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ABSTRACT 

Many different techniques have been developed for 
detecting faults in rotating machinery. This is because 
different fault types typically require different techniques 
for the effective detection of the fault. However, for many 
new or unknown fault types, we have found that the existing 
detection techniques are either incapable or ineffective, and 
that we therefore need to come up with brand new methods 
after the fault event. This can significantly constrain the 
usefulness and effectiveness of Prognostic Health 
Management (PHM) systems. In this paper we attempt to 
look at detecting global changes in the synchronously 
averaged signals as the machine’s health status progresses 
from healthy to faulty, and to define one unified signal 
processing technique and its associated condition indicators 
for the detection of changes caused by various types of 
faults in rotating machinery. The proposed method is 
conceptually very simple, and its effectiveness is 
demonstrated using vibration data from machines with 
several different types of faults. The results have shown that 
this single unified change detection approach can be very 
effective in detecting and trending changes caused by many 
different types of machine faults.  

1. INTRODUCTION 

Since the advent of some benchmark technologies, namely 
the envelope technique for bearing diagnosis in early 1970's 
by Burchill et al (1973) and the time synchronous averaging 
technique for gear diagnosis in mid to late 1970's by Braun 
(1975) and Stewart (1977), the field of machine diagnostics 
has had enormous advancement. Over the last four decades, 
many techniques have been developed for detecting various 

types of faults in rotating machinery (e.g. Forrester 1996, 
McFadden 2000, Wang 2001 and techniques discussed in 
the review papers by Randall 2011 and Lei 2013, etc.). 
However, it is typically found that different techniques are 
required for the effective detection of new types of fault. 
This need to specifically develop new methods whenever a 
new type of fault arises can significantly constrain the 
usefulness and effectiveness of PHM systems, especially for 
new platforms such as the JSF where the PHM capability is 
designed in during the early stages of development. 

In general, for gear tooth related local faults we tend to 
employ the residual signal after removing the gear mesh 
harmonics in the spectrum of synchronous signal averages 
(Stewart 1977, Forrester 1996, Wang 2001). For a localized 
bearing fault we will most likely look at the resonance 
demodulation technique (Burchill 1973, Wang and Harrap 
1996). For other common faults like rotor unbalance and 
shaft misalignment we may try to find changes in the low 
shaft orders such as the first three orders (Forrester 1996, 
Larder 1999, Vecer et al 2005). In cases of spline or pump 
faults, we will probably focus on the changes at the 
relatively higher shaft orders or the pump characteristic 
frequency and its harmonics (Galati 2007, Becker 2007, 
Hancock 2006). For turbine engine disk cracks, the state-of-
the-art technology is to use tip timing data analysis to detect 
this type of fault (Wang and Muschlitz 2010). There are 
many other fault types that involve specific detection 
techniques. 

These techniques are widely employed in health and usage 
monitoring systems (HUMS) for helicopters. Unfortunately, 
when new or unknown types of faults occur these methods 
are often either incapable or ineffective to detect the faults. 
In 2002, planet carrier plate cracking was a new type of 
fault found in the main rotor transmission of the Blackhawk 
and Seahawk fleets around the world. Several techniques 
including those by Blunt and Keller (2006) and by Wang 
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and Keller (2007) were specifically developed for the fault 
type after the fault events. Note that this carrier plate has 
been re-designed by the manufacturer and the plates with 
the new design are being retrofitted into the fleet. A more 
recent example is the crash of a Super Puma utility 
helicopter in the North Sea in 2009 caused by a gear/bearing 
fault that was not detected by the onboard HUMS (Jarvis 
and Sleight 2011). The investigation indicated that the most 
likely root cause was a spall-induced fatigue crack in the 2nd 
stage planet gear/bearing in the main transmission gearbox 
of the helicopter, which propagated though the gear/bearing 
body and led to the disintegration of the gear/bearing, 
causing the catastrophic failure of the gearbox. The fatal 
accident led to the loss of sixteen lives. 

There have been previous attempts to develop more 
versatile methods for detecting various types of faults. 
These include the parametric model-based approach by 
Wang and Wong (2000) and Wang (2008) in building a 
linear prediction model for the healthy-state signal and then 
using this model as an inverse filter to process the future-
state signals. The method was proven effective in many 
cases, especially in the case of multiple gears on the same 
shaft, but a consistency problem with the selection of model 
orders can show up when peculiar perturbations exist in the 
signal. This is probably due to the nature of parametric 
modeling and lack of constraints in the optimization 
process. In other words the method lacks robustness. Other 
studies were carried out by Man et al (2012) to use a 
versatile sinusoidal model for fault diagnosis in a more 
robust manner, and by Galati et al (2008) to use a 
generalized likelihood ratio algorithm for detecting bearing 
faults in helicopter transmissions. The work carried out by 
Lee (2010) was an attempt of detecting a general class of 
faults using correlation algorithms in a low cost HUMS. 

In this paper we attempt to look at detecting global changes 
in the vibration signals as a machine’s health status 
progresses from healthy to faulty for various different types 
of faults, and to find one unified signal processing technique 
and its associated condition indicators for the detection of 
these changes. The detection of changes due to machine 
faults often involves comparison of signals from the 
healthy-state to the faulty-state of the machine. However, a 
direct comparison in the time domain is often prohibited 
simply because these signals are in most cases not phase-
aligned. Our unified approach deals with the synchronously 
averaged or re-sampled vibration signals from a rotating 
component in the machine as it progresses from a healthy 
state to a faulty state. The healthy-state signal x is employed 
as a reference, and it is phase shifted by the phase difference 
from the future-state (healthy- or faulty-state) signals y. The 
shifted healthy-state signal xs is then subtracted from future-
state signals y to form the change signals. We expect that 
fault-induced changes will be captured by the change signal. 
Statistical measures can then be derived from the change 

signal as condition indicators, and trended over time for 
fault detection purposes. 

