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Abstract 

The proliferation of simple and low-cost devices, such as IEEE 802.15.4 

“ZigBee” and Z-Wave, in CriticalInfrastructure (CI) increases security concerns.  Radio 

Frequency “Distinct Native Attribute” (RF-DNA) Fingerprinting facilitates biometric-

like identification of electronic devices emissions from variances in device hardware.  

Developing reliable classifier models using RF-DNA fingerprints is thus important for 

device discrimination to enable reliable Device Classification (a one-to-many looks 

“most like” assessment) and Device ID Verification (a one-to-one looks “how much like” 

assessment).  AFIT’s prior RF-DNA work focused on Multiple Discriminant 

Analysis/Maximum Likelihood (MDA/ML) and Generalized Relevance Learning Vector 

Quantized Improved (GRLVQI) classifiers.  This work 1) introduces a new GRLVQI-

Distance (GRLVQI-D) classifier that extends prior GRLVQI work by supporting 

alternative distance measures, 2) formalizes a framework for selecting competing 

distance measures for GRLVQI-D, 3) introducing response surface methods for 

optimizing GRLVQI and GRLVQI-D algorithm settings, 4) develops an MDA-based 

Loadings Fusion (MLF) Dimensional Reduction Analysis (DRA) method for improved 

classifier-based feature selection, 5) introduces the F-test as a DRA method for RF-DNA 

fingerprints, 6) provides a phenomenological understanding of test statistics and p-values, 

with KS-test and F-test statistic values being superior to p-values for DRA, and 7) 

introduces quantitative dimensionality assessment methods for DRA subset selection. 
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The optimized GRLVQI algorithm and the proposed GRLVQI-D algorithm show 

improved performance over the baseline GRLVQI algorithm. When considering the 

optimized GRLVQI and GRLVQI-D classifiers using NF = 189 Z-Wave features and an 

arbitrary average correct classification (%C) of %C = 90% benchmark, demonstrated 

Device Classification SNR gain (GSNR) performance relative to baseline GRLVQI 

includes 1) improved GSNR = +1.84 dB using GRLVQI-D with a Cosine distance 

measure, and 2) best case GSNR = +1.94 dB using the GRVLQI optimized algorithm.  For 

Z-Wave Device ID Verification, results of included correct verification of authorized 

device IDs (%VA) include 1) worst case %VA = 33.33% for baseline GRLVQI, 

2) improved %VA = 66.66% for GRLVQI-D using a Cosine distance measure, and 3) best 

case %VA = 100% using the optimized GRLVQI algorithm.   

The proposed F-test and MLF DRA methods are shown to offer distinct 

performance improvements.  ZigBee Device Classification results for selected DRA 

methods with an MDA/ML classifier benchmark of %C = 90%, included SNR gain 

relative to the benchmark GRLVQI DRA with NDRA = 50 feature sets of 

1) GSNR = +0.82 dB for MLF DRA, and 2) GSNR = +0.10 dB for F-test DRA using 

NDRA = 50.  ZigBee Device ID Verification results, using the same NDRA = 50 feature sets 

and MDA/ML classifier, included correct %VA and correct detection of unauthorized 

rogue device IDs (%VR) of %VA = 50% and %VR = 91.67% for the benchmark GRLVQI 

DRA, with 1) comparable %VA = 50% and %VR = 91.67% for MLF DRA, and 2) best 

case %VA = 75% and %VR = 91.67% for F-test DRA. 
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I. Introduction 

But in war, as in life generally, all parts of the whole are interconnected and thus the 
effects produced, however small their cause, must influence all subsequent military 

operations… 

−CARL VON CLAUSEWITZ, 1780 – 1831 

Communication networks permeate society through commercial networks, such 

as the internet, cell phones and Wi-Fi, to Industrial Control Systems (ICS), such as 

Supervisory Control And Data Acquisition (SCADA) systems, which monitor and 

control many critical infrastructure (CI) systems.  In all communication networks, one is 

interested in a balance between attributes such as performance, security, reliability, 

availability, and survivability [1, 2].  In CI applications, all of these attributes are 

necessary since CI interruption can threaten lives, disable governments, affect the 

economy, and damage ecological systems [3].  Additionally, the “fog of war” has been 

reduced due to advances in digital communications [4]; however, security concerns can 

both limit user confidence in communications networks [5] and reduce this functionality 

[4]. 

Security is a critical component in communication networks and, due to 

functional interconnectedness, compromising one point can compromise overall system 

security [6].  Therefore, the security of communication and industrial networks and 

devices is of high importance to the Department of Defense [7–9].  Various issues exist in 

securing hardware [10], including: 1) identifying counterfeited or reused components 
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[11–17], 2) determining claimed device identities [18, 19], and 3) determining aging 

effects [20–34].   

Improving methods for vetting communication device identity by examining and 

characterizing device physical properties are of interest.  AFIT’s Radio Frequency (RF) 

Fingerprinting process, RF Distinct Native Attribute (RF-DNA) Fingerprinting [19], is a 

systematic and proven method for extracting statistical features from waveform data.  Of 

interest in this research was the extension and improvement of RF-DNA practices for 

improved communication device identification and security.   

1.1 Operational Motivation  

The “Internet of Things” is predicted to enable wide connectivity between 

commercial, industrial and consumer devices [35].  However, such connectivity includes 

many risks due to the possibility of hackers disrupting services, stealing information, or 

taking control of various devices in CI applications or consumer use [35, 36].  Facilitating 

the “Internet of Things” is the proliferation of low cost networks, such as those created by 

IEEE 802.15.4 “ZigBee” and Z-Wave devices, into CI applications present numerous 

security issues [37, 38].   

Both ZigBee and Z-Wave devices have numerous operating advantages that 

motivate their use in CI applications, such as the ability to communicate up to 100 meters 

and the ability to sustain networks comprised of up to 65,000 devices [39].  Given these 

advantages, ZigBee devices are believed to provide interconnections between more 

physical devices in the world than any other wireless technology [37].  CI networks 
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frequently include many low cost communication devices, such as ZigBee and Z-Wave, 

for interaction with physical objects, e.g. power relays [40–43], patient monitoring 

devices [44], security systems [45], automation and control systems [46], home 

automation [47], and electric metering [48].   

Due to the ubiquity of ZigBee and Z-Wave devices, general security concerns 

exists because a single fraudulent or hacked network device can compromise overall 

network security [49] and the amount of interconnectivity with ZigBee and Z-Wave raise 

concerns given their inherent security risks [37].  Thus, vetting communication device 

identity is critical to overall security.  Regular operations of a typical communication 

network experiences many devices requesting network access.  Passwords and keys 

required to gain access can be shared or forged, however the physical properties of a 

given device are inherently harder to forge.  

Reliable network security involves considering multiple layers of access and 

interfacing between components and users.  Devices, their operations, and applications 

for networks can be characterized by the seven layer Open System Interconnection (OSI) 

model, Table I-1.  As one progresses from the Physical (PHY) layer to the Application 

layer, an increasing number of trust assumptions are made [50].  Historically, security has 

not adequately considered the physical attributes of devices themselves.  Rather, much 

emphasis and research on network security and unauthorized access detection occurs at 

the Application, Network and Data Link layers [51–60], and Application Layer [61].   
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PHY features are considered as an additional level of security for more robust 

security systems and rogue device authentication [19].  For improved security and 

monitoring of device operations, it is desirable to collect and monitor identifiable features 

possessing qualities of universality, distinctiveness, permanence, and collectability [18, 

66].  Moreover, these feature qualities are akin to biometric features [67–70].  AFIT’s 

RF-DNA Fingerprinting is one proven method for exploiting biometric-like features of 

electronic devices and was therefore of interest for this research.  

1.2 Radio Frequency Fingerprinting 

Broadly, there are two PHY-layer based security approaches that have been 

applied:  1) the addition of physically traceable objects to devices [71–73], and 2) the 

exploitation of inherent and unique features in device signals through RF 

Table I-1: OSI Model, adapted from [62–65]. 

 DATA LAYER DESCRIPTION EXAMPLE 

HOST 
LAYERS 

Data 

Application Process to access network End User 

Presentation Formats data for application 
layer, and encrypts data 

Syntax, data 
manipulation 

Session Interhost connections, 
session establishment Synching 

Segments Transport End-to-end connections TCP, host-to-host 

MEDIA 
LAYERS 

Packets Network Controls subnet, decides 
physical path for data, IP Packets, routing 

Frames Data Link Transfer of data between 
nodes over physical devices 

Frames, MAC 
addresses 

Bits Physical 
Transmission and reception 
of media, signal; physical 

devices. 

Cables, devices, 
physical mediums, 

transmission 
methods 
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Fingerprinting [18, 74–76].  A variety of research has been conducted in the area of RF 

Fingerprinting – c.f. [49, 51, 66, 75–118], but each generally follows a similar procedure 

whereby fingerprint features are extracted from device emissions.  In general, RF 

Fingerprinting processes involve 1) selecting Regions of Interest (ROIs) within a given 

signal response, 2) computing features from each ROI, 3) computing fingerprints from 

each feature, and 4) training classifier models to discriminant on these features [102].  RF 

Fingerprinting research has considered various wireless communication devices, 

including IEEE 802.11 (Wi-Fi) [92, 96, 97, 106, 119, 120], IEEE 802.16 (WiMAX) [98], 

802.15.4 (ZigBee) [49, 89, 91, 113, 121, 122], Z-Wave [49, 123], Satellite 

Communication (SatCom) [124], Global System for Mobile Communications (GSM) 

cellular phones [101, 125], IEEE 802.15 Bluetooth [86], Ethernet [77, 126, 127], and 

Radio Frequency Identification (RFID) [78, 109].   

Of specific interest in this research was the RF-DNA Fingerprinting method as 

codified by Cobb et al. [18, 19] and extended by work in [74].  As adopted here, the RF-

DNA Fingerprinting process considered statistical features computed in each ROI of the 

instantaneous amplitude, frequency and phase responses [18].  RF-DNA has been 

employed in many applications [18, 19, 49, 74, 89–93, 97–99, 101, 113, 121, 128] and 

shown efficacy for both cross-model (different manufacturers) [101] and like-model 

(same manufacturer, same model, different serial number) device discrimination [92].  

RF-DNA Fingerprinting embodies Wittgenstein’s [129] proposition that “in order 

to know an object, I must know not its external but all its internal qualities,” by 

augmenting the current external security measures via characterizing the internal 
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qualities.  However, it should be stated that any measurements are model-based 

observations of the real phenomena [130], or as Heisenberg stated [131], "We have to 

remember that what we observe is not nature herself, but nature exposed to our method of 

questioning."  Thus, RF-DNA Fingerprinting provides a reflection of the operating 

condition of RF devices, which has been further explored by directly analyzing integrated 

circuits (ICs) in [104].  

1.3 Technical Motivation 

RF Fingerprinting research has primarily focused on applications [49, 74, 78, 86, 

89, 91, 92, 96–98, 106, 109, 113, 119, 121, 125] with classifier model development [19, 

51, 91, 92, 132] and Dimensional Reduction Analysis (DRA) [49, 89, 113, 132] as 

secondary objectives.  AFIT’s RF-DNA work has previously considered four 

classification methods: Multiple Discriminant Analysis/Maximum Likelihood 

(MDA/ML) [90], Generalized Relevance Learning Vector Quantized-Improved 

(GRLVQI) [51], Learning from Signals (LFS) [133], and Decision Trees/Random Forests 

[134].  Additionally, since RF-DNA generally considers many fingerprint features, e.g. 

NF = 729 features for the ZigBee dataset of [91], DRA has been of interest to select 

relevant subsets of features.   

Various unresolved issues exist in RF Fingerprinting research and herein 

extensions are made to the RF-DNA process itself, classifier development, and DRA 

methods.  Three previously unresolved issues related to DRA for RF Fingerprinting are 

addressed in Chapter IV: 1) understanding the appropriate use of p-values and test 
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statistic values when using distribution based DRA methods [49]; 2) developing MDA 

classifier-based DRA methods [135], which were previously dismissed [51, 89, 91, 92, 

113, 134]; and 3) the development of quantitative dimensionality assessment methods to 

determine the number of features to consider [49, 135].  Recent RF-DNA efforts have 

considered a GRLVQI classifier, e.g. [51, 92, 100]; Chapter V addresses three general 

issues in GRLVQI: 1) extending the algorithm to consider non-Euclidean distance 

measures; 2) determining optimal algorithm parameter settings; and 3) creating a 

generalizable derivative skeleton to support algorithm improvements.  Although the RF-

DNA process is mature and proven, slight improvements to its operation are proposed in 

Chapter VI by leveraging techniques in Simulation research [136]; therefore, an 

autocorrelation based automation approach for selecting the number of ROI sub-regions 

is introduced.  

1.4 Research Contribution 

 Table I-2 provides a summary and mapping of the contributions in this research, 

“Current Research,” to previous related research, “Prior Work.”  In Table I-2, the × 

symbol indicates that a technical area was addressed.  
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Table I-2: Relational mapping between technical contributions in previous related 
work and current research contributions.  The × symbol denotes areas addressed. 

Technical Area Prior Work Current Research 
 Addressed Ref # Addressed Ref # 

ZigBee × [89, 91, 113, 121, 122] × [49, 135, 137]  
Z-Wave   × [49, 137]  

Classification/Verification Processes 

MDA/ML × [18, 19, 89–91, 97, 101, 
105, 113] × [49, 135] 

GRLVQI × 
[51, 92, 97, 100, 128] 

 × [49, 137] 

LFS × [88, 92, 93, 94, 119, 
133]   

Random Forests × [126]   
Dimensionality Reduction Analysis (DRA) 

MDA/ML × [18, 19, 51, 89–92, 113, 
121] × [49, 135] 

GRLVQI × [51, 92, 100] × [49, 135, 137] 
LFS × [88, 92, 133]   

Random Forests × [132]   
KS-Test × [89, 91, 113, 121] × [49, 135] 
F-Test   × [49, 135] 

Qualitative 
Dimensionality 

Assessment 
× 

[89, 91, 113, 121, 132] 
 × [49, 135] 

Quantitative 
Dimensionality 

Assessment 
  × [49, 135] 

1.5 Document Organization 

This dissertation is subsequently organized as follows: Chapter II presents 

background literature on PHY layer device identification, RF signals, RF-DNA, the 

ZigBee devices under analysis, data collection, and pattern recognition.  Chapter III 

presents the baseline classifier methods used in this study: MDA and GRLVQI. Chapter 
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IV reviews and develops DRA methods for application to RF-DNA. Chapter V presents 

improvements and modifications to GRLVQI, including a derivative framework to 

incorporate non-Euclidean distance measures and an optimization to method to determine 

algorithm parameter settings. Chapter VI presents concepts from simulation studies 

research and considers extensions to the RF-DNA process. Chapter VII concludes the 

dissertation.  Appendices A through M, which provide additional results supporting 

concepts and conclusions in this dissertation, are provided following Chapter VII.   
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II. Background 

Research has been proceeding to develop a line of…products that establishes new 
standards for quality, technological leadership, and operating excellence. 

–MICHAEL KRAFT  
 

This chapter provides the foundation for understanding physical (PHY) layer 

security of communication devices, Radio Frequency Distinct Native Attribute (RF-

DNA) Fingerprinting, ZigBee and Z-Wave signals under analysis, and particulars of 

signal collection and RF-DNA feature extraction. 

2.1 Introduction 

This chapter is organized as follows.  First, a general discussion on wireless 

networks and a specific discussion on ZigBee and Z-Wave devices are presented in 

Section 2.2.  Then a discussion on PHY security and device identification is presented in 

Section 2.3.  Finally, the RF-DNA Fingerprinting process is presented and discussed in 

Section 2.4.  

2.2 Signals of Interest: Wireless Networks 

Figure II-1 presents a conceptualization of basic digital communication occurring 

between two devices [64, 138].  In operation, a software application initiates the 

communication of a data packet, as the packet proceeds through each layer of the Open 

Systems Interconnection (OSI) model more information in the form of headers, addresses 

and etc., are added at each layer regarding the device properties, bit-level identity, 

communication properties, data handling information, and etc. [138].  After passing 
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through the OSI layers, the digitally formatted signal is transmitted over some medium 

(wired or wireless) and received by another device.  The receiving device collects the 

signal and reverses the digital formatting process, including the removal of headers at 

each layer to determine how to handle the received data [138]. 

 
Figure II-1: General operations of digital communication, adapted from [64, 138]. 

Various technical standards exist that govern the operation of a wide variety of 

communication networks.  Of interest herein are ZigBee wireless personal area networks 

(WPAN) which are governed by the WPAN working group (IEEE 802.15); one of 25 

IEEE 802 standard subgroups for area networks [139].  The IEEE 802.15 working group 

also includes Bluetooth (IEEE 802.15.1), coexistence (IEEE 802.15.2), high rate WPANs 

(IEEE 802.15.3), the low rate WPANs (IEEE 802.15.4), mesh networking (IEEE 

Application

Presentation

Session

Transport

Network

Data Link
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Data Data
ReceiveTransmit
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Relevant data 
removed at 
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802.15.5), body area networks (IEEE 802.15.6), and visible light communication (IEEE 

802.15.7) [139, 140].  Due to their operating characteristics, ZigBee devices fall under 

the IEEE 802.15.4 subgroup. 

2.2.1 IEEE 802.15.4 ZigBee Devices 

ZigBee devices are low-cost, low-data rate, low-complexity wireless 

communication devices which can function at nominal ranges of 10-100 meters and 

support networks containing up to 65,000 devices [38, 39, 141].  Given these attributes, 

ZigBee devices are employed for various tasks and are consequently connected to more 

devices in the physical world than any other wireless technologies [37, 38].  Various 

ZigBee applications include maritime environments [142], smart thermostats [37], 

electronic door locks (e.g. Kwikset SmartCode) [37] and security devices [143], 

smartphone controlled doorbells [144, 145], building automation and control [37, 46, 

146], greenhouse monitoring [147, 148], healthcare [149, 150], energy management 

[151–153], HVAC (heating, ventilation, and air conditioning) operations [143], smart 

metering [154–156], electricity theft detection [48, 157], smart homes and smart 

appliances [158, 159], waste-water management [160], chemical plant automation [161], 

electric substation automation [162], and meter reading [163].  Many of these 

applications are in areas considered ‘critical infrastructure (CI),’ the interruption of which 

can threaten lives, disable governments, affect economies, and damage ecological 

systems [3].  Due to the functional interconnectedness of such complex systems, a 

compromise at one point can compromise the overall system security [6]. 
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ZigBee network security frequently incorporates a 128-bit advanced encryption 

standard (AES), 16-bit cyclic redundancy check (CRC) for data protection, and cipher 

block chaining message authentication code (CBC-MAC) for authentication [38].  

However, despite their near ubiquity and security precautions, ZigBee networks are 

vulnerable to intrusion through readily available ‘hacking tools’ such as KillerBee [37] or 

Packet-in-Packet approaches [164]. Unfortunately, current ZigBee security mechanisms 

frequently neglect the PHY layer where much malicious activity occurs [51].  PHY layer 

protection involves device identification and authentication; various reasons exist for 

examining this layer, including access control, augmenting other security measures, 

authentication, intrusion detection, malfunction detection, and rogue access, among other 

applications [66, 165, 166].   

When considering ZigBee devices as an RF-DNA problem, knowledge of the 

underlying standard, IEEE 802.15.4 [121, 167], is important in order to determine how 

and with what signal to create RF-DNA fingerprints. IEEE 802.15.4 has defined PHY, 

Media Access Control (MAC), and Network (NWK) layer specifications.  In the 

operation of transmitting a burst signal, a ZigBee device transmission at the PHY layer 

involves a structure, termed a PHY Protocol Data Unit (PPDU); the PPDU contains a 

defined Synchronization Header Response (SHR), a 8-bit PHY Header Response (PHR), 

in addition to a variable length ‘payload’ contained in the PHY Service Data Unit 

(PSDU) which consists of a MAC sublayer frame [91].  The underlying ZigBee PHY 

layer packet structure is conceptualized in Figure II-2.  
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Figure II-2: ZigBee PHY layer packet structure, adapted from [167]. 

Different ZigBee device formats exist and the SHR varies in length and duration 

for different ZigBee PHY options, i.e. frequency (868MHz to 2.4GHz), and shift keying 

approach [168].  ZigBee devices can employ amplitude shift keying (ASK), binary phase 

shift keying (BPSK), or quadrature phase shift keying (QPSK), as seen in Table 3.4 of 

[168]. However, while the format of each region changes per keying method, the use of 

each region is consistent across ZigBee devices: the preamble is used for synchronization 

between devices, and the SFD region used to indicate the end of the SHR and the start of 

the PHR [168].  

Of specific interest herein are Texas Instruments CC2420 2.4GHz ZigBee devices 

which employ QPSK, [91].  These devices have a defined 128μs duration preamble of 4 

octets (4-bytes) which contain 8 zeros each, and a 1 octet (1-byte) defined SFD 

containing 2 hexadecimal symbols [168].  The ZigBee SHR region format is presented in 

Table II-1.  Four synchronization words (SWs) are defined as the last octet of the 

preamble and the SFD [167]; alternately, Farahani [168] lists possible SFD values of E5, 

or 11100101.  The PHR region contains frame length information and is one 1 byte in 

length and ranges from 0 to 127 [168].  

PPDU

SHR

PHR PSDUPHY
Layer

MAC
Sublayer

Preamble SFD

Payload
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Table II-1: Zigbee SHR Region Format, adapted from [91, 167, 168]. 

REGION 
SHR 

PREAMBLE SFD 

HEXA-
DECIMAL 

VALUE 
0 0 0 0 0 0 0 0 7 A 

BINARY 0000 0000 0000 0000 0000 0000 0000 0000 0111 1010 
CC2420 Zeros SW0 SW1 SW2 SW3 

 

2.2.1.1 ZigBee Data Collection Experiment 

The ZigBee dataset under analysis is a four class authorized device classification 

model development problem with six additional rogue devices for verification [91].  

Signals from the ZigBee devices were collected in three different environments: ‘CAGE,’ 

signals in a Ramsey STE3000B RF shielded anechoic chamber; ‘LOS,’ line of sight 

signals in an office hallway, denoted by A in Figure II-3; and ‘WALL,’ signals collected 

behind a wall, denoted by B in Figure II-3 [91].   

 
Figure II-3: Conceptualization of ZigBee data collection, from [91]. 
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Table II-2 describes the data collection experiment and the data available for each 

ZigBee device. The four devices used for model development (Dev1 – Dev4) had data 

collected in all three environments [91].  However, data from the rogue devices (Dev5 – 

Dev10) was only collected in one or two environments [91].  For operation and ensuring 

that the number of observations by rogue device is consistent, the WALL collections of 

devices 5-7 are considered as additional devices [91].  

Table II-2: ZigBee Collected Data, adapted from [91]. 

 ZigBee ID CAGE LOS WALL 

A
U

TH
O

R
IZ

ED
 

Dev1 X X X 
Dev2 X X X 
Dev3 X X X 
Dev4 X X X 

R
O

G
U

E 

Dev5  X X 
Dev6  X X 
Dev7  X X 
Dev8 X   
Dev9 X   
Dev10 X   

 

ZigBee burst signal data was collected by Dubendorfer [91] using an Agilent 

Receiver to collect burst transmission from the ten Texas Instruments CC2420 2.4GHz 

ZigBee devices.  The ZigBee devices were setup to transmit at 2.4GHz, within the 

Agilent receiver’s 20.0MHz to 6.0GHz range and 36.0MHz bandwidth [91].  For each 

device, 1000 burst responses of the SHR and PHR regions were collected under three 

different operating conditions [91].  
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2.2.2 IEEE 802.15.4 Z-Wave Devices 

While the ZigBee device dataset is representative of many applications, it only 

considers one type of device.  Therefore, consistent with [49], in addition to the ZigBee 

devices Z-wave devices are considered as an extension to this research.  Both ZigBee and 

Z-Wave devices are small, low-cost wireless communications devices, however 

differences exist between ZigBee and Z-Wave in, primarily, standards and security [169]. 

While ZigBee devices employ an IEEE standard for industrial, residential and 

sensor monitoring and automation, Z-wave devices employ proprietary standard 

developed by ZenSys for, primarily, residential automation [170–172].  While ZigBee 

and Z-Wave are similar in concept and possible use, differences exist in security, 

operating frequency, data rate, and latency as seen in Table II-3.  Primarily, Z-Wave is 

considered less secure than ZigBee due to Z-Wave originally lacking built in encryption 

[170].  Additionally, the Z-Wave standard is proprietary and not publically available, 

unlike ZigBee [172]. 

Table II-3: ZigBee versus Z-Wave, adapted from [170, 172]. 

 Z-Wave ZigBee 
FREQUENCY 906 MHz  2.4 GHz 

BIT RATE 40 Kbits/s 250 Kbits/s 

SECURITY 
None (200 and 300 series 

models) 
AES 128 (400 series models) 

IEEE 802.15.4 
security standards 

LATENCY ~1000 ms 50-100 ms 
RANGE 30-100 m 10-100 m 

MESSAGE SIZE (BYTES) 64 (max) 127 (max) 
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Z-Wave follows a similar ISO architecture to ZigBee, and similarly has a 

predefined preamble and SoF [173].  A conceptualization of the Z-Wave PHY packet 

structure is presented in Figure II-4, for RF-DNA the preamble is again considered as the 

ROI in the signal.  Z-Wave also includes a payload-based home identification (32-bits) 

and source identification (8-bits) [172]. 

 
Figure II-4: Z-Wave PHY layer packet structure, adapted from [173]. 

For purposes herein, three Aeotec Z-Stick S2 transmitters, consistent with [174], 

were employed as described by [49, 123]. A total of 230 Z-Wave bursts were collected at 

2 Msps, with the preambles being the first 8.3 ms of each burst.  Z-Wave data was 

collected under LOS conditions with the Z-Wave devices placed 10 cm from a vertically-

oriented LP0410 log-periodic antenna, which was connected via a Gigabit Ethernet cable 

to an USRP-2921 RF input [49].  Amplitude-based leading edge detection was employed 

with a -6 dB detection threshold to detect and extract the bursts from the background 

noise [49].  The collected signal had a Signal-to-Noise Ratio of SNR = 24 dB and was 

like-filtered [49].  

PayloadPHY
Layer

MAC and 
Transport
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Preamble SoF

Payload
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2.2.3 Post-Collection Data Manipulation 

After collecting the ZigBee RF emissions, Dubendorfer [91] converted the files to 

MATLAB format. Since the SHR and PHR regions begins each ZigBee transmission, and 

are not changed between devices, the RF-DNA process was applied to this region of the 

ZigBee transmission [91].  First, Dubendorfer [91] detected the bursts from the ZigBee 

devices, which comprise the signals of interest.  After digital filtering through a 

Butterworth baseband filter, additive white Gaussian noise (AWGN) was included to 

create a range of operating points (16) between SNR = 0 and SNR = 30 dB using five 

independent noise realizations per device [91].  A similar approach was considered for 

the Z-Wave devices, where AWGN was added to collected signals to achieve desired 

operating points of SNR ∈ [0 24] dB in 2 dB steps [49]. 

2.3 Physical Layer Device Identification 

Because PHY layer characteristics are associated with the physical properties of 

devices, they are naturally harder to spoof than characteristics associated with other OSI 

levels [175].  PHY layer security consists of two broad approaches for exploiting RF-

emission features: 1) adding a physical object to an electronic device, such as an RF-

Certificate of Authority (COA), or 2) exploiting inherent emission features of electronic 

devices, such as RF-DNA.  A brief review of the various approaches is considered to 

illustrate the benefits of the RF-DNA approach.   
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2.3.1 RF Device Emissions 

Both intended and unintended emissions occur across the electromagnetic 

spectrum in a variety of forms; intentional emissions can range from light emitted from a 

light bulb to wireless communications.  Unintended emissions are also emitted from a 

variety of sources; one commonly experienced form of unintended electromagnetic 

emissions occurs through light pollution which makes viewing the night sky difficult in 

urban areas [176].  Since the 1970s man-made noise from unintended emissions has 

increased due to the proliferation of electronic devices [177].  Electronic device 

emissions have security [178], safety [179], interference and communications [180] 

ramifications.  Although shielding and design are used to reduce unintended emissions, 

the underlying physics of electronic devices precludes their elimination [180, 181]. 

RF emissions can emanate from both intended and unintended radiators [182]; 

unintended RF emissions emanate from normal operations and are caused by transistor 

switching, current flow, integrated circuit (IC) activity, in addition of other 

electromagnetic effects [19, 183].  Although unintended RF emissions are a generally 

considered a source of interference, they are also useful for device identification between 

disparate devices [184].  When devices from the same production run are considered, 

production-induced variations result in devices being within production tolerances yet 

having different RF emissions [19].  Although exploiting intentional device emissions is 

of concern herein, exploring methods used to exploit both unintended and intended 

emissions adds important background knowledge for this research.  
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Four leading RF-based device identification methods have been proposed: Radio 

Frequency Identification (RFID), Physical Unclonable Functions (PUFs), RF Certificates 

of Authenticity (RF-COA), and RF Fingerprinting.  Of these, only RF Fingerprinting 

exploits signals that inherently emanate from the device, while the other three methods 

requiring the addition of components to the underlying devices. 

2.3.1.1 Radio Frequency Identification (RFID) 

RFID is a tracking technology seen in some RF physical layer security schemes.  

RFID involves placing a ‘tag’ on a device for tracking; each tag is an identifier antenna 

circuit based on RF communication between the antenna and a scanner [185, 186].  RFID 

antennae can be either powered and actively emitting or unpowered and emitting only 

when scanned [71].  RFID has seen applications in many commercial and warehouse 

applications where products and parts are tracked [186].  RFID does have known issues, 

including: interference [187], and obviously the practical issue of requiring an RFID 

antenna to be knowingly placed (visible or otherwise) on an object in order for it to be 

scanned. 

2.3.1.2 Physical Unclonable Functions (PUFs) 

PUFs offer two techniques for authentication: 1) augmenting an IC with internal 

measurement circuitry, and 2) adding a grid of capacitive sensors onto the top IC 

layer [19].  Both of these PUF approaches require physical IC manipulation and therefore 

are prohibitive to exploring due to legacy ICs being in operational use.   
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2.3.1.3 RF Certificates of Authenticity (RF-COA) 

RF-COAs are another attempt to add identifying characteristics to electronic 

devices.  RF-COAs extend the RFID concept by placing small, unique, three-dimension 

antennae comprising of randomly shaped conductors and dielectric components, COAs, 

onto electronic device to create a unique identifiable RF signal [73].  The philosophy of 

this approach is that where unique COAs would be issued by manufacturers of objects 

and software to confirm their provenance [73]. In essence, RF-COAs are a combination 

of PUFs and RFID, where the RF-COAs are read by an external RFID type of reader 

[19].  The obvious impediment is the emplacement of the RF-COAs on devices already in 

operation, the additional cost of extra components, and additional considerations in the 

design and fabrication process.  The ease of spoofing is also a known issue with the COA 

approach [73].  

2.3.1.4 RF Fingerprinting 

RF Fingerprinting refers to one of two processes: characterizing the RF 

environment devices operate in, c.f. [188, 189], or identifying devices based on 

differences in transmitted signals resulting from differing characteristics, due to 

production and life style variations, among various devices [79].  Of interest herein is that 

AFIT RF-DNA RF Fingerprinting process which is unique in RF Fingerprinting in that it 

applies statistical methods of feature extraction and classification to the RF 

Fingerprinting process [133].  RF-DNA has been explored for both inter-device 

variations, e.g. differentiating similar devices from different manufacturers [190], and 
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intra-device variations, e.g. differentiating devices as the serial number level [91, 190].  

In operation, the AFIT RF-DNA process consists of two parts, the signal collection 

aspect (which involves various signal collection equipment) and the processing aspect 

(which occurs within MATLAB) [190], Figure II-5.  

 
Figure II-5: RF-DNA Fingerprinting Architecture, adapted from Cobb et al. [19]. 

After collection, the data is digitally filtered and manipulated to create samples at 

various SNR levels.  Following this, RF-DNA fingerprints are computed and various 

classification schemes are applied for model development and verification of the models 

is explored using rogue devices.  RF-DNA involves extracting fingerprints from RF 

emissions; in a manner, akin to biometrics in finding unique attributes of electronic 
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devices.  A visualization of computing RF-DNA fingerprints from sampled-time ZigBee 

SHR data is presented in Figure II-6. 

 
Figure II-6: Traditional RF-DNA Feature Extraction Approach as Applied to 

ZigBee Devices, adapted from [91]. 

2.4 1D Time Domain (TD) RF-DNA Fingerprints 

After dividing the collected and processed data’s ROI into bins, the signal’s 

instantaneous amplitude (a), phase (ϕ), and frequency (f) response are computed for each  

[89, 91, 128].  When considering the region of interest (ROI) of the sampled signal as a 

complex I-Q equation, 

 
 𝑠[𝑛] = 𝑠𝐼[𝑛] + 𝑗𝑠𝑄[𝑛] , (2.1)  

the RF-DNA fingerprint elements can be computed thusly [91]: 

ZigBee SHR

(U)  Region of Interest 
(ROI)  



45 

 

 

 
 𝑎[𝑛] = �𝑠𝐼2[𝑛] + 𝑠𝑄2[𝑛] , (2.2)  

 
𝜙[𝑛] = tan−1 �

𝑠𝑄[𝑛]
𝑠𝐼[𝑛]� ,𝑓𝑓𝑓 𝑠𝐼[𝑛] ≠ 0 ,  (2.3)  

 
 𝑓[𝑛] =

1
2𝜋

�
𝑑𝜙[𝑛]
𝑑𝑑

� , (2.4)  

consistent with general formulations found in [64, 191, 192].  Per Dubendorfer [91], 

(2.2)–(2.4) are normalized through subtracting the mean and dividing by the maximum,  

 

�̅�𝑐[𝑛] =
𝑔[𝑛] − µg
𝑚𝑎𝑚(𝑔𝑐[𝑛]) , (2.5)  

where 𝑔 in (2.5) represents the respective RF-DNA fingerprint elements in (2.2)–(2.4) for 

n = 1, 2, …, NS, where NS represents the number of samples in the region, and µg 

represents the mean of the 𝑔-th fingerprint element. 

RF-DNA fingerprints features are then extracted from the normalized amplitude 

frequency and phase.  The considered RF-DNA features are 2nd, 3rd, and 4th mathematical 

moments of variance (σ2), skewness (γ), and kurtosis (κ) [90, 91].  Standard deviation can 

also be computed as an RF-DNA fingerprint, and was applied by [51]; however, as it is 

necessarily highly correlated with variance, it was not applied to ZigBee signals by 

Dubendorfer [91], and it will not be examined herein.   

Considering the 2nd to 4th mathematical moments enables an understanding of 

distributional properties within each bin, respectively the variability about the mean 

(variance), asymmetry about the mean (skewness), and distribution curvature (kurtosis), 

[193–195].  Mathematical moments have also seen similar applications are seen in other 
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domains, cf. [196–201].  Computed, skewness values are centered at 0 which indicates no 

skewness about the mean; skewness values are then either positive, for a left sided 

distribution, or negative, for a right-sided distribution [202].  Kurtosis values indicate 

pointedness or flatness of a distribution with values of either 𝜅 = 3, termed mesokurtic, 𝜅 

< 3, termed platykurtic (flatter), and 𝜅  > 3, termed leptokurtic (more pointed) [202].  

Consistent with RF-DNA features of σ2, γ, and κ are computed for N total samples 

through the following formulas: 

 
 𝜎2 =

1
𝑁
�(𝑚[𝑛] − 𝜇)2 
𝑁

𝑛=1

, (2.6)  

 
 𝛾 =

1
𝑁𝜎3

�(𝑚[𝑛] − 𝜇)3 
𝑁

𝑛=1

, (2.7)  

 
 𝜅 =

1
𝑁𝜎4

�(𝑚[𝑛] − 𝜇)4
𝑁

𝑛=1

 , (2.8)  

where,  

 
𝜇 =

1
𝑁
�𝑚[𝑛]
𝑁

𝑛=1

, (2.9)  

and 𝑚[𝑛] represents an nth feature vector element from the amplitude, phase, or frequency 

response [91].  

Combined together, the RF-DNA features are arranged in a vector as 

 𝑁𝑅𝑖 = �𝜎𝑅𝑖
2 𝛾𝑅𝑖 κRi�1𝑥3 , (2.10)  

for each observation i=1,2,…, NR+1, where NR refers to the total number of observed 

sequences with the additional observation refers to statistics computed over the entire 
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signal characteristic.  When considering an entire characteristic’s features, (2.10) extends 

to  

 

𝑭𝑪 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑁𝑅1
𝑁𝑅2
⋮

𝑁𝑅𝑁𝑅
𝑁𝑅𝑁𝑅+1⎦

⎥
⎥
⎥
⎥
⎤

 . (2.11)  

When considering the amplitude, frequency, and phase fingerprints, (2.10) and (2.11) are 

extended through concatenations: 

 
𝑭 = �

𝑭𝒂
𝑭𝝓
𝑭𝒇
� . (2.12)  

2.4.1 ZigBee and Z-Wave RF-DNA Fingerprinting 

For all ZigBee devices of interest, authorized or rogue, NF = 729 total features 

were computed from the collected time domain burst signal [91].  This corresponds to 3 

statistical features and 81 bins (78 separate regions, and 3 averaged regions for the entire 

signal).  For each feature, 1000 exemplars were computed each for CAGE, LOS, and 

WALL [91].  Additionally, data was available for 16 SNR levels, SNR ∈ [0 30] dB, with 

each having five different noise realizations. 

For classifier model development training and testing, the dataset of authorized 

device is separated into upper and lower halves; these were ‘interleaved’ meaning every 

odd-indexed point was selected for training and every even-indexed point was selected 

for testing.  In this form, the training and test sets for ZigBee devices both consisted of 

500 CAGE observations, 500 LOS points, and 500 WALL points.  
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In operation, these structures are organized as a four dimensional data structure 

with  𝑁𝐹𝐹  represents fingerprint observations; 𝑁𝐹𝐹𝐹𝐹𝐹 , features; 𝑁𝑁𝑁 , noise realizations; 

and 𝑁𝐶  classes.  For ZigBee data, the structure is of size 3000×729×5×4.  For 

interpretation, not everyone has mental familiarity with four dimensional structure, an 

example of what this means would be: there are 3000 points associated with feature 1 of 

noise realization 1 of device 1 and so on.  For the rogue devices, 1000 samples were 

collected in the respective environment; for data storage and dimensionality concerns, 

this is considered as 3000 points with only the first 1000 correspond to fingerprint data, 

and the remaining 2000 being zeros.  

For the Z-wave devices under consideration, 230 LOS observations were 

collected and a total of 189 RF-DNA features were computed for NFP = 230, NFeats = 189, 

NNz = 2, NC = 3; thus, the Z-Wave data structure is of size 230×189×2×3.  While the 

ZigBee dataset is of primary interest herein, the Z-Wave dataset will permit quick 

algorithmic development due to its smaller size.  Additionally, the Z-Wave dataset will 

allow generalization of results to more than one signal of interest. 
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III. Statistical Pattern Recognition 

Can the truth be learned? With this question we shall begin. 

−SØREN KIERKEGAARD, 1813-1855 

The nature of the physical world and how objects are differentiated and created 

has concerned man since time immemorial: e.g. pre-Socratic physiologoi such as 

Anaxagoras, Anaximander, and Democritus thought on the origin and nature of 

phenomena [203, pp. 14–28; 203, pp. 249–267; 204, pp. 82–86; 205, pp. 350–359].  

Systematic methods of pattern recognition begin with Aristotelian thought, with 

Aristotelian metaphysics concerned with the nature of being [203, p. 139], Aristotelian 

category theory [206], and questions of classification in Eastern thought, e.g. verse 2 and 

6 of the Tao Te Ching and verse 61 of the Hua Hu Ching [207, 208].  Locke considered 

thinking as part sensation and part reflection, extending Descartes’ duality of mind with 

the observation that the mind considers either “sensations” or “reflections” [209, 210], 

similarly Hume viewed that one needs to experience something before one can visualize 

that something [211]; in essence these propositions echo training and testing problems in 

pattern recognition.  Pattern recognition is critical to both every day and computational 

tasks [212], and broadly covers classification of objects, clustering, and recognizing 

variables and patterns of variables [213].  The term statistics has also become associated 

with data analysis. Originally referring to a science of politics [214], and descended from 

the Latin statista, meaning “political state” [215], its meaning has shifted to become 

synonymous with data analysis and distributional measures [215].  
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3.1 Introduction 

This chapter is organized as follows, Section 3.2 discusses Multiple Discriminant 

Analysis (MDA), Section 3.3 discusses the Learning Vector Quantization (LVQ)–family 

of algorithms, including Generalized Relevance Learning Vector Quantization Improved 

(GRLVQI), and Section 3.4 discusses performance assessment methods of interest to RF 

INT.  Of particular interest herein are statistical methods applied to pattern recognition 

tasks, especially those used for supervised clustering or ‘classification’ where patterns are 

compared with a set of known classes [213].  This differs from unsupervised 

classification, commonly known as ‘clustering,’ where known predefined groups do not 

exist [213].  Additionally, supervised classification for RF Distinct Native Attribute (RF-

DNA) problems considers two parts: classification and verification [19].  The first part of 

classification involves the classifier model development stage where the primary concern 

is a “one vs many” problem of known group identities with the goal to create a classifier 

model that effectively discriminates between authorized devices [19].  Verification 

involves vetting the classification model by how well they recognize authorized and non-

authorized devices (rogue), in a “one versus one” claimed identity problem [19].  

Various classification methods exist; herein we are primarily concerned with 

methods previously employed for RF-DNA features, namely MDA and the GRLVQI 

algorithm.  Both MDA and the LVQ-family of algorithms are described below; MDA is a 

linear method whereas LVQ methods are nonlinear approaches that incorporate various 

nearest neighbors, neural network and nonlinear concepts.  
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Figure III-1 presents a conceptualization of differences in classifier paradigms 

between MDA and LVQ approaches, showing MDA minimizing inter-class differences 

while maximizing intra-class difference and LVQ minimizing inter-class prototype vector 

magnitudes and maximizing the distance between intra-class prototype vectors.  In 

describing both MDA and the various LVQ methods, the following general notion will be 

used: the input data matrix is defined as 𝑿 which has Ntot total observations (rows) and NF 

data features (columns).  This will additionally be considered for NC classes.  

 
a) MDA Classifier 

 
b) LVQ Classifier 

Figure III-1: Conceptualization of a) MDA class projections from [216] and b) LVQ 
prototype development as adapted from [51, 216]. 

 

3.2 Multiple Discriminant Analysis 

MDA extends Fisher’s linear Discriminant Analysis (DA) to multiple classes 

[216, pp. 121-124].  DA and MDA are frequently used for predictive/classification and 

descriptive/clustering tasks and are frequently applied to tasks and domains ranging from 

ecology [217, 218], civet coffee authentication [219], behavioral sciences [220], marine 
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data analysis [221, 222], muzzle flash identification [223], and MDA/Maximum 

Likelihood (MDA/ML) methods for RFINT [88, 92–94, 119, 133, 224].  MDA and DA 

also frequently compare favorably (in either/or accuracy and computation time) to more 

complicated statistical methods, such as neural networks, logistic regression, support 

vector machines, naïve Bayes classifiers and LVQ approaches, c.f. [51, 92, 225–229].  

Current research extensions and variants of DA and MDA also exist, these include 

extending MDA or DA to use other machine learning and statistical tools, such as kernels 

or nonparametric statistics [230–234].  

MDA is a linear classifier based on Fisher’s 2 class method, but extended to 

multiple classes [235, 236].  Weight vectors are computed for sample based estimates 

using the Fisher criterion function for maximum discrimination, 

 
𝜆 =

𝒃𝑇𝑺𝒃𝒃
𝒃𝑇𝑺𝑾𝒃

 , (3.1)  

which is a ratio of the between groups and within groups sum of squares with 𝒃 being the 

discriminant weights (eigenvectors) of 𝑺𝑾−𝟏𝑺𝒃, and 𝜆 being the associated eigenvalue that 

equals the separation [237, 238].  To maximize 𝜆 with respect to 𝒃, (3.1) can be treated as 

a maximization problem, 𝑚𝑎𝑚𝑏  𝒃𝑇𝑺𝒃𝒃  subject to  𝒃𝑇𝑺𝑾𝒃 = 1 , by taking the partial 

derivative and setting equal to zero [239, 240].  Considering the Lagrangian, 

 𝐿 = 𝒃𝑇𝑺𝒃𝒃 − 𝜆(𝒃𝑇𝑺𝑾𝒃 − 1) , (3.2)  

and taking the partial derivative of (3.2) with respect to 𝑏,     
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 𝜕
𝜕𝑏

�𝒃𝑇𝑺𝒃𝒃 − 𝜆(𝒃𝑇𝑺𝑾𝒃 − 1)� = 2𝑺𝒃𝒃 − 2𝜆𝑺𝑾𝒃 ,  (3.3)  

one arrives at a problem similar to eigenvalues/eigenvectors [237, 238].  Setting (3.3) 

equal to zero yields,  

 (𝑺𝒃 − 𝜆𝑺𝑾)𝒃 = (𝑺𝑾−1𝑺𝒃 − 𝜆𝑰)𝒃 = 0 , (3.4)  

a common eigenvalue/eigenvector problem [216].  Taking the partial derivative of (3.2) 

with respect to 𝜆 gives,  

 𝒃𝑇𝑺𝑾𝒃 = 1 , (3.5)  

hence the eigenvector is scaled to unit variance.  

The between class sum of squares 𝑆𝑏 is defined as  

 𝑺𝒃 = 𝑺𝑻 − 𝑺𝑾 , (3.6)  

with 𝑆𝑊, the within class scatter matrix, defined as 

 
𝑺𝑊𝑖 = ��𝑿𝑖𝑖 − 𝝁𝑖��𝑿𝑖𝑖 − 𝝁𝑖�

𝑇
𝑁𝑖

𝑖=1

 , (3.7)  

where 𝝁𝑖 is the ith group mean or centroids, and Ni are the total number of observations in 

the ith group [237, p. 401].  The within groups sum of squares, assuming the covariance 

matrices of the classes are equal, is 𝑆𝜔 = 𝑆𝜔1 + 𝑆𝜔2 + ⋯𝑆𝜔𝑐 ; and the total mean 

corrected sums of squares and cross products is defined as: 

 
𝑆𝑇 = ���𝑋𝑖𝑖 − 𝜇0��𝑋𝑖𝑖 − 𝜇0�

𝑇
𝑛𝑖

𝑖=1

𝑐

𝑖=1

 , (3.8)  

where 𝜇0 represents the grand mean vector [19, 216].  Data 𝑿 is then projected to an 𝑁𝑑𝑑 

dimensional discriminant space according to  
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 𝑮 = �𝒃𝟏,𝒃𝟐, … ,𝒃𝑵𝒅𝒇�
𝑇
𝑿 ,   (3.9)  

where 

 𝑁𝑑𝑑 = 𝑚𝑚𝑛(𝑁𝑐 − 1,𝑁𝐹) , (3.10)  

which restricts the total number of discriminant functions [237, p. 401].  Although (3.10) 

is frequently specified as 𝑁𝐶 − 1  [19, 51, 90, 91], such a reduction may not be 

appropriate if a small set of features is used or selected.  The maximum number of 

discriminant functions to generate is determined by the eigenvalues of  𝑺𝑾−𝟏𝑺𝒃 . If the 

eigenvalues of 𝑺𝑾−𝟏𝑺𝒃 are distinct, the number of linear composites will be bounded by 

rank of 𝑺𝒃 and, consequently, the rank of 𝑺𝑾−𝟏𝑺𝒃 [237, p. 401]. Additionally, when the 

number of features exceeds the number of observations the covariance matrix is 

obviously singular, which can violate distributional assumptions and enable situations of 

complex discriminant loadings with further dubious underlying discriminant functions. 

