicle that we 

believed we could egress from, and then brought the vehicle controls to the robot via two 
rather “Rube Goldberg” mechanisms.  It was very important that the robot could engage 
and disengage the steering and accelerator mechanisms by itself. 

3.3.9.1 Steering 
The steering mechanism used the rotation of the right arm wrist roll joint to affect the 

angle of the steering wheel via a transmission made of wrench extension rods.  Because 
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there was significant windup in the system, the robot had to be able to disengage the 
mechanism, “unwind” the joint, and re-engage to turn it further.  It was generally a good 
idea to move the vehicle a bit too, to allow the windup torque to settle through the 
steering wheel.  We used a piece of tape on the steering wheel, along with a shoulder-
mounted webcam to gauge how far the wheels were turned.  The Operator had a tool that 
allowed him to type in a steering wheel angle and visualize the arc that the vehicle would 
follow superimposed on the sensor data in Rviz. 

 
We found that the hand by itself sometimes became jammed with the tines of the 

steering mechanism, so created a “bear claw” block that could be held that had spokes 
that would engage the spokes of the steering mechanism.  This block was discarded after 
completion of the driving task. 

The Operator used keyboard-activated joint scripts for controlling steering and 
regrasping. 

3.3.9.2 Accelerator 
The accelerator mechanism used the left forearm placed inside a hook-shaped 

handle.  When the robot moved the forearm down, it pulled the bicycle brake line, which 
depressed the accelerator pedal.  We relied on the fact that the vehicle quickly comes to 
rest when the accelerator pedal is not being pressed. 

The Operator used keyboard-activated joint scripts for different strength and duration 
bursts of acceleration.  By observing the response to different scripts, he was able to 
determine which ones produced the right size “quantum” motions. 

Our process of driving was very much “bump-and-wait”:  Choose a steering angle, 
choose an accelerator script, then wait to see the result… then repeat! 

Because there were too many cars and people in our lab’s parking lot during the day, 
we decided to test driving in our parking lot at night. For three nights prior to shipping 
the robot, we took the robot outside and worked on our ability to drive with the steering 
and accelerator mechanisms.  Several modifications came out of this for both hardware 
and software.  The bear claw and webcam were added at the Finals.   

3.3.10 Egress task 
 
The robot sat side-saddle in a “booster seat” that was designed to constrain the pelvis 

from sliding in any direction except up and off the seat.  The feet rested on a step that 
attached in the place of a running board.  During testing in our lab, we found that we 
could run joint scripts that caused the robot to “get up” and balance on its feet on the step.  
At that point, we could transition to BDI’s balancing controller.  From there, we could 
use BDI’s stepping controller to step down. This all worked well up to having the first 
foot on the ground, however, as the robot lifted the back foot to step down with that one 
too, the vehicle’s suspension lifted up as nearly 400 pounds weight was lifted off the step.  
This caused the step to continue applying an upward force on the back foot in a manner 
not expected by the stepping controller, and it was not able to handle it.  We found 
however, that we could successfully step off the first step if we had a second platform on 
the ground – about the height of a cinder block.   
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Based on this discovery, we developed (at the Finals) a second platform that swung 
down and fell to the ground when released.  We used masking tape to lightly secure the 
second platform up and out of the way of driving until the robot reached down at the end 
of the drive and broke the tape.  When that happened, it swung down and fell to the 
ground.  Cables prevented it from falling too far from the first.   

After some experimentation, we found that the first footfall from upper to lower 
platform needed the robot’s foot to be splayed outward at just such an angle so that the 
center of mass transitioned along the main axis of the foot as it stepped.  If this was not 
the case, the robot tipped over.  We practiced this many times using our Polaris in our 
garage, but the DARPA Polaris was a slightly different model. 