The technique is conceptually very simple, and its 
effectiveness is demonstrated in the paper. Vibration data 
from machines with several different types of faults are used 
for the demonstration. The fault types include gear tooth 
cracks in simple gearboxes; non-uniform gear tooth wear 
and vane pump failure in turbo-machinery; and nut 
looseness and planet carrier plate cracking in helicopter 
transmission systems. The results show that this single 
unified change detection approach can be very effective in 
detecting changes caused by many different types of 
machine faults. We anticipate that further adaptation and 
validation of this approach may lead us towards a universal 
method for fault detection in rotating machinery, including 
faults in gears, bearings, rotors and pumps. 

The main driver of developing such a unified approach is to 
equip existing and future HUMS and PHM systems with the 
capability of detecting new and unknown types of faults. 
The implementation of the proposed technique into an 
existing health monitoring system should be straight-
forward. 

2. BACKGROUND OF SIGNAL ALIGNMENT 

In gear fault diagnosis, we may tend to assume that the 
synchronously averaged signals are phase aligned if a 
tachometer signal is employed as a phase reference signal 
for the rotating components in the gearbox. However, in 
many cases, the use of a pulsed phase reference signal 
means that the zero crossing point (phase alignment point) 
can only be determined to within one sample point, i.e. the 
rising edge of the pulse occurs somewhere between two 
sample points. This means the signal averages are only 
aligned to within one sample point at the original sampling 
frequency. Note that if the speed reference were a sinusoidal 
waveform, the zero crossing point can be determined to 
greater accuracy by the use of interpolation. Additionally, 
there may be other error sources in the phase reference 
signal, such as the speed-dependent pulse amplitude, which 
may cause the misalignment of averaged signals by more 
than one sample point.  

Taking gear tooth cracking as an example fault type, we will 
start with two actual signals acquired in a gear tooth crack 
propagation test conducted at the Defence Science and 
Technology Organisation (DSTO), Australia (Forrester 
1996, Vavlitis 1998). This test series will be described in 
more detail in Section 5.1. Then we will look at some 
simulated gear mesh signals to see the necessity for accurate 
signal alignment and some of the problems that can occur 
when conducting this alignment. 
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2.1. Example of Gear Mesh Signal Alignment by Direct 
Signal Shifting 

Figure 1 shows two signals of gear mesh vibration, which 
came from a spur gear at two stages of tooth cracking. The 
first one is labeled G6b.071 (signal x) where the crack was 
probably just initiated from the stress-riser notch, i.e. there 
was no visual indication of crack but the post-test 
fractography analysis showed an equivalent through-crack 
length of about 0.7mm. The other signal is G6b.110 (signal 
y) where the tooth crack length was around 50 percent of the 
tooth width (2.75mm by visual inspection from side, about 
3.15mm by fractography analysis). Note that the total length 
of the projected crack path was 5.82mm for this gear. These 
two signals have very similar amplitude and their phases are 
not perfectly aligned. We estimated the phase difference by 
using maximum cross correlation coefficient to the accuracy 
of one sampling period, and found that the phase difference 
corresponds to about 3 sample points. This near-integer-
sample phase shift is likely to be due to the on-line angular 
data acquisition of the G6 test data triggered by the TTL 
pulses (0-5 volts square pulse, 1024 pulses/rev) of an optical 
shaft encoder, where each averaged signal might have 
started from a slightly different TTL pulse. However, this 
phase shift (i.e. the number of samples) may be different 
from signal to signal. 
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Figure 1. Comparison of synchronous signal averages 
of gear mesh vibration 

The signal x is then shifted by 3 samples and the shifted 
version is denoted by xs. As we can see in Figure 2, xs is 
well aligned with signal y. A straight subtraction of xs from 
y then produces the so-called change signal δ, as shown in 
Figure 3. Obviously, the change signal has picked up the 
changes caused by the tooth cracking. It has a kurtosis, as 
defined in Eq. (12) of this paper, value of 9.3 where a 
kurtosis value of 3.5 would typically be regarded as an 
indication of an early localized fault. This is comparable to 
some of the benchmark indicators, such as a kurtosis of 5.2 
for the residual signal, derived by removing the gear mesh 
harmonics in the spectrum of the Synchronous Signal 
Average (SSA), or a kurtosis of 11.4 by further removing 

the 1st and 2nd sidebands of the harmonics. The residual 
signal kurtosis is one of most commonly used Condition 
Indicators (CIs) in gear fault diagnosis. 
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Figure 2. Zoomed version of Fig. 1 
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Figure 3. The change signal (full bandwidth): δ = y 
− xs, with a kurtosis of 9.3. 

Normally, a localized fault tends to cause more changes in 
relatively high frequency range whereas a distributed fault is 
more likely to produce changes in low frequency. Therefore, 
if we view the change signal in two frequency bands, i.e. a 
low-order band and a high-order band, where the cross-over 
occurs at 85 shaft orders (which is just above the 3rd gear 
mesh harmonic at 3×27 = 81 orders and is below a structural 
resonance), as shown in Figure 4, we can see that the crack-
induced change in the high-order band is far more 
pronounced than that in the low-order band. The kurtosis 
values for these two bands are 16.5 and 3.8 respectively.  

