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(1) Foreword (optional) 

The goal of this project is to explore a new IR photodetector architecture based on a depleted 

PbS QDs/ZnO heterojunction. During the 9-month period, efforts were made to optimize the 

preparation of two critical components: ZnO thin film and PbS QDs, and characterize the 

photocurrent response of the ZnO/PbS QDs bilayer structure. The proposed photodetection 

mechanism was confirmed, and a working device was demonstrated, but its responsivity and 

quantum efficiency were limited by slow charge transport in the solution-processed ZnO and QD 

layers.   
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(3) List of Appendixes, Illustrations and Tables  

Illustrations: 

Figure 1. Current evolution in devices biased at 5 V measured in dark and under light. 

Figure 2. Photocurrent response of a device biased at 5 V during a cycling test. 

Figure 3. Spectral photocurrent response of a device biased at 5 V. The inset shows the 

absorption spectra of ITO/glass and ZnO/ITO/glass structures. 

 

Appendixes: 

A. Form 298 

B. Technical Report 

C. DD Form 882 

D. Paper to be published in JNP 

 

(4) Statement of the problem studied 

 

Even though silicon photodiodes dominate in the market of imaging applications at visible and 

near-infrared wavelengths, they cannot operate for most of the infrared spectrum, beyond 1.1 μm. 

IR photodetectors based on many other materials show high noise levels or are difficult to 

fabricate using standard microfabrication techniques,
1,2

 and thus are either insensitive or very 

expensive. Therefore, there is a strong need to find new materials and device schemes that enable 

high-sensitivity detection of IR light at a reasonable cost.  

 

Monodispersed colloidal nanocrystal quantum dots (QDs) synthesized and processed by low-cost 

solution methods has offered a new class of materials with desirable properties for optoelectronic 

applications including photodetection.
2-4 

However, the development of QD-based photodetection 

has not received much attention until recently. High-performance QD-based IR imaging and 

photodetection devices which have excellent overall performance and can be easily integrated 

with Si electronics have yet to been developed.  

 

This project aims to fabricate a depleted PbS QDs/ZnO heterojunction and evaluate its 

applicability for IR photodetection. Through a study of the photoconductive behaviors and 

probing the mechanism of photocurrent generation, we hope to validate the design and proof of 

concept of a new effective IR photodetection architecture. 

 

 

 



3 
 

3 
 

(5) Summary of the most important results 

The ZnO/PbS QD heterojunction was fabricated on glass substrates with pre-patterned ITO 

(sheet resistance ~15 Ω/sq). Both the ZnO and QD layers were formed by spin coating, from a 

sol-gel ZnO solution and a QD/hexane solution, respectively. Al contacts of 100-500 µm in 

diameter were deposited through a shadow mask as the cathode. Under illumination by a 70 

W/m
2 
incandescence white lamp, the device exhibited strong photoconductive response. Fig. 1 

shows the evolution dark current and photocurrent under a constant voltage of 5 V. The dark 

current starts from 1×10
-9

 A and quickly drops to 10
-11

 A range. Upon illumination, the 

photocurrent increases gradually and peaks at ~1.5×10
-8

 A after 40 s. This value is about three 

orders of magnitude higher than the dark current. The initial increase is likely due to the fact that 

charge trapping at the QD/Al interface lowers the barrier and enhances hole collection at the 

anode.
5
 At the peak, the responsivity of the device is estimated to be only ~0.02 A/W. As seen, 

the photocurrent exhibits a gradual decay after reaching the peak value, which can be attributed 

to degradation of the unencapsulated PbS QDs which are prone to oxidation.    

We also prepared structures consisting of a single QD layer or a single ZnO layer, but did 

not observe any photoconductive response. These comparisons confirm that the photocurrent 

observed above originates from the ZnO/QD heterojunction. Another interesting finding is that 

the dark current, on the order of 10
-11 

A, is considerably lower compared with that in a single 

ZnO layer (10
-8

 A). The dark current was further reduced using a thinner ZnO prepared from a 

diluted solution, down to 10
-12

 A, which is close to the limit of the testing system. These results 

indicate that the ZnO layer was partially depleted. Based on these observations, we conclude that 

a depleted junction indeed forms at the ZnO/QD interface, where the built-in electric field 

enables efficient separation of photogenerated carriers. 

 

 

 

 

 

 

 

Fig. 1 current evolution in devices biased at 5 V measured in dark and under light. 

