
UNCLASSIFIED

Radar Detection Performance in Medium Grazing Angle
X-band Sea-clutter

Luke Rosenberg 1 and Stephen Bocquet 2

1 National Security and ISR Division
2 Joint and Operations Analysis Division

Defence Science and Technology Group

DST-Group–TR–3193

ABSTRACT

This report describes the target detection performance of an airborne surface surveillance radar in
the presence of medium grazing angle sea-clutter. In the absence of frequency agility, the temporal
correlation of the sea-clutter can be significant and if it is not accounted for in the radar model,
the required signal to interference ratio for a given probability of detection, Pd, will be incorrect
by several dB, resulting in over-estimated performance. This report describes a robust method for
calculating the Pd for both K and Pareto compound sea-clutter distributions. Empirical models of
the amplitude distribution and the speckle correlation are used to determine the expected detection
performance given different collection geometries and environmental conditions with the output
used to determine the minimum detectable target radar cross section in a detection scenario.
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Radar Detection Performance in Medium Grazing Angle
X-band Sea-clutter

Executive Summary

This report summarises the target detection performance of an X-band surface surveillance radar
operating at medium grazing angles in the maritime environment. A number of different
detection scenarios are explored with variations in the collection geometry, sea-state and
polarisation. Two sea-clutter distributions are considered: the popular K-distribution and the
Pareto distribution which has recently been shown to be a better match to the distribution tail.
Consequently, detection performance results using the Pareto distribution have been chosen as
‘truth’ in the report.

To test these scenarios, a number of parameter models are required to relate the radar and
environmental characteristics to the mean backscatter and distribution shape values. Appropriate
models are therefore presented along with a full mathematical description of the different target
fluctuation models. A major contribution of the report is a full derivation of the Ward, Tough and
Watts detection algorithm for correlated clutter with a modification to make the technique robust
for high clutter to noise ratios.

The sea-clutter and target detection models are then used to analyse the probability of false alarm,
Pfa, probability of detection, Pd and the minimum detectable radar cross section (RCS) for a given
set of radar parameters. The Pfa results show a big difference in the horizontal polarisations (HH
and HV) with the K distribution underestimating the threshold by up to 5 dB, while there is only
a minor difference in the vertical channel (VV). The effect of non-coherently integrating pulses is
to reduce the threshold.

A comparison of the target fluctuation models reveals that the Pd curve is steeper for the chi-
squared distribution model than the exponential model. Increasing the target correlation reduces
the slope for both models, with the effect being more pronounced for the exponential model. Using
a distribution model also allows us to extrapolate down to lower Pfa levels than could be used in a
real detection scheme. By comparing Pfa levels, it is found that for the HH polarisation, there is
a larger difference in the signal to interference ratio between the K and Pareto distributions. This
mismatch also got larger as the Pfa reduced.

Further analysis of the detection performance with varying azimuth, grazing and sea-state reveals
that the choice of model is critical to accurately determine the detection performance. There
is significant mismatch between the K and Pareto distribution results, particularly for the HH
polarisation. Other large discrepancies are observed in the cross wind direction and at lower
grazing angles. The mismatch for the VV polarisation is typically very small.
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The final result looked at the minimum detectable target RCS given a set of radar parameters. For
the lower grazing angles in the HH and HV channels, there was a large difference between the K
and Pareto distributions, which reduced as the grazing angle increased. The two distributions gave
almost identical results for the VV channel. In terms of detectability, the Pareto result shows that
the HV polarisation has the smallest target RCS, then VV and HH.
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1 Introduction

This report is concerned with quantifying the detection performance of an X-band surface
surveillance radar in the maritime environment. The results are based on data from DST Group’s
Ingara radar which has collected 12 days of fine resolution fully polarimetric sea-clutter data in a
circular spotlight mode covering all azimuth angles and focussing on the medium grazing angle
region, 15◦ − 45◦. This data has been used to characterise the statistical properties of the
sea-clutter in order to accurately quantify target detection performance. These include the mean
radar backscatter [Crisp et al. 2008], amplitude distribution [Dong 2006, Rosenberg, Crisp &
Stacy 2010b, Weinberg 2011a, Rosenberg & Bocquet 2015, Rosenberg, Watts & Bocquet 2014]
Doppler spectrum [Rosenberg 2014] and sea spikes [Rosenberg 2013].

These studies then led to a number of empirical models which take into account different
combinations of the polarisation, collection geometry and environmental conditions. Relevant
models include the imaging radar systems group (IRSG) mean backscatter model [Crisp
et al. 2008], the short-time temporal correlation [Rosenberg 2014] and the K distribution shape
parameter [Rosenberg, Crisp & Stacy 2009, Crisp, Rosenberg & Stacy 2015]. To effectively
model the effect of sea-spikes, the latter model has also been modified and applied to the Pareto
distribution shape [Rosenberg et al. 2015]. These empirical models are described in Section 2 of
the report.

Parametric modelling is a useful tool to predict a radar’s target detection performance given a
statistical description of the environment. Once a clutter model has been chosen and its
parameters determined, a threshold can be determined based on the desired probability of false
alarm, Pfa, to ensure a CFAR (Constant False Alarm Rate). Any backscatter response above the
threshold is then declared to be a potential target. Using this threshold, a probability of detection
Pd can be calculated for a given target fluctuation model to determine the required signal to
interference (clutter and noise) ratio (SIR). Subsets of the empirical parameter models have
previously been used to analyse target detection performance in K and KK distributed sea clutter
[Rosenberg & Crisp 2010a] and to study the impact of temporal correlation with different
fluctuating targets [Rosenberg 2012, Rosenberg & Bocquet 2013b]. These studies found that if
the correct distribution was not used to model the tail of the distribution and if the temporal
correlation was not accounted for, then the required SIR for a desired Pd can be over-estimated
by up to several dB.

The main contribution of this report to provide a comprehensive mathematical description of the
modelling framework and to extend the previous results using the newly developed Pareto shape
model. Section 3 describes the modelling framework for different fluctuating targets using
different sea-clutter distributions. A full derivation of the Ward, Tough & Watts [2013] detection
algorithm for correlated clutter and /or targets is then presented with the modification [Rosenberg
& Bocquet 2013b] which makes the technique robust for high clutter to noise ratios (CNR).

The final Section 4 then uses the empirical models to quantify the detection performance for a
number of different geometries and environmental conditions. Due to its good fit to the Ingara
sea clutter data [Rosenberg & Bocquet 2013a], the Pareto distribution is used as a proxy for the
data with the K-distribution results showing the mismatch that would be expected in a detection
scenario. These results are then fed into the radar range equation to determine the minimum
detectable radar cross section (RCS) for a given set of radar parameters.
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2 Sea-clutter models

To comprehensively characterise target detection performance, [Ward, Tough & Watts 2013] state
that knowledge of the following sea-clutter, radar processing and environmental characteristics is
required:

• mean backscatter
• amplitude statistics
• temporal correlation or spectrum
• spatial characteristics and correlations
• discrete clutter spike characteristics
• carrier frequency
• polarisations
• spatial resolution
• use of frequency agility
• grazing angle
• wind-speed and direction
• sea-swell and direction

To this end, a number of experiments were conducted using the Ingara X-band radar to collect sea-
clutter covering as many different combinations of these parameters as possible. A description of
the trials and the collected data is presented in Section 2.1.

Detection performance requires an accurate representation of the amplitude or intensity
probability distribution function (PDF). The most commonly used PDF model for sea-clutter is
the K-distribution as it captures the bulk of the sea-clutter PDF very well. It was first applied to
modelling probability distributions of sea-clutter by Jakeman & Pusey [1976] and was later put
into a Bayesian or compound formulation by Ward [1981]. This allows a more meaningful
understanding of the two main components - these being the temporal or fast varying component
and the slowly varying texture component. The fast component is commonly known as speckle
and is the result of constructive and destructive interference effects between multiple scatterers. It
is typically associated with the small local wind-driven ripples (capillary waves) on the ocean
surface. The texture component represents changes in the large and medium scale waves which
modulate the speckle. In terms of scattering processes, reflections off the wind-driven ripples are
known as Bragg (or resonant) scattering, while the non-Bragg scattering can be described as a
combination of whitecaps and discrete sea-spikes [Ward, Tough & Watts 2013]. It is these
sea-spikes which cause the K-distribution model to break down, particularly at finer resolutions
where the average backscatter reduces and the sea-spikes cause higher levels of backscatter
relative to the mean, hence extending the tail of the distribution.

In order to better model this effect, the KA [Middleton 1999], KK [Dong 2006, Rosenberg, Crisp &
Stacy 2010b], Pareto [Balleri, Nehorai & Wang 2007, Farshchian & Posner 2010, Weinberg 2011b,
Rosenberg & Bocquet 2015] and K+Rayleigh [Lamont-Smith 2000, Rosenberg, Watts & Bocquet
2014] models have been proposed. The KA model was originally proposed by Middleton [1999]
and then specifically applied to spiky sea clutter by [Ward & Tough 2002, Ward, Tough & Watts
2013]. A comparison of this model and the KK distribution has been applied to the Ingara data
[Dong 2006]. The KK distribution offered a better fit, but relied on fitting up to five parameters.
A number of optimal and sub-optimal detectors have also been proposed, but they are difficult

2
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to implement in practice [Weinberg 2012a]. This led to the Pareto model which is described
by two parameters, yet can reasonably model the long tails present in the sea-clutter distribution.
The Pareto distribution also has significantly simpler optimal and sub-optimal detectors [Weinberg
2012b, Weinberg 2014].

Clearly the PDF must account for the different elements of the sea-clutter as well as the thermal
noise in the radar. Therefore, the first element required for modelling is the CNR which is
described in Section 2.2. This is determined using the thermal noise power and clutter power
(radar range) equations [Ward, Tough & Watts 2013] with the IRSG mean backscatter model
[Crisp et al. 2008] used to provide variation with the viewing geometry, sea state and polarisation.
The K and Pareto distributions are then described in Section 2.3, with details on how each of the
shape parameters were estimated. The newly developed shape model for these distributions
[Rosenberg et al. 2015] is also presented in this section.

To improve the probability of detection, a radar will typically average returns from multiple looks
- pulses and/or scans. This reduces the variance of the random interference and increases the mean
separation with the target signal component. In the absence of frequency agility, there may be little
difference in the radar return when looking at the same clutter patch closely in time. This effect
is known as temporal correlation and is often characterised from its Fourier transform or in this
context, its radar Doppler spectrum. There is a large body of literature focussed on understanding
the radar Doppler spectrum [Long 2001, Ward, Tough & Watts 2013, Plant 1997]. From this
analysis came two significant models describing the line shape of the mean Doppler spectrum
from low grazing angles [Lee et al. 1995, Walker 2001]. The former uses a Gaussian component
to model the Bragg scatterers and a Lorentzian and/or Voigtian for the non-Bragg components. A
simpler model was later presented by Walker [2001], who uses a combination of three Gaussians
to describe the Bragg, whitecap and sea-spike components of the Doppler spectrum. At medium
grazing angles, a modified two component model was presented by Rosenberg [2014] to model
the Ingara data. This led to a simple model for temporal decorrelation as a function of the wind
speed and wave height. This final empirical model is presented in Section 2.4 with details on how
to account for platform motion and antenna scanning.

2.1 Trials background

The trial data was obtained with Ingara on two separate occasions and at two distinctly different
regions. The first ‘sea-clutter’ trial was conducted in 2004 (SCT04) in the Southern Ocean
approximately 100 km south of Port Lincoln, South Australia [Crisp, Stacy & Goh 2006]. The
site chosen was at the edge of the Australian continental shelf where there was little chance of
shallow water affecting the wave field. During the trial, ocean backscatter was collected for a
range of different geometries on eight separate days with different ocean conditions. The second
‘maritime surveillance’ trial was conducted in 2006 (MAST06) in littoral and open sea
environments near Darwin in the Northern Territory. Again, data was collected for a range of
different geometries and ocean conditions. In this trial, a total of four days data were collected:
two of the days were in the littoral zone approximately 25 km north of Darwin and the other two
days were in the open ocean approximately 200 km west of Darwin.

During the ocean backscatter collections, Ingara was operated in the circular spotlight-mode.
Figure 1 shows the collection geometry for this mode, where the aircraft flies a circular orbit in
an anti-clockwise direction (as seen from above) around a nominated point of interest, while the
radar beam is continuously directed toward this point. Radar echo data is continuously collected
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during the full 360◦ orbit, with the instantaneous pulse repetition frequency (PRF) appropriately
adjusted to maintain a constant spatial pulse separation between pulse transmission positions.
Once collected, the echo data may be processed either immediately (in real-time) or subsequently
(off-line) to produce either range-compressed profiles or spotlight synthetic aperture radar (SAR)
images of the scene at various azimuth angles. Further, owing to the continuous nature of the data
collection, the images can be formed at any desired azimuth look direction. Each collection of
data in this mode is referred to as a ‘run’ and there may be several complete orbits in a single run.

Figure 1: Circular spotlight mode collection geometry used for both Ingara sea clutter trials.

In order to examine the effect of grazing angle on ocean backscatter, runs were made with different
altitude and orbit diameters. For both the SCT04 and MAST06 trials, data was collected at the
centre of the spotlight for the nominal grazing angles of 15◦ to 45◦ in 5◦ increments. Owing to
the finite beam width of the radar, its footprint on the ocean surface has a significant range extent.
This means that the grazing angle varies across the footprint. It follows that, with appropriate
range compression and data processing, the variation in backscatter with grazing angle across the
range extent of the radar beam footprint can be measured. In this way, backscatter measurements
for most grazing angles in the range from 15◦ to 45◦ could be extracted from the data.

