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ES-1 

EXECUTIVE SUMMARY 

Regulatory decision-making at contaminated sediment sites are typically informed by the results 
of human health and ecological risk assessments. Bioaccumulation of sediment-associated 
contaminants through aquatic food webs often represents the predominant pathway of concern in 
these risk assessments. Site data provides an indication of current conditions. However, predictive 
models are required to evaluate the impact of potential management alternatives.  
 
Bioaccumulation models predict fish tissue concentrations under one or more future scenarios. 
Although the mechanistic process of bioaccumulation is well-understood, particularly for heavy 
organic compounds such as polychlorinated biphenyls (PCB), dioxins, and many pesticides (e.g., 
dichlorodiphenyltrichloroethane [DDT]), none of the models in current use account for the 
influence of spatial heterogeneity in contaminant distribution in combination with fish foraging 
behaviors and strategies. Similarly, temporal changes in contaminant concentrations are 
infrequently evaluated.  
 
The project team demonstrated the application of a probabilistic, spatially-explicit, and dynamic 
bioaccumulation model, referred to as FishRand at two Army sites. Those results are compared to 
the currently accepted practice of a deterministic application and a probabilistic, but not spatially-
explicit application. In all cases, the mathematical framework of the bioaccumulation model is 
based on the well-recognized “Gobas Model,” which has been used at many sites.  
 
The data requirements for FishRand are similar to those required for any bioaccumulation model, 
although more information is required on fish foraging areas and strategies than would otherwise 
be developed. Exposure concentrations in surface sediments rely on the commonly used 
geographical information system (GIS)-based characterizations of site data. All modeling and 
results presented in this report are based on the original version of the FishRand model, which did 
not provide a direct, quantitative linkage to GIS files (e.g., .SHP files), as will be discussed. 
However, since this effort was completed, the model has been updated to provide a direct linkage 
to GIS files. The latest version of the model is available from 
http://el.erdc.usace.army.mil/trophictrace/.  
 
The project team developed the application for total PCBs, two individual PCB congeners, and 
three homologue groups at one site; and DDT, dichlorodiphenyldichloroethylene (DDE), and 
dichlorodiphenyldichloroethane (DDD) at the other site. The spatially-explicit model consistently 
predicts tissue concentrations that closely match both the average and the variability of observed 
data across contaminants and environments. The probabilistic framework allows direct linkages to 
ecological assessments of impacts to fish populations. Because the model explicitly distinguishes 
between “uncertainty” (e.g., lack of knowledge) and “variability” (e.g., population heterogeneity), 
different output statistics are generated depending on whether the results are used to support risk 
assessments for fish consumers (either human or ecological) or direct risks to fish. 
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1.0 INTRODUCTION 

The Department of Defense (DoD) faces legacy contamination at approximately 6,000 nationwide 
sites (Government Accountability Office Report, 2005), many of which contain sediment-
associated organic contaminants likely to bioaccumulate in aquatic food webs leading to the 
potential for human health and ecological impacts through fish consumption. Bioaccumulation 
models quantifying the relationship between sediment exposures and resulting tissue 
concentrations have been in use for many years to support remedial decision-making. However, 
the predictive power of these models remains a concern. Participants at a recent combined Strategic 
Environmental Research and Development Program (SERDP)/Environmental Security 
Technology Certification Program (ESTCP) workshop identified the “evaluation of food web 
models in setting remedial goals and long-term monitoring requirements” as a critical research 
area. This was particularly evident when using these models as the basis for evaluating potential 
risk reductions associated with site-specific management actions (Thompson et al., 2012). It is 
recognized that bioaccumulation represents the exposure pathway of primary concern for many 
sediment-originating contaminants. Predicted aquatic-organism concentrations provide exposure 
estimates for human health and ecological risk assessments, which provide risk-based frameworks 
for back-calculating remedial levels in sediments. Because bioaccumulation models quantify the 
relationship between sediment-exposure concentrations and resulting tissue levels in aquatic 
organisms, these models strengthen the available tools used in the decision-making process at 
sediment sites.  
 
Bioaccumulation modeling approaches range from deriving empirical trophic relationships based 
on site-specific data, to dynamic, mechanistic models. Of the available bioaccumulation models, 
the FishRand (FR) model presented here is the only one that simulates fish foraging behavior over 
GIS-defined spatially-variable sediment and water exposure concentrations using a dynamic (time-
varying) mathematical framework. The project team presented the results of applying the FR 
model under several different exposure scenarios at two separate DoD sites to demonstrate its 
strengths and potential limitations. 

1.1 BACKGROUND 

Bioaccumulation models rely on sediment and water exposure concentrations to drive exposure 
and uptake in aquatic food webs incorporating site-specific data on trophic levels, species foraging 
strategies, and feeding preferences. Frequently, the bioaccumulation models are highly detailed 
and increasingly complex in their representation of the food web (Arnot and Gobas, 2004; 
Windward Environmental, 2010; Lopes et al., 2012; Gobas and Arnot, 2010) and yet in almost all 
cases rely on simple averaging techniques such as surface-area weighted average concentrations 
(SWAC) to describe potential exposures (Gustavson et al., 2011). These averaging techniques 
poorly capture the spatial and temporal variability of the majority of contaminated-sediment sites.  
 
Because bioaccumulation models quantify the relationship between sediment-exposure 
concentrations and subsequent tissue levels in aquatic organisms, these models represent a key 
link in the suite of tools used to support decision-making at sediment sites. Results of 
bioaccumulation modeling are used as inputs to human health and ecological risk assessments. 
They are also used to evaluate how temporal changes in the contaminant concentrations of aquatic 
organisms change over time following remedial actions or other management alternatives at 
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sediment sites. The focus of this effort was to explore improvements in predictive capacity 
associated with use of a spatially-explicit bioaccumulation model. 

1.2 OBJECTIVE OF THE DEMONSTRATION 

To demonstrate the application of a spatially-explicit bioaccumulation model run under three 
scenarios: 
 

1. Deterministic Case: Deterministic sediment and water exposure concentrations defined 
as arithmetic averages, or SWACs, consistent with typical exposure characterization. 

2. Probabilistic Case: Non-spatially explicit but probabilistic sediment and water exposure 
concentrations (e.g., exposure concentrations were defined by distributions rather than 
point estimates, and not by a deterministic SWAC). 

3. Spatially-Explicit Case: Sediment (and water, if appropriate) exposure concentrations 
were spatially defined, and aquatic organism foraging activities were simulated over GIS-
based representations of exposure. 

 
The results of a set of runs were compared to each other and to site-specific data and goodness-of-
fit statistics were developed to evaluate potential improvements in prediction accuracy attributable 
to the way in which exposures were captured when holding all other cross-scenario inputs 
consistent. Bioaccumulation modeling results were used as inputs to risk assessments (see 
Regulatory Drivers, Section 1.3), and were used to predict changes in tissue concentrations 
associated with implementation of remedial or management alternatives. Although predicted tissue 
concentrations serve as inputs to human health and ecological risk assessments, we noted that 
predicted risk was linear with respect to fish tissue concentrations. The key metric to evaluate 
model performance was thus predicted versus observed fish tissue levels. 