3.3.11 Door task 

Although this is an outdoor task, and thus has good comms, we were able to create a 
script that covered the major steps of this task.  To begin, the Operator matches a “door 
task” template to the sensor data.  When he triggers the script, the robot: 

1. walks to a pre-set location a fixed offset from the marker that is good for
manipulation, 

2. moves the left “pogo” hand near the door handle,
3. swipes downward to open the door,
4. pushes the door open (if necessary),
5. walks to a second pre-set location,
6. tucks arms to create a narrower profile,
7. walks to a third pre-set location that guarantees good steps through the door,
8. walks to a fourth location, on the other side of the doorway.

Although the robot sways a little from side to side when using BDI’s quasi-static 
“stepping” controller, the third pre-set location makes sure that right foot steps on the 
threshold, and thus the sway happens around the left-side door frame. 

The Operator has the ability to jump in and adjust marker and foot placements 
throughout the script if desired. 

3.3.12 Valve task 

We were able to get a good sensor reading of the valve task while still outside the 
door and getting good comms.  Thus, our Operator was able to start matching the 
template to the sensor data before the network shaping was turned on. 

Similar to the Door task, the Operator uses a “valve task” template to quickly align 
to the sensor data.  When the script is triggered, the robot: 

1. walks to a pre-set location a fixed offset from the marker that is good for
manipulation, 

2. moves left “pogo” hand near the valve handle,
3. inserts pogo into a (user-specified) gap in the handle,
4. presses against the outer rim of the handle,
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5. moves more than 360 degrees is a circular motion
6. extracts the pogo.

Although the network shaping causes multi-second blackouts, the stepping controller 
is slow enough that the Operator has opportunities to adjust markers if desired.  
Furthermore, since the robot is running autonomously, the Operator can start placing 
markers for the next task. 

3.3.13 Wall task 

Once again, we used a script based on markers for drill and wall placement.  Once 
again, the Operator has the opportunity to edit markers on the fly if desired. This is one of 
very few task activities that require a grasp, so we used the Robotiq hand.  The script: 

1. walks to a pre-set location a fixed offset from the drill marker,
2. picks up the drill with the Robotiq hand on the right arm,
3. moves away from shelf, loosens and tightens grip to settle drill in grasp,
4. stabs with pogo in a varying pattern until Operator triggers next step,
5. extends left arm for balance, moves drill near wall,
6. cuts circle – more than 360 degrees,
7. uses drill to punch circle,
8. deposits drill,

We developed and tested this script while at the Finals, after seeing the relative 
locations of drill shelves and cutting wall.  Notably, that there were probably places we 
could stand where we could pick up the drill, activate it, and then cut the wall without 
needing to reposition the feet. By using markers, the Operator can accommodate different 
heights of shelf or cut-out pattern, as well as orientations of the drill. 

3.3.14 Mystery task 

Once again, a script based on markers allows the Operator to set things in motion 
based on historical sensor data, regardless of the blackouts.  

It should, perhaps, be emphasized here that these marker location and trigger 
commands are small, and thus are sent via the “small pipe”, which is not subject to 
blackout.  So as long as there is not much sensor drift, the previous point cloud sensor 
snapshot is usually good enough for the Operator to use. 

After the Operator has placed the “breaker task” marker, the script: 

1. walks to a pre-set location a fixed offset from the marker that is good for
manipulation, 

2. moves left “pogo” hand near the breaker handle,
3. moves pogo along preset “swipe” motion – farther than necessary,
4. retracts arm.
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3.3.15 Terrain/Debris task 

We had no interest in the Debris task, because we only had one gripper (and one 
pogo), and shuffling through the debris would be too risky – we did not want the robot to 
fall.  Our strategy for traversing Terrain, on the other hand, was very robust and solid.  In 
practice, it worked just about every time. However, there were some variables left to the 
discretion of the Operator, and thus subject to possible Operator error. 

The Terrain task was broken into three scripts: (1) ascent gets the robot onto the first 
set of bricks; (2) traverse gets the robot across the middle bricks; and (3) descent gets the 
robot off the final bricks and back to the ground.  For each script, footstep placements are 
laid out, and the Operator can then adjust them if necessary.   