The aircraft speed was approximately 200 knots and so a 1.5 nautical mile (NM) radius orbit took
approximately 3 minutes while a 1.9 NM radius orbit took about 4 minutes. The total collection
across all grazing angles took approximately 90 minutes. It is reasonable to assume that over
such short time intervals, the ocean surface conditions are relatively unchanged and that mean
backscatter variations are mostly due to the changing imaging geometry rather than changing
ocean conditions. Nevertheless, it is possible that wind gusts and changes of wind strength and
direction may have affected the measurements. Table 1 shows the wind and wave ground truth for
the data used in this report.

Finally, using the geometry in Figure 1, the azimuth resolution can be calculated approximately
by Rφ3dB , where R is the slant range and φ3dB is the measured two-way azimuth antenna 3 dB
beam width equal to 1.02◦ for the horizontal transmit, horizontal receive (HH) channel and 0.99◦

for the vertical transmit, vertical receive (VV). Table 2 shows the geometry for collections at a
range of grazing angles and slant-ranges for a beam width of 1◦. Over these nominal parameters,
the average azimuth resolution is 62.7 m. However since each collection spans a range of grazing
angles, the actual azimuth resolution will always differ slightly.

4
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Table 1: Wind and wave ground truth. Directions are “from” not “to”.

Trial Flight Date Wind Wave
Speed Direction Height Direction Period
(m/s) (◦) (m) (◦) (s)

SCT04 F33 9/8/04 10.2 248 4.9 220 12.3
SCT04 F34 10/8/04 7.9 248 3.5 205 11.8
SCT04 F35 11/8/04 10.3 315 2.6 210 10.4
SCT04 F36 12/8/04 13.6 0 3.2 293 8.8
SCT04 F37 16/8/04 9.3 68 2.5 169 9.7
SCT04 F39 20/8/04 9.5 315 3.0 234 11.4
SCT04 F40 24/8/04 13.2 22 3.8 254 12.2
SCT04 F42 27/8/04 8.5 0 4.3 243 12.5

MAST06 F2 17/5/06 8.5 115 0.62 112 3.1
MAST06 F4 19/5/06 3.6 66 0.25 35 2.6
MAST06 F8 23/5/06 3.5 83 0.41 46 4.0
MAST06 F9 24/5/06 10.2 124 1.21 128 4.6

Table 2: Nominal geometric parameters of circular spotlight-mode collections.

Grazing angle (◦) Altitude (m) Radius (NM / m) Slant range (m) Azimuth res. (m)
15 932 1.9 / 3519 3643 63.54
20 1353 1.8 / 3334 3548 62.80
25 1522 1.8 / 3334 3679 63.97
30 1711 1.6 / 2963 3421 59.72
35 2073 1.6 / 2963 3617 63.11
40 2314 1.5 / 2778 3626 63.10

2.2 Clutter and noise mean power

Simulating radar performance requires accurate models for the mean power of the clutter, noise
and target. To measure the performance, the target power is typically varied with respect to the
interference or clutter plus noise power. The mean clutter power, pc is determined by the radar
range equation:

pc =
PtG

2λ2cσcTpB

(4π)3R4LaLs
(1)

where Pt is the transmit power, G is the one-way gain on transmit and receive, λc is the radar
wavelength, R is the slant range, σc is the sea-clutter RCS, La and Ls represent the atmospheric
and system losses respectively and pulse compression adds a gain given by the pulse length -
bandwidth product, TpB. The thermal noise power in the radar can be defined as,

pn = kboltzT0BFn (2)

where kboltz is Boltzmann’s constant, T0 is the reference temperature and Fn is the radar noise
figure. The next section gives further detail of the parameters in Equation 1. Section 2.2.2 then
presents the Imaging Radar Systems Group (IRSG) mean backscatter model which captures the
mean backscatter as a function of azimuth, grazing and wind speed. These are then all brought
together with a model for the CNR in Section 2.2.3.
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2.2.1 Parameter description

There are many parameters in Equation 1 which are required to accurate represent the CNR. The
values chosen for this analysis are now described in more detail:

Transmit power, Pt The peak power of a typical airborne radar is 20 kW.

Radar wavelength, λc For an X-band radar with a centre frequency, fc of 10 GHz, the
wavelength is 3 cm.

Antenna gain, G The one-way antenna gain is related to the wavelength and the effective area of
the antenna aperture. For the modelling in this report, an antenna gain of 35 dB has been
used.

Slant range, R The slant range is related to the altitude of the radar, h, the grazing angle, θ and
the mean radius of the earth, Re = 6.4 × 103 km. The earth radius is typically multiplied
by 4/3 to account for the average effect of atmospheric refraction, giving an effective radius
E = 4/3Re. The slant range to the sea surface is obtained by solving equation (12.10) of
[Ward, Tough & Watts 2013] for R:

R =
√
E2 sin2 θ + 2Eh+ h2 − E sin θ

≈ h(1 + h/E)

sin θ + h/E
. (3)

The flat earth approximation is R ≈ h/ sin θ, which is quite accurate unless the grazing
angle is small. For example, if the radar altitude is 10 km (33.1 thousand feet) and the
grazing angle is 30◦, the flat earth approximation for the slant range is 20 km, whereas the
more accurate calculation gives a result just 35 m less than this.

Sea-clutter RCS, σc The radar cross section1 can be described in terms of the mean backscatter
σ0 within a given resolution cell with area Acell,

σc = σ0Acell. (4)

The mean backscatter is modelled using the IRSG model described below, while the ground
plane area, Acell is given by the slant range and azimuth resolutions, ∆x, ∆y projected onto
the ground,

Acell = ∆x∆y sec θ (5)

with range and azimuth resolutions given by,

∆x =
vc
2B

,

∆y ≈ Rφ3dB
(6)

where vc is the speed of light. For a bandwidth of 200 MHz, the range resolution is 0.75 m.
For the azimuth resolution, with a beam width of 1◦, the resolution varies according to the
grazing angle. For the Ingara flight trials, the azimuth resolution was approximately 63 m
(see Table 2).

1Note that the propagation factor is inherently included in this definition. Atmospheric losses have been included in
the loss term, La.

6
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Atmospheric loss, La The atmospheric loss, La describes all the losses in the atmosphere. A loss
of 2 dB has been chosen for this analysis.

System loss, Ls The system loss, Ls is a bulk term which describes all the losses in the radar
system. A loss of 5 dB has been chosen for this analysis.

Pulse compression gain, TpB Pulse compression adds a gain to the radar range equation based
on the pulse length, Tp and the system bandwidth. For a pulse width of 5µs and a bandwidth
of 200 MHz, the gain is 1000.

Temperature, T0 The ambient temperature is set to 290 K.

Noise figure, Fn The system noise figure is a measure of the degradation of the signal to noise
ratio caused by components in the RF signal chain. A typical value is 4 dB.

In addition to these parameters, the models for the mean backscatter and Pareto shape require the
wind speed and significant wave height as inputs. For modelling purposes, it is desirable to specify
a single parameter to represent these sea conditions. The Douglas sea-state, S can be related to
both wind speed and significant wave height using the following relationships [Technology Service
Corporation 1990]:

U = 3.2S0.8, (7)

H1/3 = 0.024U2. (8)

2.2.2 IRSG mean backscatter model

There are a number of existing models for the mean backscatter, although only a few cover the
medium grazing angle region. The two most suited are the Technology Services Corporation
(TSC) and Masuko models, [Technology Service Corporation 1990, Spaulding, Horton & Pham
2005, Masuko et al. 1986], however they are both unable to capture all the variations with the
weather conditions and azimuth and grazing angles. This led to a new empirical model presented
by [Crisp et al. 2008] known as the imaging radar systems group (IRSG) model. The model is
applied independently to each polarisation in the log domain and uses relationships taken from
[Ulaby, Moore & Fung 1982, Shimada, Kawamura & Shimada 2003]. It includes a power law
model for variations in the wind speed, a linear model for the grazing and a two element Fourier
series to model azimuth. The principle behind this model is that the small scale waves which
are responsible for Bragg scattering from the ocean surface are directly dependent on the surface
wind speed. The stronger the wind speed, the larger the capillary waves and hence the larger the
backscatter. The model is valid over 20◦-45◦ in grazing, 360◦ in azimuth and wind speeds from
3-14 m/s.

The first component of the IRSG model captures the variation in backscatter with grazing angle
θ and wind speed U and is defined for the upwind, downwind and crosswind directions. If σ′0
represents the mean backscatter in one of these azimuth directions, then the relationship is given
by

σ′0(θ, U) = a0 + a1θ + a2 log10(U). (9)
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where the three sets of coefficients a0, a1 and a2 have been determined by model fitting over the
12 days of the Ingara data. The second stage is to combine these three backscatter results into new
coefficients,

b0(θ, U) =
[
σ′u(θ, U) + σ′d(θ, U) + 2σ′c(θ, U)

]
/4,

b1(θ, U) =
[
(σ′u(θ, U)− σ′d(θ, U)

]
/2, (10)

b2(θ, U) = b0(θ, U)− σ′c(θ, U),

where σ′u(·), σ′d(·) and σ′c(·) are the upwind, downwind and crosswind values of σ′0(·). The final
step takes these new coefficients and includes the azimuth variation, φ, in a two element Fourier
series,

σ0(φ, θ, U) = b0(θ, U) + b1(θ, U) cosφ+ b2(θ, U) cos (2φ) (11)

Implementing the model requires calculating Equation 9 for each wind direction using three sets of
a coefficients for each azimuth direction. The mean backscatter is then determined by substituting
the angle specific backscatter values into Equation 10 and then using that result in Equation 11.
The 9 coefficients required to implement the model are given in Table 3 for each polarisation.
Figure 2 shows an example of the F35 data set with the wind speed taken from Table 1. Clearly
the trends have been well captured in the model with a sinusoidal variation across azimuth and
increasing mean backscatter as the grazing angle increases.

Table 3: Mean backscatter coefficients.

Azimuth a0 a1 a2
Upwind -60.03 23.39 22.65

HH Downwind -67.80 28.58 23.92
Crosswind -67.09 23.12 24.71
Upwind -66.65 9.72 25.46

HV Downwind -68.74 14.17 24.47
Crosswind -73.09 14.85 26.66
Upwind -50.18 12.41 25.15

VV Downwind -50.16 12.30 23.92
Crosswind -52.60 12.30 22.09

2.2.3 Clutter to noise ratio

To demonstrate the modelling of these parameters, the CNR has been calculated using parameters
representative of the F35 flight with the mean backscatter determined from the IRSG model.
Figure 3 shows the result which demonstrates a good match with appropriate variation in both
azimuth and grazing.

2.3 Probability distributions

Statistical models of the PDF are used to model the spread of received backscatter values. A
number of them have been used to model sea-clutter in the past with varying degrees of success
[Dong 2006, Rosenberg, Crisp & Stacy 2010b, Weinberg 2011a, Rosenberg & Bocquet 2015,

8
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Figure 2: Mean backscatter comparison with varying azimuth and grazing using the IRSG model,
left - Ingara F35 data, right - model output with wind speed, U = 10.3 m/s.

Figure 3: CNR comparison with varying azimuth and grazing: left - Ingara F35 data, right -
model using parameters matched to data and mean backscatter determined from the
IRSG model.
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Rosenberg, Watts & Bocquet 2014]. The first model considered is the K-distribution which is
used to characterise the bulk of the PDF. To understand the development of the K-distribution,
consider a radar receiving in-phase and quadrature data from an external clutter source with its
amplitude defined by Gaussian statistics with zero mean and variance, x. In addition, thermal
noise from within the radar will add a component pn which is included by offsetting the variance
x. The PDF of the clutter and noise is then given by,

PE(E|x, pn) =
1√

2π(x+ pn)
exp

[
− E2

2(x+ pn)

]
(12)

with the envelope of these components, y =
√
E2

ip + E2
quad, then determined by a Rayleigh PDF,

Py(y|x, pn) =
y

x+ pn
exp

[
− y2

2(x+ pn)

]
. (13)

In the target detection analysis, the received pulses are often converted to power (square law),
z = y2 and then summed to improve detection performance. Consider the sum of M exponential
random variables,

Z =

M∑
m=1

zm. (14)

If the returns from successive pulses are uncorrelated, the received power is then described by a
gamma PDF,

PZ|x(Z|x) =
ZM−1

(x+ pn)MΓ(M)
exp

[
− Z

x+ pn

]
. (15)

2.3.1 Compound distributions

The distribution in Equation 15 models the speckle component of the sea-clutter. To include the
texture component which modulates the speckle, a compound distribution can be used,

P (Z) =

∫ ∞
0

PZ|x(Z|x)Px(x)dx (16)

where Px(x) is the distribution of the texture component. To achieve a K-distribution, the texture
is also gamma distributed

Px(x) =
bν

Γ(ν)
xν−1 exp [−bx] , ν, b > 0 (17)

with shape given by ν and scale, b = ν/pc related to the mean power, pc. For the Pareto
distribution, the texture has an inverse gamma distribution

Px(x) =
ca

Γ(a)
x−a−1 exp [−c/x] , a > 1, c > 0 (18)

where a is the shape and c = pc(a−1) is the scale. In general, numerical integration is required to
evaluate the compound distributions. However, if thermal noise is not present (pn = 0), analytic

10
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forms of the distributions can be derived. With a gamma distributed texture, the K-distribution is
obtained,

P (Z) =
2

Z
(bZ)

M+ν
2

1

Γ(M)Γ(ν)
Kν−M

(
2
√
bZ
)

(19)

whereKν−M (·) is the modified Bessel function of the second kind with order ν−M . If the texture
is inverse gamma distributed, the general solution is a compound gamma distribution

P (Z) =
ZM−1caΓ(M + a)

(c+ Z)M+aΓ(M)Γ(a)
, a > 1, c > 0 (20)

which reduces to the generalised Pareto type II or Lomax distribution for M = 1,

P (Z) =
aca

(c+ Z)1+a
. (21)

The result in Figure 4 shows the time domain PDF and the complementary cumulative distribution
function (CCDF) for the F35 dataset (in intensity) with the Pareto distribution fit overlayed in
black. For comparison, the equivalent fit for the K distribution is shown in red and is clearly
under-fitting the data, particularly in the HH channel. Thermal noise is assumed for both models
with the recently published z log z shape estimation method used to estimate the shape values
[Bocquet 2015].
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Figure 4: Time domain intensity distributions - upwind 30◦ grazing. Data in blue, K-distribution
fit in red, Pareto distribution fit in black.
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2.3.2 Shape model

Until recently, the only model suitable for modelling the K-distribution shape was for low grazing
angles [Ward, Tough & Watts 2013]. Using the Ingara data set, there have now been three iterations
of models designed to model the shape at medium grazing angles with all three applied separately
to each polarisation. The first was designed to model only the geometry for an individual day
[Rosenberg, Crisp & Stacy 2009]. This was then extended by Crisp, Rosenberg & Stacy [2015]
to include extra components for the environmental conditions and resolution. These are combined
into a global model comprising 24 coefficients at the finest resolution (0.75 m range × 63 m
azimuth). The third iteration is a variation designed to better model other parameters of interest
which have a stronger component due to the swell [Rosenberg et al. 2015]. It was also applied
to model the Pareto shape and offers a slightly better fit to the estimated K-distribution shape.
Consequently, this third iteration is used in the report. The validity of the model parameter bounds
are determined by the input data. This includes a CPI of 64 pulses, a resolution of 0.75 m range ×
63 m azimuth, all azimuth angles and linear polarisations, sea-states 2-6 and grazing angles from
15◦ − 45◦.