1.3 REGULATORY DRIVERS 

During the mid-1980s, risk assessment emerged as the primary tool that supported decision-
making for potential remediation at hazardous waste sites under programs such as the 
Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) 
(commonly referred to as Superfund), and the Resource Compensation and Recovery Act (RCRA) 
(U.S. Environmental Protection Agency [USEPA], 1989; 1992a; 1992b; 1998). The U.S. Army is 
also responsible for environmental management of its properties, including remedial studies of 
contaminated sites. To such an extent that bioaccumulation represents the key pathway of concern 
for sediments contaminated with heavy organics, modeling tools and approaches that efficiently 
predict contaminant exposures in fish tissues, and appropriate inputs to human health and 
ecological risk assessments are both needed. Federal guidance recognizes assessment to 
populations of species, of habitats, and the heterogeneity of contamination (USEPA, 1992a; 1992b; 
1998). An understanding of contaminant fate in the environment is essential in the required 
predictive ecological risk assessment that is specific to published guidance (USEPA, 1998). This 
is consistent with DoD Technical Guidance (Tri-Service Environmental Risk Assessment Work 
Group [TSERAWG], 2000; 2002). For sediment-contaminated sites, tiered approaches that start 
with simple comparisons between sediment concentrations and sediment-based benchmarks are 
used. For example, use of Effects Range-Medium (ERM), and Effects Range-Low (ERL) (Long 
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and Morgan, 1990; O’Connor, 2004). However, ERMs and ERLs do not address potential impacts 
associated with bioaccumulation of contaminants through the food web to aquatic organisms that 
are subsequently consumed by human and ecological receptors. Thus, bioaccumulation models are 
required to predict expected contaminant concentrations in aquatic organisms. 
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2.0 TECHNOLOGY 

This section provides a brief overview of the spatially-explicit approach of FR, including a brief 
description of the mathematical framework and underlying conceptual assumptions. A full 
description of the technology can be found in the accompanying Final Report. (Johnson, 2014) 

2.1 TECHNOLOGY DESCRIPTION 

In areas of localized contamination, exposure of aquatic organisms to varying concentrations of 
sediment and water contaminants, are a function of spatial factors and species biology, including 
foraging strategies, feeding preferences, and habitats. Due to local variability in species behavior 
and contaminant distributions, species with overlapping foraging areas from the same site may 
experience significantly different contaminant exposures as they overlap with preferred foraging 
and migratory areas. Predicted exposure estimates and subsequent human health and ecological 
risk projections typically assume static exposures of receptors to contaminant concentrations that 
are characterized by a descriptive statistic (e.g., a mean or maximum). The level of health 
protection is unknown, and in a dynamic system, results may not represent actual exposures of 
aquatic organisms. Further, uncertainty and variability in underlying input parameters are not 
accounted for in these static exposures.  
 
The FR calculates seasonal, chemical, and species-specific body burdens based on time- and 
spatially-varying sediment and water exposure concentrations. These data are used to calculate 
deterministic toxicity quotients or in refined ecological risk assessment models are used to estimate 
population-level risks for fish, or as inputs to ecological and human health risk assessment models 
for higher-order fish-consuming receptors. Figure 1 depicts a conceptual schematic of the 
relationship across compartments in the FR model. 
 

 
 

Figure 1. Schematic of compartments in the FR model. 
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The FR model assumes that anglers or ecological receptors are sampling (catching) fish from a 
population, and every individually-caught fish is obtained from a larger distributed population. In 
addition to population variability, uncertainty in the distribution of the true population exists. This 
is attributable to uncertainty in the input parameters, which are included in the FR approach. In 
some cases, the literature indicates that specific parameters may contribute to uncertainty or 
variability in the output distribution (von Stackelberg et al., 2002a; Kelly et al., 2007). Hence, the 
FR model separates “uncertain” from “variable” inputs as opposed to explicitly modeling the 
uncertainty in a variable input. For a full description of how these assumptions lead to the 
computed nested Monte-Carlo subroutines, please refer to the Final Report. 
 
FR predicts fish body burdens in aquatic food webs given site-specific exposure conditions. One 
key aspect to this is a complete understanding of the relationship between sediment and water 
concentrations (i.e., to understand how sediment interacts with water and how concentrations in 
either media change over time as a result of this interaction). Although fish are primarily exposed 
to bioaccumulative contaminants through sediment sources, significant dynamics might exist that 
allow sediments to release contaminants. For example, through various flux mechanisms that 
might result from disequilibrium between sediment and water—an important consideration to 
capture with respect to exposure. FR is not a sediment fate and transport model—these issues need 
to be addressed outside the realm of the bioaccumulation model. It is likely that deficiencies 
attributed to the bioaccumulation model actually result from an imperfect understanding of the 
sediment-water interaction and dynamics. 
 
FR allows users to specify probability distributions for model inputs, and users can specify whether 
a parameter contributes predominantly to “uncertainty” or population “variability.” Uncertainty 
and variability should be viewed separately in risk assessment because they have different 
implications to regulators and decision makers (Thompson and Graham, 1996). For example, there 
is “true” uncertainty (e.g., lack of knowledge) in the estimated concentrations of sediment and 
water to which aquatic organisms are exposed. Concurrently, parameters contributing to 
contaminant bioaccumulation display variability. Variability is a population measure, and provides 
a context for a deterministic point estimate (e.g., average or reasonable maximum exposure). 
Variability typically cannot be reduced, only better characterized and understood. In contrast, 
uncertainty represents unknown but often measurable quantities. Often times, uncertainty is 
reduced by obtaining additional measurements of the uncertain quantity. Quantitatively separating 
uncertainty and variability allows an analyst to determine the fractile of the population, for which 
a specified risk occurs, and the uncertainty bounds or confidence interval around that predicted 
risk (von Stackelberg et al., 2002a).  
 
If uncertainty is large relative to variability (i.e., it is the primary contributor to the range of risk 
estimates), and if the differences in cost among management alternatives are high, additional 
collection and evaluation of information is recommended before making management decisions 
for contaminated sediments. Alternatively, including variability in risk estimates allows decision 
makers to quantitatively evaluate the likelihood of risks above and below selected reference values 
or conditions (e.g., average risks as compared to 95th percentile risks). 
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2.2 TECHNOLOGY DEVELOPMENT 

The FR model is a spatially-explicit aquatic bioaccumulation model that was originally developed 
to support decision-making at the Hudson River Superfund Site (assuming single, non-spatially 
explicit reach-wide exposure concentrations in sediment and water). It was used to compare 
remedial alternatives (and no action) on the basis of predicted fish tissue concentrations. The 
mathematical engine of the model is based on the work of Dr. Frank Gobas (Gobas, 1993), which 
is run in dynamic time-varying mode and augmented to allow all inputs to be defined by 
distributions or ranges and not by point estimates, including the spatially-explicit foraging module 
to better characterize exposures for migratory and wide-ranging fish species.  
 