Figure 2 shows the photocurrent response recorded at a fixed bias of 5 V to on/off 

illumination cycles. The photocurrent on/off ratio is greater than 10
3
, and the abrupt changes 

during the cycling test reflect rapid responses of the device to light. The speed is likely limited 

by the switching of the incandescent lamp. The highest on/off ratio ~210
4
, was obtained from 

devices with a thinner ZnO layer. The data in Fig. 6 demonstrates very good repeatability, but 

gradual degradation of the device is also seen, as indicated by a slow decay of the peak 

photocurrent.  
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Fig. 2 Photocurrent response of a device biased at 5 V during a cycling test. 

The spectral response of photocurrent measured using a 150 W Xenon lamp is shown in 

Fig. 3. The photocurrent is on the order of 1×10
-7 

A across the spectrum except a peak around 

400 nm. The peak correlates well with strong light absorption by ZnO between 300 - 400 nm, as 

seen from the inset of Fig. 3. Therefore, there are two possible factors accounting for the 

enhanced photocurrent between 300-400 nm: (i) the ZnO layer absorbs light more efficiently 

than PbS QDs; (ii) A wider depletion region exists at the ZnO side compared to that on the PbS 

side, enabling dissociation of photogenerated excitons over a broader region. However, even at 

the peak wavelength, the external quantum efficiency (EQE) of this device is only ~0.3%. It is 

believed that the performance (QE and responsivity) of the device is mainly limited by slow 

charge transport through the ZnO and QD layers. In the QD solid, dot-to-dot charge transfer is 

hampered by the bulky organic ligands.
6
 In the ZnO layer, the electron mobility has been found 

to be in the 10
-3

 -10
-4

 cm
2
V/s range,

7
 comparable with that in a typical PbS QD solid.

6
 Therefore, 

the charge transit times in both ZnO and QD layers are longer than the carrier recombination 

lifetime. In other words, recombination dominates and there is no swept-out of electrons and 

holes, giving rise to a small photoconductive gain <1. In the meantime, the photocurrent may 

also be limited by inefficient charge collection at the electrodes which were not optimized in this 

work.  

 

 

 

 

 

 

 

Fig. 3 Spectral photocurrent response of a device biased at 5 V. The inset shows the absorption 

spectra of ITO/glass and ZnO/ITO/glass structures.  
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In summary, a ZnO/PbS QD heterojunction was fabricated through solution processing, 

and its photoconductive behaviors were investigated. The devices exhibited a dark current as low 

as 10
-12

 A at a 5 V bias. Under illumination by a 70 W/m
2
 incandescent lamp, a photocurrent 

on/off ratio greater than 10
4
 was obtained. A comparative study of single-layer structures 

confirms that the photocurrent response originates from exciton dissociation at the 

heterojunction. The device, however, exhibited low responsivity of 0.02 A/W and peak quantum 

efficiency of 0.3%, mainly due to poor charge transport through the solution-processed ZnO and 

QD layers.
7,8

 Further work for performance enhancement will focus on: (i) contact optimization 

for more efficient charge collection; (ii) ligand exchange of the QDs for improved hole transport 

in the PbS QD solid;
8
 and (iii) preparation of high-quality ZnO films with a high electron 

mobility by other techniques such as sputtering deposition. 
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Technical Report 

 

1. Experimental Details 

(a) Synthesis of PbS QDs 

 

Colloidal PbS QDs capped with oleate ligands were synthesized using the 

conventional hot-injection method.
1
 PbO and bis(trimethylsilyl) sulfide (TMS) were 

used as the precursors. The growth temperature was maintained at 100 
o
C and the 

growth time was varied from 30 sec to 30 mins. After extraction, the QDs were 

subjected to a multistep precipitation and redissolvation process of purification to 

remove side products and unreacted precursors. As-synthesized QDs were then 

dispersed in hexane for optical measurements. The absorption spectra were measured 

using a Hitachi U-3900H double-beam UV-VIS spectrophotometer. However, 

fluorescence could not be obtained as the QD emission was beyond the wavelength 

range (300-800 nm) of our Hitachi F-7000 fluorescence spectrophotometer. As seen in 

Fig. 1, when the growth time was varied from 30 sec to 30 mins, the first excitonic 

absorption peak shifted from 850 to 1050 nm. During the first three months of the 

project period, the synthesis recipe (mainly the precursor concentrations and ratios) 

was optimized to obtain QDs with a strong excitonic absorption peak at 1050 nm.  

 

 

 

 

 

 

 

 

 

Fig. 1 Absorption spectra of PbS QDs with different growth times. 

