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Part 1 – Theoretical Description of PCFEM Code 
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PUC: A Periodic Unit Cell based code for modeling materials with inclusions  

The theory behind the implemented Periodic Unit Cell based code is described. The work is 
based on references [1-3]. 

 

 

 

Figure 1 

The material is periodic in the directions x and y and is excited by an oblique incidence plane 
wave given by: 

 sin cos sin sin cosˆˆ , , jk x y z
ip x y z Ae  (1) 

where we have assumed a j te  temporal dependency.  
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Figure 2 

We start with the Unit Cell Finite Element system (see Figure 2 for a cut along plane xz and for 
notations):  

 

2

22

1T

f

FK M C u
H pC Q

 (2) 

u  and p  contain the structural displacement (displacements along x,y,z) and pressure dof 

respectively before imposition of boundary conditions. F  and  represents the external 
force nodal vector acting on the structure and the external normal pressure gradient nodal vector 
acting on the fluid domain boundary respectively.  

Note that for an acoustical excitation 0F  and is only non-zero at degrees of freedom on 

boundaries and   .  is given by 

 
ˆ

B T L R
ext

pN x x dS x
n

 (3) 

where p̂  is the acoustic pressure inside the finite element domain  . Actually, it will be 
shown after that only the contribution of and needs to be calculated (see Eq(67)). 

Since the material is periodic in direction x and y, any function solution of the problem must 
satisfy: 

 
21 22

1 22 , 2 , , , e e

, , e e

yx

yx

j d qj d q

jj

x d y d z x y z

x y z
 (4) 

with 
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sin cos

sin sin
x

y

q k

q k
 (5) 

Note that a function , ,x y z  satisfying Eq(4) can be written as : 

 , , , , e e yx jq yjq xx y z x y z  (6) 

where 1 22 , 2 , , ,x d y d z x y z . , ,x y z  is a periodic function of x and y of period 

12d  and 22d  in each direction.  

To calculate this vector, the pressure in e  is expanded in Bloch series. The reflected pressure 

in e  can be written using Eq(6) as:  

 sin cos sin sinˆˆ , , , , jk x y
r rp x y z x y z e  (7) 

And since ˆ , ,r x y z  is a periodic function in x and y, it can be expanded in term of spatial 
Fourier series along x and y as: 

 
,

,

,
,

ˆ ˆ, ,

ˆ

yx

ymn x

j nyj mx
r r mn

m n

j nyjk z j mx
r mn

m n

x y z z e e

e e e
 (8) 

With 

 
1 22 2

, 0 0
1 2

1 1ˆ ˆ , ,
2 2

yx
d d j nyj mx

r mn r x y z e e dxdy
d d

 (9) 

and 

 1

2

x

y

d

d

 (10) 

For the z-dependence, the reflected wave is supposed to propagate in the –z direction. 
Therefore the total pressure in e  can be written as: 

 

sin cos sin sin

,

,

ˆ ˆ ˆ, , , ,

ˆ ˆ, ,

ymn x

mn m n

j nyjk x yjk z j mx
i mn

m n

jk z j x j y
i mn

m n

p x y z p x y z p e e e e

p x y z p e e e
 (11) 

with 
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sin cos

sin sin
m x

n y

m k

n k
 (12) 

Inserting Eq(11) in Helmholtz equation leads to  

 
2 2 2 2

mn m nk k  (13) 

Similarly, the pressure in e  can be written as  

 
,

ˆ ˆ, , mn m n
jk z h j x j y

mn
m n

p x y z p e e e  (14) 

with  

 
2 2 2 2

mn m nk k  (15) 

To calculate the right-hand side c
z  (see Eq(67)), the idea is to express p̂

z
 in terms of the 

nodal values of the acoustic pressure in the finite element domain. 

The normal pressure gradient on z h  can be calculated from Eq(14) as 

 

ˆ ˆ m n

m n

M N
j x j y

mn mn
m M n Nz h

j x j y
mn mn

p jk p e e
z

jk e e p
 (16) 

where 2 1M terms along x and 2 1N terms along y have been kept in the series 

expansion. The vector m nj x j y
mnjk e e  is of size 2 1 2 1M N . 

The acoustic pressure on z h  can be approximated as 

 ˆ ˆ, , m n

M N
j x j y

mn
m M n N

p x y h p e e  (17) 

Where the coefficient ˆmnp  writes: 

 
1 22 2

0 0
1 2

1 1ˆ ˆ , ,
2 2

m n
d d j x j y

mnp p x y h e e dxdy
d d

 (18) 

ˆ , ,p x y h  can be expressed in term of pressure nodal values as: 

 ˆ , , , ,pp x y h N x y h p  (19) 



7 
 

The vector , ,pN x y h  is of size pN  where pN  is the total number of pressure dofs. 