This section describes the development of the FR Spatially-Explicit Model. Many original 
publications and presentations provide details of the development and application of this model. 
For example: 
 

 von Stackelberg, K., 2013. Platform presentation on spatially-explicit bioaccumulation 
modeling at the SedNet conference in Lisbon, Portugal. http://www.sednet.org/2013-
presentations.htm. 

 von Stackelberg, K., 2013. Decision analytic strategies for integrating ecosystem services 
and risk assessment. Integrated Environmental Assessment and Management 9(2):260-
268. 

 von Stackelberg, K., 2012. The FishRand spatially-explicit bioaccumulation model. 
Platform presentation at the North America SETAC Annual Meeting, November 2012, 
Long Beach, CA. 

 von Stackelberg, K., 2012. Incorporating fish behavior in bioaccumulation modeling. 
Invited platform presentation at the North America SETAC Annual Meeting, November 
2012, Long Beach, CA. 

 von Stackelberg, K., 2012. Bioaccumulation and Potential Risk from Sediment-
Associated Contaminants in Dredged Materials. Platform presentation at Dredging 2012, 
Dredging in the 21st Century, San Diego, CA. 

 von Stackelberg, K., M. Johnson, and W.T. Wickwire, 2012. Spatially-Explicit Exposure 
and Ecological Risk Modeling Tools: SEEM and FISHRAND. Platform Presentation at 
the SETAC Europe Annual Meeting, May 2012, Berlin, Germany. 

 von Stackelberg, K., 2010. Spatially-Explicit Bioaccumulation Modeling. Presented at 
the Society for Environmental Toxicology and Chemistry Annual Meeting, November 
2010, Portland, OR. 

 Sunderland, E.S., C.D. Knightes, K. von Stackelberg, and N.A. Stiber, 2010. 
Environmental fate and bioaccumulation modeling at the U.S. Environmental Protection 
Agency: Applications to inform decision making. In Modelling of Pollutants in Complex 
Environmental Systems Volume II. United Kingdom: ILM Publications.  

 Johnson, M.S., M. Korcz, K. von Stackelberg, and B. Hope, 2009. Spatial analytical 
techniques for risk based decision support systems. In Decision Support Systems for Risk 
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Based Management of Contaminated Sites. Marcomini, A., Suter, G.W. and A. Critto, 
Eds. Springer-Verlag. 

 von Stackelberg, K.,W.T. Wickwire, and D. Burmistrov, 2005. Spatially-explicit 
exposure modeling tools for use in human health and ecological risk assessment: SEEM 
and FISHRAND-Migration. pp. 279–288. In: Environmental Exposure and Health, 2005. 
Aral MM, Brebbia CA, Maslia ML and Sinks T (eds.), United Kingdom: WIT Press. 

 von Stackelberg, K., D. Burmistrov, I. Linkov, J. Cura, and T.S. Bridges, 2002. The use 
of spatial modeling in an aquatic food web to estimate exposure and risk. Sci Total 
Environ 288(1-2):97-110. 

 Linkov, I., D. Burmistrov, J. Cura, and T.S. Bridges, 2002. Risk-based management of 
contaminated sediments: consideration of spatial and temporal patterns in exposure 
modeling. Environ Sci Technol 36(2):238-246. 

 von Stackelberg, K., D. Vorhees, I. Linkov, D. Burmistrov, and T. Bridges, 2002. 
Importance of uncertainty and variability to predicted risks from trophic transfer of 
contaminants in dredged sediments. Risk Analysis 22(3):499-512. 

 USEPA, 2000. Phase 2 Revised Baseline Modeling Report for the Hudson River 
Remedial Investigation/Feasibility Study. Prepared by Limno-Tech, Inc., Menzie-Cura 
and Associates, Inc., and TAMS Consultants, Inc. for USEPA. December, 2000. 
www.epa.gov/hudson. 

 
The model has been applied in both the non- and spatially-explicit modes for several different sites 
on behalf of the U.S. Army Corps of Engineers (USACE). It has also been applied under a Small 
Business Innovation Research Grant as part of a larger decision analytic framework (von 
Stackelberg, 2013). Technology development for the FR model has focused on improving how 
exposure is defined, both in terms of spatially-explicit exposure concentrations and simulating fish 
foraging behavior relative to those spatially-defined exposures. Decision-makers cannot control 
the ways in which fish behavior and physiology interact with exposure concentrations. However, 
decision-makers can control spatial patterns of contaminant concentrations. The basic uptake 
equations are kept as conservative as possible, while adding greater realism to the ways in which 
exposure influences predicted uptake. 

2.3 ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY 

This technology provides a number of analytical advantages. While limitations exist, appreciation 
and comprehension of these limitations within the context of each user’s specific modeling goals 
should permit uncomplicated management of the technology. 
 
The advantages of this technology include: 
 

 Avoidance from selecting the site or contamination area as the only spatial context; 

 Direct simulation of fish foraging strategies over GIS-defined, spatially-explicit sediment 
and water exposure fields; 

 Easier description and translation of model mechanics to stakeholders; 
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 Better analysis of population risk; 

 Accessible design and user-determined complexity encourages use of technology; 

 Provision of relative indicators of sensitivity, and assistance in the understanding of 
factors that contribute most to exposure, and hence risk; 

 Provision of quantitative estimates bounding uncertainty and variability in exposure/risk 
estimates; and 

 Provision of more usefully formatted fish body burden estimates (probability 
distributions) that link to other analyses (e.g., risk assessments, economic forecasts, injury 
determinations, etc.). 

 
The limitations of this technology include: 
 

 Simplified bioaccumulation options/assumptions (true of any bioaccumulation model); 

 Subjectivity of habitat suitability as defined by attraction factors;  

 Lack of direct link to GIS output (e.g., .SHP files) since users much manually draw the 
exposure fields; 

 Unaccounted dynamic habitats and resultant changes in wildlife usage; 

 Simplified foraging strategies (lacking important considerations such as competition for 
limited resources, bioenergetics, and fluctuating food availability); 

 Lack of quantifiable uncertainty in the variability, e.g., a second-order probabilistic 
analysis in which a variability distribution (mean and standard deviation) are also 
specified as distributions. For example, a distribution for lipid content specified by a 
mean and standard deviation, each themselves consisting of means and standard 
deviations; and  

 Increased model complexity linked to increasing calibration challenges.  
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3.0 PERFORMANCE OBJECTIVES 

The objectives for this project are provided in Table 1 below. 
 

Table 1. Performance objectives. 
 