 

(b) Preparation of ZnO thin films 

 

The initial effort was made to prepare ZnO thin films on ITO/glass by thermal 

evaporation of ZnO.
2
 It has been found that the process is very hard to control. When 

the thickness was less than 20 nm, the film was not continuous due to its rough 

morphology and showed very high resistivity. For thicker films, the conductivity of 

the reduced ZnO was too high (even after annealing in air), making it unsuitable for 

photoconduction because the dark current and the associated noise would be too high.    

A solution process was then developed to form more uniform ZnO films. 

Zn(Ac)2 was dissolved in ethanolamine (NH2CH2CH2OH) and 2-methoxyethanol 

(CH3OCH2CH2OH), and stirred vigorously overnight to form a sol gel solution. ZnO 

thin films were prepared by spin coating at 4000 rpm for 1 min and annealing at 

different temperatures up to 400 
o
C for 10 min. To optimize the film thickness, spin 

coating was carried out from solutions with different concentrations. Fig. 2 shows the 
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I-V characteristics of ZnO thin film conductors measured between two Al contacts. As 

seen, the conductivity changes upon post-annealing as solvents are removed and the 

material is densified. For all the annealed films, the resistance values are greater than 

30 MΩ, well suited for photoconductivity measurements.    

 

 

 

 

 

 

 

 

 

 

Fig. 2 I-V characteristics of solution-processed ZnO thin films. 

 

(c) Fabrication of device structures 

 

The photodetectors were fabricated on glass substrates with pre-patterned ITO 

(sheet resistance ~15 Ω/sq). The substrates were cleaned with solvents and de-ionized 

water. They were then transferred to a N2-filled glovebox where the ZnO and QD (20 

mg/ml in hexane) layers were formed by spin-coating. Finally, the samples were 

transferred into a thermal evaporation system, where Al contacts of 100-500 µm in 

diameter were deposited through a shadow mask, acting as the cathode. A photograph 

of the completed devices is shown below.  

 

 

 

 

 

 

 

Fig. 3 Photography of completed photoconductive devices. 

 

The electrical characteristics of the devices were measured using an Agilent 

4156C semiconductor analyzer. Photocurrent responses were measured using an 

incandescence white lamp (70 W/m
2
) under a microscope at a constant voltage of 5 V. 

Spectral responses of photocurrent in the devices were measured using a 150 W 

Xenon lamp source through a monochromator which was synchronized with an 

Agilent 4156C semiconductor analyzer.   

 

2. Device Characterization Results and Discussion 

 

Figure 4 shows the I-V characteristics of the photoconductor structure measured 
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between the ITO cathode and Al anode in dark and under illumination. The sharp 

increase in the current under light evidences the photoconductive response of the 

device. Note that no light is absorbed by ZnO since the white light spectrum cuts off 

at ~400 nm. Therefore, the photocurrent results from light absorption and carrier 

generation in the PbS QDs. We further prepared structures consisting of a QD layer 

only or a ZnO layer only, but did not observe any photoconductive response. The 

comparisons confirm that the photocurrent observed above originates from the 

ZnO/QD heterojunction. Another interesting finding is that the dark current, on the 

order of 10
-11 

A, is considerably lower compared with that in a single ZnO layer, 

indicating that the ZnO layer is partially depleted. Based on these observations, we 

may conclude that a depleted junction indeed forms at the ZnO/QD interface, 

enabling efficient separation of photogenerated carriers.   

 

 

 

 

 

 

 

 

 

 

Fig. 4 I-V characteristics of a ZnO/PbS junction measured in dark and under a white 

incandescent light. 

 

The current evolution under a constant voltage of 5 V was measured and plotted 

in Fig. 5. The dark current starts from 1×10
-9

 A and quickly drops to 10
-11

 A range. 

Upon illumination, the photocurrent increases gradually and peaks at ~1.5×10
-8

 A 

after 40 s. This value is about three orders of magnitude higher than the dark current. 

The initial increase is likely due to the fact that charge trapping at the QD/Al interface 

lowers the barrier and enhances hole collection at the anode.
3
 The result indicates that 

the photocurrent may be further improved by modifying the anode contact to the PbS 

QDs. At the peak, the responsivity of the device is estimated to be only ~0.02 A/W. As 

seen, the photocurrent exhibits a gradual decay after reaching the peak value, which 

can be attributed to degradation of the unencapsulated PbS QDs which are prone to 

oxidation.    

Figure 6 shows the photocurrent response recorded at a fixed bias of 5 V to 

on/off illumination cycles. The photocurrent on/off ratio is greater than 10
3
, and the 

abrupt changes during the cycling test reflect rapid responses of the device to light. 