3.2.1 MDA Feature Relevance Ranking 

Classifier-based feature relevance rankings from MDA are currently unexplored 

in RF-DNA methods with some research, e.g. [51, 91, 92, 113, 134, 241], even positing 

that one cannot extract feature relevance rankings from MDA.  However, the method of 

discriminant loadings is one approach that directly computes the contributions of each 

data feature to the resultant discriminant functions. 

Discriminant loadings reflect the contribution of each data feature to a given 

discriminant function and are analogous to principal component loadings [237, pp. 394-

429].  Dillon and Goldstein [237] suggest that due to the unsuitability of the eigenvectors 
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to provide information of the contribution of each feature to the discriminant functions, 

one should therefore compute the loadings. It is of interest to examine the ‘contribution’ 

of each input feature to each discriminant function as means of screening data features.  

Occasionally, these values are reported in literature [242], but they are usually included 

to describe results.  Dillon and Goldstein list discriminant loadings as the simple 

correlation between discriminant scores and the input data features [237, p. 414], and 

explicitly for the jth discriminant function [237, p. 373]: 

 𝑳𝒋 = 𝑐𝑓𝑓𝑓�𝑿,𝒃𝒋𝑿� = 𝑐𝑓𝑓𝑓(𝑿,𝑿)𝒃𝒋 . (3.11)  

The statement of Dillon & Goldstein [237, p. 414], “…discriminant loadings for a 

variable…is the correlation between the function, 𝑮 from (3.9), and the variable…” and 

echoed in [237, pp. 372-373], is interpreted by [243] as: 

 𝑳𝒊 = 𝑐𝑓𝑓𝑓(𝑿,𝑮) , (3.12)  

where we are really computing the correlation of X with (3.9).  Realizing that   

 𝑐𝑓𝑐(𝑿,𝒃𝑇𝑿) = 𝑐𝑓𝑐(𝑿,𝑿)𝒃 , (3.13)  

then the correlation expression in (3.12) can be rewritten as  

 𝑐𝑓𝑓𝑓(𝑿,𝒃𝑇𝑿) = 𝑫𝑿
−1/2𝑐𝑓𝑐(𝑿,𝑿)𝒃𝑫𝒃∗𝑻𝑿

−1/2 . (3.14)  

where 𝑫𝑋 is a matrix of the diagonal entries of 𝑐𝑓𝑐(𝑿,𝑿) and 𝑫𝒃∗𝑻𝑿 is a matrix of the 

diagonal entries of 𝑐𝑓𝑐(𝒃∗𝑇𝑿,𝒃∗𝑇𝑿) = 𝒃𝑇𝑐𝑓𝑐(𝑿,𝑿)𝒃 [243].  This further expands to  

 𝑐𝑓𝑓𝑓(𝑿,𝒃𝑇𝑿) = 𝑐𝑓𝑓𝑓(𝑿,𝑿)𝑫𝑋
1/2𝒃[𝒃𝑇𝑐𝑓𝑐(𝑿,𝑿)𝒃]−1/2 . (3.15)  

One could feasibly scale MDA coefficients to ensure equal variance in all 

directions; therefore one area of related interest is how, if at all, MDA loadings are 
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possibly affected by scaling the projection matrix.  Appendix A addresses this issue by 

presenting a lemma that proves MDA loadings are not affected by scaling. 

3.2.2 Maximum Likelihood (ML) Device Classification 

Herein MDA is considered for the RF-DNA classification and model 

development process, with Maximum Likelihood (ML) employed to determine decision 

boundaries for classification using equal priors and uniform costs [92].  This research 

considers identification as a classification problem, where the classifiers are built to 

determine a device’s identity from its RF-DNA fingerprints using training/reference 

fingerprints and testing fingerprints.  This is considered as a one-to-many comparison 

[19].  When examining the ML case, classification involves computing the Bayesian 

posterior probabilities from the classifier, for 𝑁𝐶 a fingerprint 𝑁𝜔 is assigned to class 𝜔𝑖 

if  

 𝑃(𝜔𝑖|𝑁𝜔) > 𝑃�𝜔𝑖�𝑁𝜔�,∀𝑗 ≠ 𝑚 , (3.16)  

for 𝑚𝑖{1,2, … ,𝑁𝐶}  devices [19].  The conditional probabilities for such problems are 

Bayesian in nature: 

 
𝑃(𝜔𝑖|𝑁𝜔) =  

𝑃(𝑁𝜔|𝜔𝑖)𝑃(𝜔𝑖)
  𝑃(𝑁𝜔)

 , (3.17)  

where the denominator is constant across 𝜔𝑖 for a given 𝑁𝜔 [19]; with equal priors for all 

classes, 𝑃(𝜔𝑖) = 1/𝑁𝐷.  The likelihood is estimated through a Gaussian distribution: 

 
𝑃(𝑁𝜔|𝜔𝑖) =

1
(2π)𝑛𝑑𝑑/2 |Σ|1/2 exp(ℱe) , (3.18)  

with ℱe being a form of Mahalnobis distance: 
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ℱe = −

1
2

(𝑁𝜔 − 𝜇)𝑇Σ−1(𝑁𝜔 − 𝜇) , (3.19)  

for the sample mean, 𝜇 , and inverse covariance, Σ−1 , of the data with as implicit 

assumption of normality  [19]. 

3.3 Learning Vector Quantization Family of Methods  

Although the improved Generalized Relevance Learning Vector Quantization 

(GRLVQ) algorithm of Mendenhall, [244–247], is of primary interest herein due to its 

previous application to RF-DNA classification and verification in [51, 92, 100].  Beyond 

RF-DNA classification and verification, LVQ methods have seen a wide variety of 

applications, ranging from image analysis [244–246, 248], to disease detection [249].  To 

fully understand GRLVQI, one must necessarily understand the workings and philosophy 

of LVQ and the successive extensions to GRLVQ to further extend the LVQ family of 

algorithms.   

Epistemologically, LVQ methods are neural networks.  Broadly, there are three 

categories of neural network approaches: feedforward, recurrent, and self-organizing 

maps, with LVQ methods included in the last category [250].  This is conceptualized in 

the general taxonomy of Artificial Neural Networks (ANN) shown in Figure III-2, where 

ANN types and basic examples of their architectures, and how nodes and layers connects, 

are presented.  Broadly, LVQ refers to a family of supervised neural learning approaches 

which learns input relevance with classification as part of its cost function [245, 250–

254].  The LVQ family of methods includes various extensions and improvements from 

vector quantization (VQ) and the LVQ algorithms developed by Kohonen, [255–257].   
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Both VQ and LVQ are considered as neural network functions due to similarities 

in the iterative training approach used for VQ and LVQ prototype vectors, which are 

analogous to ANN hidden-layer nodes, the use of gradient descent for training and the 

non-linearity of the process [213].  Additionally LVQ can be seen as a nearest neighbor 

approach through the nearest prototype vector (PV) optimization process [258].  

 
Figure III-2: General taxonomy of ANN approaches, adapted from [254] using the 

ANN families of [250, p. 368]. 

While PVs and hidden nodes appear analogous, a few distinctions exist between 

LVQ and ANN networks.  Primarily, in LVQ, each PV is associated with a specific class 

resulting in LVQ methods being “winner take all” methods where one and only one PV 

will win for each exemplar [259–261].  Additionally, this also means that LVQ does not 

employ an output layer [262].  Therefore, LVQ could be considered as an ANN with no 
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explicit output layer and a winner take all hidden/output layer.  These differences 

between ANNs and LVQ are conceptualized in Figure III-3.  

 
Figure III-3: Conceptualization of the differences between a) ANNs and b) LVQ 

networks, adapted from [250, 262]. 

For classification, a constraint exists where PVs must implicitly correspond to a 

true data class.  Logically this implies that the number of PVs should be 𝑁𝐹𝑃 ∝ 𝑁𝐶, hence 

if 𝑁𝐶 = 3 then 𝑁𝐹𝑃 must be in multiples of 3. PVs are then initialized with random values 

and assigned to the corresponding classes, with PVs indexed 1, … ,𝑁𝐹𝑃/𝑁𝑐  being 

associated with class 1 and so on.  In operation, PVs are considered as organized en bloc, 

e.g. if 𝑁𝐹𝑃  = 3 for 𝑁𝐶  = 3 classes, then 𝑤1(𝑑) represent true class 1, 𝑤2(𝑑) represent 

true class 2, and so on.  

Classification of PVs to data exemplars is considered iteratively through a 

distance measure, nominally squared Euclidean distance.  Conceptualized in Figure III-4 

is the general process for LVQ variations, using the logic of LVQ2.1.  In Figure III-4 we 
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are observing the closest in-class PV, 𝑤𝐽, and closest out-of-class PV, 𝑤𝐿, to the ith data 

exemplar, 𝑚𝑖 , based on the respective distances, 𝑑𝐿  and 𝑑𝐽 .  Iteratively, PVs, 𝑤 , are 

compared to a given training set exemplar and either a) moved closer to the 

corresponding same-class sample (for correctly classified PVs), and/or b) moved further 

away from the out-of-class sample (for incorrectly classified PVs).  Depending on the 

LVQ variant and PVs strategy, a window can be incorporated to further restrict which 

PVs are updated.  

 
Figure III-4: LVQ prototype vector update conceptualization; adapted from [249]. 

 

3.3.1 Gradient Descents and LVQ  

 Gradient descents involve iteratively moving PVs, or nodes, appropriately 

towards or away from a given exemplar [216].  Followed appropriately, resultant PVs 

would accurately characterize the data with lower dimensionality [216].  The general 

definition of a linear gradient descent appears as 

dJ

dL

wL

wJ

xi
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 𝑤(𝑑 + 1) = 𝑤(𝑑) − 𝑖(𝑑)∇𝐶�𝑤(𝑑)� , (3.20)  

where t is the training sample iteration number, 𝑖(𝑑) is a learning rate, 𝑤(𝑑) is a given 

PV, and  𝐶�𝑤(𝑑)� is a cost function and ∇ implying the gradient [216, 263].  Care must 

therefore be taken in specifying the learning rate, initializing the PVs and in selecting the 

cost function.  

 All LVQ methods follow a similar gradient descent based approach, as presented 

in (3.20), to move PVs towards or away from data as needed.  LVQ methods typically 

differ only with respect to the cost function, update logic, and the inclusion of additional 

computational steps (e.g. relevance computations).  Major variations are reflected 

through the addition of letters to the LVQ acronym, a brief taxonomy of major LVQ 

variations leading from LVQ to GRLVQI is presented in Table III-1.  Kohonen first 

extended LVQ by creating variants (cf. LVQ2 and LVQ2.1) that improved the PV update 

strategy to updates involving both in-class and nearest out-of-class PVs [255].  Relevance 

LVQ (RLVQ) extends LVQ by incorporating a relevance weight for each data feature, 

which is learned during the training process [264].  GLVQ extends LVQ by improving 

class boundary approximations through the incorporation of a sigmoid cost function and 

the use of gradient (first derivative) descent [265].  Hammer and Villmann’s [266] 

GRLVQ, combined the innovations of both GLVQ and RLVQ to create a GLVQ 

algorithm that learned the input dimension weights to provide relevance information 

regarding each feature. GRLVQ was then further extended through improvements 

resulting in the GRLVQI algorithm [244, 245].  A table describing the various versions of 

LVQ leading up to GRLVQI is provided in Table III-1.  Other variations that divert from 
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LVQ in PV update approach, logic rules, algorithm formulations, and other methods are 

not considered herein.  Such innovations include: LVQ4 [267], kernel LVQ variants 

[268, 269] and information theory based approaches [270]. Further extensions and 

philosophies of LVQ variations are documented in reviews, such as provided by Nova 

and Estevez [252], Kaski et al. [271], and Kaden et al. [258]. 

Table III-1: Major Variations in LVQ Family of Algorithms.  

VERSION VARIATION REFERENCE 

VQ 
An unsupervised clustering ANN/gradient descent 

approach where PVs are moved towards data 
exemplars to create a feature space. 

[255, 257, 272] 

LVQ 

A supervised clustering (classification) version of VQ 
which either pushes correctly classified PVs towards a 

given group and incorrectly classified PVs away. 
Includes Kohonen variants, in addition to LVQ2, 

LVQ2.1, and LVQ3 

[256, 257] 

GLVQ 
A generalized form of LVQ, reference vectors are 

updated with a sigmoid used in the cost 
function/gradient descent 

[265, 273] 

RLVQ LVQ modified with a gradient descent based input 
feature relevance computation [264] 

GRLVQ 

A combination of the innovations in RLVQ and 
GLVQ. Incorporates 2 gradient descent operations. 
Weighting factors for inputs incorporated into the 

GLVQ method, permitting scaling of input dimension 
by relevance. 

[266] 

GRLVQI 
GRLVQ with the following improvements: improved 
prototype update rule, improved prototype utilization, 
and a frequency based maximum input update strategy 

[245–246] 
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3.3.1.1 Vector Quantization (VQ)  

VQ and the Self Organizing Feature Map (SOFM) clustering method are 

approaches that aim to represent the input data, X, as NPV total PVs [216, 274].  VQ 

operates by iteratively selecting a random data exemplar and then using a gradient 

descent operation to move the nearest PVs towards the given exemplar [255, 272].  In 

operation, first NPV must be selected and these PVs must then be initialized appropriately 

[255].  Similar to other clustering problems, it is non-trivial to decide on the number of 

PVs (NPV) to be created [275–278].  However, some care must also be taken in 

initializing PVs for VQ. Logically, 𝑁𝐹𝑃/𝑁𝐶 > 1 is of interest, and PVs initialized with 

identical values will yield dubious results; therefore PVs initialized as all zeros are a poor 

choice, and hence initializing with random values is seen in practice [255].  It is also 

helpful if the PVs and the data have the same dynamic range, therefore one reasonable 

solution would be to standardize the data, X, and then use PVs from a random normal 

distribution [255].  

After initializing the PVs, the distances between a given ith exemplar and each of 

the 𝑛 = 1, … ,𝑁𝐹𝑃  PVs are computed to find the index of the PV associated with the 

minimum distance [255].  Nominally, squared Euclidean distances are used for the 

distance measure in VQ, with the cost function being the distance measure itself 
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 𝑑𝑛 = 𝐶�𝑤𝑛(𝑑)� = (𝑚𝑖 − 𝑤𝑛)2 , (3.21)  

the PV associated with the minimum distance, 𝑤𝑑(𝑑) , is then updated through the 

gradient descent process in (3.20).  The chain rule, as described in Edwards and Penney 

[279] as  

 𝑑𝑑(𝑔)
𝑑𝑐

=
𝑑𝑑
𝑑𝑔

𝑑𝑔
𝑑𝑐

  , (3.22)  

where 𝑑(𝑔)  is a function,  𝑑 , of another function, 𝑔 .  Considering (3.22) with 𝑑 =

(𝑚𝑖 − 𝑤𝑛)2 and 𝑔 = (𝑚𝑖 − 𝑤𝑛), one can compute the derivative for the squared Euclidean 

cost function. Following this formulation, the gradient of the cost function is computed as 

 ∇𝐶�𝑤𝑑(𝑑)� = −2�𝑚𝑖 − 𝑤𝑑(𝑑)�, (3.23)  

and is then used to update a given PV [255].  The scalar multiplier can be combined with 

the learning rate, and the VQ gradient descent operation is thus computed as, 

 𝑤𝑑(𝑑 + 1) = 𝑤𝑑(𝑑) + 𝑖(𝑑)�𝑚𝑖 − 𝑤𝑑(𝑑)� , (3.24)  

which flips the sign of (3.20) due to the negation seen in the gradient.   

3.3.1.2 Learning Vector Quantization (LVQ)  

LVQ extends upon the concepts of VQ by creating essentially a supervised 

version of VQ to enable classification [253, 255, 257, 280].  Similar to VQ, 𝑁𝐹𝑃 PVs are 

defined and initialized appropriately with preference towards the PVs and the data 

sharing a similar dynamic range [255].  Thus instantiating random normal PVs and 

standardizing the input data is one common  
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In operation, LVQ begins similar to VQ where the distances between a given ith 

exemplar and each PV is again computed per (3.20) [253, 255, 257, 280].  However, the 

gradient descent operation now depends on whether a correct classification was made or 

not.  Here, when 𝑤𝑑(𝑑)  is associated with the corresponding class of 𝑚𝑖 , a correct 

classifications was made.  The gradient descent process of (3.20) for the ith exemplar 

follows a Hebbian learning process [281],  

 
𝑤𝑑(t + 1) = �

𝑤𝑑(𝑑) + 𝑖(𝑑)�𝑚𝑖 − 𝑤𝑑(𝑑)� 𝑚𝑓𝐶𝑑 = 𝐶𝑖
𝑤𝑑(𝑑) − 𝑖(𝑑)�𝑚𝑖 − 𝑤𝑑(𝑑)� 𝑚𝑓𝐶𝑑 ≠ 𝐶𝑖

 , (3.25)  

where conditions for correct and incorrectly classified PVs are both considered, with Ci 

being the class identity of the ith exemplar and Cd being the class identify of the PV under 

consideration  [255].  In (3.25), 𝐶𝑑 = 𝐶𝑖 indicates a correctly classified exemplar and 

𝐶𝑑 ≠ 𝐶𝑖 indicates an incorrectly classified exemplar [253, 255, 257, 280]. 

3.3.1.3 Learning Vector Quantization Improvements (LVQ2 and LVQ2.1)  

Three general philosophies exist on improving LVQ, including 1) altering the 

update logic of (3.25), 2) incorporating additional gradient descents, and 3) changing the 

cost function. Kohonen [282] first proposed LVQ2 as an extension of LVQ logic that 

only updates PVs when they were appropriately close to a given exemplar.  In LVQ2 

[282], a window and various criteria are introduced. LVQ2 and LVQ2.1 are 

conceptualized via Figure III-5.  LVQ2 extends the PV update logic in (3.25) where the 

two closest PVs to a given exemplar xi are considered. PVs are updated if and only if (iff) 

1) 𝑚𝑖 falls within the window, 2) 𝑚𝑖  belongs to KL, and hence 3) the two nearest PVs are 

an in-class PV and out-of-class PV.  In this process 𝑚𝑖 lies within the window if 
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𝑚𝑚𝑛 �

𝑑𝐿

𝑑𝐽
,
𝑑𝐽

𝑑𝐿
� > 1 − 𝜄 , (3.26)  

where 𝜄 is a scale factor having a recommended value of approximately 0.35 [282]. 

 
Figure III-5: Conceptualization of the LVQ2 and LVQ2.1 prototype vector update 

approach using the LVQ2.1 process; adapted from [282]. 
 

Kohonen [282] admitted that LVQ2 had various issues, e.g. computationally 

intensive and slow convergence, and therefore proposed a further variation in LVQ2.1.  

LVQ2.1 considers the basic LVQ algorithm with the LVQ2 logic, however the difference 

is that LVQ2.1 does not wait for the class of 𝑚𝑖  to serendipitously match wL and rather 

finds both of the nearest in-class PVs and nearest out-of-class PV to xi [282]. 

LVQ2.1’s PV update logic extends (3.25) where the in-class PV is moved toward 

the data exemplar, 

 𝑤𝑛
𝐽(t + 1) = 𝑤𝑛

𝐽(𝑑) + 𝑖(𝑑) �𝑚𝑖 − 𝑤𝑛
𝐽(𝑑)� , (3.27)  

and the out-of-class PV is moved away from the data exemplar 

 𝑤𝑛𝐿(t + 1) = 𝑤𝑛𝐿(𝑑) − 𝑖(𝑑)�𝑚𝑖 − 𝑤𝑛𝐿(𝑑)� , (3.28)  

if xi falls within the update window [282].  In many subsequent LVQ implementations, 

e.g. GLVQ and GRLVQ, the general logic of LVQ2.1 is followed for updating prototype 

dJ

dL

wL

wJ

xi

Window
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vectors.  Additionally, one of the primary improvements seen in GRLVQI is an extension 

of the LVQ2.1 logic.  

3.3.1.4 Relevance Learning Vector Quantization (RLVQ) 

RLVQ was introduced by Bojer et al. [264] as an extension of LVQ that 

determines feature relevance during the classification process. Bojer et al. [264] 

recommend initializing the feature relevance weights 𝜓 as a vector of length NF with all 

values initially equal to 1/NF.  

 Per Hammer and Villmann [266] the RLVQ relevance update expression 

introduced by Bojer et al. [264] can be computed for each qth data feature as a gradient 

descent, 

 𝜓(𝑑 + 1) = 𝜓(𝑑) − 𝜉(𝑑)∇𝐶(𝜓) , (3.29)  

where 𝜓 are scalar relevance values associated with a given data feature, and 𝜉(𝑑) is the 

relevance learning rate [264].  The distance from (3.21) for updating relevance rankings 

is considered, per [266], as 

 𝑑𝑛 = 𝐶(𝜓) = 𝜓 ∙ (𝑚𝑖 − 𝑤𝑛)2 . (3.30)  

The resultant relevance updates are thus updated for the qth data feature via 

 
𝜓𝑞 = �

𝜓𝑞 − 𝜉(𝑑) �𝑚𝑖𝑞 − 𝑤𝑛𝑞(𝑑)�
2

𝑚𝑓 𝐶𝑑 = 𝐶𝑖

𝜓𝑞 + 𝜉(𝑑) �𝑚𝑖𝑞 − 𝑤𝑛𝑞(𝑑)�
2

𝑚𝑓 𝐶𝑑 ≠ 𝐶𝑖
 , (3.31)  

with in-class and out-of-class considerations consistent with LVQ and (3.25).  Per 

Hammer and Villmann [266], the RLVQ expression in (3.31) was formulated per the 

gradient descent.  This formulation indicates that when the cost function changes, one 
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must necessarily change the 𝜓 as well.  The gradient descent operation and derivation for 

PV updates obviously do not change due to the inclusion of the scalar weighting term.  

Otherwise, the LVQ operation and logic of (3.25) do not change. 

3.3.1.5 Generalized Learning Vector Quantization (GLVQ) 

GLVQ extends LVQ through considering a sigmoidal cost function for the 

gradient descent in (3.20) rather than the linear cost function that produced the generic 

VQ gradient descent formulation of (3.24) [265].  The cost function considered in GLVQ 

algorithms is, 

 
𝐶 = � 𝑓(𝜇(𝑚𝑚))

𝑁𝑆𝑆𝑆𝑆𝑙𝑒𝑒

𝑚=1

 , (3.32)  

at iteration 𝑑  for 𝑁𝑆𝐹𝑚𝑆𝑆𝐹𝐹  samples [245, 265].  The function 𝑓(𝜇(𝑚𝑚)) in (3.32) is a 

sigmoid function defined as 

 𝑓�𝜇(𝑚𝑚)� =
1

1 + 𝑒−𝜇(𝑥𝑆) , (3.33)  

of the relative distance difference measure 𝜇(𝑚𝑚) [262].  

In GLVQ, GRLVQ and GRLVQI, the relative distance difference measure is 

typically defined as 

 
𝜇(𝑚𝑚) =

(𝑑𝐽 − 𝑑L)
(𝑑𝐽 + 𝑑L) , (3.34)  

that appears related to the Soresen and Canberra distance metric, cf. [283, 284], with 𝑑𝐽 

and 𝑑𝐿 being the respective squared Euclidean distances between the input sample 𝑚𝑚 

and the best matching in-class prototype vectors 𝑤𝐽 , and best matching out-of-class 
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prototype vector 𝑤𝐿 [245, 252, 265, 266].  The classification performance is inherently 

incorporated into (3.34) and, in operation, (3.34) is a normalized value between -1 and 1, 

which equates to a correct classification when 𝜇(𝑚𝑚) < 0 , a perfect classification 

(distance from in-class PV to exemplar approaches 0 while the distance from the out-of-

class PV to the exemplar is large) when 𝜇(𝑚𝑚) = −1, and incorrect classifications when 

𝜇(𝑚𝑚) ≥ 0 [245, 265].  Due to the direction of correct and incorrect classification in 

(3.34), minimization is desirable to improve classification performance. This computation 

is also termed a “difference-over-sum” normalization or “normalized difference” and sees 

application in other domains, cf. [285–289]. The general concept also bears similarity to 

an alternative LVQ PV update representation of  𝑤𝑛(𝑑 + 1) = �1 − s(𝑑)𝑖(𝑑)�𝑤𝑛(𝑑) +

s(𝑑)𝑖(𝑑)𝑚𝑖, where s(𝑑) has a dynamic range spanning +1 for correct classifications and -

1 for incorrect classifications [280].  Appendix B further examines the characteristics of 

(3.34). 

One requirement of the distance measures used for 𝑑𝐽 and 𝑑𝐿 is that they must be 

differentiable for the gradient descent operation [290].  This makes logical sense, as a 

gradient is the first derivative.  The nominal distance measure used in GLVQ is the same 

squared Euclidean distance seen in (3.21), however the derivation is complicated due to 

the formulation of (3.32)–(3.34).  After computing the derivative associated with the 

gradient descent, PVs are computed via  
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𝑤𝐽(𝑑 + 1) = 𝑤𝐽(𝑑) +

4𝑖(𝑑)(𝜕𝑓 𝜕𝜇(𝑚𝑚)⁄ )𝑑𝐿

(𝑑𝐽 + 𝑑𝐿)2
(𝑚𝑚 −𝑤𝐽) ,  

𝑤𝐾(t + 1) = 𝑤𝐿(𝑑) −
4𝑖(𝑑)(𝜕𝑓 𝜕𝜇(𝑚𝑚)⁄ )𝑑𝐽

(𝑑𝐽 + 𝑑𝐿)2
(𝑚𝑚 − 𝑤𝐿) , 

(3.35)  

which are, respectively, the in-class and out-of-class updates for the winning PVs [245].  

3.3.1.6 Generalized Relevance Learning Vector Quantization (GRLVQ) 

GRLVQ involves the combination of the relevance method of RLVQ applied to 

GLVQ [266].  Therefore, the GLVQ cost function in (3.32) is extended in GRLVQ as, 

 
𝐶 = � 𝜓𝑞𝑓(𝜇(𝑚𝑚))

𝑁𝑆𝑆𝑆𝑆𝑙𝑒𝑒

𝑚=1

 , (3.36)  

where 𝜓 is again the relevance [245, 266].  The relevance approach of (3.31) changes to  

𝜓𝑞 = 𝜓𝑞 − 𝜉(𝑑)𝑓′|𝜇(𝑥𝑆) �
𝑑𝐾

�𝑑𝜆
𝐽 + 𝑑𝜆𝐾�

2 (𝑚𝑚 −𝑤𝐽)2 −  
𝑑𝐽

 �𝑑𝜆
𝐽 + 𝑑𝜆𝐾�

2 (𝑚𝑚 − 𝑤𝐾)2�  ,   (3.37)  

because GRLVQ employs the cost function and PV updates of GLVQ [266].  Hammer 

and Villmann also recommend scaling relevance factors to ensure ‖𝜓‖1 = 1 to avoid 

instabilities [266].  Consistent with the process of GLVQ, for GRLVQ PVs are computed 

via  
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𝑤𝐽(𝑑 + 1) = 𝑤𝐽(𝑑) +

4𝑖(𝑑)(𝜕𝑓 𝜕𝜇(𝑚𝑚)⁄ )𝑑𝐿

(𝑑𝐽 + 𝑑𝐿)2  𝛹 ∙ (𝑚𝑚 − 𝑤𝐽) , 

𝑤𝐾(t + 1) = 𝑤𝐿(𝑑) −
4𝑖(𝑑)(𝜕𝑓 𝜕𝜇(𝑚𝑚)⁄ )𝑑𝐽

(𝑑𝐽 + 𝑑𝐿)2 𝛹 ∙ (𝑚𝑚 − 𝑤𝐿) , 

(3.38)  

which is the formulation in (3.35) with the inclusion of the relevance term [266].  

Additionally, some variants of GRLVQ incorporate different learning rates for in-class 

and out-of-class updates, as seen in [291].  

3.3.1.7 Improved Generalized Relevance Learning Vector Quantization (GRLVQI) 

Mendenhall [244] noted various issues in GLRVQ, including divergence due to 

unconditional updating of winning out-of-class prototype vectors. Mendenhall [244], and 

Mendenhall and Merenyi [245, 246] developed the GRLVQI algorithm to rectify these 

issues by improving the GRLVQ process in three ways: an improved update strategy, an 

improved learning rule to avoid classifier divergence, and improved prototype utilization.  

(a) Improved Update Strategy 

GRLVQI first has a new update strategy that adds a scalar time decay term, 𝜏, to 

the miscalculation measure in (3.34) becoming 

 
𝜇(𝑚𝑚) = 𝜏

(𝑑𝐽 − 𝑑𝐾)
(𝑑𝐽 + 𝑑𝐾) , (3.39)  

which also implied, per [244–246, 292],  that  
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 𝑓′(𝜇(𝑚𝑚), 𝜏) = 𝑓(𝜇(𝑚𝑚), 𝜏)�1 − 𝑓(𝜇(𝑚𝑚), 𝜏)�  . (3.40)  

Since, 𝜏 is defined as a scalar, per Section 2.3.2.1 of [244], it therefore does not affect the 

derivation process related to the gradient descent operations in GLVQ and GRLV and the 

underlying framework of these algorithms is left intact.   

(b) Improved Learning Rule 

The improved GRLVQ algorithm incorporates a new learning rule by specifying 

that only the out-of-class prototype vector should be updated if a misclassification occurs 

[244].  Therefore, the improved GRLVQ algorithm update rule is as presented in Table 

III-2.  

Table III-2: Improved GRLVQ Update Rule of Mendenhall [244] 
Condition Rule 

Misclassification • Move in-class prototype vector towards exemplar 
• Move out-of-class prototype vector away from exemplar 

Correct 
Classification • Move in-class prototype vector towards exemplar 

 

(c) Improved Prototype Utilization 

Mendenhall [244], and Mendenhall and Merenyi [245, 246] applied the 

‘conscience’ learning of DeSieno [293] to in-class PV selection.  The underlying 

philosophy is to discourage (bias) frequent PV winners from winning too often and 

encourage selection of infrequently selected PVs [245].  This is accomplished by 

computing the “frequency” of winning for the winning PV  
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 𝑁𝑛𝐹𝑛𝐹 = 𝑁𝑜𝑆𝑑𝐹 + 𝛽(1.0 − 𝑁𝑜𝑆𝑑𝐹 ) , (3.41)  

and adjusting the frequency in the non-winning PVs via,  

 𝑁𝑛𝐹𝑛𝐹 = 𝑁𝑜𝑆𝑑𝐹 + 𝛽(0.0 − 𝑁𝑜𝑆𝑑𝐹 ) , (3.42)  

where 𝛽 is a user defined parameter to control the updating [245].  The winning PV 

selection approach is also updated from (3.30) by subtracting 𝛽, 

 𝑑𝐵𝑖𝐹𝐹 = 𝑑𝐹 − 𝛽𝐹 , (3.43)  

where 𝑑𝐹 is either the in-class or out-of-class distance and 𝛽𝐹 is defined as 

 𝛣𝐹 = 𝛾 �
1
𝑃
− 𝑁𝑜𝑆𝑑𝐹  � , (3.44)  

where 𝛾 is a scaling on the amount of bias, P indicates the PV number and 𝑁𝑜𝑆𝑑𝐹  is the 

frequency [244]. 

3.3.1.8 Operational Settings for LVQ and GRLVQI 

Determining operational settings for LVQ algorithms is a balance between 

science and art [244].  Although PV initialization is known to affect the classifier 

development in all LVQ variants [267], little has been published about LVQ algorithmic 

settings beyond specific guidelines for specific applications.  A few considerations must 

be made, an appropriate learning rate needs to be specified for the gradient descent, PVs 

should be initialized to unique and appropriate vectors, and the appropriate number of 

PVs should be initialized.  

(a) Learning Rates 

Determining an appropriate learning rate 𝑖(𝑑) involves some consideration of the 

LVQ algorithm, architecture, and the data.  Some general learning rate guidance exists 
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for differing algorithms.  Selecting a learning rate for the gradient descent approach 

involves some work; too high of a learning rate introduces oscillations and possibly 

divergence, too low of a learning rate results in a slow convergence [216, pp. 312-313].  

As mentioned in Mendenhall [244], there are “no hard-and-fast rules” in selecting 

learning rates and its selection is part of the “art of classifier design.”  Per Strickert et al. 

[291], a general hierarchy relating learning rate 𝑖(𝑑) and relevance rate 𝜉(𝑑) includes 0 ≤

 𝜉(𝑑) ≤ 𝑖(𝑑) ≤ 1, assuming unscaled learning rates.  In general the guidance of Kohonen 

[255] should be followed, where 𝑖(𝑑)  is specified as a monotonically decreasing 

sequence of scalar values 0 ≤ 𝑖(𝑑) ≤ 1.  Ideally, the monotonically decreasing term will 

either reach zero as an optimal solution is found or be stationary. This is logical because a 

decreasing/stationary learning rate avoids large movement within the data space as a 

solution becomes more refined.  

Various general recommendations exist for LVQ learning rates, for instance 

Kohonen et al. [280] recommend learning rates of 𝑖(𝑑) ≤ 0.1 for LVQ.  Although Bojer et 

al. [264]  suggest initializing both the LVQ and relevance learning rates at 𝑖(𝑑) = 0.1, 

they also employed different settings with RLVQ, such as 𝑖(𝑑) = 0.005 and 𝜉(𝑑) = 0.05 

for a large mushroom dataset.  Lim et al. [294] additionally suggested a default of 𝑖(𝑑) = 

0.03 for LVQ.  

 GLVQ and GRLVQ are more complicated algorithms and deserve further 

considerations. For general sigmoidal networks, which could feasibly include GLVQ, 

Duda, Hart and Stork [216, pp. 312-313] posit that a learning rate of (𝑑) = 0.1 is often 

adequate for initialization.  This mirrors the general recommendations for LVQ learning 
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rate initializations.  For one dataset, Hammer and Villmann [266] suggested a learning 

rate of 𝑖(𝑑) = 0.1 and relevance rate of 𝜉(𝑑) = 0.01; they further discussed the importance 

of the relevance rate being initialized smaller than the learning rate since the relevance is 

updated each iteration.  

 GRLVQI is a further more complicated algorithm, with three learning rates to 

select: PV learning rate, relevance learning rate, and conscience learning rates.  Care 

must be taken since the interaction of these three learning rates is obviously complex and 

learning rates too high in magnitude could logically introduce instability and wild 

movements.  In GRLVQI, there are two gradient descent learning rates, the PV learning 

rate  𝑖(𝑑) and the relevance rate  𝜉(𝑑) , and two conscience parameters (γ and β) to 

consider, as seen Table III-3.  Prior work determined operational settings for GRLVQI 

empirically, with Mendenhall [244], Mendenhall Table 3.3 [244], and Bischoff [295] 

recommending the 𝑖(𝑑) and 𝜉(𝑑) values presented in Table III-3. Bischoff et al. [295] 

empirically determined their recommended values by sampling each exemplar six times 

in random order during each of the NTS total Training Step iterations.  Additionally, the 

learning parameters in Table III-3 are learning schedules, which provide learning rate 

values depending on the quantity of training steps GRLVQI is employing. Table III-3 are 

implemented due to performance benefits seen and discussed in Mendenhall [244]. Table 

III-3 are not decaying values and thus learning rates are stationary during the specified 

training steps. 
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Table III-3: Nominal GRLVQ and GRLVQI Learning Parameter Learn Schedule. 

NUMBER OF 
TRAINING STEPS NTS  

(THOUSANDS) 

GRLVQ 
PARAMETERS 

CONSCIENCE 
PARAMETERS REFERENCE 

𝑖(𝑑) 𝜉(𝑑) 𝛾 𝛽 
0 < NTS ≤ 400 0.005 0.025 2 0.35 

[244] 
400 < NTS ≤ 800 0.0025 0.0125 2 0.3 
800 < NTS ≤1200 0.001 0.005 2 0.225 
1200 < NTS≤ 1600 0.0005 0.0025 2 0.125 

0 < NTS ≤ 500 0.005 0.005 2.5 0.35 

[295] 
0.5 <TS ≤1  0.0025 0.0025 2.0 0.30 
1 < TS ≤ 1.5 0.001 0.001 1.5 0.225 
1.5 < TS ≤ 2 0.0005 0.0005 1.0 0.125 
2 < TS ≤2.5 0.00025 0.00025 0.75 0.1 
 

(b) Number of Prototype Vectors 

Additionally, little is written on the appropriate number of PVs to instantiate.  

Kangas et al. [296] indicated that no unique solution existed for this task, but provided 

guidance (albeit without examples or proofs) that proportions to the number of samples in 

classes could be a wrong strategy.  Georgiou [262] posited that more resolution is offered 

by increasing the number of PVs.  Mendenhall [244] notes that generalization bound 

methods such as Gaussian complexity [297] can be used to determine the upper bound on 

the number of PVs to instantiate.  One could expect that too many PVs would lead to 

over fitting, as mentioned in [298], and that too few would lead to poor classification 

performance.  Therefore, selecting the appropriate number of PVs is of interest, despite 

little being written on it.   
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 A general restriction in LVQ algorithms exists that the data must contain at least 

two classes and that there must be at least one PV per class [299].  However, further 

guidance on the number of neurons/prototype vectors to initialize is rarely mentioned in 

publications.  Kohonen merely mentions that the optimal number of PVs is generally not 

proportional to the prior probability of classes [282].  Additionally, it was suggested that 

PVs could be deleted during the learning process [282].  But, no general framework was 

presented to suggest the appropriate number of PVs to initialize.  

(c) Prototype Vector Initialization 

A final consideration in LVQ network initialization is the proper initialization of 

the PV vectors themselves.  Basic PV initialization approaches include using data 

sampling distribution [244], extreme points in the data [300], borders between classes 

[296], or random values [266, 301].  Additionally, some literature suggests initializing 

PVs using k-means to find cluster centers [267, 282], self-organizing maps [282] or by 

finding the means of each class [282].  However, employing k-means or self-organizing 

maps is akin to a fusion process of an unsupervised classifier feeding into a supervised 

classifier and k-means is iterative and not computationally free.  PV initialization was a 

concern of Mendenhall [244], resulting in the addition of conscience parameters in the 

GRLVQI algorithm.  

 Logically, the key aspect of any PV initialization process is that the PVs and data 

exist in the same space; obviously, PVs should be initialized to be near the data dynamic 

range or else valuable iterations will be spent moving towards the data.  Two obvious and 
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logical choices exist for proper PV initialization: 1) initializing PVs to normal random 

values and standardizing the data to have a dynamic range comparable to the random 

values, and 2) initializing PVs to random values in the data space.  Herein, and consistent 

with [51], PVs are initialized with random normal values with the data standardized via 

standard score normalization [302],   

 𝑧 =
𝑚 − 𝜇
𝜎

 , (3.45)  

where 𝜇 is the mean of a given data vector and 𝜎 its standard deviation. 

(d) Number of Training Iterations 

Similar to the issues of PV initialization, learning rate initialization, and selecting 

the number of PVs, very little appears in literature on selecting NTS. For LVQ, Kohonen 

[255] recommends NTS = 500 x NPV as a general rule.  Literature recommends various 

numbers of iterations, including 150 ≤ NTS ≤ 600 [303], 500 ≤ NTS ≤ 2,500 [295], 

NTS = 1200 [51], a maximum of NTS = 10,000 [255], and 400K ≤ NTS ≤ 1.6M [244].  

Reising [51] adopted an approach where multiple iterations were employed and 

then the best models were selected. Such an approach is consistent with the method 

employed by Gage [304] for ANN training.  Gage [304] adopted Welch’s method [305] 

for convergence to determine when to stop training and how many training epochs to use.  

Rather than find steady-state operating conditions, one looks for a stable operating point 

where volatility has decreased [304, 305]. Hence, this is a visual approach to determine 

where data “converges” [304, 305].  Similar to the approach of Gage [304], Reising [51] 

computed the GRLVQI model at each iteration and then determined which model offered 
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the best performance.  The best performing model was then used for subsequent analysis 

and for comparison against the sequestered test set.  

3.4 Device Classification and Verification Methodology 

For model development, classification accuracy is the standard performance 

metric used for the RF-DNA problems; however, it is analyzed in different ways 

depending on the task at hand (classification/model building or verification).  

Historically, c.f. [18, 89, 92, 113, 224], the Air Force Institute of Technology’s (AFIT’s) 

RF-DNA development has considered Device Classification as a one-to-many “looks 

most like?” assessment, and Device ID Verification as a one-to-one “looks how much 

like?” assessment.”  In operation, this involves classification being used for model 

development using the library at hand with verification examined when new devices 

attempt to claim the identity of a known device.  These concepts extend from the 

biometrics concepts of enrollment, collecting templates from users; verification, 

validating a user’s identity through comparison with that user’s template; and 

identification, recognizing a user by searching the entire database [6]. 

3.4.1 Classification Performance  

RF-DNA classification performance generally considers evaluation of training, 

testing, and validation (in GRLVQI) performance of classifier models.  Both the 

MDA/ML and the GRLVQI processes were applied using a full-dimensional (NF = 729) 

RF-DNA feature set extracted from ZigBee emissions collected to support results in [91].  

Classification results are presented in Figure III-6 displaying that MDA/ML overall 
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outperforms GRLVQI while both show a general pattern of high classification accuracy 

for high SNR with relatively lower classification accuracy at lower SNR.  Classification 

results for Z-wave devices are similarly presented in Figure III-7.  Comparing 

performance to these baseline results is one general approach used to evaluate 

algorithmic performance throughout this research. 

 
(a) MDA/ML 

 
(b) GRLVQI 

Figure III-6: ZigBee Full-dimensional Baseline Classification Results 
 

 
 (a) MDA/ML 

 
(b) GRLVQI 

Figure III-7: Z-Wave Full-dimensional Baseline Classification Results 
 

0 10 20 30
0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

A
ve

 P
ct

 C
or

re
ct

 

 

 

Tng
Tst

0 10 20 30
0.4

0.6

0.8

1

SNR (dB)

A
ve

 P
ct

 C
or

re
ct

 

 

 

Tng/Val
Tst

0 5 10 15 20 25
0.2

0.4

0.6

0.8

1

SNR (dB)

A
ve

 P
ct

 C
or

re
ct

 

 

 

Tng
Tst

0 5 10 15 20 25
0.2

0.4

0.6

0.8

1

SNR (dB)

A
ve

 P
ct

 C
or

re
ct

 

 

 

Tng/Val
Tst



81 

 

 

3.4.1.1 Classification Performance Assessment: Gain Trade-Offs 

One basic approach employed to compare classification performance between 

competing algorithms, or performance of a given algorithm for various settings, is 

relative performance gain GSNR.  Consistent with prior RF-DNA works [51], performance 

gain GSNR is defined herein as the reduction in required SNR, expressed in dB, for the two 

methods under consideration to achieve a given average percentage of correct 

classification (%C).  This definition is depicted in Figure III-8 for MDA/ML and 

GRLVQI testing performance of %C = 90%. When comparing MDA/ML and GRLVQI, 

we examine performance at a nominal, arbitrary operating point of %C = 90%.  As 

indicated in Figure III-6 MDA/ML requires SNR = 8.68 dB (TNG) and SNR = 8.99 dB 

(TST), while GRLVQI requires SNR = 12.92 dB (TNG) and SNR = 12.39 dB (TST) to 

achieve the same performance.  Thus, for ZigBee MDA/ML is superior and provides a 

gain of 𝐺𝑆𝑁𝑅 = 3.4 dB (TST) relative to GRLVQI. 
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Figure III-8: Gain Trade Off Example for MDA/ML (TST) and GRLVQI (TST) for 

ZigBee. 

If one similarly considered TST results in Figure III-7 for Z-Wave, GRLVQI is 

seen to be superior and yields a relative MDA/ML gain of  𝐺𝑆𝑁𝑅 = +3.32 dB (TST). 

Therefore, when considering classification performance, GRLVQI is a superior classifier 

for Z-Wave, while MDA/ML was a superior classifier for ZigBee. 

3.4.1.2 Classification Performance Assessment: Relative Accuracy Percentage (RAP) 

To facilitate broader comparison of %C versus SNR performance, a Relative 

Accuracy Percentage (RAP) metric was introduced in Bihl et al. [135].  The RAP is 

generated by first computing the Area Under Classification Curve (AUCC) values for 

each method being compared.  This is done using a trapezoidal approximation, with a 
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given method’s estimated AUCCM(i) being in the denominator and the baseline AUCCBase 

being in the numerator 

 𝑅𝑅𝑃 = 𝑅𝐴𝐶𝐶𝑀(𝑖)/𝑅𝐴𝐶𝐶𝐵𝐹𝐹𝐹  . (3.46)  

According to (3.46), RAP provides the fraction of AUCCM(i) with respect to AUCCBase 

and enables both 1) a comparison for methods that do not achieve the arbitrary %𝐶 ≥

90%  performance benchmark, and 2) a comparison reflecting performance across all 

SNR levels. Interpreting RAP values is also intuitive, with 1) RAP < 1.0 indicating that 

the method under consideration achieves lower %C than the baseline method, 2) RAP = 

1.0 indicating that the method under consideration achieves %C performance comparable 

to the baseline, and 3) RAP > 1.0 indicating that the method under consideration exceeds 

baseline %C performance.  

For the ZigBee results in Figure III-6 with MDA/ML serving as the baseline, 

AUCCBase = 27.18 (TST), AUCCGRLVQI = 25.24 (TST) and RAP = 0.93 indicating that 

MDA/ML performs better across all operating points than GRLVQI.  For Z-Wave results 

in Figure III-7, MDA/ML AUCCBase = 13.32 (TST) and AUCCGRLVQI = 15.06 (TST), 

yielding RAP = 1.13 which indicates that GRLVQI performs better across all operating 

points when compared to MDA/ML for Z-Wave. 

3.4.2 Device ID Verification 

In essence, device ID verification is a form of conditional classification which 

considers a one-to-one comparison of a device’s actual identity with its claimed identity 

[19].  This approach approximates a trained and tested classifier when examining 
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possibly new, previously unseen data.  A device is considered to be authentic when the 

posterior probability  

 𝑃(ω|𝑭𝑁𝐹𝑛) ≥ 𝑑 , (3.47)  

with 𝑭𝑁𝐹𝑛 being a newly observed RF-DNA fingerprint; 𝜔, the class the device claims 

the identify of; and 𝑑 being a decision threshold [19].  Device ID verification performance 

is then evaluated by plotting Receiver Operating Characteristic (ROC) curves over 

various decision thresholds [19].  

3.4.2.1 Verification Performance Assessment: ROC Curves 

Consistent with [89] two error conditions are evaluated: False Verify Reject 

(FVR), for rogue devices, and False Reject Rate (FRR), for authorized devices. FVR and 

FRR are respectively evaluated against either True Verify Rate (TVR) or True Rejection 

Rate (TRR) to generate ROC performance curves [89], consistent with the general ROC 

methodology of [306].  The equal error rate (EER) point on these ROC-like curves is 

either 1-TVR for authorized or 1-TRR for rogue.  Consistent with prior research, e.g. 