Intuitively, we can say that the key step here is to align 
signals acquired in a healthy-state (or reference signal) and a 
faulty-state (or monitored signal). We can also use the 
instantaneous phase cross correlation to obtain sharper 
maxima so that the signal shift amount may be defined more 
clearly. However, to achieve signal alignment with an 
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accuracy better than one sample period, we will need to 
interpolate the cross correlation function.  
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Figure 4. The change signal divided into high- and 
low-order bands, with the kurtosis values of 16.5 and 

3.8 respectively. 

2.2. Understanding Signal Alignment using Simulated 
Signals  

We can see, from the above example, that phase alignment 
of the two signals is essential. Even in cases where signal 
averaging has been performed using a phase reference 
signal from the shaft of interest, small variations in signal 
alignment from one run to the next may occur. This can be 
caused by a change in the shaft reference probe (e.g. dirt, 
physical movement of the sensor, etc.), and, more likely, the 
inherent errors in the tachometer signal processing (e.g. 
errors from interpolating the position of the zero-crossing 
between sample points). Also, in cases where the phase 
reference signal sensor is not physically attached to the shaft 
of interest, or where the synchronous averaging is carried 
out using a phase reference directly derived from the 
vibration signal (Bonnardot et al 2005), it is not feasible to 
phase-align the averaged signals during the synchronous 
averaging process. 

For the remaining part of the paper, we denote a uniform 
phase shift by ∆θ and a uniform time delay by ∆t as shown 
in the following expression. The word ‘uniform’ applies to 
multi-frequency signatures, where the phase shift and time 
delay are the same for all the frequency components. 

[ ]∑ ∆++∆−⋅=
k

kkk ttfAty )()(2sin)( θθπ  

2.2.1. Uniform phase shift  

First of all, when talking about phase alignment we may 
tend to think of aligning the initial phase of the signal. If we 
have a test signal of  

        x(t) = sin(2π•27•t+0.987)  

with a sampling rate of 1024 samples/second, i.e. 
t = (0:1023)/1024, and an arbitrary initial phase of θ = 0.987 
radians, and we then define a phase-shifted version of this 
signal, y(t), where the initial phase of this frequency 
component is changed by Δθ = −0.4975 radians from x(t), 
then this phase shift will correspond to almost exactly 3 
sample points, i.e. 1024×0.4975/(2π×27)=3.003. Therefore, 
to align x(t) and y(t) we could simply shift signal x(t) by 3 
sample points, e.g. using the Matlab function ‘circshift’: 
xs = circshift(x,3). However, if the phase shift does not 
correspond to a near-integer sample point, then this 
alignment process will not work. Figure 5 shows the signal 
y(t) with a phase shift of −0.57 radians (or 3.4406 samples) 
and the signal x(t) shifted by 3 sample points. As can be 
seen, rounding to the nearest sample point does not produce 
a good result, and a finer (fractional-point) shift resolution is 
required.  

Now let us employ a two-component sinusoid like  

        x(t) = sin(2π•27•t+0.987) + sin(2π•2•27•t+1.053)  

where the 2nd component is a harmonic of the 1st one. Signal 
y(t) is then defined as signal x(t) shifted by −0.4975 radians 
at both frequency components (i.e. uniform phase shift).  If 
we now shift x(t) by 3 sample points using ‘circshift’ we 
cannot get a good alignment as shown in Figure 6. This is 
because the phase shift of −0.4975 radians for the higher 
frequency component corresponds to almost 1.5 sample 
points instead of 3 for the lower frequency component, i.e. 

1024×0.4975/(2π×2×27) = 1.5015.  
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Figure 5. Simulated signal xs & y showing that direct 
signal shifting would not work with a phase shift of 

non-integer sample. 

There are two important observations from this section: (1) 
direct signal shifting by integer sample points would not be 
a good approach if the phase difference does not give a time 
delay corresponding to integer number of data samples; (2) 
direct signal shifting is also no good for multiple 
components signals where the phase shift is the same across 
all the frequency components.  
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Figure 6. Simulated signal xs & y showing that direct 
signal shifting would not work with uniform phase 

shift in multi-component sinusoid signal 

2.2.2. Uniform time delay  

For the process of synchronous signal averaging, any errors 
and/or differences in the phase reference signal and zero-
crossing point will consequently produce a uniform time 
delay across all frequency components in the averaged 
signal. This is the underlying cause of phase misalignment 
between SSAs. 

For the above example with 

       x(t) = sin(2π•27•t+0.987) + sin(2π•2•27•t+1.053)   

and  

       y(t) = x(t−0.0205),  

the time delay of 0.0205 seconds corresponds to almost 21 
samples (i.e. 0.0205×1024 = 20.992), so direct signal 
shifting should work fine. However, direct signal shifting 
will not work when the uniform time delay is 0.02 seconds, 
as this corresponds to 20.48 samples. It would not be hard to 
imagine what difference this nearly half-a-sample shifting 
error is going to make in the change signal. This is a very 
likely scenario with synchronous signal averages because 
any differences between the phase reference signals from 
one signal average to the next are almost certainly going to 
occur in non-integer samples – although some can be really 
close to integers, such as the gear signals shown in section 
2.1 where an optical shaft encoder was used.  

An alternative approach to direct signal shifting in the time 
domain is to carry out the shift in the frequency domain. 
Figure 7 shows an example of aligning two signals 
involving a uniform time delay of 0.02 second (or 20.48 
samples) by shifting the phase spectrum of x and then 
transforming back to the time domain. The theory behind 
this example will be given in the next section. We can see in 
Figure 7 that the shifted x (xs) is perfectly aligned with 

signal y. In fact, this approach applies to both cases of 
uniform phase shift and uniform time delay. 