3.3.16 Stair task 

This is an outdoor task (and thus has good comms), but again we were able to speed 
up execution of the task by using a template and the sequencing Executor.  The Atlas 
robot is not particularly flexible, and we have limited control over the details of how the 
BDI stepping controller operates, so there was a lot of experimentation to determine how 
to get the legs to manage a flight of stairs without the shins hitting the next step.  The 
script: 

1. tuck arms and lean forward slightly (biases pelvis back away from stairs),
2. walk to preset location relative to stairs,
3. step first with left foot at angle, with heel hanging off stair a bit,
4. step second with right foot nearly straight, heel must hang off,
5. repeat four times!

4 RESULTS AND DISCUSSION 

4.1 VRC 

4.1.1 Walking task 
Using our crawling algorithms, we were able to complete all stages of the course in 

about 16 minutes with minimal upload. We scored all 20 possible points in this task: five 
runs, four points per run.  Although we occasionally triggered the fall event, it never 
happened three times in one run, so it was not a problem. 

Although successful, these scripted behaviors were clearly not going to work with 
the real Atlas hardware (or any hand hardware), so this was an example of engineering a 
solution to the problem of scoring points, not the problem of controlling a live Atlas. 

The OI tabs that were developed for locomotion – especially the ones that enabled 
path planning for the BDI walking behavior and the one that allowed development of 
scripted behaviors – were useful for all the VRC tasks, and carried over well to the DRC 
Trials. 
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4.1.2 Driving task 
Because the scripted “swan dive” behavior did not have a very large capture 

envelope of standing positions next to the vehicle, our Operator missed once, which 
caused the robot to fall.  Because there was no lateral situational awareness for the robot, 
it because wedged under the vehicle in a manner that we could not easily extract from, 
and when we finally did, we were not able to stand up.  This, in turn, turned out to be 
because the hands were not in the correct pose for the “standup” script.  We triggered 
many falls attempting to stand during that run.   

These failures pointed to two places where some automation could have helped: 

1. The OI could have validated the starting pose relative to the vehicle, and not
allowed the Operator to trigger the Ingress unless the pose was within the capture 
envelope. 

2. The OI could have identified that the hands were not in the correct configuration,
and either prevented the Operator from triggering the “standup” script, or caused it to set 
the hands correctly at the start of the script. 

These sorts of intelligent assistance in an Operator Interface are part of the field of  
Adjustable Autonomy, and provide benefit when the system is capable of sensing enough 
to know how the current state of the system relates to the current task. 

We scored the first point in the other four runs, for a total of four points in this task. 

4.1.3 Hose task 
As expected, we successfully picked up the hose quite quickly every time.  However, 

our OI did not provide good enough control over the pose of the nozzle for our Operator 
to robustly mate the nozzle to the receptacle, and he was only able to accomplish the 
mating once.   

This was a situation where we needed to use perception-based automation.  We 
needed the system to analyze the point cloud and match a model to the receptacle, 
effectively giving us the location of its primary axis.  There are many ways this could 
have been done – with more or less Operator involvement.  With that information, and 
similar information for the nozzle, the system could have served the nozzle into the 
receptacle easily every time. 

Five pickups and one mating gave us six points on this task. 

4.1.4 Scoring results 
The top-scoring team, IHMC, accumulated 52 points.  They clearly had good success 

with every task.  They did most of their development in their own simulation 
environment, and did not rely on BDI’s walking or balancing behaviors. 

Next, WPI (Track C) scored 39.  Early on, they found a method of successfully 
entering the vehicle in a pose that allowed driving, and thus were able to accumulate a lot 
of points of the Driving task, which most of the rest of the field struggled with. 



Approved for Public Release; Distribution Unlimited 
77 

Next, CMU scored 34 points. 
 
TRACLabs’ 30 points ranked fourth, just edging out JPL, who scored 29 points, and 

TORC, who scored 27. 
Five more teams scored in the 20s, one scored 16, and the remaining ten teams 

scored in the single digits. 
 