[89], verification performance will be evaluated as %𝑅𝑑𝑑ℎ𝑓𝑓𝑚𝑧𝑒𝑑 or %𝑅𝑓𝑔𝑑𝑒 𝑅𝑒𝑗𝑒𝑐𝑑𝑒𝑑 

at 90% TVR/TRR and 10% FVR/FRR.  

3.4.2.2 Baseline Verification Performance 

When examining verification performance at 18dB, Figure III-9 and Figure III-10 

for authentic vs rogue devices, MDA/ML appears to achieve perfect verification, Figure 

III-9a and Figure III-10a, while GRLVQI presents considerably lower verification 

performance.  Therefore improving GRLVQI to make it a viable RF-DNA algorithm is of 
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major importance to both ensure multiple competing classifier methods are vetted for 

future RF-DNA research and to understand what could be leading to this deficiency.  

 
(a) MDA/ML (18dB) 

 
(b) GRLVQI (18dB) 

Figure III-9:  ZigBee MDA/ML and GRLVQI full-dimensionality authorized device 
verification results baseline 

 

(a) MDA/ML (18dB) 
 

(b) GRLVQI (18dB) 
Figure III-10: ZigBee MDA/ML and GRLVQI full-dimensionality rogue device 

verification results baseline 
 

Figure III-11 presents verification results for Z-wave devices at 20dB using the 

MDA/ML classifier, Figure III-11a, and the GRLVQI classifier, Figure III-11b.  Since 
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only NDev=3 devices are in the Z-Wave dataset, only authorized device results are 

presented.  Although Z-Wave fingerprints were associated with higher GRLVQI 

classification performance, here one can see that verification performance is better with 

MDA/ML. 

 
(a) MDA/ML (22dB) 

 
(b) GRLVQI (22dB) 

Figure III-11:  Z-Wave MDA/ML and GRLVQI full-dimensionality authorized 
device verification results baseline 

 

3.4.3 MDA/ML and GRLVQI Baseline Results 

Overall classification results for MDA/ML and GRLVQI using both ZigBee and 

Z-Wave RF-DNA feature sets are presented in Table III-4.  The relative RAP and Gain 

metrics in Table III-4, with MDA/ML serving as the baseline method (highlighted in 

grey), illustrate that MDA/ML generally outperforms GRLVQI for both ZigBee RF-DNA 

classification, while Z-Wave achieves generally better classification performance using 

the GRLVQI classifier.  
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Table III-4: Baseline Classification Results. 

DEVICE ALGORITH
M 

 DATA 
SET AUCC SNR AT 

%C = 90% 

RELATIVE 
MDA/ML 

(TST) 
RAP 

RELATIVE 
MDA/ML 

(TST) GAIN 
(GSNR) 

ZigBee 
MDA/ML 

Training 27.39 8.68 dB 1.01 +0.31 
Testing 27.18 8.99 dB 1.00 0.00 

GRLVQI 
Training 24.99 12.92 dB 0.92 -3.93 
Testing 25.24 12.39 dB 0.93 -3.4 

Z-Wave 
MDA/ML 

Training 16.39 21.23 dB 1.23 +1.68 
Testing 13.32 22.91 dB 1.00 0.00 

GRLVQI 
Training 15.23 19.19 dB 1.14 +3.72 
Testing 15.06 19.59 dB 1.13 +3.32 

 

For the ZigBee results in Figure III-6 with MDA/ML serving as the baseline, 

AUCCBase = 27.18 (TST), AUCCGRLVQI = 25.24 (TST) and RAP = 0.93 indicating that 

MDA/ML performs better across all operating points than GRLVQI.  For Z-Wave results 

in Figure III-7, MDA/ML AUCCBase = 13.32 (TST) and AUCCGRLVQI = 15.06 (TST), 

yielding RAP = 1.13 which indicates that GRLVQI performs better across all operating 

points when compared to MDA/ML for Z-Wave. 

Authorized and Rogue device verification results, for ZigBee, are presented in 

Table III-5, for selected SNR operating points. Table III-5 illustrates that MDA/ML 

generally achieves higher verification accuracy at lower SNR than GRLVQI. Consistent 

with the ZigBee results, authorized verification results for Z-Wave, are presented in 

Table III-6 for selected SNR operating points, which again illustrates that MDA/ML 

generally achieves higher verification accuracy at lower SNR than GRLVQI. 
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Table III-5: ZigBee Baseline Device ID Verification Results.  

Algorithm Operating 
SNR (dB) 

Verification 
Scenario 

Verification 
Accuracy (%) 

MDA/ML 

10 TVR (%) 100 
10 RRR (%) 100 
14 TVR (%) 100 
14 RRR (%) 100 
18 TVR (%) 100 
18  RRR (%) 100 
20 TVR (%) 100 
20 RRR (%) 100 
22 TVR (%) 100 
22 RRR (%) 100 

GRLVQI 

10 TVR (%) 0 
10 RRR (%) 8.33 
14 TVR (%) 25 
14 RRR (%) 47.22 
18 TVR (%) 25 
18 RRR (%) 63.88 
22 TVR (%) 50 
22 RRR (%) 75 
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Table III-6: Z-Wave Baseline Device ID Verification Results. 

Algorithm Operating 
SNR (dB) 

Verification 
Scenario 

Verification 
Accuracy (%) 

MDA/ML 

10 TVR (%) 0 
14 TVR (%) 66 
18 TVR (%) 100 
22 TVR (%) 100 

GRLVQI 

10 TVR (%) 0 
14 TVR (%) 0 
18 TVR (%) 0 
22 TVR (%) 66 

 

3.4.4 MDA versus GRLVQI in RF-DNA Research 

While MDA/ML consistently out-performs GRLVQI in both classification and 

verification tasks for ZigBee, Z-Wave devices saw better classification performance 

using GRLVIQ and better verification performance using MDA/ML. It is therefore 

advantageous to consider further research in GRLVQI developments with emphasis 

towards RF-DNA applications because MDA/ML has known deficiencies in certain 

contexts.  

Firstly, based on the criteria in (3.10), MDA is limited when the number of 

classes exceeds the number of available features, a possible situation if many devices 

were considered in a real world setting where ZigBee networks can contain up to 65,000 

devices [39].  However, it should be noted that 1) all pattern recognition methods have 

performance issues (accuracy and computationally) as the number of classes grows into 

the 10s to 100s (let alone 1000s) as seen in the literature on “highly multiclass” problems, 
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c.f. [307–314], and 2) linear methods, such as MDA, are commonly employed in “highly 

multiclass” problems due to their computational advantages, c.f. [310, 315, 316].   

Secondly, as seen in Reising [51] and the Z-Wave dataset results in Figure III-7 

and Figure III-11, GRLVQI does outperform MDA/ML in some RF Fingerprinting 

applications. Thirdly, data distributions and particularly bimodality can cause issues in 

MDA with respect to finding the best discriminant direction, as seen in [317], which are 

logically possible given the many varied applications of RF-DNA. Therefore, ample 

motivation exists for improving and furthering the understanding of GRLVQI and 

applying such improvements for further RF-DNA research. 
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IV. Dimensional Reduction Analysis 

Men dig up and search through much earth to find gold. 

–HERACLITUS, 535BC – 475BC 

 

Given large volumes of data being collected in many domains, e.g. big data [318–

327], the primary challenge becomes selecting relevant data features for a given task.  

Dimensional Reduction Analysis (DRA) is therefore of interest to select salient subsets of 

a dataset for analysis.  

4.1 Introduction 

As Ruskin states in [328], “For all books are divisible into two classes: the books 

of the hour, and the books of all time,” thus, indicating that relevance and importance is 

critical.  Hayek similarly notes in [329] that many problems can be reduced to logic “…if 

we possess all the relevant information, if we can start out from a given system of 

preferences and if we command complete knowledge of available means.”  Many 

datasets contain more data than necessary for reliable classification which, inherently, 

becomes a problem that can be addressed using DRA to improve performance after 

discarding non-salient features [330].  One concept in feature selection is that feature 

salience is linked to dependence on class labels [331], therefore feature selection methods 

that result from classifier model development (termed post-classification) and methods 

that consider the distribution of data with respect to a class label vector (e.g. Analysis of 

Variance (ANOVA) based F-test) are of particular interest. 
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This chapter is organized as follows.  Section 4.2 presents, develops and discusses 

various DRA methods, with Section 4.2.1 discussion pre-classification DRA methods, 

Section 4.2.2 discussion post-classification DRA methods, Section 4.2.3 developing 

MDA based DRA methods, Section 4.2.4 discussing DRA fusion, Section 4.2.5 

discussing Random DRA as a baseline method, and Section 4.2.6 discussion 

dimensionality assessment methods.  Section 4.3 then considers Multiple Discriminant 

Analysis (MDA) models and ZigBee RF-DNA features to assess various DRA methods 

for device discrimination, including both Device Classification (1 vs. NC assessment) and 

Device ID Verification (1 vs. 1 assessment).  

4.2 Dimensional Reduction Analysis Methods 

DRA can consist of many processes and actions; at the highest level, DRA is 

considered to embody three aspects: dimensionality assessment (qualitative versus 

quantitative), feature selection versus feature extraction, and pre-classification versus 

post-classification.  The following describe higher level aspects of DRA: 

1. Pre-classification versus post-classification:  The distinction between pre-

classification and post-classification DRA involves where in the overall 

pattern recognition process the DRA is performed.  Pre-classification DRA 

involves any method performed a priori of any classification step, e.g. input 

data distribution-based methods, while post-classification DRA is performed 

a posteriori of the classification step and includes information from the 

classifier on feature relevance, e.g. MDA loadings [237, pp. 394-429] [242], 
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Artificial Neural Network – Signal to Noise Ratio (ANN-SNR) feature 

screening [330] and Relevance Learning Vector Quantization (RLVQ) 

methods [51].  Pre-classification DRA is also known as filter methods and 

post-classification is also known by the term embedded or wrapper methods 

[332, 333].  Since pre-classification DRA is not directly tied to classifier 

performance it does not necessarily improve classifier performance, as seen 

in [334].   

2. Feature selection versus feature extraction: consistent with [213, 335], 

feature selection involves selecting subsets of existing features through pre-

classification or post-classification feature relevance rankings, while feature 

extraction involves a data transformation into either a lower dimensional 

space or a transformed space, e.g. the RF Distinct Native Attribute (RF-

DNA) Fingerprinting Process itself, MDA, or Principal Component Analysis 

(PCA).  Feature selection is relevant throughout many domains including 

multivariate statistics to manufacturing [336].  

3. Dimensionality Assessment:  DRA also involves an operator judgment on the 

amount of data to retain.  Both qualitatively and quantitatively dimensionality 

assessment methods can be used.  Quantitative dimensionality assessment 

computationally determines the amount of data or what features to retain, 

whereas qualitative dimensionality assessment involves subjective selection 

of the quantity of features.  In some application, subject matter expertise can 

be leveraged for qualitative dimensionality assessment [89, 91, 113] where 
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subjective amounts of features were retained.  Quantitative dimensionality 

assessment methods are considered here using heuristics on data covariance 

matrix eigenvalues, MDA loadings, and test statistic p-values. 

Excluding the RF-DNA Fingerprinting feature extraction process itself, described 

in Section II, prior DRA research for RF-DNA has considered three feature selection 

methods: A) a pre-classification distribution-based two-sample Kolmogorov-Smirnov 

goodness-of-fit test (KS-test), B) a post-classification GRLVQI feature relevance 

rankings process [91], and C) the post-classification Random Forest feature relevance 

rankings process [134].  While all three approaches have seen success in RF-DNA 

applications, logically DRA methods associated with classification, e.g. post-

classification, should be associated with improved classification performance.  

Of particular interest to this research were methods that could be used to  

1. improve and expand the RF-DNA DRA foundation by improving the 

understanding of the KS-test DRA algorithm, which involves understanding 

the appropriate use of p-values and test statistics for feature relevance 

ranking, 

2. extend the distribution-based one-way ANOVA F-statistic method to RF-

DNA, 

3. compare and contrast dimensionality assessment approaches,  

4. aid development of an MDA-based DRA algorithm, 

5. compare with GRLVQI feature relevance ranking, and 
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6. aid development of DRA fusion approaches to combine multiple feature 

relevance ranking approaches. 

4.2.1 Distribution Based Feature Selection DRA 

Distribution-based pre-classification feature selection for RF-DNA considers 

either data feature distributions with respect to class membership or data feature 

distributions against other features.  Both approaches are considered herein using the 

two-sample KS-test and the F-statistic.  Additionally, of particular interest is 

understanding whether test statistic values or probabilities (p-values) from the tests are 

best for achieving reliable feature relevance ranking.   

4.2.1.1 Two Sample Kolmogorov-Smirnov (KS) Test 

The KS-test was codified by Massey [337] based on independent contributions by 

Kolmogorov [338] and Smirnov [339].  The KS-test is a distribution-based goodness-of-

fit process for comparing the distribution of a given sample vector (𝒙𝟏) with a given 

reference distribution [337].  The two sample KS-test is an extension that quantifies 

differences in cumulative distribution functions for two sample vectors (𝒙𝟏 and 𝒙𝟐) using 

a test statistic of the form,  

 𝐾𝑆 = max (|𝑁1(𝒙) − 𝑁2(𝒙)|) (4.1)  

where 𝑁1(𝒙) is the proportion of 𝒙𝟏 values less than or equal to 𝒙, 𝑁2(𝒙) is the proportion 

of 𝒙𝟐 values less than or equal to 𝒙, and KS is the computed test statistic value [337, 340, 

341].  With the test statistic, KS, being the maximum difference between the curves, if 

𝒙𝟏and 𝒙𝟐 come from the same distribution, the value of KS converges to zero.  Higher 
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values of KS indicate different distributions while lower KS values indicate similar 

distributions [337; 340, pp. 344-385].  

 For determining p-values, the underlying KS-test null hypothesis is that 𝒙𝟏 and 𝒙𝟐 

are from the same distribution and the alternative hypothesis that they are from different 

distributions [337, 340].  For the KS-test, data degrees of freedom (DoF) and the null 

distribution are used to compute p-values, with p-values ranging from 0 to 1 [340].  

Additionally, KS-test p-values can identically equal 0 [340].  Although not mentioned in 

[91, 134, 241] and largely automated in practice, the process for computing approximated 

KS-test p-values is rather involved and requires first computing  

 
𝜍 = 𝑚𝑎𝑚 ���𝑁𝐹 + 0.12 +

0.11
�𝑁𝐹

 �𝐾𝑆, 0�  , (4.2)  

where KS is the KS-test statistic value from (4.1) and  

 𝑁𝐹 =
𝑁1𝑁2
𝑁1 + 𝑁2

 , (4.3)  

which represents the Harmonic mean [283] of the number of observations in Group 1 

(N1)  and Group 2 (N2) [342, pp. 623-628].  To compute the KS-test p-value, the 

following function is used 

 
𝑝𝐹𝐹𝐹 = 2�(−1)𝑖−1𝑒−2𝑖2𝜍2

∞

𝑖=1

 , (4.4)  

with the final approximation of the p-value then computed as 

 𝑝 = 𝑚𝑚𝑛(𝑚𝑎𝑚(𝑝𝐹𝐹𝐹, 0), 1) , (4.5)  

where the min and max functions ensure the estimate is bounded between 0 and 1 [337; 

342, pp. 623-628; 343–345] .  
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 Feature selection using the two sample KS-test was first proposed by Nechval 

[346] in 1988 for image processing and, prior to Dubendorfer [91], the KS-test saw 

limited DRA application with only one additional citation [347].  For RF-DNA DRA, 

KS-test p-values have seen many applications [89, 113, 134, 348].  For DRA, the KS-test 

is implemented pairwise in each feature by classes, where one should logically seek 𝒙1 

and 𝒙2 from different distributions to avoid redundancy [113, 121].  For multiple classes, 

pairwise KS-test p-values are computed for each feature and then summed [91].   

 The formulation of the KS-test DRA algorithm in Figure IV-1 is based on Patel’s 

[134] work and was revised here to include both A) the logical inequality of i ≠ j to 

ensure it is clear that only non-identical vectors are compared, and B) the correct 

inclusion of the test statistic from which the p-value is computed.  The algorithm 

iteratively considers each feature via a pairwise comparison of the feature per class.   

Algorithm 1 KS-Test for Feature Selection 
for Each feature v  = 1 → NF do 

for i = 1→ NC classes do 
for j = 1→ NC classes do 

if i ≠ j do 
xi = observations from class i, variable v 
xj = observations from class j, variable v 
 𝑲𝑺 = 𝒎𝒂𝒙 ��𝑭𝒊(𝒙𝒊)− 𝑭𝒋(𝒙𝒋)�� 
p(v) = p(v) + p(KS, DoF) 

end if 
end for 

end for 
end for 

Figure IV-1: p-value KS-test Feature Selection Algorithm as adapted from Patel 
[134] and modified herein. 
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Figure IV-2 presents resultant summed p-values for ZigBee features using the 

algorithm in Figure IV-1.  Results in this figure are consistent with observations made in 

[113, 121], i.e. phase (𝜙) features (indices 244 to 486) are collectively the most relevant 

(smaller p-values) when compared to amplitude (𝑎 ) features (indices 1 to 243) and 

frequency (𝑓) features (indices 487 to 729).  However, it is evident in Figure IV-2 that a 

majority of features have very low (less than 0.1) summed p-values which may result in 

low feature selection resolution due to minute differences between relevance ranking 

values.  

 
Figure IV-2: Sum of p-values from pairwise KS-test on ZigBee training observations 

using a full-dimensional (𝐍𝐅 = 𝟕𝟐𝟕) feature set at SNR = 10 dB [89, 113].  Lower 
values indicate greater feature difference and potentially greater relevance. 
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Figure IV-3 presents the corresponding mean test statistic values for the p-values 

seen in Figure IV-2.  Again, as in Figure IV-2, Figure IV-3 shows that phase (𝜙) features 

are most relevant (higher test statistic values).  Incidentally, the p-values in Figure IV-2 

trend toward zero while the test statistic values in Figure IV-3 do not trend to any single 

value.  

 
Figure IV-3: Mean of test statistic values from pairwise KS-test on ZigBee training 

observations using a full-dimensional (𝐍𝐅 = 𝟕𝟐𝟕) feature set at SNR = 10 dB.  
Higher values indicate more different (and possibly more relevant) features. 
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[349] and has seen further application in medical [350], education data analysis [351], 

and other DRA applications [333, 352].  The underlying premise of F-statistic based 

DRA involves selecting features that provide a good relationship to the class 

membership, with the process echoing Hall and Smith’s [353] advice that “a good 

predictor set should contain features highly correlated with the target class distinction, 

and yet uncorrelated with each other.”   

ANOVA considers a linear model which expresses the relationships between 

parameters as  

 𝑌 = 𝑋𝛣 + 𝜀 , (4.6)  

where 𝑌 is a continuous response variable (each feature herein), 𝑋 is an input variable 

(categorical vector of class identities herein), 𝛣  are the solved parameters, and 𝜀  is a 

vector of iid assumed errors [302, 354, 355].  ANOVA employs the linear model in (4.6) 

to understand variability in observations through sum of squares computations of the 

observation from their mean and sum of squares associated from observational groups 

[302].  

 The F-test is a heuristic used to compute the significance of an ANOVA 

relationship, and is defined as 

 
F0 =

𝑀𝑆𝑀𝑜𝑑𝐹𝑆
𝑀𝑆𝑀

  , (4.7)  

where 𝑀𝑆𝑚𝑜𝑑𝐹𝑆 is the mean square for a given general linear model between X and Y, and 

𝑀𝑆𝑀  is the mean squared error in a computed linear ANOVA model [302].  

Traditionally, for ANOVA problems, p-values are computed from the F-test and used to 
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determine if a relationship is significant or not for the null hypothesis that there is no 

relationship between X and Y [302].  When considered as a feature selection problem, 

higher values of F0 are taken to indicate that a feature is more likely to be useful in 

discriminating between classes [350].  To compute the p-value, the F-distribution is used, 

which has a probability density function, 

 

𝑓(𝑚|𝑑, 𝑐) =
Γ �u + v

2 � �u
v�

𝑢
2 𝑚�

𝑢
2�−1

Γ �u
2� Γ �

v
2� ��

u
v� x + 1�

(𝑢+𝑣)/2 (4.8)  

with u and v being the respective Degrees of Freedom (DOF) for the numerator and 

denominator terms in (4.7) [302].  For RF-DNA application, u is the DOF due to groups 

(Nc − 1) and v is the DOF due to the number of observations (NTNG − u − 1).  Figure IV-4 

presents the F-distribution computed for the entirety of the ZigBee training data, with u = 

3 and v = 4796.  The x-axis is in units of F-statistic value, as computed by (4.7), and the 

y-axis is the f-distribution value, as computed by (4.8) [302].  P-values are then 

computed by finding the area under the curve (AUC) at a given F-statistic value; these p-

values are either one-sided (upper or lower tail) or two sided (both the upper and lower 

tail) [302].  For illustrative purposes, a two-sided test is used as this is what was used in 

practice.  Further discussion of one-sided or two-sided test can be found in Montgomery 

and Runger [302].  
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Figure IV-4: Example p-value computation from test statistics using an F-

distribution. 
Figure IV-5 presents an algorithm for feature relevance ranking using a one-way 

ANOVA F-test. Here, both test statistics and p-values are computed for each feature of 

the training data with respect to a corresponding class vector since [349–351] employed 

test statistics, and not the p-values, for feature relevance ranking.  

Algorithm 2 F-Test Feature Selection Algorithm 

for Each feature i =  1 → NF do 
xi = observations from class i, variable i 
y = vector of class identification 
F-test stat = MSModel/MSError 

p(i) = p(F-test stat, DoF) 
end for 

Figure IV-5: One way ANOVA F-test Feature Relevance Ranking Algorithm. 
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the KS-test, smaller p-values in Figure IV-7 are again considered as more relevant.  

Comparing Figure IV-6 and Figure IV-7, here one can see that both test statistics and p-

values indicate that phase features are more relevant; however, one can also see that the 

p-values trend towards zero while test statistic values do not.  

 
Figure IV-6: Test statistic values from F-test on ZigBee training observations using 

a full-dimensional (𝐍𝐅 = 𝟕𝟐𝟕) feature set at SNR = 10 dB. Lower values indicate 
greater feature difference and potentially greater relevance. 
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Figure IV-7: p-values from F-test on ZigBee training observations using a full-

dimensional (𝐍𝐅 = 𝟕𝟐𝟕) feature set at SNR = 10 dB. Lower values indicate greater 
feature difference and potentially greater relevance. 

 

4.2.1.3 Test Statistic versus P-values for Feature Relevance Ranking 

 Test statistic values are commonly converted to p-values (probabilities) to assess 

significance [302].  P-values are generally considered as the smallest level at which an 

observed test statistic value is significant [356].  However, the appropriate use and the 

general appropriateness of p-values in statistics are associated with much debate.  This is 

inherently related to the meaning of a p-value [357].  For feature relevance ranking, 
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between different foundries.  However, others advocate the use of the test statistic itself 

[349, 351, 365].  

Due to this disagreement in literature, an understanding of the use of p-values and 

test statistic values is needed. To facilitate this, a philosophical understanding of p-value 

and test statistics is first formulated, then a short description of the relative steps required 

to compute KS-test and F-test p-values, this is followed by an empirical understanding of 

p-values and test statistic values for DRA.  

(a) General Understanding of P-value Use and Misuse 

Essentially, a p-value is a reflection of a computed test statistic value given a 

probability distribution and for a specific null hypothesis [366].  When computed, the p-

values indicate the probability of observing a given result given the reference distribution 

and the specified null hypothesis [367, 368].  Hence a p-value is only meaningful in the 

context of a given scenario [369], and to compute any p-value one necessarily needs the 

following quantities: a hypothesis test, data degrees of freedom, a reference probability 

distribution, a test statistic result, and a hierarchy of possible outcomes [367].  However, 

these are not always stated in feature relevance ranking applications, c.f. [89, 113, 121, 

241, 370], and thus resultant p-value results are often presented out of context.  

While test statistic values and p-values largely move in opposite directions 

(smaller p-values indicate larger test statistic values), the mapping is rarely linear and is 

associated with various properties of the reference distribution.  Test statistics are often 

ratios of data dependent quantities while p-values refer to the probability of getting that 
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value which involves assumptions with respect to a distribution.  Various issues therefore 

exist when using p-values for feature relevance ranking as noted by Cord et al. [365].  

When interpreting p-values, differences in p-values can result from differences in effects 

sizes and/or differences in standard errors [371], and thus using p-values as a quantifiable 

value is considered a logical fallacy of the transposed conditional [372].  P-values are 

additionally viewed as imprecise and debate exists on whether approximate p-values are 

more useful than exact values [373]. 

Additionally, using p-values for feature relevance ranking appears akin to issues 

mentioned in Anderson et al. [374] where p-value magnitudes were shown to offer 

possibly erroneously interpretation of effect size.  Other problems exist in that small p-

values can be computed due to either low variability or large sample sizes [374].  For 

example, Kitbumrungrat [375] considered MDA as a classifier and presented feature 

relevance ranking values for an MDA-based DRA method, F-test, and p-values; while the 

p-values were all essentially equal, the other methods presented different relevant ranking 

values for each feature.   

The larger question also exists on whether p-values are appropriate for feature 

relevance ranking; this particularly revolves around the issue of treating p-values as 

exacts when p-values of similar magnitude are essentially equivalent [369].  While one 

can point to many feature selection methods, such as forward/backward/stepwise 

regression, as using p-values for feature selection [354], using p-values for feature 

relevance ranking is not without controversy, c.f. [365, 376]. 
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Some disagreement also exists in statistics literature on if it is appropriate to even 

use p-values for traditional hypothesis testing purposes, e.g. [357, 369, 377–390], with 

some journals even refusing to publish p-values from hypothesis tests, e.g. Epidemiology 

[391] and Basic and Applied Social Psychology (BASP) [377].  While some of this debate 

involves debates between Bayesian and Frequentists statisticians [392], further issues 

involve the incorrect application of p-values, as Senn [393] stated, “p-values are a 

practical success, but a critical failure,” and issues relating to sample-to-sample p-value 

variability and the influence of sample size [369].  

Summation and many other methods used to combine p-values may present some 

difficulties due to an implicit assumption that p-values are the result of independent tests.  

How to properly combine p-values is another issue and a variety of methods for differing 

conditions therefore exist, c.f. [394–403].  However, in prior RF-DNA applications, c.f. 

[89, 113, 121], summed p-values were not directly interpreted as probabilities, thus the 

chance for misinterpretation may not exist.  Although, many of the steps listed in 

Sections 4.2.1.1 and 4.2.1.2 to compute either KS-test of F-test p-values are automated, 

these are implicit steps that cannot be ignored when employing a process.  Additionally, 

by considering the steps needed to compute their respective p-values, we can 

conceptualize the issues that exist in p-value feature relevance ranking in the KS-test and 

F-test.  

In summary, the various issues related to p-values for DRA include:  

1. Resolution is lost in the mapping from the test statistic to the (typically) 

nonlinear p-value. 
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2. P-values are imprecise [373]. 

3. Computing p-values involves an implicit distributional assumption 

whereas test statistics are often only ratios. 

4. That p-values frequently converge to zero for large quantities of samples 

[369]. 

5. An additional and unnecessary computation is required in looking up the 

associated p-value for a given test statistic, hypothesis test, degrees of 

freedom and distribution. 

6. Fundamentally, p-values indicate statistical significance, but nothing about 

the magnitude of that statistical significance [404–406]. 

7. Prior to computing test statistic values, one is not making an explicit 

distributional assumption, but one must make a distributional assumption 

when computing a p-value.  An example, the experimentally computed F-

test statistic value in (4.7) is merely a ratio of sums of squares.  While 

terming (4.7) an “F-test statistic” does imply an F-distribution, until one 

formalizes a hypothesis test and computes the p-values, no distributional 

assumption has been made since there are no distributional assumptions 

with general linear models prior to these steps [407].  Therefore, test 

statistic values are generally ratios, but do not indicate any underlying 

inferences, or significance, of these values until they are tied to a 

hypothesis test and reference distribution.  
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(b) P-value Versus Test Statistic Feature Relevance Ranking 

Beyond literature references regarding p-values, it is useful to empirically 

evaluate the p-values for feature relevance ranking.  This is considered below for both the 

KS-test and F-test on the ZigBee RF-DNA Fingerprint data, and further in Appendix C 

on general academic datasets.  As seen in Figure IV-4, the resulting p-value from a given 

test statistic involves firstly an additional computational step and secondly a nonlinear 

mapping.  As one can visualize, the AUC will nonlinearly vary as a given test statistic 

may linearly vary, inherently making comparison, ranking, and interpretation more 

difficulty.  Additionally, F-test p-values may not offer comparison of features from 

multiple datasets since the underlying probability distribution changes as the degrees of 

freedom change.   

To examine the distributions of the p-values and test statistic values for the F-test 

and KS-test, histograms of unit area, using the same bin centers and bin widths, are used.  

Figure IV-8 presents summed p-values from the KS-test, while Figure IV-9 presented 

mean test statistic values from the KS-test.  Four operating points, SNR = [0, 10, 18, 30] 

dB are used in both Figure IV-8 and Figure IV-9.  Overall, both Figure IV-8 and Figure 

IV-9 illustrate that features become more statistically significant in the KS-test as noise 

diminished with p-values approaching 0 as the underlying null hypothesis is rejected.  

However, conditions exist where all features could be viewed as significant if only p-

values feature ranking were used.  For instance, at SNR = 10 dB two features have a 

summed p-value equal to exactly 0, and at SNR = 30 dB, 99.7% of the features are in the 

first bin (centered at 0.0108) with 12% of the features having a p-value exactly equal to 0 
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and thus of equivalently relevant.  This issue of resolution exists even at SNR = 0 dB, 

where a large number of features have very low p-values.  

While feature relevance resolution was lost when using p-values, as seen in 

Figure IV-8, resolution is not lost when using test statistic values, Figure IV-9.  The result 

in Figure IV-9 thus illustrates that KS-test statistic values offer a more refined and 

consistent approach for finding and selecting features which is not overwhelmed by the 

numerous p-value issues as described in Section 4.2.1.3 and visualized in Figure IV-8.  

 

 
Figure IV-8: Normalized histogram of summed pairwise KS-test p-values using a 

full-dimensional (𝑵𝑭 = 𝟕𝟐𝟕) ZigBee TNG feature set for varying SNR = [0, 10, 18, 
30] dB. 
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Figure IV-9: Normalized histograms of mean pairwise KS-test statistic values using 
a full-dimensional (𝑵𝑭 = 𝟕𝟐𝟕) ZigBee TNG feature set for SNR = [0, 10, 18, 30] dB.   

 

 Figure IV-10 and Figure IV-11 consider the F-test p-values and test statistic 

values, respectively, through normalized histograms and the same bin widths as in Figure 

IV-8.  Figure IV-10 and Figure IV-11 show a similar distributional issue for F-test p-

values, where p-values are converging on 0 whereas the F-test statistic values do not 

converge to any one number.   
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 Figure IV-10: Normalized histogram of F-test p-values using a full-dimensional 

(𝑵𝑭 = 𝟕𝟐𝟕) ZigBee TNG feature set for varying SNR = [0, 10, 18, 30] dB. 
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Figure IV-11: Normalized histograms of F-test statistic values using a full-
dimensional (𝑵𝑭 = 𝟕𝟐𝟕) ZigBee TNG features for SNR = [0, 10, 18, 30] dB.  

 

Table IV-1 condenses the results of Figure IV-8 and Figure IV-10 by illustrating 

that p-values trend towards 0, or indistinguishable numbers, as SNR increases.  The 

general estimated decimal relative spacing between values of 2.22x10-16
, per [408], was 

used for this computation.  Table IV-1 thus indicates that increasing signal strength 

corresponds to increasing significance.  This result further mirrors that of p-values 

trending towards 0 in [365].  
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Table IV-1: Quantity of ZigBee p-values Less Than or Equal to 64-bit Relative 
Spacing, from [49]. 

METHOD 
SNR 

0 dB 10 dB 18 dB 30 dB 
F-TEST P-VALUES 12 328 573 635 

KS-TEST SUMMED P-VALUES 0 122 397 679 
 

Table IV-2, adapted from Bihl et al. [49], further examines p-value and test 

statistic for ZigBee RF-DNA features the top 5 and bottom 2 ranked (by respective test 

statistic value) at SNR = 10 dB.  Values in Table IV-2 are ranked by respective test 

statistic values for both F-test and KS-test, with the corresponding p-values.  The 728th 

and 729th, lowest ranked values illustrate the scale of the values.  While machine 

precision values are a continuum which rarely converge to any single number, noticeably 

many p-values are below the decimal relative spacing of 2.22x10-16 [408], and are thus 

notionally equivalent and equal to 0 for computing mean and variance.  Evident in Table 

IV-2 is that ranking values equivalent to 0 may not provide a consistent means for 

ranking features and could be less effective when selecting a low number of features. 
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Table IV-2: P-values vs Test Statistic for ZigBee at SNR = 10 dB Ordered by 
Decreasing F-test and KS-Test Statistic Value, adapted from [49] 

FEATURE 

F-TEST KS-TEST 

TEST 
STATISTIC P-VALUE 

SUMMED 
TEST 

STATISTIC 

SUMMED P-
VALUE 

1 542.64 1.22∙10-303 3.316 3.71∙10-94 
2 471.78 1.29∙10-268 3.251 0 
3 432.97 6.38∙10-249 3.242 6.39∙10-97 
4 424.26 1.88∙10-244 3.169 9.79∙10-98 
5 420.74 1.22∙10-242 3.053 1.90∙10-61 
⁞ ⁞ ⁞ ⁞ ⁞ 

728 0.280 0.839 0.164 2.18 
729 0.043 0.988 0.150 2.67 

VARIANCE 6,324.8 0.0094 0.2417 0.0646 
 

Feature selection via p-values therefore has considerable issues.  Further issues 

are illustrated in Appendix C where various academic datasets are considered through the 

KS-Test and F-test DRA methods.  For both RF-DNA DRA and the academic datasets in 

Appendix C, test statistic values are seen to not converge on any specific number and 

thus they offer a more natural tool for feature comparison than p-values.  Employing test 

statistic values for DRA is also consistent with the F-statistic DRA method formulated in 

[349].  As noted in Section 4.2.1.3(a), computing and interpreting p-values also involves 

further issues.  Further comparisons of p-values versus test statistic values will be made 

via classification and verification performance.  
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4.2.2 Post-Classification Feature Selection DRA for RF-DNA   

Model based feature selection methods involve computing a feature ranking as a 

byproduct or result of a classification model building process.  Prior RF-DNA research 

has considered only GRLVQI feature relevance ranking and Random Forest as post-

classification DRA methods.  Although the MDA classifier has seen much use in RF-

DNA applications, noticeably missing in previously applied DRA methods are MDA-

based DRA methods.  This absence is due to the assumption that MDA-based post-

classification DRA was not directly possible [51, 91, 134].  However, various MDA-

based DRA methods do exist in literature, e.g. [242, 351, 409], and these are further 

developed herein for application to RF-DNA.  MDA based feature relevance ranking 

methods are considered and described below, including Wilk’s Lambda, which examines 

the scatter matrices of MDA; Discriminant Weights, which are raw eigenvalues of the 

MDA matrices; and Discriminant Loadings, the correlation of the eigenvectors of MDA 

with the original data. 

4.2.2.1 GRLVQI Feature Relevance Ranking 

As discussed in Section III, GRLVQI feature relevance scores, ψ, provide a 

model-based indication of feature contribution to GRLVQI classifier development 

process [244–246, 266].  Prior work [89, 113] demonstrated ψ values offering 

comparable performance to KS-test p-value ranking for ZigBee feature selection with 

multiple discriminant analysis (MDA).  Figure IV-12 examines GRLVQI relevance 



117 

 

 

scores, ψ, plotted by feature index number.  Consistent with the KS-test and F-test DRA 

methods, GRLVQI relevance scores again show phase features as the most relevant.  

 
Figure IV-12: Feature ranking using GRLVQI relevance values using full-

dimensional NF = 729 ZigBee TNG observations at SNR = 10 dB.  
 

4.2.2.2 MDA Based Feature Selection 

Various methods of feature relevance ranking are implicit in MDA and can be 

determined relatively simply.  Primarily, these methods involve ratios between scatter 

matrices and examining the discriminant functions themselves.  Three general methods 

for MDA post-classification DRA will be considered: Wilk’s Lambda, Discriminant 

Weights, and Discriminant Loadings. 
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(a) Wilk’s Lambda  

Wilk’s Lambda values are computed via a ratio of determinants of MDA scatter 

matrices [409]; therefore this method is considered to be a post-classification DRA 

method.  Wilk’s Lambda has been used in various MDA application, e.g. [410, 411], and 

is computed as 

 
Λ =

𝑑𝑒𝑑𝑺𝑾
𝑑𝑒𝑑𝑺𝑻

 , (4.9)  

which is a ratio between the determinant of the within and total scatter matrices with 

Λ ∈ [0 1] [409].  In operation, large values of Λ indicate poor separation between groups, 

while smaller values of Λ indicate good separation between groups [409].  Logically, 

large group separations lend themselves to improved discrimination; therefore with lower 

Λ values are associated with more relevant features for classification [409]. 

The Wilk’s Lambda method is used for DRA by computing each feature’s 

Λ values using (4.9).  For consistency with other DRA methods, herein Wilk’s Lambda 

results are considered as 1 – Λ, to ensure that higher values indicate more relevant 

features Figure IV-13 presents the 1 – Λ values for SNR = 10 dB for ZigBee.  Consistent 

with the KS-test, F-test, and GRLVQI feature relevance ranking, the phase features 

appear most relevant in Figure IV-13.    
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Figure IV-13: Feature ranking values from Wilk’s Lambda ratio using full-

dimensional NF = 729 ZigBee TNG observation at SNR = 10 dB. 
 

(b) Discriminant Weights and Group Means 

One potential MDA-based DRA approach would be to remove features associated 

with relatively low eigenvector, or discriminant function coefficients, as employed in 

[412–414].  However, eigenvectors are considered to be generally unsuitable for 

providing feature relevance information [237], and this is considered imprecise for this 

purpose with small values can appear insignificant while actually being significant from 
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between discriminant functions and the data features, is similar to the discriminant 

loadings methods.   

(c) Discriminant Loadings 

 Discriminant loadings were presented in Section 3.1.1, and are analogous to 

principal component loadings in describing how each feature contributes to a given 

projection vector [237, 415].  Visually examining MDA loadings is one approach to 

interpretation [416].  Figure IV-14 presents discriminant loadings for the NF = 729 and 

NC = 4 full-dimensional ZigBee TNG fingerprint set with values from (12) for NDim = 3 

loadings vectors, as determined via (3.10).  In Figure IV-14 both positive and negative 

MDA loadings values are visible.  Also visible is an almost periodic sign change, which 

is possibly due to the binning process where adjacent bins could naturally be expected to 

have a directionally opposite action [417].  Also of interest is that the phase features 

appear to have higher magnitude loading values than amplitude and frequency, which is 

consistent with other DRA methods.   
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Figure IV-14: ZigBee discriminant loadings (L) for the three discriminant functions 

using full-dimensional NF = 729 ZigBee TNG observations at SNR = 10 dB.  
Reprinted from [135]. 

 

 However, apparent in Figure IV-14 is that each discriminant function presents 

different loading values for each fingerprint feature.  Necessary in DRA is ranking each 

fingerprint feature with a single value and it is not readily apparent how to rank multiple 

loadings values for each feature.  Therefore algorithmic fusion methods will be 

considered to develop an MDA loadings ranking method. 
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4.2.3 Algorithmic Fusion Methods 

With multiple competing DRA methods used for feature selection, the 

combination of methods could be of interest.  Fusion, in the signal processing sense, 

involves the combination of data, data features, or decisions from data for a combined 

result [418].  Fusion extends from Aristophanes’ concept of Φροντιστήριο, or 

phrontisterion, the ‘think tank’ [419, p. 162; 420].  Of interest herein are ‘fusing’ various 

feature selection algorithms in an attempt to gain confidence in the features that are 

retained.  To pursue this aim, a general review on fusion is needed. Figure IV-15 presents 

the three general types of fusion: data, feature, and decision. In general:  

1. Data Level Fusion – combines the data from different sources; examples 

include combining a hyperspectral image pixel vector with the 

corresponding SAR intensity of that point [421] and combining different 

medical test values (e.g. blood sugar, enzymes, and etc.) 

2. Feature Level Fusion – combines the extracted features in some manner to 

be input to a classifier/detector/etc., a few examples would include 

examining PCA vectors from two different data sources in an ANN as 

ANN inputs, or the addition of the patients address to the medical test 

values (in the above example) 

3. Decision Level Fusion – combines the decision of multiple processes to 

create a combined decision.  A few examples of this would be 1) applying 

multiple statistical classifiers to the same problem and then combining 

their result to create a final score, 2) including multiple doctors in a 
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patient’s diagnosis, 3) combining a human interpretation of data with a 

computer decision (which might also be a fusion of multiple statistical 

classifiers too).   

Additionally, variants on the architectures presented in Figure IV-15 can exist; for 

instance, Zhao et al. [422] created a combined feature-decision fusion approach with 

different feature subsets used for each classifier.  The architecture of Zhao et al. [422] is 

therefore also a form of series fusion.  Generally, either diversity and/or accuracy are 

used as measures for combining classifiers [423].  Recent results have indicated that 

classification consistently outperforms diversity when combining classifiers [423].   
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Figure IV-15: Three General Fusion Method Architectures, adapted from [418]. 

 

4.2.3.1 MDA Loadings Fusion (MLF) 

As apparent in Figure IV-14 interpretation of MDA loadings into actionable 

feature rankings is non-trivial.  Perreault et al. [424] introduced a composite Potency 

index, 

 
  𝑳𝐹𝑜𝐹 = L2 �

𝝀
∑ 𝜆𝑖
𝑁𝐷𝑖𝑆
𝑖=1

�, (4.10)  
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which both squares each loading value to remove interpretation issues associated with the 

direction of the loading considered combines and scales each loading value by the 

eigenvalue.  Conceptually, the Potency index is a form of MDA Loadings Fusion (MLF), 

where loadings are fused through various methods to compute a final score.  Although 

the Potency index has seen use in various MDA-based DRA application, e.g. [425–432], 

variations of this concept have not been explored.  The Potency index and MLF methods 

are also conceptually similar to the weighted principal component approach of [433]; 

however, Kim and Rattakorn [433] considered variance explained and employed a 

moving range for selecting an appropriate level of dimensionality.  

The following MLF strategies are therefore considered: first, unscaled MLF, 

where each loading for each feature will be considered as having an equal vote, second, 

scaled MLF, where each loading will be scaled by its relative weight as determined by 

the eigenvectors.  

(a) Unscaled MLF 

Thus, the following methodology was developed to create a single score for each 

fingerprint feature: 

1. Compute the absolute value of all loadings vectors 

2. Apply a fusion method (maximum or sum) to create a single vector for 

ranking features. 

Two fusion methods were considered for Step 2, including 1) an Unscaled Maximum 

(UMax) score representing the maximum loading for each feature and 2) an Unscaled 
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Sum (USum) score representing the summation of loading values for each feature.  The 

USum score is computed by summing the loadings, L, across the columns, for the ith 

feature this is computed as 

 
  𝑳𝑈𝑆𝑢𝑚,𝑖 = � 𝑳𝑖

𝑁𝐷𝐷𝐷

𝑖=1

. (4.11)  

Similarly, the UMax score is computed by finding the maximum value of the loadings, L, 

across the columns, for the ith feature this is computed as 

   𝑳𝑆𝑆𝑢𝑚,𝑖 = max(𝑳𝑖). (4.12)  

Results presented in Figure IV-16 display the UMax MDA loadings scores which show 

that phase features are again the most relevant for classifier model development.  
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Figure IV-16: Feature ranking values from Unscaled Maximum (UMax) 

discriminant loadings using full-dimensional NF = 729 ZigBee TNG observations at 
SNR = 10 dB. 

(b) Scaled MLF 

While the scaled MDA loadings presented in Figure IV-17 reflect overall how 

each feature is correlated to a given discriminant function, it ignores additional 

information contained in the Eigenvalues.  Therefore a further MLF method, involving 

scaling the MDA loadings by their respective Eigenvalues, is a logical extension to 

account for the contribution that each discriminant function gives to total variance.  

The loadings signify how each data feature is correlated to a given discriminant 

function. Because discriminant functions are also weighted by eigenvalue, it is not 

directly intuitive how to use them for feature selection.  The method proposed involves 
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averaging the discriminant loadings after scaling them by their eigenvalue’s contribution 

to total variance explained.  This is computed as 

 
  𝑳𝑆 = |𝑳| �

𝝀
∑ 𝜆𝑖
𝑁𝐷𝑖𝑆
𝑖=1

� , (4.13)  

which is very similar to the Potency index of [424] and (4.10), but avoids the squared 

loadings of (4.10) which shrink the overall MDA loadings magnitude.   

This method enables the discriminant loadings to be ranked by the eigenvalue of 

each discriminant function and by the contribution of each feature to each discriminant 

function.   

The following general methodology was used for Scaled MLF and is further 

described in [417]: 

1. Compute the absolute value of all loadings vectors, 

2. Multiply each absolute value loadings vector by the appropriate Eigenvalue-

based weight per (4.13), 

3. Apply a fusion method (maximum or sum) to create one vector for ranking 

features. 

 Consistent with Unscaled MLF are two fusion methods for Step 3: 1) a Scaled 

Maximum (SMax) score, and 2) a Scaled Sum (SSum) score.  The SSum score is computed 

by summing the scaled loadings, LS, across the columns, for the ith feature this is 

computed as 
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  𝑳𝑆𝑆𝑢𝑚,𝑖 = � 𝑳𝑆,𝑖

𝑁𝐷𝐷𝐷

𝑖=1

. (4.14)  

Similarly, the SMax score is computed by finding the maximum value of the scaled 

loadings, LS, across the columns, for the ith feature this is computed as 

   𝑳𝑆𝑆𝑢𝑚,𝑖 = max�𝑳𝑆,𝑖�. (4.15)  

Figure IV-17 presents a series of scatterplots to show the general relationship between 

UMax, USum, SMax, and SSum for the full-dimensional NF = 729 feature set at 

SNR = 10 dB.  As presented in [417], Figure IV-17 shows that the four fusion methods 

appear to largely provide different results with two exceptions: 1) that UMax and USum 

are correlated, and 2) that SMax and SSum are highly correlated.  However, all four 

methods are further considered since small differences between methods can result in 

different DRA subsets and thus different results. 
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Figure IV-17: Matrix scatterplots for four MDA Loadings Fusion (MLF) methods, 
Unscaled (UMax and USum) and Scaled (SMax and SSum), using full-dimensional 

NF = 729 feature set at SNR = 10 dB.  Reprinted from [135]. 
 

4.2.4 DRA Fusion Methods 

Herein, post-classification feature extraction, termed “DRA fusion,” is considered 

as an extension of decision fusion.  Three DRA fusion methods are developed: rank-

based DRA fusion, score-based DRA fusion, and concatenation DRA fusion.  

4.2.4.1 Rank and Score Based Fusion 

Rank and score based fusion extend series fusion by considering the DRA ranking 

scores for each feature.  Both methods operate similarly and are conceptualized in Figure 
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IV-18. Step 1 in Figure IV-18 considers the ranks or normalized scores for each method, 

in Step 2 these are fused via summation and a new feature relevance ranking vector is 

computed.  