Therefore substituting Eq(19) in Eq(18) and putting the 2 1 2 1M N terms in a vector 
leads to: 

 

1 22 2

0 0
1 2

1 1 , ,
2 2

m n
d d j x j y p

mnp e e N x y h dxdy p
d d

A p
 (20) 

Matrix A  is a rectangular matrix of size 2 1 2 1 , pM N N   

The normal pressure gradient on 0z  can be calculated from Eq(11) as 

 00

0

ˆ ˆ ˆ

ˆ

m n

m n

M N
j x j yi

mn mn
m M n Nzz

j x j yi
mn mn

z

p p jk p e e
z z

p jk e e p
z

 (21) 

where the same number of terms as before has been kept in the expansion. 

The acoustic pressure on 0z  can be approximated as 

 ˆ ˆ ˆ, ,0 , ,0 m n

M N
j x j y

i mn
m M n N

p x y p x y p e e  (22) 

Where the Fourier coefficient ˆmnp  writes: 

 1 22 2

0 0
1 2

1 1ˆ ˆ ˆ, ,0 , ,0
2 2

m n
d d j x j y

mn ip p x y p x y e e dxdy
d d

 (23) 

ˆ , ,0p x y  can be expressed in term of pressure nodal values as: 

 ˆ , ,0 , ,0pp x y N x y p  (24) 

ˆ , ,0ip x y  can also be expressed in term of incident pressure evaluated on the FEM nodes: 

 ˆ , ,0 , ,0p
i ip x y N x y p  (25) 

Therefore substituting Eq(24) in Eq(23) and putting the 2 1 2 1M N terms in a vector 
leads to: 

 

1 22 2

0 0
1 2

1 1 , ,0
2 2

m n
d d j x j y p

mn i

i

p e e N x y dxdy p p
d d

A p p
 (26) 

Finally, Eq(3) rewrites : 
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0

, ,

, ,0

, ,0

ˆ
, ,0

m n

m n

m n

j x j yc
z mn

j x j y
mn

j x j y
mn i

i

z

N x y h jk e e A dS p

N x y jk e e A dS p

N x y jk e e A dS p

pN x y dS
z

 (27) 

Besides, it can be noted that   

 
0

ˆ
m nj x j y i

mn i
z

pjk e e A p
z

 (28) 

Indeed, ˆ , ,ip x y z  can be expanded as 

 ,ˆ ˆ, , mn m n

M N
jk z j x j y

i i mn
m M n N

p x y z p e e e  (29) 

So that 

 
,

0

,

ˆ ˆ m n

m n

M N
j x j yi

mn i mn
m M n Nz

j x j y
mn i mn

p jk p e e
z

jk e e p
 (30) 

with 

 

1 22 2

, 0 0
1 2

1 1 , ,0
2 2

m n
d d j x j y p

i mn i

i

p e e N x y dxdy p
d d

A p
 (31) 

Therefore Eq(27) becomes : 

 

, ,

, ,0

ˆ
2 , ,0

m n

m n

j x j yc
z mn

j x j y
mn

i

N x y h jk e e A dS p

N x y jk e e A dS p

pN x y dS
z

 (32) 

 

Or  

 ˆ
2 , ,0c i

z
pp N x y dS
z

 (33) 

System (2) becomes : 
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2

22 2 2

2T
i

ff f

K M C F
u

H
C Q p

 (34) 

With 
ˆ

, ,0 i
i

ext

pN x y dS
n

 

 

 
Figure 3 

 

The nodal vector u  and p can be partitioned in nine parts: surfaces B, L, T, R, corner lines 

1C , 2C , 3C  and 4C , inner domain I (see Figure 3).  

 
1 2 3 4

T
ren

L R B T C C C C Iu u u u u u u u u u  (35) 

 
1 2 3 4

T
ren

L R B T C C C C Ip p p p p p p p p p  (36) 

Where . denotes the transpose of . . Lu , Ru , Bu , Tu  contain the displacement 

degrees of freedom on surfaces L, R, B, T except those on their edges. 
1C

u ,
2C

u ,
3C

u ,
4C

u

contain the displacement degrees of freedom on the unit cell edges along direction z. Iu  
contains the internal displacement degrees of freedom (all those which are not on the 
boundaries of the unit cell). The same notations are used for the pressure degrees of freedom.  