Performance Objective Data Requirements Success Criteria Results 
Quantitative Performance Objectives 
Verify FR results for a 
number of fish species 
across two sites and two 
different contaminants 

See Table 2-1 in Final 
Report 

Comparison of FR predicted fish 
body burdens with analytical 
results from site; an improvement 
relative to non-spatially explicit 
results and lowest RPD 

RPDs for spatially-
explicit case 
consistently 
improved over 
deterministic or 
probabilistic 

Improve and refine FR Feedback from peer 
reviewers and 
workshop panelists 

Favorable feedback regarding 
refinements 

The only direct 
recommendation 
for FR was to 
consider inclusion 
of a direct linkage 
to GIS 

Qualitative Performance Objectives 
Ease of use Feedback on usability 

of the model and time 
required  

Risk assessors and non-risk 
assessors will be able to learn to 
apply FR, practical examples of 
use 

Held a hands-on 
workshop with all 
users successfully 
using the model 
with their own 
datasets 

Develop a publication from 
the workshop highlighting 
current thinking on spatial 
models in risk assessment – 
applications, benefits versus 
risks of using, 
improvements 

Preparation of the final 
publication using 
notes/feedback from 
workshop participants 

Acceptance for publication in a 
peer reviewed journal 

A publication is 
currently in 
preparation 

Development of a user 
guide 

Information on how to 
use and set up models 
to include relative 
comparisons of 
options 

Feedback from users at training 
sessions 

Held a hands-on 
workshop with all 
users successfully 
using the model 
with their own 
datasets 

Final Technical Reports  Results of field 
validation 

If performance criteria are met Completed 

Results and final 
conclusions/ 
recommendations 

3.1 VERIFY FISHRAND RESULTS 

This objective involves comparing model predictions to observed data to evaluate whether there 
is an improvement in prediction accuracy when exposures are better characterized. As described 
previously, the approach was to apply the bioaccumulation model under three scenarios with the 
way in which exposure was characterized as the only difference in assumptions across scenarios. 
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Background information for each of the sites is provided in Section 4.0, model inputs in Section 
5.0, and detailed performance results in Section 6.0. 

3.2 IMPROVE AND REFINE FISHRAND 

Workshops were conducted to explore broader value of spatial models, and application of the 
models by the scientific community and regulators. Model improvements were discussed, and 
addressed four key questions:  
 

1. What are spatially-explicit exposure models and why are they valuable?  
2. How have the models been applied?  
3. Are there regulatory impediments to their use?  
4. Are there limitations to the models and can they be improved? 

 
Workshop participants were asked to develop a list of considerations for model improvement and 
functionality. The only recommendation specific to FR was to provide a direct link to GIS output 
files (e.g., “.shp” files) rather than requiring users to redraw exposure concentrations. As the model 
was developed when GIS use was less common and expensive for routine use, the direct link was 
not initially included. Resource constraints combined with the software development platform of 
the original FR model precluded adding in the direct linkage to GIS output at the time these 
analyses were developed. However, the version of the model publicly available through USACE 
does include the direct GIS linkage as FR has now been reprogrammed in a Java-based 
programming environment.  
 
Workshop participants focused their recommendations on how to increase use of spatially-explicit 
models to support regulatory decision-making rather than on technical aspects of the model itself. 
These recommendations included identifying factors impeding regular use of spatially-explicit 
models generally, such as few precedents for their use, misguided perceptions as to their purpose, 
traditional regulatory practices, when such models are considered during the site assessment 
process, and specific technical concerns, including the quality of input data.  

3.3 EASE OF USE 

A 2-day workshop held in April 2010 with attendees from DoD, industry, and government allowed 
participants to use the model based on both the demonstration datasets contained within the model 
and their own data. Participants were invited to provide comments, which focused on strategies 
for increasing general use of spatially-explicit models (Wickwire et al., 2011).  

3.4 PUBLICATION DEVELOPMENT 

A publication for submission to the peer-reviewed literature is in preparation. 
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4.0 DESCRIPTION OF THE MODELING SITES 

4.1 U.S. ARMY NATICK SOLDIERS SYSTEMS CENTER (NSSC) SITE 
DESCRIPTION 

The U.S. Army Natick Soldiers Systems Center (NSSC) site is located approximately 17 miles 
west-southwest of Boston in the town of Natick, Middlesex County, Massachusetts. The facility 
occupies a small peninsula extending from the eastern shoreline of the South Pond of Lake 
Cochituate and encompasses approximately 74 acres. NSSC has been a permanent U.S. Army 
installation since October 1954. The installation’s mission includes research and development 
activities in food engineering, food science, clothing, equipment, materials engineering, and 
aeronautical engineering. 
 
NSSC was listed as a Superfund site based on contamination in groundwater and was added to the 
USEPA National Priorities List (NPL) in May 1994. The groundwater is undergoing treatment and 
removal, and other on-site investigations are ongoing, pursuant to CERCLA and the National Oil 
and Hazardous Substances Pollution Contingency Plan (NCP). The Comprehensive 
Environmental Response, Compensation, and Liability Information System (CERCLIS) 
identification number for the Site is MA1210020631. The U.S. Department of the Army is the lead 
agency responsible for environmental cleanup at this site. Primary documents that provide 
information for this site include Inner City Fund (ICF) International (2008 and 2009). Data were 
not provided electronically and were extracted from hard copy files. All the original data as 
presented in source documents for both NSCC and Tyndall Air Force Base (AFB) are provided in 
the “Final Report.”  
 
In addition, full details on site location and history, site geology and hydrogeology, and 
contaminant distribution are described in the “Final Report.” 

4.2 TYNDALL AFB 

The primary document providing the information for modeling is the Draft Feasibility Study 
(Weston Solutions, Inc., 2009). Sediment and fish data, as well as model inputs and outputs from 
the FR model are provided in the Final Report. 
 
In addition, full details on site location and history, site geology and hydrogeology, and 
contaminant distribution are described in the “Final Report.” 
 
 
 



 

 

This page left blank intentionally.



 

15 

5.0 TEST DESIGN: MODEL APPLICATION 

Parameterization of the FR model evaluation relied exclusively on existing data, typical of what 
would be provided during a Remedial Investigation/Feasibility Study (RI/FS) conducted at 
Superfund sites or other types of site characterization. Both demonstration sites had FSs available 
as referenced below, and these provided the spatially-explicit sediment and water exposure 
concentrations, as well as the fish concentrations used for comparing predicted model outputs. In 
addition, fish lipid content and total organic carbon were based on site-specific data. Benthic and 
pelagic invertebrate lipid content and Log Kow were obtained from the literature as neither of these 
sites conducted invertebrate sampling programs. 
 
The modeling application presented here relied on publicly available data from the RI/FS process, 
and as such, there were existing conceptual models of the aquatic food web. This is a necessary 
step that is not unique to an application of the FR model and would be required irrespective of the 
chosen modeling approach. The conceptual model identifies the linkages across components in the 
food web in a general sense, e.g., the specific fish species and their foraging preferences expressed 
as compartments across trophic levels. In general, the food web should capture all relevant 
exposure pathways, but not be so detailed as to be redundant. For example, it is generally not 
necessary to identify individual benthic invertebrate species unless there are clear differences in 
parameters that would influence exposure (e.g., lipid content) in the context of fish feeding 
preferences. An oligochaete would differ from a clam, but would not differ from other soft-bodied, 
burrowing organisms.  
 
The conceptual model of bioaccumulation in the aquatic food web must link to the larger 
conceptual model of site exposures and interactions, and these are developed together with the risk 
assessors and other analysts working at the site. The application of the bioaccumulation model 
relies on data obtained from the sampling program and the approach must be tailored to identify 
the species relevant to decision-making at the site (e.g., fish consumption pathway). Typical 
contaminated sediment sites rely on a suite of models and analyses to support decision making. 
USEPA (2009) provides a primer for those not experienced in the development and use of models 
at sediment sites. It explains the objectives of modeling; how models are developed and applied; 
how they are used to predict the effectiveness of management alternatives; and, finally, an 
approach for addressing uncertainties in model predictions.  

