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Abstract

It is shown that over any countable �rst-order structure, IND programs with dictionaries accept
exactly the �1

1 relations. This extends a result of Harel and Kozen (Inform. and Control 63 (1–
2) (1984) 118) relating IND and �1

1 over countable structures with some coding power, and
provides a computational analog of a result of Barwise et al. (J. Symbolic Logic 36 (1971) 108)
relating the �1

1 relations on a countable structure to a certain family of inductively de�nable
relations on the hereditarily �nite sets over that structure.
c© 2003 Elsevier B.V. All rights reserved.

MSC: 03D60; 03D70; 03D75; 68Q05; 68Q10; 68Q15

Keywords: IND programs; Inductive de�nability; Hereditarily �nite sets; Descriptive set theory

1. Introduction

Perhaps the central result of the theory of inductive de�nability is Kleene’s theorem,
which states that over N, a relation is �1

1 i; it is inductively de�nable. The coding
power of N is essential in the proof, and considerable e;ort has been spent in trying
to generalize the result to structures without a coding capability. One can do without
coding in the presence of some set-theoretic apparatus over the structure, although
the theory is somewhat less satisfactory. There are numerous results that approximate
Kleene’s theorem in general structures, but these results typically hold only under
various special conditions which are often di>cult to state (see [1,10]).
One such result is the following. In [2] (see [1, Corollary VI.3.9(i), p. 214]) it is

shown that over any countable structure A, the �1
1 relations are equivalent to a certain

class of inductively de�nable relations over HFA, where HFA refers to the structure A
augmented with its hereditarily �nite sets. Not all inductively de�nable relations over
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HF A are allowed, but only a certain subclass de�ned in terms of a restricted form
of quanti�cation on the sets. A similar result can be found in [9]. If in addition the
structure has a coding capability, then the hereditarily �nite sets can be coded directly
in the structure. This result allows Kleene’s theorem to be broken into two parts, one
using the auxiliary set-theoretic apparatus in the Kleene construction, and the second
coding the set-theoretic apparatus into the structure itself.
Kleene’s theorem has a more computational interpretation than is apparent from

[1,10]. In [5], a programming language IND was de�ned and shown to compute exactly
the inductive relations over any structure. By Kleene’s theorem, IND computes exactly
the �1

1 sets over N. In fact, the programming language IND can also be used to give
a more computationally motivated proof of Kleene’s theorem (see [6]).
In this paper we augment IND programs with dictionaries, a common abstract data

structure allowing storage and retrieval of data indexed by keys. Operations of insertion,
membership testing, and access of an element by its key are allowed. Deletion is often
allowed as well, although we do not need it here. In real implementations, dictionaries
can be built from any one of a number of concrete data structures: trees, hashtables,
extensible arrays, linked lists, heaps, searchable queues, or cons structures as in the
programming languages Lisp or Scheme.
We show that over any countable �rst-order structure, IND programs with dictionaries

accept exactly the �1
1 relations. This is the computational analog of the result of [2]

mentioned above. Here dictionaries play the same role as the hereditarily �nite sets in
[2]: they are a data structure, nothing more nor less.
The main contribution here is not so much the result itself, but rather a new per-

spective on the results of [1,2]. The language of inductive de�nability and admissible
set theory is largely static, whereas our approach is dynamic. The language IND is a
true programming language (although it computes highly noncomputable things), and
it is designed to be programmable. Similarly, dictionaries are a true data structure, also
designed to be programmable, unlike the hereditarily �nite sets. Thus this result may
help to clarify the role of the hereditarily �nite sets and the special conditions of [1,
Corollary VI.3.9(i), p. 214].
Other results that study the power of auxiliary data structures and unbounded memory

in programming languages and logics can be found in [4,7,8,12–14] (see also [6]).

2. The programming language IND

The programming language IND was introduced in [5] (see also [6]). At the most
basic level, IND programs consist of �nite sequences of labeled statements of three
forms:

• assignment: ‘ : x := ∃ ‘ : y := ∀
• conditional jump: ‘ : if R(Jt) then goto ‘′

• halt statement: ‘ : accept ‘ : reject.