Similarly, the force and normal pressure gradient nodal vectors can be partitioned as: 

 
1 2 3 4

T
ren

L R B T C C C C IF F F F F F F F F F  (37) 
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1 2 3 4

1 2 3 4

0

0

T
ren

L R B T C C C C

T
z z z z z z z z z
L R B T C C C C I

 (38) 

where , , ,L R B T  are nodal vectors containing the normal pressure gradient to 

surfaces L, R, B, T1 except those on their edges.  
1 2 3 4

, , ,C C C C  are corner-line  
nodal vectors containing the sum of the normal pressure gradient to surfaces L and B, L and T, 
B and R, L and T respectively2. 0 is the nodal vector which refers to the PUC internal nodes 

not on its lateral boundaries. 
1 2 3 4

, , , , , , , ,z z z z z z z z z
L R B T C C C C I  are nodal 

vectors containing the normal pressure gradient in the z direction to faces and . The last 
vector 0  is the nodal vector which refers to the PUC internal nodes not on and  (i.e 

internal fluid nodes comprised between  and ). 

 
1 1 1

2 2 2

3 3 3

4 4 4

Tz
L L L

Tz
R R R

Tz
B B B

Tz
T T T

T
z
C C C

T
z
C C C

T
z
C C C

T
z
C C C

Tz
I I I

 (39) 

where the vectors have been partitioned in two domains , . 

1 2 3 4, , , , , , , , , ,J J J L R B T C C C C I  refer to the vectors containing the normal pressure 

gradient in the z-direction on faces and .  

There remains to apply the boundary conditions on the unit cell which read : 

                                                           
1 Terms in 

ˆ

y

p
n

for ,L R  and in 
ˆ

x

p
n

for ,B T . 

2 Terms in 
ˆ ˆ

x y

p p
n n
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 yj
R Lu u e  (40) 

 xj
T Bu u e  (41) 

 
2 1

xj
C Cu u e  (42) 

 
3 1

yj
C Cu u e  (43) 

 
4 1

x yj
C Cu u e  (44) 

The same holds for the pressure dofs. These equations allows for expressing the nodal vectors 

in terms of reduced nodal vectors 
1

T
c

L B C Iu u u u u  and 

1

T
c

L B C Ip p p p p  : 

 

 ren U cu Q u  (45) 

 ren p cp Q p  (46) 

With 

 
1

0 0 0

0 0 0

0 0 0

0 0 0

L

B

C

u

u

U
u

u
I

Q

Q
Q

Q

I

 (47) 

and 

 L

y

u
Lu

ju
L

I
Q

I e
 (48) 

 B

x

u
Bu

ju
B

I
Q

I e
 (49) 

 

1

1
1

1

1

x

C

y

x y

u
C

ju
Cu

ju
C

ju
C

I

I e
Q

I e

I e

 (50) 
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In the previous equations u
AI  denotes the identity matrix of size equal to the number of 

structural degrees of freedom belonging to entity A  (face or edge). Similarly 

 
1

0 0 0

0 0 0

0 0 0

0 0 0

L

B

C

p

p

p
p

p
I

Q

Q
Q

Q

I

 (51) 

and 

 L

y

p
Lp

jp
L

I
Q

I e
 (52) 

 B

x

p
Bp

jp
B

I
Q

I e
 (53) 

 

1

1
1

1

1

x

C

y

x y

p
C

jp
Cp

jp
C

jp
C

I

I e
Q

I e

I e

 (54) 

 

For the external forces, we have the following relationships: 
 

 0yj
R LF F e  (55) 

 0xj
T BF F e  (56) 

 
1 2 3 4

0x yyx jjj
C C C CF F e F e F e  (57) 

Let assume that each component of corner line nodal vectors 
2C

F , 
3C

F  and 
4C

F  is 

proportional to the corresponding component of 
1C

F , that is: 

 
2 1 3 1 4 1, , , , , ,, ,C i i C i C i i C i C i i C iF F F F F F  (58) 

Then using Eq(57), we get the following relationship between the proportionality constants i , 

i  and i : 
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 1 0x yyx jjjF F F
i i ie e e  (59) 

The same relations Eq(55) to Eq (59) holds for the normal pressure gradients but with different 
constants. 
 