 
Figure IV-18: Generic Example of Score and Rank Fusion 

 

(a) Score Based DRA Fusion 

Score-based DRA, first normalizes the disparate DRA feature selection scales to a 

common scale via min-max data normalization, 

 X̀𝑚𝑖𝑛−𝑚𝐹𝑥 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝐹𝑥 − 𝑋𝑚𝑖𝑛  
,  (4.16)  

where 𝑋 is the original data, X̀𝑚𝑚𝑛−𝑚𝑎𝑚is the scaled data, 𝑋𝑚𝑚𝑛 is the minimum value, and 

𝑋𝑚𝑎𝑚  is the maximum value, can be used to place values on a [0, 1] interval [434].  

Although min−max normalization is sensitive to outliers [434], it is both a very common 

approach and places scores on an advantageous [0,1] interval.  Following normalization, 

scores from DRA methods are summed and then a new feature relevance ranking vector 

is computed from the fused scored. 
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(b) Rank Based DRA Fusion 

Dichotomization involves converting a continuous variable into a discrete 

variable.  An example of doing so would be converting continuous relevance scores into 

a ranked list, as described by [435].  Rank-based DRA fusion first considers the ordered 

ranking of each DRA method under consideration, these ranks are summed and a 

resulting summed rank vector is computed.  The ordered rank of the summed rank vector 

is then used to determine feature relevance ranking.  Thus rank-based DRA fusion is 

similar to score-based DRA fusion with the exception that the raw scores are not 

considered.  

However, employing ranks may not be advantageous due to dichotomization 

issues.  It is generally recommended to use continuous data, when available, rather than 

categorical data [436–441].  However, one encounters ranked lists in various feature 

relevance ranking operations and for RF-DNA rank-based DRA fusion avoids issues with 

score normalization, therefore considering the possibility of fusing results based on rank 

is considered.  

4.2.4.2 Concatenation Fusion 

Rank and score feature relevance ranking fusion seek to fuse the overall score of 

multiple feature relevance ranking methods.  Concatenation fusion involves 

concatenating two or more vectors to form a single vector and has seen application in a 

variety of fields, c.f. [442–456].  Herein, an approach similar to that of Kekre et al. [457] 

is developed, where the selected features are appended to each other.  However, care 
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must be taken in this process as multiple identical features will at a minimum add 

redundant features and necessarily introduce multicollinearity problems.  

Multicollinearity issues violate assumptions of MDA and other linear classifiers, 

therefore adding unique features is obvious necessary in feature selection fusion.  Such a 

problem was not a concern for Kekre et al. [457] since they were fusing Red, Green, and 

Blue pixel information and hence was not concerned with uniqueness.  

The RF-DNA concatenation DRA fusion method is conceptualized in Figure 

IV-19.  Here, a user selects the desired total NDRA and the NDRA / method top ranked features 

are proportionally taken from each DRA method, 

 𝑁𝐷𝑅𝐷 / 𝑚𝐹𝐹ℎ𝑜𝑑 = round �
𝑁𝐷𝑅𝐷

𝑁𝑚𝐹𝐹ℎ𝑜𝑑𝐹
�,  (4.17)  

where Nmethods are the number of DRA methods to be fused.  The process in Figure IV-19 

then removes repeated features to avoid singularity issues.  The process then adds one 

next highest ranked feature from each DRA method and iterates until the fused vector has 

NDRA features. 
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Figure IV-19: General Process for Concatenation Fusion 

4.2.5 Random Feature Selection 

When considering RF-DNA data, where there are hundreds of features, one could 

logically posit that any randomly selected and sufficiently large set of features could 

perform adequately.  Since the ZigBee and Z-Wave RF-DNA datasets have no know 

corrupt features, it is very logical to believe that any random subset of features would 

offer some discriminating ability.  

To account for this possibility, a random feature selection approach is considered 

to provide a lower bound for performance.  For ZigBee, the random feature selection 

approach considers a uniform random feature relevance ranking values U(0,1) for NF 

= 729 feature set.  An implicit assumption that higher magnitude random ranking values 
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are more relevant was used to select NDRA feature sets.  Since one random set of rankings 

may produce good results, replications are used and then classification and verification 

accuracies are averaged for the replicates.  Performance from the random feature 

selection therefore offers a minimum expected level of performance for a given NDRA. 

4.2.6 Dimensionality Assessment 

With relevance ranked features, DRA next involves selecting an appropriate level 

of dimensionality.  Both qualitative and quantitative DRA dimensionality assessment 

methods are possible.  Prior RF-DNA DRA research, e.g. [89, 113, 121], examined 

qualitative DRA for RF-DNA fingerprint features; however these were based on 

subjective assessments which may not be precise.  Herein quantitative DRA approaches 

to estimate the intrinsic dimensionality in the data are developed.  As noted by Jain et al. 

[213], an optimal approach to selecting features is via exhaustively examining classifier 

results produced from all possible combinations of features.  However, this is very 

computationally intensive (and was noted as such by Jain et al. [213]) and is not practical 

for large datasets such as the ZigBee RF-DNA data where NFeats = 729.  Therefore 

quantitatively DRA approaches that examine intrinsic dimensionality of the data are 

developed and considered. 

4.2.6.1 Qualitative Dimensionality Assessment 

Prior RF-DNA work, c.f. [89, 113, 121] examined qualitative DRA methods for 

RF-DNA where subjective operator experience was used to select NDRA.  This was 

partially due to having no explicit selection criteria for selecting NDRA based on KS-Test 
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p-value or GRLVQI relevance values.  To determine an appropriate number of ranked 

features to retain, Dubendorfer et al. [113] examined various qualitative operating points 

corresponding to  

 𝑁𝐷𝑅𝐷 =  [25, 50, 100, 200, 243] (4.18)  

feature sets.  These were evaluated using an MDA/ML classifier, with the conclusion that 

NDRA =50 features (selected using either KS-test p-values or GRLVQI relevance values) 

offered sufficient classification performance.  However, this quantity or proportion 

(50/729, or 6.86% of the available features) is not necessarily generalizable to other RF-

DNA fingerprint datasets and applications.  Additionally, it is not known how to 

systematically search for these quantities.  Therefore creating quantitative approaches 

based on the data itself are of particular interest.  

4.2.6.2 Quantitative Dimensionality Assessment 

Various quantitative dimensionality selection methods exist based on data 

covariance and correlation matrix responses [458–461].  Additionally, heuristics exist 

based on p-value significance and MDA-loadings magnitudes [358].   Of interest are 

developing quantitative dimensionality assessment methods for RF-DNA applications 

through data covariance and correlation matrices, p-values, and MDA-loadings.  

(a) Heuristic-based Approaches on Discriminant Loadings 

Discriminant loading magnitudes can also be used to estimate an appropriate 

number of features to retain.  Various publications, c.f. [462–464], suggested that 

discriminate loadings magnitudes greater than 0.30 indicate a feature is significant.  
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Given that these works did not address scaled loadings, the heuristic value of 0.30 was 

applied to Unscaled Max scores at SNR = 10 dB and yielded NDRA = 51 as the number of 

loadings greater than 0.30 in each composite.  Because NDRA = 51 is equivalent to the 

NDRA = 50 determined by [113], this leads credence to the qualitative method of [113] and 

thus only NDRA = 50 will be further examined for consistency with prior work.   

(b) P-value based Approaches 

Another approach to DRA assessment involves electing NDRA from p-value 

significance [358].  As described in Section (b) p-values tend to zero for RF-DNA 

fingerprints and thus employing a p-value threshold for quantitative DRA could involve 

retaining a majority of the data.  For instance, at 10dB, if one employed a p-value 

threshold of 5%, a common statistical significance threshold, one would retain NDRA = 

674 if using the F-test or NDRA = 512 if using the KS-test.  

Table IV-3 further presents the quantity of retained features using the F-test and 

KS-test at SNR = [0, 10, 18, 30] dB for different statistical significance levels.  Statistical 

significance levels of [0.1%, 1%, 5%, 10%] are employed as commonly used [465], 

although largely arbitrary [379], statistical thresholds.  Comparing Table IV-3 with the 

results of [121] indicates that p-value DRA assessment heavily over-estimates the 

number of features to retain since phase (𝜙) features, NF=243 herein, are known to offer 

performance comparable to the baseline.  Therefore, p-value dimensionality assessment 

appears neither appropriate or is considered for ZigBee RF-DNA data.     
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Table IV-3: Dimensionality Assessment by p-value and Significance Level, 
Reprinted from [49]. 

SNR METHOD 
SIGNIFICANCE LEVEL 

0.1% 1% 5% 10% 

0 dB 
F-TEST P-VALUES 196 264 350 402 

KS-TEST SUMMED P-VALUES 37 74 130 160 

10 dB 
F-TEST P-VALUES 589 639 674 688 

KS-TEST SUMMED P-VALUES 337 414 512 557 

18 dB 
F-TEST P-VALUES 706 713 720 722 

KS-TEST SUMMED P-VALUES 666 692 711 716 

30 dB 
F-TEST P-VALUES 718 725 727 728 

KS-TEST SUMMED P-VALUES 727 729 729 729 
 

(c) Data Covariance Matrix Approaches 

DRA assessments on the intrinsic dimensionality in data can also be considered.  

If one considers the eigenvalues of the data covariance (or correlation matrix) one can 

estimate data dimensionality based.  Given that RF-DNA features have consistent units, 

the covariance matrix was considered herein with three quantitative DRA assessment 

methods: Kaiser’s Criterion, Maximum Distance Secant Line (MDSL), and Horn’s 

Curve. 

(i) Kaiser Criterion 

Kaiser criterion offers a basic estimate of NDRA with Eigenvalues greater than the 

average eigenvalue being retained [237, 458, 466]; when correlation eigenvalues are 

considered, this results in all eigenvalues greater than 1 being retained [467].  Although it 

can offer reasonable performance, it is also acknowledged as a rather arbitrary method 
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[458].  Because this metric is frequently generalized to just selecting the eigenvalues 

above 1, both the appropriate metric (above the mean) for covariance eigenvalues is 

presented along with the ‘above 1’ metric.   

Kaiser criterion offers a basic estimate of dimensionality with the DRA 

assessment made where the quantity of covariance matrix eigenvalues greater than the 

mean are retained [237, 458].  Although offering reasonable performance, Kaiser is 

acknowledged as a rather arbitrary method [458].  Kaiser’s criterion at SNR = 10 dB 

suggests retaining NDRA = 191 features. 

(ii) Cattell’s Scree Plot 

One extension of the Kaiser criterion involves including visual subjectivity in the 

form of Scree plots.  Scree plots involve two dimensional plots of data covariance (or 

correlation) matrix Eigenvalues versus rank order, and provide a visual method of 

determining the dimensionality of the data [237].  Cattell’s Scree Test, involves visually 

examining the scree plot and selecting NDRA above the inflection point, the proverbial 

‘elbow in the curve’ [458].  The difficulty of this methods involves selecting the actual 

inflection point and NDRA.  

1. Maximum Distance Secant Line (MDSL) 

The MDSL approach, introduced by Johnson et al. [468], aims to remove 

subjectivity from Cattell’s Scree Test through algorithmic means.  MDSL both removes 

subjectivity of Cattell through automation, where 1) one creates a line between the first 

and last rank ordered eigenvalues and 2) on then finding the point with the largest 



140 

 

 

perpendicular distance from this line, i.e., the inflection point [468].  Using MDSL at 

SNR =10 dB NDRA = 26 features would be retained. 

(iii) Horn’s Curve 

Horn’s curve is another eigenvalue based DRA assessment method where 

eigenvalues are computed for a random dataset of the same size and rank as the ZigBee 

fingerprint set under analysis [469].  Horn’s curve involves plotting the data sample 

correlation matrix eigenvalues against the Horn’s curve eigenvalues [469].  The intrinsic 

dimensionality of the data is determined by counting the number of data eigenvalues that 

appear above Horn’s curve [469].  Using the Horn’s curve algorithm of Bigley [466], at 

SNR = 10 dB Horn’s curve indicated NDRA = 157 features should be retained. 

4.2.6.3 DRA Assessments and ZigBee RF-DNA Features 

As all of the presented DRA assessments provided different NDRA subsets, 

multiple DRA subsets must be considered.  For comparison with qualitative methods, 

NDRA = [50, 100] subsets are examined for consistency with [113], additionally a lower 

qualitative DRA assessment of NDRA = 10 is also important to examine to understand 

performance when only a very limited subset of features are available and thus examine 

how DRA methods fundamentally interacts with classifier performance.  The resultant 

NDRA subsets to examine for competing DRA methods is thus 
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 𝑁𝐷𝑅𝐷 =  [10, 26, 50, 100, 157, 191] , (4.19)  

which considers both quantitative and qualitative methods.  Comparison with the full-

dimensional NDRA = 729 feature set is also requisite to generate a performance baseline 

for comparison.  

4.3 DRA Applications to ZigBee Data 

To understand and compare the presented DRA methods, first a simple 

comparison of DRA methods results through correlation will be considered.  Then a 

comparison of how different DRA methods select different features will be discussed.  

Finally, a comparison of classification and verification performance assessments, with the 

MDA/ML classifier, will be made using the ZigBee dataset. 

4.3.1 DRA Method Comparisons 

Consistency was seen in the KS-test, F-test, GRLVQI relevance values, and MDA 

loadings where phase (𝜙) features are noticeably more relevant than both Amplitude (a) 

and Frequency (f) features.  This observation is further consistent with [89, 113], which 

concluded that Phase (𝜙) features alone are typically the most relevant for reliable device 

discrimination.  

However, it’s not apparent that each method scores the same features similarly.  

Table IV-4 presents a correlation matrix using Pearson correlations at SNR = 10 dB, were 

most methods are seen to be not highly correlated in their scores.  Incidentally, both 

GRLVQI relevance and random loadings were the least correlated to any other method, 

indicating limited similarity to the other methods. SSum and SMax were highly 
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correlated, while the other loadings methods are less correlated, thus indicating that 

loadings methods are sensitive to the fusion method. 

In Table IV-4, both the KS-test and the F-test are seen to be highly correlated, 

which indicates that both methods achieve similar results.  This is largely a logical result 

because both methods are univariate, distribution based, and consider a given feature and 

a vector of categorical class identities. The F-test result was also highly correlated with 

USum and UMax, mirroring the results of [462] which reported a positive correlation of 

0.675 between DRA loadings and the F-test. 
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Table IV-4: Correlation Matrix for DRA Method Scores at SNR = 10 dB, from Bihl et al. [135].  High correlations (>0.8) 
and low correlations (<0.2) are in bold and shaded light grey.   

 

 

DRA Feature Selection Method 
 Pre-classification Post-classification Baseline 
 
 KS F-Test GRLVQI Wilk’s MLF 

SMax 
MLF 
SSum 

MLF 
UMax 

MLF 
USum Random 

Pre-
classification 

KS 1.0 0.665 –0.164 0.388 0.474 0.166 0.726 0.6977 –0.038 
F-Test  1.0 –0.130 0.749 0.590 0.264 0.928 0.890 0.011 

Post-
classification 

GRLVQI   1.0 –0.082 –0.094 –0.030 –0.167 –0.178 0.041 
Wilk’s    1.0 0.377 0.144 0.730 0.726 –0.037 
MLF 
SMax 

    1.0 0.8589 0.630 0.565 –0.035 

MLF 
SSum  

 
   1.0 0.257 0.253 –0.046 

MLF 
UMax  

 
    1.0 0.937 –0.004 

MLF 
USum  

 
     1.0 –0.012 

Baseline Random         1.0 
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Since Table IV-4 illustrates that each DRA method is ranking features differently, 

examining the top ranked features across DRA methods is of interest.  Consistent with 

[417], Figure IV-20 considers the top NDRA = 10 features through a bar plot showing 

which features are selected for each method.  Only one replicate of the Random Selection 

DRA method presented for brevity.  Of interest in Figure IV-20  is that, although most 

features selected are Phase (𝜙) features (indices 244 to 486) most DRA methods selected 

entirely different features [417].  Interestingly, a few features in Figure IV-20 were 

consistently selected by multiple methods, thus indicating that some features are 

predominantly important, an observation consistent with results in [89, 113]. 

 
Figure IV-20: Top ranked NF = 10 reduced dimensional feature sets by DRA 

method, reprinted from [135]. 
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Figure IV-21 and Figure IV-22 further consider the differences in DRA method 

feature ranking for NF = 26 and NF = 50, respectively.  While the figures are consistent 

with those of Figure IV-20, where methods largely select different features, as NF 

increases, it is apparently that DRA methods begin to select similar features, which are 

predominantly phase features. 

 
Figure IV-21: Top ranked NF = 26 reduced dimensional feature sets by DRA 

method. 
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Figure IV-22: Top ranked NF = 50 reduced dimensional feature sets by DRA 

method. 

Table IV-5 further examines the features selected by each DRA method per each 

DRA subset.  In Table IV-5, the collective total features selected, NTOT, for F-test, KS-

test, GRLVQI, Wilk’s Lambda, USum, UMax, SSum, and SMax, are presented for each 

NDRA subset.  When considering NDRA  = 10, NTOT  = 61 total features were selected; 

however, 78.7% of these 61 features were uniquely selected by only one DRA method 

and hence many features were selected by multiple DRA algorithms.  Table IV-5 presents 

additional information regarding the percentage of NTOT which are amplitude (a), phase 
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that majority of features selected are phase features.  No obvious biases are seen toward 

variance (σ2), skewness (γ) or kurtosis (κ) being selected. 

Table IV-5: DRA Subset Statistics for F-test, KS-test, GRLVQI, Wilk’s Lambda, 
USum, UMax, SSum, and SMax.  Reprinted from [135]. 

DRA 
SUBSET NTOT % UNIQUE (a,  ϕ,  f) % (σ2, γ, κ) % 

NDRA = 10 61 78.7% 7.5, 73.8, 18.7 32.5, 46.3, 21.2 
NDRA = 26 142 72.5% 7.2, 65.9, 26.9 34.6, 38.0, 27.4 
NDRA = 50 238 65.1% 7.0, 64.3, 28.7 37.8, 35.2, 27.0 
NDRA = 100 381 48.8% 7.1, 57.1, 35.8 38.6, 32.3, 29.1 
NDRA = 157 505 39.2% 7.5, 54.9, 37.6 38.3, 31.7, 30.0 
NDRA = 191 545 31.9% 8.1, 53.5, 38.4 37.7, 32.5, 29.8 

 

4.3.2 DRA Method Classification Performance Assessments 

Beyond comparing DRA methods statically, further comparison of DRA methods 

through MDA/ML classification accuracy on the ZigBee RF-DNA dataset need 

consideration.  Representative MDA/ML average TST %C versus SNR results are 

presented in Figure IV-23 to Figure IV-25. Figure IV-23 presents results from the 

MDA/ML model using NDRA = 10, Figure IV-24 presents results from the MDA/ML 

model using NDRA = 26, and Figure IV-25 presents results from the MDA/ML model 

using NDRA= 50.  Additional results from NDRA = [100, 157, 191] are presented later in 

tables.  

Although at NDRA = 10 no feature selection method achieves the %C > 90% 

benchmark, and thus relative dB gain is not computed for comparison, the results here in 

Figure IV-23 show DRA performance differences across methods.  Consistent with 
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[395], Figure IV-23 shows MLF-based methods as offering significantly higher 

performance than other DRA methods with MLF methods having a 10% improvement in 

%C for most of the SNR considered when compared to other methods.  Additionally, 

MLF methods have an SNR gain over competing DRA methods of 10 to 12 dB for 

60% < %C < 75% (max).  The results of NDRA = 10 suggest that MLF-based DRA 

methods perform better than competing methods here since MLF feature relevance 

rankings were computed close to the functions used for MDA classifier development. 

Results for NDRA = 10 and NDRA  = 26, respectively Figure IV-24 and Figure IV-25, 

show that all feature selection methods tend to achieve similar performance as the 

number of features considers increases [417].  Despite this, some differences are still seen 

in the performance offered by the DRA methods with the loadings based-methods again 

offering significantly higher performance than the other methods under analysis.  
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Figure IV-23: ZigBee MDA/ML Testing (TST) classification performance for 

NDRA = 10 reduced dimensional feature sets, reprinted from [135]. 
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Figure IV-24: ZigBee MDA/ML Testing (TST) classification performance for 

NDRA = 26 reduced dimensional feature sets, reprinted from [135]. 
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Figure IV-25: ZigBee MDA/ML Testing (TST) Classification performance for 

NDRA = 50 reduced dimensional feature sets, reprinted from [135]. 
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Figure IV-26: ZigBee MDA/ML Testing (TST) classification performance for each 
DRA method at SNR = 10 dB.  NDRA = [10, 26, 50, 100, 157, 191, 250, 300, 350, 400, 

450, 500, 550, 600, 650, 700] reduced dimensional feature sets are evaluated to 
understand how DRA fundamentally impacts performance. Reprinted from [135]. 
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SSum, and UMax achieve better performance than randomly selected sets. Incidentally, 

the MDA/ML model developed using either KS-test and F-test selected features do not 

achieve %C > 90% at NF = 26.  As NDRA increases to NDRA = 157 and NDRA =191 it is seen 

that the competing DRA methods offer comparable classification performance.  
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Table IV-6: Relative DRA “Gain” (dB) Over Baseline Performance for %C = 90% Classification Accuracy. Bold entries 

with light grey shading denote best case (lowest gain) performance and bold entries denote values within 10% of the best.  
Reprinted from [135]. 

 

DRA SUBSET 

DRA FEATURE SELECTION METHOD 
PRE-

CLASSIFICATION POST-CLASSIFICATION BASELINE 

KS F-TEST GRLVQI WILK’S MLF 
SMAX 

MLF 
SSUM 

MLF 
UMAX 

MLF 
USUM 

RANDOM 

NDRA = 26 
TNG * * -18.747 -18.727 -14.269 -13.347 -13.809 -14.607 -14.937 
TST * * -19.349 -19.967 -14.167 -13.817 -13.847 -14.967 -15.407 

NDRA = 50 
TNG -7.877 -8.337 -8.357 -9.617 -7.947 -7.697 -7.897 -9.957 -13.557 
TST -8.077 -8.687 -8.787 -10.157 -8.347 -7.967 -8.387 -10.137 -13.007 

NDRA = 100 
TNG -4.707 -4.587 -3.387 -5.577 -4.137 -4.817 -4.127 -5.747 -8.997 
TST -4.887 -4.817 -3.407 -5.987 -4.487 -4.957 -4.477 -6.067 -8.777 

 NDRA = 157 
TNG -2.747 -2.627 -2.207 -4.287 -2.647 -2.487 -2.507 -2.727 -5.317 
TST -2.927 -2.787 -2.357 -4.407 -2.937 -2.587 -2.727 -2.757 -4.957 

NDRA = 191 
TNG -2.007 -1.907 -1.767 -3.447 -2.007 -1.897 -2.017 -2.317 -5.967 
TST -2.087 -2.077 -1.917 -3.437 -2.267 -1.927 -2.147 -2.407 -5.837 

*Denotes cases where methods never achieve %C = 90% 
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While the RAP results in Table IV-7 offer comparable information as seen in 

Table IV-7, RAP enables the ability to examine both NF = 10 performance, which could 

not be examined using gain, and RAP enables a comparison across SNR all operating 

points.  In  Table IV-7, higher values indicate higher performance and thus MLF DRA 

methods are seen to offer the highest performance overall.  From a classification 

standpoint, the loadings methods, especially SSum, UMax, and USum appear to therefore 

offer higher and more consistent performance.  Thus MLF methods offer a clear 

classification performance improvement over methods previously presented, e.g. [89] 

[113].  
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Table IV-7: Relative Accuracy Percentage (RAP) from Baseline NDRA = 729 Feature Set.  Bold entries with light grey 
shading denote best case (highest scoring) performance.  Reprinted from [135]. 

DRA Subset 

DRA Feature Selection Method 
Pre-Classification Post-Classification Baseline 

KS F-Test GRLVQI Wilk’s 
MLF 
SMax 

MLF 
SSum 

MLF 
UMax 

MLF 
USum 

Random 

NDRA = 10 
TNG 65.12 70.82 62.99 71.28 71.12 68.50 71.17 72.71 61.48 
TST 65.52 71.59 63.79 72.29 71.83 68.91 71.84 73.33 61.87 

NDRA = 26 
TNG 78.23 78.14 79.97 77.61 79.38 81.82 79.39 81.85 74.23 
TST 78.99 79.16 80.68 78.69 80.08 82.49 80.04 82.51 74.98 

NDRA = 50 
TNG 87.52 87.25 87.45 85.08 87.59 88.11 87.34 87.42 78.69 
TST 88.05 87.88 88.01 85.95 88.30 88.71 88.17 88.05 79.25 

NDRA = 100 
TNG 92.55 92.44 93.27 90.95 92.93 92.41 92.92 92.01 85.85 
TST 92.86 92.94 93.56 91.51 93.52 92.65 93.56 92.30 86.24 

NDRA = 157 
TNG 94.97 95.54 95.52 92.95 95.47 95.97 95.67 95.59 90.77 
TST 95.39 95.99 95.89 93.37 95.89 96.36 96.16 96.00 91.48 

NDRA = 191 
TNG 96.36 96.69 96.34 94.18 96.41 96.78 96.50 96.76 91.07 
TST 96.70 97.13 96.71 94.54 96.83 97.13 96.87 97.19 91.30 

Average RAP 86.02 87.13 86.18 85.70 87.45 87.49 87.47 87.98 80.60 
Cumulative RAP 1032.26 1045.57 1034.19 1028.40 1049.37 1049.85 1049.65 1055.71 967.20 
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4.3.3 DRA Method Verification Performance Assessments 

“One vs one” device claimed ID verification performance was considered to 

further evaluate each DRA classifier model.  Figure IV-27a presents authorized device 

claimed vs. actual ID verification assessment for UMax and NF = 50 at SNR = 10 dB, the 

SNR at which the baseline NF = 729 MDA/ML classifier achieves %C = 90% accuracy.  

The NAuth = 4 authorized device ROC curves presented in Figure IV-27a show that 50% 

of authorized devices are correctly authorized at TVR > 90% and FRR < 10% using this 

model.  Figure IV-27b similarly shows the rogue rejection rate for the UMax, NF = 50 

model at SNR = 10 dB.  At the threshold of TVR > 90% and FVR < 10%, 33/36 or 91.7% 

of rogue devices were correctly rejected. 

 
(a) Authorized Based on TVR > 90% and 
FVR < 10% criteria (solid lines), this 

reflects TVR = 2/4 = 50% success. 

 
(b) Rogue. Based on TVR > 90% and 

RAR  < 10% criteria (solid lines), this 
reflects RRR = 33/36 = 91.7% success 

Figure IV-27: ZigBee Device ID Verification performance for the NDRA = 50 UMax 
feature subset at SNR = 10 dB.  Reprinted from [135]. 

To visually examine the results from the MDA classifiers developed from the 

DRA algorithms and the DRA assessment methods, a total of 108 ROC curve figure pairs 
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Table IV-8.  Here bold entries denote values within 10% of the Best, and bold entries 

with light grey shading denote best case performance.  With the exception of Random 

selection results, which logically offer the poorest performance for all NDRA subsets, two 

observations can be made: firstly, that all DRA other selection methods offer comparable 

verification performance for higher NDRA subsets, e.g. NDRA = [157, 191], and that MLF-

based methods generally consistent and generally superior performance for lower 

dimensional, e.g. NF = [10, 26], subsets.  Consequently the verification performance 

results concur with the observations seen in the classification results. 
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Table IV-8: Device ID Verification Performance For %C = 90% at SNR = 10 dB:  True Verification Rate (TVR) for 
NAuth = 4 Authorized Devices and Rogue Rejection Rate (RRR) For  NAuth xNRog  = 36 rogue scenarios.  Bold entries denote 

values within 10% of the Best, and bold entries with light grey shading denote best case performance and.  Reprinted from 
[135]. 

DRA Subset 

DRA Method 
Pre-Classification Post-Classification Baseline 

KS F-Test GRLVQI Wilk’s 
MLF 
SMax 

MLF 
SSum 

MLF 
UMax 

MLF 
USum 

Random 

NDRA = 10 
TVR (%) 0 25 0 25 25 50 25 50 0 
RRR (%) 36.11 52.78 19.44 41.67 38.89 36.11 38.89 50 31.48 

NDRA = 26 
TVR (%) 50 50 50 50 50 50 50 50 25 
RRR (%) 69.44 72.22 80.56 63.89 75 75 77.78 75 51.85 

NDRA = 50 
TVR (%) 50 75 50 75 50 50 50 50 50 
RRR (%) 86.11 91.67 91.67 83.33 91.67 91.67 91.67 88.89 75 

NDRA = 100 
TVR (%) 75 75 100 75 75 75 75 75 66.67 
RRR (%) 94.44 94.44 94.44 94.44 94.44 94.44 94.44 94.44 86.11 

NDRA = 157 
TVR (%) 100 100 100 100 100 100 100 100 75 
RRR (%) 94.44 94.44 94.44 94.44 94.44 94.44 94.44 94.44 91.67 

NDRA = 191 
TVR (%) 100 100 100 100 100 100 100 100 75 
RRR (%) 97.22 97.22 94.44 94.44 97.22 97.22 97.22 97.22 91.67 
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V. Extensions to the LVQ-Family of Algorithms 

The ant, viewed as a behaving system, is quite simple. The apparent complexity of its 
behavior over time is largely a reflection of the complexity of the environment in which it 

finds itself. 

 −HERBERT A. SIMON, 1916-2001 

 

While various studies have extended Learning Vector Quantization (LVQ) 

algorithms by considering non-Euclidean distance measures, the extensions are not 

always correctly formulated and the reason(s) for considering alternate measures is not 

always clear.  Below, the Generalized Relevance Learning Vector Quantization Improved 

(GRLVQI) process is fundamentally extended via a process to select and incorporate 

alterative distance measures.  As discussed in Chapter III, differences in LVQ algorithms 

generally revolve around cost functions and hence changing distance measures involves 

deriving new update equations.   

5.1 Introduction 

Herein, overall LVQ algorithm considerations include the following:  

1) a minor general improvement to LVQ algorithms is made by using a scaled 

gradient descent which enables direct comparison of learning rates between 

problems; 

2) approaches for selecting the number of Prototype Vectors (PVs) are 

considered; 

3) a derivative skeleton framework is created to generalize the process for 

incorporating alternate distance measures into LVQ, Relevance Learning 
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Vector Quantization (RLVQ), Generalized Learning Vector Quantization 

(GLVQ), Generalized Relevance Learning Vector Quantization (GRLVQ) 

and GRLVQI algorithms; 

4) a methodology is formalized for proper selection and incorporation of 

distance measures and learning rates; 

5) a new cost function is presented for GLVQ, GRLVQ, and GRLVQI 

algorithms to permit a wide variety of distance measures to be considered; 

6) a design of experiments (DOE) methodology with Analysis of Variance 

(ANOVA)-based response surface methods and optimization of algorithm 

parameter settings through sequential quadratic programming (SQP) are 

employed to find optimal operating points.  The primary benefit of these 

improvements is that finding appropriate algorithm parameter settings is 

optimized and a systematic process for deciding which distance measure to 

use in LVQ algorithms is developed and considered. 

The resultant improved GRLVQI algorithm is termed GRLVQI-Distance 

(GRLVQI-D) to indicate the algorithm is generic and can be adopted to use any 

differentiable distance measure.  Additionally, similar extensions to the GLVQ and 

GRLVQ algorithms are made with these extended algorithms termed GLVQ-D and 

GRLVQ-D, respectively.  

This chapter is organized as follows.  Firstly, algorithmic development aspect 

relative to LVQ through GRLVQI are presented in Section 5.2.  The GRLVQI-D 

algorithm is presented in Section 5.2.2.4 and a procedure is developed and applied in 
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Section 5.3 for selecting distance measures for GRLVQI-D.  GRLVQI-D is extended to 

RF-DNA Fingerprinting in Section 5.4. 

5.2 GRLVQI-D Algorithm Development 

High levels of dimensionality are known to adversely affect Euclidean distance 

based classifiers [470, 471], which is directly relevant to RF-DNA applications of LVQ 

algorithms since RF-DNA fingerprint features generally have a large number of features 

and exemplars.  Therefore, incorporating a non-Euclidean distance metric in GRLVQI 

could be advantageous.  However, to incorporate a non-Euclidean distance measure the 

underlying cost-function must be changed in a given LVQ algorithm. 

5.2.1 Prior Implementations of non-Euclidean Distances in LVQ 

In LVQ algorithms, a gradient descent is used with the step size a function of the 

cost function.  A gradient descent implicitly requires evaluating the gradient of the 

associated cost function; therefore, a new PV update expression must be computed for 

any change in the distance equation or cost function.  GRLVQ and GRLVQI were 

developing using squared Euclidean distance for selecting prototype vectors [245].  Other 

LVQ variations have seen improvement through difference distance metrics, e.g. the 

innovations of Schneider et al. [298] to where two new metrics similar in form to 

Mahalanobis distances were incorporated into GRLVQ.  

Common issues in LVQ distance measure extensions is neglecting to compute a 

new PV gradient descent update equation when considering alternative distance equations 
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and incorrect formulations, c.f. [472–475].  These common pitfalls found in the LVQ 

literature.  PV update equations can be generalized, per Ji et al. [476, 477], as  

 𝒘(𝑑 + 1) = 𝒘(𝑑) + 𝑐𝒙, (5.1)  

where c is a scalar and x is the PV update. However, such formulations imply that c is 

merely a scalar step size when in fact it is composed of both the learning rate and a 

gradient descent specified quantity.  This is an important distinction since any given c is 

specific to the cost function, learning rate, and the distant equation employed.  

 Biehl et al. [290] created distance measure variants for GRLVQ; however, the 

process presented in Biehl et al. is not easily generalizable to other distances and the 

equations are presented with non-intuitive formulations.  Strickert et al. [291] formulated 

a GRLVQ variant using a correlation based measure and provided justification for using 

both distance metrics and measures; however, the formulation skipped over multiple 

steps to make it generalizable to other problems.  When a different distance measure is 

used direction of the PV update must be considered relative to the direction of the 

distance measure [291]. The solution adopted herein and suggested by Strickert et al. 

[291] is to merely flip the signs on the PV update equations [291]. 

 However, all of these approaches created specific formulations and were not 

readily generalizable.  Since, the process and equations presented for these applications is 

not always intuitive or correctly followed, creating a general framework to facilitate 

formulating PV update equations is beneficial.  To create such a framework, the process 

used to formulate PV update equations must be understood and components identified 



164 

 

 

that need to be changed whenever a new distance equation is to be used.  Therefore, to 

avoid any confusion, the entire PV update equation is reported herein. 

5.2.2 Developing a Differentiation Skeleton for LVQ Improvements 

The following general improvements are made to LVQ algorithm.  First, Section 

5.2.2.1 presents a scaled gradient descent method for any LVQ algorithm to enable direct 

comparison of learning rates.  Then Section 5.2.2.2 discusses gradient descent 

considerations when making changes to LVQ algorithms, supporting derivations are 

provided in Appendices E and F.  Cost function extensions to GLVQ, GRLVQ, and 

GRLVQI are discussed in 5.2.2.3 and Appendix G. Finally, relevance derivatives for 

GRLVQ and GRLVQI algorithms are discussed in discussed in 5.2.2.3 and Appendix H.  

A differentiation skeleton for incorporating any differentiable distance measure in LVQ, 

RLVQ, GLVQ, GRLVQ, and GRLVQI is then presented in 5.2.2.4. 

5.2.2.1 Scaled Gradient Descent 

Widrow-Hoff (W-H) learning is a least mean squares formulation for the gradient 

descent [243; 250, pp. 55-57; 478].  W-H considers a squared Euclidean distance metric 

(e) for general gradient descent updating of LVQ [250, pp. 55-57; 478].  The gradient of 

function f is given by 

 
𝛻𝑓𝐾 = �

𝜕𝑓𝐾
𝜕𝑋1

,
𝜕𝑓𝐾
𝜕𝑋2

… ,
𝜕𝑓𝐾
𝜕𝑋𝑆

� , (5.2)  

where K is the step number and p is the number of variables [243].  From (5.2), a gradient 

search for a maximum can be computed via  
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𝑋�𝑖+1 = 𝑋�𝑖 +

𝛿∇𝑓𝑖
‖∇𝑓𝑖‖

 , (5.3)  

where 𝛿 is the learning rate or step size [243].  Given 𝛿/‖∇𝑓𝑖‖ is a scalar, the scaled 

learning rate can be incorporated in other gradient descents.  Considering the gradient 

descent algorithm in (3.20), it can be rewritten as   

 𝒘𝐹(𝑑 + 1) = 𝒘𝐹(𝑑) + 𝑖∗(𝑑)∇𝑒 , (5.4)  

where,  

 
𝑖∗(𝑑) =

𝑖(𝑑)
‖∇𝑒‖

  . (5.5)  

The underlying advantage of incorporating (5.4) and (5.5) in LVQ, RLVQ, GLVQ, 

GRLVQ and GRLVQI is that it enables a direct comparison of learning rates across LVQ 

methods and datasets without significantly changing the algorithms.  

5.2.2.2 Gradient Descent and Derivatives in LVQ Algorithms  

To incorporate a non-Euclidean distance measure in LVQ, we must consider the 

gradient computation, as seen in (3.20) and discussed in Section 3.3.1, of the cost 

function 𝐶�𝑤𝑛(𝑑)�.  For LVQ, the cost function is the distance measure itself.  Therefore, 

creating a non-Euclidean distance LVQ algorithm requires 1) selecting a distance 

measure to replace (3.21), and 2) updating the cost function by computing the first 

derivative of the new measure to replace 𝑚𝑖 − 𝑤𝐹(𝑑)  in (3.24) and (3.25).  The 

appropriate in-class PV signs would then be computed per the derivative and then 

considered with respect to what the new measure represents.  
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(a) Gradient Descent in RLVQ Relevance Computation 

Per the discussion in both Section 3.3.1.4 and [266], the RLVQ expression in 

(3.31) is also computed via a gradient descent.  Thus, when changing a distance metric in 

RLVQ it is necessary to change the cost function.  When considering the RLVQ gradient 

descent in (3.29), the cost function for RLVQ is the distance in (3.30).  The product rule 

for derivatives is,  

 𝑑(𝑑𝑐) = 𝑑𝑑𝑐 + 𝑐𝑑𝑑  (5.6)  

where u and v are two different variables [279].  For the RLVQ cost function, one logical 

choice would be  𝑑 = 𝜓  and  𝑐 = (𝑚𝑖 − 𝑤𝑛)2 , which is considered for  𝜕𝑑 𝜕𝜓⁄ , the 

derivation of the distance d with the respect to  𝜓 .  This results in the following 

derivation: 

 𝜕𝑑
𝜕𝜓

= 𝜓 ∙ 0 + 1 ∙ �𝒙(𝑑) −𝒘(𝑑)�
2
 

= (𝒙(𝑑) −𝒘(𝑑))2  
(5.7)  

with the final expressing being the expression in (3.31) with the sign being associated 

with convention where smaller values indicate higher significance and larger values 

indicate lower significance [266]. 

(b) Gradient Descent in GLVQ, GRLVQ, and GRLVQI 

Although the gradient descent derivations for LVQ and RLVQ appear trivial, as 

discussed in Section 5.2.2.2(a), the derivations are non-trivial when the gradient descents 

are computed for GLVQ, GRLVQ and GRLVQI.  To fully understand the process, 
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derivations for the PV update gradient descent operations and relevance gradient descent 

are discussed in Appendices E through H.   

5.2.2.3 Cost Function Extensions for the GLVQ Family of Algorithms, the GLVQ-D, 
GRLVQ-D, and GRLVQI-D Algorithms  

The nominal relative distance difference equation for GLVQ, GRLVQ, and 

GRLVQI presents issues when non-Squared Euclidean distance measures are used.  For 

this equation to yield the expected values between −1 and +1, it assumes that the distance 

measure yields a positive value.  When changing the distance measure to a non-squared 

Euclidean distance one is not ensured of the distance being positive.  Hence selecting an 

appropriate relative distance difference equation is necessary.  Two obvious approaches 

were considered: an absolute value measure, where the absolute value of each distance is 

taken, and a squared measure, where each distance is squared.  The absolute value 

approach, which would consider 

 
𝜇(𝑚𝑚) =

(|𝑑𝐽| − |𝑑L|)
(|𝑑𝐽| + |𝑑L|) , (5.8)  

has notable issues and was not developed further because this would require an overly 

complex gradient descent method due to there being three conditions of absolute value 

derivatives: positive, negative, and 0 when the function itself is continuous but not 

differentiable at 0 [479].  Therefore, only an improved squared relative distance 

difference function will be developed and considered. 
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 In order for the new relative distance difference equation to compute the same 

scores for the nominal squared-Euclidean distance measure, the following improved 

equation was developed, 

 
𝜇(𝑚𝑚) =

(𝑑𝐽)2 − (𝑑L)2

(𝑑𝐽)2 + (𝑑L)2, (5.9)  

where each distance is ensured to be positive.  However, by changing 𝜇(𝑚𝑚) a new 

GLVQ gradient descent must necessarily be computed, per Section 5.2.2.2(b).  The 

derivation for the new GLVQ gradient descent is presented in Appendix G, with the 

resultant PV update becoming 

 
𝒘𝐽(𝑑 + 1)  = 𝒘𝐽(𝑑) +

8𝑖(𝑑)(𝜕𝑓 𝜕𝜇(𝑚𝑚)⁄ )𝑑𝐿

(𝑑𝐽 + 𝑑𝐿)2
(𝒙𝑚 −𝒘𝐽)3  

𝒘𝐾(𝑑 + 1) = 𝒘𝐿(𝑑) −
8𝑖(𝑑)(𝜕𝑓 𝜕𝜇(𝑚𝑚)⁄ )𝑑𝐽

(𝑑𝐽 + 𝑑𝐿)2
(𝒙𝑚 − 𝒘𝐿)3. 

(5.10)  

which differs from the PV updates in (3.35) only by the scalar multiplier and the squared 

terms in the relative distance difference equations. 

When considering GRLVQ or GRLVQI, one must also update the relevance 

gradient descent if the relative distance difference equation has been changed.  Appendix 

H presents this process for (5.9) and yields a new relevance update,  

 𝜓𝑞(𝑑 + 1) = 𝜓𝑞(𝑑)

− 𝑖(𝑑)𝑓′|𝜇(𝑥𝑆) �−
2(𝑑𝐽 − 𝑑L)�𝑚𝑖𝑞(𝑑) − 𝑤𝑛𝑞(𝑑)�

2
 

(𝑑𝐽 + 𝑑L)2 � 
(5.11)  

which is equivalent to the GRLVQ relevance update in (3.37) prior to being multiplied 

and written out.  Following the considerations of Section 3.3.1.6 and Appendices E 

through H, the underlying GRLVQ gradient descent PV gradient descent is thus,  
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𝒘𝐽(𝑑 + 1)  = 𝒘𝐽(𝑑) +

8𝑖(𝑑)(𝜕𝑓 𝜕𝜇(𝑚𝑚)⁄ )𝑑𝐿

(𝑑𝐽 + 𝑑𝐿)2 𝜳 ∙ (𝒙𝑚 −𝒘𝐽)3  

𝒘𝐾(𝑑 + 1) = 𝒘𝐿(𝑑) −
8𝑖(𝑑)(𝜕𝑓 𝜕𝜇(𝑚𝑚)⁄ )𝑑𝐽

(𝑑𝐽 + 𝑑𝐿)2 𝜳 ∙ (𝒙𝑚 − 𝒘𝐿)3 . 

(5.12)  

5.2.2.4 A Differentiation Skeleton for LVQ Distance Metrics  

Examining the derivation process that yields the PVs updates for LVQ, RLVQ, 

GLVQ, or GRLVQ, one can notice a few patterns.  Firstly, while the gradient descent 

cost function in LVQ and GLVQ differs dramatically, one will compute the same first 

derivative for a given distance metric for both algorithms since the distance metric is the 

cost function in LVQ, per (3.20)–(3.25) .  In GLVQ, the distance metric first derivatives 

are the same as in LVQ except for denotation for the appropriate in-class and out-of-class 

distances, (E.17)–(E.20), however additional derivatives must be computed for the cost 

function, (E.1)–(E.5), and the relative distance difference equation, (E.7)–(E.16). These 

must then be assembled; however, these are noticeably identical when changing distance 

measures except for (possibly) sign and the appropriate in/out of class subscript. 

Additionally, as long as the same logistic sigmoid cost function is employed per (E.1)–

(E.5) then one does not need to recompute its derivative, 𝑓′�𝜇(𝑚𝑚)�.  Similarly, the 

derivatives in RLVQ and GRLVQ are closely related to the derivative computed for their 

respective cost function.  

 As long as the underlying gradient descent process in (3.20) is not changed, the 

derivative approach will be consistent.  It is intuitively obvious to the casual observer that 

as long as both the difference equation in (3.34) is used, then general quotient rule 
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process in (E.6) will be consistent and therefore changing the distance metric in a GLVQ 

type of gradient descent process merely involves computing the following 

derivatives  𝑑𝑑/𝑑𝑤𝐽 ,  𝑑𝑐/𝑑𝑤𝐽 ,  𝑑𝑑/𝑑𝑤𝐿  and  𝑑𝑐/𝑑𝑤𝐿  and then only computing the 

resultant equation via the quotient rule.   

Following the above knowledge, Figure V-1 presents decomposition of GLVQ, 

GRLVQ and GRLVQI gradient descents and from where each respective part is 

computed.  Using this knowledge, one can determine which component of the gradient 

descent needs to be updated based upon which change in the algorithm.  For example, if 

only the distance measure is changed, then only the component in red needs to be 

changed; care must be taken with the scalar multiplier, since this is a function of both the 

distance measure and relative distance difference, and it could further also be a function 

of the cost function, depending on what is changed.  