If X is a generic parameter to be modelled, then the geometric relationship can be written as the
weighted sum of two components which represent the wind and swell directions. Assuming the
data has been rotated so upwind is now at 0◦,

X(θ, φ) = a′0θ
γ
[
1 + a′1 cosφ+ a′2 cos(2φ) + a′3 cos(φ− ψ) + a′4 cos(2(φ− ψ))

]
(22)

where ψ is the swell direction relative to upwind and γ, a′0, . . . , a
′
4 are the model coefficients.

Representing the ocean conditions is difficult and the shape model uses only the wind speed and
the significant wave height H1/3,

Y = b′0 + b′1 log10(U) + b′2H1/3 (23)

where b′0, b
′
1, b
′
2 are the model coefficients. To relate these two models, the coefficients in Equation

22 must be altered so they are independent of grazing angle. This is achieved by introducing a
normalisation factor, θ0 and then redefining Equation 22 as

X(θ, φ) =

(
θ

θ0

)γ
[α0 + α1 cosφ+ α2 cos(2φ) + α3 cos(φ− ψ) + a4 cos(2(φ− ψ))] (24)

where the new coefficients are related by

α0 = a′0θ
γ
0 , α1 = a′0a

′
1θ
γ
0 , . . . , α4 = a′0a

′
4θ
γ
0 . (25)

Implementing the model involves matching γ and each of the α coefficients to Equation 23. This
in turn requires 6 sets of the b′ parameters or 18 coefficients in total for each polarisation. These
model coefficients for K and Pareto distributions are presented in Table 4. Once the new
coefficients in Equation 25 are evaluated, they can be substituted into Equation 24 with the
normalising grazing angle θ0 set to 30◦ to derive the final model value.

Finally, it has been observed that shape values less than 2 can result in bad fits to the Ingara data.
To enforce this lower bound with the new shape model, the model coefficients have been derived
for a modified shape, a− 2, with the final shape value then increased by 2 to compensate. Figure
5 shows the variation of the Pareto shape over grazing and azimuth for the F35 run with a model
created with the same input parameters. Clearly, the model captures the main trends quite well.
These include a include a linear increase with grazing and sinusoidal variation in azimuth with a
peak in the upwind and downwind directions.
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Figure 5: Pareto shape parameter model comparison with varying azimuth and grazing: left -
shape estimated from F35 data set, right - model output with wind speed, U = 10.3 m/s,
significant wave height, H1/3 = 2.6 m, wind swell angle, ψ = 0◦.

2.4 Temporal correlation

To accurately capture the correlation due to the speckle, platform motion and antenna scanning, a
model is required which relates both the sea conditions and the relevant radar parameters. In the
following sections, different Gaussian models are used to model each of the components in the
frequency domain with their overall spread spectrum given as their convolution:

C(f) =
1

σ
√

2π
exp

(
−(f − f0)2

2σ2

)
(26)

where f0 is the mean and the total variance is the sum of the component variances,

σ2 = σ2s + σ2pm + σ2scan. (27)

The combined temporal auto-correlation function (ACF) is then found by taking the Fourier
transform

C(t) = exp(−j2πf0t) exp

(
− t2

T ′2

)
(28)

with the overall decorrelation time given by

T ′ =
1√
2πσ

. (29)
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Table 4: K and Pareto distribution shape coefficients.

K shape Pareto shape
b′0 b′1 b′2 b′0 b′1 b′2

γ 11.52 -8.72 -0.11 13.4 -10.15 -0.064
α0 -1.37 4.18 -0.078 -0.93 3.00 -0.11

HH α1 -0.38 0.11 0.050 -0.39 0.15 0.065
α2 -0.14 0.80 0.024 -0.31 0.89 -0.028
α3 -0.018 -0.19 0.043 0.32 -0.49 0.050
α4 -0.51 0.68 0.019 -0.62 1.01 0.00037
γ 4.83 -3.33 0.054 8.34 -6.64 0.061
α0 -5.78 11.52 -0.39 -5.68 10.75 -0.40

HV α1 -4.17 6.38 -0.24 -3.55 5.36 -0.21
α2 -0.89 3.32 -0.033 -0.52 2.72 -0.21
α3 1.98 -2.59 -0.030 2.96 -4.35 0.080
α4 -0.16 0.12 0.40 0.41 0.48 0.22
γ 0.28 -0.38 0.11 0.28 -0.39 0.11
α0 14.06 19.11 -4.06 13.43 18.78 -4.06

VV α1 -6.00 3.80 0.60 -7.37 5.61 0.64
α2 0.93 8.25 -0.80 1.41 7.29 -1.03
α3 -0.72 0.15 0.16 2.47 -2.49 0.095
α4 -3.91 5.56 0.40 -10.87 16.67 -0.41

2.4.1 Clutter width

As the sea state becomes greater, the wind speed, wave height, wave length and the Doppler
bandwidth all increase. Regarding the latter, Hicks et al. [1960] have shown experimentally that
the Doppler spread at high grazing angles is proportional to the wave height divided by the wave
period. Previous analysis of the bi-modal Doppler spectrum [Rosenberg 2014] found only minor
trends in azimuth and grazing angle and hence the model is only a function of wind speed and
wave height. The model represents the temporal decorrelation which is measured at the point
where the absolute value of the ACF decays to 1/e. It is described by three sets of coefficients,
one for each polarisation. Note that this model only considers the real part of the correlation and
hence assumes that the Doppler spectrum is centred at 0 Hz. The model is given by

T = (p0 + p1U + p2H1/3)× 10−3 (30)

with the model coefficients given in Table 5. Figure 6 shows the model fit for the two component
model where the trend is that the mean decorrelation times are longer when the wind speed and
wave height are smaller. The RMS errors for the HH and VV channels are 1.1 and 0.74 ms
respectively. The HV decorrelation time is modelled as the average of the HH and VV model
outputs.

A Gaussian model can then be used to represent the correlation,

A(t) = exp

[
− t2

T 2

]
, (31)
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Table 5: Decorrelation model parameters

HH VV
p0 16.67 17.13
p1 -0.68 -0.40
p2 -0.87 -0.91
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Figure 6: Mean temporal decorrelation as a function of wind speed and wave height. Left - HH,
Right - VV.

with the spectrum found by taking a Fourier transform

A(f) =
√
πT exp

(
−π2f2T 2

)
=

1

σs
√

2π
exp

(
− f2

2σ2s

)
(32)

where σs = 1/(
√

2πT ).

2.4.2 Platform motion

Antenna beampatterns are typically defined in an angular domain with specifications for the
minimum sidelobe level and two-way 3 dB azimuth beam width. To simplify the modelling, we
will assume a Gaussian beam pattern with azimuth angle, φ0,

G(φ0) = exp

[
− φ20

(2 ln 2)φ23dB

]
. (33)

Assuming that the elevation beam pattern does not change significantly over the clutter patch, the
Doppler frequency can be related to the beam pattern by

f ≈ 2vpφ0| sinφb| cos θel

λ
(34)

where φb is the antenna azimuth direction relative to the platform velocity and θel is the elevation
angle. The azimuth angle can then be related to the Doppler frequency and hence the platform
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velocity by substituting

φ0 =
fλ

2vp| sinφb| cos θel
(35)

into Equation 33, giving

G(f) ≈ exp

(
− f2

2σ2pm

)
(36)

where

σpm =
1√

2 ln 2

vp| sinφb|φ3dB cos θel

λ

≈ 0.85
vp| sinφb|φ3dB cos θel

λ
. (37)

2.4.3 Antenna scanning

Although the Ingara radar did not scan during the sea-clutter collections, antenna scanning can be
modelled using the relationship in Skolnik [2008],

σscan =

√
2 ln 2

2π

φscan

φ3dB

≈ 0.19
φscan

φ3dB
(38)

where φscan is the antenna rotation rate in rad/s.
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3 Detection probability framework

The problem of target detection is commonly presented with two hypotheses, H0 - clutter plus
noise is present in the radar return and H1 - a target is present with the clutter and noise. Figure
7 shows the case for non-coherent detection where two histograms are shown which correspond
to these hypotheses. The premise of target detection is to select an acceptable probability of false
alarm, Pfa and determine the threshold, Y based on the clutter plus noise model. Any backscatter
response above the threshold is then declared a potential target. If a detector can measure or
estimate the clutter distribution parameters and set the corresponding threshold, then the detector
can be considered CFAR. The Pfa and the probability of detection, Pd can be defined as

Pfa(Y ) = Prob(Z > Y |H0) =

∫ ∞
Y

Pc(Z)dZ (39)

Pd(Y ) = Prob(Z > Y |H1) =

∫ ∞
Y

Pt(Z)dZ (40)

where Pc(Z) represents the clutter plus noise PDF and Pt(Z) the target plus clutter and noise PDF.
Also in this figure, Pm denotes the miss probability.

Figure 7: Detection probabilities showing distributions for the clutter plus noise and the target
plus clutter and noise. The threshold determines the three regions: Pm, Pfa and Pd.

The theory of optimal target detection is well summarised in Ward, Tough & Watts [2013, Chapter
10]. The principle of finding an optimal Pd for a fixed Pfa is known as the Neyman-Pearson
criterion and can be written as the ratio of the interference and target plus interference PDFs

Λ(z) =
Pc(Z)

Pt(Z)
> Y. (41)

Expressions for compound PDFs are generally quite complex, particularly when correlation is
included and the signals are treated coherently. Also CFAR control remains difficult when
estimates of the covariance are required and the sea-clutter is non-stationary. This has led to
non-coherent schemes which are often sub-optimal and may or may not be CFAR. These
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practical detectors are typically easier to compute and require adjustment of the threshold to
maintain a constant false alarm rate. Some of the latter include the cell-averaging, single-sided
and ordered statistic CFAR [Ward, Tough & Watts 2013, Chapter 13]. This report only considers
detection with a constant or fixed threshold and with non-coherent integration as the mathematics
are more tractable. We assume that a threshold is applied after pulse-to-pulse integration and
there is a CFAR system to adjust the threshold for a specified Pfa. The exact analytic expressions
then represent the performance results which would be expected if the clutter parameters are
known and are useful as a benchmark for other detection approaches.

This section provides details of the Pfa and Pd calculations for a target present in clutter and
noise (interference). The first Sections 3.1-3.2 assume that the clutter and target distributions
are uncorrelated, such as would be the case in a sufficiently frequency agile radar. Section 3.1
considers a constant target present in Gaussian interference covering a ‘local area’. The solution
for the Pd is known as a Marcum model and was first described by Marcum [1960]. However,
the RCS of a target will typically fluctuate and Section 3.2 describes a method for representing
this fluctuation in terms of generalised Weinstock fluctuations, [Weinstock 1964] and Swerling
models, [Swerling 1960].

Some level of temporal correlation will typically be present on both the target and the speckle
component of the clutter. For the former, it is commonly assumed to be either totally correlated
or uncorrelated and fluctuate around a mean level with an exponential distribution (Swerling
cases 1 and 2) or chi-squared distribution (cases 3 and 4). However, an early study by Edrington
[1965] found that radar echoes from a number of aircraft were in the fact partially correlated and
that performance prediction models needed to be modified. Barton [1969] looked at the target
correlation and calculated an effective number of independent looks based on the correlation time
relative to the total observation time. With this approach, the Pd can then be determined using the
traditional solution for totally correlated targets. A subsequent study by Kanter [1986] then
derived the exact Pd for exponential fluctuating targets rather than with an effective number of
looks. Weiner [1988] then did the same for chi-squared fluctuating targets.