More complex programming constructs can be de�ned from these.
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The semantics of the existential and universal assignment is very much like alternat-
ing Turing machines [3] (see also [6]), except that the branching is in�nite. Intuitively,
the execution of an existential or universal assignment to a variable x causes in�nitely
many subprocesses to be spawned, one for each element of the domain. The subprocess
corresponding to element a continues with a assigned to the variable x. If the statement
is x := ∃, the branching is existential; if it is x := ∀, the branching is universal. The
conditional jump tests the atomic formula R(Jt), and if true, jumps to the indicated label
in the program. The accept and reject commands halt and pass a Boolean value, true
or false, respectively, back up to the parent. A process waiting at an existential branch
reports acceptance to its parent as soon as one of its children reports acceptance; a
process waiting at a universal branch reports acceptance to its parent as soon as all of
its children report acceptance.
The input is an initial assignment to the program variables. Execution of statements

causes an in�nitely branching computation tree to be generated downward, and Boolean
accept (true) or reject (false) values are passed back up the tree, a Boolean ∨ being
computed at each existential node and a Boolean ∧ being computed at each universal
node. The program is said to accept the input if the root of the computation tree ever
becomes labeled with the Boolean value true on that input; it is said to reject the input
if the root ever becomes labeled with the Boolean value false on that input; and it is
said to halt on an input if it either accepts or rejects that input. An IND program that
halts on all inputs is said to be total.
Note that there is no explicit mechanism for spawning processes or for passing

Boolean values back up the computation tree. These are just intuitive devices. The
reader is referred to [6] for a more formal treatment of the semantics of IND programs.
In [5], it was shown that IND programs accept exactly the inductive relations on any

�rst-order structure, and that total IND programs accept exactly the hyperelementary
relations. The theorem that a relation is hyperelementary i; it is both inductive and
coinductive is proved quite simply by running a program for the relation and its com-
plement in parallel, as with the corresponding result for r.e. and co-r.e. sets. Over N,
IND programs can be used as a notation for recursive ordinals. In fact, the recursive
ordinals are exactly the running times of IND programs over N. This formalism turns
out to be equivalent to more conventional approaches (see for example [10,11]), but
has a decidedly more computational Lavor. However, note that the relations computed
by IND programs are highly noncomputable in the usual sense of the word.
Other useful programming constructs can be de�ned in terms of those listed above.

An unconditional jump is e;ected by a conditional jump with test true. More com-
plicated forms of conditional branching, for and while loops, etc. can be e;ected by
manipulation of control Low. For example, the statement

if R(Jt) then reject else ‘

is simulated by the program segment

if R(Jt) then goto ‘′;
goto ‘;

‘′: reject
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A simple assignment is e;ected by guessing and verifying:

x := t

is simulated by

x := ∃;
if x �= t then reject

The process spawns in�nitely many subprocesses, all but one of which immediately
reject.
A relation is �rst-order i; it is de�nable by a loop-free program. However, IND

can also accept inductively de�nable relations that are not �rst-order de�nable. For
example, the reLexive transitive closure of a relation R is de�nable by the following
program, which takes its input in the variables x; z and accepts if (x; z)∈R∗:

while x �= z {
y := ∃;
if ¬R(x; y) then reject;
x := y;

}
accept;

Further examples involving two-person games of perfect information and well-founded
binary relations can be found in [5,6].
Any relation that is expressed as a least �xpoint of a monotone map de�ned by a

positive �rst-order formula can be computed by an IND program. Essentially, the pro-
gram deconstructs the formula in a top-down fashion, executing existential assignments
at existential quanti�ers, executing universal assignments at universal quanti�ers, using
control Low for the propositional connectives, using conditional tests for the atomic
formulas, and looping back to the top of the program at (positive) occurrences of the
inductive relation symbol.
Conversely, any relation computed by an IND program is inductive in the traditional

sense, essentially because the formal semantics of acceptance involves the least �xpoint
of an inductively de�ned set of labelings of the computation tree with Boolean values.
We refer the reader to [5,6] for further details.

3. IND programs with dictionaries

A dictionary is an abstract data structure for storing data values indexed by keys.
Operations supported are insertion, membership, and lookup of a data item by key.
Deletion is also sometimes included, although we will not need it for our application.
Dictionaries can be implemented in a variety of ways: hashtables, linked lists, extensible
arrays, heaps, searchable queues, or cons structures as in Lisp and Scheme.
Formally, a dictionary is a partial function with �nite domain from a set of keys

to set of data values. In our application, the keys are k-tuples of elements of A and
the data values are elements of A, thus dictionaries are (extensional) partial functions
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Ak →A. The following operations on dictionaries are supported:

reset( ) clear the dictionary
put( Jx; y) insert data element y with key Jx= x1; : : : ; xk
containsKey( Jx) does there exist an entry with key Jx?
get( Jx) get the data element corresponding to key Jx

There is a separate version for each arity k. For simplicity, we assume that there is
a separate collection of program variables d; e; : : : ranging over dictionaries, and that
they are initialized to the empty dictionary. Assignments and equality tests may not be
applied to dictionaries; only the operations above are allowed.

Theorem 3.1. Let A be a 7rst-order structure with countable domain A. Any �1
1

relation on A is accepted by an IND program with dictionaries.