Frankly, we did not expect getting only 30 of 60 available points to score very 

highly, and were quite surprised that this was good enough for 4th of 22 teams.  We 
believe that the network throttling stymied a lot of teams, and that many teams struggled 
to negotiate the Walking task by walking upright, rather than discovering that it could be 
traversed using prone positions. 

4.2 DRC Trials 

4.2.1 Vehicle task 
 
We did not attempt this task and therefore scored no points. Four of the 16 teams 

successfully scored one point for driving.  None attempted egress. 
 

 
Figure 47: Team TRACLabs performing the Terrain task at the DRC Trials. (a) 

Traversing the ramp; (b) traversing the flat cinderblock staircase. 

4.2.2 Terrain task 
 
In practice, we were able to accomplish all four of the subtasks: ramp, herringbone 

cinderblocks, flat cinderblock staircase, and slanted cinderblock staircase. Unfortunately, 
we fell early and had an intervention at 7:20. We scored one point in this task at 15:08.  
When we were at the top of the flat staircase and starting stepping down, the robot lost its 
footing and fell.  We were not able to determine the cause, although there was a wind-
tunnel effect between the two conex boxes that were supporting the belay rigging – the 
top of the flat staircase was right in the middle of the gap between those structures. See 
Figure 47. 
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Figure 48: Team TRACLabs performing the Ladder task. (a) Setting the hook 

hands on the fourth step. (b) kneeling on the first step. 

4.2.3 Ladder task 
 
Our method for kneeling on the first step using the hook hands was very robust, and 

we had no trouble scoring the one point on this task. See Figure 48. 
 

 
Figure 49: Team TRACLabs performing the Debris task at the DRC Trials. (a) 

Executing the first "plowing" attempt; (b) preparing for a second "plowing" 
attempt after an intervention. 

4.2.4 Debris task 
 
In the Trials, the first plowing pass successfully removed 5 pieces of wood, ending 

with a fall and an intervention, as expected. After an unsuccessful second plowing 
attempt and intervention, it was decided that the remaining debris could not be cleared. 

We scored one point with an intervention at just over one minute. We had another 
intervention at 9 minutes and ended the task at that point. See Figure 49. 

4.2.5 Door task 
 
We successfully opened the push door and walked through it at 18:46.  This was 

worth one point.  We opened the second door, but the wind shut it before we could get in 
position to walk through it. See Figure 50. 
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Figure 50: Team TRACLabs performing the Door task. (a) Unlatching the pull 

door; (b) the pull door is open. 
 

 
Figure 51: Team TRACLabs performing the Wall task. (a) Preparing to start 

the first cut; (b) finishing the first cut. 

4.2.6 Wall task 
 
We scored one point in this task in just over 23 minutes. We went out of bounds 

while attempting the second cut, and then ran out of time. 
For this task, we needed a better way to keep the orientation of the drill 

perpendicular to the wall.  The iRobot hand did not grip the handle tightly enough to 
prevent it from rotating, which caused the cut to drift to the side, as seen in Figure 38(b). 

 

 
Figure 52: Team TRACLabs performing the Valve task. (a) Turning the lever 

valve with the right hand; (b) turning the small handwheel with the left hand. 

4.2.7 Valve task 
 
We scored all three points for turning valves in just over 27 minutes with no 

interventions, which earned the fourth (bonus) point. This was by far the easiest of the 
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eight tasks. Of the 13 teams that scored any points at all at the Trials, nine scored four on 
this task. See Figure 52. 

Figure 53: Team TRACLabs performing the Hose task. (a) Grasping the hose; 
(b) walking the hose nozzle to the wye; (c) attempting to thread the nozzle. 

4.2.8 Hose task 

We scored two points in this task in approximately 18 minutes, spending the 
remaining time unsuccessfully attempting to attach the hose. Like the Valve task, most 
top teams scored multiple points on this task. See Figure 53. 

4.2.9 Scoring 

Team SCHAFT clearly mastered this competition, scoring 27 of the 32 available 
points. IHMC was next with 20, CMU had 18, MIT had 16, and JPL scored 14. 