0 0.05 0.1 0.15
-1.5

-1

-0.5

0

0.5

1

1.5

2
aligning two-component sinusoids by phase spectrum shift

time (sec)

A
m

pl
itu

de

 

 
x(t)
xs(t)
y(t)

 

Figure 7. Alignment of signals with a 0.02 second time 
delay (at 1024 sampling rate) via shifting the phase 

spectrum of x by the difference between phase spectra 
of x and y 

3. THEORETICAL DEVELOPMENT OF UNIFIED CHANGE 

DETECTION APPROACH 

From the last section, we have shown that the future-state 
signal y(t) can be aligned with the healthy-state signal x(t) 
by introducing a time shift. In other words, alignment of the 
signals means a simple time shift by –∆t which is the lag 
that gives the maximum value of the cross-correlation 
function. It can be carried out in the frequency domain.  
Mathematically, if we assume that signal y(t) is a time 
shifted version of signal x(t), and ignore the amplitude 
difference, we have 

 )()( ttxty ∆−=  (1) 

Taking the Fourier transform on both sides of Eq. (1) and 
making use of the translation property of Fourier transform, 
we get 

 
[ ]ftfj
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where the amplitude and phase spectra are given by 

 
)()(,)()(

)()(,)()(

fYffYfA
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By ignoring the amplitude difference, or making 
)()( fAfA xY = , we have 
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From Eqs. (2) and (4), we can see that time-shifting x(t) by 
∆t , i.e. x(t−∆t) is equivalent to shifting the phase spectrum 
of x(t) by the difference of phase spectra of x(t) and y(t). The 
time-shifted x(t) will be aligned with y(t). Hence we don’t 
really need to know the lag ∆t via cross-correlation and 
interpolation. 

Now, we put the amplitude difference back, the Fourier 
transforms of signal x(t) and y(t) are respectively given by  
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The difference of phase spectra is 

 )()()( fff YXXY Φ−Φ=∆Φ  (6) 

Shifting the phase spectrum X(f) by the difference given in 
Eq. (6), which is equivalent to time-shifting x(t) by ∆t , i.e. 
x(t−∆t), we have the Fourier transform of the shifted signal  
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We can derive the shifted version of signal x(t) by an 
inverse Fourier transform 

 ∫
∞

∞−

⋅= fefXtx tfj d)(ˆ)(ˆ 2π  (8) 

which is a real-valued signal as x(t) and y(t) are both real-
valued so that AX(f) is even and ΦY(f) is odd. 

Having had x(t) and y(t) aligned, we can now define the 
change signal as 

 )(ˆ)()( txtytxy −=δ  (9) 

On the other hand, we will see that the Fourier transform of 
the change signal is 
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Therefore, we can also define the change in the spectral 
domain. Notice that the amplitude in Eq. (10), [AY(f)–AX(f)], 

may be negative at some frequencies, which means a phase 
shift of π to those frequency components. The change signal 
in the time domain is then obtained by an inverse Fourier 
transform 

 ∫
∞

∞−

⋅∆= feft tfj
XYxy d)()( 2πδ  (11) 

For reasons mentioned in the first example in Section 2.1, it 
is often necessary to select a cross-over frequency in shaft 
orders to divide the change signal into high & low bands 
when changes are not obvious in the full-band. Therefore, 
for fault detection and trending purposes the change signal 
can be viewed from three perspectives, i.e. in low-band, 
high-band and full-band.  

4. DERIVATION OF CONDITION INDICATORS  

Three condition indicators (CIs) are defined in this section. 
These CIs can be used as measures of the machine health 
state; they can be trended over time for fault detection 
purposes. In Section 5, the unified change detection 
technique with these CIs is applied to the detection of 
several different types of faults.  

4.1. Kurtosis of the change signal 

Kurtosis is the 4th order statistical moment normalized by 
the standard deviation to the 4th power; it is often used as the 
CI for localized gear and bearing faults, such as gear tooth 
cracking and bearing element spalling. These local faults 
cause spikiness in fault signatures and kurtosis is an 
effective indicator for spikiness in the signal. For a discrete 
change signal δ(n), n = 1, 2, … N, with a mean value of δ , 
the kurtosis is defined as 
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  (12) 

If the change signal is Gaussian noise, the above kurtosis 
will be around 3. In gear fault diagnosis, many healthy-state 
residual signals (after removing gear mesh harmonics and 
their sidebands) are sub-Gaussian with kurtosis values 
slightly less than 3. Kurtosis values of 3.5 and 4.5 are 
generally regarded as the alert and alarming levels 
respectively. Usually, the high-band kurtosis is more 
sensitive to sharp spikes induced by localized faults. 
However, kurtosis may not necessarily be good when it is 
used as a trending parameter because spikiness can be 
reduced in the change signal as localized fault develops into 
distributed fault, especially in cases of bearing faults. 
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4.2. Energy ratio of the change signal 

The standard deviation or root mean square (RMS) value of 
the change signal can also be employed as a trending 
parameter to continuously monitor the condition changes in 
rotating machinery. We define energy ratio as the ratio 
between the RMS of the change signal and the RMS of the 
healthy-state or reference signal, i.e. 
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The energy ratio is used to normalize the energy in the 
change signal against the constant energy in the reference 
signal. Ideally, we can expect the energy ratio to increase as 
the fault progresses from early to late stages provided that 
the fault-induced changes are well reflected in the change 
signal. However, the randomness in the CI may not make 
the increasing trend strictly monotonic. 