5.1 MODEL INPUTS 

5.1.1 NSSC SITE MODEL INPUTS 

All model inputs were identical across the three scenarios except for the way in which sediment 
exposure concentrations were defined. Please refer to the Final Report (Johnson, 2014) for details.  

5.1.2 TYNDALL AFB MODEL INPUTS 

Please refer to the Final Report (Johnson, 2014) in which a summary of the input data in common 
to all scenarios and locations, except for feeding preferences, is provided. 
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6.0 PERFORMANCE ASSESSMENT 

This section provides a summary of the performance assessment for both sites. Because a number 
of the performance objectives relate equally to both sites (e.g., are fundamental to the FR model), 
these are not separately described for each model application, but are combined. Model 
performance at each of the sites is described separately. 

6.1 NSSC SITE PERFORMANCE ASSESSMENT 

The key performance criterion is predicted model results versus observed tissue concentrations 
under each of the three scenarios. 

6.1.1 Predicted Versus Observed Model Results 

Table 2 provides a summary of predicted model outputs under the three scenarios as compared to 
fish data for the NSSC site. Figure 2 provides these same data graphically. 
 
Table 2. Results of predicted versus observed and RPD across scenarios for the NSSC site. 
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Yellow Perch 
PCB-052 0.016 0.037 0.155 0.015 78% 162% -7%
PCB-153 0.289 0.156 0.191 0.281 -60% -41% -3%
Cl-4 Tetrachlorobiphenyls 0.124 0.122 0.351 0.122 -1% 96% -1%
Cl-5 Pentachlorobiphenyls 0.247 0.328 0.53 0.323 28% 73% 27%
Cl-6 Hexachlorobiphenyls 0.938 0.745 0.903 1.130 -23% -4% 19%
Total PCBs 2.266 1.56 2.12 2.260 -37% -7% 0%
Bluegill 
PCB-052 0.008 0.016 0.079 0.006 69% 164% -21%
PCB-153 0.072 0.049 0.043 0.086 -39% -51% 17%
Cl-4 Tetrachlorobiphenyls 0.045 0.05 0.171 0.049 10% 116% 8%
Cl-5 Pentachlorobiphenyls 0.087 0.111 0.192 0.108 24% 75% 22%
Cl-6 Hexachlorobiphenyls 0.240 0.239 0.283 0.362 0% 16% 41%
Total PCBs 0.582 0.623 0.79 0.848 7% 30% 37%
Largemouth Bass 
PCB-052 0.023 0.054 0.231 0.021 81% 164% -8%
PCB-153 0.348 0.161 0.198 0.276 -74% -55% -23%
Cl-4 Tetrachlorobiphenyls 0.149 0.175 0.502 0.146 16% 109% -2%
Cl-5 Pentachlorobiphenyls 0.321 0.379 0.622 0.331 16% 64% 3%
Cl-6 Hexachlorobiphenyls 1.154 0.81 1.000 1.160 -35% -14% 1%
Total PCBs 2.767 1.76 2.420 2.410 -44% -13% -14%

RPD = relative percent difference calculated as (predicted-observed)/average (predicted-observed) 
green values indicate lowest RPD; blue values indicate within 50% of observed 
PCB = polychlorinated biphenyls  mg/kg = milligrams per kilogram  ww = wet weight 
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Figure 2. Results of predicted versus observed across scenarios for the NSSC site. 
 
Figure 2 and Table 2 provide the results of the model to data comparison for three of the four 
modeled species (no data were available for pumpkinseed), including largemouth bass, the 
predator species of most interest from a human health perspective: yellow perch and bluegill. The 
lowest RPDs across scenarios are highlighted in green (Table 2), and comparisons within 50%, 
which indicate highly satisfactory model performance are shown in blue.  

0.0 1.0 2.0 3.0 4.0 5.0

PCB‐052

PCB‐153

Cl‐4 Tetrachlorobiphenyls

Cl‐5 Pentachlorobiphenyls

Cl‐6 Hexachlorobiphenyls

Total PCBs

mean wet weight concentration (bar) and standard deviation (line and whisker)

Largemouth Bass (mg/kg ww)

Deterministic

Probabilistic

Spatial

Data

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

PCB‐052

PCB‐153

Cl‐4 Tetrachlorobiphenyls

Cl‐5 Pentachlorobiphenyls

Cl‐6 Hexachlorobiphenyls

Total PCBs

mean wet weight concentration (bar) and standard deviation (line and whisker)

Yellow Perch (mg/kg ww)

Deterministic

Probabilistic

Spatial

Data

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

PCB‐052

PCB‐153

Cl‐4 Tetrachlorobiphenyls

Cl‐5 Pentachlorobiphenyls

Cl‐6 Hexachlorobiphenyls

Total PCBs

mean wet weight concentration (bar) and standard deviation (line and whisker)

Bluegill (mg/kg ww)

Deterministic

Probabilistic

Spatial

Data



 

19 

Taken together, Table 2 and Figure 2 show that across species and individual contaminant types, 
the spatially-explicit model shows the most consistent and lowest RPDs across individual 
congeners, homolog groups, and total PCBs. However, the absolute difference across scenarios 
and contaminants is insignificant, save for the Deterministic Case, which consistently shows the 
worst performance relative to either the Probabilistic or Spatially-Explicit Cases. Nonetheless, the 
spatially-explicit model shows either blue or green RPDs across all contaminants and species, in 
contrast to either of the other approaches, suggesting the spatially-explicit exposure 
characterization better captures the relationship between sediment and water exposures, fish 
foraging strategies, and PCB uptake. Figure 2 additionally shows the comparison of standard 
deviations across the scenarios, and again, the spatially-explicit case performs better with respect 
to capturing the variance in the data in addition to capturing the central tendency. This can be 
important for subsequent ecological risk calculations that may require exposure distributions 
across the population rather than deterministic estimates of tissue concentrations, for example, 
using joint probability curves or other probabilistic risk methods. 

6.2 TYNDALL AFB PERFORMANCE ASSESSMENT 

The key performance criterion is predicted model results versus observed tissue concentrations 
under each of the three scenarios. 

6.2.1 Predicted Versus Observed Model Results 

Table 3 summarizes the predicted model output under the three scenarios as compared to fish data 
for the Tyndall Site. The red values in the table represent the lowest RPD across scenarios. RPDs 
between 0% and 50% demonstrate excellent model performance and are highlighted in blue in 
Table 3. 
 