We scored at least one point on all seven tasks we attempted. Three of the fifteen 
other teams did this.  We scored perfectly only on the Valve task, and got a second point 
only on the Hose and Valve.  With eleven points, we ranked sixth of the sixteen teams 
that competed, beating WPI, who also scored 11, in the tiebreaker (number of 
interventions).   

Team TROOPER rounded out the top eight with a score of nine. 

Although we expected Track A teams to dominate this competition, and SCHAFT 
certainly did, five of the top eight teams were Atlas teams. This speaks well of BDI and 
the support they gave the Atlas teams, and also of the DARPA team, which kept the 
playing field fair between the two groups. 

As with the VRC, we found it surprising that more teams did not score higher – were 
not able to score in the double digits. We felt that it was within our reach to score more 
points on Terrain, Door, and Wall. However, with only one official attempt at each task, 
we were happy to score as well as we did. It would not have been reasonable for us to 
expect to score more than three more points, so our rank was appropriate.  In fact, the 
rankings were quite similar to the VRC rankings for Atlas teams, with the exception that 
we edged WPI this time, and JPL beat us (of course, this was their Track A team, not 
their Track B team). 
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4.3 DRC Finals 

Figure 54: Team TRACLabs driving the vehicle toward the End Zone. 

4.3.1 Vehicle task 

During the Dress Rehearsal on 6/4, we attempted to drive three times and hit barriers 
three times, the last of which damaged our step.  

For the First Finals Run on 6/5, we added the bear claw and the webcam, and 
successfully drove to the finish line in about 20 minutes.   

During the Second Finals Run, we inadvertently opened the hand and dropped the 
bear claw while driving.  This led to the steering mechanism getting jammed in the hand, 
and then a re-grasping action detached the extensions.  We called for a reset, reset the 
apparatus, and then successfully drove to the finish line in about six minutes. See Figure 
54.
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Figure 55: Team TRACLabs egressing the vehicle. 

4.3.2 Egress task 
 
During the first Finals run, we successfully accomplished the egress after driving. 

This was our second point, and came after roughly 25 minutes. 
 
During the Second Finals run, the first footstep placement down was a little further 

than the robot control system could handle, which resulted in it planting the foot closer in 
than anticipated.  When the second foot stepped down, the second heel overlapped the 
first by a fraction of an inch, which was enough for the control system to get thrown off 
and the robot to fall over off the step.  This ruptured two hydraulic lines and ended the 
Second Finals Run. See Figure 55. 
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Figure 56: Team TRACLabs approaching the door. 

4.3.3 Door task 
 
On the first Finals run, we successfully opened the door and walked through it. This 

was our third point, and came after roughly 35 minutes. See Figure 56. 
 

 
Figure 57: Team TRACLabs approaching the valve. 
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4.3.4 Valve task 

During the first Finals run, we successfully turned the valve.  Because we align 
markers to sensor data prior to committing, the network shaping really did not cause 
much trouble to the system.  This was our fourth point, and occurred at roughly 43 
minutes. See Figure 57. 

4.3.5 Wall task 

We bypassed the Wall task in the interest of time, although we had had some decent 
success with this task in practice. We were planning to attempt it during the second Finals 
run, but never got there. 

Figure 58: Team TRACLabs accomplishing the mystery task: breaker lever. 

4.3.6 Mystery task 
We had no trouble with this task during the First Finals Run – giving us our fifth 

point at about 49 minutes. See Figure 58. 
Note: We had a rudimentary script for the “plug” mystery task for the second Finals 

run.  We tested it successfully a few times, but it took a long time and a lot of Operator 
assistance, and we might have chosen to bypass it in the interest of time, even if we had 
made it that far. 
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Figure 59: Team TRACLabs traversing the rough terrain. 