We then have 

 ren F cF Q F  (60) 

 
1

0 0 0

0 0 0

0 0 0

0 0 0

L

B

C

F

F

F
F

F
I

Q

Q
Q

Q

I

 (61) 

and 

 L

y

F
LF

jF
L

I
Q

I e
 (62) 

 B

x

F
BF

jF
B

I
Q

I e
 (63) 

 

1

1
1

1

1

x

C

y

x y

F
C

jF
CF

jF
C

jF
C

I

e
Q

e

e

 (64) 

Matrices 
1

F
C , 

1

F
C  and 

1

F
C  are diagonal matrices of size the number of structural dofs on 

corner line 1C  whose generic term are 
1 ,
F F
C ii i , 

1 ,
F F
C ii i 1 ,

F F
C ii i  respectively.  

We also have 

 ren c
zQ  (65) 

with  

 
1

T
c

L B C I  (66) 

and  
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1 2 3 4

0

0

T
z z z z z z z z z

z L R B T C C C C I

Tc
z

 (67) 

 

For the normal gradients in the plane (x,y) we have, 

 
1

0 0 0

0 0 0

0 0 0

0 0 0

L

B

C

I

Q

Q
Q

Q

I

 (68) 

and 

 L

y

L

j
L

I
Q

I e
 (69) 

 B

x

B

j
B

I
Q

I e
 (70) 

 

1

1
1

1

1

x

C

y

x y

C

j
C

j
C

j
C

I

e
Q

e

e

 (71) 

Matrices 
1C

, 
1C

 and 
1C

 are diagonal matrices of size the number of pressure dofs on 

cornerline 1C  whose generic term are 
1 ,C ii i , 

1 ,C ii i 1 ,C ii i  respectively. 

Matrices LI , BI ,
1C
I  are diagonal matrices of size the number of pressure dofs on the 

respective partition. 

Substituting Eq(45), Eq(46), Eq(60) and Eq(65) in Eq(2), multiplying the first and the second line 

of the resulting system by 
*TuQ  and 

*TpQ respectively, the following reduced system is 
obtained: 
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*

* **
2

2

Tu F cuu up c

T TT p c p zcup pp

f

Q Q FZ Z u

Q Q QpZ Z
 (72) 

* 2Tuu u uZ Q K M Q  

*

2 2 2

Tpp p p

f f

H
Z Q Q Q  

*Tup u pZ Q C Q  

Using Eq(47) and Eq(61) on the one hand and Eq (51) and Eq(68) on the other hand, it can be 
shown that: 

 *

no internal force
acting on the structure

0

0
0

0
Tu F c

I

Q Q F

F

 (73) 

and 

 *

0

0

0

0

Tp cQ Q  (74) 

Eq(72) becomes 

 **
2

0
2

uu up c

T zT cup pp p
f

Z Z u
QpZ Z

 (75) 

 

System in Eq(75) is Hermitian and can be solved using appropriate resolution algorithm. The 

matrices 2K M , C and 2

H
Q  are obtained directly from Novafem without 

imposing any boundary conditions on the fluid and the structure. System (75) requires to build 
the condensation matrices uQ  and pQ . Note that in z  only the normal incident pressure 

gradient degrees of freedom (on 0z ) are non-zero.  
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The steps in the methodology are the following: 

1. Identify corner line, lateral face and internal nodes 
2. Partition global solution vector into nine components  
3. Build the periodic boundary condition condensation matrix for the structure uQ  

4. Build the periodic boundary condition condensation matrices for the fluid pQ  and 

Q  

5. Calculate matrices  and  

6. Calculate the normal incident pressure gradient nodal vector  

7. Build system (72) (Hermitian projection of Eq(2) on 
0

0

u

g

p

Q
Q

Q
 ) 

8. Solve the projected Hermitian system 
 
 
 
Calculation of   

 can be rewritten as 

 
*1 1

, ,

1

m nj x j y
mn

T

N x y h jk e e dS A

A D A
 (76) 

where D  is a diagonal matrix of dimension 2 1 2 1 , 2 1 2 1M N M N  

 
1

1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

M N

M N

MN

MN

jk
jk

D
jk

jk

 (77) 

 

where 1A  is a matrix of dimension 2 1 2 1 , pM N N  given by 
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1 , ,

, , , ,

m n

m i n i

m i n i

j x j y p

j x j y p p

j x j y p

p

A e e N x y h dS

e e N x y h N x y h dS

e e C

C

 (78) 

m i n ij x j ye e  is a matrix of dimension 2 1 2 1 , pM N N  which contains on each 

line the nodal values of term m nj x j ye e . Actually, only the dof on face  are considered in the 
calculation. 