Table 3. Results of predicted versus observed and RPD across scenarios for the 
Tyndall AFB site. 
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Pinfish Area 1 
DDD 0.058 0.040 0.098 0.059 -37% 51% 1%
DDE 0.040 0.018 0.049 0.040 -77% 19% -1%
DDT 0.017 0.023 0.042 0.050 27% 83% 96%
DDx 0.116 0.054 0.107 0.142 -73% -8% 20%
Killifish Area 1 
DDD 0.149 0.105 0.258 0.147 -35% 53% -2%
DDE 0.190 0.032 0.088 0.065 -142% -73% -98%
DDT 0.014 0.064 0.116 0.132 127% 156% 161%
DDx 0.353 0.138 0.275 0.301 -88% -25% -16%
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Table 3. Results of predicted versus observed and relative percent difference across 
scenarios for the Tyndall AFB site (continued). 
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Killifish Area 2 
DDD 0.304 0.752 1.890 0.474 85% 145% 44%
DDE 0.253 0.338 0.751 0.222 29% 99% -13%
DDT 0.175 3.250 10.500 0.138 180% 193% -23%
DDx 0.731 3.640 9.390 0.570 133% 171% -25%
Killifish Areas 1 and 2 
DDD 0.248 0.752 1.890 0.474 101% 154% 63%
DDE 0.304 0.338 0.751 0.222 11% 85% -31%
DDT 0.053 3.250 10.500 0.138 194% 198% 89%
DDx 0.605 3.640 9.390 0.570 143% 176% -6%
Pinfish Area 5 
DDD 0.013 0.007 0.016 0.007 -59% 21% -59%
DDE 0.014 0.018 0.031 0.173 27% 78% 171%
DDT 0.004 0.023 0.100 0.023 140% 184% 140%
DDx 0.031 0.033 0.155 0.034 8% 134% 10%
Killifish Area 5 
DDD 0.028 0.020 0.050 0.027 -33% 57% -3%
DDE 0.053 0.032 0.055 0.226 -50% 3% 124%
DDT 0.007 0.071 0.323 0.069 163% 191% 162%
DDx 0.088 0.105 0.031 0.088 17% -96% 0%

RPD = relative percent difference calculated as (predicted-observed)/average (predicted-observed) 
green values indicate lowest RPD; blue values indicate within 50% of observed 
DDD = dichlorodiphenyldichloroethane  DDE = dichlorodiphenyldichloroethylene DDT = dichlorodiphenyltrichloroethane 

 
In general, Table 3 shows that the majority of the blue and green comparisons are for the Spatially-
Explicit Case, which indicates the most consistent predictions relative to observed data. For risk 
assessment purposes, particularly human health risks, results for DDD/DDE/DDT are typically 
combined and quantified as total DDx. In this context, the Spatially-Explicit Case performs 
optimally, within 20% across all sites and species, and represents excellent performance.  
 
Unfortunately, the data available for this site are single samples of composite fish, precluding a 
comparison of variance between predicted and observed. However, graphical comparisons of 
predicted versus observed are provided in Figure 3. 
 



 

21 

 
 

Figure 3. Results of predicted versus observed across scenarios for the Tyndall AFB site. 
 
As shown in Table 3 and Figure 3, the probabilistic model performs particularly poorly for Areas 
1 and 2 combined, largely a function of the high standard deviation in sediment concentrations 
attributable to the significant heterogeneity in concentrations across both areas. The spatially-
explicit model tends to perform best, particularly in areas of spatial heterogeneity such as Area 1 
and Areas 1 and 2 combined. By contrast, in Area 5, the advantages of the spatially-explicit 
approach are less evident. At sites with less spatial heterogeneity, (e.g., Area 5), a deterministic 
approach functions nearly as well. 
 
Another observation from Table 3 and Figure 3 is that results for DDE are often under-predicted 
while results for DDT are over-predicted. One explanation for this is that DDE is a known 
metabolite of DDT in both fish and mammals. While the model allows for a metabolic term, data 
are insufficient to specify this term. Although it is possible to use the metabolic rate constant 
(currently set to zero, e.g., no metabolism) as a calibration parameter, this was not done for the 
current application. Further evidence for DDT metabolism is demonstrated by comparing the 
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proportion of each isomer to total DDx across sediment and fish (Figure 4). The Y-axis shows the 
proportion of DDD, DDE and DDT in total DDx for fish and sediment across Areas. The red bar 
denotes the percentage of total DDx represented by DDD, green is DDE and blue is DDT. The 
bars are mean percentages, with error bars described as one standard error from the mean. 
 

 
 

Figure 4. Data-based proportion of DDD, DDE and DDT in total DDx in fish and sediment 
by area (1, 2, and 5) at the Tyndall AFB site. 

 
This figure shows that while the proportion of DDD (red bars) is similar across fish and sediment 
samples within an Area, the proportions of DDE (green bars) and DDT (blue bars) across fish and 
sediment samples are essentially reversed. For example, the proportion of DDE in total DDx in 
fish from Area 1 is approximately 0.45 (DDE comprises 45% of total DDx), while it is closer to 
0.1 (DDE comprises only 10% of total DDx) for sediment, suggesting either enrichment relative 
to sediment or metabolism of DDT to DDE within fish. Similarly, the blue bars, which represent 
the proportion of DDT in total DDx, differ significantly between fish and sediment within an Area. 
This figure also highlights differences across Areas at the Tyndall Site, particularly for sediment. 
Areas 1 and 2 show very similar patterns, while Area 5 is very different. Proportions for fish are 
more similar, but do show some differences, particularly in enrichment of DDE in Area 5 (greater 
than 50%) relative to Areas 1 and 2 (approximately 45%). These differences have implications for 
the modeling, since the same Log Kow is used for a contaminant across areas (e.g., DDE has the 
same Log Kow regardless of area).  
 
In its simplest terms, Log Kow represents the relationship between sediment organic carbon and 
lipid in organisms, so that if the proportion of DDE changes across areas, the model has no way to 
capture that apparent difference in the relationship, given that feeding preferences, metabolic rates, 
etc., are also the same across areas. 

6.3 DISCUSSION OF RESULTS 

The procedure to develop these two site-specific applications involved using data typically 
available from an RI/FS or similar process. The approach was to parameterize the site-specific 
food webs using existing data augmented with information from the literature. Once these inputs 
were determined, they were consistently applied across scenarios, which differed only in their 
characterization of exposure concentrations. This included a Deterministic Case (deterministic 
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SWAC, in both cases characterized by an arithmetic average); a Probabilistic Case (probabilistic 
sediment exposure concentrations but not spatially-explicit); and, a Spatially-Explicit Case. Both 
sites differed in their physical characteristics (NSSC is a freshwater lake while Tyndall AFB is an 
estuarine and brackish coastal system), and in the contaminants considered (PCBs and individual 
PCB congeners at the NSSC site; DDD/DDE/DDT at Tyndall AFB). Additionally, the spatial 
characteristics of exposure varied across scenarios, particularly at the Tyndall site. Area 5 is a 
relatively homogeneous area, with lower sediment concentrations, and essentially one single hot 
spot (SED175). Area 1 and Areas 1 and 2 together are highly heterogeneous, with sediment 
concentrations ranging from non-detectable to 100s of parts per million. The utility of the FR 
model in cases of heterogeneous contamination is evident in the results, which demonstrate the 
least value-added for Area 5 relative to other areas of the Tyndall Site and as compared to the 
NSSC Site. However, another factor to consider in the assessment for the Tyndall Site is that 
pinfish are largely (90%) tied to water rather than to sediment. Water concentrations were specified 
as point estimates across all scenarios (nominally set at approximately the detection level or less). 
 