 Observable in Figure V-1 is that this visualization is generalizable to LVQ as well 

as GLVQ algorithms.  For instance, in LVQ and RLVQ, the cost function of the gradient 

descent is the distance measure itself and thus the distance measure and relative distance 

difference measure related components of Figure V-1 are not considered and one only 

computes the derivative of cost function.  One can further similarly observe relevance 

updates as seen in Figure V-2.  Extending from these observations, an algorithmic 

skeleton for making various changes to LVQ, RLVQ, GLVQ, GRLVQ, and GRLVQI is 

presented in Figure V-3. 
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Figure V-2: Components of GLVQ, GRLVQ and GRLVQI Gradient Descents. 
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Figure V-1: Components of GLVQ, GRLVQ and GRLVQI Gradient Descents. 
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Algorithm 3 LVQ Derivative Framework 

Select new distance metric d(x,w) 
if 𝝏𝒅(𝒙, 𝒘)/𝝏𝒘 exists do 

Compute 𝛁𝑪�𝒘(𝒕)� = 𝝏𝒅(𝒙, 𝒘)/𝝏𝒘 
Insert 𝛁𝑪�𝒘(𝒕)� into LVQ algorithm per  𝒘(𝒕 + 𝟏) = 𝒘(𝒕) − 𝝐(𝒕)𝛁𝑪�𝒘(𝒕)� 
Use new 𝒅(𝒙, 𝒘) in  𝐚𝐚𝐚𝒎𝒊𝒎𝐢 (∑𝒅(𝒙𝒊, 𝒘𝒊)) 

end 
if RLVQ expression desired 

Extend 𝒅(𝒙, 𝒘) function to include relevance 
Compute   𝝏𝒅(𝒙, 𝒘)/ 𝝏𝝏 
Extend LVQ function to include logic for relevance computation 

end 
if GLVQ expression desired 

Select cost function, 𝒇�𝝁(𝒙𝒎)�, and distance measure 𝝁(𝒙𝒎) 
Compute derivative for cost function 𝒇(𝝁(𝒙𝒎)) via 

    𝝏𝒇�𝝁(𝒙𝒎)�
𝝏𝒘

= 𝝏𝒇�𝝁(𝒙𝒎)�
𝝏𝝁(𝒙𝒎)

𝝏𝝁(𝒙𝒎)
𝝏𝒘

 

Compute derivative for sigmoid:   
𝝏𝒇�𝝁(𝒙𝒎)�
𝝏𝝁(𝒙𝒎) = 𝒇′�𝝁(𝒙𝒎)�𝝁′(𝒙𝒎) 

Consider sigmoid distance metric and compute for   
𝝏𝝁(𝒙𝒎)/𝝏𝒘𝑱 & 𝝏𝝁(𝒙𝒎)/𝝏𝒘𝑳 

if 𝝁(𝒙𝒎) = �𝒅𝑱−𝒅𝐋�
(𝒅𝑱+𝒅𝐋)  

Compute: 

       𝝏𝝁(𝒙𝒎)
𝝏𝒘𝑱 = 𝝏𝝁(𝒙𝒎)/𝝏𝒘𝑱�𝟐𝒅𝐉�

(𝒅𝑱+𝒅𝐋)𝟐  and 𝝏𝝁(𝒙𝒎)
𝝏𝒘𝑳

= 𝝏𝝁(𝒙𝒎)/𝝏𝒘𝑳�−𝟐𝒅𝐋�
(𝒅𝑱+𝒅𝐋)𝟐  

else  
      Compute new derivative expression for distance measure 

end 
Assemble equations 

end 
if GRLVQ or GRLVQI expression desired 

Follow procedure for GRLVQ 
Compute  𝝏𝒅(𝒙, 𝒘)/𝝏𝝏 
Assemble equations 

end 
end 

Figure V-3: Pseudocode Process and Derivative Skeleton for Changing Distance 
Metrics in LVQ, RLVQ, GLVQ, and GRLVQ. 
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5.3 Selecting Distance Measures for GRLVQI-D 

 With the GRLVQI-D algorithm formalized, one must now determine which 

distance measure should be incorporated.  However, the process presented in Section 

5.2.2 being formalized, it is still non-trivial considering the various derivatives and 

computations.  It is additionally, non-intuitive on which distance measure to select.  

Appendix I reviews various distance measures as described by Cha [283] in his review of 

distance measures.   

A general distance measure selection process for LVQ algorithms is therefore 

presented due to 1) the long list of possible distance measures, 2) the involved derivation 

process required to implement a new distance measures into GRLVQ or GRLVQI, 3) the 

large amount of data and computation time needed for RF-DNA applications, and 4) no 

extant guidance on which distance measures should be considered.  The proposed 

distance measure selection process innovates via the following, 1) distance measures are 

first compared via correlation on two random vectors, 2) uncorrelated distance measures 

then are then selected via statistical clustering, then 3) the gradient, first derivatives, of 

these measure are computed and LVQ performance is examined on an academic problem 

dataset, and finally, 4) measures that offer good performance in LVQ are then examined 

in RLVQ, GLVQ, and GRLVQ.  Underperforming distance measures are not considered 

in subsequent algorithms, e.g. a measure that performs poorly in LVQ is not considered 

in RLVQ, due to the general belief that if one cannot solve a simple problem then one 

will have difficulties solving more complex problems.  Figure V-4 presents the general 
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methodology for selecting distance measures and developing distance measure variants of 

GRLVQI. 

 
Figure V-4: Iterative Process for Selecting Distance Metrics for GRLVQI. 
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5.3.1 Selecting Distance Measures for Consideration 

Cha [283] identified 62 different distance measures and metrics, which can be 

grouped into 9 related groups as described in Appendix I: Minkowski, L1, Intersection, 

Inner Product, Fidelity, Squared L2, Shannon’s entropy, Combinations, and Vicissitude.  

However, many of these distance metrics are highly related, correlated, or contain non-

differentiable factors. Therefore, only a few were evaluated for GRLVQI and measures 

employing maximization or minimization were not considered due to the dubious 

derivations [480].  Considering the excluding factors, 22 measures remained for 

consideration: Euclidean, City Block, Squared Euclidean, Sorensen, Canberra, Inner 

Product, Harmonic Mean, Cosine, Pseudo-Cosine, Kumar-Hasselbrook, Jaccard, Dice, 

Pearson χ2, Neyman χ2, Squared χ2, Divergence, Additive Symmetric, Kumar-Johnson, 

Covariance, Correlation, Mahalanobis, and Squared Mahalanobis.  

5.3.2 Comparing Potential Distance Metrics via Correlation 

To understand how the remaining 22 distance measures were related, a correlation 

study was posed where distance measures are grouped based upon correlation of results 

and only dissimilar distance measures are selected for further analysis for incorporation 

into LVQ.  To quantify the correlation between distance measures, two uncorrelated 

random normal vectors of length 1,000 were permutated.  These vectors were 

uncorrelated with a Pearson correlation coefficient of 0.024. These uncorrelated vectors 

were then inserted for 𝑃 and 𝑄 in the appropriate equations seen in Appendix I, and then 

1,000 paired distances between P and Q were then computed.   
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Figure V-5 presents a correlation matrix between the paired distance measures 

results.  A few observations can be made from Figure V-5, firstly, many distance metrics 

are highly correlated only within Cha’s [283] ‘families’ or groups; secondly, there no 

measure appears highly correlated with all other measures; and thirdly, both positive and 

negative correlations are seen.  Positive and negative correlations should logically be 

considered with respect to the nominal squared Euclidean measure; measures that are 

negatively correlated with the squared Euclidean measure logically have larger values for 

more similar exemplars and smaller values for more different exemplars, consistent with 

[481], when employing measures negatively correlated to Squared Euclidean distance 

one desires to maximize the distance rather than minimize.   
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Figure V-5: Correlation Comparison of Distance Metrics on Random Normal Data. 

 

To select distance measures for inclusion into GRLVQI hierarchical clustering, 

consistent with [482], was used to find groups of distance measures.  Hierarchical 

clustering considers a distance matrix between variables and then applies a linkage 

approach to determine how variables are connected [448].  For a distance matrix, the 

correlation matrix from Figure V-5 was used since this is the relative distance of interest.  

 A dendrogram, a diagram employed in cluster analysis to show partitions and 
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closeness of variables [236], is presented in Figure V-6. Figure V-6 is viewed and 

interpretted as follows: the y-axis indicates closeness of variables, and ranges from 0 

(similar) to a maximum of 4 (distant) [449].  At the maximum value, all variables are 

linked together, heading towards zero (where only similar variables are linked) groups 

are determined through an appropriate linkage method [449, 450].  The complete linkage 

method, which finds most distant pairs and groups less distance pair together [236, 451], 

was used to evaluate closeness.  
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 Figure V-6: Dendrogram with Complete Linkage and Correlation Matrix, 

from Figure V-5, as Distance Matrix. 
 

The number of clusters, and hence number of distance measures to consider, was 

determined by setting a subjective closeness threshold by considering how far apart the 

groupings in Figure V-6 appear.  A threshold of 0.5 was used, resulting in 9 clusters to 

consider.  A “Chinese Menu” approach, consistent with [486–491], was then used to 
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select distance measures wherein one method from each group was selected.  To facilitate 

derivations and inclusion into LVQ algorithms, the simplest distance equation in each 

group was selected.  This resulted in the following nine distance measures being further 

considered: Additive Symmetry, Neyman Chi2, Pearson Chi2, Sorensen, Pseudo-Cosine, 

Canberra, Squared Euclidean, Cosine, and Squared Mahalanobis.  

5.3.3 Determining Suitable Distance Measures and LVQ Algorithm Settings 

To understand how LVQ distance measure extensions behave for various 

operating points, a small academic dataset was considered and learning and relevance 

rates were considered for each LVQ distance measure variant.  As underperforming 

algorithms were found, they were not considered further, e.g. poorly performing LVQ 

distance measure variances were not further considered in RLVQ.  Fisher Iris [235], a 

small academic dataset, was considered with NF=4, Nobs = 150, with data equally divided 

among NC = 3 classes.  Training and testing sets were segregated by taking the first 45 

observations from each class for training with the remaining 5 observations per class 

considered as testing.  To remove randomization issues, 100 iterations were considered 

with the classification accuracy averaged. 

Because the dynamic range and values computed by the different distance metrics 

will differ, before considering RF-DNA data in GRLVQI first the relationship between 

learning rate and number of PVs was explored in LVQ with the Fisher Iris academic 

dataset.  This provides an understanding of how each measure behaves and how each 

measure behaves compared to the nominal squared-Euclidean distance metric.  This 
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approach is considered iteratively, as described in Figure V-3, with each measure first 

examined in LVQ, then RLVQ, GLVQ, and finally, GRLVQ.  As measures are found to 

offer little or no performance benefits, they are removed from consideration in further 

iterations (e.g. if a given measure performs poorly in LVQ, it is not examined in RLVQ, 

GLVQ, or GRLVQ) since, logically, if a measure offers poor performance and relatively 

little understanding of its behavior in a simple algorithm it will be difficult for it to offer 

good performance in a complex algorithm. 

In each algorithm the normalized learning and relevance rates were considered for 

8 different levels as presented in Table V-1.  These settings provide various conditions 

around the nominal LVQ settings, as described in Section 3.2.1.8.  For RLVQ and 

GRLVQ each combination of learning and relevance rate was explored.  

Table V-1: Learning and Relevance Rates for LVQ Algorithm Experiment. 

Level Learning 
Rate 

Relevance 
Rate 

1 0.0001 0.0001 
2 0.001 0.001 
3 0.01 0.01 
4 0.1 0.1 
5 1.0 1.0 
6 10.0 10.0 
7 100.0 100.0 
8 1000.0 1000.0 
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5.3.3.1 Determining Suitable Distance Measures and LVQ Algorithm Settings 

Figure V-7 presents results after formulating the LVQ cost functions, provided in 

Appendix J, and computing performance results for each LVQ variation.  As seen in 

Figure V-7, only 5 LVQ distance measure variants achieve training or testing 

classification above 40%. Squared Euclidean (the baseline), Cosine LVQ, and Canberra 

LVQ consistently perform above 60% accuracy for learning rates above 0.1 and thus 

these methods will be further explored for other LVQ variations.  While Neyman χ2 and 

Sorensen LVQ variants achieve between 40 and 60% classification accuracy, they 

perform much worse than Squared Euclidean, Cosine and Canberra and thus Neyman χ2 

and Sorensen LVQ variants are not considered further. 

 
Figure V-7: Distance Measure Performance versus Learning Rate for LVQ 
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5.3.3.2 Distance Measure Extensions to GLVQ 

As discussed in Section 5.2.2.4, changing the distance measure in the cost 

function for GLVQ involves merely changing the distance measure component of the 

cost function derivative.  This was considered for Squared Euclidean (baseline), Cosine, 

and Canberra measures.  Figure V-8 presents classification results, best performance is 

seen for learning rates of 0.01 and 0.1 for Squared Euclidean, above 1.0 for Cosine, and 

at 0.1 for Canberra.  Thus one could interpret this as indicating that Cosine GLVQ needs 

a learning rate 10-100 times that of Squared Euclidean to achieve reasonable 

performance.  

 
Figure V-8: Distance Measure Performance versus Learning Rate for GLVQ  

 

5.3.4 Relevance Learning with Alternative LVQ Distance Measures 

Care must be taken when incorporating relevance learning in distance measures 

since the relevance weighting must be relative to each feature. In RLVQ, the Euclidean 

distance measure of (3.21) is formulated so that the relevance multiplier is easily 

contained inside the summation.  However, it is not always obvious where to 
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incorporating the relevance multiplier on different distance measure, such as both the 

Canberra and Cosine measures.  

The Canberra measure consists of a summation of two ratios; to ensure the 

relevance values are associated with features and not PVs, the relevance values must 

therefore be a Hadamard product, e.g. [492], to ensure appropriate weighting on each 

feature.  Although Sorensen was not considered beyond LVQ, its formulation as a ratio of 

sums would increase difficulties in incorporating relevance learning.  To implement 

relevance learning, the relevance must be added so that it multiplies to each feature, for 

Canberra the following relevance distance measure appropriately accomplishes this, 

 
𝑑𝐶𝐹𝑛,𝜓 = �𝜓𝑖

𝑚𝑖 − 𝑤𝑖
𝑚𝑖 + 𝑤𝑖

𝑁𝐷

𝑖=1

. (5.13)  

When considering the Cosine distance measure, one sees a summation of a ratio 

with the numerator being a product and the denominator a product of two summations.  

To avoid an overly complicated derivative the relevance multiplier was added to only the 

numerator, with the Cosine relevance equation appearing as, 

 
𝑑𝐶𝐶𝑆,𝜓 = �

𝜓𝑖𝑚𝑖𝑤𝑖

�∑ 𝑚𝑖2𝑛
𝑖=1 �∑ 𝑤𝑖2𝑛

𝑖=1

.
𝑁𝐷

𝑖=1

 (5.14)  

 After incorporating relevance learning into RLVQ, using the formulations 

described in Appendix J and Figure V-3, each algorithm was considered for all relevance 

rates in Table V-1 and learning rates associated high accuracy (%C > 60%) from Section 

5.3.3.2.  Classification results are presented in Figure V-9 through Figure V-11 which 
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shows the relationship between learning rates and relevance rates for Squared Euclidean, 

Canberra, and Cosine RLVQ algorithms.  

Figure V-9 presents the relationship between classification accuracy, learning 

rates and relevance rates for Squared Euclidean RLVQ on the Fisher Iris dataset.  Evident 

in Figure V-9 is that the best performance is seen when the relevance rate is equal to or 

less than the learning rate, consistent with [291].  Similarly, Figure V-10 presents 

Canberra-RLVQ results where the best performance is seen when relevance rate is less 

than the learning rate and particularly when the relevance rate is equal to 0.01 or less.  

Finally, Figure V-11 presents classification results for Cosine-RLVQ wherein one sees 

that the best performance is only achieved when the relevance rate is less than the 

learning rate and valued 0.0001 or 0.001.  

 
Figure V-9: Learning Rate vs Relevance Learning Rate for Squared Euclidean 

RLVQ 
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Figure V-10: Learning Rate vs Relevance Learning Rate for Canberra RLVQ 

 

 
Figure V-11: Learning Rate vs Relevance Learning Rate for Cosine RLVQ 

 

5.3.5 Distance Measure Extensions to GRLVQ and GRLVQI 

To extend Canberra-GLVQ and Cosine-GLVQ to include relevance, the 

considerations of the process in Figure V-3 and Figure V-4 were applied with the GLVQ 
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sigmoidal cost function and the revised relative distance difference metric of Section 

5.2.2.3.  

5.3.5.1 Relevance Learning and GRLVQ Extensions 

When extending the distance measure formulations to GRLVQ, the considerations 

described in Figure V-3 were followed wherein the distance measure versions of GLVQ 

were extended with relevance logic. Figure V-12 presents the relationship between 

classification accuracy, learning rates and relevance rates for Squared Euclidean GRLVQ 

on the Fisher Iris dataset.  Consistent with Squared Euclidean GRLVQ in Section 5.3.4, 

evident in Figure V-12 is that the best performance is seen when both the learning rate is 

less than 1.0 and the relevance rate is less than the learning rate.  Similarly, Figure V-13 

presents Canberra-GRLVQ results where the best performance is seen when relevance 

rate is less than the learning rate.  Finally, Figure V-14 presents classification results for 

Cosine-GRLVQ wherein performance is consistent with Figure V-11 with the best 

performance only achieved when the relevance rate is less than the learning rate and 

valued 0.0001 or 0.001.  
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Figure V-12: Learning Rate vs Relevance Learning Rate for Squared Euclidean 

GRLVQ. 
 

 
Figure V-13: Learning Rate vs Relevance Learning Rate for Canberra GRLVQ. 
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Figure V-14: Learning Rate vs Relevance Learning Rate for Cosine GRLVQ. 

 

5.3.5.2 Distance Measure Extensions to GRLVQI 

The extension of GRLVQ to GRLVQI involves components unrelated to the 

distance measure, PV gradient descent update or relevance gradient descent update.  

Therefore, algorithmically, the Cosine and Canberra versions of GRLVQ were extended 

to GRLVQI by incorporating the improvements of Section 5.2.2. 

5.4 GRVLQI-D Extension for RF-DNA Fingerprinting 

To extend the discussions in Sections 5.3.3–5.3.5 to GRLVQI for RF-DNA 

problems, a few general aspects must be considered: 1) LVQ architecture selection and 2) 

the interaction of GRLVQI factors of learning, relevance and conscience rates,  LVQ 

architecture with the resultant classification and verification performance.  For LVQ 

architecture selection, we will develop heuristics to determine the number of PVs to 
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instantiate and then consider the general impact of the number of PVs on Squared 

Euclidean GRLVQI classification and verification performance.  To understand the 

interaction of these GRLVQI factors with performance, a full factorial ANOVA 

experiment will be considered (using Z-Wave data) with response surface methods used 

to find optimal settings.  The algorithmic optimization approach is of particular interest 

for the Cosine and Canberra GRLVQI algorithms since there are no prior 

implementations of these from which to find reasonable settings.   

5.4.1 LVQ Architecture Selection and Specification 

 As noted in Section 3.3.1.8, the literature is largely silent on the appropriate 

number of PVs, learning rates, PV initialization process except that one should use as 

many as possible [262] and that one needs at least one PV per class [299].  However, as 

seen in Schneider et al. [298], overfitting can occur in LVQ if too many PVs are 

instantiated.  Additionally, since each PV must be moved in an iterative fashion, 

computation times necessarily increase when more PVs are considered.  Therefore one 

should endeavor to instantiate a quantity of PVs that achieves good accuracy, avoids 

overfitting, and is not computationally expensive.   

 LVQ overfitting issues appear similar to overfitting problems in ANNs, as 

mentioned in [493], could suffer from similar problems as well since it is also a neural 

learning algorithm.  An example of the overfitting effect is presented in Table V-2 which 

shows that an increasing number of ANN hidden nodes causes an increasing in training 

accuracy, but the resulting testing set accuracy does not similarly increase and reaches a 
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peak. LVQ architecture has similarities to ANNs and hence appropriately specifying the 

number of PVs could be critical to general LVQ performance.  While the number of 

nodes is frequently determined empirically, e.g. [494–498], approaches for ANN 

architecture development exist and could be beneficial to LVQ algorithm performance. 

Table V-2: Example of ANN Architecture Effects on ANN Performance, reproduced 
from [493]. 

INPUT 
NODES 

HIDDEN 
NODES 

OUTPUT 
NODES 

TRAINING 
ACCURACY (%) 

TESTING 
ACCURACY (%) 

16 10 8 84.5 58.5 
16 13 8 89.2 65.9 
16 15 8 93.5 73.2 
16 18 8 93.7 70.7 
16 20 8 99.5 73.2 
16 25 8 100 58.5 

 

LVQ methods are considered to be generally robust to overfitting, as noted by 

Biehl et al. [470] and attributed to the Hebbian learning results.  However, Schneider et 

al. [298] noted and presented results showing that LVQ can overfit on some datasets.  

Therefore consideration into the appropriate number of PVs is important.  To illustrate 

the possibilities of LVQ overfitting, an example will be used.  While the data examined 

by Clark [493] is not available, other academic datasets are.  For this the small dataset 

Insects will be used; this dataset is from [499, 500] and consists of 3 data features, 3 

classes, and 10 observations per class with no missing values.  To examine potential 

overfitting effects, one randomly selected observations from each class was sequestered 

in a test set and an LVQ network was trained with the remaining 27 observations.  The 
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number of PVs per class was then increased from 1-9, with a constant learning rate of 

𝑖(𝑑)=0.1 used throughout, 600 randomly generated training iterations were used. Mean 

test and training accuracy was then recorded for 100 replications.  Table V-3 presents the 

results and  shows that LVQ can be susceptible to overfitting and that robustness to 

overfitting is not universal for all LVQ algorithms in all applications.  

Table V-3: Example of PV Architecture Effects on LVQ Performance on Insects.  

NUMBER OF 
INPUT NODES 
(FEATURES) 

PROTOTYPE 
VECTORS 
(PVS) PER 

CLASS 

TRAINING 
ACCURACY (%) 

TESTING 
ACCURACY (%) 

MEAN 
COMPUTATION 

TIME (S) 

3 1 68.0 69.67 0.34 
3 2 80.7 73.7 0.50 
3 3 84.4 77.3 0.62 
3 4 85.9 69.7 0.69 
3 5 89.0 70.0 0.86 
3 6 89.5 68.0 1.16 
3 7 89.3 66.0 1.09 
3 8 89.9 66.7 1.59 
3 9 91.5 68.0 1.59 

 

 Beyond employing as many PVs as possible, as suggested by [262], which can 

obviously lead to overfitting as shown in Table V-3, the LVQ field is largely bereft of 

liteature on the number of PVs to initialize.  However, the ANN field is replete with 

literature regarding appropriately selecting the number of hidden nodes in model 

development and includes heuristic approaches [304, 501] and algorithmic approaches 
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[502–504].  Of interest is if neural network heuristics for the number of hidden nodes can 

be extended to specifying the number of LVQ PVs.  

5.4.1.1 Extending ANN Architecture Heuristics to LVQ  

Lv et al. [253] considered 1 PV per class; for RF-DNA, Reising [51] used 10 PVs 

per class; however, for hyperspectral target detection, Mendenhall [244] used 5 PVs per 

class.  While 1 PV per class is a minimum requirement for LVQ algorithms [299], and 

permits initializing each PV to the centroid (arithmetic mean) of its respective group as 

an easy and logical solution to the initialization problem, using too few PVs can yield 

poor results as empirically demonstrated in the academic example in Table V-3.  

Although Mendenhall [244] mentioned using heuristics to determine the number 

of PVs for GRLVQI, they were not formalized for the family of LVQ algorithms 

considered.  However, Gage [304] investigated and developed ANN architecture 

approaches where the size of the hidden layer was dependent on the number of inputs, 

number of exemplars, hidden layer weights, and/or the number of neurons at each layer.  

Although LVQ algorithms are ANNs, a few difficulties exist in extending general ANN 

methods to LVQ: firstly, the general LVQ architecture is not identical to ANN 

architecture, as described in Section 3.2; secondly, LVQ requires PVs to be designated to 

a class; and finally, LVQ does not have output nodes as seen in an ANN. Despite these 

differences, some empirical formulas for ANN architecture specification could be 

applicable to LVQ architecture specification.  
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Many heuristics considered by Gage [304] involve using the number of input 

features, NF, the number of exemplars, Nobs, and the number of output layer nodes, Nout.  

Extending this to LVQ would see K being the number of input features and M 

representing the number of PVs; since LVQ does not have an output layer, one could 

interpret Nout as being either: A) nothing since LVQ does not have an output layer, in 

which case Nout would be treated as a constant 1 (thus Nout is equivalent to NPV since NPV 

is effectively the output layer in LVQ models), or B) we could logically view Nout as the 

number of classes, consistent with [274]. 

 Basic neural network heuristics include the general following advice, that  

 𝑁𝐹𝑃,𝐿𝑜𝑜𝑛𝐹𝐿1 = 𝑎𝑁𝑐 (5.15)  

where a is a constant and Nc classes [250, p. 101].  While this is certainly suitable for 

LVQ architectures due to their underlying assumptions, it is not helpful in determining 

NPV, and only provides the obvious lower bound of NPV = c for a = 1. However, an 

extension of this approach is seen in  

 𝑁𝐹𝑃,𝑊𝐶 = 𝑎𝑁𝐹  (5.16)  

where a is used as a fraction [505].  In this form, a has variously been recommended as 

either 0.75 [506, 507] or 0.50 [508].  

 Looney [250, p. 91] presented another general heuristic of 

 𝑁𝐹𝑃,𝐿𝑜𝑜𝑛𝐹𝐿2 = log2 𝑁𝐶 (5.17)  

where Nc are the number of classes in the dataset, since this quantity will yield 

𝑁𝐹𝑃,𝐿𝑜𝑜𝑛𝐹𝐿2 < 𝑁𝑐 PVs it is not appropriate for LVQ models.  Similar is the empirically 
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determined approach of Gorman and Sejnowski [494], noted as an effective heuristic for 

ANNs [509], 

 𝑁𝐹𝑃,𝐺𝑜𝐺𝑚𝐹𝑛 = log2 𝑇 (5.18)  

where T is the number of input training patterns, however this terminology can be 

interpreted variously (depending on what one means by “pattern”) as either 

 𝑁𝐹𝑃,𝐺𝑜𝐺𝑚𝐹𝑛1 = log2 𝑁𝐹 (5.19)  

or 

 𝑁𝐹𝑃,𝐺𝑜𝐺𝑚𝐹𝑛2 = log2 𝑁𝑜𝑏𝐹 (5.20)  

or possibly 

 𝑁𝐹𝑃,𝐺𝑜𝐺𝑚𝐹𝑛3 = log2(𝑁𝑐 ∙ 𝑁𝑜𝑏𝐹). (5.21)  

 Additional heuristics include one from Hayashi [250, p. 316; 510],   

 𝑁𝐹𝑃,𝐻𝐹𝐿 = 𝑞�𝑁𝑜𝑢𝐹 ∙ 𝑁𝐹 (5.22)  

where q is a multiplier constant, set to 1 herein.  Walczak and Cerpa [505] presented a 

heuristic based on [496, 511] that  

 𝑁𝐹𝑃,𝐾𝑢𝐺 = 2𝑁𝐹 + 1. (5.23)  

Gao et al. [501] presented the following heuristic,  

 𝑁𝐹𝑃,𝐺𝐹𝑜 = �𝑁𝑜𝑢𝐹 ∙ 𝑁𝐹 + 𝑞, (5.24)  

with q being a constant between 1 and 10 and attributed it to [503]. Daqi and Shouyi 

[512] present the following heuristic 

 𝑁𝐹𝑃,𝐷𝐹𝑞𝑖 = �(𝑁𝑜𝑢𝐹 + 2) ∙ 𝑁𝐹 + 1, (5.25)  

Gage [304]  presents a heuristic termed “Cover’s theorem”  



196 

 

 

 
𝑁𝐹𝑃,𝐺𝐹𝐺𝐹 <

0.5𝑁𝑜𝑏𝐹 − 1
𝑁𝐹 + 1

. (5.26)  

which considered the number of exemplars, P, and data features [304, 501]. 

5.4.1.2 Developing LVQ Architecture Heuristics 

 Considering the heuristics in Section 5.4.1.1, the GRLVQI settings of [48, 247] 

and the absolute minimum of NPV = 1 for the ZigBee RF-DNA data under analysis (NC = 

4, NFeats = 729, Nobs = 1500), one arrives at Table V-4. Results for both Nout = 1 and Nout = 

NC are computed.  

Table V-4: #PVs for RF-DNA Using Various Heuristics for ZigBee Data. 

ORIGINATION HEURISTIC 
NPV 

NOUT = 1 (NOUT 

IGNORED) NOUT = NC  
INTERPRETED 

NPV / NC 

ANNs 

NPV, Kur * * 1459† 
NPV, Looney1  * * 4 
NPV, Looney2 * * 2 
NPV, Gage * * 1 

NPV, Gorman1 * * 10 
NPV, Gorman2 * * 11 
NPV, Gorman3 * * 13 

NPV, Gao1 28 55 14, 28 
NPV, Hay 27 54 14, 27 
NPV, Daqi 48 68 17, 48 
NPV, WC * * 365-547† 

LVQ 
NPV, Min * 1 

NPV, Mendenhall * 5 
NPV, Reising * 10 

*indicate heuristic is not a function of Nout and hence this quantity is not computed 
† indicates obviously unreasonable values for NPV 
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 Based on the results presented in Reising [51] and Dubendorfer [91], both for NPV 

= 10 per class for RF-DNA Fingerprints, we can safely exclude the number of PVs 

suggested by NPV, WC and NPV, Kur as considerably too many.   However, the remaining 

heuristics suggest numbers of PVs that appear reasonable.   

 A vector of quantities of PVs (per class) to consider was formulated as: 

 𝑁𝐹𝑃 = [1, 5, 7, 8, 9, 10, 11, 12, 13, 15, 20, 27, 37, 48]. (5.27)  

NPV = [7, 8, 9, 11, 12, 13] per class were also considered in order to search for suitable 

operating points across the heuristic space and around the nominal setting of 10 NPV/NC.   

Values of 14 and 17 NPV/NC were not considered since these are close to 15 NPV / NC  to 

avoid superfluous computational runs.  Values above 48 NPV/NC  were not initially 

considered due to the extra computation time required, and thus these would only be 

considered if the results indicate a potential utility in exploring these settings.   

 Figure V-16 considers GRLVQI results on the ZigBee dataset at 14 dB for the 

NPV values in (5.27).  The preliminary results in Figure V-16 shows that overfitting would 

be an issue if too many PVs were instantiated, NPV > 20, and that poor accuracy would 

result if too few PVs were instantiated, NPV  < 9.  From Figure V-16, NPV = 13 offers 

overall higher training, testing, and validation accuracy than NPV = 10; additionally, the 

overall difference between higher training, testing, and validation accuracy are small 

when compared to NPV ≥ 15.  
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Figure V-15: GRLVQI Classification Results on ZigBee RF-DNA Fingerprints at 14 

dB Using Various PVs/class.  
 

 Figure V-16 presents classification performance results from considering Squared 

Euclidean GRLVQI for NPV = [10, 13] with the ZigBee RF-DNA Fingerprints.  As seen 

in Figure V-16 classification performance appears comparable for SNR ≥ 10dB, with NPV 

= 13offering a slight improvement in gain of +0.41dB (training) and +0.51dB (testing) at 

90% accuracy.  However classification performance appears markedly improved for low 

SNR, and between 5dB and 10dB GRLVQI with NPV = 13 offers a gain of +1.85dB 

(training) and +2.27dB (testing) at 70% accuracy.  
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Figure V-16: GRLVQI Classification Performance with 10 PVs versus 13 PVs. 

 
When considering verification accuracy with Squared Euclidean GRLVQI using 

NPV = 13, one can see in Figure V-17 to Figure V-19 that more structure is seen when 

compared to the verification results seen in Section III for NPV = 10. 
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a) Authorized 

 
b) Rogue 

Figure V-18: Verification Performance in GRLVQI with 13 PVs at 14dB. 
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a) Authorized 

 
b) Rogue 

Figure V-17: Verification Performance in GRLVQI with 13 PVs at 8dB. 
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Table V-5 presents an overall comparison of classification and verification 

performance for Squared Euclidean GRLVQI with NPV = [10, 13].  Overall, classification 

performance is largely improved with 13 PVs while verification performance is greatly 

improved for low SNR and slightly worse for higher SNR.  Overall, one can conclude 

that 13 PVs offers measurable performance improvements over the 10 PVs.  However, 

possible changes to learning, relevance and conscience rates have not been considered.  

 

 
a) Authorized 

 
b) Rogue 

Figure V-19: Verification Performance in GRLVQI with 13 PVs at 18dB. 
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Table V-5: Relationship between PVs and Classification/Verification Performance  

NPV 

Classification Performance Verification Performance 

SNR (dB) at 
90%C AUCCTNG AUCCTST 

%Authorized or 
%Rogue Rejected at 

8dB 

%Authorized or 
%Rogue Rejected at 

14dB 

%Authorized or 
%Rogue Rejected at 

18dB 
TNG TST Authorized Rogue Authorized Rogue Authorized Rogue 

10 12.92 12.39 24.99 25.24 0% 0% 25% 47.22% 25% 63.88% 

13 12.51 11.88 25.27 25.51 25% 22.22% 25% 50% 25% 52.78% 
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5.4.2 Experimental Design for GRLVQI-D Algorithmic Settings  

Employing experimental designs to find optimal algorithm settings has been seen 

in hyperspectral anomaly detection research, c.f. [513–520], but not in prior RF-INT 

efforts.  However, herein, determining appropriate algorithmic settings is of prime 

interest since neither Cosine GRLVQI nor Canberra GRLVQI algorithms have been 

previously developed or applied to RF-DNA problems.  Therefore it is unknown what 

settings are appropriate for these algorithms.  

 Following the discussions in Sections 5.3.3–5.3.5, a few observations can be 

made, 1) that Cosine and Squared Euclidean variants of LVQ, RLVQ, GLVQ and 

GRLVQ perform similarly well in classification of Fisher Iris; 2) that Cosine LVQ 

variants perform best with both a learning rate 10 times or greater and a relevance rate 

1/10 to 1/100 of that seen in Squared Euclidean LVQ variants; and 3) that Canberra 

variants similarly performed best with both a learning rate 10 times or greater than 

Squared Euclidean, but appeared invariant to relevance learning rate.  Additionally, in 

Section 5.4.1, we learned that changing the number of PVs can significantly impact 

GRLVQI performance.  

5.4.2.1 Full Factorial Model 

To determine optimal settings for Squared Euclidean GRLVQI, Cosine GRLVQI, 

and Canberra GRLVQI algorithms, a full factorial experiment was considered.  Table 

V-6 presents the 35 design wherein the middle (0) design settings are those employed by 

Reising [51], the high and low settings for learning and relevance rates are magnitudes of 

10 above and below, respectively, the middle settings per the observations in Sections 
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5.3.3–5.3.5.  Two conscience rates are present in GRLVQI and the scale of these differs 

from the learning and relevance rates; Table III-3 presented training steps and 

corresponding explored conscience rates where 𝛾 is seen to be initialized as 2.0 and reach 

an absolute minimum (after many training steps) of 0.75, and 𝛽 is initialized 0.35 and 

reach an absolute minimum of 0.10.  To account for this range and explore other possible 

good settings, the full factorial experiment explores a low setting of 0.5 and a high setting 

of 4.5 for 𝛾 and a low setting of 0.15 and a high setting of 0.55 for 𝛽.  Additionally, the 

number of PVs is considered as a fifth factor where 13 PVs per class is considered as the 

high value and 7 PVs per class is considered as the low value, per the discussion in 5.4.1. 

Table V-6: Experimental Design Region for GRLVQI. 

 FACTORS 
 FACTOR A FACTOR B FACTOR C FACTOR D FACTOR E 

FACTOR 
LEVEL 

LEARNING 
RATE (𝑖) 

RELEVANCE 
RATE (𝜉) 

CONSCIENCE 
RATE 1 (𝛾) 

CONSCIENCE 
RATE 2 (𝛽) NPV 

LOW (–) 0.0025 0.0005 0.5 0.15 7 
MIDDLE (0) 0.025 0.005 2.0 0.35 10 

HIGH (+) 0.25 0.05 4.5 0.55 13 
 

Employing the settings from Table V-6 yields a total of 243 different setting 

combinations per GRLVQI-D variant.  To consider all of these possible operating points, 

Z-Wave RF-DNA data, as described in Section III and employed in [49], was used due to 

the much smaller size of this data set and its signal similarity to ZigBee.  Appendix K 

presents mean training and testing AUCC along with mean verification AUC values 

experimental results from Z-Wave for the Cosine, Canberra and Squared Euclidean 
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GRLVQI algorithms grouped by distance measures for the experimental design in Table 

V-6.  To expedite the computational process, the baseline Squared Euclidean GRLVQI 

algorithm employed MATLAB compiled c-code (*.mex) files, which were compiled via 

the approach in Appendix L. 

5.4.2.2 Response Surface Methodology 

After the experimental runs in Section 5.4.2.1 were complete, a second order 

model with squared terms and two-way interactions was considered: 

 

𝐽(𝑚) = 𝛣0 + �𝐵𝑖𝑚𝑖

𝐹

𝑖=1

+ � 𝐵𝑖,𝑖𝑚𝑖𝑚𝑖

𝐹

𝑖,𝑖,𝑖=1

+ � 𝐵𝑖,𝑖𝑚𝑖2
𝐹

𝑖,𝑖,𝑖=1

. (5.28)  

where 𝑠 represents the number of factors, 𝛣 terms are coefficients solved for via a general 

linear model, and x represents a given factor [513].  Two initial second order models 

were created per algorithm with all parameters and interactions (termed “Full Model”) 

after applying (5.28) with either classification (mean AUCC) or verification (mean AUC) 

accuracy as the dependent variable.  All models were statistically significant using α = 

0.05, but not all features and interactions were significant, reduced models were therefore 

created by creating a second order model that only contained main effects (factors in 

Table V-6, whether or not significant) and any significant second order effect.  Table V-7 

presents an overview of the second order models by reporting R2 and adjusted R2 values 

for both the full and reduced models.  

 As seen in Table V-7, the classification models from Squared Euclidean data 

explains a significant amount of variance in the data while the verification based models 
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do not explain much variation.  When considering the Cosine GRLVQI models, both the 

classification and verification models explain most of the variation in the data; however 

neither the classification nor the verification based models explain much variation when 

considering the Canberra GRLVQI results.   

Table V-7: Overview of Second Order Models. 

  ALGORITHM 
 

 
SQUARED 

EUCLIDEAN 
GRLVQI 

COSINE 
GRLVQI-D 

CANBERRA 
GRLVQI-D 

 DEPENDENT 
VARIABLE CLASS. VER. CLASS. VER. CLASS. VER. 

FULL 
MODEL 

R2 0.900 0.246 0.942 0.829 0.259 0.408 
R2 ADJUSTED 0.891 0.178 0.937 0.814 0.193 0.355 

REDUCED 
MODEL 

R2 0.898 0.241 0.938 0.824 0.215 0.399 
R2 ADJUSTED 0.892 0.195 0.936 0.817 0.188 0.378 

 

Table V-8 presents variables that were deemed statistically significant in the full 

model.  Again, in all reduced models main effects were included for completeness.  In 

Table V-8, an “X” indicates that a variable is statistically significant, at α = 0.05, while a 

“?” indicates that a variable has a p-value between 0.05 and 0.10, which should be 

considered as statistically significant at α = 0.05, per [369].  As seen in Table V-7, the R2 

and adjusted R2 are largely unchanged when considering the reduced models, indicating 

that the removed features were not explaining much variation in the data.  
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Table V-8: Features Significant Per Model. 

 MODEL 

FEATURE 

SQUARED 
EUCLIDEAN 
GRLVQI 

COSINE  
GRLVQI-D 

CANBERRA 
GRLVQI-D 

CLASS. VER. CLASS. VER. CLASS. VER. 

𝑖 X X X X  X 
𝜉 X    X  
𝛾 X      
𝛽 X     X 
𝑁𝐹𝑃 X X X X X X 
𝑖2 X X X X  X 
𝜉2 X    X  
𝛾2 X X     
𝛽2 X      
𝑁𝐹𝑃2  X      
𝑖 × 𝜉 X X   X X 
𝑖 × 𝛾 X  ?    
𝑖 × 𝛽       
𝑖 × 𝑁𝐹𝑃 X  X    
𝜉 × 𝛾       
𝜉 × 𝛽       
𝜉 × 𝑁𝐹𝑃       
𝛾 × 𝛽       
𝛾 × 𝑁𝐹𝑃    ?   
𝛽 × 𝑁𝐹𝑃 X    X  
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5.4.2.3 Setting Optimization  

As mentioned in Chapter 3, determining appropriate settings for LVQ algorithms 

is a largely untouched domain; however, after finding reduced second order models, one 

can solve for optimal algorithmic settings where the target are the dependent variables 

(either mean classification or mean verification accuracy).  Determining appropriate 

settings is of critical important for distance measure variants of GRLVQI since these 

have unknown operating characteristics.  

Constrained nonlinear optimization, or interior point optimization, consistent with 

[521–523] was used to maximize the final, reduced, second order models.  A constrained 

minimization (where the target accuracies were negated since the goal of maximization is 

possible by minimizing a negation) was considered where a finite-difference 

approximation was computed by starting with an initial estimate (the baseline GRLVQI 

settings).  The minimization was constrained between the minimum and maximum values 

seen in Table V-6 to avoid computing values outside those explored (e.g. when 

considered unbounded optimization yielded settings far outside the design space, with 

magnitudes ranging from 1013 to 1042).  The optimal solution was then computed via 

sequential quadratic programming (SQP) [524, 525] wherein a line search was employed, 

consistent with [524–526].  

Resultant optimal algorithmic settings for each factor are presented in Table V-9.  

Here, settings are grouped in pairs of rows by algorithm and then by whether mean 

classification AUCC or mean verification AUC were used at the target.  Evident in Table 

V-9 is that only NPV = 7 was consistently found as optimal between algorithms. 
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Otherwise, most factors had different optimal algorithmic settings.  Additionally, all 

optimal settings were different from the baseline settings as employed by [51]. 

Table V-9: Optimized Algorithms Settings for Z-Wave Data. 

  FACTORS 
  FACTOR A FACTOR B FACTOR C FACTOR D FACTOR E 

ALGORITHM LEARNING 
RATE (𝑖) 

RELEVANCE 
RATE (𝜉) 

CONSCIENCE 
RATE 1 (𝛾) 

CONSCIENCE 
RATE 2 (𝛽) NPV 

SQUARED 
EUCLIDEAN 
GRLVQI 

CLASS. 0.1497 0.0005 4.5 0.3128 7 

VER. 0.1481 0.05 0.5 0.15 7 

COSINE 
GRLVQI-D 

CLASS. 0.1376 0.05 4.5 0.55 7 
VER. 0.135 0.0005 0.5016 0.15 7 

CANBERRA 
GRLVQI-D 

CLASS. 0.25 0.032 0.5 0.15 7 
VER. 0.25 0.032 0.5 0.15 7 

BASELINE -- 0.025 0.005 2.0 0.35 10 
 

5.4.3 GRLVQI-D Performance Results 

Classification and verification performance can be considered using the optimized 

algorithmic settings.  Z-Wave classification performance will be considered relative to 

the baseline classifier settings of Reising [51].  Three sets of classification results are 

considered in Figure V-20 through Figure V-24.  Figure V-20 presents training (TNG) 

and testing (TST) classification results from the baseline Squared Euclidean GRLVQI 

algorithm, the Squared Euclidean GRLVQI algorithm using the Classification-based 

optimized settings in Table V-9, and the Squared Euclidean GRLVQI algorithm using the 

Verification-based optimized settings in Table V-9.  Noticeably, classification 

performance appears markedly improved when using either optimized setting, which also 
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have fewer PVs, NPV = 7, and thus are computationally simpler algorithms.  The 

Classification-based optimized Squared Euclidean GRLVQI shows an improvement in 

gain of +1.98 dB (TNG) and +1.94 dB (TST) at 90% accuracy; the Verification-based 

optimized Squared Euclidean GRLVQI shows an improvement in gain of +1.31 dB 

(TNG) and +1.48 dB (TST). 

 
Figure V-20: GRLVQI Classification Performance Using Squared Euclidean 

Distance Using Optimized Algorithmic Settings. 

Figure V-21 presents the verification accuracy of both optimized Squared 

Euclidean GRLVQI algorithms; one can see that the Classification-based Squared 
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Euclidean GRLVQI Figure V-21a offer 100% verification accuracy, which improves 

upon the 33.33% classification accuracy of the baseline, reported in Section III and [49].  

Additionally, the mean verification AUC of 0.9707 is slightly higher than the mean AUC 

of the baseline, 0.9363. When considering the Verification-based Squared Euclidean 

GRLVQI performance in Figure V-21b, the performance is noticeably poor, with no 

devices authorized at 10% FVR and 90% TVR.  Additionally, the curves in Figure V-21b 

are significantly worse than baseline with a mean AUC of 0.5916.  Overall, it’s evident 

that the optimized settings from the Classification-based Squared Euclidean GRLVQI 

offer improved performance over baseline, while using the optimized settings from the 

Verification-based Squared Euclidean GRLVQI classifier offers comparably 

unreasonable verification performance. 
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a) Classification-Based Optimization 

 
b) Verification-Based Optimization 

Figure V-21:  GRLVQI ID Verification Performance in Squared Euclidean 
GRLVQI using Optimization Settings at 20dB for Z-Wave Dataset. 

Classification results from the Canberra GRLVQI-D classifier are presented in 

Figure V-22 for the Classification-based and Verification-based optimized settings with 

the Z-Wave data.  The performance of both is dramatically below the baseline Squared 

Euclidean GRLVQI algorithm. Figure V-23 presents the verification accuracy of both 

optimized Cosine GRLVQI algorithms; one can see that neither the Classification-based 

Canberra GRLVQI-D in Figure V-23a nor the Verification-based Canberra GRLVQI-D 

in Figure V-21b perform well.  Additionally, the curves in Figure V-21b are significantly 

worse than baseline with a mean AUC of 0.5916.  Overall, it’s evident that Canberra 

GRVLQI-D, at least with the considered settings, appears unsuitable for RF-DNA 

applications.   
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Figure V-22: GRLVQI-D Classification Performance Using Canberra Distance 

Using Optimized Algorithmic Settings. 
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a) Classification-Based Optimization 

 
Verification-Based Optimization 

Figure V-23:  GRLVQI-D ID Verification Performance in Canberra GRLVQI using 
Optimization Settings at 20dB for Z-Wave Dataset. 

Classification results from the Cosine GRLVQI-D classifier are presented in 

Figure V-24 for the Classification-based and Verification-based optimized settings with 

the Z-Wave data.  In contrast to the Canberra GRLVQI-D algorithms of Figure V-22, the 

Cosine GRLVQI-D classification results offer improved performance over the baseline 

Squared Euclidean GRLVQI algorithm. The Classification-based optimized Squared 

Euclidean GRLVQI shows an improvement in gain of +1.57 dB (TNG) and +1.91 dB 

(TST) at 90% accuracy; the Verification-based optimized Squared Euclidean GRLVQI 

shows an improvement in gain of +1.67 dB (TNG) and +1.84 dB (TST).  Performance is 

thus similar to the optimized Squared Euclidean GRLVQI algorithm in Figure V-20.  
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Figure V-24: GRLVQI Classification Performance Using Cosine Distance Using 

Optimized Algorithmic Settings. 
 

Figure V-25 presents the verification accuracy of both optimized Cosine 

GRLVQI-D algorithms; one can see that both the Classification-optimized Cosine 

GRLVQI-D Figure V-25a and Verification-optimized Cosine GRLVQI-D offer 66.6% 

verification accuracy, which improves upon the 33.33% verification accuracy of the 
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GRLVQI-D variants is 0.9712 which is equivalent to the mean verification AUC of 

0.9707 for the Classification-optimized Squared Euclidean GRVLQI algorithm.  

 
a) Classification-Based Optimization 

 
b) Verification-Based Optimization 

Figure V-25:  GRLVQI ID Verification Performance in Cosine GRLVQI using 
Optimization Settings at 20dB for Z-Wave Dataset. 
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algorithm, and the Canberra GRVLQI-D algorithm.  Overall, classification performance 
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or Verification based) Cosine GRLVQI-D algorithm or the Classification-optimized 

Squared Euclidean GRLVQI algorithm.  Canberra GRLVQI-D offers no performance 
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Table V-10: Z-Wave Optimized Algorithms Results for Z-Wave Data. 