Proof. By transforming to prenex form and Skolemizing, every �1
1 formula can be

written with a quanti�er pre�x of the form

∀f1 : An1 → A : : :∀fk : Ank → A ∃x1 : A : : :∃xm : A

followed by a quanti�er-free part �(f1; : : : ; fk ; x1; : : : ; xm). There may be other free
variables besides those mentioned. In the presence of a de�nable pairing function (as
is the case with N), we could further reduce to the form

∀f ∃ x �(f; x); (1)

where f is unary, but in general we do not have this luxury. However, for simplicity
of notation, we will give the construction only for case (1), since all the main ideas
are already contained here.
Amend the semantics of � to allow as �rst argument a partial function with �nite

domain as represented by a dictionary d. We think of d as a �nite approximation to a
total function f. If d does not have enough information to determine whether �(f; x),
then the value of �(d; x) is de�ned to be false.
The value of �(d; x) can easily be determined by a loop-free IND program. For

example, if �(f; x) is x=f(f(x)), then to simulate

if x=f(f(x)) then � else �;

we could write

if d:containsKey(x) { //does d contain a value for f(x)?
y := d:get(x); //if so, get it
if d:containsKey(y) { //does d contain a value for f(f(x))?

z := d:get(y); //if so, get it
if x= z then � else �; //test whether x=f(f(x))

}
}
goto �;
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Note that if d does not contain enough information to determine the value of f(f(x)),
then control is transferred to �.
We write d�f and say that f extends d if the domain of d is contained in the

domain of f, and if d and f agree on the domain of d. Our analysis is based on the
following two continuity properties:

Lemma 3.2.

(i) If d�f and �(d; x), then �(f; x).
(ii) If �(f; x), then there exists d�f with 7nite domain such that �(d; x).

These properties hold because the truth value of �(f; x) is determined by �nitely
many values of f, since there are only �nitely many occurrences of f in �. If all
those values are represented by d, then �(f; x) and �(d; x) will have the same truth
value.
Here is an IND program with a single unary dictionary d that tests whether (1)

holds. It uses d to construct �nite approximations of f. As mentioned, the test �(d; x)
in the while statement can be computed by a loop-free IND program.

d:reset( );
x := ∃;
while ¬�(d; x) {

y := ∃;
if d:containsKey(y) then reject;
z := ∀;
d:put(y; z);
x := ∃;

}
accept;

The program iteratively extends d in all possible ways, seeking a �nite partial function
d and an x for which �(d; x).
We wish to show that this program accepts i; (1) holds. Suppose �rst that (1) holds.

To show that the program accepts, it su>ces to exhibit an accepting subtree of the
computation tree. This is a subtree obtained by determinizing every existential branch
(that is, pruning all children except one), such that all paths in the resulting tree lead
to an accept statement.

We determinize the existential branches as follows. Let 6 be an arbitrary but �xed
ordering of A of order type !, which exists since A is countable. Let next(d) be the
6-least element of A not contained in the domain of d. Let witness(d) be the 6-least
element x for which there exists a total f extending d such that �(f; x). Such an x
exists by (1). To resolve the two assignments x := ∃, use the value witness(d). To
resolve the assignment y := ∃, use the value next(d). If these values were expressible,
the resulting subtree would be generated by the program

d:reset( );
x := witness(d);



ARTICLE IN PRESS
D. Kozen / Annals of Pure and Applied Logic ( ) – 7

while ¬�(d; x) {
y := next(d);
z := ∀;
d:put(y; z);
x := witness(d);

}
accept;

Note that we were also able to omit the test

if d:containsKey(y) then reject

since next(d) is never in the domain of d.
To show that every path in the computation tree of this new program leads to accep-

tance, it su>ces to show that the while loop terminates along every path. Suppose it
did not. Any computation path for which the while loop does not terminate generates
a total function f :A → A, namely the limit of the values of d along that path. By (1),
there exists x such that �(f; x). By Lemma 3.2(ii), there exists a �nite approximation
e�f such that �(e; x). By Lemma 3.2(i), there exists a value of d along the compu-
tation path such that �(d; x), which would have caused the while loop to terminate.
This is a contradiction.
Now we argue that if the original program accepts, then (1) holds. Consider any ac-

cepting subtree obtained by resolving the existential branches. For any total f :A→A,
resolve the universal branch z := ∀ by supplying the value of f(y). This results in
a single computation path of the accepting subtree, since there are no more branches.
Since the subtree is accepting, the path must terminate. But by construction, f ex-
tends all values of d along that path, and the �nal values of d and x satisfy �(d; x),
since the while loop terminated. By Lemma 3.2(i), �(f; x). Since f was arbitrary, (1)
holds.
This gives the construction for formulas of the simple form (1). More complicated

formulas might require more dictionaries and dictionaries of higher arity, but the con-
struction is no more di>cult except notationally.