4.3. Scaled Kurtosis of the change signal 

We define the scaled kurtosis as the product of the kurtosis 
of the change signal and the energy ratio given by Eqs. (12) 
& (13). Mathematically, the expression for scaled kurtosis is 
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It combines the change signal with the reference signal, so 
that the condition is always compared to a common 
reference. As we can see in the following applications, this 
CI can give a more consistent trending of fault conditions 
than the kurtosis itself. A reasonable explanation for the 
results would be that, in the early stages of fault 
development (when the fault is localized), the kurtosis 
performs more effectively than the energy ratio. However, 
in late stages of fault development (when the fault may be 
more distributed), the spikiness in the change signal drops 
but the energy level in the change signal increases rapidly, 
which will lead to an overall increase in the scaled kurtosis 
(the product). 

5. APPLICATIONS OF THE UNIFIED CHANGE DETECTION 

APPROACH  

We have defined the approach to deriving the change 
signals from the healthy-state signal to the future-state 
signals. With the change signals, we have proposed three 
condition indicators in three frequency bands. This will 
produce nine CIs for each future-state signal. Trending these 

CIs over time will allow changes in the condition of the 
monitored component of the machine to be detected. In this 
section, we will demonstrate the effectiveness and 
robustness of the proposed method in a number of different 
fault cases involving different fault types. 

Vibration data from machines with several types of faults 
are used for the demonstration. The fault types include gear 
tooth cracks in a simple gearbox; non-uniform gear tooth 
wear and vane pump failure in turbo-machinery; and nut 
looseness and planet carrier plate cracking in helicopter 
transmission systems. Using the same unified approach, we 
have produced various trending curves for each of these 
fault types. The results have shown that this single unified 
change detection approach can be very powerful in 
detecting changes caused by many different types of 
machine faults. In practice all nine CIs should be trended 
during machine operations. As there is not enough space in 
this paper to show results for all nine CIs, we will show 
results for some selected CIs in the following examples. 

5.1. Application to Detecting Gear Tooth Crack Growth  

The study of tooth crack development and propagation in 
the pinion spur gear of a test gearbox were performed by 
Swinburne University of Technology and DSTO (Forrester 
1996, Vavlitis 1998). The test gearbox was a simple single-
stage reduction gearbox with 27 teeth on the driving pinion 
and 49 teeth on the driven gear (i.e. the gear ratio was r = 
27/49). The gearbox was driven by an electric motor 
through a belt drive. The load to the test gear was provided 
by a dynamometer with a full loading capacity of 45kW at 
40Hz input shaft speed. The test gears, labeled G6, A1, A2, 
A3 and A5 etc, were the input pinion (with a rated load of 
27.5kW) with a semi-circular spark-eroded notch 
(2mm×0.1mm×1mm) at the root fillet in the middle of the 
tooth width. The notch was designed as a stress riser for 
crack initiation during the test. The gear was made of 
EN36A case hardening low alloy steel with teeth precision-
ground under AGMA Class 13 standard. The input speed of 
the gearbox was set to a nominal value of 2400rpm (40Hz), 
which was varied during the test in a range of 38.6 to 
39.3Hz. Results with selected CIs for G6, A3 & A5 are 
shown here. 

Figure 8 shows the trending curve for G6 scaled kurtosis in 
the high band (cross-over at 85th shaft order) from files 
G6b.071 to G6b.110, the dataset used here is the same as 
that used in Section 2.1. We can see that the scaled kurtosis 
CI generally trends upwards with the increasing crack size. 
However, the general trend was disrupted at file #97. This 
was caused by the inspection after file #96, where the faulty 
gear was dismantled from the test rig and the tooth crack 
was forced to open with a static overload for magnetic 
rubber inspection of crack size. It is believed that the 
inspection process interrupted the crack progression, i.e. the 
static overload caused crack retardation or arrest. Figure 9 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

384



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

8 

shows the trending curves of energy ratio CIs in full, high 
and low order bands. Obviously, the high band (blue line) is 
most sensitive to the changes caused the increasing crack 
size. 
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Figure 8. Trending of G6 scaled kurtosis in high-band 
from G6b.071 to G6b.110 (the value at G6b.110 was 

0.66 – outside the displayed range). 
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Figure 9. Trending of G6 energy ratio in all three 
bands for (G6b.071~110) under 45kW load, crack 

growth disrupted by an inspection. 

While the results shown in Figure 8 and Figure 9 are 
possibly affected by interrupted tooth crack growth, Figure 
10 shows the trending curve of high band kurtosis for an 
uninterrupted growth from G6b.149 to G6b.155. The 
reference signal was G6b.148 where the tooth crack size 
was estimated to be 3.63mm by post-test fractography 
analysis. By G6b.155 (the last data file for the G6 test), the 
tooth crack grew to an advanced stage where the cracked 
tooth was just about to fall off, and the crack length was 
measured at 4.67mm by fractography analysis (80 percent 
tooth body cracked, as compared to the crack path length of 
5.82mm). Note that the kurtosis values in this plot do not 
represent the change between the faulty-state and healthy-
state, rather the change was from a ‘less faulty’ to ‘more 
faulty’ state (i.e. the normal alert and alarm levels of 3.5 and 

4.5 do not apply here). Figure 11 shows the change signals 
from G6b.148 to G6b.155 in the high and low bands. 
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Figure 10. Trending of G6 kurtosis in high-band for 
G6b.148~155, a further uninterrupted crack growth 

under constant load (24.5kW) after G6b.110.  