  RESULT 

  CLASSIFICATION VERIFICATION AT 
20 DB 

ALGORITHM RAPTNG RAPTST 

SNR Gain (dB) 
Relative to TST 

Baseline at 
90%C 

% Auth. Mean 
AUC 

TNG TST 

SQUARED 
EUCLIDEAN 
GRLVQI 

NONE 
(BASELINE) 1.01 1.00 +0.4 0.00 33.33% 0.936 

CLASS. 1.06 1.06 +0.44 +1.94 100% 0.971 
VER. 1.03 1.01 +0.23 +1.48 0% 0.592 

COSINE 
GRLVQI-D 

CLASS. 1.03 1.01 +0.06 +1.91 66.67% 0.971 
VER. 1.02 1.03 +0.23 +1.84 66.67% 0.971 

CANBERRA 
GRLVQI-D 

CLASS. 0.58 0.54 N/A 0% 0.740 
VER. 0.58 0.53 N/A 0% 0.560 

 

Appendix M presents an extension of the Z-Wave optimized GRLVQI and 

GRLVQI-D algorithms with ZigBee data.  While the optimized algorithms improve 

performance for Z-Wave data, the results in Appendix M illustrate the difficulty in 

applying optimized settings from one dataset to a different dataset.  Thus, if ZigBee 

devices are of specific interest, one would desire to optimize GRLVQI and GRLVQI-D 

algorithmic settings for these devices.  

5.4.4 Results Interpretation 

Overall, the process and methodology presented in this chapter enable one to 

create distance measure variants of LVQ algorithms including LVQ, RLVQ, GLVQ, 

GRLVQ, and GRLVQI.  The derivative skeleton presented in Section 5.2.2.4 further 
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enables one to make any reasonable change to the cost function of LVQ family of 

algorithms.  The NPV heuristics and optimization scheme provide a further approach for 

selecting reasonable settings for these algorithms.  

Optimization of GRLVQI was considered using both Classification accuracy and 

Verification accuracy as an objective.  Z-Wave data was employed due to the smaller size 

of the dataset and the requirement for a multitude of algorithmic run, as seen in Appendix 

K. When optimized settings were considered and evaluated on Z-Wave data, both the 

Classification-optimized Squared Euclidean GRLVQI algorithm and the Classification 

and Verification-optimized Cosine GRLVQI-D algorithms offered better performance 

than the baseline settings of [51].  The results for both the optimized Squared Euclidean 

GRLVQI and optimized Cosine GRLVQI-D algorithms are reasonable and hence the 

optimization method and process show efficacy for finding robust points when other 

devices are under analysis, and for recommending new operating points for either new 

algorithms, such as Cosine GRLVQI-D, or new signal modalities.   
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VI. Improvements to the RF-DNA Fingerprinting Process 

Adorn thyself with simplicity 

–MARCUS AURELIUS, 121-180 

In operation, as described in Chapter II, the AFIT RF-DNA process consists of 

two main elements, including signal collection (accomplished using various signal 

collection equipment) and post-collection processing (accomplished using software).  

After collection, the data is digitally filtered and processed to create samples at various 

desired analysis SNR levels. Subsequently, RF-DNA fingerprints are computed and 

various device classification schemes applied for model development.  In computed RF-

DNA fingerprints, as described in Section 2.4, the signal Region Of Interest (ROI) in is 

divided into multiple subregions (NR total), each with NS time samples per subregion. In 

each subregion, mathematical moments of mean (µ), variance (σ2), skewness (γ), and 

kurtosis (κ), using (2.9), (2.6)–(2.8) respectively, are computed to provide insight into the 

distribution shape about its mean.  Of interest in this chapter are potential improvements 

that can be made to the RF-DNA Fingerprinting process by leveraging research and 

methods in statistical data analysis, and simulation studies.   

6.1 Introduction 

First, Section 6.2 will examine data analysis methods and possibly underlying 

reasons for the dominance of phase features in RF-DNA Dimensional Reduction 

Analysis (DRA).  Then, Section 6.3 will consider extensions of Simulation, an 
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operations research tool for examining steady state conditions from a time sample 

application [136], to RF-DNA.  

6.2 Normalization, Standardization and Phase Feature Dominance 

Prior works, such as [113], have concluded that phase features were significantly 

more useful for classification and verification than either amplitude or frequency features.  

However, no reasons for this observation have been determined.  Three possible reasons 

for this result are hereby posited: 1) the mean centering and maximum scaled 

normalization in [19] produces this as an artifact, 2) the signal modulation method, e.g. 

ZigBee is Phase modulated as described in Section 2.2.1, is reflected in this result, and 3) 

intrinsic qualities of amplitude, phase, and frequency responses are being represented.  Of 

interest here are considering 1) and 3) since 2) requires collecting signals from a wide 

variety of devices. 

6.2.1 Phenomenology of Amplitude, Frequency, and Phase  

Conclusive reasons for the dominance of phase features in RF-DNA research do 

not exist; however, various potential reasons do exist and are related to the 

phenomenology of amplitude, frequency, and phase.  Amplitude, frequency, and phase 

are related quantities that can describe a signal.  All three quantities are inter-related via 

the expressions described in (2.2)–(2.4) and [64, 191, 192, 527].  In computation for a 

real-valued signal, instantaneous amplitude is computed as the magnitude at a given point 

in time, instantaneous phase is then computed as the angle of the signal’s Hilbert 
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transform, and finally, instantaneous frequency is computed as the gradient of 

instantaneous phase [64, 191, 192, 527]. 

While environmental characteristics may be captured in all three measurements 

[528], they are more pronounced in amplitude, e.g. amplitude modulated (AM) radio 

signals are more susceptible to storm disturbances than frequency modulated (FM) radio 

signals [529].  The ZigBee and Z-Wave devices of interest herein are Phase Modulated 

(PM) signals; PM signals are designed so that amplitude variations are small with ideally 

constant amplitude [527].  Additionally, in RF-DNA research relatively narrow frequency 

regions are generally isolated through filtering such that the signal itself may not vary 

much in frequency.  Additional reasons for phase features being most significant could 

include phase noise due to production variations [530] and that phase variations have a 

more irregular pattern, short settling duration and a smaller dynamic range [112].  

Therefore, it seems reasonable that phase features dominate, and especially for the PM 

signals. 

6.2.2 Normalization and Standardization 

When one examines a boxplot of the ZigBee features, Figure VI-1, it is seen that 

phase, amplitude and frequency features have different distributions. Boxplots are akin to 

plotting a histogram in condensed form [531, 532], thus permitting the distribution of 

multiple features to be evaluated side-by-side.  The boxplot format presented in Figure 

VI-1 employs a “compact” format with a black dot indicating the median, thick blue lines 

to show the range from the 25th to 75th percentiles, thin blue lines to encompass all other 
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non-outlier data, and small blue circles to indicate outliers [533].  Figure VI-1 shows that 

the distribution and medians of phase features are more constrained than amplitude or 

frequency features.  Additionally, phase features appear to have fewer outliers.  

 
Figure VI-1: Boxplot of ZigBee RF-DNA Features at SNR = 10dB for Authorized 
Devices Using the Nominal Mean Centering and Maximum Scaled Normalization 

process of [18, 19]. 

Due to characteristics of PM signals, any data normalization process could further 

impact feature relevance.  The nominal RF-DNA Fingerprinting process incorporates a 

mean centering and maximum scaled normalization approach seen in (2.5) of Section 2.4.  

While mean centering and maximum scaled normalization does not appear in reviews of 

normalization methods, e.g. [534], this approach is consistent with various applications, 
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c.f. [535–541].  However, the reason for using this approach is rarely provided; one 

exception is Cobb et al. [18] who indicated that this normalization approach was used to 

account for any “uncontrolled power variation.” 

 Classifiers and neural network approaches frequently work best with input data 

normalized by some means [542]; however, it is very common to employ standard score 

normalization (standardization) --c.f. [330, 534, 543].  The boxplots in Figure VI-1 

display that the data has different ranges for amplitude, frequency and phase, and hence 

examining any issue with the mean centering and maximum scaled normalization 

approach is important.  

 To examine the effect of normalization on RF-DNA, a revised RF-DNA 

normalization was therefore applied in the form of 

 
�̅�𝑐[𝑛] =

𝑔[𝑛] − µg
𝑠𝑑𝑑(𝑔𝑐[𝑛]), (6.1)  

where 𝑔 in (6.1) represents the signal of interest, per the respective RF-DNA fingerprint 

elements in (2.2)–(2.4) for n = 1, 2, …, NS, where NS represents the number of samples in 

the region of interest (ROI), and µg represents the mean of the 𝑔-th fingerprint element.  

 After standardizing the data, the RF-DNA fingerprinting process was followed, 

otherwise unaltered, and the resultant standardized RF-DNA features are presented in 

Figure VI-2.  The data means now appear more centered and the ranges of the 

distributions of amplitude and frequency appear more constrained.   
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Figure VI-2: Boxplots of ZigBee RF-DNA Features at 10dB for Authorized Devices 

Using Standardized Data. 

When using standardized RF-DNA features with MDA/ML processing, negligible 

gains (G), the reduction in required SNR expressed in dB to achieve a given %C, of 

G = 0.09 dB (TNG) and G = 0.06 dB (TST) are realized at %C = 90% when compared 

with nominal centered and maximum scaled RF-DNA features.  Thus there is effectively 

no difference between performance outputs and the slight differences are logically 

assignable to differing random values used in the Additive White Gaussian Noise 

(AWGN) process.  

While this shows a negligible impact of standardization on classification 

performance, the normalization and standardization method may still be important.  It is 
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possible that a DRA and standardization could lend itself to improved performance.  

Therefore, DRA using a low number of features was pursued; Unscaled Summed MDA 

Loadings Fusion (USum MLF), Section 4.2.3.1, was used to select 10 features.  With the 

top 10 features, classification accuracy does not achieve %C = 90%, however one can 

potentially get determine features very useful for discrimination, as discussed in Section 

IV.  With NDRA= 10, classification accuracy was evaluated using MDA/ML models, with 

Relative Accuracy Percentage (RAP) values are computed with respect to the nominal 

TST MDA/ML model; between the nominal and standardized approaches of 

RAPTNG = 0.970 (TNG) and RAPTST = 0.968 (TST) were computed, indicating that the 

nominal approach offers higher accuracy.  Therefore, empirically, the nominal mean 

centered and max-scaled RF-DNA normalization has a small, but distinct, advantage over 

standardization.  

6.3 Simulation Methods, Dependence and Correlation Effects in RF-DNA 

Simulation is a tool used by operations research professionals to model and 

understand complex processes [136].  One area of interest in simulation research is 

examining steady state conditions from a time sampled output.  One commonly then 

divides a steady state signal into independent and uncorrelated batches.  The batches are 

then examined to provide insight into how a given system functions.  Particular emphasis 

will be given towards signal autocorrelation to determine batch sizes, data 

standardization, and batching means methods that leverage knowledge of the signal itself 

and the binning process. Simulation studies involve collecting input and output data, and 
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parameters to create a statistical model of a real or hypothetical system under analysis 

[136].  Simulation research is prominent in engineering, business and operations research 

applications (cf. [136, 243, 544–548]).  Simulations can involve multiple short sets of 

system output data or one long-run of system output data.  When one long set of 

observation data is available and it is prohibitive to collect additional data, batches are 

one approach used to provide additional data about steady state condition [136].   Batches 

are constructed as visualized in Figure VI-3 as M subregions of the sample, with each 

region considered as a separate observation and containing NS samples per subregion 

[243].  The 0th batch in Figure VI-3 is considered a transient region and is not used for 

analysis.  To ensure that each batch can be considered as a separate observation of the 

system in steady state, understanding the independence and correlation of batches is 

needed [136].  Additionally, when analyzing simulation data, one first needs to identify 

the point where the system reaches steady state and is not influenced by startup 

characteristics [136].  In other business analytics domains, similar approaches to batching 

are termed binning, c.f. [199, 549]. 
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Figure VI-3: General Batching Method for Simulation Output Showing the 

Response Divided into M Total Batches [243]. 
 

The batching process in simulation parallels closely with the RF-DNA 

Fingerprinting process, as described in Section 2.4, in that a signal’s Regions of Interest 

(ROI) is divided into NR equally sized subregions which are then processed for further 

analysis.  Since the RF-DNA process yields distinction between devices, it is logical that 

RF-DNA fingerprints computed from independent measurements will be useful for 

device discrimination.  Therefore, methods from simulation aimed at reducing correlation 

effects in the data could be beneficial to RF-DNA.  

6.3.1 Transient Determination 

Transient periods are present as a system begins to operate, in Figure VI-3 the 

transient period is batch 0.  Transients (considered as startup biases) are detrimental to 

simulation studies [550], thus simulation studies generally desire to consider only steady-
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state processes in order to accurately model a process by reducing influence of startup 

characteristics [136].  Automated transient detection methods were proposed by [551].  

Objectively, transient determination is similar to discarded initialization region in RF-

DNA.  While automated approaches for transient determination could be applied in the 

RF-DNA Fingerprinting process, such approaches are not considered herein since the 

ROI is device dependent.  However, future work may wish to examine this area in 

conjunction with leveraging knowledge about the communication signal itself to 

determine and isolate the ROI for RF-DNA.  

6.3.2 Autocorrelation and the Number of Batches 

Batch size is another important question in simulation analysis [552–554]. 

Additionally, higher order moments (such as 3rd and 4th order) were determined by [555] 

to be more sensitive to interval differences than lower order moments.  Therefore, 

selecting appropriately sized ROIs may be critical to RF-DNA device classification and 

device ID verification performance.  In simulation studies, normality of a given batch 

can be one factor used to determine batch size [556].  Various approaches (in multiple 

disciplines) exist, e.g. [199, 549, 557–562], for determining batch size.  Determining the 

appropriate number of batches to create minimizes correlation between batches, see  

[243, 551, 554], and it is of interest to produce independent batches.  

Although inter-feature correlation can be beneficial to classification performance, 

intra-feature correlation (correlation between data features) generally causes adverse 

effects to classification performance [563–565].  The reasoning for this is that highly 
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correlated features are redundant [566–568].  In other words, if  𝑐𝑓𝑓𝑓(𝑿,𝒀) = 1 , 

then 𝑐𝑓𝑓𝑓(𝑿,𝒀) = 𝑐𝑓𝑓𝑓(𝑿,𝑎𝑿) = 𝑐𝑓𝑓𝑓(𝑿,𝑿), indicating that no information was added 

by retaining both features.  Multiple correlated features can also cause instability issues in 

linear methods such as ANOVA, logistic regression, linear least squares regression, and 

discriminant analysis [564, 568].  While nonlinear classifiers can process correlated data, 

e.g. [569], redundant features will still increase computation time and are undesirable 

[567]. 

The covariance between two variables X and Y is defined as 

 𝐶𝑓𝑐(𝑿,𝒀) = 𝐶𝑓𝑐(𝒀,𝑿) = 𝑀[(𝑿 − 𝑀(𝑿))]𝑀[(𝒀 − 𝑀(𝒀))], (6.2)  

with the correlation of X and Y being the scaled covariance, 

 
𝐶𝑓𝑓𝑓(𝑿,𝒀) =

𝐶𝑓𝑐(𝑿,𝒀)

�𝑉𝑎𝑓(𝑿)�𝑉𝑎𝑓(𝒀)
 (6.3)  

which normalizes the covariance to have values between −1 and +1 [551].  

 To consider batch means and autocorrelation computations we considering a 

generic steady-state sequence vector Vn for 𝑛 = 1,2, … ,𝑁 [243, 551], where N is the total 

number of samples.  For this sequence vector, we compute the steady-state mean as  

 𝑀[𝑉𝑛] = ∑ 𝑃𝑖𝑁
𝑖=1
𝑁

= 𝜇  ,  (6.4)  

and variance as 

 𝑀[(𝑉𝑛 − 𝜇)2] = 𝜎2 . (6.5)  

The autocorrelation function for a sequence vector is a covariance function with 

properties, 



230 

 

 

 𝛾(0) = 𝜎2 

𝛾(𝐾) = 𝛾(−𝐾) 

(6.6)  

where K is an offset [551].  Of interest is determining the spacing within a sequence to 

find the covariance stationary quantity 

 𝐶𝑓𝑐(𝑽𝑛,𝑽𝑛+𝐾) = 𝛾(𝐾) , (6.7)  

for any n and K [551].  With these quantities, dependence can be computed via the 

correlation, where (6.3) is computed for,  

 
𝜌(𝐾) = 𝐶𝑓𝑓𝑓(𝑽𝑛,𝑽𝑛+𝐾) =

𝐶𝑓𝑐(𝑽𝑛,𝑽𝑛+𝐾)

�𝑉𝑎𝑓(𝑽𝑛)�𝑉𝑎𝑓(𝑽𝑛+𝐾)
=
𝛾(𝐾)
𝛾(0)  (6.8)  

which is the correlation within the sequence with a separation of K [551].  Correlation has 

various interesting and useful properties,  

 𝜌(0) = 1 

𝜌(𝐾) = 𝜌(−𝐾) 

−1 ≤  𝜌(𝐾) ≤ 1 . 

(6.9)  

In RF-DNA fingerprinting, one extends this process by realizing that K is 

equivalent to NS, the total number of samples in a subregion.  Since NR, the total number 

of subregions, are frequently empirically determined, NS is also empirically determined in 

prior RF-DNA work, see [18, 59, 89].  However, autocorrelation could assist in this 

process by determining the number of time samples-per-subregion which lead to 

uncorrelated subregions.  When computing the autocorrelation function for multiple 

devices, one aims to find the number of time samples-per-subregion associated with the 

smallest autocorrelation.  For multiple devices, one should simultaneously compare the 
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autocorrelation function of all devices with the best minimum autocorrelation across 

device used to determine ROI size.   

The autocorrelation amplitude for the 4 authorized ZigBee devices is presented in 

Figure VI-4 at SNR = 10 dB, along with a line of 0 autocorrelation.  Of interest in Figure 

VI-4 is when the autocorrelation functions are at the 0 autocorrelation line, which 

indicates minimum autocorrelation.  Figure VI-4 shows that minimum autocorrelation 

(approximately 0) for the four devices occurs at autocorrelation indices of 24 time 

samples-per-subregion and 48 time samples-per-ROI.  Incidentally 48 time samples-per-

subregion and 24 samples-per-subregion correspond, respectively, with 1 subregion-per-

bit and 2 subregions-per-bit as explored by Dubendorfer [91].  While Dubendorfer [91] 

employed a physical understanding of signal structure and findings of prior empirical 

work to determine subregion size, employing autocorrelation for ROI size determination 

adds robustness to this decision. 

 
Figure VI-4: Autocorrelation of ZigBee Data Features, SNR = 10 dB. 
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VII. Summary and Conclusions 

What means all this? 

–MARCUS AURELIUS, 121-180 

This document presents various theoretical, practical, and application-based 

contributions made in the Radio Frequency (RF) Fingerprinting arena, including 

advancements in classifier model development, Dimensional Reduction Analysis (DRA), 

and AFIT’s RF Distinct Native Attribute (RF-DNA) Fingerprinting process.  This chapter 

presents a summary of the research, its contributions and recommendations for future 

research.  

7.1 Research Summary 

Simple, low-cost wireless devices permeate the world, including those used in 

Critical Infrastructure (CI) applications where they interact with physical devices.  

ZigBee and Z-Wave devices are two devices and have well-known security issues --c.f. 

[37, 38, 170] and are of interest for this research.  When considering security and a 

hierarchy of communication signaling, such as the seven layer Open System 

Interconnection (OSI) model [62–64], security is generally only considered within the 

Application, Network and Data Link layers [51–58].  Much less emphasis has been 

placed on Physical (PHY) layer security, the interface layer of signals emanating from the 

device itself, and extensions of PHY-based RF-DNA Fingerprinting process are of 

interest for improving security.   
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RF-DNA Fingerprinting aims to exploit device emissions in a biometric-like 

manner where statistical features having attributes of universality, distinctiveness, 

permanence, and collectability are generated and used for Device Classification and 

Device ID Verification [19, 66].  RF-DNA fingerprints are statistical in nature and 

involve computing the variance, skewness and kurtosis within Regions of Interest (ROI) 

selected form instantaneous amplitude, phase, and frequency responses.  When 

considering RF-DNA fingerprints, one must develop a classifier model to discriminate 

between devices.  Previous efforts have introduced and employed Multiple Discriminant 

Analysis (MDA), Generalized Relevance Learning Vector Quantization Improved 

(GRLVQI), Random Forests, and Learning From Signals (LFS) [51, 90, 133, 134] 

processes for classification.  Herein, the MDA and GRLVQI processes are considered 

and extended.  Additionally, RF-DNA features are frequently numerous and thus DRA is 

of interest to select appropriate subsets of features.  Prior DRA research in RF-DNA has 

considered the two-sample Kolmogorov-Smirnov (KS) test and GRLVQI relevance 

ranking values.  Herein, multiple extensions to DRA were made to introduce new 

methods, develop an MDA-based DRA method, and improve the understanding of DRA 

methods. 

Deficiencies in p-value based DRA were illustrated and the proposed F-test and 

revised KS-test illustrated advantages in using test statistic values for DRA.  Further 

improvements in DRA included developing quantitative dimensionality assessment DRA 

was shown to remove subjectivity when selecting DRA subsets.  MDA-based Loadings 

Fusion (MLF) was shown to be an MDA-classifier based DRA method which resolved 
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previously mentioned deficiencies in MDA  [51, 91, 92, 113, 134, 241].  The proposed 

autocorrelation-based approach to RF-DNA fingerprint subregion size specification was 

shown to add robustness to the previously subjective RF-DNA fingerprinting subregion 

specifications.   

The proposed F-test and MLF DRA methods were shown to offer distinct 

performance improvements over the KS-test and GRLVQI DRA methods.  ZigBee 

Device Classification results for selected DRA methods with an MDA/ML classifier and 

arbitrary average correct classification (%C) benchmark of %C = 90%, included SNR 

gain (GSNR) relative to the benchmark GRLVQI DRA with NDRA = 50 feature sets of 

1) GSNR = +0.82 dB for SSum MLF DRA, and 2) GSNR = +0.10 dB for F-test DRA using 

NDRA = 50, compared to 3) GSNR = +0.71 dB for KS–Test DRA using NDRA = 50, and 

4) GSNR = –4.22  dB for the baseline Random DRA using NDRA = 50.  ZigBee Device ID 

Verification results, using the same NDRA = 50 feature sets and MDA/ML classifier, 

included correct verification of authorized device IDs (%VA) and correct detection of 

unauthorized rogue device IDs (%VR) of %VA = 50% %VR = 91.67% for the benchmark 

GRLVQI DRA, with 1) %VA = 50% and %VR = 91.67% for SSum MLF DRA,  and 2) 

%VA = 75% and %VR = 91.67% for F-test DRA, compared to 3) %VA = 50% and 

%VR = 86.11% for the KS-test,  and 4) %VA = 50% and %VR = 75% for the baseline 

Random DRA.  Thus the proposed SSum MLF DRA and F-Test DRA offer a 

performance advantage over both GRLVQI DRA and KS–Test DRA while being 

computationally and conceptually simpler DRA methods. 
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The optimized GRLVQI algorithm and the proposed GRLVQI-D algorithm 

showed improved performance over the baseline GRLVQI algorithm. When considering 

GRLVQI classifier improvements using NF = 189 Z-Wave features and the %C = 90% 

benchmark, demonstrated Device Classification performance relative to baseline 

GRLVQI using a squared-Euclidean distance measure includes 1) improved 

GSNR = +1.94 dB using the GRVLQI optimized algorithm, and 2) improved GSNR = +1.84 

dB using GRLVQI-D with a Cosine distance measure.  For Z-Wave Device ID 

Verification, results include 1) worst case %VA = 33.33% for baseline GRLVQI, 

2) improved %VA = 66.66% for GRLVQI-D using a Cosine distance measure, and 3) best 

case %VA = 100% using the optimized GRLVQI algorithm.  Due to availability, Z-Wave 

devices were not present for rogue device assessments.  When ZigBee RF-DNA 

fingerprints were considered using the Z-Wave optimized GRLVQI and GRLVQI-D 

algorithms, performance was worse than the nominal settings of Reising [51], indicating 

that the Z-Wave optimal settings and not applicable to ZigBee device discrimination.   

7.2 Research Contributions 

Three primary contributions were made under this research, including 

improvements to 1) the Dimensional Reduction Analysis (DRA) methodology, 2) the 

GRLVQI classifier, and 3) the RF-DNA Fingerprinting process.  A summary of each 

follows: 

1. DRA Improvements:  Includes development and analysis of MDA 

Loadings Fusion (MLF) methods to rectifying the reported issue in, c.f. 
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[51, 91, 92, 113, 134, 241], that includes MDA lacking a classifier-based 

relevance.  An F-test DRA method was introduced and shown to offer 

reasonable performance.  Quantitative DRA assessment methods were 

developed to determine the number of retained features (NDRA) and their 

performance compared with previous qualitative DRA methods of [91].  

Prior RF-DNA DRA efforts have considered p-values for feature 

relevance ranking [89, 113].  However, phenomenological issues exist 

with such an approach, an improved understanding is developed herein 

based on the merits of p-values versus test statistics for feature relevance 

ranking.  Finally, a preliminary investigation into DRA relevance fusion 

was presented. 

2. GRLVQI Classifier Improvements:  involved changing the 

underlying distance measure.  To do so, one must necessarily change the 

cost function and derivatives to the GRLVQI algorithm.  Since a) 

GRLVQI is a rather complicated algorithm and b) many different distance 

measures exist, a procedure to select different distance measures was 

created that involved first comparing distance measures themselves and 

then iteratively incorporating a distance measure into successively more 

complicated learning vector quantization (LVQ) algorithms leading up to 

GRLVQI.   For this process, the first known derivative framework for the 

LVQ-family of algorithms was developed.  Subsequently, an optimization 

approach was presented to determine reasonable algorithm parameter 
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settings for the baseline GRLVQI process and the newly developed 

distance-based GRLVQI process (GRLVQI-D). 

3. RF-DNA Fingerprinting Improvements:  An enhanced 

understanding of the nature of instantaneous amplitude, phase, and 

frequency features was developed to better understand why phase features 

have historically been the most relevant for device classification.  An 

autocorrelation method was developed and characterized to automate the 

determination of the number of subregions used within a given response 

ROI.  Finally, a first-look assessment of simulation-based ROI weighting 

schemes was completed for RF-DNA Fingerprinting. 

7.3 Proposed Future Research 

Given the methods developed under this research and corresponding findings, 

many different future research endeavors could be pursued.  The following are proposed:  

1. Additional GRLVQI Algorithm Extension:  Herein, distance measures 

and the relative distance difference equation were changed in the GRLVQI 

algorithm.  However, future work could consider different activation 

functions, e.g. [570], to replace the sigmoid operation in GRLVQI.  The 

presented LVQ-family derivative skeleton would be an initial starting 

point in this effort. 

2. Tailor Algorithmic Optimization to the Signal of Interest: Optimizing 

the GLRVQI algorithmic settings was considered for Z-Wave data and 
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shown to be viable.  When these settings were applied to the ZigBee 

dataset, performance was degraded relative to the baseline.  To compute 

optimal settings for the ZigBee dataset, one would require many 

algorithmic runs which would be computationally costly.  To facilitate 

large-scale algorithm optimization studies, employing the Air Force 

Research Laboratory DOD Supercomputing Resource Center (DSRC) 

should be considered.  Employing DSRC would facilitate tailored 

GRLVQI settings to a given signal of interest, in addition to permitting 

comparing different optimization methods.   

3. Extend DRA Methods: Herein, two additional DRA methods (F-test and 

MDA Loadings) were introduced for RF-DNA Fingerprinting 

applications.  Additional DRA methods are identified in literature and 

could be considered, including entropy [76], Best Individual Features 

[213, 571], Logistic Principal Component Analysis (PCA) [572], 

nonlinear PCA [213], kernel PCA [213], and Independent Component 

Analysis (ICA) [213, 573]. 

4. Revisit DRA Fusion:  The DRA fusion methods considered herein 

demonstrated some utility at lower NDRA values.  This could be explored 

further to identify other alternate DRA fusion schemes.   

5. Further Consider Simulation Methods:  Autocorrelation methods from 

Simulation were shown to be applicable to RF-DNA Fingerprinting.  

Additional Simulation methods that consider weighting distributions to 
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reduce correlation effects, e.g. [136, 544–546, 574–578], could be 

developed and applied to Region of Interest (ROI) subregions.  

6. Explore RF-DNA Feature Phenomenology: It was seen that 

instantaneous phase features are generally more relevant than both 

amplitude or frequency features and some insight was developed to 

address this.  However, to better understand the relationship between 

feature type and their relevance to the classification decision, additional 

studies could be performed.  In this case, one could consider simulated 

devices (agnostic of modulation) and similar devices that differ only by 

the modulation they employ.   
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APPENDIX A: Lemma Associated with Multiple Discriminant Analysis Loadings 

Learning is essentially hard; it happens best when one is deeply engaged in hard 
and challenging activities. 

–SEYMOUR PAPERT, 1928 –  

Lemma 1: if 𝑎 is a scalar, 𝑏 is a vector, and X is a matrix, then if one is computing 

the correlation of 𝑎𝑏𝑇𝑋 and 𝑋 then 𝑐𝑓𝑓𝑓(𝑋,𝑎𝑏𝑇𝑋) = 𝑐𝑓𝑓𝑓(𝑋, 𝑏𝑇𝑋).  

To prove Theorem 1, the scaling will be represented as eigenvectors 

 𝑏∗ = 𝑎𝑏, (A.1)  

scaled by a scalar 𝑎 [237]. If the projection matrix were scaled, as in (A.1), then the 

relationship in (3.11) could be expressed as 

 𝑐𝑓𝑓𝑓(𝑋, 𝑏∗𝑇𝑋) = 𝑐𝑓𝑓𝑓(𝑋,𝑋)𝐷𝑋
1/2𝑏∗[𝑏∗𝑇𝑐𝑓𝑐(𝑋,𝑋)𝑏∗]−1/2 , (A.2)  

which expands to 

 𝑐𝑓𝑓𝑓(𝑋,𝑎𝑏𝑇𝑋) = 𝑐𝑓𝑓𝑓(𝑋,𝑋)𝐷𝑋
1/2𝑎𝑏[𝑎𝑏𝑇𝑐𝑓𝑐(𝑋,𝑋)𝑎𝑏]−1/2 . (A.3)  

Equation (A.3) can be expanded to  

 𝑐𝑓𝑓𝑓(𝑋,𝑋)𝐷𝑋
1/2𝑎𝑏𝑎−1[(𝑏𝑇𝑐𝑓𝑐(𝑋,𝑋)𝑏)]−1/2

= 𝑐𝑓𝑓𝑓(𝑋,𝑎𝑏𝑇𝑋) , 
(A.4)  

which means the scaling multiplier can cancel, yielding the conclusion that scaling the 

loadings does not change the loadings,  

 𝑐𝑓𝑓𝑓(𝑋, 𝑎𝑏𝑇𝑋) = 𝑐𝑓𝑓𝑓(𝑋, 𝑏𝑇𝑋). (A.5)  
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APPENDIX B: Examination of LVQ and GLVQ Properties and Features 

You can't process me with a normal brain… 

−CARLOS ESTÉVEZ, 1965 –  

The GLVQ, GRLVQ, and GRLVQI relative distance measure in (3.34) deserves 

some understanding of what this actually measures.  A simple example can be 

constructed with a simple example.  Consider a hypothetical space presented in Figure B-

1 where there are two hypothetical PVs, placed at (−1, 1) and (−1, −1) respectively, and 

an exemplar at (1, 1).  The squared Euclidean distances between the exemplar and each 

PV are respectively 

 𝑑𝐹𝑃1 =4 (B.1)  

and 

 𝑑𝐹𝑃2 = 8. (B.2)  

 
Figure B-1: Hypothetical Situation with Two PVs and One Exemplar 
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To consider the output of the relative distance measure in (3.34), one can consider 

two situations, 1) PV1 being the correct in−class PV or 2) PV2 being the correct in−class 

PV.  For case 1), the relative distance difference measure returns a score of −0.3333, but 

in 2) the relative distance difference measure returns a score of 0.3333.  Per the 

discussion in Section 3.3.1.6 on interpreting the distance difference measure, negative 

values are indicative of correct classification and positive values are incorrect 

classification with the magnitude indicating how “correct” or “incorrect.”   

To extend this example of how the PVs, exemplar, distance measure, and relative 

distance difference interact, one can extend this example to compute the distance of every 

point to the two stationary PVs.  Figure B-2 presents the squared Euclidean distance for 

every point (0.01 sampling) between −4 and 4 and the two PVs.  Figure B-2a presents the 

values where PV1 is considered, and Figure B-2b presents the values where PV2 is 

considered.  Logically, the distances form circles of increasing distance from the 

respective PVs. 

 
a) Distances with respect to PV1 

 
b) Distances with respect to PV2 

Figure B-2: Distances Between Exemplars and a) PV1 and b) PV2 
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Considering the relative distance difference metric for Figure B-2, and assuming 

the PV1 is the correct classification, one sees Figure B-3.  Here one can see that the scores 

go to −1 as one approaches PV1 and +1 as one approaches PV2 with curves of different 

values around each PV.  As PV1and PV2 move closer together, one finds that most 

possible points for an exemplar are scored near 0, while only scores extremely close to 

each PV receive higher magnitude scores, as seen in Figure B-4.  

 
Figure B-3: General Relationship Between Distance Difference Measure and PV 

Distances  

 
Figure B-4: Relationship Between Distance Difference Measure and PV Distances 

for Closely Spaced PV1 and PV2 
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APPENDIX C: P-values versus Test Statistics on Selected Academic Datasets 

…the primary product of a research inquiry is one or more measures of effect 
size, not p values. 

−JACOB COHEN, 1923 – 1998 

Section 4.2.1.3 showed that p-values were largely deficient as a feature relevance 

ranking tool for RF-DNA due to p-values 1) being computed beyond machine precision, 

2) having less resolution than test statistic values, 3) converging on zero, and 4) offering 

slightly less classification performance than test statistic relevance ranking.  However, 

this was only a single example on a specific problem; therefore this appendix presents 

empirical demonstrations on academic datasets to show that this problem is not unique to 

RF-DNA.  

To examine the generalizability of p-value versus test statistic feature ranking, a 

selection of academic datasets was examined as presented in Table C-1.  Table C-1 

presents a consistent amount and variety of data as examined in [579].  The datasets 

consist of well-known multivariate problems and range in size from 30 exemplars, 3 

features, and 3 classes in Insect to 60,000 exemplars, 717 features, and 10 classes in 

MNIST.  

All datasets were considered using the KS-test and F-test feature relevance 

ranking methods, consistent with Section 4.2.1.3.  To compute p-values, with the 

exception of MNIST, no separation into training and testing sets were pursued and all 

datasets were considered in their entirety.  
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Table C-1: Example Academic Datasets. 

DATASET NUMBER OF 
SAMPLES IN CLASSES 

NUMBER OF 
FEATURES 

TOTAL 
NUMBER OF 
EXEMPLARS 

REFERENCE 

FISHER 
Setosa: 50 

Versicolor: 50 
Virginica: 50 

4 150 [235, 580] 

INSECT 
Species 1: 10 
Species 2: 10 
Species 3: 10 

3 30 [466, 467] 

VERTEBRAL 
COLUMN 

Spondylolisthesis: 
150 

Normal: 100 
Disk Hernia: 60 

6 310 [581] 

WINE 
QUALITY 

White: 4898 
Red: 1599 11 6497 [582] 

WISCONSIN 
BREAST 
CANCER 

Benign: 458 
Malignant: 241 

9 699 [583] 

WINE 
Cultivar 1: 59 
Cultivar 2: 71 
Cultivar 3: 48 

13 178 [584] 

MNIST 
(TRAINING 

SET) 

1: 6742 
2: 5958 
3: 6131 
4: 5842 
5: 5421 

6: 5918 
7: 6265 
8: 5851 
9: 5949 
0: 5923 

784 60,000 [585, 586] 

ECOLI 

Cytoplasm: 143 
Inner Membrane: 116 

Perisplasm:  52 
Outer Membrane: 25 

7 336 [587] 

 

Fisher Iris was first examined using the p-value and test statistic approaches 

described in Section 4.2.1.3.  The Fisher Iris dataset is a commonly used academic 
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discrimination problem that contains measurements of petals and sepals for three species 

of Iris flowers: setosa, versacolor, and virginica.  This dataset contains 50 observations 

per class, no missing values, and four data features: petal length, petal width, sepal 

length, and sepal width [235].  Table C-2 presents a similar comparison of features as in 

Table IV-2; however, since Fisher Iris consists of only 4 features the features are not 

sorted and the test statistic values represent the actual values for those features.  Again, as 

in Section 4.2.1.3, many p-values were computed as values beyond machine zero while 

their associated test statistic values are reasonable.  

Table C-2: p-values vs Test Statistic for Fisher Iris 

FEATURE 
NUMBER 

F-TEST KS-TEST 

TEST 
STATISTIC P-VALUE 

SUMMED 
TEST 

STATISTIC 

SUMMED P-
VALUE 

1 119.26 1.67∙10-31 9.400 1.74∙10-21 
2 49.16 4.49∙10-17 2.4733 1.68∙10-22 
3 1,180.20 2.86∙10-91 1.800 1.91∙10-21 
4 960.00 4.17∙10-85 2.5733 2.84∙10-30 

VARIANCE 332,880.0 5.04∙10-34 12.7836 1.02∙10-42 
 

The Insect data considers three species, 10 observations each with no missing 

values, of chaetocnema insects [499, 500].  Data feature here correspond to: width of the 

frist joint of the first tarsus (microns), width of the first joing of the second tarsus 

(microns), and maximal width of the aedegus (microns) [499, 500].  While no p-values 

below machine precision were computed, Table C-3 shows again the value of test-
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statistic ranking over p-value ranking since the differences between KS-test p-values are 

very small to be imperceptible.  

Table C-3: p-values vs Test Statistic for Insect. 

FEATURE 
NUMBER 

F-TEST KS-TEST 

TEST 
STATISTIC P-VALUE 

SUMMED 
TEST 

STATISTIC 

SUMMED P-
VALUE 

1 64.88 0.00 2.77 1.11∙10-8 
2 1.36 0.27 1.77 1.11∙10-8 
3 1.12 0.34 2.0 3.59∙10-14 

VARIANCE 1,350.1 0.033 0.27 4.09∙10-17 
 

The vertebral column dataset considers spine measurements and normal and 

abnormal disk issues, such as Disk Hernia and Spondylolisthesis [584].  When examining 

the vertebral column dataset, Table C-4, many p-values are seen as being computed 

beyond machine precision.  However, the test statistic values offer more perceptible 

differences between features.  

Wine Quality considers various chemical properties, e.g. acidity and sulphates, in 

the Portuguese "Vinho Verde" wine and their relationship with a quality score [582].  

Table C-5 presents results for the KS-test and F-test DRA approaches; while all but two 

KS-test summed p-values were equal to exactly zero with the non-zero values being 

below machine precision, the KS-test statistic value offers a seemingly reasonable 

approach to rank features.  A similar result is also seen in the F-test for this data. 
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Table C-4: p-values vs Test Statistic for Vertebral Column. 

FEATURE 
NUMBER 

F-TEST KS-TEST 

TEST 
STATISTIC P-VALUE 

SUMMED 
TEST 

STATISTIC 

SUMMED P-
VALUE 

1 98.537 8.77∙10-34 3.129 4.88∙10-7 

2 21.298 2.22∙10-9 3.787 3.42∙10-16 
3 114.988 5.34∙10-38 2.777 4.89∙10-7 

4 89.647 2.17∙10-31 2.923 1.41∙10-9 

5 16.869 1.12∙10-7 4.823 4.69∙10-122 
6 119.127 5.10∙10-39 3.013 3.42∙10-16 

VARIANCE 2,111.9 2.07∙10-15 0.602 6.36∙10-14 

 
 

Table C-5: p-values vs Test Statistic for Wine Quality. 

FEATURE 
NUMBER 

F-TEST KS-TEST 

TEST 
STATISTIC P-VALUE 

SUMMED 
TEST 

STATISTIC 

SUMMED P-
VALUE 

1 8.00 1.26∙10-8 9.31 0.0 
2 96.67 8.44∙10-117 8.64 9.86∙10-21 
3 9.31 3.44∙10-10 8.58 9.86∙10-21 

4 9.11 5.97∙10-10 8.48 0.0 
5 50.85 1.95∙10-61 9.84 0.0 
6 14.94 4.77∙10-17 9.17 0.0 

7 7.72 2.77∙10-8 9.66 0.0 
8 136.95 6.58∙10-164 9.96 0.0 
9 2.02 0.06 9.48 0.0 

10 4.33 2.31∙10-4 9.19 0.0 
11 320.59 0.0 9.45 0.0 

VARIANCE 9,434.7 3.19∙10-4 0.25 1.59∙10-6 
 



249 

 

 

The Wisconsin Breast Cancer dataset concerns various parameters about potential 

breast masses for a classification of benign or malignant [583].  As seen in the other 

examples, Table C-6 presents results for the KS-test and F-test DRA approaches.  Again, 

for both approaches, test statistic values are seen to provide results which are real 

numbers and not beyond machine precious or infinitesimally small.  

Table C-6: p-values vs Test Statistic for Wisconsin Breast Cancer. 

FEATURE 
NUMBER 

F-TEST KS-TEST 

TEST 
STATISTIC P-VALUE 

SUMMED 
TEST 

STATISTIC 

SUMMED P-
VALUE 

1 733.21 6.84∙10-111 3.05 7.92∙10-21 
2 1,408.5 1.75∙10-169 1.744 0.66 
3 1,419.3 2.95∙10-170 1.743 0.51 

4 657.79 1.11∙10-102 1.84 0.48 
5 608.72 4.35∙10-97 3.78 9.40∙10-9 
6 1,014.2 4.54∙10-138 2.02 1.18∙10-4 

7 933.29 9.85∙10-131 2.79 9.40∙10-9 
8 717.63 3.12∙10-109 1.99 0.32 
9 152.04 9.68∙10-32 3.30 4.51∙10-12 

VARIANCE 160,430 1.04∙10-63 0.59 0.07 
 

The wine dataset is conceptually similar to the wine quality dataset, however here 

we are interested in discriminating between three different grape cultivars [584].  Similar 

to the other example datasets, p-values are again computed beyond machine precision 

and offer less obvious interpretability as that seen in the test statistic values.  However, 

one issue does exist in the KS-test statistic values with feature 5 and 13 producing 

identically valued test statistics, but this is the only occurrence of this problem and 
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despite this issue the test statistic values still appear to offer more consistent and 

interpretable relevance ranking values. 

Table C-7: p-values vs Test Statistic for Wine 

FEATURE 
NUMBER 

F-TEST KS-TEST 

TEST 
STATISTIC P-VALUE 

SUMMED 
TEST 

STATISTIC 

SUMMED P-
VALUE 

1 135.07 3.32∙10-36 11.93 3.18∙10-71 
2 36.94 4.13∙10-14 7.94 0.002 
3 13.31 4.15∙10-6 9.19 5.978∙10-7 

4 35.77 9.44∙10-14 11.92 3.18∙10-71 
5 12.43 8.96∙10-6 12.00 7.99∙10-79 
6 93.73 2.14∙10-28 8.12 3.11∙10-4 

7 233.93 3.59∙10-50 7.73 0.0017 
8 27.58 3.88∙10-11 11.75 2.96∙10-62 
9 30.27 5.13∙10-12 8.92 1.79∙10-7 

10 120.66 1.16∙10-33 10.19 1.48∙10-27 
11 101.32 5.92∙10-30 10.95 1.20∙10-35 
12 189.97 1.39∙10-44 8.52 4.45∙10-6 
13 207.92 5.78∙10-47 12.00 7.99∙10-79 

VARIANCE 6,040.10 7.03∙10-12 3.02 4.77∙10-7 
 

Written character recognition is a concern in many fields, e.g. [588–592], MNIST 

is a dataset that considers thousands of handwritten digits [585, 586].  MNIST’s data 

features are actually pixels in an 28x28 image, with each of the 60,000 observations 

containing one image of one handwritten digit [585, 586].  However, the final image is 

really 20x20 since there is a band of 0s around the 20x20 image [585, 586].  Table C-8 

presents results when the KS-test and F-test DRA approaches are applied.  Values are 
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sorted from lowest to highest based on the respective test-statistic value, consistent with 

those presented for RF-DNA.  Notably, this dataset shows that the F-test failed to 

produce a test statistic value in some cases, while the KS-test did not.  However, 

underlying this issue is the data itself; many observations in some features were all 0s, 

therefore such a result is understandable since the KS-test is comparing two distributions 

and the distributions of two vectors of all zeros is identical.  Therefore, the KS-test has no 

issue with handling such data, while the F-test does.   

Table C-8: p-values vs Test Statistic for MNIST. 

FEATURE 
NUMBER 

F-TEST KS-TEST 
TEST 

STATISTIC P-VALUE SUMMED TEST 
STATISTIC 

SUMMED P-
VALUE 

1 NAN NAN 420.83 0.4576 
2 NAN NAN 418.96 0.4576 
3 NAN NAN 417.34 4.13∙10-4 
4 NAN NAN 409.15 6.39∙10-4 
⁞ ⁞ ⁞ ⁞ ⁞ 

68 3.17 7.8∙10-4 323.49 0.06 
69 2.54 0.0065 323.14 0.99 
⁞ ⁞ ⁞ ⁞ ⁞ 

783 0.18 0.996 143.49 8.32 
784 0.15 0.998 143.48 9.48 

VARIANCE NaN NaN 5,038.9 14,094.0 
 

The Ecoli dataset considers measurements of various Ecoli cells relating to 

different biological aspects [587].  The original dataset contains eight classes, related to 

the localization site of the Ecoli [587].  This was condensed into four groups (Cytoplasm, 

Inner Membrane, Perisplasm, and Outer Membranes) due to the presence of very small 



252 

 

 

minority classes.  When the KS-test and F-test DRA methods are applied, again one see 

the recurring issues with p-value but not with test statistic values, Table C-9. 

Table C-9: p-values vs Test Statistic for Ecoli. 

FEATURE 
NUMBER 

F-TEST KS-TEST 

TEST 
STATISTIC P-VALUE 

SUMMED 
TEST 

STATISTIC 

SUMMED P-
VALUE 

1 52.34 8.30∙10-50 1.65 0.039 

2 61.94 2.65∙10-56 1.69 0.11 
3 109.46 6.84∙10-82 3.59 1.00∙10-36 

4 46.58 1.32∙10-45 3.68 1.07∙10-36 

5 28.18 2.76∙10-30 1.79 0.11 
6 181.38 1.03∙10-108 1.68 0.43 
7 93.65 2.36∙10-74 1.78 0.41 

VARIANCE 2,700 1.09∙10-60 0.88 0.03 

 

Of particular interest was the generalizability of the benefits of test-statistic 

feature relevance ranking over p-value for feature relevance ranking.  This was 

demonstrated in all cases except MNIST.  This was again due to the representative 

academic dataset having a machine precision issue when using p-values for feature 

relevance ranking, but not when using test statistics.  Some statistical software truncates 

p-values at a certain point, e.g. JMP truncates p-values and list them as “<0.0001” [593], 

to avoid computing infinitesimally small values.  While such an approach would avoid 

presenting and using values beyond machine precision, such approaches are logically also 

insufficient for feature relevance ranking.   No such issues existed with the test statistic 

values, and only in the Wine dataset were two identical test statistical values computed 
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for two features using the KS-test; however, this was the only occurrence of this type of 

problem seen across all of this datasets and does not negate the various obvious issues 

seen in the p-value rankings.   

Throughout all of these academic datasets and the ZigBee RF-DNA dataset, no 

such issues existed for the test statistic relevance ranking.  This both illustrates the 

generalizability of the results in Section 4.2.1.3 to a wide range of problems and dataset 

sizes and empirically verifies the recommendation of [365] regarding p-values and 

feature relevance ranking.  