Regarding the speckle component, there are a number of approaches in the literature which can
be used to account for different levels of correlation. Ideally, an approach should be able to model
the ACF through its representation of the Doppler spectrum of the received signal, which is
related through a Fourier transform. The simplest method was presented by Farina et al. [1996]
and is based on an improvement factor which can be used to modify the required SIR in the Pd
calculation. However, it assumes a Gaussian Doppler spectrum and hence cannot be used to
model more complex spectra with components due to breaking waves and discrete spikes. A
second approach which is only suitable for exponential fluctuating targets was presented by Hou
& Morinaga [1988]. This result allows both partially correlated targets and speckle with exact
representations of their ACF’s, but suffers from numerical instabilities and is not generalised for
all Swerling target models. The final approach from the literature by Ward, Tough & Watts
[2013] (WTW) treats the speckle, thermal noise and target separately. By using an estimate of the
‘effective’ number of looks for the speckle, it can overcome the numerical problems of Hu and
Morinaga. While this method is useful, it becomes very computationally intensive as the CNR
gets higher and fails completely when there is only clutter present. This led to a modification by
Rosenberg & Bocquet [2013b] which overcomes this limitation by allowing any positive number
of looks for either the speckle or target. Thermal noise has also been included in this formulation,
with the caveat that it will be correlated with the speckle and is therefore not as accurate at low
CNR. A tradeoff is therefore proposed, where the WTW method is used for low CNR and the
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modification used for larger CNR. These algorithms are described in Section 3.3 with the last
Section 3.4 outlining how the models can be extended to a compound representation where the
local area is now augmented by a ‘global’ fluctuation. This ‘texture’ is assumed to be
uncorrelated and hence the results presented here may not be completely accurate for
scan-to-scan radars where a longer time between looks may result in a variation of the texture.

3.1 Detection with a constant target

The first model represents a target with a non-fluctuating or constant RCS present in Gaussian
interference and is known as a Marcum model or Swerling case 0. In the intensity domain, the
PDF for a single pulse is given by a Rice distribution, [Ward, Tough & Watts 2013],

P (z|x, pn, A) =
1

x+ pn
exp

(
−z +A2

x+ pn

)
I0

(
2A
√
z

x+ pn

)
(42)

where the target power is given by A2 and I0(·) is a modified Bessel function of the first kind,
order 0. For the following derivations, it is useful to define the local received signal and the target
power as being normalised to the interference power (i.e. the local SIR),

µ =
1

x+ pn

M∑
m=1

zm, (43)

s =
1

x+ pn

M∑
m=1

A2
m. (44)

where x and pn are the speckle and thermal noise means and M is the number of looks or non-
coherent averages. The PDF describing the interference is then given by,

P (µ) =
µM−1

Γ(M)
e−µ (45)

and the Pfa can be determined by calculating

Pfa(τ |M) =

∫ ∞
τ

P (µ)dµ

=
Γ (M, τ)

Γ(M)
(46)

where τ is the normalised threshold related to the ‘true’ threshold Y

τ =
Y

x+ pn
(47)

and Γ(M) = (M − 1)! and Γ(M, τ) is the upper incomplete gamma function which can be
evaluated for integer M using the following series [Gradshteyn & Ryzhik 1994, §3.351/2 and
§8.352/2]:

Γ (M, τ) =

∫ ∞
τ

µM−1e−µdµ

= Γ(M)e−τ
M−1∑
k=0

τk

k!
. (48)
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For the total received signal, the PDF becomes a multi-look Rice distribution,

P (µ|s,M) =
(µ
s

)(M−1)/2
exp (−(µ+ s)) IM−1 (2

√
µs)

= e−(µ+s)
(µ
s

)(M−1)/2 ∞∑
k=0

1

k!Γ(M + k)
(µs)(M−1+2k)/2

= e−(µ+s)
∞∑
k=0

1

k!Γ(M + k)
µM−1+ksk

=

∞∑
k=0

e−µµM+k−1

(M + k − 1)!

e−ssk

k!
(49)

where the Bessel function is expanded using the series [Gradshteyn & Ryzhik 1994, §8.445]:

IL(z) =
∞∑
k=0

1

k!Γ(L+ k + 1)

(z
2

)L+2k
. (50)

If the SIR for a constant target is given by

S =
M
〈
A2
〉

x+ pn
(51)

where 〈·〉 denotes the expectation. If K denotes the fluctuation parameter of a chi-squared
distributed target presented below, then the probability of detection for a constant target, Pd,K
(where K →∞) can be given in terms of the normalised threshold τ with s = S,

Pd,∞(τ |S,M) =

∫ ∞
τ

P (µ|S,M)dµ

=
∞∑
k=0

e−SSk

k!

1

(M + k − 1)!

∫ ∞
τ

e−µµM+k−1dµ

=
∞∑
k=0

e−SSk

k!
e−τ

M+k−1∑
m=0

τm

m!

=
∞∑
k=0

e−SSk

k!
e−τ

(
M−1∑
m=0

τm

m!
+
M+k−1∑
m=M

τm

m!

)

=

M−1∑
k=0

e−τ
τk

k!
+

∞∑
k=0

e−SSk

k!

M+k−1∑
m=M

e−τ
τm

m!

=

M−1∑
k=0

e−τ
τk

k!
+

∞∑
k=M

e−τ
τk

k!

(
1−

k−M∑
m=0

e−SSm

m!

)
(52)

where the relationship in Equation 48 was used to evaluate the integral and the manipulation of
the series makes use of the identity

∞∑
k=0

e−ττk

k!
= 1. (53)
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The series in Equation 52 is difficult to evaluate, but effective methods were devised by Shnidman
[Shnidman 1976, Shnidman 1989]. Pd,∞ can also be expressed in terms of the generalised Marcum
Q-function [Shnidman 1976],

Pd,∞(τ |S,M) = QM

(√
2MS,

√
2τ
)

(54)

where

QM (m,n) =
1

mM−1

∫ ∞
n

µM exp

(
−µ

2 +m2

2

)
IM−1(mµ)dµ. (55)

The solution for the Pfa in Equation 46 can be recovered by setting S = 0 in Equation 52. For
most radar targets of interest however, the target reflection will not be constant. The following
section looks at a generalisation of this model.

3.2 Detection with a fluctuating target

A target will typically fluctuate over the integration period and from scan to scan (different
integration periods). Shnidman [1995] describes four different fluctuation models including
chi-square, log-normal, Weibull and Ricean distributions. The chi-square distribution is the most
popular however as it can be used to represent the well known Swerling models. With this model,
the target fluctuation with parameter K is given by

P (s|S,K) =
sK−1

Γ(K)

(
K

S

)K
exp

(
−Ks
S

)
. (56)

To include this in the probability of detection calculation, it is multiplied with the target plus noise
PDF and then the product is integrated over the random variable s,

Pd,K(τ |S,M) =

∫ ∞
0

P (s|S,K)

∫ ∞
τ

P (µ|s,M)dµds

=

∫ ∞
0

P (s|S,K)Pd,∞(τ |s,M)ds. (57)

A general solution is given by Shnidman [1995],

Pd,K(τ |S,M) =
M−1∑
m=0

e−τ
τm

m!
+

∞∑
m=M

e−τ
τm

m!

×

[
1−

m−M∑
n=0

Γ(K + n)

n!Γ(k)

(
1

1 + S/K

)K ( S/K

1 + S/K

)n]
(58)

where the Pfa is identical to the non-fluctuating target case. This series is also difficult to evaluate,
but an effective method is given by Shnidman [1995].

There are also a number of special cases depending on the choice of the parameterK. For example,
when K → ∞ this equation reverts back to the constant target case from the previous section.
Other studies have looked at the region where 0 ≤ K ≤ 1, where the models are known as
Weinstock fluctuations, [Weinstock 1964]. These represent slowly fluctuating targets and have
been shown to accurately model the fluctuation from objects which are cylindrical in shape. Four
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other special cases of this model are when K = 1, M , 2 and 2M . These are known as the
Swerling models 1-4 and were originally proposed by [Swerling 1960] and detailed in the books
by [Meyer & Mayer 1973, Briggs 2004]. These models are able to capture the majority of target
RCS fluctuations and are popular due to their physical interpretation, either representing the target
fluctuation pulse to pulse or scan to scan, [Allen & Urkowitz 1993].

Examples of the four Swerling models are shown in Figure 8 for three values of the SIR. Cases 1
and 3 are clearly more spread out due to the larger number of scatterers being observed over the
slower observation time. Conversely, cases 2 and 4 have narrower distributions due to the faster
change of RCS. As the SIR increases, the distribution becomes more spread and shifts to the right.

Figure 8: Swerling model comparison for three different values of SIR: (—) case 1,(-.-) case 2,
(- -) case 3, (—) case 4, top: S = −5 dB, middle: S = 0 dB, bottom: S = 5 dB.

Swerling model - case 1, (K = 1)

The first two Swerling cases relate to targets with an exponential fluctuation. They represent
several independently fluctuating reflectors of approximately equal area. This would apply to
objects which are large compared to the radar wavelength (and not shaped too much like a sphere),
[Swerling 1960]. For the first case, a constant RCS is assumed during a single scan (group of
pulses) with changes from scan to scan. It is suitable for modelling targets viewed with a high
PRF and scan rate. The Pd solution is given by,

Pd,1(τ |S,M) =
Γ(M − 1, τ)

Γ(M − 1)
+

(
1 +

1

S

)M−1
×
(

1− Γ

(
M − 1,

τ

1 + (1/S)

)
/Γ(M − 1)

)
exp

(
− τ

1 + S

)
. (59)
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Swerling model - case 2, (K = M)

The Swerling case 2 also assumes the targets have an exponential fluctuation, but now with
independent fluctuations from pulse to pulse. It is suited to scenarios where targets are viewed
with a low PRF or when small changes in orientation cause significant changes in the illuminated
area. The latter can arise from reflections from a long thin object subjected to a high frequency
signal, [Meyer & Mayer 1973]. For this case, the Pd solution is given by,

Pd,M (τ |S,M) = 1− Γ

(
M,

τ

1 + S/M

)
/Γ(M). (60)

Swerling model - case 3, (K = 2)

The target models defined by cases 3 and 4 represent a chi-square distribution with 4 degrees of
freedom and hence there is not as much randomness as the first two cases. The model effectively
represents one large reflector combined with a number of small reflectors or just one large reflector
subject to small changes in orientation. Case 3 represents a target with constant RCS during a
single scan with changes from scan to scan. The Pd solution is given by,

Pd,2(τ |S,M) =



exp (−Cτ)

(1− C)M−2

(
1− (M − 2)C

(1− C)
+ Cτ

)
, M ≤ 2

Γ(M − 1, τ)

Γ(M − 1)
+
τM−1e−CτC

(M − 2)!
+

e−Cτ

(1− C)M−2

×
(

1− (M − 2)C

(1− C)
+ Cτ

)(
1− Γ(M − 1, τ(1− C))

Γ(M − 1)

)
, otherwise

where
C =

1

1 + S/2
. (61)

Swerling model - case 4, (K = 2M)

This case is similar to the previous but now represents a target with independent fluctuations from
pulse to pulse. The Pd solution is given by,

Pd,2M (τ |S,M) = DN
M∑
k=0

M !

k!(M − k)!

(
1−D
D

)M−k Γ(2M − k,Dτ)

Γ(2M − k)
(62)

where
D =

1

1 + S/(2M)
. (63)
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3.3 Detection in correlated clutter

In many radar systems, there will be correlation between pulses. There have been a number
of different attempts to model the correlation of both the clutter and the target, but by far the
most useful is the method by Ward, Tough & Watts [2013, Section 12.4] (WTW). The technique
accounts for the correlation by defining 1 ≤ L ≤ M as a measure of the effective number of
independent clutter samples. L is not necessarily an integer, and ranges from 1 for completely
correlated clutter up to the number of pulses M for completely uncorrelated clutter. Section 3.3.1
describes two definitions of L which have been used in the literature. Section 3.3.2 then presents
the full derivation of the WTW detection method with implementation details in Section 3.3.3.
The final Section 3.3.4 then shows how the WTW detection method can be supplemented with a
different calculation method when the CNR is high.

3.3.1 Effective number of looks

The WTW detection method requires a way to relate the ACF to an ‘effective number of looks’.
There are two alternative methods which have been proposed in the literature. The first is by
Barton [1969] who just considered the ratio of the correlation time to the observation time. Kanter
[1986] derived the effective number of looks from this ratio in terms of the correlation value, ρ̃,

L′ = min [M, 1− (M − 1) ln(ρ̃)] . (64)

where 0 ≤ ρ̃ ≤ 1 is a single parameter used to relate the de-correlation time model to a correlation
value. This can be derived from a Gaussian ACF. Consider the discretised ACF for the nth pulse,
where the sample rate is the PRF, fPRF

ρn = exp

[
− n2

f2PRFT
2

]
= ρ̃n

2
. (65)

The second method is the ratio of the squared mean to the variance for correlated gamma random
variables and relates to the ACF directly. The result was originally obtained by Kotz & Neumann
[1963] and later derived independently by Kanter [1986]. If the values of the ACF are represented
by ρn, the effective number of looks L ≤M is given by

L =
M2

M + 2
∑M−1

n=1 (M − n)|ρn|2
. (66)

This expression has a better statistical justification and is more general since all the correlation lags
are used. For comparison, Figure 9 shows the number of effective looks for each case using the
Gaussian ACF. Although both offer similar results, the second expression has a smoother response
as the correlation increases.
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Figure 9: Effective number of looks comparison with varying correlation level and number of
looks, M : left - L′, right - L.