0 200 400 600 800 1000
-3

-2

-1

0

1

2

3
change signals: G6B.155 - G6B.148 in high & low bands

Samples

A
m

pl
itu

de
 (

g)

 

 

ycH = highband change
ycL = lowband change

 

Figure 11. Change signal from G6b.148 to G6b.155. 

More results are given in Figure 12 and Figure 13 for the 
DSTO gear tooth crack propagation test series using the 
identical type of test gears. Figure 12 shows the A3 gear test 
trending curve of scaled kurtosis from A3B2.501 to 
A3B2.549 over some 27.5 minutes of testing (about 66000 
fatigue cycles to the cracked tooth with constant load of 
30kW at 40Hz shaft speed). In this test period, the crack had 
uninterrupted continuous growth from 4.89mm to 5.84mm 
along a curved crack path (Vavlitis 1998, where A3 was 
labelled as A2-3). With file A3B2.549, the kurtosis of the 
change signal in high order band is 9.49, as compared to the 
conventional residual kurtosis of 5.09. 

Similarly, Figure 13 shows the A5 gear test trending curve 
of scaled kurtosis from A5B0.598 to A5B0.763 over some 
84 minutes of testing (about 201600 fatigue cycles to the 
cracked tooth with 40Hz shaft speed) where the crack had 
uninterrupted continuous growth from 1.46mm to 2.27mm 
along a curved crack path (Vavlitis 1998, where A5 was 
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labelled as A2-5). With file A5B0.763, the kurtosis of the 
change signal in the high order band is 9.0, as compared to 
the conventional residual kurtosis of 4.3. If we pay close 
attention to the values on the vertical coordinate (scaled-
kurtosis) in Figure 12 and Figure 13, we could find that 
these values might be a reflection of the crack sizes, e.g. the 
scaled kurtosis value of 0.44 for A3B2.549 with a crack 
length of 5.84mm versus the scaled kurtosis value of 0.174 
for A5B0.763 with a crack length of 2.27mm. However, this 
could also be affected by the load. 
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Figure 12. CI trending of A3B2.501~549 data – final 
crack size 5.84mm with uninterrupted crack growth 

under 30kW load. 
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Figure 13. CI trending of A5B0.598~763 data – final 
crack size 2.27mm with continuous progression 

without interruption under constant load of 45kW. 

We have also conducted a more detailed comparison study 
between the unified change detection approach and other 
commonly used gear fault detection techniques. Figure 14 
shows the results of comparing the unified approach with 
two other methods based on the autoregressive (AR) model 
residual and the conventional residual signals using the A3 
gear test data. We find that the changes picked up by the 
unified approach increase more rapidly than the other two 
methods, and the AR model result is very much dependent 

on the selection of model order, and whether the AR model 
is built on a reference signal or the monitored signal itself. 
The unified approach has shown more fluctuation in the 
result, which could be smoothed out by using the scaled 
kurtosis as shown in Figure 12.  
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Figure 14. Comparative study between unified change 
detection approach and other methods based on self-

AR(32) residual and conventional residual signals 
using the DSTO A3 gear tooth cracking data 

We can draw some conclusions based on the results of the 
comparison study using the DSTO gear rig data. The unified 
approach: (1) requires less prior knowledge, it only needs to 
choose the high & low band cross-over frequency (e.g. at 
the lower bound of a resonance or the upper bound of the 
significant gear mesh harmonics); (2) is much more 
versatile than conventional residual signal method in which 
we must know which orders to be removed; (3) is capable of 
dealing with cases of multiple gears on the same shaft and is 
more robust than the AR residual method where a consistent 
model order selection is lacking; and (4) gives better and 
more robust trending capability by using a scaled kurtosis 
CI than a conventional kurtosis CI. 

5.2. Application to Detecting Faults in Turbomachinery 

We have found in the last section that the unified change 
detection approach is effective in detecting localized 
changes induced by gear tooth cracking, especially by using 
a high band CI. In this section, we will find if this approach 
can be employed for the detection of distributed faults such 
as uneven wear on many teeth of a gear, and damage to all 
the vanes of a vane pump. The results show that low-band 
and full-band CIs are very sensitive to the changes caused 
by these distributed faults. 

5.2.1. Non-uniform Gear Tooth Wear  

In gear design, it is normal practice to select the number of 
teeth for a gear pair such that there is no common factor 
between them. This allows each tooth of one gear to mesh 
with every tooth of the other gear, and therefore promotes 
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even wear of the teeth. This system is usually referred to as 
the hunting tooth system. In the gearbox of a developmental 
turbofan, there was a non-hunting tooth system with a 
common factor of 3 between the tooth counts, which 
resulted in damage (non localized uneven wear) to every 3rd 
tooth on the pinion. Now, we employ the unified change 
detection approach to monitor the changes induced by this 
specific wear pattern over time. 
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Figure 15. Turbo-fan gear CI (energy ratio) trending 
with Channel 3 data and cross-over frequency of 5 

shaft orders. 

The reference signal x was acquired at about 19 hours of 
testing, and 12 monitoring signals (y) were acquired after 
signal x. Figure 15 shows the trending curve of the energy 
ratio CI in full, low and high order bands versus the 
accelerated test time over a period of more than 2 hours. 
The increasing trend of the full (red line) and low (green) 
band CIs clearly shows the progression of the uneven wear 
to every 3rd tooth on the pinion gear. The high (blue) band 
CI has a less obvious trend. These results were obtained 
with a cross-over frequency of 5 shaft orders; so it means 
that most of the energy in the change signal is in the low 
band below the 5th shaft order. In fact, the high band CI is of 
little importance in this case as the distributed fault would 
not necessarily bring any high frequency resonance features. 