As seen in the MNIST data, KS-test has the benefit that variables consisting of all 

0s or identical values can still be examined, while the F-test does not.  However, such 

situations indicate that variables with such conditions will make the data singular or 

nearly singular, which will preclude further analysis in MDA or other linear classifiers.  

Nonlinear and ANN based classifiers may still be able to operate on such data, however 

variables that are identically one value would be necessarily redundant.  
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APPENDIX D: DRA Method Fusion Classification and Verification Performance 
Assessments 

The chess board is the world, the pieces the phenomena of the universe, the rules 
of the game are what we call the laws of nature. The player on the other side is 
hidden from us. All we know is that his play is always fair, just and patient. But, 

also, that he never overlooks a mistake or makes the smallest allowance for 
ignorance. 

−THOMAS HENRY HUXLEY, 1825 – 1895 

By considering the DRA fusion methods in Section 4.2.4 one can determine if 

fusion of DRA methods offers any performance benefit.  MDA/ML models were 

constructed using the DRA fusion methods and then classification and verification 

accuracy of each model are presented, respectively, in Table D-1 and Table D-2.  Table 

D-1 shows that DRA fusion methods achieve consistently worse performance than the 

best result seen in the DRA methods by themselves (presented in the last column of Table 

D-1).  However, while score and rank fusion offer consistently poor performance, 

concatenation DRA fusion offers performance similar performance to the original DRA 

methods.  Thus concatenation DRA fusion might be viable since it balances the 

contributions and weaknesses of various methods. 
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Table D-1: Relative DRA “Gain” (dB) Over Baseline Performance for %C = 90% 
Classification Accuracy for DRA Fusion Methods.  Bold entries denote values within 

10% of the Best, and bold entries with light grey shading denote best case 
performance. 

SET 
FUSION METHOD  BEST RESULT 

FROM  
TABLE IV-6 Score  Rank  Concatenate  

NF=26  
TRAINING  -18.462  − −13.215  −13.347 

TESTING  -18.393  −  −13.852  −13.817 

NF=50  
TRAINING  -8.712  −16.972  −9.324  −7.697 

TESTING  -8.513  −17.343  −9.482  −7.967 

NF=100  
TRAINING  -4.732  −12.532  −4.105  −3.387 

TESTING  -4.643  −12.563  −4.002  −3.407 

NF=157  
TRAINING  -2.792  −10.822  −2.475  −2.207 

TESTING  -2.683  −10.773  −2.272  −2.357 

NF=191  
TRAINING  -2.362  −10.152  −2.095  −1.767 

TESTING  -2.303  −10.223  −1.972  −1.917 
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Table D-2: Device ID Verification Performance for %C = 90% at SNR = 10 dB:  
True Verification Rate (TVR) for NAuth = 4 Authorized Devices and Rogue Rejection 

Rate (RRR) For  NAuth xNRog  = 36 rogue scenarios.   Bold entries denote values 
within 10% of the Best, and bold entries with light grey shading denote best case 

performance and. 

SET 
FUSION METHOD  BEST RESULT 

FROM TABLE 
IV-8 SCORE  RANK  CONCATENATE  

NF=10  
AUTHORIZED  0 0 25 50 

ROGUE  19.44 0 38.89 52.78 

NF=26  
AUTHORIZED  50 0 25 50 

ROGUE  66.67 0 75 80.56 

NF=50  
AUTHORIZED  50 0 50 75 

ROGUE  88.89 0 86.11 91.67 

NF=100  
AUTHORIZED  75 0 75 100 

ROGUE  97.22 11.11 94.44 94.44 

NF=157  
AUTHORIZED  100 25 75 100 

ROGUE  97.22 41.67 94.44 94.44 

NF=191  
AUTHORIZED  100 50 100 100 

ROGUE  97.22 55.56 97.22 94.44 
 

The verification results from DRA fusion, Table D-2, show a similar deficiency in 

DRA fusion methods as seen in Table D-1.  Again, DRA fusion methods consistently 

underperform individual DRA methods for verification, particularly at low NDRA.  At 

higher NDRA, e.g. NDRA = [100, 157, 191], DRA fusion methods are seen to achieve 

comparable or better performance to the individual DRA methods.  However, this it 

should be taken in consideration that the performance differences seen are very slight.  

Thus DRA fusion methods have limited applicability to RF-DNA classifier model 

development when compared to using the original DRA methods. 



257 

 

 

APPENDIX E: Gradient Descent and Derivatives in GLVQ Family Algorithms 

…artificial networks need not imitate biology. 

−TEUVO KOHONEN, 1934 –    

In GLVQ the cost function is no long the distance measure itself and is now 

expressed as a function of both a sigmoid, (3.33), and a relative distance measure, (3.34), 

which is itself a function of both the nearest in-class and out-of-class distances.  Overall, 

these changes complicate the derivation process and the process must be examined 

closely.   

The cost function itself is first examined.  Correctly, to compute the first 

derivative, one must consider that the derivative is with respect to the appropriate PV, 𝑤𝐽 

or 𝑤𝐿.  However, since the in/out-of-class aspect of the PV is not functionally relevant 

this can be generalized as 𝑑𝑓(𝜇(𝑚𝑚))/𝑑𝑤.  First, considering 𝜕𝑓�𝜇(𝑚𝑚)�/𝜕𝜇(𝑚𝑚), one 

must realize that 𝜇(𝑚𝑚) is a function within 𝑓(𝜇(𝑚𝑚)), therefore this can be solved via 

the chain rule as described in (3.22).  With this approach, the gradient of the cost function 

can be computed as 

 𝑑𝑓�𝜇(𝑚𝑚)�
𝑑𝑤

=
𝜕𝑓�𝜇(𝑚𝑚)�
𝜕𝜇(𝑚𝑚)

𝜕𝜇(𝑚𝑚)
𝜕𝑤

 . (E.1)  

with 
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 𝜕𝑓�𝜇(𝑚𝑚)�
𝜕𝜇(𝑚𝑚) = 𝑓′�𝜇(𝑚𝑚)�𝜇′(𝑚𝑚) (E.2)  

where 𝑓′�𝜇(𝑚𝑚)� = −�1 + 𝑒−𝜇(𝑥𝑆)�
−2

 due to the formulation in (3.32)–(3.34) thus 

yielding the following 

 𝜕𝑓�𝜇(𝑚𝑚)�
𝜕𝜇(𝑚𝑚) = −�

1
1 + 𝑒−𝜇(𝑥𝑆)�

2 𝜕
𝜕𝜇(𝑚𝑚) �1 + 𝑒−𝜇(𝑥𝑆)�  (E.3)  

which, because of the expression in (D.2), reduces to  

 
𝜕𝑓�𝜇(𝑚𝑚)�
𝜕𝜇(𝑚𝑚) = �

1
1 + 𝑒−𝜇(𝑥𝑆)� �

𝑒−𝜇(𝑥𝑆)

1 + 𝑒−𝜇(𝑥𝑆)� (E.4)  

or  

 𝜕𝑓�𝜇(𝑚𝑚)�
𝜕𝜇(𝑚𝑚) = 𝑓�𝜇(𝑚𝑚)� �1 − 𝑓�𝜇(𝑚𝑚)��. (E.5)  

With a solution to 𝜕𝑓�𝜇(𝑚𝑚)� 𝜕𝜇(𝑚𝑚)⁄ , one must now solve for 𝜕𝜇(𝑚𝑚) 𝜕𝑤⁄ .  

Since 𝜇(𝑚𝑚) is expressed in the form seen in (3.34), 𝜕𝜇(𝑚𝑚) 𝜕𝑤⁄  can be solved via a 

quotient rule, 

 
𝜕 �
𝑑
𝑐
� =

𝑐𝜕𝑑 − 𝑑𝜕𝑐
𝑐2

 , (E.6)  

where the derivative of both the numerator and denominator must be computed [276].  

Per (46), 𝑐 = (𝑑𝐽 + 𝑑L), 𝑑 = (𝑑𝐽 − 𝑑L), and 𝑐2 = (𝑑𝐽 + 𝑑L)2, leaving 𝑑𝑐 and 𝑑𝑑 to be 

computed.  One must realize that 𝑑𝑐 and 𝑑𝑑 are both a function of the in-class or out-of-

class, 𝑤𝐽  and 𝑤L  respectively, PV gradient descents, therefore computing 𝑑𝑐  and 𝑑𝑑 

involves solving four derivatives to yield two equations for the in-class and out-of-class 
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gradient descents, 𝜕𝑢
𝜕𝑛𝐽  and 𝜕𝑣

𝜕𝑛𝐽 for  𝑤𝐽   and 𝜕𝑢
𝜕𝑛𝐿  and 𝜕𝑣

𝜕𝑛𝐿  for 𝑤L  respectively. All four 

derivatives can be generally expressed as 

 𝜕𝑑
𝜕𝑤𝐽,𝐿 =

𝜕(𝑑𝐽 ± 𝑑𝐿)
𝜕𝑤𝐽,𝐿  (E.7)  

and the derivatives computed via the sum of derivatives rule,  

 𝜕(𝑑 + 𝑐) = 𝜕𝑑 + 𝜕𝑐. (E.8)  

For derivatives associated with u, (E.7) can be expressed as 

 𝜕(𝑑𝐽 − 𝑑𝐿)
𝜕𝑤𝐽,𝐿 =

𝜕𝑑𝐽

𝜕𝑤𝐽 −
𝜕𝑑𝐿

𝜕𝑤𝐿 (E.9)  

and similarly for v as 

 𝜕𝑐
𝜕𝑤𝐽,𝐿 =

𝜕(𝑑𝐽 + 𝑑𝐿)
𝜕𝑤𝐽,𝐿 =

𝜕𝑑𝐽

𝜕𝑤𝐽 +
𝜕𝑑𝐿

𝜕𝑤𝐿 . (E.10)  

Obviously, depending on whether these derivatives are computed for 𝑑𝑤𝐽 or 𝑑𝑤𝐿, one of 

these components will equal zero and the other will be computed via the derivative of the 

distance metric.  Therefore, the GLVQ gradient derivative formulation can be simplified 

to the following two general equations, 𝜕 �𝑢
𝑣
�
𝐽

 and 𝜕 �𝑢
𝑣
�
𝐿

 which is simplified since 

𝜕𝑐𝐽 = 𝜕𝑑𝐽 and 𝜕𝑐𝐿 = −𝜕𝑑𝐿,   

 
𝜕 �
𝑑
𝑐
�
𝐽

=
𝑑𝜕𝑑𝐽 − 𝑐𝜕𝑐𝐽

𝑐2
 , (E.11)  

and 

 
𝜕 �
𝑑
𝑐
�
𝐿

=
𝑑𝜕𝑑𝐿 − 𝑐𝜕𝑐𝐿

𝑐2
  , (E.12)  

this can further be simplified to: 
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𝜕 �
𝑑
𝑐
�
𝐽

=
𝜕𝑑𝐽(𝑑 − 𝑐)

𝑐2
 (E.13)  

and 

 
𝜕 �
𝑑
𝑐
�
𝐿

=
𝜕𝑑𝐿(𝑑 + 𝑐)

𝑐2
. (E.14)  

Inserting our expressions for u and v into (E.13) and (E.14) yields, 

 
𝜕 �
𝑑
𝑐
�
𝐽

=
𝜕𝑑𝐽�(𝑑𝐽 − 𝑑L) − (𝑑𝐽 + 𝑑L)�

(𝑑𝐽 + 𝑑L)2 =
𝜕𝑑𝐽(−2𝑑L)
(𝑑𝐽 + 𝑑L)2  (E.15)  

and 

 
𝜕 �
𝑑
𝑐
�
𝐿

=
𝜕𝑑𝐿�(𝑑𝐽 − 𝑑L) + (𝑑𝐽 + 𝑑L)�

(𝑑𝐽 + 𝑑L)2 =
𝜕𝑑𝐿(2𝑑J)

(𝑑𝐽 + 𝑑L)2. (E.16)  

which provides the negation to make the in-class PV operation move closer and the out-

of-class PV move further away.  From this formulation, and assuming one doesn’t change 

the cost function itself, to change distance metrics one must merely compute the first 

derivate of the respective distance metric with respect to both the in-class and out-of-

class PV and insert it appropriately.  If one has examined changing distance metrics in the 

LVQ process first, then one only needs to consider the computed first derivative and 

appropriately add superscripts to designate in-class and out-of-class distance.   

 For the nominal squared Euclidean distance metric, this is solved via the chain 

rule and hence all derivatives are multiplied by -1 due to the negative w term.  One can 

then solve (E.15) for 𝜕uJ  

 
𝜕𝑑𝐽 =

𝜕𝑑
𝜕𝑤𝐽 =

𝜕𝑑𝐽

𝜕𝑤𝐽 =  2(𝑚𝑚 − 𝑤𝐽) ∙ −1 = −2(𝑚𝑚 − 𝑤𝐽) (E.17)  

and for 𝜕vJ 
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𝜕𝑐𝐽 =

𝜕𝑐
𝜕𝑤𝐽 =

𝜕𝑑𝐽

𝜕𝑤𝐽 =  2(𝑚𝑚 − 𝑤𝐽) ∙ −1 = −2(𝑚𝑚 − 𝑤𝐽) . (E.18)  

Then (E.16) can be solve for 𝜕uJ 

 
𝜕𝑑𝐿 =

𝜕𝑑
𝜕𝑤𝐿 = −

𝜕𝑑𝐿

𝜕𝑤𝐿 = −2(𝑚𝑚 − 𝑤𝐿) ∙ −1 = 2(𝑚𝑚 − 𝑤𝐿) (E.19)  

and dvJ 

 

𝜕𝑐𝐿 =
𝜕𝑐
𝜕𝑤𝐿 =

𝜕𝑑𝐿

𝜕𝑤𝐿 =  2(𝑚𝑚 − 𝑤𝐿) ∙ −1 = −2(𝑚𝑚 − 𝑤𝐿) . 
(E.20)  

 To compute the equation for the gradient descent updates, one must place the 

appropriate components into (E.6) for in-class or out-of-class gradient descents, 𝑤𝐽 and 

𝑤L respectively denoted as 𝑑𝐽 and 𝑑𝐿, yields  

 
𝜕 �
𝑑
𝑐
�
𝐽

=
(𝑑𝐽 + 𝑑L)�−2(𝑚𝑚 − 𝑤𝐽)� − (𝑑𝐽 − 𝑑L)�−2(𝑚𝑚 − 𝑤𝐽)�

(𝑑𝐽 + 𝑑L)2 ,  (E.21)  

and 

 
𝜕 �
𝑑
𝑐
�
𝐿

=
(𝑑𝐽 + 𝑑L)�2(𝑚𝑚 − 𝑤𝐽)� − (𝑑𝐽 − 𝑑L)�−1 ∗ 2(𝑚𝑚 − 𝑤𝐽)�

(𝑑𝐽 + 𝑑L)2 ,  (E.22)  

which can be expressed as 

 
𝜕 �
𝑑
𝑐
�
𝐽

=
−2(𝑚𝑚 − 𝑤𝐽)�(𝑑𝐽 + 𝑑L) − (𝑑𝐽 − 𝑑L)�

(𝑑𝐽 + 𝑑L)2  ,  (E.23)  

and 

 
𝜕 �
𝑑
𝑐
�
𝐿

=
2(𝑚𝑚 − 𝑤L)�(𝑑𝐽 + 𝑑L) + (𝑑𝐽 − 𝑑L)�

(𝑑𝐽 + 𝑑L)2   (E.24)  

which further reduces to 
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𝜕 �
𝑑
𝑐
�
𝐽

=
−2(𝑚𝑚 − 𝑤𝐽)(2𝑑L)

(𝑑𝐽 + 𝑑L)2   (E.25)  

and 

 
𝜕 �
𝑑
𝑐
�
𝐿

=
2(𝑚𝑚 − 𝑤L)(2𝑑𝐽)

(𝑑𝐽 + 𝑑L)2   (E.26)  

which yields, 

 
𝜕 �
𝑑
𝑐
�
𝐽

= −
4(𝑚𝑚 − 𝑤𝐽)𝑑L

(𝑑𝐽 + 𝑑L)2   (E.27)  

and 

 
𝜕 �
𝑑
𝑐
�
𝐿

=
4(𝑚𝑚 − 𝑤L)𝑑J

(𝑑𝐽 + 𝑑L)2  , (E.28)  

which is the derivative of the distance used in the quotient rule, within the chain rule.  

The gradient descent for GRLVQ type algorithms is then the gradient by chain rule 

 𝜕𝑓�𝜇(𝑚𝑚)�
𝜕𝑑𝐽

4𝑑𝐽,𝐿

(𝑑𝐽 + 𝑑L)2 (E.29)  

multiplied by the learning rate, 𝑖(𝑑), and a differential shifting, 

 (𝑚𝑚 − 𝑤𝐽,𝐿 ), (E.30)  

which yields the gradient descent equations in (3.38). 
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APPENDIX F: Gradient Descent in GRLVQ and GRLVQI Relevance Computation 

Those who are good at archery learnt from the bow and not from Yi the Archer. Those 
who know how to manage boats learnt from the boats and not from Wo. Those who can 

think learnt from themselves, and not from the Sages. 
–ANONYMOUS (T’ANG DYNASTY)1 

 For GRVLQ and GRLVQI, the relevance computations and relevance gradient 

descent must be considered.  GRLVQ and GRLVQI extend GLVQ in a similar manner as 

RLVQ extends LVQ.  Thus the PV update in GRLVQ and GRLVQI are consistent with 

the gradient update in Section 5.2.4, and the relevance computation in GRLVQ and 

GRLVQI is associated with a gradient descent.  As in Section 5.2.2.2(a), this is a function 

of 𝜓𝑞 and it would be computed as 𝜕𝑓(𝜇(𝑚𝑚))/𝜕𝜓, or  

 𝜕𝑓�𝜇(𝑚𝑚)�
𝜕𝜓

=
𝜕𝑓�𝜇(𝑚𝑚)�
𝜕𝜇(𝑚𝑚)

𝜕𝜇(𝑚𝑚)
𝜕𝜓

 , (F.1)  

with 𝜕𝑑�𝜇(𝑥𝑆)�
𝜕𝜇(𝑥𝑆)  already solved for the PV update, in (D.2)–(D.5).  Therefore, solving (F.1) 

involves solving  𝜕𝜇(𝑥𝑆)
𝜕𝜓

, which involves a logically similar approach to solving 

for 𝜕𝜇(𝑚𝑚) 𝜕𝑤⁄ , via the quotient rule in (E.6), only with 𝑐 = (𝑑𝐽 + 𝑑L), 𝑑 = (𝑑𝐽 − 𝑑L), 

and 𝑐2 = (𝑑𝐽 + 𝑑L)2, for  

 𝜕𝑑
𝜕𝜓

=
𝜕(𝑑𝐽 − 𝑑𝐿)

𝜕𝜓
=
𝜕𝑑𝐽

𝜕𝜓
−
𝜕𝑑𝐿

𝜕𝜓
 (F.2)  

and for v  

                                                 
1From the 8th Century Taoist book Kuan Yin Tzu 
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 𝜕𝑐
𝜕𝜓

=
𝜕(𝑑𝐽 + 𝑑𝐿)

𝜕𝜓
=
𝜕𝑑𝐽

𝜕𝜓
+
𝜕𝑑𝐿

𝜕𝜓
 . (F.3)  

 For the nominal squared Euclidean distance equation, components of (F.2) and 

(F.3) can be solved as 

 
 
𝜕𝑑𝐽

𝜕𝜓
= 𝜓 ∙ 0 + 1 ∙ �𝑚𝑖𝑞(𝑑) −𝑤𝑛𝑞(𝑑)�2 = �𝑚𝑖𝑞(𝑑) −𝑤𝑛𝑞(𝑑)�2 (F.4)  

and 

 𝜕𝑑𝐿

𝜕𝜓
= 𝜓 ∙ 0 + 1 ∙ �𝑚𝑖𝑞(𝑑) −𝑤𝑛𝑞(𝑑)�2 = �𝑚𝑖𝑞(𝑑) −𝑤𝑛𝑞(𝑑)�2. (F.5)  

Since 

 𝜕𝑑𝐽

𝜕𝜓
=
𝜕𝑑𝐿

𝜕𝜓
 , (F.6)  

and  

 𝜕𝑑
𝜕𝜓

= 0 ,  (F.7)  

then, for dv, we can arrive at the solution: 

 𝜕𝑐
𝜕𝜓

= 2�𝑚𝑖𝑞(𝑑) − 𝑤𝑛𝑞(𝑑)�
2

. (F.8)  

Putting this together and solving for 𝜕 �𝑢
𝑣
� via the quotient rule yields the following,  

 
𝜕 �
𝑑
𝑐
� = −

2(𝑑𝐽 − 𝑑L)�𝑚𝑖𝑞(𝑑) − 𝑤𝑛𝑞(𝑑)�
2

 
(𝑑𝐽 + 𝑑L)2   (F.9)  

which, yields a PV update,  
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 𝜓𝑞(𝑑 + 1) = 𝜓𝑞(𝑑)

− 𝑖(𝑑)𝑓′|𝜇(𝑥𝑆) �−
2(𝑑𝐽 − 𝑑L)�𝑚𝑖𝑞(𝑑) − 𝑤𝑛𝑞(𝑑)�

2
 

(𝑑𝐽 + 𝑑L)2 �  
(F.10)  

which is equivalent to the GRLVQ update in (3.37) prior to being multiplied and written 

out. 

Because the improvements in GRLVQI consist of scalar learning rates and criteria 

outside the distance metric and cost function, the PV update process is not different from 

that of GRLVQ.  Therefore the PV update process presented for GRLVQ and GLVQ can 

be directly applied.   
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APPENDIX G: Cost Function Extensions for the GLVQ Family of Algorithms 

A 'simple analysis' can be harder than it looks... 

−CHRISTOPHER CHATFIELD 

From Sections 5.2.2.2(b) and 5.2.2.4 it is known that not all derivatives need to be 

recomputed. Since changing 𝜇(𝑚𝑚)  does not change the cost function expression in 

(3.34), then only the derivative for the second part of (E.1),  𝜕𝜇(𝑚𝑚) 𝜕𝑤⁄ , must be 

recomputed. Again, following the quotient rule in (E.6), we determine the respective 

quantities for (5.9) as  𝑐 = (𝑑𝐽)2 + (𝑑L)2 , 𝑑 = (𝑑𝐽)2 − (𝑑L)2 , and 𝑐2 = ((𝑑𝐽)2 +

(𝑑L)2)2, with again 𝑑𝑐 and 𝑑𝑑 to be computed for the respective in/out of class PVs.  

Then the process in Section 5.2.2.2(b) is repeated to arrive at new PV update rules.  

Again, four derivatives to yield two equations for the in-class and out-of-class gradient 

descents, 𝜕𝑢
𝜕𝑛𝐽 and 𝜕𝑣

𝜕𝑛𝐽for 𝑤𝐽 and 𝜕𝑢
𝜕𝑛𝐿 and 𝜕𝑣

𝜕𝑛𝐿 for 𝑤L respectively. Similar to the general 

derivative in (E.7), all four derivatives can be generally expressed as 

 𝜕𝑑
𝜕𝑤𝐽,𝐿 =

𝜕((𝑑𝐽)2 − (𝑑L)2)
𝜕𝑤𝐽,𝐿 , (G.1)  

with the derivative for u expressed as 

 𝜕 ��𝑑J�2 − �𝑑L�2�
𝜕𝑤𝐽,𝐿 =

𝜕�𝑑J�2

𝜕𝑤𝐽 −
𝜕�𝑑L�2

𝜕𝑤𝐿  (G.2)  

and the derivative for v expressed as 
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 𝜕𝑐
𝜕𝑤𝐽,𝐿 =

𝜕((𝑑𝐽)2 + (𝑑L)2)
𝜕𝑤𝐽,𝐿 =

𝜕(𝑑𝐽)2

𝜕𝑤𝐽 +
𝜕(𝑑L)2

𝜕𝑤𝐿 . (G.3)  

Consistent with 5.2.4, if 𝑑𝑤𝐽 or 𝑑𝑤𝐿 is of interest one of these components will equal 

zero and the other will be computed via the derivative of the distance metric.  Since the 

GLVQ gradient descent formulation has not been altered, we can use the quotient rule 

derivatives in (E.13) and (E.14) to insert our expressions for u and v into (E.13) and 

(D.14) yields, 

 
𝜕 �
𝑑
𝑐
�
𝐽

=
𝜕𝑑𝐽�((𝑑𝐽)2 − (𝑑𝐿)2) − ((𝑑𝐽)2 + (𝑑𝐿)2)�

((𝑑𝐽)2 + (𝑑𝐿)2)2 =
𝜕𝑑𝐽(−2(𝑑𝐿)2)

((𝑑𝐽)2 + (𝑑𝐿)2)2 (G.4)  

and 

 
𝜕 �
𝑑
𝑐
�
𝐿

=
𝜕𝑑𝐿�((𝑑𝐽)2 − (𝑑𝐿)2) + ((𝑑𝐽)2 + (𝑑𝐿)2)�

((𝑑𝐽)2 + (𝑑𝐿)2)2 =
𝜕𝑑𝐽(2(𝑑𝐽)2)

((𝑑𝐽)2 + (𝑑𝐿)2)2. (G.5)  

 Next, one can then solve (E.15) for 𝜕uJ where the differential shifting for the 𝜕𝑑𝐿 

and 𝜕𝑑𝐽; firstly, we compute 

 
𝜕𝑑𝐽 =

𝜕𝑑
𝜕𝑤𝐽 =

𝜕((𝑑𝐽)2)
𝜕𝑤𝐽 =

𝜕(𝑚𝑚 − 𝑤𝐽)4

𝜕𝑤𝐽

= 4(𝑚𝑚 − 𝑤𝐽)3 ∙ −1 = −4(𝑚𝑚 − 𝑤𝐽)3 
(G.6)  

and for 𝜕vJ 

 
𝜕𝑐𝐽 =

𝜕𝑐
𝜕𝑤𝐽 =

𝜕(𝑑𝐿)2

𝜕𝑤𝐽 =  4(𝑚𝑚 − 𝑤𝐽)3 ∙ −1
= −4(𝑚𝑚 − 𝑤𝐽)3. 

(G.7)  

Then (E.16) can be solved for 𝜕uJ 

 
𝜕𝑑𝐿 =

𝜕𝑑
𝜕𝑤𝐿 = −

𝜕(𝑑𝐽)2

𝜕𝑤𝐿 = −4(𝑚𝑚 − 𝑤𝐿)3 ∙ −1
= 4(𝑚𝑚 − 𝑤𝐿)3 

(G.8)  

and dvJ 
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𝜕𝑐𝐿 =

𝜕𝑐
𝜕𝑤𝐿 =

𝜕(𝑑𝐿)2

𝜕𝑤𝐿 =  4(𝑚𝑚 − 𝑤𝐿)3 ∙ −1
= −4(𝑚𝑚 − 𝑤𝐿)3. 

(G.9)  

 Assembling all of these components, one can fully extend to a PV update equation 

 
𝑤𝐽(𝑑 + 1)  = 𝑤𝐽(𝑑) +

8𝑖(𝑑)(𝜕𝑓 𝜕𝜇(𝑚𝑚)⁄ )𝑑𝐿

(𝑑𝐽 + 𝑑𝐿)2
(𝑚𝑚 − 𝑤𝐽)3  

𝑤𝐾(𝑑 + 1) = 𝑤𝐿(𝑑) −
8𝑖(𝑑)(𝜕𝑓 𝜕𝜇(𝑚𝑚)⁄ )𝑑𝐽

(𝑑𝐽 + 𝑑𝐿)2
(𝑚𝑚 − 𝑤𝐿)3. 

(G.10)  

which differs from the PV updates in (3.35) only by the scalar multiplier and the squared 

terms in the relative distance difference equations. 
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APPENDIX H: Relevance Derivatives for GRLVQI 

Remember it takes time, patience, critical practice and knowledge to learn any art or 
craft. 

–LLOYD REYNOLDS, 1902-1978 

As previously noted in Sections 3.3.1.4, 3.3.1.6, 5.2.2.2(a), and 5.2.2.2(b), 

relevance learning in LVQ algorithms involves a further gradient descent operation.  

Therefore, when considering alternative distance measures for GRLVQ and GRLVQI, 

the relevance computations and relevance gradient descent must be considered.  As in 

RLVQ, the relevance computation in GRLVQ and GRLVQI is associated with a gradient 

descent; therefore to compute the GRLVQ and GRLVQI update equations, we must 

revisit the gradient descent computations in Section 5.2.2.2(b) using the gradient update 

in (G.10) and relative distance difference (5.9).  Again, as in Section 5.2.2.2(a), if this is a 

function of the 𝜓𝑞, then it would be computed as 𝜕𝑓(𝜇(𝑚𝑚))/𝜕𝜓, or  

 𝜕𝑓�𝜇(𝑚𝑚)�
𝜕𝑤

=
𝜕𝑓�𝜇(𝑚𝑚)�
𝜕𝜇(𝑚𝑚)

𝜕𝜇(𝑚𝑚)
𝜕𝜓

 . (H.1)  

with 𝜕𝑑�𝜇(𝑥𝑆)�
𝜕𝜇(𝑥𝑆)  already solved for the PV update, in (E.2) to (E.5).  Therefore, solving 

(F.1) involves solving 𝜕𝜇(𝑥𝑆)
𝜕𝜓

, which involves a logically similar approach to solving for 

𝜕𝜇(𝑚𝑚) 𝜕𝑤⁄ , via the quotient rule in (E.6), only with 𝑐 = (𝑑𝐽 + 𝑑L), 𝑑 = (𝑑𝐽 − 𝑑L), 

and 𝑐2 = (𝑑𝐽 + 𝑑L)2, for  
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 𝜕𝑑
𝜕𝜓

=
𝜕(𝑑𝐽 − 𝑑𝐿)

𝜕𝜓
=
𝜕𝑑𝐽

𝜕𝜓
−
𝜕𝑑𝐿

𝜕𝜓
 (H.2)  

and for v  

 𝜕𝑐
𝜕𝜓

=
𝜕(𝑑𝐽 + 𝑑𝐿)

𝜕𝜓
=
𝜕𝑑𝐽

𝜕𝜓
+
𝜕𝑑𝐿

𝜕𝜓
 . (H.3)  

 For the nominal squared Euclidean distance equation, components of (F.2) and 

(F.3) can be solved as 

 
 
𝜕𝑑𝐽

𝜕𝜓
= 𝜓 ∙ 0 + 1 ∙ �𝑚𝑖𝑞(𝑑) −𝑤𝑛𝑞(𝑑)�2 = �𝑚𝑖𝑞(𝑑) −𝑤𝑛𝑞(𝑑)�2 (H.4)  

and 

 𝜕𝑑𝐿

𝜕𝜓
= 𝜓 ∙ 0 + 1 ∙ �𝑚𝑖𝑞(𝑑) −𝑤𝑛𝑞(𝑑)�2 = �𝑚𝑖𝑞(𝑑) −𝑤𝑛𝑞(𝑑)�2. (H.5)  

Since,  

 𝜕𝑑𝐽

𝜕𝜓
=
𝜕𝑑𝐿

𝜕𝜓
 (H.6)  

and  

 𝜕𝑑
𝜕𝜓

= 0, (H.7)  

then, for dv, we can arrive at the solution: 

 𝜕𝑐
𝜕𝜓

= 2�𝑚𝑖𝑞(𝑑) − 𝑤𝑛𝑞(𝑑)�
2

. (H.8)  

Putting this together and solving for 𝜕 �𝑢
𝑣
� via the quotient rule yields the following,  

 
𝜕 �
𝑑
𝑐
� = −

2(𝑑𝐽 − 𝑑L)�𝑚𝑖𝑞(𝑑) − 𝑤𝑛𝑞(𝑑)�
2

 
(𝑑𝐽 + 𝑑L)2  (H.9)  

which, yields a relevance update,  
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 𝜓𝑞(𝑑 + 1) = 𝜓𝑞(𝑑)

− 𝑖(𝑑)𝑓′|𝜇(𝑥𝑆) �−
2(𝑑𝐽 − 𝑑L)�𝑚𝑖𝑞(𝑑) − 𝑤𝑛𝑞(𝑑)�

2
 

(𝑑𝐽 + 𝑑L)2 � 
(H.10)  

which is equivalent to the GRLVQ update in (3.38) prior to being multiplied and written 

out. 
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APPENDIX I: Review of Distance Measures 

One accurate measurement is worth a thousand expert opinions. 

–ADMIRAL GRACE HOPPER, 1906 – 1992  

Various distance metrics exist, with some literature offering comparisons.  Jones 

and Furnas [594] compared the inner product, cosine measure, pseudo-cosine measure, 

dice measure, produce-moment correlation and covariance, and overlap measure.  Zhang 

and Korfhage [595] offered further analysis of the cosine measure.  Both Cha [283] and 

McGill et al. [596] produced a review of distance measures, in general these reviews 

overlapped each other except McGill included binary distance metrics.  From these 

sources, the following review of distance metrics was produced; below, 𝑷 and 𝑸 are 

considered to be two different vectors of equal length, n.  

Cha [283] considers the Minkowski family to have four measures, all of which are 

special cases of the general Minkowski distance,  

 

𝑑𝑀𝑀 = ��|𝑃𝑖 − 𝑄𝑖|p
n

i=1

p

, (I.1)  

which, for p = 2, is the Euclidean L2 distance 

 

𝑑𝐸𝑢𝑐𝑆 = �∑ (𝑃𝑖 − 𝑄𝑖)𝑛
𝑖=1

2 , (I.2)  

City Block, for p =1,  
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𝑑𝐶𝑖𝐹𝐿 = ∑ |𝑃𝑖 − 𝑄𝑖|𝑛

𝑖=1 , (I.3)  

and Chebyshev, for p = ∞,   

 
𝑑𝐶ℎ𝐹𝑏 = maxi|𝑃𝑖 − 𝑄𝑖|. 

(I.4)  

The L1 family of measures includes many measures, which are variations on the 

City Block, L1, measure through division or scaling.  Due to the various methods 

involves, the L1  family deserves some consideration.  The Sorensen measure [284], 

 
𝑑𝑆𝑜𝐺 =

∑ |𝑃𝑖 − 𝑄𝑖|𝑛
𝑖=1

∑ (𝑃𝑖 + 𝑄𝑖)𝑛
𝑖=1

 (I.5)  

is typical of the L1  [283].  The Gower distance metric is merely a scaling of 𝑑𝐶𝑖𝐹𝐿 by a 

scalar and is hence differs from 𝑑𝐶𝑖𝐹𝐿 by only a magnitude [283], for this reason it is not 

examined herein. The Soergel, 𝑑𝐹𝐺 , and Kulczynski, 𝑑𝑀𝑑 , measures are similar 

approaches are variants of Sorensen with the maximum, ∑ 𝑚𝑎𝑚(𝑃𝑖,𝑄𝑖)𝑛
𝑖=1 , or minimum, 

∑ 𝑚𝑚𝑛(𝑃𝑖,𝑄𝑖)𝑛
𝑖=1 , in the denominator, respectively [283].  As noted by Cha [283], the 

Canberra measure differs from Sorensen through normalizing the absolute difference of 

the individual level,  

 

𝑑𝐶𝐹𝑛 = �
|𝑃𝑖 − 𝑄𝑖|
𝑃𝑖 + 𝑄𝑖

𝑛

𝑖=1

. (I.6)  

The Lorentzian measure, 
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𝑑𝐿𝑜𝐺 = � ln (1 + |𝑃𝑖 − 𝑄𝑖|)
𝑛

𝑖=1

 (I.7)  

applies the natural logarithm to the City Block measure, with the addition of 1 is used to 

avoid computing the logarithm of zero [283].  

Many of the intersection family of distance measures are L1 based and identical to 

an L1 distance measure through a division or subtraction.  Examples include the Ruzicka 

measure,  

 
𝑑𝑅𝑢𝑁 =

∑ min (𝑃𝑖,𝑄𝑖)𝑛
𝑖=1

∑ max(𝑃𝑖,𝑄𝑖)𝑛
𝑖=1

, (I.8)  

which appears different, but is essentially 𝑑𝐹𝐺/𝑑𝑀𝑑.  This is similar for the Kulczynski 

measure, which is 1/𝑑𝑀𝑑 , the Intersection measure, which is 1
2
𝑑𝐶𝑖𝐹𝐿 , and the 

Czenkanowski measure, which is identical to Sorensen, and Motyka, which is 1
2
𝑑𝑆𝑜𝐺 

[283].  However, some other Intersection family measures are different enough to warrant 

evaluation, including Wave Hedges, 

 

𝑑𝑊𝐹𝑣𝐹 = �
|𝑃𝑖 − 𝑄𝑖|

max (𝑃𝑖,𝑄𝑖)

𝑛

𝑖=1

. (I.9)  

and Tanimoto, 

 
𝑑𝑇𝐹𝑛𝑖 =

∑ (max(𝑃𝑖,𝑄𝑖) − min (𝑃𝑖,𝑄𝑖))𝑛
𝑖=1

∑ max(𝑃𝑖,𝑄𝑖)𝑛
𝑖=1

. (I.10)  

The Inner Product family are a group of measures that involve computing the 

inner product, 𝑃 ∙ 𝑄, of vectors in question [283].  The inner product measure,  
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𝑑𝐼𝐹 = 𝑃 ∙ 𝑄 = ∑ 𝑃𝑖𝑄𝑖𝑛

𝑖=1 . (I.11)  

reflects this. Many of the measures in this family include the inner product computation 

along with other components.  The Harmonic mean scales 𝑑𝐼𝐹, 

 

𝑑𝐻𝑀 = �
𝑃𝑖𝑄𝑖
𝑃𝑖+𝑄𝑖

𝑛

𝑖=1

 (I.12)  

Cha [283] presents the cosine measure as the inner product metric with a further 

scaling in the denominator,  

 
𝑑𝐶𝐶𝑆 =

∑ 𝑃𝑖𝑄𝑖𝑛
𝑖=1

�∑ 𝑃𝑖2𝑛
𝑖=1 �∑ 𝑄𝑖2𝑛

𝑖=1

. (I.13)  

A variant on the cosine measure is the pseudo-cosine measure  

 
𝑑𝐹𝐶𝐶𝑆 =

∑ 𝑃𝑖𝑄𝑖𝑛
𝑖=1

∑ 𝑃𝑖𝑛
𝑖=1 ∑ 𝑄𝑖𝑛

𝑖=1
. (I.14)  

which differs from the cosine measure in how it measures vector length [594].  Cha [283] 

also presents the Kumar-Hassebrook metric, another extension of the cosine measure, 

 
𝑑𝐾𝑢𝑚𝐹𝐺𝐻 =

∑ 𝑃𝑖𝑄𝑖𝑛
𝑖=1

∑ 𝑃𝑖2𝑛
𝑖=1 + ∑ 𝑄𝑖2𝑛

𝑖=1 − ∑ 𝑃𝑖𝑄𝑖𝑛
𝑖=1

. (I.15)  

Jaccard, 

 

𝑑𝐽𝐹𝑐 =
∑ (𝑃𝑖 − 𝑄𝑖)𝑛
𝑖=1

2

∑ 𝑃𝑖2𝑛
𝑖=1 + ∑ 𝑄𝑖2𝑛

𝑖=1 − ∑ 𝑃𝑖𝑄𝑖𝑛
𝑖=1

 (I.16)  

and Dice [597], 
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𝑑𝐷𝑖𝑐𝐹 =
∑ (𝑃𝑖 − 𝑄𝑖)𝑛
𝑖=1

2

∑ 𝑃𝑖2𝑛
𝑖=1 + ∑ 𝑄𝑖2𝑛

𝑖=1
 (I.17)  

measures are also related to the inner product family [283].  

 The Fidelity family appears similar to the Inner Product family; however, these 

include natural logarithms and square roots in the distance computations.  While these 

could sufficiently alter the distance metrics, these could also present problems when 

negative values are introduce and thus cause imaginary numbers to be computed.  

Therefore these will not be considered, but are presented for completeness.  The basic 

measure in this family, Fidelity is the Inner Product distance with a square-root, 

 
𝑑𝐹𝑖𝑑 = ��𝑃𝑖𝑄𝑖

𝑛

𝑖=1

. (I.18)  

Bhattacharyya is an Fidelity family type of measure and is the natural log of 𝑑𝐹𝑖𝑑, 

 

𝑑𝐵ℎ𝐹𝐹 = −𝑙𝑛��𝑃𝑖𝑄𝑖

𝑛

𝑖=1

. (I.19)  

Hellinger involves a scaling of inner product, 

 

𝑑𝐻𝐹𝑆𝑆 = 2�1−��𝑃𝑖𝑄𝑖

𝑛

𝑖=1

. (I.20)  

Matusita involves a further scaling, 
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𝑑𝑀𝐹𝐹 = �2− 2��𝑃𝑖𝑄𝑖

𝑛

𝑖=1

. (I.21)  

However, Squared-Chord, 

 

𝑑𝑆𝐶 = ���𝑃𝑖 − �𝑄𝑖�
2

𝑛

𝑖=1

. (I.22)  

offers a variation on the fidelity measure and appears identical to 𝑑𝐹𝑖𝑑  by an offset, 

1 − 𝑑𝑆𝐶 = 2∑ �𝑃𝑖𝑄𝑖𝑛
𝑖=1 − 1 = 2𝑑𝐹𝑖𝑑 − 1 [283]. 

The Squared L2 family offers squared variations on Euclidean distance, including 

the squared Euclidean distance of (1), in addition to other variations.  These variations 

could cause metrics to produce different results, hence some should be investigated. The 

Pearson χ2 and Neyman χ2 metrics are similar and differ in the denominator,  

 

𝑑𝐹𝜒2 = �
(𝑃𝑖−𝑄𝑖)2

𝑄𝑖

𝑛

𝑖=1

 (I.23)  

and  

 

𝑑𝑁𝜒2 = �
(𝑃𝑖−𝑄𝑖)2

𝑃𝑖

𝑛

𝑖=1

 (I.24)  

respectively [283].  The Squared χ2 further extends these, 

 

𝑑𝑆𝜒2 = �
(𝑃𝑖−𝑄𝑖)2

𝑃𝑖 + 𝑄𝑖

𝑛

𝑖=1

 (I.25)  

and the probabilistic symmetric χ2
 measure is 2𝑑𝑆𝜒2 [283].  The divergence measure, 
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𝑑𝐷𝑖𝑣 = �
(𝑃𝑖−𝑄𝑖)2

(𝑃𝑖 + 𝑄𝑖)2

𝑛

𝑖=1

 (I.26)  

further extends 𝑑𝑆𝜒2  [283].  Clark, 

 

𝑑𝐶𝑆𝐹𝐺𝑀 = ���
|𝑃𝑖−𝑄𝑖|
𝑃𝑖 + 𝑄𝑖

�
2𝑛

𝑖=1

 (I.27)  

and additive symmetric χ2 

 

𝑑𝐷𝑆𝜒2 = �
(𝑃𝑖−𝑄𝑖)2(𝑃𝑖 + 𝑄𝑖)

𝑃𝑖𝑄𝑖

𝑛

𝑖=1

 (I.28)  

further complete the squared L2 family [283].    

Shannon’s entropy family includes additional metrics not encompassed in the 

other families, including Kullback-Leibler, 

 

𝑑𝐾𝐿 = �𝑃𝑖𝑙𝑛
𝑃𝑖
𝑄𝑖

𝑛

𝑖=1

 (I.29)  

Jeffreys, 

 

𝑑𝐽𝐹𝑑𝑑 = �(𝑃𝑖 − 𝑄𝑖)𝑙𝑛
𝑃𝑖
𝑄𝑖

𝑛

𝑖=1

 (I.30)  

K divergence, 

 

𝑑𝐾𝑑 = �𝑃𝑖𝑙𝑛
2𝑃𝑖

𝑃𝑖 + 𝑄𝑖

𝑛

𝑖=1

 (I.31)  

Topsoe 
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𝑑𝐹𝑜𝑆 = ��𝑃𝑖𝑙𝑛 �
2𝑃𝑖

𝑃𝑖 + 𝑄𝑖
� + 𝑄𝑖𝑙𝑛 �

2𝑄𝑖
𝑃𝑖 + 𝑄𝑖

��
𝑛

𝑖=1

 (I.32)  

Jensen-Shannon, 

 

𝑑𝐽𝑆 =
1
2 �
��𝑃𝑖𝑙𝑛 �

2𝑃𝑖
𝑃𝑖 + 𝑄𝑖

��
𝑛

𝑖=1

+ ��𝑄𝑖𝑙𝑛 �
2𝑄𝑖

𝑃𝑖 + 𝑄𝑖
��

𝑛

𝑖=1

� (I.33)  

and Jensen difference, 

 

𝑑𝐽𝑑 = ��
𝑃𝑖𝑙𝑛𝑃𝑖 + 𝑄𝑖𝑙𝑛𝑄𝑖

2
−
𝑃𝑖 + 𝑄𝑖

2
𝑙𝑛
𝑃𝑖 + 𝑄𝑖

2 � .
𝑛

𝑖=1

 (I.34)  

Cha [283] also presents a family of combinations, distance measures 

incorporating concepts and parts of multiple measures.  This family includes Taneja, 

 

𝑑𝑇𝐹𝑛 = ��
𝑃𝑖 + 𝑄𝑖

2
𝑙𝑛
𝑃𝑖 + 𝑄𝑖
2�𝑃𝑖𝑄𝑖

�
𝑛

𝑖=1

, (I.35)  

Kumar-Johnson, 

 
𝑑𝐾𝐽 = ��

�𝑃𝑖2 − 𝑄𝑖2�
2

2(𝑃𝑖𝑄𝑖)3/2 �
𝑛

𝑖=1

, (I.36)  

and the average of Lp for p = [1,∞],   

 

𝑑𝐷𝑃𝐺 =
1
2
�|𝑃𝑖 − 𝑄𝑖| + max

i
|𝑃𝑖 − 𝑄𝑖| .

𝑛

𝑖=1

 (I.37)  

A further group of distance measures, termed vicissitude, includes additional 

variations of other metrics.  This family includes Vicis-Wave Hedges, 
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𝑑𝑃−𝑊𝐹𝑣𝐹 = �
|𝑃𝑖 − 𝑄𝑖|

min (𝑃𝑖,𝑄𝑖)

𝑛

𝑖=1

, (I.38)  

three variations of Symmetric χ2
 which differ from the Squared L2 family in the 

denominator with the denominator of 𝑑𝐷𝑖𝑣 replaced with either min (𝑃𝑖,𝑄𝑖), min(𝑃𝑖,𝑄𝑖)2, 

or max(𝑃𝑖,𝑄𝑖) [283].  The final mentioned vicissitude metrics include max-symmetric χ2, 

 

𝑑𝑚𝐹𝑥𝑆𝐿𝑚𝜒2 = 𝑚𝑎𝑚 ��
(𝑃𝑖 − 𝑄𝑖)2

Pi

𝑛

𝑖=1

,�
(𝑃𝑖 − 𝑄𝑖)2

Qi

𝑛

𝑖=1

� (I.39)  

and min-symmetric χ2, 

 

𝑑𝑚𝑖𝑛𝑆𝐿𝑚𝜒2 = 𝑚𝑚𝑛��
(𝑃𝑖 − 𝑄𝑖)2

Pi

𝑛

𝑖=1

,�
(𝑃𝑖 − 𝑄𝑖)2

Qi

𝑛

𝑖=1

�. (I.40)  

Although not listed in Cha’s review, Jones and Furnas [594] also present the 

following equations for covariance metric, 

 

𝑑𝐶𝑜𝑣 = �(𝑃𝑖 − 𝑃�)(𝑄𝑖 − 𝑄�)
𝑛

𝑖=1

, (I.41)  

with 𝑃� and 𝑄� representing the means of 𝑃 and 𝑄, and the correlation, 

 

𝑑𝐶𝑜𝐺𝐺 =
∑ (𝑃𝑖 − 𝑃�)(𝑄𝑖 − 𝑄�)𝑛
𝑖=1

�∑ (𝑃𝑖 − 𝑃�)𝑛
𝑖=1

2 �∑ (𝑄𝑖 − 𝑄�)2𝑛
𝑖=1

, (I.42)  

distance metric [594].  Additionally, the Mahalanobis statistical distance metric was 

covered in these reviews, but could be useful.  The nominal Mahalanobis distance 

equation is 
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𝑑𝑀𝐹ℎ𝐹𝑆 = �(𝑃𝑖 − 𝑃�)′𝑆−1(𝑃𝑖 − 𝑃�), (I.43)  

where S is the data covariance matrix [598].  Mahalanobis distance can be extended to a 

similarity between two vectors through 

 
𝑑𝑀𝐹ℎ𝐹𝑆(𝑥,𝐿) = �(𝑃𝑖 − 𝑄𝑖)′𝑆−1(𝑃𝑖 − 𝑄𝑖), (I.44)  

where S is a pooled covariance matrix. For use herein, squaring (I.44) would be more 

practical to remove the square root for derivation simplicity.   
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APPENDIX J: Derivatives and Prototype Vectors Updates for Selected Distance 
Metrics 

There is a measure in all things. 