 

 

 

 

Calculation of the transmitted power (power exchanged between the structure and ) 

 

*

*

1 ˆˆ .
2
1
2

W p v ndS

j p C u
 (79) 

 

Calculation of the power exchanged between the structure and  

 

*

*

1 ˆˆ .
2
1
2

W p v ndS

j p C u
 (80) 

 

Calculation of the Reflection and transmission coefficients 
 

In the case where only the normal modes taken care of,  the reflection coefficient is given by:  

 

1 22 2 sin cos sin sin
00 0 0

1 2

sin cos sin sin

1 2

1 1ˆ ˆ , ,0
2 2

1 1 ˆ     
2 2

i i

d d jk x jk y

jk x jk y p

R p p x y e e dxdy
d d

e e C p
d d

 (81) 

Similarly, the transmission coefficient is given by 00p̂  with: 
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1 22 2 sin cos sin sin
00 0 0

1 2

sin cos sin sin

1 2

1 1ˆ ˆ , ,
2 2

1 1 ˆ      
2 2

i i

d d jk x jk y

jk x jk y p

T p p x y h e e dxdy
d d

e e C p
d d

 (82) 

 

To validate these statements, note that the incident pressure ˆ , ,ip x y z  can be expanded as 

 ,ˆ ˆ, , mn m n

M N
jk z j x j y

i i mn
m M n N

p x y z p e e e  (83) 

with 

 

1 22 2

, 0 0
1 2

1 1 , ,0
2 2

m n
d d j x j y p

i mn i

i

p e e N x y dxdy p
d d

A p
 (84) 

Compare to the reflected pressure: 

 

 
,

ˆ ˆ, , .mn m njk z j x j y
mn

m n
p x y z p e e e  (85) 

At z=0: 

 

 ,ˆ ˆ, ,0 ,m n

M N
j x j y

i i mn
m M n N

p x y p e e  (86) 

and thus, 

,

ˆ ˆ ˆ, ,0 , ,0m nj x j y
mn i

m n
p x y p e e Rp x y  (87) 

 

Explicitly, 

1 2

1 2

2 2

0 0
,1 2

2 2

,0 0
1 2

1 1 ˆ
2 2

1 1 ˆ                                       ,
2 2

p qm n

p qm n

d d j x j yj x j y
mn

m n

M Nd d j x j yj x j y
i mn

m M n N

p e e e e dxdy
d d

R p e e e e dxdy
d d

(88) 

 

So that, 
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00
00

,0
,

, 0

ˆˆ ˆ ( , ˆ
ˆ

)
ˆ

.
ˆ
mn

mn i mn
i mn i

p p
p

pp Rp R f m n
p

      (89) 

Note that we can verify : 

1 2

1 2
1 2

2 2

0 0
1 2 1 2

2 2

0 0
1 2

,00

1 1 1 1ˆ ˆ , ,0
2 2 2 2

1 1 ˆ ˆ                                              
2

ˆ
2

p q
d d j x j y

mn i

p qj x j yd d d d
i

p Rp x y e e dxdy
d d d d

R A e e dxdy RA
d d

pR  

The same proof can be given for the transmission coefficient. 
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Part 2 – Validation of PCFEM Code:  
Materials with no Inclusions 
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Part 3 – Validation of PCFEM Code:  
Materials with Inclusions
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CASE 1 : DOUBLY PERIODIC CICURLAR CYLINDRICAL AIR INCLUSIONS 

REFERENCES 

 Easwaran, V. and Munjal, M. (1993), Analysis of reflection characteristics of a normal incidence plane wave on 
resonant sound absorbers: A finite element approach, The Journal of the Acoustical Society of America, 93, 
1308. 

 Hladky-Hennion, A.C. and Decarpigny, J.N. (1991), Analysis of the scattering of a plane acoustic wave by a doubly 
periodic structure using the finite element method: Application to Alberich anechoic coatings, The Journal of the 
Acoustical Society of America, 90, 3356. 

DESCRIPTION 

 Alberich anechoic coating with circular cylindrical air inclusion immersed in water on both sides. 
 Normal incidence acoustic wave. 
 Air is not modelled in References – see as void. 
 Only transmission results are available. 