The speed is likely limited by the switching of the incandescent lamp. We further 

found that the dark current can be reduced using a thinner ZnO prepared from a 

diluted solution, down to 10
-12

 A, which is close to the limit of the testing system. The 

highest on/off ratio obtained from devices with a thin ZnO layer was 210
4
. The data 

in Fig. 6 demonstrates very good repeatability, but gradual degradation of the device 
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is also seen, as indicated by a slow decay of the peak photocurrent.  

 

 

 

 

 

 

 

 

 

 

Fig. 5 Current evolution in devices biased at 5 V measured in dark and under light. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Photocurrent response of a device biased at 5 V during a cycling test. 

 

The spectral response of photocurrent measured using a 150 W Xenon lamp is 

shown in Fig. 7. The photocurrent is on the order of 1×10
-7 

A across the spectrum 

except a peak around 400 nm. The peak correlates well with strong light absorption 

by ZnO between 300 - 400 nm, as seen from the inset of Fig. 7. Therefore, there are 

two possible factors accounting for the enhanced photocurrent between 300-400 nm: 

(i) the ZnO layer absorbs light more efficiently than PbS QDs; (ii) A wider depletion 

region exists at the ZnO side compared to that on the PbS side, enabling dissociation 

of photogenerated excitons over a broader region. However, even at the peak 

wavelength, the external quantum efficiency (EQE) of this device is only ~0.3%. It is 

believed that the performance (QE and responsivity) of the device is mainly limited 

by slow charge transport through the ZnO and QD layers. In the QD solid, dot-to-dot 

charge transfer is hampered by the bulky organic ligands.
4
 In the ZnO layer, the 

electron mobility has been found to be in the 10
-3

 -10
-4

 cm
2
V/s range,

5
 comparable 

with that in a typical PbS QD solid.
6
 Therefore, the charge transit times in both ZnO 

and QD layers are longer than the carrier recombination lifetime. In other words, 

recombination dominates and there is no swept-out of electrons and holes, giving rise 

to a small photoconductive gain <1. In the meantime, the photocurrent may also be 

limited by inefficient charge collection at the electrodes which were not optimized in 

this work. Further work for performance enhancement should focus on: (i) contact 
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optimization for more efficient charge collection; (ii) ligand exchange of the QDs for 

improved hole transport in the PbS QD solid; and (iii) preparation of high-quality 

ZnO films with a high electron mobility by other techniques such as sputtering.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Spectral photocurrent response of a device biased at 5 V. The inset shows the 

absorption spectra of ITO/glass and ZnO/ITO/glass structures.  

 

3. Conclusions 

 

A ZnO/PbS QD heterojunction was fabricated through solution processing, and 

its photoconductive behaviors were investigated. The devices exhibited an ultralow 

dark current of 10
-12

 A at a 5 V bias. Under illumination by a 70 W/m
2
 incandescent 

lamp, a photocurrent on/off ratio greater than 10
4
 was obtained. A comparative study of 

single-layer structures confirms that the photocurrent response originates from exciton 

dissociation at the depleted heterojunction. The devices, however, exhibited low 

responsivity of 0.02 A/W and peak quantum efficiency of 0.3%, mainly due to poor 

charge transport through the solution-processed ZnO and QD layers.   
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Luminescence enhancement of nanocrystal quantum
wells by bandgap and strain engineering
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Abstract. CdSe-based nanocrystal quantum wells (QWs) were synthesized around CdS nano-
crystal quantum dots and were bandgap- and strain-engineered to achieve high-efficiency short-
wavelength luminescence. Tuning the CdSe QW width in the range of 1.05 to 1.58 nm has led to
blue-green light emission, whose quantum yield was improved up to 48% through strain compen-
sation by an optimized ZnS outer shell. The luminescence spectrum can be modified by adding a
ZnS inner barrier layer to block charge and exciton transfer between the QW and CdS core.
Strain management by adjusting the well and barrier thickness has proven critical in such a
complex multilayer quantum system for obtaining high-quality nanocrystals and light emission.
© 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JNP.9.XXXXXX]
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1 Introduction