Theorem 3.3. Let A be a 7rst-order structure with countable domain A. Any relation
on A accepted by an IND program with dictionaries is �1

1.

Proof. First we pick an appropriate concrete representation of dictionaries. We will
use an auxiliary data structure similar to cons structures of Lisp and Scheme. Let pair
and nil be function symbols of arity 2 and 0, respectively. Let C(A) be the free term
algebra over pair and nil generated by A. The elements of C(A) are �nite labeled
binary trees whose leaves are labeled with elements of A or the empty tree nil and
whose internal nodes are labeled with pair.
We endow C(A) with distinguished operations pairC(A), nilC(A), headC(A), and

tailC(A), where pairC(A) and nilC(A) are interpreted syntactically, and where headC(A)

and tailC(A) are the left and right projections, respectively, corresponding to pairC(A).
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In addition, we de�ne the following unary predicates on C(A):

isPairC(A)(x) def= ∃y ∃z x = pairC(A)(y; z)

isNilC(A)(x) def= x = nilC(A)

isElementC(A)(x) def= ¬isPairC(A)(x) ∧ ¬isNilC(A)(x):

Since A is countable, there exists an embedding of C(A) into A, although the em-
bedding is not necessarily explicitly de�nable in A. Speci�cally, there exist functions

pair : A2 → A encode : A → A

head : A → A decode : A → A

tail : A → A nil ∈ A

and predicates

isPair(x) def= ∃y ∃z x = pair(y; z)

isNil(x) def= x = nil

isElement(x) def= ¬isPair(x) ∧ ¬isNil(x)
satisfying the following coherence conditions:

∀x ∀y head(pair(x; y)) = x

∀x ∀y tail(pair(x; y)) = y

∀x isPair(x) → pair(head(x); tail(x)) = x

∀x decode(encode(x)) = x

∀x isElement(x) → encode(decode(x)) = x

∀x exactly one of isPair(x); isNil(x); isElement(x):

We abbreviate the conjunction of these conditions by

coherent(pair; head; tail; encode; decode; nil):

Let � be the signature of A. Let f and R stand for function and relation symbols,
respectively, of �. For some choice of pair, head, tail, encode, decode, and nil
satisfying the coherence conditions, consider the structure

A′ = (A; �′; pair; head; tail; nil; encode; decode);

where

�′ def= {f′ | f ∈ �} ∪ {R′ | R ∈ �};
f′ def= encode ◦ f ◦ decode;
R′ def= R ◦ decode;
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that is,

f′(a1; : : : ; an)
def= encode(f(decode(a1); : : : ; decode(an)));

R′(a1; : : : ; an)
def= R(decode(a1); : : : ; decode(an)):

The map encode :A→A extends uniquely to a homomorphism of the structure

C(A) = (C(A); �; pairC(A); headC(A); tailC(A); nilC(A))

into A′.
Now any program P over C(A) can be simulated by a program P′ over A′. The

program P′ is obtained from P by the following transformations:

(i) replace f by f′ and R by R′;
(ii) replace x := ∃ by the program x := ∃ ; if ¬ isElement(x) then reject;
(iii) replace y := ∀ by the program y := ∀ ; if ¬isElement(x) then accept.

Then P accepts x1; : : : ; xn i; P′ accepts encode(x1); : : : ; encode(xn). But by Harel and
Kozen [5], the predicate “P′ accepts encode(x1); : : : ; encode(xn)” can be expressed
by a �1

1 formula  over A′, thus P accepts x1; : : : ; xn i; the following formula is true
in A:

∀pair ∀head ∀tail ∀encode ∀decode ∀nil
coherent(pair; head; tail; encode; decode; nil) →  :

This is a �1
1 formula.

It remains only to show how to use the pairing apparatus of C(A) to implement
dictionaries. This is quite standard. We represent a dictionary as a list of (key,value)
pairs terminated by nil. For example, a1 �→ b1, a2 �→ b2, a3 �→ b3 would be represented
as the list

pair(pair(a1; b1); pair(pair(a2; b2); pair(pair(a3; b3); nil))):

The dictionary operations can be implemented as follows:

• d:reset( ):
d := nil;

• d:put(x; y):
d := pair(pair(x; y); d);

• if d:containsKey(x) then � else �:
for (e := d; e �= nil; e := tail e) {
if (head(head e) = x) then �;

}
goto �;

• y := d:get(x):
for (e := d; e �= nil; e := tail e) {
if (head(head e) = x) {
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y := tail(head e);
break;

}
}

Combining Theorems 3.1 and 3.3, we have

Corollary 3.4. Over any countable structure, IND programs with dictionaries accept
exactly the �1

1 relations.
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