5.2.2. Vane Pump Failure   

This fault type is about the severe damage to all the vanes in 
a vane pump attached to the accessory gearbox of an aircraft 
engine. The vibration data were recorded at three stages of 
an accelerated test when the engine was running on full 
power. They were from a) early stage – within the first 10 
percent of the testing time; b) late stage – between 80 ~ 90 
percent of the testing time and c) last stage – within the last 
2 percent of the testing time of the accelerated test. 
Altogether, there were 36 tri-axial vibration data files used 
for producing the results shown in this paper, where the first 
one in the early stage was used as the reference. 

Figure 16 shows the trending curves of scaled kurtosis CI in 
three bands using the horizontal axial (the most sensitive 
direction) vibration data. Along the abscissa coordinate of 
the plot there are 35 columns of CI points; the first 11 files 
were from the early stage of testing, the following 18 files 
were from the late stage and the last 6 files from the last 
stage of testing. The cross-over frequency for the low and 
high bands was selected at just above the 6th harmonic of the 
vane pass frequency. We can see in Figure 16 that the full 
band (red) and low band (green) CIs show prominent step 
changes across the three stages of testing. The high band 
(blue) CIs show some indication of change but this is not as 
prominent as the other two bands. This is because the signal 
changes caused by the vane damage are mostly likely 
located at the vane pass frequency and its lower harmonics. 
Obviously, the changes detected by the unified approach can 
give sufficient lead time to the failure of the vane pump. 
The pump actually failed on the very next run after the last 
data file was recorded. 
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Figure 16. Aero-engine vane pump CI (scaled-
kurtosis) trending with Channel 3 data and cross-over 

frequency of 65 shaft orders. 

5.3. Applications to Detecting Faults in Helicopter 
Transmission Systems 

Health and Usage Monitoring Systems (HUMS) have been 
used in helicopter transmission gearboxes for many years. In 
general, existing HUMS can detect faults of common types 
such as gear and bearing faults without great difficulty. 
However, less common or unknown types of faults are 
difficult to detect. In this section, we will present two cases 
of less common fault types and employ the proposed unified 
approach to trend the progression of these faults. 

5.3.1. Input Shaft End Nut Looseness  

The first of these less common fault types is the end nut 
looseness at the bevel input pinion extension shaft in a 
helicopter Main Rotor Gearbox (MRG). This is a fault type 
which is believed to be the most likely cause of the rupture 
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of the extension shaft. It can be induced by a lack of 
tightening torque of the end-nut and consequently causes a 
load redistribution in the MRG assembly. A study was 
conducted at DSTO into this fault type using a light utility 
helicopter MRG in DSTO’s Helicopter Transmission Test 
Facility (HTTF). The objective of the study was to provide 
HUMS systems with the capability to detect the loss of 
tightening torque of the end-nut and to prevent the rupture 
of the input pinion extension shaft. 
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Figure 17. Trending of scaled kurtosis CI from pinion 
SSA (at Ring-Front sensor & cruise power) change 

signal with cross-over at 75th shaft order 

Ten end-nut tightening torques were used in the test, i.e., 
100 percent, 91%, 78%, 67%, 56%, 44%, 33%, 22%, 11% 
and 7% of the nominal tightening torque. The data recorded 
at 100% tightening torque were used as the reference, and 
the tightening torque is assumed to become less and less 
over time. The 7 percent torque (a very loose condition) was 
found to be the thread breaking torque at which we could 
just start to turn the end-nut. Throughout the test, the input 
shaft speed was kept at the nominal level (about 100Hz) and 
there was no mast load applied to the MRG. The data used 
in this paper were acquired under the forward flight 
condition at 75 percent maximum power.  

Using the synchronous signal averages (SSA) with respect 
to the input pinion shaft and the planet carrier shaft, we 
produced the scaled-kurtosis CIs at each level of the 
tightening torque and plotted them in Figure 17 and Figure 
18. The abscissa coordinates in the plots can be considered a 
time progression index where each point corresponds to the 
next looser level of the tightening torque, i.e. time index 1 
corresponds to the 91%, index 2 is 78% … and index 9 is 
7% tightening torque.  

From Figure 17 which is based on the input pinion SSA 
change signals, we can see that the end-nut loosening 
condition can be detected by the full (red) and low band 
(green) CIs from time index #5 (i.e. 44% tightening torque), 
and becomes very obvious at index #8 (or 11% tightening 
torque). On the other hand, Figure 18 shows the CI trending 

based on the planet carrier SSA change signals. Here, it 
could be argued that the end-nut loosening condition is 
detectable by the full (red) and high band (blue) CIs from 
time index #3 (i.e. 67% tightening torque) forward, which is 
apparently better than the result in Figure 17. This result 
may be because the effect of load redistribution caused by 
the loosening end-nut on the input shaft was magnified at 
the carrier shaft by the reduced speed and increased torque. 
The results have shown that the unified approach can be 
effective in detecting faults of this particular type. 
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Figure 18. Trending of scaled kurtosis CI from carrier 
SSA (at Ring-Front sensor & cruise power) change 

signal with cross-over at 750th shaft order 

5.3.2. Planet Carrier Plate Cracking 

The helicopter main gearbox planet carrier plate cracking 
was not a widely known fault type until 2002 when it 
occurred in the UH-60A Blackhawks of US Army. Since 
2004, it has also occurred in the SH-60B Seahawks of US 
Navy. The test data used for this paper were acquired at US 
Navy’s HTTF in Patuxent River, Maryland.  
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Figure 19. Trending of scaled kurtosis CI of 40% 
torque and STBDRING sensor at cross-over of 1700 