3.3.2 Ward, Tough and Watts calculation method

The WTW calculation method is described in [Ward, Tough & Watts 2013, Section 12.4] and
provides a way of calculating the detection probability for both uncorrelated and correlated clutter
with independent noise and target returns. The algorithm introduces the quantity β as the target
plus clutter summed over L independent looks. If the SIR parameters s and S are now normalised
by only the noise power pn

s̃ =
1

pn

M∑
m=1

A2
m, (67)

S̃ =
M
〈
A2
〉

pn
(68)

and the speckle mean power, x is re-normalised according to

α =
Mx

Lpn
(69)

then the probability density function of β is an L pulse Rice distribution [Ward, Tough & Watts
2013, Equation 12.33]

P (β|s̃, α, L) =
1

α

(
β

s̃

)(L−1)/2

exp

(
− s̃+ β

α

)
IL−1

(
2
√
s̃β

α

)
= exp

(
− s̃+ β

α

) ∞∑
k=0

1

k!Γ(L+ k)
s̃kβL−1+kα−L−2k (70)

where the Bessel function was expanded using Equation 50. With this normalisation, the target,
clutter speckle and noise returns are given by

µ̃ =
1

pn

M∑
m=1

zm (71)
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with the PDF given by [Ward, Tough & Watts 2013, Equation 12.36]:

P (µ̃|β,M) =

(
µ̃

β

)(M−1)/2
e−(µ̃+β)IM−1

(
2
√
µ̃β
)

= e−(µ̃+β)
(
µ̃

β

)(M−1)/2 ∞∑
k=0

1

k!Γ(M + k)
(µ̃β)(M−1+2k)/2

= e−(µ̃+β)
∞∑
k=0

1

k!Γ(M + k)
µ̃M−1+kβk

=
∞∑
k=0

e−µ̃µ̃M+k−1

(M + k − 1)!

e−ββk

k!
. (72)

Once the fluctuations due to β and s̃ are included, the PDF then becomes

P (µ̃|M,L, α, S̃,K) =

∫ ∞
0

∫ ∞
0

P (µ̃|β,M)P (β|s̃, α, L)P (s̃|S̃,K)dβds̃ (73)

where the target fluctuation, P (s̃|S̃,K) is given in Equation 56. The solution of this PDF for
the cases of correlated clutter and noise and a target present in correlated clutter can be found in
Appendix A. It is also not immediately obvious that this PDF is equivalent to the uncorrelated
case when the effective number of looks L equals the number of pulses M . Appendix B presents
a consistency check for a non-fluctuating target which verifies that these two PDFs are in fact
equivalent.

Calculating of the probability of detection therefore requires the following integral to be evaluated

Pd(τ̃ |β,M) =

∫ ∞
τ̃

P (µ̃|M,L, α, S̃,K)dµ̃

=

M−1∑
k=0

e−τ̃
τ̃k

k!
+

∞∑
k=M

e−τ̃
τ̃k

k!

(
1−

k−M∑
m=0

〈
e−ββm

m!

〉)
(74)

where the threshold, τ̃ is now normalised by only the noise power and does not depend on the
mean clutter power x.

τ̃ = Y/pn. (75)

For the general fluctuating target case, the expectation in Equation 74 can be expanded as [Ward,
Tough & Watts 2013, Equation 12.38 and 12.39]〈

e−β
βm

m!

〉
=

∫ ∞
0

∫ ∞
0

e−β
βm

m!
P (β|s̃, α, L)P (s̃|S̃,K)ds̃dβ

=

∫ ∞
0

exp

(
−βα+ 1

α

)(
K

S̃

)K ∞∑
k=0

(k +K − 1)!

m!k!Γ(L+ k)Γ(K)

(
αS̃

S̃ + αK

)k+K
× βL+m+k−1α−L−2kdβ (76)

where the definite integral [Gradshteyn & Ryzhik 1994, §3.351/3] has been used:∫ ∞
0

xme−axdx = m!a−m−1. (77)
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The second integral can then be evaluated as

〈
e−β

βm

m!

〉
=

(
K

S̃

) ∞∑
k=0

(k +K − 1)!(L+m+ k − 1)!

m!k!Γ(L+ k)Γ(K)

(
αS̃

S̃ + αK

)k+K (
α

α+ 1

)L+m+k

α−L−2k

=
αm

m!(α+ 1)L+m

(
αK

S̃ + αK

)K ∞∑
k=0

(k +K − 1)!(L+m+ k − 1)!

k!Γ(L+ k)Γ(K)

(
S̃

(S̃ + αK)(α+ 1)

)k

=
(L+m− 1)!

m!(L− 1)!

αm

(α+ 1)L+m

(
αK

S̃ + αK

)K
×
∞∑
k=0

Γ(k +K)Γ(L+m+ k)Γ(L)

k!Γ(L+ k)Γ(K)Γ(L+m)

(
S̃

(S̃ + αK)(α+ 1)

)k

=
(L+m− 1)!

m!(L− 1)!

αm

(α+ 1)L+m

(
αK

S̃ + αK

)K
2F1

(
K,L+m;L;

S̃

(S̃ + αK)(α+ 1)

)
(78)

where the hypergeometric function 2F1 is obtained from [Gradshteyn & Ryzhik 1994, §9.14 and
§9.131/1]:

2F1(K,L+m,L, η) =
∞∑
k=0

Γ(K + k)Γ(L+m+ k)Γ(L)

k!Γ(K)Γ(L+m)Γ(L+ k)
ηk

=
∞∑
k=0

(K)k(L+m)k
k!(L)k

ηk

=
1

(1− η)K
2F1

(
K,−m,L, η

η − 1

)
(79)

with η =
S̃

(S̃ + αK)(α+ 1)
and (·)k is the Pochhammer symbol, (x)k = Γ(x + k)/Γ(x). With

this manipulation, Equation 78 can be written as

〈
e−β

βm

m!

〉
=

(L+m− 1)!

m!(L− 1)!

αm

(α+ 1)L+m

(
K(α+ 1)

S̃ +K(α+ 1)

)K
2F1

(
K,−m;L;

−S̃
α(S̃ +K(α+ 1))

)
.

(80)

If the recurrence relation for the hypergeometric function [Gradshteyn & Ryzhik 1994, §9.137/3]
is compared with the recurrence relation for the function Ψ [Ward, Tough & Watts 2013, Equation
12.40], it can be established that Ψ(m,L,K, z) = 2F1(K,−m,L,−z).

For the constant target case, P (β|S̃, α, L) is obtained from Equation 70 with s̃ = S̃ and the
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expectation in Equation 74 becomes〈
e−β

βm

m!

〉
=

∫ ∞
0

e−β
βm

m!
P (β|S̃, α, L)dβ

=

∫ ∞
0

exp

(
−βα+ 1

α

) ∞∑
k=0

S̃ke−S̃/α

m!k!Γ(L+ k)
βL+m+k−1α−L−2kdβ

=

∞∑
k=0

(L+m+ k − 1)!

m!k!Γ(L+ k)
S̃ke−S̃/α

(
α

α+ 1

)L+m+k

α−L−2k

=
(L+m− 1)!

m!(L− 1)!

αm

(α+ 1)L+m
e−S̃/α

∞∑
k=0

Γ(L)Γ(L+m+ k)

k!Γ(L+ k)Γ(L+m)

(
S̃

α(α+ 1)

)k

=
(L+m− 1)!

m!(L− 1)!

αm

(α+ 1)L+m
e−S̃/α

∞∑
k=0

(L+m)k
k!(L)k

(
S̃

α(α+ 1)

)k

=
(L+m− 1)!

m!(L− 1)!

αm

(α+ 1)L+m
e−S̃/α1F1

(
L+m,L;

S̃

α(α+ 1)

)

=
(L+m− 1)!

m!(L− 1)!

αm

(α+ 1)L+m
e−S̃/(α+1)

1F1

(
−m,L;− S̃

α(α+ 1)

)
(81)

where 1F1 is the confluent hypergeometric function and the relationship [Gradshteyn & Ryzhik
1994, §9.212/1] has been used:

1F1(α, γ; z) = ez1F1(γ − α, γ;−z). (82)

If the recurrence relation for the function Φ [Ward, Tough & Watts 2013, Equation 12.42] is
compared with the recurrence relation for the confluent hypergeometric function [Gradshteyn &
Ryzhik 1994, §9.212/4], it can be established that Φ(m,L, z) = 1F1(−m,L;−z).

This result can also be expressed in terms of a Laguerre polynomial by using the relationship
[Gradshteyn & Ryzhik 1994, §8.972/1]:

Lnm(x) =

(
m+ n
m

)
1F1(−m,n+ 1;x). (83)

With this relationship, Equation 81 can be written as〈
e−β

βm

m!

〉
=

αm

(α+ 1)L+m
e−S̃/(α+1)LL−1m

(
− S̃

α(α+ 1)

)
. (84)

Then the identity [Gradshteyn & Ryzhik 1994, §8.975/1]

∞∑
m=0

Lnm(x)zm = (1− z)−n−1 exp

(
xz

z − 1

)
(85)

can be used to verify that
∞∑
m=0

〈
e−ββm

m!

〉
= 1. (86)
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3.3.3 Evaluating the detection probability

Before evaluating the detection probability, Chernoff bounds [Shnidman 1976, Wozencraft &
Jacobs 1965] are first calculated to check whether the result can be approximated as either 0 or 1.
Otherwise, the detection probability in Equation 74 can be evaluated by re-writing it as the sum
of the product of two series, Am and Cm:

Pd(τ̃ |β,M) =

m1∑
m=m0

AmCm (87)

where m0 and m1 are the lower and upper summation limits. Details of both the Chernoff bounds
and the upper and lower limits are given in Appendix C. The first series in the sum is given by

Am0 = exp (m0 ln τ̃ − τ̃ − ln Γ(m0 + 1)) ,

Am+1 = τ̃Am/(m+ 1)
(88)

and does not need to be recalculated for different values of x since the threshold τ̃ is independent
of the clutter power x. The second series is

Cm =


1, m < M

1−
m−M∑
k=0

Bk, m ≥M
(89)

where Bk denotes the expectation

Bk =

〈
e−ββk

k!

〉
. (90)

The coefficients for the two target cases in Equations 80 and 81 can be evaluated using recurrence
relations [Ward, Tough & Watts 2013]. For the fluctuating target in Equation 80,

B0 =
1

(α+ 1)L

(
K(α+ 1)

S̃ +K(α+ 1)

)K
,

B1 = L
α

α+ 1

(
1 +

Kz̃

L

)
B0,

Bk+1 =
1

k + 1

α

α+ 1

(
(L+ 2k + (k +K)z̃)Bk − (L− 1 + k) (z̃ + 1)

(
α

α+ 1

)
Bk−1

) (91)

where z̃ =
S̃

α
(
S̃ +K(α+ 1)

) . For the constant target case in Equation 81,

B0 =
1

(α+ 1)L
exp

(
− S̃

α+ 1

)
,

B1 = L
α

α+ 1

(
1 +

Z̃

L

)
B0,

Bk+1 =
1

k + 1

α

α+ 1

((
L+ 2k + Z̃

)
Bk − (L− 1 + k)

(
α

α+ 1

)
Bk−1

)
(92)
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where Z̃ =
S̃

α(α+ 1)
. Even with high precision arithmetic, the series in Equations 91 and 92

are prone to underflow for large S̃/α. To avoid this, a method suggested in Section IV-A of
[Shnidman 1995] is used. First ln(B0) is calculated separately and stored in a variable v0. The
series is started at 1 and each term is checked to see if it exceeds e25. If it does, all terms are
divided by e25 and 25 is added to v0. Once all required terms have been computed, the sum of the
series is multiplied by exp(v0). In the constant target case the recurrence for Bk is the g-function,
and in the fluctuating target case the h-function, both defined by Shnidman [1995]. However the
application of these functions is different here. The clutter model of [Shnidman 1995] is compared
with the compound K distribution in [Shnidman 2005].

Note that this calculation method can also be used to calculate the Pfa by setting S̃ = 0 and using
the coefficients:

B0 =
1

(α+ 1)L
,

Bk+1 =
L+ k

k + 1

α

α+ 1
Bk.

(93)

3.3.4 Detection at high CNR

As the CNR increases, the method of Ward, Tough & Watts [2013] becomes computationally
intensive and fails completely when there is only clutter present. The method of [Shnidman 1976,
Shnidman 1989, Shnidman 1991] can be used if it is modified for a real effective number of
looks L ≥ 1 in place of an integer number M . Consider a constant target where the target plus
interference PDF is described by Equation 49. The probability of detection is then given by

Pd(τ |x, L) =

∫ ∞
τ

P (µ|s, L)dµ

=
∞∑
k=0

e−ssk

k!

1

Γ(L+ k)

∫ ∞
τ

e−µµL+k−1dµ

=
∞∑
k=0

e−ssk

k!

Γ(L+ k, τ)

Γ(L+ k)
. (94)

If L = l + δ, where l = floor(L), then using an identity for the incomplete gamma function
[Gradshteyn & Ryzhik 1994, §8.356/5]:

Pd(τ |x, l, δ) =

∞∑
k=0

e−ssk

k!

(
Γ(δ + 1, τ)

Γ(δ + 1)
+

l+k−2∑
n=0

e−ττ δ+n+1

Γ(δ + n+ 2)

)
. (95)
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Then by making the substitution m = δ + n+ 1, where the index m is a real number, gives

Pd(τ |x, L, δ) =
∞∑
k=0

e−ssk

k!

(
Γ(δ + 1, τ)

Γ(δ + 1)
+

L+k−1∑
m=δ+1

e−ττm

Γ(m+ 1)

)

=
∞∑
k=0

e−ssk

k!

(
Γ(δ + 1, τ)

Γ(δ + 1)
+

L−1∑
m=δ+1

e−ττm

Γ(m+ 1)
+
L+k−1∑
m=L

e−ττm

Γ(m+ 1)

)

=
Γ(δ + 1, τ)

Γ(δ + 1)
+

L−1∑
m=δ+1

e−ττm

Γ(m+ 1)
+

∞∑
k=0

e−ssk

k!

L+k−1∑
m=L

e−ττm

Γ(m+ 1)

=
Γ(δ + 1, τ)

Γ(δ + 1)
+

L−1∑
m=δ+1

e−ττm

Γ(m+ 1)
+

∞∑
k=0

e−ττm

Γ(m+ 1)

(
1−

m−L∑
k=0

e−ssk

k!