Nanocrystal quantum well (NQW) is a unique type of nanocrystal heterostructure, which can
be synthesized by a low-cost colloidal chemical process.1,2 A typical NQW, also called quantum
dot (QD)-QW, consists of a core QD of a large bandgap material surrounded by an intermediate
shell of a smaller bandgap material and an outer shell of the same large bandgap material as the
core.3–7 In analogy with a planar single QW structure produced by vacuum epitaxy techniques, the
intermediate shell acts as a circular QW, whereas the core and outer shells function as two quantum
barrier layers. NQWs are of high scientific and practical interest since they can be extensively
bandgap-engineered to achieve ideal properties and performance enhancement. The QW width
can be tailored independent of the overall nanocrystal size to obtain a desirable optical wavelength.
This adds to the already excellent tunability of colloidal nanocrystals through size and composition
variations, allowing multifaceted tuning of the optical and electronic properties of nanoparticles
based on a single material system.1 On the other hand, strain buildup in such multilayer nano-
crystals due to lattice mismatches would have a significant impact on the crystal quality and should
be carefully managed.2 However, little research effort has been devoted to strain engineering in
such a nanocrystal heterostructure. As luminophores, two-dimensional NQWs have advantages
over simple zero-dimensional QDs because they have a larger cross-section, which enables
more efficient energy transfer and charge injection, giving rise to more efficient luminescence.

Relatively bright red, yellow, and green light-emitting diodes have been realized based on
colloidal CdSe QDs with various dot sizes.8–11 In principle, pure blue light emission desirable for
flat-panel displays can be obtained from small CdSe QDs on the order of 1.5 nm. However, syn-
thesis of such small QDs with a narrow size distribution and a high quantum efficiency requires a
strict control of the process condition and is, thus, very challenging.12 Overgrowth of a uniform
passivating shell on top of such small QDs is also difficult. In addition, the small absorption
cross-sections of the tiny QDs would limit the rate of excitonic energy transfer and charge injec-
tion. All these factors make CdSe QDs a poor choice for achieving efficient blue luminescence.
To date, CdSe QDs emitting bright blue light remain elusive, and high-efficiency pure blue
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emission has only been obtained from interfused CdSe//ZnS nanocrystals.13 As discussed above,
the concept of NQW provides an alternative way to obtain blue luminescence from CdSe. A
narrow CdSe QW can be incorporated into relatively large nanocrystals with ease using the
existing colloidal synthesis technique. This would open up a pathway toward low-cost full-
color displays based on the single CdSe material system.

In a recent study, we demonstrated blue photoluminescence (PL) and electroluminescence
(EL) from an asymmetrical CdS/CdSe/ZnS NQW structure.14 Both CdS and ZnS have a smaller
lattice constant than CdSe, and their lattice mismatches with CdSe are 3.7 and 12%, respectively.
Therefore, CdS provides a more desirable template for coherent growth of the CdSe QW, where-
as ZnS provides a more effective passivation and carrier confinement due to its wider bandgap.
As a result, the asymmetrical NQWs would enjoy the combined benefits of low strain in sym-
metrical CdS/CdSe/CdS NQWs and strong quantum confinement in symmetrical ZnS/CdSe/ZnS
NQWs. Another advantage of the CdS/CdSe/ZnS NQW structure is that it is strain-compensated,
as the tensile-stressed ZnS outer shell partially compensates the compressive strain in the CdSe
QW layer. The nanocrystal quality is thus improved. This effect has been verified by a com-
parison between CdS/CdSe/ZnS and CdSe/CdS/ZnS nanocrystals, whose powder x-ray diffrac-
tion (XRD) patterns are shown in Fig. 1. Three distinct diffraction peaks corresponding to the
(111), (220), and (311) crystalline planes of zinc-blende, CdS, and CdSe are seen for both sam-
ples. In the CdSe/CdS/ZnS nanocrystals, strain is not compensated as both the CdS and ZnS
layers are under tensile stress, whereas the CdS/CdSe/ZnS nanocrystals are strain-compensated.
As seen, the latter exhibit sharper diffraction peaks, indicating their better crystalline quality.

As a multilayer heterostructure and multiple quantum system, the CdS/CdSe/ZnS NQW pro-
vides an ideal template for engineering of nanocrystals. In this paper, we implement systematical
bandgap and strain engineering of CdS/CdSe/ZnS NQWs by modifying their layer structures in
an effort to achieve enhanced short-wavelength luminescence from CdSe-based nanocrystals,
especially at blue-green wavelengths.