–HORACE, 65BC – 8BC 

 In this appendix, derivatives for the distance measures selected in Section 5.3.1 

are formulated.  Derivatives for relevance measures discussed in Section 5.3.4 are also 

considered as needed here.  Per the formulation of the cost functions in LVQ algorithms, 

derivatives of distance measures and metrics are made with respect to the PV, w, or for 

the relevance vector, ψ, when relevance components of LVQ algorithms are being 

considered.  

7.1 Cosine 

If one considers that the denominator of the cosine measure in (I.13) is a scalar, 

then we can consider the cosine measure as 

 
𝑑𝐶𝐶𝑆 = �

𝑚𝑖𝑤𝑖

�∑ 𝑚𝑖2𝑛
𝑖=1 �∑ 𝑤𝑖2𝑛

𝑖=1

,
𝑁𝐷

𝑖=1

 (J.1)  

where the derivative can then be computed via the quotient rule, (E.6), with 𝑑 = 𝑚𝑖𝑤𝑖, 

𝑐 = �∑ 𝑚𝑖2𝑛
𝑖=1 �∑ 𝑤𝑖

2𝑛
𝑖=1 , and the then for the derivative with respect to w: 𝑑𝑑 = 𝑚𝑖 and 

𝑑𝑐 =
�∑ 𝑥𝑖

2𝑛
𝑖=1

�∑ 𝑛𝑖
2𝑛

𝑖=1

𝑤𝑖.  Therefore the derivative via the quotient rule is, 
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𝜕𝑑𝑐𝑜𝐹
𝜕𝑤

 = �
𝑚𝑖�∑ 𝑚𝑖2𝑛

𝑖=1 �∑ 𝑤𝑖2𝑛
𝑖=1 − 𝑚𝑖𝑤𝑖2 �∑ 𝑚𝑖2𝑛

𝑖=1 �∑ 𝑤𝑖2𝑛
𝑖=1�

∑ 𝑚𝑖2𝑛
𝑖=1 ∑ 𝑤𝑖2𝑛

𝑖=1
,

𝑁𝐷

𝑖=1

 (J.2)  

The Cosine distance measure with relevance learning can be formulated a 

 
𝑑𝐶𝐶𝑆,𝜓 = �

𝜓𝑖𝑚𝑖𝑤𝑖

�∑ 𝑚𝑖2𝑛
𝑖=1 �∑ 𝑤𝑖2𝑛

𝑖=1

.
𝑁𝐷

𝑖=1

 (J.3)  

Per the quotient rule, (E.6), with 𝑑 = 𝜓𝑖𝑚𝑖𝑤𝑖, 𝑐 = �∑ 𝑚𝑖2𝑛
𝑖=1 �∑ 𝑤𝑖

2𝑛
𝑖=1 , and the then for 

the derivative with respect to ψ: 𝑑𝑑 = 𝑚𝑖𝑤𝑖 and 𝑑𝑐 = 0, then 

 𝜕𝑑𝑐𝑜𝐹,𝜓

𝜕𝜓
 = �

𝑚𝑖𝑤𝑖

�∑ 𝑚𝑖2𝑛
𝑖=1 �∑ 𝑤𝑖2𝑛

𝑖=1

.
𝑁𝐷

𝑖=1

 (J.4)  

7.2 Sorensen and Canberra 

 Sorensen and Canberra are similar expressions.  Considering the prototype 

vectors and exemplar data, Sorensen, from (I.5), is defined as  

 
𝑑𝑆𝑜𝐺 =

∑ 𝑚𝑖−𝑤𝑖
𝑁𝐷
𝑖=1

∑ 𝑚𝑖+𝑤𝑖
𝑁𝐷
𝑖=1

 (J.5)  

and Canberra, from (I.6), is defined as 

 
𝑑𝐶𝐹𝑛 = �

𝑚𝑖 −𝑤𝑖
𝑚𝑖 +𝑤𝑖

𝑁𝐷

𝑖=1

 (J.6)  

with the underlying difference being that Sorensen considers a ratio of sums whereas 

Canberra considers a sum of ratios.  However, while the distance measures produce 

different distances (which were uncorrelated per the discussion in), both have similar 

derivations with respect to ∂/∂w.  For both Sorensen and Canberra 𝑑 = 𝑚𝑖 − 𝑤𝑖, 𝑐 = 𝑚𝑖 +
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𝑤𝑖, and the then for the derivative with respect to w: 𝑑𝑑 = −1 and 𝑑𝑐 =  1.  Therefore 

the derivatives via the quotient rule are 

 𝜕𝑑𝑆𝑜𝐺
𝜕𝑤

 =
∑ −2𝑚𝑖
𝑁𝐷
𝑖=1

∑ (𝑚 +𝑤)2𝑁𝐷
𝑖=1

  (J.7)  

and  

 𝜕𝑑𝐶𝐹𝑛
𝜕𝑤

 = �
−2𝑚𝑖

(𝑚 + 𝑤)2 .
𝑁𝐷

𝑖=1

 (J.8)  

Due to both Sorensen offering consistent, albeit slightly less, performance than Canberra 

in LVQ and the relative difficulty of introducing a relevance term into the Sorensen 

expression, only Canberra was further considered for RLVQ, GLVQ, GRLVQ, and 

GRLVQI.  To implement relevance learning, the relevance must be added so that it 

multiplies to each feature 

 
𝑑𝐶𝐹𝑛,𝜓 = �𝜓𝑖

𝑚𝑖 − 𝑤𝑖
𝑚𝑖 + 𝑤𝑖

𝑁𝐷

𝑖=1

 (J.9)  

which means 𝑑 = 𝜓𝑖(𝑚𝑖 − 𝑤𝑖), 𝑐 = 𝑚𝑖 + 𝑤𝑖, and the then for the derivative with respect 

to ψ: 𝑑𝑑 = (𝑚𝑖 − 𝑤𝑖),  and 𝑑𝑐 =  0.  The resulting derivative is therefore, 

 𝜕𝑑𝐶𝐹𝑛,𝜓

𝜕𝜓
 = �

𝑚𝑖 − 𝑤𝑖
𝑚𝑖 + 𝑤𝑖

.
𝑁𝐷

𝑖=1

 (J.10)  

7.3 Pseudo-Cosine 

 Considering the prototype vectors and exemplar data, the Pseudo Cosine measure 

of (I.14) becomes 
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𝑑𝐹𝑐𝑜𝐹 = �

𝑚𝑖𝑤𝑖
∑ 𝑚𝑖
𝑁𝐷
𝑖=1 ∑ 𝑤𝑖

𝑁𝐷
𝑖=1

𝑁𝐷

𝑖=1

 (J.11)  

the derivative can then be computed via the quotient rule, (E.6), can be used to compute 

the derivative, with 𝑑 = 𝑚𝑖𝑤𝑖, 𝑐 = ∑ 𝑚𝑖
𝑁𝐷
𝑖=1 ∑ 𝑤𝑖

𝑁𝐷
𝑖=1 , and the then for the derivative with 

respect to w: 𝑑𝑑 = 𝑚𝑚 and 𝑑𝑐 = ∑ 𝑚𝑖
𝑁𝐷
𝑖=1 .  Therefore the derivative via the quotient rule is, 

 𝜕𝑑𝐹𝑐𝑜𝐹
𝜕𝑤

 = �
𝑚𝑖 ∑ 𝑚𝑖

𝑁𝐷
𝑖=1 ∑ 𝑤𝑖

𝑁𝐷
𝑖=1 − 𝑚𝑖𝑤𝑖 ∑ 𝑚𝑖

𝑁𝐷
𝑖=1

�∑ 𝑚𝑖
𝑁𝐷
𝑖=1 ∑ 𝑤𝑖

𝑁𝐷
𝑖=1 �

2

𝑁𝐷

𝑖=1

. (J.12)  

7.4 Pearson χ2 

 Considering the prototype vectors and exemplar data, the Pearson χ2 measure of 

(I.23) becomes 

 
𝑑𝐹𝜒2 = �

(𝑚𝑖 − 𝑤𝑖)2

𝑤𝑖

𝑁𝐷

𝑖=1

 (J.13)  

the derivative can then be computed via the quotient rule, (E.6), can be used to compute 

the derivative, with 𝑑 = (𝑚𝑖 − 𝑤𝑖)2, 𝑐 = 𝑤𝑖, and the then for the derivative with respect 

to w: 𝑑𝑑 = −2(𝑚𝑖 − 𝑤𝑖) and 𝑑𝑐 = 1.  Therefore the derivative via the quotient rule is, 

 𝜕𝑑𝐹𝜒2
𝜕𝑤

 = �
−2𝑚𝑖(𝑚𝑖 − 𝑤𝑖) − (𝑚𝑖 − 𝑤𝑖)2

𝑤𝑖2

𝑁𝐷

𝑖=1

 (J.14)  

7.5 Neyman χ2 

 Considering the prototype vectors and exemplar data, the Neyman χ2 measure of 

(I.24) becomes 
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𝑑𝑁𝜒2 = �

(𝑚𝑖 − 𝑤𝑖)2

𝑚𝑖

𝑁𝐷

𝑖=1

 (J.15)  

the derivative can then be computed via the quotient rule, (E.6), can be used to compute 

the derivative, with 𝑑 = (𝑚𝑖 − 𝑤𝑖)2, 𝑐 = 𝑚𝑖, and the then for the derivative with respect 

to w: 𝑑𝑑𝑑 = −2(𝑚𝑖 − 𝑤𝑖) and 𝑑𝑐 = 0.  Therefore the derivative via the quotient rule is, 

 𝜕𝑑𝑁𝜒2
𝜕𝑤

 = �
−2𝑚𝑖(𝑚𝑖 − 𝑤𝑖)

𝑚𝑖2
.

𝑁𝐷

𝑖=1

 (J.16)  

7.6 Additive Symmetry 

 Considering the prototype vectors and exemplar data, the Additive Symmetry χ2 

measure of (I.28) becomes 

 
𝑑𝐷𝑆𝜒2 = �

(𝑚𝑖 − 𝑤𝑖)2(𝑚𝑖 − 𝑤𝑖)
𝑚𝑖𝑤𝑖

𝑁𝐷

𝑖=1

 (J.17)  

the derivative can then be computed via the quotient rule, (E.6), can be used to compute 

the derivative, with 𝑑 = (𝑚𝑖 − 𝑤𝑖)2(𝑚𝑖 − 𝑤𝑖), 𝑐 = 𝑚𝑖𝑤𝑖, and the then for the derivative 

with respect to w: 𝑑𝑑 = −3𝑤𝑖
2 − 2𝑚𝑖𝑤𝑖 + 𝑚𝑖2 and 𝑑𝑐 = 𝑚𝑖. Therefore the derivative via 

the quotient rule is, 
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 𝜕𝑑𝐷𝑆𝜒2
𝜕𝑤

 

= �
�𝑚𝑖𝑤𝑖�−3𝑤𝑖2 − 2𝑚𝑖𝑤𝑖 + 𝑚𝑖2� − 𝑚𝑖(𝑚𝑖 − 𝑤𝑖)2(𝑚𝑖 − 𝑤𝑖)�

(𝑚𝑖𝑤𝑖)2

𝑁𝐷

𝑖=1

. 

(J.18)  

7.7 Covariance 

 The covariance measure, (I.41), involves determining the means of both the PVs 

and data. In matrix notation one can express (I.41) as 

 
dCOV  = �𝒙 −

𝟏𝟏′𝒙
𝑛 �

′

�𝒘 −
𝟏𝟏′𝒘
𝑛 � = �𝒙′ −

𝒙′𝟏𝟏′

𝑛 ��𝒘−
𝟏𝟏′𝒘
𝑛 � (J.19)  

multiplying expression yields,  

 
dCOV  = 𝒙′𝒘 −

𝒙′𝟏𝟏′𝒘
𝑛

−
𝒙′𝟏𝟏′𝒘

𝑛
+
𝒙′𝟏𝟏′𝟏𝟏′𝒘

𝑛2
 (J.20)  

Taking the derivative of this expression yields,  

 ∂dCOV
∂𝐰

 = 𝒙′ −
𝒙′𝟏𝟏′

𝑛
−
𝒙′𝟏𝟏′

𝑛
+
𝒙′𝟏𝟏′𝟏𝟏′

𝑛2
, (J.21)  

which can be simplified algebraically to 

 ∂dCOV
∂𝐰

 = 𝒙′ �𝑰 −
𝑱
𝑛
�, (J.22)  

where I is an identity matrix and J is a matrix of ones.  

7.8 Squared Mahalanobis 

 As illustrated in Section 5.3.3.1, Mahalanobis distance and squared Mahalanobis 

distance are perfectly correlated.  Therefore, for use herein, squaring (I.44) was assumed 

to be more practical to remove the square root for simplicity in derivations.  The 
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covariance 𝑺−1  is assumed to be the covariance of the data. In matrix notation, the 

squared form of (I.44) can be expressed as: 

 𝑑𝑀𝐹ℎ𝐹𝑆(𝑥,𝐿) = (𝒙 − 𝒘)′𝑺−1(𝒙 − 𝒘), (J.23)  

which can be expressed as 

 𝑑𝑀𝐹ℎ𝐹𝑆(𝑥,𝐿) = (𝒙′ − 𝒘′)𝑺−1(𝒙 − 𝒘). (J.24)  

One can now appropriately distribute the covariance matrix,  

 𝑑𝑀𝐹ℎ𝐹𝑆(𝑥,𝐿) = (𝒙′𝑺−1 − 𝒘′𝑺−1)(𝒙 − 𝒘). (J.25)  

which expands to 

 𝑑𝑀𝐹ℎ𝐹𝑆(𝑥,𝐿) = 𝒙′𝑺−1𝒙 − 𝒙′𝑺−1𝒘 − 𝒘′𝑺−1𝒙+ 𝒘′𝑺−1𝒘. (J.26)  

which has the first derivative 

 𝜕𝑑𝑀𝐹ℎ𝐹𝑆(𝑥,𝐿)

𝜕𝒘
= −2𝑺−1(𝒙 − 𝒘). (J.27)  

7.9 Harmonic Mean 

 When related to example data and PVs, the Harmonic Mean measure in (I.12) 

becomes 

 
𝑑𝐻𝑀 = �

𝑚𝑖𝑤𝑖
𝑚𝑖 +𝑤𝑖

𝑁𝐷

𝑖=1

 (J.28)  

on which one can use the quotient rule in (E.6) to compute the derivative with 𝑑 = 𝑚𝑖𝑤𝑖, 

𝑐 = 𝑚𝑖 + 𝑤𝑖  , and the then for the derivative with respect to w: 𝑑𝑑 = 𝑚𝑖 and 𝑑𝑐 =  1.  

Therefore the derivative via the quotient rule is, 
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 𝜕𝑑𝐻𝑀
𝜕𝑤

 = �
𝑚𝑖(𝑚𝑖 + 𝑤𝑖) − 𝑚𝑖𝑤𝑖

(𝑚𝑖 + 𝑤𝑖)2

𝑁𝐷

𝑖=1

 (J.29)  
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APPENDIX K: Design of Experiments Results 

Count what is countable, measure what is measurable, and what is not measureable, 
make measurable. 

–GALILEO GALILEA, 1564 – 1642  

Table K-1 presents design of experiments results for the cosine GRLVQI, 

Canberra GRLVQI, and Squared Euclidean GRLVQI (baseline) when considering all 

design points from Table V-6 for Z-Wave data.  In Table K-1, factor levels correspond to 

those listed in Table V-6 with the notation of “–” for a low setting, “+” for a high setting, 

and “0” for the middle setting.      

Table K-1: Design of Experiments Results 
FACTOR ALGORITHM 

COSINE CANBERRA SQUARED EUCLIDEAN 

A B C D E TRAIN 
AUCC 

TEST 
AUCC 

MEAN 
AUTH. 
AUC 

TRAIN 
AUCC 

TEST 
AUCC 

MEAN 
AUTH. 
AUC 

TRAIN 
AUCC 

TEST 
AUCC 

MEAN AUTH. 
AUC 

- - - - - 13.22029 13.2029 0.974386 8.788406 7.846377 0.476263 14.68116 14.84203 0.736326 

- - - - + 13.20725 13.22174 0.96775 8.773913 8.068116 0.572325 14.79565 14.74638 0.713711 

- - - 0 - 13.49275 12.99565 0.987486 8.763768 8.001449 0.580113 14.65797 14.87681 0.740485 

- - - 0 + 13.35797 13.2913 0.968299 8.8 8.042029 0.53436 14.68986 14.77681 0.690756 

- - - + - 13.23623 13.28986 0.972098 8.795652 7.844928 0.546301 14.61884 14.94058 0.695009 

- - - + + 13.28116 13.19565 0.966144 8.557971 7.981159 0.553403 14.64783 14.76957 0.688217 

- - 0 - - 13.42029 13.36667 0.96017 8.775362 8.078261 0.513428 14.77101 14.78406 0.686377 

- - 0 - + 13.31884 13.22174 0.970473 8.724638 8.004348 0.566093 14.64348 14.75072 0.693384 

- - 0 0 - 13.29565 13.41884 0.975728 8.763768 8.06087 0.579855 14.63333 14.85942 0.693422 

- - 0 0 + 13.33188 13.12319 0.934934 8.844928 8.1 0.628444 14.23188 14.47681 0.658381 

- - 0 + - 13.3029 13.33043 0.990454 8.569565 8.002899 0.4754 14.23623 14.6058 0.855892 

- - 0 + + 13.22174 13.17391 0.959168 8.708696 8.197101 0.514171 14.27536 14.49855 0.788733 

- - + - - 13.23913 13.15797 0.954915 8.673913 8.163768 0.543371 14.30145 14.51304 0.838362 

- - + - + 13.44638 13.57391 0.948204 8.913043 8.308696 0.518922 14.22899 14.21884 0.839609 
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- - + 0 - 13.42609 13.07391 0.971569 8.785507 7.995652 0.529975 14.23043 14.4913 0.801632 

- - + 0 + 13.48261 13.12609 0.979244 8.74058 8.03913 0.589099 14.22899 14.36087 0.861934 

- - + + - 13.43623 13.34203 0.954783 8.733333 7.913043 0.574304 14.33188 14.43768 0.807681 

- - + + + 13.39565 13.52319 0.827202 8.723188 7.975362 0.636213 14.21014 14.08696 0.860328 

- 0 - - - 13.36087 13.33333 0.972873 8.804348 8.086957 0.3739 14.21884 14.58841 0.84683 

- 0 - - + 13.4029 13.48551 0.957656 8.657971 7.982609 0.523837 14.20145 14.43913 0.782086 

- 0 - 0 - 13.17101 13.33768 0.981531 8.846377 7.868116 0.469074 14.28551 14.4058 0.829666 

- 0 - 0 + 13.39855 13.29565 0.939376 8.768116 8.052174 0.646112 14.41014 14.26812 0.582237 

- 0 - + - 13.61159 13.35072 0.952533 8.84058 8.133333 0.624411 14.34493 14.42899 0.675041 

- 0 - + + 13.32174 13.33913 0.981456 8.77971 8.144928 0.444619 14.31304 14.37246 0.583264 

- 0 0 - - 13.50725 13.4 0.985501 8.788406 8.042029 0.500252 14.31014 14.41739 0.784871 

- 0 0 - + 13.55507 13.24058 0.989395 8.842029 7.818841 0.522602 14.3058 14.44928 0.832911 

- 0 0 0 - 13.50435 13.31014 0.991607 8.665217 8.057971 0.59109 14.32319 14.34493 0.713163 

- 0 0 0 + 15.16377 15.14928 0.993403 8.768116 7.823188 0.487561 15.12319 15.09565 0.912955 

- 0 0 + - 15.34203 15.05942 0.993062 8.673913 7.797101 0.65816 14.9971 15.15507 0.899477 

- 0 0 + + 15.28696 15.05072 0.995331 8.595652 7.898551 0.639729 14.87971 15.13043 0.89339 

- 0 + - - 15.33043 15.17101 0.99448 8.84058 7.805797 0.695866 15.62029 15.54058 0.952949 

- 0 + - + 15.15072 15.28116 0.995123 8.765217 7.991304 0.587694 15.62899 15.46232 0.947366 

- 0 + 0 - 15.37391 15.28551 0.99518 8.650725 7.921739 0.719408 15.54348 15.52754 0.950208 

- 0 + 0 + 15.29275 15.38116 0.994972 8.77971 7.904348 0.539698 15.35797 15.37681 0.957631 

- 0 + + - 15.23043 15.27101 0.994764 8.818841 7.946377 0.591651 15.54493 15.56232 0.958916 

- 0 + + + 15.30725 15.3058 0.99482 8.781159 7.984058 0.496988 15.57391 15.40725 0.960025 

- + - - - 15.37681 15.2942 0.994972 8.856522 8.030435 0.438368 14.56957 14.56232 0.933749 

- + - - + 15.24058 15.20725 0.993535 8.97971 7.947826 0.701393 14.78116 14.48696 0.912634 

- + - 0 - 15.31014 15.14348 0.995066 9.081159 7.865217 0.75753 14.42029 14.39855 0.505898 

- + - 0 + 15.35652 15.21884 0.995369 8.855072 7.943478 0.664858 15.02464 15.24928 0.94603 

- + - + - 15.34928 15.24783 0.993459 8.756522 7.872464 0.685469 15.06377 15.15217 0.934121 

- + - + + 15.19565 15.1087 0.993705 8.691304 8.062319 0.641613 15.05797 14.96087 0.939824 

- + 0 - - 15.35217 15.32464 0.993573 8.981159 7.84058 0.53063 15.16087 15.07681 0.954631 

- + 0 - + 15.20145 15.06812 0.995028 8.681159 8.266667 0.642974 15.02754 15.2913 0.94758 

- + 0 0 - 15.30145 15.31884 0.994272 8.815942 7.734783 0.65189 15.05797 14.9971 0.501985 

- + 0 0 + 15.41739 15.33478 0.994083 9.050725 8.16087 0.562187 15.11014 15.16812 0.923856 

- + 0 + - 15.26667 15.42319 0.993724 8.886957 8.130435 0.545652 15.15072 15.24928 0.513882 

- + 0 + + 15.23478 15.07681 0.992174 8.637681 7.992754 0.536749 14.94638 14.68841 0.517171 

- + + - - 15.32029 15.33333 0.992401 8.911594 7.917391 0.690876 15.42174 15.43478 0.751449 
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- + + - + 15.33623 15.1942 0.995444 8.691304 8.033333 0.800567 15.34638 15.50435 0.512533 

- + + 0 - 15.2942 15.27826 0.994197 8.989855 8.134783 0.625911 15.35797 15.37536 0.951323 

- + + 0 + 15.27391 14.98116 0.995161 8.724638 8.095652 0.758652 15.36957 15.27391 0.949011 

- + + + - 15.14783 15.09275 0.995406 8.84058 7.968116 0.443396 15.35652 15.36957 0.51167 

- + + + + 15.33768 15.21159 0.995104 8.705797 7.986957 0.787832 15.24928 15.09565 0.775098 

0 - - - - 15.66522 15.47681 0.994008 8.653623 7.931884 0.554909 15.68261 14.96522 0.526415 

0 - - - + 15.69855 15.46087 0.994291 8.76087 7.753623 0.885192 15.67681 15.31594 0.971594 

0 - - 0 - 15.47536 15.62029 0.993686 8.531884 7.83913 0.745419 15.5 15.05217 0.968538 

0 - - 0 + 15.66377 15.76667 0.994272 8.592754 7.972464 0.545236 15.90435 15.34348 0.972111 

0 - - + - 15.62174 15.52319 0.99172 8.591304 8.097101 0.55666 15.9058 15.48841 0.521355 

0 - - + + 15.55652 15.48116 0.994159 8.626087 7.749275 0.848261 15.68261 15.39275 0.521588 

0 - 0 - - 15.52754 15.61739 0.992779 8.831884 7.933333 0.871374 15.92464 15.66812 0.522035 

0 - 0 - + 15.41594 15.28551 0.993705 8.730435 8.134783 0.583945 16.0971 15.89565 0.976434 

0 - 0 0 - 15.65797 15.48986 0.993497 8.67971 7.989855 0.700076 15.96377 15.75652 0.968796 

0 - 0 0 + 15.45072 15.0971 0.994026 8.62029 7.950725 0.804096 15.75072 15.22174 0.950788 

0 - 0 + - 15.53478 15.84928 0.993913 8.56087 8.095652 0.844587 15.65507 15.15942 0.970567 

0 - 0 + + 15.50725 15.43623 0.993138 8.94058 7.869565 0.80586 15.7 15.03188 0.969225 

0 - + - - 15.58841 15.8087 0.994291 8.65942 8.030435 0.6231 16.02174 15.54493 0.97172 

0 - + - + 15.51159 15.52464 0.992987 8.572464 8.13913 0.608532 16.08261 15.56812 0.955564 

0 - + 0 - 15.66522 15.48696 0.994802 8.782609 8.1 0.653856 15.97826 15.46812 0.647706 

0 - + 0 + 15.49565 15.32464 0.994612 8.830435 8.295652 0.538929 16.14348 15.7 0.640888 

0 - + + - 15.53768 15.4971 0.994858 8.57971 8.111594 0.570164 16.21594 15.91304 0.977624 

0 - + + + 15.48261 15.43913 0.990624 8.437681 7.905797 0.833245 16.08406 15.81739 0.977045 

0 0 - - - 15.59275 15.6913 0.994594 8.968116 8.068116 0.902936 15.69565 15.53478 0.964436 

0 0 - - + 15.46957 15.46957 0.994594 9.050725 7.934783 0.643648 15.82029 15.33913 0.958771 

0 0 - 0 - 15.70435 15.66957 0.992987 8.744928 8.37971 0.819786 15.73043 15.47971 0.963207 

0 0 - 0 + 15.52029 15.52464 0.989168 8.952174 8.157971 0.921739 16.16087 15.8942 0.965848 

0 0 - + - 15.52899 15.30145 0.98913 8.768116 8.436232 0.780662 16.11304 15.66667 0.97925 

0 0 - + + 15.54058 15.68841 0.995085 8.769565 8.107246 0.795885 16.21739 15.73043 0.979382 

0 0 0 - - 15.45507 15.33333 0.993289 8.810145 8.063768 0.673611 16.2971 16.1 0.966194 

0 0 0 - + 15.52174 15.22899 0.993648 8.762319 7.944928 0.804392 16.30145 15.75507 0.974026 

0 0 0 0 - 15.65652 15.24928 0.992892 8.824638 8.05942 0.767914 16.1058 15.9 0.823485 

0 0 0 0 + 13.13478 13.37101 0.980132 8.721739 8.173913 0.448727 14.53188 14.04638 0.770592 

0 0 0 + - 13.16957 12.76667 0.911682 8.617391 8.163768 0.572344 14.54638 14.15217 0.775381 

0 0 0 + + 13.04058 13.05942 0.981947 8.881159 8.011594 0.608551 14.44058 13.87681 0.785784 
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0 0 + - - 13.03768 12.91884 0.973837 8.807246 8.088406 0.595167 14.5 13.9029 0.648815 

0 0 + - + 13.11159 12.97971 0.972136 8.721739 7.642029 0.521222 14.62174 14.38551 0.621109 

0 0 + 0 - 12.94783 13.21304 0.954726 8.686957 8.176812 0.516982 14.56812 14.1087 0.677032 

0 0 + 0 + 13.17971 13.01884 0.983913 8.747826 8.007246 0.458147 14.61304 14.25072 0.641078 

0 0 + + - 12.83623 12.9971 0.98104 8.749275 8.014493 0.58402 14.54493 14.31014 0.643869 

0 0 + + + 13.10725 13.07391 0.921626 8.746377 8.046377 0.45804 14.55507 14.31449 0.62414 

0 + - - - 12.87536 13.04493 0.897826 8.728986 8.244928 0.475079 14.23768 14.12899 0.830662 

0 + - - + 12.98551 13.18116 0.890095 8.869565 8.165217 0.557001 14.23623 14.01594 0.789137 

0 + - 0 - 13.04783 13.19855 0.984839 8.730435 7.905797 0.493239 14.35217 13.63768 0.835854 

0 + - 0 + 13.02174 13.26667 0.985992 8.723188 8.133333 0.578544 14.2087 13.85652 0.767832 

0 + - + - 12.99855 13.05362 0.985142 9.023188 7.963768 0.438185 14.28696 13.96812 0.760038 

0 + - + + 12.9913 13.25072 0.965369 8.733333 8.126087 0.499408 14.33333 13.91594 0.783793 

0 + 0 - - 13.0913 13.07971 0.98673 8.692754 7.798551 0.454726 13.96377 13.81884 0.75644 

0 + 0 - + 12.99855 13.27391 0.850473 8.72029 8.124638 0.544921 14.15217 13.84058 0.739382 

0 + 0 0 - 12.98986 13.01884 0.678544 8.853623 7.988406 0.487026 14.3058 13.90145 0.740964 

0 + 0 0 + 12.98261 12.80145 0.972042 8.615942 8.110145 0.67828 14.38696 13.84493 0.746553 

0 + 0 + - 12.77101 13.04493 0.966616 8.588406 8.178261 0.511424 14.37101 14.04638 0.769962 

0 + 0 + + 13.10435 12.87246 0.951096 8.824638 7.92029 0.71988 14.35362 13.76232 0.802684 

0 + + - - 12.95362 12.98116 0.951664 8.765217 7.989855 0.498009 14.3971 14.08406 0.680725 

0 + + - + 12.93043 13.0942 0.97155 8.608696 7.9 0.533056 14.36522 14.13043 0.751474 

0 + + 0 - 13.12319 12.93188 0.898431 8.757971 8.047826 0.508513 14.43333 14.00145 0.768425 

0 + + 0 + 12.93768 13.30435 0.892363 8.689855 7.837681 0.529817 14.26087 13.86667 0.727839 

0 + + + - 13.06522 12.78261 0.947732 8.766667 7.985507 0.543314 14.42899 13.99275 0.731235 

0 + + + + 12.8942 12.97246 0.957372 8.694203 8.028986 0.470082 14.46957 14.22319 0.651159 

+ - - - - 15.05217 14.99275 0.989943 8.724638 7.788406 0.525829 14.91884 15.01304 0.9177 

+ - - - + 15.24348 15.3087 0.993403 8.82029 8.068116 0.511487 14.87391 14.63623 0.91264 

+ - - 0 - 15.26667 15.12319 0.994896 8.818841 8.107246 0.449112 14.67391 14.38696 0.905325 

+ - - 0 + 15.13623 14.90145 0.993535 8.795652 8.036232 0.78564 15.21884 14.88261 0.955734 

+ - - + - 15.2913 15.01159 0.989603 8.714493 8.02029 0.570744 15.35362 15.3087 0.946049 

+ - - + + 15.21014 15.05652 0.995595 8.649275 8.014493 0.793377 14.97101 14.67246 0.933951 

+ - 0 - - 15.02754 14.88986 0.994915 8.723188 8.024638 0.677013 15.17971 15.07391 0.947467 

+ - 0 - + 15.1913 15.12899 0.995482 8.630435 7.72029 0.722111 15.23623 15.11594 0.953214 

+ - 0 0 - 15.12609 15.44203 0.995652 8.844928 7.982609 0.438129 15.29275 15.31449 0.933106 

+ - 0 0 + 15.1058 15.22899 0.993667 8.86087 7.913043 0.669666 14.36087 14.2 0.905608 

+ - 0 + - 15.20145 15.26522 0.994915 8.715942 8.075362 0.538834 14.4058 14.17536 0.923113 
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+ - 0 + + 15.11884 15.0971 0.995652 8.647826 7.942029 0.707763 14.17536 13.76522 0.862029 

+ - + - - 15.2087 15.19855 0.995652 8.801449 8.108696 0.698355 14.96232 14.75217 0.911229 

+ - + - + 15.20435 15.15797 0.994858 8.882609 8.044928 0.597379 14.85507 14.5971 0.93765 

+ - + 0 - 15.24493 15.23188 0.995388 8.798551 8.026087 0.720252 14.56087 14.33188 0.891487 

+ - + 0 + 15.23623 15.22174 0.995652 8.889855 7.965217 0.535696 15.07536 14.38841 0.514852 

+ - + + - 15.24783 15.31884 0.994159 8.884058 7.844928 0.796497 14.86522 14.77826 0.95528 

+ - + + + 15.09855 15.01014 0.99552 9.06087 8.047826 0.534127 14.70435 14.45072 0.944644 

+ 0 - - - 15.25797 15.0971 0.994972 8.833333 7.823188 0.455041 14.95652 14.72754 0.912483 

+ 0 - - + 15.17826 15.12609 0.994405 8.881159 7.965217 0.546541 14.56377 14.31884 0.852848 

+ 0 - 0 - 15.23478 14.98696 0.995369 8.672464 7.943478 0.613611 14.56667 14.16522 0.891771 

+ 0 - 0 + 15.41304 15.20725 0.995085 8.775362 8.101449 0.486761 15.33188 15.21884 0.51443 

+ 0 - + - 15.25217 15.18116 0.994026 8.675362 8.131884 0.686957 15.36667 15.28696 0.520586 

+ 0 - + + 15.20435 15.14058 0.992552 8.911594 7.910145 0.687618 14.93478 14.68261 0.923409 

+ 0 0 - - 15.41014 15.12174 0.995028 8.75942 8.114493 0.523428 15.33913 15.10435 0.945904 

+ 0 0 - + 15.2942 15.24638 0.994442 8.689855 8.121739 0.539351 15.31159 15.39275 0.955986 

+ 0 0 0 - 15.21014 15.27246 0.995406 8.876812 7.986957 0.68138 15.29565 14.77536 0.912703 

+ 0 0 0 + 15.51884 15.51014 0.994216 8.878261 7.981159 0.611853 15.23043 14.75217 0.522741 

+ 0 0 + - 15.49855 15.54638 0.992533 8.865217 7.975362 0.5177 15.34058 14.75217 0.517297 

+ 0 0 + + 15.67826 15.55652 0.994253 8.465217 7.913043 0.615482 15.26812 14.3942 0.968053 

+ 0 + - - 15.55652 15.79855 0.993081 8.531884 7.884058 0.796043 15.85362 15.21739 0.974348 

+ 0 + - + 15.53623 15.6029 0.993403 8.662319 8.055072 0.513711 15.58696 14.82899 0.517133 

+ 0 + 0 - 15.47391 15.45797 0.993913 8.721739 8.005797 0.585167 15.58261 14.69565 0.974008 

+ 0 + 0 + 15.41159 15.4942 0.993875 8.775362 7.866667 0.919086 15.65072 15.31594 0.974858 

+ 0 + + - 15.46957 15.62319 0.984008 8.850725 7.965217 0.549572 15.66957 15.33623 0.517694 

+ 0 + + + 15.59275 15.31014 0.994631 8.821739 7.95942 0.723686 15.5058 15.02029 0.976736 

+ + - - - 15.51159 15.58406 0.993176 8.821739 8.049275 0.610315 15.72609 15.09855 0.961582 

+ + - - + 15.67246 15.55072 0.994178 8.791304 7.843478 0.765142 15.69275 14.69855 0.607057 

+ + - 0 - 15.42029 15.55652 0.990548 8.75942 8.104348 0.777372 15.38116 14.69855 0.639326 

+ + - 0 + 15.46812 15.47826 0.99482 8.682609 8.001449 0.626068 15.66232 14.87971 0.964354 

+ + - + - 15.47826 15.32174 0.993648 8.765217 7.911594 0.842054 15.61739 14.96957 0.592035 

+ + - + + 15.61159 15.56812 0.994348 8.813043 8.073913 0.561103 15.58986 14.68261 0.596673 

+ + 0 - - 15.62319 15.47536 0.993648 8.763768 8.273913 0.615406 15.67826 15.39565 0.937883 

+ + 0 - + 15.64638 15.44058 0.993667 8.627536 8.098551 0.576522 15.86377 15.52899 0.594127 

+ + 0 0 - 15.68116 15.49275 0.99327 8.723188 7.984058 0.757328 15.65072 15.16377 0.9715 

+ + 0 0 + 15.62029 15.23478 0.99552 8.736232 8.291304 0.600989 15.45652 14.84783 0.852489 
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+ + 0 + - 15.39855 15.61884 0.993554 8.830435 8.118841 0.767883 15.37681 15.04203 0.75903 

+ + 0 + + 15.65217 15.1942 0.993006 8.836232 8.310145 0.718973 15.35942 14.90435 0.969975 

+ + + - - 15.47971 15.16232 0.978431 8.737681 8.127536 0.77804 16.01159 15.42319 0.970838 

+ + + - + 15.51449 15.41449 0.986522 8.814493 8.256522 0.826307 15.7087 15.44928 0.969036 

+ + + 0 - 15.54058 15.40725 0.989773 8.727536 7.963768 0.790945 15.74928 15.02899 0.949389 

+ + + 0 + 15.48261 15.5087 0.992779 8.791304 7.87971 0.559748 15.98986 15.64493 0.958551 

+ + + + - 15.57391 15.44783 0.981399 8.589855 8.228986 0.708135 16.06667 15.71739 0.644052 

+ + + + + 15.56087 15.46087 0.994499 8.927536 8.104348 0.877587 15.74928 15.37826 0.975009 
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APPENDIX L: MEX File Programming Considerations 

A computer is like an Old Testament god, with a  lot of rules and no mercy. 

–JOSEPH CAMPBELL, 1904 – 1987  

For efficiency, MATLAB mex files are used for GRLVQI implementation on RF-

DNA data.  Writing mex files involves understanding both Matlab and C programming. 

Common programming issues encountered with mex files included: 1) improper 

distinctions between pointers and variables in the mex file, 2) complexities and 

differences in mathematical programming that exist between Matlab and C.  

Additionally, compiling mex files appropriately is nontrivial.  While the below 

syntax will compile a mex file, not all mex files performed equally fast and hence the 

computational speed of a mex file appears to have a connection to the computer and 

software it was compiled on.  Per communication with Reising [599], for debugging and 

coding considerations one should compile a given mex file via the following commands:  

mex − g − v COMPFLAGS

= "$COMPFLAGS − Wall" − largeArrayDims FILENAME. c 
(H.1)  

where compiling with the “-g” command enables debugging in Microsoft Visual Studio 

[600]. 

 For debugging a given mex file one should consider the following general 

process: 

1. Start Matlab 

2. Compile  
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3. Start Microsoft Visual Studio 

4. Open the associated c-file in Microsoft Visual Studio  

5. Attach Microsoft Visual Studio to the Matlab process 

6. Insert break points as needed in the c file (within Visual Studio) 

7. Run the Matlab algorithm under analysis. 

When these steps are followed, one will find that Matlab and Visual Studio enable rough 

debugging abilities of mex files. 
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APPENDIX M: GRLVQI-D Performance on ZigBee RF-DNA Fingeprints with Z-
Wave Based Optimization 

Beware that thou be not deceived into folly, and be humbled. 

–SIRACH 13:10 (DRA)  

ZigBee data was also considered using the optimized Squared Euclidean 

GRLVQI and the optimized Cosine GRLVQI-D algorithms.  However, it should be noted 

that the optimized settings are only optimized per Z-Wave RF-DNA fingerprints and thus 

no guarantees on their applicability to ZigBee.  Future research item number 2, in Section 

7.3, regards using the Air Force Research Laboratory DOD Supercomputing Resource 

Center (DSRC).  This is directly connected to the results in this appendix.  Due to 

computational times associated with the larger ZigBee dataset (when compared to the Z-

Wave dataset), the optimization process was not reconsidered for ZigBee devices.   

Additionally, since the Canberra GRLVQI algorithmic results generally underperformed 

both the Squared Euclidean GRVLQI and Cosine GRLVQI-D, Canberra GRLVQI-D was 

not further considered for ZigBee RF-DNA Fingerprints.    

Figure M-1 presents training (TNG) and testing (TST) classification results from 

the baseline Squared Euclidean GRLVQI algorithm, the Squared Euclidean GRLVQI 

algorithm using the Classification-optimized settings in Table V-9, and the Squared 

Euclidean GRLVQI algorithm using the Verification−optimized settings in Table V-9.  

Noticeably, classification performance of the optimized algorithms appears slightly lower 

than the baseline ZigBee GRLVQI performance. The Classification-based optimized 
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Squared Euclidean GRLVQI shows an improvement in gain of −4.4 dB (TNG) and −2.69 

dB (TST) at 90% accuracy; the Verification-based optimized Squared Euclidean 

GRLVQI shows an improvement in gain of −13.44 dB (TST) and −10.48 dB (TST).  

 
Figure M-1: ZigBee GRLVQI Classification Performance Using Squared Euclidean 

Distance Using Optimized Algorithmic Settings. 

Figure M-2 presents both the authorized, Figure M-2a, and rogue rejected, Figure 

M-2b, verification performance for the Classification-optimized Squared Euclidean 

GRLVQI algorithm.  When compared with baseline performance, presented in Table 

V-5, the Classification-optimized Squared Euclidean GRLVQI performance has 
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improved authorized verification performance (50% versus 25%), but reduced rogue 

rejection verification performance (30.56% versus 52.78%).  

 
a) Authorized 

 
b) Rogue 

Figure M-2:  GRLVQI ID Verification Performance of  ZigBee in Squared 
Euclidean GRLVQI using  Z–Wave Determined Classification–Based Optimization 

Settings at 18dB. 

Figure M-3 similarly presents both the authorized, Figure M-3a, and rogue 

rejected, Figure M-3b, verification performance for the Verification-optimized Squared 

Euclidean GRLVQI algorithm.  Noticeably, performance is degraded compared to the 

Classification-optimized algorithmic results in Figure M-2. When compared with 

baseline performance, presented in Table V-5, the Classification-optimized Squared 

Euclidean GRLVQI performance has worse authorized verification performance (0% 

versus 25%), and worse rogue rejection verification performance (41.66% versus 

52.78%).  
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a) Authorized 

 
b) Rogue 

Figure M-3:  GRLVQI ID Verification Performance of  ZigBee in Squared 
Euclidean GRLVQI using Z–Wave Determined Vefication–Based Optimization 

Settings at 18dB. 
 

Figure M-4 presents training (TNG) and testing (TST) classification results from 

the Cosine GRLVQI-D algorithm in comparison with the baseline Squared Euclidean 

GRLVQI algorithm. Both Cosine GRLVQI-D with the Classification-optimized settings 

in Table V-9 and the Cosine GRLVQI algorithm using the Verification-optimized 

settings in Table V-9 are presented.  Noticeably, classification performance of the 

optimized algorithms appears slightly worse than the baseline ZigBee GRLVQI 

performance and performance never reaches 90% accuracy.  
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Figure M-4: GRLVQI Classification Performance Using Cosine Distance Using 

Optimized Algorithmic Settings. 
 

Figure M-5 presents both the authorized, Figure M-5a, and rogue rejected, Figure 

M-5b, verification performance for the Classification-optimized Cosine GRLVQI-D 

algorithm.  When compared with baseline Squared Euclidean GRLVQI performance, 

presented in Table V-5, the Classification-optimized Cosine GRLVQI-D performance has 

comparable authorized verification performance (25% versus 25%), but reduced rogue 

rejection verification performance (47.22% versus 52.78%).   
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Figure M-6 similarly presents both the authorized, Figure M-6a, and rogue 

rejected, Figure M-6b, verification performance for the Verification-optimized Cosine 

GRLVQI-D algorithm.  Noticeably, performance is slightly degraded compared to the 

Classification-optimized algorithmic results in Figure M-5, which is consistent with the 

observations about Squared Euclidean GRLVQI in Figure M-2 and Figure M-3 . When 

compared with baseline performance, presented in Table V-5, the Classification-

optimized Squared Euclidean GRLVQI performance has worse authorized verification 

performance (0% versus 25%), and worse rogue rejection verification performance 

(33.33% versus 52.78%).  

 
a) Authorized 

 
b) Rogue 

Figure M-5:  GRLVQI ID Verification Performance of  ZigBee in Cosine GRLVQI 
using  Z-Wave Determined Classification–Based Optimization Settings at 18dB. 
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Table M-1 presents an overall comparison of classification and verification 

performance for the Squared Euclidean GRLVQI algorithm and the Cosine GRLVQI-D 

algorithm.  Baseline performance from Table V-5 is also included for comparison. 

Overall, the best performance is seen in the non-optimized Squared Euclidean GRLVQI 

algorithms.  This differs from the result seen in Section 5.4.3 when the Z-Wave dataset 

was considered.   

 
a) Authorized 

 
b) Rogue 

Figure M-6:  GRLVQI ID Verification Performance of ZigBee in Cosine GRLVQI 
using  Z-Wave Determined Verification–Based Optimization Settings at 18dB. 
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Table M-1: GRLVQI Performance for ZigBee RF-DNA Data Using Z-Wave 
Optimized Algorithmic Settings. 

RESULT 

ALGORITHM OPTIMIZATION 
METHOD 

CLASSIFICATION VERIFICATION (18 DB) 

RAP 
(TNG 

RAP 
(TST) 

SNR GAIN 
(DB) AT 90%C 
RELATIVE TO 

BASELINE 
TST (NPV =10) 

%AUTHORIZE
D OR %ROGUE 

REJECTED 
MEAN AUC 

TNG TNG AUT. ROG. AUT. ROG. 

SQUARED 
EUCLIDEAN 
GRLVQI 

None − Baseline 
Settings (NPV = 

10) 
0.99 1.00 –0.53  0.00 25% 63.9% 0.92 0.93 

None − Baseline 
Settings (NPV = 

13) 
1.00 1.01 –0.11 +0.5 25% 52.8% 0.93 0.94 

Classification-
Based 

Optimization 
0.91 0.93 –4.93 –2.7 50% 30.6% 0.91 0.87 

Verification-
Based 

Optimization 
0.97 0.99 –13.9 –10.5 0% 41.7% 0.88 0.90 

COSINE 
GRLVQI-D 

Classification-
Based 

Optimization 
0.78 0.82 N/A 25% 47.2% 0.85 0.85 

Verification-
Based 

Optimization 
0.87 0.90 N/A 0% 33.3% 0.80 0.81 
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