)
. (96)

This expression differs from the original summation in Equation 52 in two respects: the first term
is new and the index m is a real number rather than an integer, beginning at m = δ + 1 and
incremented by 1 for each successive term in the sum. When L is an integer, δ = 0 and the first
term is just e−τ as in the original series. For large τ the original sum must be started at some term
n0 > 0 to avoid underflow and loss of significance (see Appendix C.2 for details). In this case the
first term in Equation 96 is negligible and the sum is started at m0 = n0 + δ.

The same modification can easily be applied to the series in Equation 58 for a fluctuating target.
Note that the target fluctuation parameter K is the same as for detection in uncorrelated clutter, so
for example K = M for a Swerling 2 target in both cases. Figure 10 shows the effect of varying
the clutter to noise ratio on the probability of detection for a Swerling 2 target in exponentially
distributed clutter with M = 10 and L = 1.5. The dashed black line is calculated using the
method described here for clutter only (infinite CNR) and the other curves are calculated with the
method of Ward, Tough and Watts.

To determine the optimal CNR for switching between methods, the maximum SIR error between
the WTW and the modified Shnidman method has been measured. As described in the following
section, both of these calculation methods can be extended to compound distributions. The Pareto
distribution has been used to model the clutter with a shape of 3 and the number of looks, M = 5.
To establish the worst error, the speckle is totally correlated with ρ̃ = 1 and hence L = 1. Fig.
11 shows the maximum SIR error and the mean run time averaged over 3 runs as a function of
the CNR. As expected, the SIR error is 0.7 dB when the CNR is at -10 dB due to the incorrect
modelling of the correlated thermal noise. However, this quickly reduces and becomes less than
0.1 dB at 0 dB. While the WTW detection method is more accurate, it is far more computationally
intensive. At the same transition point when the CNR is 0 dB, the run time is around 10 s and
increases to 70 s at 10 dB. For comparison, the mean run time for the modified Shnidman algorithm
with any value of CNR is 0.14 s. From this result, a realistic transition point between algorithms
would be at 0 dB or when the clutter starts to dominate the interference.
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Figure 10: Pd with different clutter to noise ratios for a Swerling 2 target in exponentially
distributed clutter and noise after non-coherent integration of 10 pulses with a Pfa
of 10−4. The effective number of independent clutter samples is 1.5.
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3.4 Detection in compound clutter

Thus far the clutter power x has been treated as a constant. In the compound model x is a random
variable with a PDF Px(x). The global probability of detection P ′d is obtained by integrating the
local Pd over this PDF. The effect of this ‘smoothing’ is to degrade the non-coherent integration
by up to 20 dB when compared to homogeneous Gaussian clutter [Allen & Urkowitz 1993].

With this extension, the local SIR, S is now replaced by a global SIR, S′ and the local threshold.
τ by a global threshold, τ ′,

S′ =
M
〈
A2
〉

pc + pn
, (97)

τ ′ =
Y

pc + pn
(98)

These can both be rewritten in terms of the short scale definitions,

S =
S′(pc + pn)

x+ pn
, (99)

τ =
τ ′(pc + pn)

x+ pn
. (100)

The Pd solution is determined by multiplying the PDF of the mean speckle power, Px(x) and then
integrating over x,

P ′d,K(τ ′|S′,M) =

∫ ∞
0

Px(x)Pd,K

(
τ ′(pc + pn)

x+ pn
|S
′(pc + pn)

x+ pn
,M

)
dx. (101)

To the authors’ knowledge, there is no documented analytic solution to this integral and numerical
integration must be used for evaluation as described in Section 2.3 of [Bocquet 2012]. Different
target fluctuations can be modelled by changing the value of K as in the previous section. The
solution for P ′d can be expressed in terms of τ ′,S′ and the CNR, C ′. If the integration variable is
redefined as u = x/pc,

P ′d,K(τ ′|S′,M,C ′) =

∫ ∞
0

1

pc
Px

(
x

pc

)
Pd,K

(
τ ′(C ′ + 1)

x/pcC ′ + 1
| S
′(C ′ + 1)

x/pcC ′ + 1
,M

)
dx

=

∫ ∞
0

Pu(u)Pd,K

(
τ ′(C ′ + 1)

uC ′ + 1
|S
′(C ′ + 1)

uC ′ + 1
,M

)
du (102)

where Px(u) = 1/pcPx(x/pc) and dx = pcdu.

The probability of false alarm can be calculated similarly,

P ′fa,K(τ ′|M,C ′) =
1

Γ(M)

∫ ∞
0

Pu(u)Γ

(
M,

τ ′(C ′ + 1)

uC ′ + 1

)
du (103)

where again numerical integration can be used for evaluation.

For the WTW method, the same procedure is applied, except that the parameters S̃ and τ̃ are
normalised by the noise power alone and hence are independent of x. If these parameters are
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renormalised by the sum of clutter and noise powers we obtain

S̃′ =
S̃

C ′ + 1
, (104)

τ̃ ′ =
τ̃

C ′ + 1
. (105)

The dependence on x is only through the parameter α,

α =
Mx

Lpn
=
M

L
uC ′. (106)
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4 Detection performance analysis

This section presents target detection performance results using the empirical models from Section
2. In these results, the Pareto distribution acts as a proxy for the data as it has been shown to
match extremely well, [Rosenberg & Bocquet 2013a]. By accounting for temporal correlation
and comparing the differences in detection performance between the K and Pareto distributions,
this analysis also highlights the importance of using the correct model when assessing detection
performance. The outcome of this section is an accurate description of the detection performance
given a variety of target fluctuation models, collection geometries and environmental conditions.

As a basis for the modelling results, a common set of radar parameters are described in Table
6. The modelled outputs described in Section 2.3.2 are then shown in Tables 7-9 for a variety
of geometries, polarisations and sea-states. The trends for the shape parameters include a linear
increase with grazing angle, an increase with sea-state and a maximum in the upwind direction.
Also, due to the effect of the platform motion, the overall decorrelation time, T ′, from Equation 29
is typically smaller than the temporal decorrelation, T , from Equation 30. The clutter correlation
is determined using the overall decorrelation time with the Gaussian model in Equation 65 and the
effective number of looks is determined with Equation 66.

The first section 4.1 shows the false alarm rate for the K and Pareto distributions. Section 4.2 then
describes the Pd results for a selection of fluctuating target models, false alarm rates, geometry
and sea-states. This then leads into the final Section 4.3 which looks at the minimum detectable
target RCS.
Table 6: Common simulation input parameters

Parameters Symbol Value
Centre frequency fc 10 GHz
Bandwidth B 200 MHz
Pulse width Tp 5 µs
PRF fPRF 500 Hz
Peak transmitted power Pt 20 kW
Antenna gain (one way) G 35 dB
Combined losses La + Ls 7 dB
Noise figure Fn 4 dB
Reference temperature T0 290 K
Azimuth beam width two-way 3 dB φ3dB 1◦

Doppler spectrum mean f0 0 Hz
Platform velocity vp 100 m/s
Slant range R 20 km
Elevation / grazing angle θ 30◦

Azimuth angle φ 0◦

Wind swell angle ψ 0◦

Sea-state S 3
Number of looks M 10
Probability of false alarm Pfa 10−5

Probability of detection Pd 0.5
Polarisation HH
Target fluctuation model Swerling case 2

UNCLASSIFIED
35



DST-Group–TR–3193
UNCLASSIFIED

Table 7: Calculated model parameters for varying azimuth angle with 30◦ grazing, sea-state 3.

Polarisation Azimuth angle CNR (dB) ν a T (ms) T ′ (ms)
Upwind 14.60 2.62 4.10

HH Crosswind 9.23 1.51 2.86 10.11 4.66
Downwind 10.68 3.29 4.53

Upwind 3.22 7.18 8.15
HV Crosswind 0.63 1.36 2.53 11.43 4.78

Downwind 2.68 5.62 7.91
Upwind 20.92 31.77 34.94

VV Crosswind 15.73 16.52 16.55 12.75 4.86
Downwind 19.79 36.07 37.12

Table 8: Calculated model parameters for varying grazing angle with sea-state 3, upwind
direction.

Polarisation Grazing angle CNR (dB) ν a T (ms) T ′ (ms)
20◦ 10.16 0.60 2.37 4.37

HH 30◦ 14.60 2.62 4.10 10.11 4.66
45◦ 21.61 11.40 14.05 5.43
20◦ 1.27 3.24 4.20 4.46

HV 30◦ 3.32 7.18 8.15 11.43 4.78
45◦ 6.74 15.88 19.20 5.61
20◦ 18.40 30.60 33.70 4.53

VV 30◦ 20.92 31.77 34.94 12.75 4.86
45◦ 25.05 32.99 36.23 5.75

Table 9: Calculated model parameters for varying sea state with 30◦ grazing, upwind direction.

Polarisation Sea state CNR (dB) ν a T (ms) T ′ (ms)
1 5.96 0.42 2.37 14.22 4.98

HH 3 14.6 2.62 4.10 10.11 4.66
6 20.1 4.13 5.15 3.65 3.00
1 −6.40 0.37 3.05 14.94 4.96

HV 3 3.32 7.18 8.15 11.43 4.78
6 9.45 10.82 10.25 5.74 3.88
1 11.32 22.07 23.06 15.63 4.98

VV 3 20.92 31.77 34.94 12.75 4.86
6 26.98 29.92 32.17 7.83 4.36

4.1 Probability of false alarm

The probability of false alarm is related to the CCDF as shown in Equation 39. In a detection
scheme, the desired Pfa is specified and the threshold must be found by inverting this equation.
Using the parameters above, Figure 12 shows a comparison of Pfa for the K and Pareto
distributions. A range of looks, M (non-coherent sum of pulses) has also been shown to
demonstrate the effect of correlation.
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There is a clearly a big difference in the HH and HV results with the K-distribution having a
lower threshold by approximately 5 dB and 2 dB respectively at 10−5, while there is only a minor
difference in the VV channel. The effect of non-coherently integrating pulses is to reduce the
threshold. This effect is more pronounced in the VV polarisation where the threshold is reduced
by 6 dB with 50 pulses integrated.
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Figure 12: Pfa comparison with number of looks: (—) K, (- -) Pareto.

4.2 Probability of detection

Once a Pfa is chosen and the threshold is found, the detection probability, Pd can be calculated as
a function of the Signal to Interference Ratio (SIR). The next set of results in Figures 13-17 show
variations in the target model, number of looks, geometry and sea-state.

The target fluctuation models can all be derived from the chi-squared distribution model in
Equation 56. A non-fluctuating Marcum target model is found when K → ∞. Using the Pareto
distribution, the Pd result is shown along the top row of Figure 13 for M = 1, 10 and 50 looks
and a Pfa of 10−5. As the number of looks increases, the curve shifts to the left and the required
SIR for a contant Pd is reduced. The Swerling fluctuation models 1 and 2 refer to the cases where
K = 1 and K = M and the target model becomes an exponential distribution. Similarly, the
Swerling models 3 and 4 refer to a chi-squared distribution with K = 2 and K = 2M . To
account for target correlation, an effective value B ≤M can be determined using the relationship
in Equation 66 with an appropriate target ACF. For targets with an exponential distribution, the
fluctuation parameter is related by K = B, while for chi-squared distributions, the relationship is
K = 2B. If a Gaussian ACF is assumed for the target as in Equation 65, then the detection
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performance can be calculated as a function of the target correlation, ρt(n) = ρ̃n
2

t for
n = 0, . . . ,M − 1. For ρ̃t = 0, the target is uncorrelated and B = 1, while ρ̃t = 1 implies total
correlation and B = M . Figure 13 shows a comparison for both exponential and chi-squared
target models as the number of looks increases. The increasing number of looks has again shifted
the curves to the left, while an increasing target correlation reduces the slope of the curve. In all
cases, the chi-squared result has a slightly steeper slope than the exponential fluctuation. Since
the target correlation cannot be known in advance, only the uncorrelated exponential fluctuation
(Swerling 2) model is used for the remainder of these comparisons. Table 10 shows the minimum
required SIR for a Pd = 0.5.

Using a model also allows us to extrapolate down to lower Pfa levels than could be used in a
real detection scheme. The result in Figure 14 shows the K and Pareto distribution results for a
Pfa of 10−4, 10−5 and 10−6. For both the HH and HV polarisations, there is a clear difference
between the two distribution models which increases as the Pfa reduces. For the HH polarisation,
the difference in the SIR at a Pd of 0.5 is up to 5.4 dB, while this difference is reduced for the
cross-pol polarisation and almost zero for VV. Table 11 shows the required SIR for each result
measured at a Pd of 0.5.

The next three results show a comparison with geometry and sea-state. Figure 15 first shows the
variation in azimuth direction. The biggest variation between the K and Pareto distributions is
found for HH and HV crosswind directions where the SIR difference is up to 7.4 dB. There is little
difference in the VV polarisation, where the Pareto matches the K distribution result. Table 12
shows the required SIR for each result measured at a Pd of 0.5.

Figure 16 shows a comparison of 20◦, 30◦ and 45◦ grazing. The biggest difference between the
distributions is found in the HH polarisation where the SIR difference is up to 5.1 dB for 20◦

grazing. The mismatch is reduced for the VV polarisation and also when the grazing angle gets
higher. Table 13 shows the required SIR for each result measured at a Pd of 0.5.

The final result in Figure 17 shows the variation in sea-state. The largest mismatch of 5.1 dB
is found for the lowest sea-state in the HH polarisation. The mismatch reduces as the sea-state
increases and is very small for the VV polarisation. For the lowest sea-state, the CNR for the
HV channel is very low and both distributions are approximately exponential giving the same
performance results. Table 14 shows the required SIR for each result measured at a Pd of 0.5.