2 Experimental Details

Colloidal NQW nanocrystals with the different cross-sections shown in Fig. 2 were synthesized
by the hot-injection technique. Their energy band diagrams are also illustrated, showing that
both CdS and ZnS form a type I heterojunction with CdSe. All the NQWs were built atop
CdS QDs synthesized using CdO and S as precursors. The size of the CdS QDs was estimated
to be 3.6 nm using their absorption results and the published sizing curves.15 To synthesize CdS/
CdSe/ZnS NQWs, a CdSe layer and a ZnS layer were grown in sequence around purified CdS
QDs at 260°C using the successive ion layer adsorption and reaction method.16 The CdSe QW
width was varied from 1 monolayer (ML) to 4.5 MLs, whereas the ZnS layer thickness was
varied from 1 to 4 MLs. Given that the nanoparticles crystallize in the zinc-blende structure,
each ML of CdSe and ZnS increased the nanocrystal diameter by ∼0.7 and ∼0.62 nm,

Fig. 1 X-ray diffraction patterns of CdS/CdSe/ZnS and CdSe/CdS/ZnS nanocrystals.
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respectively. Hence, the well width was in the range of 0.35 to 1.58 nm, and the ZnS outer shell
ranged from 0.31 to 1.24 nm. In a modified NQW structure, a 2 or 2.5 ML ZnS interlayer was
inserted between the CdS core and CdSe layer acting as the inner quantum barrier layer.

During the NQW synthesis, a 1 ml sample was extracted after growth of the core and each
ML of the shell. The samples were washed by hexane and used for absorption and PL measure-
ments. The absorption and PL spectra were measured using a Hitachi U-3900H double-beam
UV-VIS spectrophotometer and a Hitachi F-7000 fluorescence spectrophotometer (365 nm
excitation), respectively. The PL quantum yields (QYs) were estimated by comparing the PL
intensity with that of standard organic dye solutions with the same optical density at the
same excitation wavelength. The nanocrystal crystallinity was examined by powder XRD on a
Bruker D8 Discover X-Ray Diffractometer using Cu Kα radiation (λ ¼ 0.1542 nm).

3 Results and Discussion

Figure 3 shows the PL spectra of CdS/CdSe (0 to 4.5 MLs) nanocrystals with a typical core/shell
structure. The PL spectrum of the CdS core consists of a sharp excitonic emission peak at 430 nm
and a more dominant broad band, which is centered at 540 nm and spans almost the entire visible
spectrum. The broadband can be attributed to excitonic decay via surface states, which originate

Fig. 2 Schematic cross-sections and energy band diagrams of different nanocrystal heterostruc-
tures studied in this work3 .

Fig. 3 Photoluminescence (PL) spectra of CdS/CdSe [0 to 4.5 monolayers (MLs)] nanocrystals.
The main peak intensity was normalized.
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from surface dangling bonds and behave as effective nonradiative recombination centers.17 Upon
the growth of CdSe, the main PL peak exhibits a redshift and broadening, and the surface state
emission is substantially suppressed. With 1.5, 3, and 4.5 MLs of CdSe, the peak redshifts by 12,
20, and 31 nm, respectively. Since the bandgap of CdSe is a function of its layer thickness due to
the quantum size effects, the initial thin CdSe shell may have a wider bandgap than the CdS core
as illustrated in Fig. 2(a) and, thus, acts as a confining layer. In this case, the redshift can be
attributed to penetration of the electron and hole wave functions into the CdSe layer, resulting in
weaker quantum confinement. As the CdSe layer grows thicker, its bandgap shrinks and
becomes narrower than the core [Fig. 2(b)]. In this case, the PL may mainly originate from the
CdSe shell as excitons generated in the core can readily diffuse or transfer energy into the shell.

Figure 4 shows the PL spectra of the same nanocrystals after further overgrowth of a 3 ML ZnS
outer shell. In the resulting heterostructures, the long-wavelength broadband emission is com-
pletely eliminated, confirming the excellent passivation and charge confinement by ZnS. The
main peak further shifts to 451, 468, and 489 nm for the nanoparticles with 1.5, 3, and 4.5 MLs
of CdSe. Another interesting feature is that a secondary peak at ∼439 nm appears for the nano-
particles with 3 or 4.5 ML CdSe. This is very close to the original CdS core PL peak (430 nm).
Referring to the energy band diagrams shown in Fig. 2, we can explain the origin of the secondary
peak as follows. When the CdSe layer thickness reaches 3 MLs or thicker, its bandgap becomes
narrower than that of the core. As a result, a well-defined CdSe QW is created with the ZnS shell
and CdS core acting as two barrier layers. The main peak (at 489 nm for 4.5 ML CdSe) represents
luminescence from the CdSe QW, whereas the 439 nm peak originates from the CdS core. The
latter emerges due to charge overflow into the core as all states in the QW are filled under optical
excitation. Without a passivating ZnS outer shell (Fig. 3), excitons in CdSe may recombine rapidly
through surface states, so charge overflow would not occur. As seen, the PL spectrum of the nano-
crystal with 1.5 ML CdSe remains a single peak. This suggests that the bandgap of 1.5 ML CdSe is
wider than the CdS core, and the CdSe layer functions as a confining shell instead of a single QW.