4.3.7 Terrain task 

For the traverse script, we had tried stepping both feet onto each brick pair, and also 
alternating feet (more similar to how people walk).  Unfortunately, we were using the 
alternating footstep pattern during the first Finals run (because it covers ground faster), 
and forgot to set the swing height high enough to accommodate the intervening high 
bricks.  This caused the foot to drag on those high bricks and the robot to lose its balance 
and fall over to lean on the wall.  Using the slightly slower “double-step” traverse pattern, 
we would not have had any trouble on the terrain. See Figure 59. 

4.3.8 Stair task 

We were able to accomplish this task very quickly and somewhat reliably in practice.  
At the Finals, the organizers built all the task apparatuses on the apron of the racetrack, 
which sloped about 3-5 degrees down to the right.  This was an issue, for instance, when 
the cars needed to drive up over the lip of the apron to get past the finish line!  For some 
reason, however, the staircases were leveled relative to gravity, which meant that the 
bottom step was roughly an inch and a half higher at the right end than the left on the 
course we were on. The precise amount varied between the four test tracks. This caused 
some difficulty for the stepping controller. 

4.3.9 Scoring 

Our first Finals run was the better run, and we scored five points.  We successfully 
drove and egressed the vehicle, opened the door and walked through it, turned the valve, 
and flipped the breaker switch. We should have been able to traverse the terrain as well, 
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but operator error caused the robot to fall without enough time remaining for a reset. 
Even had we traversed the terrain successfully, it would not have changed our ranking, as 
we were close to the sixty-minute time. 

5 CONCLUDING REMARKS 

Analysis of videos of the other teams indicate that we were able to accomplish the 
indoor tasks at least as quickly as nearly all of the other teams.  This shows off the power 
of the strategy we employed of adjustable autonomy: combining human-in-the-loop with 
autonomous scripting.  

Three teams scored all eight points: KAIST, IHMC, and CMU.  KAIST was the clear 
winner, finishing roughly six minutes faster than IHMC.  Looking at the rankings at the 
Finals when compared to those at the Trials, we see that we were overtaken by KAIST 
and WPI, but otherwise the relative ranking of the teams was the same. 

Of the Atlas teams, we had both the mildest fall, where we gently leaned on the wall 
at the end of Day One, and the most catastrophic, where we blew hydraulic lines in a 
manner that guaranteed that the run was terminated in Day Two. 

We are satisfied with 9th place at the Finals.  We had working strategies for all eight 
of the tasks, and feel that with a few more test runs on the real course, and another week 
or so of tuning development, we could be scoring all eight points in less than an hour.   
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

API Application Program Interface 
AT Affordance Template 
BDI Boston Dynamics, Inc. 
CoM Center of Mass 
DARPA Defense Advanced Research Projects Agency 
DOF Degrees of Freedom 
DRC DARPA Robotics Challenge 
FOV Field of View 
GUI Graphical User Interface 
HRI Human-Robot Interaction 
HUD Heads-Up Display 
IK Inverse Kinematics 
IKFast A particular Third-Party IK Solver 
IMU Inertial Measurement Unit 
KDL Kinematics and Dynamics Library 
Kd-tree K-dimensional tree (a space-partitioning data structure) 
LIDAR Laser rangefinder 
LUT Lookup Table 
MATEC Multi-Appendage Torque and Environment Contact control suite 
MoveIt! Software for Mobile Manipulation 
OCS Operator Control Station 
OI Operator Interface 
OSRF Open-Source Robotics Foundation (simulation software vendor) 
PCL Point Cloud Library 
PID Proportional-Integral-Derivative Control 
Qt A particular cross-platform application framework 
R2 Robonaut 2 (A NASA Humanoid Robot) 
RNEA Recursive Newton-Euler Algorithm 
ROS Robot Operating System 
RViz Robot Visualization Tool 
SA Situational Awareness (refers to cameras used for this purpose) 
SA-GD Simulated Annealing-Gradient Descent 
SLAM Simultaneous Localization and Mapping 
SRI SRI International, Inc. (hand vendor) 
SUP Single UDP Pipe 
TCP Transmission Control Protocol (an internet communication protocol) 
UDP User Datagram Protocol (an internet communication protocol) 
VRC Virtual Robotics Challenge 
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