Table 10: Required SIR (dB) at a Pd of 0.5. Variation in target model and number of looks
corresponding to Figure 13.

M 1 10 50
Marcum 16.66 14.54 13.50

Exponential, ρt = 1 (Swerling 1) 18.23 16.11 15.07
Exponential, ρt = 0 (Swerling 2) 18.23 14.67 13.51
Chi-squared, ρt = 1 (Swerling 3) 17.40 15.28 14.24
Chi-squared, ρt = 0 (Swerling 4) 17.40 14.60 13.50
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Figure 13: Pd variation with target model and number of looks. Variation with target correlation:
ρ̃t: (—) 0, (—) 0.5, (—) 0.9, (—) 1.
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Figure 14: Pd variation with polarisation and false alarm rate: (—) K, (—) Pareto.
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Table 11: Required SIR (dB) at a Pd of 0.5. Variation in false alarm rate corresponding to Figure
14.

Pol.
Pfa = 10−4 Pfa = 10−5 Pfa = 10−6

K Pareto K Pareto K Pareto
HH 9.37 11.99 10.71 14.67 11.82 17.24
HV 6.76 7.61 7.88 9.20 8.82 10.66
VV 6.10 6.16 7.10 7.22 7.94 8.11

Table 12: Required SIR (dB) at a Pd of 0.5. Variation in azimuth angle corresponding to Figure
15.

Pol.
Upwind, φ = 0◦ Crosswind, φ = 90◦ Downwind, φ = 180◦

K Pareto K Pareto K Pareto
HH 10.71 14.67 11.80 18.16 10.03 13.65
HV 7.88 9.20 10.28 17.63 8.11 9.15
VV 7.10 7.22 7.66 8.28 7.01 7.16
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Figure 15: Pd variation with polarisation and azimuth angle: (—) K, (—) Pareto.
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Table 13: Required SIR (dB) at a Pd of 0.5. Variation in grazing angle corresponding to Figure
16.

Pol.
θ = 20◦ θ = 30◦ θ = 45◦

K Pareto K Pareto K Pareto
HH 14.45 20.89 10.71 14.67 8.40 8.91
HV 8.53 12.27 7.88 9.20 7.75 7.96
VV 6.94 7.07 7.10 7.22 7.51 7.61

Table 14: Required SIR (dB) at a Pd of 0.5. Variation in sea-state corresponding to Figure 17.

Pol.
S = 1 S = 3 S = 6

K Pareto K Pareto K Pareto
HH 15.24 20.31 10.71 14.67 8.94 12.50
HV 14.93 14.93 7.88 9.20 7.48 8.69
VV 7.36 7.36 7.10 7.22 6.89 7.06

4.3 Minimum detectable target RCS

The final section looks at the the minimum detectable point target RCS for a given set of radar
parameters and a desired Pfa and Pd. These can be related using the radar range equation as it
applies to both the target and the sea-clutter. For the sea-clutter, the mean power was given in
Equation 1. For the mean target power,

ps =
PtG

2λ2cσtTpB

(4π)3R4LaLs
(107)

where σt is the effective target RCS inclusive of any propagation effects. To determine the
minimum detectable target RCS, σt,min, the relationship for the SIR can be used:

s =
ps

pc + pn
. (108)

If this relationship is then written in terms of the minimum detectable target RCS, σt,min,

σt,min = s0,min

(
σc +

kT0Fn(4π)3R4LaLs
PtG2λ2cTp

)
(109)

where s0,min is the minimum required SIR. Using the parameters given above, Figure 18 shows the
minimum SIR and the corresponding minimum target RCS for each polarisation as it varies with
grazing angle. Also shown in both results is the noise limited case (pc = 0) which is constant at
3 dB for the minimum SIR and -14 dB for the minimum target RCS. For the lower grazing angles
in the HH and HV channels, there is a large difference between the K and Pareto distributions,
which reduces as the grazing angle increases. The two distributions give almost identical results
for the VV channel. In terms of detectability, the Pareto result shows that the HV polarisation has
the smallest target RCS, then VV and HH.
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Figure 18: Minimum required SIR (left) and minimum detectable target RCS (right) with M = 10
looks and Pfa = 10−5. Other parameters given in Table 6: (—) K, (—) Pareto, (—)
noise limited case.
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5 Conclusions and future work

Parametric modelling is a useful tool to predict a radar’s target detection performance given a
statistical description of the environment. This report summarised the target detection
performance of an X-band surface surveillance radar operating at medium grazing angles in the
maritime environment. A number of different detection scenarios were explored with variations
in the collection geometry, sea-state and polarisation. Due to its good fit to the Ingara sea clutter
data, the Pareto distribution was used as a proxy for the data with the K-distribution results
showing the mismatch that would be expected in a detection scenario. The overwhelming
conclusion from this report is that the choice of model is critical to accurately determine the
detection performance.

These scenarios required a number of parameter models to relate the radar and environmental
characteristics to the appropriate mean backscatter and the distribution shape values. Appropriate
models were therefore presented along with the equations used to determine the performance of
different fluctuating targets in both uncorrelated and correlated clutter. A full derivation of the
Ward, Tough and Watts detection algorithm for correlated clutter was presented with a
modification to make the technique robust for high CNRs.

The sea-clutter and target detection models were then used to analyse the probability of false alarm,
probability of detection and the minimum detectable RCS for a given set of radar parameters.
The Pfa results showed a a big difference in the horizontal polarisations with the K distribution
underestimating the threshold by up to 5 dB, while there was only a minor difference in the VV
channel. The effect of non-coherently integrating pulses was to reduce the threshold.

A comparison of the target fluctuation models revealed that the chi-squared distribution model
has a slightly lower Pd than the exponential distribution and that increasing the target correlation
reduced the slope. Using a distribution model also allows us to extrapolate down to lower Pfa
levels than could be used in a real detection scheme. By comparing Pfa levels, it was found that
for the HH polarisation, the difference in the SIR between the K and Pareto distributions was up
to 5.4 dB. This mismatch also got larger as the Pfa reduced. When looking at changes in the
azimuth look direction, the biggest variation between the K and Pareto distributions was found
for the horizontal crosswind directions where the SIR difference was up to 7.7 dB. There was
little difference in the VV polarisation, where the Pareto matched the K-distribution result. For
changes in grazing, a difference was observed between the distribution models of up to 6.4 dB.
The mismatch is reduced for the VV polarisation and also when the grazing gets higher. The final
comparison was for the sea-state, where the largest mismatch of 5.1 dB is found for the lowest
sea-state in the HH polarisation. The mismatch reduced as the sea-state increased and was very
small for the VV polarisation.

The final result looked at the minimum detectable target RCS given a set of radar parameters. For
the lower grazing angles in the HH and HV channels, there was a large difference between the K
and Pareto distributions, which reduced as the grazing angle increased. In terms of detectability,
the Pareto result shows that the VV polarisation has the smallest target RCS, then HV and HH.

These parameter models have also been recently used for simulating realistic sea-clutter with an
evolving Doppler spectrum along time and range [Watts 2012, Watts, Rosenberg & Ritchie 2014,
Bocquet, Rosenberg & Watts 2014]. By injecting false targets into this simulated data, detection
performance can be analysed using adaptive CFAR algorithms and other ‘new’ detection schemes.
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Appendix A PDFs for correlated clutter
This appendix derives the PDFs from the WTW detection model in Section 3.3.2 for the cases of
correlated clutter and noise and a target in correlated clutter and noise. The PDFs derived below are
for clutter speckle, so numerical integration over the texture PDF is required to obtain the PDF for
compound clutter, as described in Section 3.4. In order to obtain accurate results for both low and
high intensity, the integration interval is separated into two parts, with 100 point Gauss-Legendre
quadrature used on [0, 1] and 20 point Gauss-Laguerre quadrature on [1,∞).

A.1 Correlated clutter and noise

The PDF for correlated clutter and noise is evaluated as follows. With no target present, s̃ = 0 and
Equation 70 becomes

P (β|α,L) =
βL−1α−Le−β/α

Γ(L)
. (A1)

The PDF can then be written as

P (µ̃|M,L, α) =

∫ ∞
0

P (µ̃|β,M)P (β|α,L)dβ

=
α−L

Γ (L)

∞∑
k=0

e−µ̃µ̃M+k−1

k! (M + k − 1)!

∫ ∞
0

exp

(
−β (α+ 1)

α

)
βk+L−1dβ

=
∞∑
k=0

Γ(L+ k)e−µ̃µ̃M+k−1αk

Γ(L)k!(M + k − 1)!(α+ 1)L+k

=
e−µ̃µ̃M−1

Γ(M)(α+ 1)L

∞∑
k=0

Γ(L+ k)Γ(M)

k!Γ(L)Γ(M + k)

(
αµ̃

α+ 1

)k
=

e−µ̃µ̃M−1

Γ(M)(α+ 1)L
1F1

(
L;M ;

αµ̃

α+ 1

)
(A2)

and is the same PDF obtained by [Swerling 1970, Equation 54] for a fluctuating target in noise. It
is also the ‘noncentral chi-square gamma’ PDF used by Shnidman [1999] as a clutter model. The
confluent hypergeometric function can be evaluated using a Taylor series for small arguments and
an asymptotic series for large arguments [Pearson 2009]. Here the parameters and argument are
all positive and real or integer, so the function is also real and positive with no singularities. In this
case, the asymptotic series can be simplified to

1F1 (L;M ;u) =
Γ (N)

Γ (L)
uL−Neu

∞∑
k=0

(M − L)k (1− L)k
k!

u−k. (A3)

The asymptotic series is used for u ≥ 100, and the Taylor series for u < 100. If the MATLAB

symbolic math toolbox is available, the function ‘hypergeom’ could be used, but according to
[Pearson 2009], this function is at least 100 times slower than direct evaluation of the series. The
PDF is obtained by numerical integration of Equation A2 over the gamma distribution for the
clutter power x. The dependence on x is only through the parameter α, per Equation 69.

Figure A1 shows the PDF for M = 10 pulses and different values of L, with a CNR of 0 dB
and K distribution shape parameter ν = 0.1. The clutter correlation mainly affects the tail of the
distribution, and hence the probability of false alarm for a given threshold.
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Figure A1: PDF for the sum of 10 returns from correlated K clutter and noise, with a CNR of 0 dB
and shape parameter ν = 0.1, for different numbers of independent clutter samples.

A.2 Target in correlated clutter and noise

The PDF for a target in correlated clutter and noise is

P (µ̃|M,L, α, S̃,K) =

∫ ∞
0

∫ ∞
0

P (µ̃|β,M)P (β|s̃, α, L)P (s̃|S̃,K)dβds̃. (A4)

The integral over β can be evaluated using the definite integral [Gradshteyn & Ryzhik 1994,
§6.633]:∫ ∞

0
xp+1e−qx

2
Jm (fx) Jn (gx) dx =

fmgnq−(m+n+p+2)/2

2m+n+1Γ (n+ 1)

×
∞∑
k=0

Γ (k + (m+ n+ p+ 2) /2)

k!Γ (k +m+ 1)

(
−f

2

4q

)k
2F1

(
−k,−m− k;n+ 1;

g2

f2

)
(A5)

If we make the substitutions

x =
√
β, dx =

dβ

2
√
β
,

f = jF, g = jG, (A6)

p = m− n,

then Equation A5 can be written as∫ ∞
0

β(m−n)/2e−qβIm

(
F
√
β
)
In

(
G
√
β
)
dβ

=
FmGnq−m−1

2m+nΓ (n+ 1)

∞∑
k=0

1

k!

(
−F

2

4q

)k
2F1

(
−k,−m− k;n+ 1;

G2

F 2

)
. (A7)
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If the target is non-fluctuating, s̃ = S̃, and the definite integral from Equation A7 can be applied
to obtain the PDF

P (µ̃|M,L, α, S̃) =

∫ ∞
0

P (µ̃|β,M)P (β|S̃, α, L)dβ

=
µ̃(M−1)/2 exp

(
−µ̃− S̃/α

)
αS̃(L−1)/2

×
∫ ∞
0

β(L−M)/2 exp

(
−β(α+ 1)

α

)
IM−1

(
2
√
µ̃β
)
IL−1

2

√
S̃β

α

 dβ

=
µ̃M−1 exp

(
−µ̃− S̃/α

)
Γ(M)(α+ 1)L

∞∑
k=0

1

k!

(
S̃

α+ 1

)k
2F1

(
−k,−L− k + 1;M ;

αµ̃

S̃

)

=
µ̃M−1 exp

(
−µ̃− S̃/α

)
Γ(M)(α+ 1)L

∞∑
k=0

1

k!

(
S̃

α+ 1

)k k∑
m=0

(L)m
(M)m

(
αµ̃

S̃

)m

=
µ̃M−1 exp

(
−µ̃− S̃/α

)
Γ(M)(α+ 1)L

∞∑
k=0

1

k!