The formation of a CdSe NQW is confirmed by absorption measurements. Figure 5 shows
the absorption spectra of CdS/CdSe (4.5 MLs)/ZnS (3 MLs) NQWs measured after each ML
shell growth. The absorption spectrum of the CdS core features the first excitonic absorption
peak at 407 nm. The absorption peaks shift toward the longer wavelength as the CdSe and ZnS
shells grow thicker, whereas the excitonic features remain nearly unchanged. The total redshift of
the first excitonic absorption peak is 31 nm after the growth of the 4.5 MLs of CdSe, which is
identical to the total PL peak shift of the same nanocrystal (Fig. 3). Upon the addition of a ZnS
outer shell, the absorption behavior becomes considerably different. A prominent new feature is
that short-wavelength absorption is greatly enhanced, as indicated by a sharper high-order exci-
tonic absorption peak around 400 nm. This can be attributed to a newly emerged absorbing
element in addition to the core QD, that is, a CdSe QW that can absorb light efficiently due
to strong quantum confinement. These results suggest that through bandgap engineering, a

Fig. 4 PL spectra of CdS/CdSe (0 to 4.5 MLs)/ZnS (3 MLs) nanocrystals. The main peak intensity
was normalized.
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new efficient light absorbing and emitting NQW structure can be created, and the absorption and
emission peaks can be tuned continuously toward the longer wavelength.

Figure 6 plots the PL QYs of the above three types of NQWs measured after the growth of
each ML of the shell. All the curves are of a reverse S shape. As the shell synthesis proceeds, the
QY increases, then decreases, and finally increases again. This trend reflects a trade-off between
the beneficial and adverse effects of the shell overgrowth. The QYof the CdS core QDs is only
∼2% due to a strong influence of surface states. The overgrowth of 1 ML CdSe raises the value to
13 to 16% as a result of surface passivation. The QY tends to decrease as the CdSe layer grows
thicker than 2 MLs. This indicates strain buildup in the CdS/CdSe core/shell structure, causing
deterioration of the crystal quality. The CdSe layer grown on CdS QDs is under compressive
strain due to its larger lattice constant. The initial CdSe growth is coherent and the layer under-
goes elastic deformation. Strain builds up as the CdSe layer grows, leading to increased nano-
crystal irregularity and nonuniformity.2 This partly explains the increased PL linewidth seen in
Figs. 3 and 4. When a critical thickness is reached, strain is partially relieved through the

Fig. 5 Evolution of the absorption spectrum of CdS/CdSe (4.5 MLs)/ZnS (3 MLs) nanocrystal
quantum wells (NQWs) during the shell growth. The spectra were normalized and shifted in
the y -direction for clarity.

Fig. 6 PL quantum yields of three types of CdS/CdSe/ZnS NQWsmeasured after eachML of shell
growth.
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formation of misfit dislocations at the interface,1,2 which act as nonradiative recombination sites
and cause PL degradation. With a 4.5 ML CdSe shell, the QY drops to 4%.

As seen in Fig. 6, the PL QY is remarkably improved upon the growth of the wide bandgap
ZnS outer shell, which enables more effective carrier confinement and surface passivation.
Meanwhile, the ZnS shell also acts as a strain-compensation layer as it has a smaller lattice
constant than CdSe.11 The compressive strain in the CdSe QW is partially compensated, leading
to better crystal quality. With 3 ML ZnS, the QYs of the nanocrystals with 1.5, 3, and 4.5 ML
CdSe reach 30, 47, and 54%, respectively. Strain compensation appears to be particularly ben-
eficial in NQWs with a thick QW. Upon growth of the fourth ML of ZnS, the QYof CdS/CdSe
(4.5 MLs)/ZnS NQWs is further increased to 78%, whereas it is only slightly higher (48%) in the
NQWs with 3 ML CdSe. For the latter, the QY reaches the saturation point and a thicker ZnS
shell would cause defect generation and QY reduction. The PL QY of the QW emission can be
estimated based on the spectral data, which show that the intensity of green-blue emission from
the QW is ∼1.6 times higher than that of the CdS core emission in the CdS/CdSe (4.5 MLs)/ZnS
(4 MLs) NQWs. The PL QY of the CdSe QW is thus ∼48%. Similarly, the 3 ML CdSe QW
emitting pure blue light at 468 nm has an estimated QYof 35%. Such high efficiencies of short-
wavelength emission from CdSe nanocrystals have rarely been reported before.2