Figures 5 and 6 provide another graphical view of the comparison between model predictions and 
site data for the Tyndall Site and NSSC Site, respectively. Note that Figure 5 is on a log scale for 
ease of comparison since several of the model predictions were so much higher (e.g., for the 
Deterministic and Probabilistic scenarios) than observed data. The values shown in Figure 6 are 
as follows: all data points in the dataset are presented. For model output across scenarios, the mean, 
5th percentile and 95th percentiles are presented. This figure shows that typically, the predicted 
5th to 95th percentile ranges from the Spatially-Explicit scenario largely capture the range of 
observed data, and in all cases, compare most favorably relative to either the Deterministic or 
Probabilistic scenarios. 
 

 
Figure 5. Comparison of model predictions to site data for the Tyndall AFB site. 

(Note the log scale for ease of comparison) 
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Figure 6. Comparison of model predictions to site data for the NSSC site. 
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6.3.1 Model Calibration and Verification 

In general, site-specific application of a model requires calibration and verification (USEPA, 2005; 
2009). Models are based on a combination of data combined with a scientific understanding of 
physical and chemical processes. Most of the equations in a model include numerical coefficients. 
To the extent that site data are available, some of the coefficients are based on the fit of the 
equations to data, and others are taken to be universal constants based on laboratory studies (e.g., 
growth rate in fish). Where site-specific data are limited, coefficients may be values from scientific 
literature. For example, the modeling framework presented here is based on the well-established 
mathematical framework developed by Gobas (1993) and further refined by Arnot and Gobas 
(2004). Calibration of a model is the process of adjusting its coefficients to attain optimal 
agreement between predicted values and actual site data. Most commonly, model calibration 
consists of fine-tuning the model to provide the best fit to site data. The model is then verified by 
running the calibrated model without adjusting any inputs or adjusted coefficients to an 
independent data set, either using data from a different time period or geographic location (within 
the same site), or by excluding a portion of the data set to be used to compare with the results. 
Calculated and actual values are compared, and if an acceptable level of agreement is achieved, 
the model is considered verified. If not, then further analysis of the model is performed, leading to 
refinements that should improve the accuracy of the model. 
 
For both sites presented here, the initial model parameterization led to an acceptable comparison 
between predicted and observed tissue concentrations without a formal calibration. However, this 
does not necessarily represent a typical application; particularly for larger, more complex sediment 
sites for which calibration is usually required (Gustavson et al., 2011). Oftentimes, this is 
attributable to the availability of larger datasets, particularly those representing more than one 
point in time. In both the applications presented here, data were only available for one sampling 
time, thus, it is not possible to evaluate model performance over time, which would be an important 
criterion at sites where greater temporal resolution in data are available, and for potential model 
deficiencies where calibration could be more evident. Site-specific model calibration focuses on 
adjustments to inputs that are potentially uncertain and for which the bounds on the data are 
generally wide.  
 
An exhaustive discussion on model calibration and verification is beyond the scope of this 
document. However, much is known about sensitivity in modeling parameters for bioaccumulation 
models. For example, see von Stackelberg et al., 2002a; Gustavson et al., 2011; Barber, 2008; 
Burkhard, 1998; Ianuzzi et al., 1996; Imhoff et al., 2004), and site-specific model applications 
(most sites make their modeling documents publicly available, e.g., Hudson River, Duwamish, 
Portland Harbor, etc.). In general, bioaccumulation models are particularly sensitive to changes in 
Log Kow, lipid content, total organic carbon, assimilation efficiency, growth rate, and feeding 
preferences, although the exact order of sensitivity will vary according to site-specific 
characteristics and data. Specific guidance on model calibration is given in USEPA (2005) and 
associated references. 

6.3.2 Implications for Risk Management 

Both of these sites are not particularly highly contaminated, which to some extent limits the utility 
of a more complex spatially-explicit model. By and large, for both sites, the deterministic model 
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performs reasonably well enough to support simplistic predictions of average fish tissue 
concentrations. However, the site-wide average total PCB sediment concentration at NSSC (1.4 
mg/kg) is well within cleanup levels and remedial objectives derived at other sites (see for 
example, a compilation of remedial objectives assembled by the Interstate Technology Regulatory 
Council at http://www.itrcweb.org/contseds_remedy-selection/Default.htm#AppendixA/ 
1AppendixACaseStudies.htm%3FTocPath%3DAppendix%2520A.%2520Case%2520Studies%7
C_____0. Also, the Sediment Management Workgroup hosts a Major Contaminated Sediment 
Sites Database at http://www.smwg.org/MCSS_Database/MCSS_Database_ 
Docs.html); similarly, no cleanup has been proposed at the Tyndall Site on the basis of 
contaminants in fish or fish consumption. This presents a challenge with respect to demonstrating 
the clear benefits of a spatially-explicit approach, in that both of these sites will not require 
remedial activities based on fish consumption as an exposure pathway.  
 
Nonetheless, irrespective of absolute concentrations, it is straightforward to demonstrate that an 
evaluation of remedial alternatives is facilitated through use of the spatially-explicit approach. In 
the deterministic case, implementation of a remedial alternative will require deriving a new site-
wide average concentration, while in the spatially-explicit case, it is possible to more realistically 
simulate the impact of specific actions, such as removing hot spot areas or all areas above a certain 
threshold. But in order to use the model in this way, it is necessary to first demonstrate confidence 
in the predictions. At the NSSC site, the FR model consistently predicted tissue concentrations 
within 50% across all PCB congeners, homologs, and total PCBs for largemouth bass, a top-level 
predator fish that would be the focus of decision making. The deterministic model was less 
consistent and did not perform as well on an individual congener basis, raising concerns about how 
well the model is really capturing exposures.  
 
By definition, developing and evaluating remedial alternatives is a spatially-explicit process. 
Certain areas may be targeted for removal actions, or other management options such as capping. 
All of this spatial information will be lost when using deterministic approaches that rely on single, 
site-wide estimates of exposures. 
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7.0 COST ASSESSMENT 

This section describes the costs associated with parameterizing and running the FR model. The 
cost assessment does not include costs associated with collecting the data, as these are assumed to 
occur regardless of whether the FR model is applied or not. In addition, the costs associated with 
developing GIS-based graphics of site concentrations are not included, as these would likely be 
generated whether or not a bioaccumulation model was being run. Therefore, only the costs 
associated with parameterizing and running the model are presented. 

7.1 COST MODEL 

The key costs associated with application of the model include creating the FR input files. This 
involves obtaining the input data through a combination of site-specific data already available 
along with literature reviews. Table 4 provides a summary of these costs described in greater detail 
in the following subsections.  
 

Table 4. Cost Model for an application of the FR spatially-explicit model. 
 

Cost Element 
Data Tracked During the 

Demonstration Costs 
Baseline site 
characterization – 
use of existing GIS 
data 

 Personnel required and associated 
labor 

 Assumes GIS-based site 
characterization already exists 

 Requires modeler to set up FR 
spatial files 

 Complexity of spatial 
characterization will increase costs 

Modeler will typically spend 2 
weeks organizing the spatially-
explicit inputs, and total organic 
carbon, temperature etc. Assumes 
80 hours @ $80/hour. A 
deterministic model, all things 
equal, would require at least 60 
hours. 