(
αµ̃

α+ 1

)k k∑
m=0

(L)m
(M)m

(
S̃

αµ̃

)k−m
. (A8)

If there is no target present, S̃ = 0 and Equation A8 reduces to Equation A2. For a fluctuating
target the PDF is

P (µ̃|M,L, α, S̃,K) =

∫ ∞
0

P (µ̃|M,L, α, s̃)P (s̃|S̃,K)ds̃

=
µ̃M−1e−µ̃

Γ (M) (α+ 1)
L

∞∑
k=0

1

k! (α+ 1)
k

k∑
m=0

(L)m
(M)m

(αµ̃)
m

(
K/S̃

)K
Γ (K)

×
∫ ∞
0

s̃K+k−m−1 exp

(
−s̃

(
S̃ + αK

αS̃

))
ds̃

=
µ̃M−1e−µ̃

(
K/S̃

)K
Γ (M) (α+ 1)

L

∞∑
k=0

1

k! (α+ 1)
k

×
k∑

m=0

(L)m (K)k−m
(M)m

(
αS̃

S̃ + αK

)K+k−m

(αµ̃)
m
. (A9)
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Appendix B WTW detection model consistency check
This appendix presents a consistency check for the WTW detection model to show that in the case
of a non-fluctuating target, the M pulse Rice distribution is recovered when the effective number
of looks L equals the number of pulses M . This can be verified by integrating the product of the
PDFs in Equations 70 and 72 over β,

P (µ̃|s̃, α,M) =

∫ ∞
0

P (µ̃|β,M)P (β|s̃, α,M)dβ

=

(
µ̃

s̃

)(M−1)/2 exp (−µ̃− s̃/α)

α

×
∫ ∞
0

exp

(
−βα+ 1

α

)
IM−1

(
2
√
µ̃β
)
IM−1

(
2
√
s̃β

α

)
dβ (B1)

where the integral in Equation B1 can be evaluated using [Gradshteyn & Ryzhik 1994, §6.615]:∫ ∞
0

e−pxJm
(
2f
√
x
)
Jm
(
2g
√
x
)
dx =

1

p
Im

(
2fg

p

)
exp

(
−f

2 + g2

p

)
. (B2)

By making the following substitutions: f = jF = e
π
2 jF and g = jG = e

π
2 jG and noting that

Im(z) = e−m
π
2 jJm

(
e
π
2 jz
)

[Gradshteyn & Ryzhik 1994, §8.406/1], and Im(−z) = Im
(
eπjz

)
=

emπjIm(z) from the series [Gradshteyn & Ryzhik 1994, §8.445], Equation B2 can be written as∫ ∞
0

e−pxIm
(
2F
√
x
)
Im
(
2G
√
x
)
dx =

1

p
Im

(
2FG

p

)
exp

(
F 2 +G2

p

)
. (B3)

Hence

P (µ̃|s̃, α,M) =

(
µ̃

s̃

)(M−1)/2 e−µ̃−s̃/α

α+ 1
IN−1

(
2
√
µ̃s̃

α+ 1

)
exp

(
α
(
µ̃+ s̃/α2

)
α+ 1

)

=
1

α+ 1

(
µ̃

s̃

)(M−1)/2
exp

(
− µ̃+ s̃

α+ 1

)
IM−1

(
2
√
µ̃s̃

α+ 1

)
. (B4)

The Rice distribution for the sum µ of M radar returns from a target in noise and uncorrelated
clutter speckle was given in Equation 49 as

P (µ|s,M) =
(µ
s

)(M−1)/2
e−(µ+s)IM−1 (2

√
µs) (B5)

and since α = x/pn when L = M , we have µ = µ̃/(α + 1) and s = s̃/(α + 1). Then by
comparing Equation B4 with Equation B5, it can be seen that P (µ̃|s̃, α,M)dµ̃ = P (µ|s,M)dµ.
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Appendix C Calculation bounds for the WTW detection
probability

This appendix supplements the WTW algorithm description in Sections 3.3.2 and 3.3.3. Section
C.1 describes the Chernoff bounds which are used to detect cases when the Pd is less than the
minimum value that can be represented on a computer or when 1 − Pd is less than the smallest
number which can be represented with double precision and the best solutions will be either 0 or
1 respectively. Section C.2 then derives practical lower and upper limits for evaluating the Pd in
Equation 87.

C.1 Chernoff bounds

Chernoff bounds provide a means to avoid unnecessary calculations when the probability of
detection is close to zero or one [Chernoff 1952, Wozencraft &
Jacobs 1965, Shnidman 1976, Shnidman 1995, Bocquet 2012]. They are a function of the
number of looks, M , the SIR, S̃, the threshold, τ̃ and a parameter, λ. If an upper bound is
desired, then the value of λ must be found which most closely matches the inequality

Pd(M, S̃, τ̃) ≤ CB(M, S̃, τ̃ , λ) (C1)

or for a lower bound

Pd(M, S̃, τ̃) ≥ 1− CB(M, S̃, τ̃ , λ). (C2)

To use the Chernoff bound, the optimal λ0 is calculated for the appropriate target model and two
cases are investigated:

λ0 is positive implies Pd is less than CB(M, S̃, τ̃ , λ0) and we set Pd to 0.

λ0 is negative implies Pd is greater than CB(M, S̃, τ̃ , λ0), and we set Pd to 1.

When applied to the compound distributions, the Chernoff bounds are calculated prior to
numerical integration for each value of α used in the integration. In MATLAB, this can be done
simultaneously by treating the variable α as a vector formed from all the required values. Even
though the calculation of λ0 is rather complicated, evaluation of the Chernoff bound is generally
much faster than summing the series for the probability of detection, especially for large τ̃ where
many terms are needed for the series to converge.

Non-fluctuating target in uncorrelated clutter

For a non-fluctuating target in noise, the Chernoff bound is [Shnidman 1995, Equation 73]

CB(M, S̃, τ̃ , λ) =
exp(−λτ̃ + S̃λ/(1− λ))

(1− λ)M
. (C3)
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Non-fluctuating target in correlated clutter

The bound for an effective number of looks L in correlated clutter plus noise is obtained by setting
S̃ = β and integrating over the probability P (β|S̃, α, L):

CB(M,L, α, S̃, τ̃ , λ) =

∫ ∞
0

CB(M,β, τ̃ , λ)P (β|S̃, α, L)dβ

=

∫ ∞
0

exp(−λτ̃ + βλ/(1− λ))
(1− λ)M

1

α

(
β

S̃

)L−1
2

exp

(
−β + S̃

α

)
IL−1

2

√
βS̃

α

 dβ

=
exp

(
−λτ̃ − S̃/α

)
α(1− λ)M

∫ ∞
0

exp(−β(λ/(λ− 1) + 1/α))

(
β

S̃

)L−1
2

IL−1

2

√
βS̃

α

 dβ

=
exp(−λτ̃ + S̃λ/(1− λ− αλ))

(1− λ)M

(
1− λ

1− λ− αλ

)L
. (C4)

The value of λ which gives the closest bound is then obtained by solving

d ln(CB)

dλ
= −τ̃ +

S̃

(1− λ− αλ)2
+

M

1− λ
+

Lα

(1− λ)(1− λ− αλ)
= 0 (C5)

for λ. This result can be rearranged to form a cubic in λ

tλ3 + uλ2 + vλ+ w = 0 (C6)

with the coefficients

t = τ̃(1 + α)2,

u = (1 + α) ((1 + α)M − (3 + α)τ̃) ,

v = τ̃(3 + 2α)− (1 + α)(2M + αL)− S̃,
w = αL+M + S̃ − τ̃ .

(C7)

Equation C6 can then be solved using radicals. Dividing through by t and making the substitution
λ = η − u/(3t) gives the equation

η3 + pη + q = 0 where

p =
v

t
− u2

3t2
and

q =
2u3

27t3
− uv

3t2
+
w

t
.

(C8)

with a discriminant
d = (q/2)2 + (p/3)3 . (C9)

If d > 0, there is one real root

λ0 = 3

√
1
2

(
−q +

√
d
)

+ 3

√
1
2

(
−q −

√
d
)
− u/(3t). (C10)

If d = 0, there are three real roots given by

λ0 = 2r cos

(
φ+ 2π

3

)
− u

3t

where r =
√
−p/3 and φ = cos−1

(
− q

2r3

)
.

(C11)
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If w < 0, or τ̃ > αL + M + S̃, then λ0 > 0 and the result is an upper bound for the probability
of detection near zero. Alternatively if w > 0, or τ̃ < αL + M + S̃, then λ0 < 0 and the bound
is a lower bound for the probability of detection near one.

Fluctuating target in correlated clutter

The Chernoff bound for a fluctuating target is obtained by integrating the bound for a fixed target
in Equation C4 with the fluctuation P (s̃|S̃,K),

CB(M,L, α, S̃,K, τ̃ , λ) =

∫ ∞
0

CB(M,L, α, s̃, τ̃ , λ)P (s̃|S̃,K)ds̃

=

∫ ∞
0

exp
(
−λτ̃ + s̃λ

1−λ−αλ

)
(1− λ)M

(
1− λ

1− λ− αλ

)L
s̃K−1

Γ(K)

(
K

S̃

)K
e−Ks/S̃ds̃

=
e−λτ̃

(1− λ)M

(
1− λ

1− λ− αλ

)L
1

Γ(K)

(
K

S̃

)K
×
∫ ∞
0

s̃K−1 exp

(
−Ks/S̃ +

s̃λ

1− λ− αλ

)
ds̃

=
e−λτ̃

(1− λ)M

(
1− λ

1− λ− αλ

)L(
K

S̃

)K (
K

S̃
− λ

1− λ− αλ

)−K
=

e−λτ̃

(1− λ)M

(
1− λ

1− λ− αλ

)L(
1− S̃

K

λ

1− λ− αλ

)−K
. (C12)

The value of λ which gives the closest bound is obtained by solving

d ln(CB)

dλ
= −τ̃+

M

1− λ
+

Lα

(1− λ)(1− λ− αλ)
+

S̃

(1− λ− αλ)
(

1− λ
(

1 + α+ S̃/K
)) = 0 (C13)

which can be rearranged to form a cubic in λ with the coefficients

t = τ̃(1 + α)(1 + α+ S̃/K),

u = M(1 + α)(1 + α+ S̃/K)− τ̃(2 + α)(1 + α+ S̃/K)− τ̃(1 + α),

v = τ̃(3 + 2α)− αL(1 + α+ S̃/K)− 2M(1 + α)− S̃ + (τ̃ −M)S̃/K,

w = αL+M + S̃ − τ̃ .

(C14)

The solution for λ0 is the same as the fixed target case (Equations C10 and C11), albeit with the
coefficients in Equation C14 replacing those in Equation C7. Note that the coefficients for the
fluctuating target reduce to those for the constant target in the limit K →∞.

Probability of false alarm

The Chernoff bound for the probability of false alarm is

CB 0(M,L, α, τ̃ , λ) =
e−λτ̃

(1− λ)M

(
1− λ

1− λ− αλ

)L
(C15)
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which is obtained by setting S̃ = 0 in Equations C4 or C12. In this case the equation for the value
of λ which gives the closest bound is a quadratic λ2 + pλ+ q = 0 with coefficients

p =
M

τ̃
− α+ 2

α+ 1
,

q =
1− (M + αL) /τ̃

α+ 1

(C16)

and the desired solution
λ0 =

(
−p−

√
p2 − 4q

)
/2. (C17)

C.2 Calculation limits

This section derives the lower and upper limits for calculation of the detection probability in
Equation 87. These bounds are important as an underflow problem arises when the threshold, τ̃ is
large in the e−τ̃ τ̃m/m! terms of Equation 74. As explained in [Bocquet 2012], it is therefore
necessary to begin the sum at a different index m0 > 0 so that the expression can be successfully
calculated. Shnidman [1989] describes a method to determine m0 given τ̃ and an acceptable error
bound ε. It is also desirable to determine a priori, a term m1 at which the sum will have
converged to within ε. This avoids the need to check for convergence at every term added to the
sum. These terms can be approximated by a Gaussian for large τ̃ , as shown in Appendix A of
[Bocquet 2012]:

e−τ̃
τ̃m

m!
≈

exp
(
− 1

2j (m− τ̃)2
)

√
2πm

. (C18)

Hence the error function provides an approximation to the sum:

m1∑
m=0

e−τ̃
τ̃m

m!
≈ 1

2 (1 + erf(u)) with u = (m1 − τ̃) /
√

2m1. (C19)

We require

1−
m1∑
m=0

e−τ̃
τ̃m

m!
≈ 1

2 (1− erf(u)) < ε (C20)

where a lower bound for the error function is given by Nandagopal, Sen & Rawat [2010]:√
1− e−u2 ≤ erf(u). (C21)

Thus we can set
ε = 1

2

(
1−

√
1− e−u2

)
≥ 1

2 (1− erf(u)) (C22)

and solve for u2 to get
u2 = − ln (4ε(1− ε)) ≈ − ln (4ε) ≡ G. (C23)

Finally, m1 is found from Equations C19 and C23 with the ceiling function applied to get an
integer:

m1 =
⌈
τ̃ +G+

√
G(G+ 2τ̃)

⌉
. (C24)
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Unfortunately, the approximation in Equation C18 is poor for m < τ̃ , particularly if τ̃ is small, so
the starting term m0 can be found using a different approximation described by Shnidman [1989]:

m0∑
m=0

e−τ̃
τ̃m

m!
≈ 1

2 (1 + erf(u)) with
√

2u =
√(

m0 − 1
2

)
−
√

2τ̃ −
(
m0 − 1

2

)
. (C25)

Here we require an upper bound for the error function, such as the one given in [Nandagopal, Sen
& Rawat 2010]: √

1− e−4u2/π ≥ erf(u) (C26)

so we can set
ε = 1

2

(
1 +

√
1− e−4u2π

)
≥ 1

2 (1 + erf(u)) . (C27)

From Equations C25 and C27,

u2 =
π

4
G = G′ = τ̃ −

√
2τ̃ −

(
m0 − 1

2

)√
m0 − 1

2 . (C28)

Dropping the 1/2 then gives the solution

m0 =

{⌊
τ̃ −

√
G′(2τ̃ −G′)

⌋
, τ̃ > G′

0, τ̃ ≤ G′.
(C29)

The parameter ε is set so it is much smaller than the precision of the computer arithmetic (typically
∼ 10−16 for double precision). For this work, we use ε = 10−30 for which G ≈ 67.7. Although
we have from Equation C28, G′ = πG/4 ≈ 0.785G, we can set G′ = G without affecting the
accuracy of the result provided ε is much smaller than the computing precision.
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