As seen from Fig. 2, one drawback of the asymmetrical NQW is that the CdS core functions
as the inner barrier layer, but cannot effectively confine excitons due to relatively small band
offsets at the CdS/CdSe interface. Emission from the core is inevitable under high excitation
levels resulting from carrier overflow and exciton transfer from the QW. To achieve better con-
finement, we inserted a ZnS layer between the CdS core and CdSe QW, and the resulting struc-
ture is shown in Fig. 2(c). Figure 7 shows the absorption spectra of CdS/ZnS (2 MLs)/CdSe
(3 MLs)/ZnS (3 MLs) NQWs measured after each ML shell growth. Again, the absorption
peaks redshift as the shell grows. Upon the growth of the outer ZnS shell, the absorption at
short wavelengths is greatly enhanced and high-order excitonic peaks become more pronounced,
indicating the formation of a ZnS/CdSe/ZnS NQW. The thicknesses of the ZnS and CdSe layers
are critical as they determine the amount of strain buildup and the degree of strain compensation
in the whole nanocrystal structure. This can be clearly seen in Fig. 8, which compares the absorp-
tion spectra of NQWs with 2 or 3 MLs of ZnS inner barrier layer and 2.5 or 3 MLs of CdSe QW.
For the NQW with a 3 ML ZnS/2.5 ML CdSe, the absorption spectrum is nearly featureless,
suggesting poor crystal quality. This is caused by large tensile strain in the thick ZnS layer, which
cannot be compensated by the thin CdSe overlayer. More effective strain compensation and,
thus, better crystal quality is obtained by reducing the ZnS thickness and increasing the
CdSe well width. As seen, the NQW with 2 ML ZnS/3 ML CdSe exhibits the sharpest excitonic
absorption peaks.

Fig. 7 Evolution of the absorption spectra of CdS/ZnS (2 MLs)/CdSe (4.5 MLs)/ZnS (3 MLs)
NQWs during the shell growth.
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The PL spectra of the strain-compensated CdS/ZnS (2 MLs)/CdSe (3 MLs)/ZnS NQW is
compared with that of CdS/CdSe (3 MLs)/ZnS NQWs in Fig. 9. For both NQWs, the PL spec-
trum is composed of the QWemission at ∼468 nm and the core emission near 435 nm. However,
the intensity ratios of these two peaks are different. The ratio is changed from 2∶1 to roughly 1∶2
after the addition of the 2 ML inner ZnS layer. This result actually confirms the effective block-
ing of carriers and excitons by the additional ZnS layer. Under optical excitation, excitons can be
generated in both the CdS core and CdSe QW. As the transfer of charge and excitons from the
core to the QW is blocked, the relative intensity of the core emission increases. We can expect
that the core emission would be absent from a light-emitting device with such NQWs incorpo-
rated as the luminophores because excitons cannot be directly created in the CdS core under
current injection. Therefore, EL comprising pure QW emission is expected. Further work
will focus on the design and demonstration of such a device in order to verify this assumption.

4 Conclusions

In summary, colloidal CdS/CdSe/ZnS NQW nanocrystals were bandgap- and strain-engineered
to achieve efficient luminescence at short wavelengths. Blue and green light emission has been

Fig. 8 Absorption spectra of CdS/ZnS (2 or 3 MLs)/CdSe (2.5 or 3 MLs)/ZnS (3 MLs) NQWs.

Fig. 9 PL spectra of CdS/CdSe (3 MLs)/ZnS (3 MLs) NQWs and CdS/ZnS (2 MLs)/CdSe (3 MLs)/
ZnS (3 MLs) NQWs.
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achieved by tuning the CdSe QW width in the range of 3 to 4.5 MLs, and enhanced through
strain management. It has been found that for a wider QW, a thicker ZnS outer shell is needed for
effective confinement as well as strain compensation, which led to blue-green luminescence
peaking at 489 nm with a QY of ∼48%. The charge and exciton transfer between the QW and
CdS core was effectively blocked by adding a ZnS inner barrier layer. Strain engineering by
tailoring the thicknesses of the QW and barrier layers has proven critical for obtaining high
nanocrystal quality and superior optical properties.
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