$6,400 

Food web 
parameterization 

Unit: $ per species 
 Labor per species in the food web; 

assumes literature review combined 
with site-specific data 

Modeler or junior analyst will 
typically spend 1 week per 
species. Generally a minimum of 
three fish species. This effort 
would be required for a 
deterministic model. 

$10, 000 

Computer run-
time 

 Time required per run  Not a direct cost 15 min – 1 
hour 

Calibration and 
verification 

 Personnel time  Most difficult to predict and 
variable cost 

$1,500 - 
$8,000 

Post-processing Unit: $ per workbook 
 Macros can be written to facilitate 

Excel-based workbook linkages 

Modeler or analyst will typically 
spend 1 day per run (assumes five 
chemicals, one site, five species) 

$640 

7.2 COST DRIVERS 

Costs for developing input files for use of FR depend on the complexity of the application (e.g., 
complexity of the food web being modeled), and data availability (e.g., site-specific versus 
literature-based). The cost evaluation assumes that a conceptual model of aquatic food web 
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exposures already exists as was the case for the two demonstration sites here. Cost estimates 
assume that the bioaccumulation model is being developed in conjunction with a suite of other site 
assessment tools and that appropriate data are already being collected as part of a larger site 
characterization process, such as an RI/FS or similar framework. 
 
The least predictable and potentially most significant cost driver in any modeling application is 
the calibration and verification process. Different aquatic food webs might exist at complex 
sediment sites with different linked habitat areas (e.g., freshwater, estuarine, and marine). In 
addition, differences in population characteristics across locations might exist (e.g., specific 
species, feeding preferences, growth rates, etc.). Although no explicit calibration was required for 
the two demonstration sites presented herein, it may not represent a typical application. For 
example, development of the bioaccumulation model for the Hudson River Superfund Site 
(www.epa.gov/hudson) required extensive calibration, and that process resulted in some 40% of 
overall costs associated with bioaccumulation model development. This is an example of a site 
with over 20 years’ worth of fish tissue data, and measured sediment and water exposure 
concentrations for only a few of those years. 

7.3 COST ANALYSIS 

Bioaccumulation modeling applications include simple, steady-state, deterministic applications to 
probabilistic, and time-varying applications. The cost differential between parameterizing the FR 
model versus another model is greatest for the simplest approach as compared to a full FR 
application. As mentioned previously, the cost estimates developed here assume that the 
bioaccumulation model is only one part of a larger site evaluation process, and that 
bioaccumulation model development leverages ongoing data collection activities and does not 
require an independent dataset or separate sampling program.  
 
The level of effort required to acquire the data necessary to parameterize the food web (e.g., 
feeding preferences, habitat use or attraction factors, and lipid and weight of the organisms) will 
depend on the overall complexity of the site, and should be proportional to the resources expended 
for other site characterization activities. There is no prescriptive proportion, but estimates based 
on professional experience suggest that something on the order of 20% of overall site 
characterization costs would be attributable to the bioaccumulation modeling. 
 
Depending on the site complexity, there are options available for model parameterization that can 
be more expensive and correspondingly provide more information for decision-making. For 
example, two key inputs, feeding preferences and habitat use (or foraging area) can either be based 
on literature values or professional judgment all the way to detailed, site-specific studies. Feeding 
preferences, whether site-specific or from the literature, are based on gut content analyses. 
Expending resources to evaluate gut contents from fish collected on site may not be warranted for 
small sites. Similarly, different kinds of tag-recapture studies provide data on site fidelity and use 
for specific species. Depending on the type of sensor used, and whether the data are temporally 
collated or simply obtained from two points in time, very detailed information can be gathered on 
where fish are spending their time, which can be directly incorporated to a spatially-explicit and 
probabilistic model like FR. Again, for large, complex sediment sites, the additional effort to 
develop site-specific information to support model development may be warranted given the 
potential expected costs of remediation or implementation of other management alternatives. 
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8.0 IMPLEMENTATION ISSUES 

Implementing the FR model is uncomplicated given appropriate data inputs. However, the quality 
and quantity of data available from the site characterization process is a key consideration in the 
successful implementation of the model. In practice, data availability is a limiting factor with 
respect to model implementation. At many sites, data are not necessarily representative in time or 
space. Often, there is only one sampling event for sediment or fish or both, and the 
bioaccumulation model must capture the relationship between sediment exposures and resulting 
tissue concentrations based on this one sampling event. Similarly, often the bioaccumulation 
model is held accountable for potential limitations in understanding the relationship between 
sediment and water. For many, if not all, bioaccumulative contaminants, the assumption is that a 
bulk sediment concentration represents the relevant exposure metric with an incomplete 
understanding of: 1) how sediment concentrations may be changing over time (e.g., net deposition, 
net erosion, and so on); 2) the relationship between sediment and water (e.g., low flow and highly 
dissolved concentrations at certain times of the year, or resuspension events that carry 
contaminants to other areas in either the dissolved or particulate phases); and 3) potential sources 
and flux mechanisms (e.g., groundwater recharge, bioturbation, and mechanisms for releasing 
“buried” sediments). These kinds of interactions would typically require hydrodynamic and fate 
and transport modeling. However, occasionally, the bioaccumulation model is expected to capture 
exposures that may not be truly understood from a fate and transport perspective. 
 
A challenge in bioaccumulation modeling has been in understanding what is meant by true 
exposures. The FR model tries to overcome this limitation, and does so by: 1) providing a 
mechanism for characterizing spatial heterogeneity in sediment (and water) exposure 
concentrations; and 2) simulating fish movement probabilistically rather than by using static 
approaches, including site averages, site-use factors, and similar deterministic adjustments. 
However, both foraging strategies of individual fish (e.g., spatial and temporal, in addition to 
appreciating what those prey items are, and whether they are primarily associated with sediment 
or water sources) combined with spatial heterogeneity in contamination contribute to population 
exposures. An understanding of species-specific fish biology is always desirable from a modeling 
perspective. Therefore, an implementation issue with respect to the model is how much site-
specific data is available regarding fish biology. Tag-recapture studies and gut content analyses 
both provide important information relevant to the modeling. Oftentimes, these data are not 
obtained easily given limited resources (see above under costs). However, knowledge gaps in these 
areas might represent a significant source of uncertainty when parameterizing the model. 
In general, a site-specific application of any model involves model calibration and verification.  
 
Calibration is the process of making adjustments to a small number of input parameters to achieve 
the best fit between predicted model output and monitoring data. Verification (referred to as 
validation by USEPA, 2009) is the process of running a calibrated model and comparing the results 
to an independent data set not used in model calibration. In practice, it is difficult to have enough 
data to accomplish both calibration and verification using independent data sets. Therefore, many 
bioaccumulation models combine calibration with verification in one step. Also, if sufficient data 
are available, another approach is to divide the data in half, and use one half for calibration and 
the other half for verification. Sometimes it is possible to apply the model in one location (e.g., 
river reach) for calibration, and use data from another reach or operable unit for model verification. 
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