shaft order. 
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Using the unified approach, we produced CIs for all the 
sensor data. Some results with selected HUMS sensors at 40 
percent torque for the main rotor are shown in Figure 19 to 
Figure 21. With a cross-over frequency of 1700 orders of 
the carrier shaft, and vibration data from the sensor on the 
starboard side of the ring gear (STBDRING), the scaled 
kurtosis CIs versus ground-air-ground (GAG) cycle number 
(equivalent to a time index) are shown in Figure 19.  We can 
see that the full (red) and low (green) band CIs track well 
with the changes caused by the crack propagation in which 
the crack lengths were known to have grown from 90mm 
(3.54”) at GAG #410 to 172mm (6.78”) at GAG #763. 
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Figure 20. Trending of scaled kurtosis CI of 40% 
torque and VMEP1 sensor at cross-over of 500 shaft 

order. 

400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
SH-60B Plate1 trending of Scaled Kurtosis of change signals

ground-air-ground (GAG) cycle number

S
ca

le
d 

K
ur

to
si

s

 

 

high-band
low-band
full-band

 

Figure 21. Trending of scaled kurtosis CI of 40% 
torque and VMEP1 sensor at cross-over of 1700 shaft 

order. 

Figure 20 and Figure 21 show the results for another sensor 
(VMEP1, which was very close to the STBDRING sensor) 
at 40% main rotor torque with two different cross-over 
orders, i.e. 500 and 1700 orders, respectively, to show the 
effect of cross-over frequency on the fault detectability of 
the unified approach. Note that the ring gear has 228 teeth 
so 500 shaft orders is above the 2nd gear meshing harmonic, 

and there were no significant meshing harmonics beyond 
1700 shaft orders. Obviously, the full band (red) CIs are 
identical in the two plots, which track well with the crack 
growth. In particular, the CI had a sudden jump at GAG 
#755 where the crack propagated through the outer edge of 
the carrier plate, which was not evident in Figure 19. 
Interestingly, the high band CI (blue) in Figure 20 and the 
low band CI (green) in Figure 21 are almost identical to the 
full band CIs. This means that the energy in the change 
signals is concentrated between 500 and 1700 orders of the 
carrier shaft.  

Based on the results in Figure 20 and Figure 21, we can say 
that the selection of cross-over frequency (or order) doesn’t 
affect fault detectability of the unified approach as a whole; 
it can however provide further diagnostic information on 
where the energy in the change signal is located in the 
frequency domain. The energy bandwidth in the change 
signals may well be utilized to distinguish the localized 
faults (with high bandwidth features) from the distributed 
faults (with low bandwidth features). We need to notice that, 
in this example, the cross-over orders of 500 and 1700 
correspond to the frequencies of 2150Hz and 7310Hz, i.e. 
the order times the main rotor speed of 4.3Hz. 

6. DISCUSSION AND CONCLUSIONS 

In this paper we have presented a unified change detection 
approach to generalized health monitoring for rotating 
machinery. The approach is based on aligning the signals 
through shifting the phase spectrum of the healthy-state or 
reference signal by the difference in phase spectra from the 
future-state signal (or the signal under monitoring). The 
change signals are obtained from direct subtraction of the 
aligned signals. Condition indicators extracted from the 
change signals are used to detect changes caused by 
machine faults. Results have shown that the proposed 
unified approach is very effective and robust in detecting 
changes caused by various types of mechanical faults. 

In practice, failure modes sometimes occur which were not 
anticipated in the development of a machine condition 
monitoring system, and these can often remain undetected, 
with potentially catastrophic consequences. It is unfortunate 
that we are unable to detect such faults as they happen and 
must come up with new techniques to detect them when 
they occur again. It has been our intention to develop a 
powerful unified fault detection method to deal with new or 
unexpected failure modes (or types of faults) in rotating 
machines. The proposed method has provided some hope in 
achieving that goal. 

Threshold setting for the CIs is a very important aspect in 
HUMS and PHM systems. The kurtosis can have a 
threshold of 3.5 for reasons mentioned in Sections 2.1 and 
4.1. The energy ratio should certainly have a threshold 
below 1 based on its definition in Eq. (13); hence a 
reasonable one would be 0.5 – meaning that the energy in 
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the change signal has reached 50 percent of that in the 
reference signal. However, there is no common threshold of 
scaled kurtosis for different fault types as observed in the 
results of this paper. From the definition of the scaled 
kurtosis in Eq. (14), we may look at setting the threshold 
upper bound to around 1, e.g. an energy ratio of 0.33 and a 

kurtosis of 3 (0.33×3≈1). Another way of thresholding the 
scaled kurtosis may be to put a limit on its rate of change (or 
differential). This will be an area for further study. 

The other area worth further investigation is the systematic 
approach to selecting the reference signal. Is it always 
sufficient to just use the data at the beginning of the 
machine operation, or is it better to choose the data at the 
start of each run or use a moving reference signal? These are 
questions to be answered after further testing and validating 
of the proposed unified approach against a wide range of 
fault types. 

In conclusion, we have shown that the proposed unified 
change detection approach is effective and robust in 
detecting changes caused many types of mechanical faults. 
It has the potential to cope with a much wider range of 
failure modes in rotating machinery than the existing 
methods. The new method is also simple in concept and fast 
in calculation (it only needs the FFT), and would be 
straightforward to implement in existing PHM systems. We 
anticipate that the method could be widely tested and 
matured in the near future. 
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