PCF MODEL 

 \PCFEM\work\Test cases with inclusion\case1\case1.pcf 
 Waveguide solver with TETRA 10 elements 
 /4 criterion CPU time is 19 s;      Number of elements: 1 268  Number of nodes: 2 474 
 /6 criterion CPU time is 98 s;      Number of elements: 5 080  Number of nodes: 8 784 

 

Elastic properties of coating material 

E (Pa) 1.4x108 

 (-) 0.49 

L (%) 23 

 (kg/m³) 1100 
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Good correlation obtained compared with reference.

 

CASE 2 : DOUBLY PERIODIC CICURLAR CYLINDRICAL AIR INCLUSIONS 

REFERENCES 

 Easwaran, V. and Munjal, M. (1993), Analysis of reflection characteristics of a normal incidence plane wave on 
resonant sound absorbers: A finite element approach, The Journal of the Acoustical Society of America, 93, 
1308. 

 Hladky-Hennion, A.C. and Decarpigny, J.N. (1991), Analysis of the scattering of a plane acoustic wave by a doubly 
periodic structure using the finite element method: Application to Alberich anechoic coatings, The Journal of the 
Acoustical Society of America, 90, 3356. 

DESCRIPTION 

 Alberich anechoic silicon coating with circular cylindrical air inclusion immersed in water on both sides. 
 Normal incidence acoustic wave. 
 Air is not modelled in References – see as void. 

PCF MODEL 

 \PCFEM\work\Test cases with inclusion\case2\case2.pcf 
 Waveguide solver with TETRA 10 elements 
 /2 criterion CPU time is 95 s       Number of elements: 6 314  Number of nodes: 9 888 
 /3 criterion CPU time is 581  s      Number of elements: 21 674  Number of nodes: 32 240 
 /3 yields results very very close to /2 for a fraction of time. 
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Elastic properties of silicon coating 

E (Pa) 1.8x106 

 (-) 0.49976 

L (%) 15 

 (kg/m³) 1000 

 

  

 

 

 

Good correlation obtained compared with FEM and EXP results from reference.
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CASE 3 : SINGLE PERIODIC INFINITE RECTANGULAR CYLINDRICAL AIR INCLUSIONS 

REFERENCES 

 Hladky-Hennion, A.C. and Decarpigny, J.N. (1991), Analysis of the scattering of a plane acoustic wave by a doubly 
periodic structure using the finite element method: Application to Alberich anechoic coatings, The Journal of the 
Acoustical Society of America, 90, 3356. 

DESCRIPTION 

 Alberich anechoic polyurethane coating with an infinite rectangular air inclusion immersed in water on both 
sides. 

 It is similar to a 2D case (arbitrary 1 cm height is imposed). 
 Normal incidence acoustic wave. 
 Air is not modelled in References – see as void. 

PCF MODEL 

 \PCFEM\work\Test cases with inclusion\case3\case3.pcf 
 Waveguide solver with TETRA 10 elements 
 /4 criterion CPU time is 12 s      Number of elements: 720  Number of nodes: 1 440 
 /6 criterion CPU time is 38  s     Number of elements: 2 412   Number of nodes: 4 228 

 

Elastic properties of polyurethane material 

E (Pa) 2.81x108 

 (-) 0.479 

L (%) 45 

s (%) 1.78 

 (kg/m³) 1100 (estimation) 
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Good correlation obtained compared with reference except above 15 000 Hz.  We have checked several meshes, and the 
curve doesn’t change.  However the results are very sensitive to damping.  Here we apply, separate damping to E and 

Poisson and deduce G…  So we are wondering if there is an error in the data especially the damping…It is surprising that 
only case 1 was reproduced in various papers.
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CASE 4 : DOUBLY PERIODIC ALBERICH ANECHOIC COATING ON STEEL PLATE – WATER/SLAB/AIR 

REFERENCES 

 Meng, H., Wen, J., Zhao, H., Lv, L. and Wen, X. (2012), Analysis of absorption performances of anechoic layers 
with steel plate backing, The Journal of the Acoustical Society of America, 132, 69. 

DESCRIPTION 

 Alberich anechoic coating with a cylindrical air inclusion as in CASE 1 backed by a STEEL plate.   
 Water on incident side and air behind the steel plate.   
 Normal incidence acoustic wave. 

PCF MODEL 

 \PCFEM\work\Test cases with inclusion\case4\case4.pcf 
 Waveguide solver with TETRA 10 elements 
 /3 criterion CPU time is 47 s      Number of elements: 1 050  Number of nodes: 1 996 
 /6 criterion CPU time is 539 s     Number of elements: 9 452  Number of nodes: 15 310 

 

Elastic properties of material Rubber Steel Water 

E (Pa) 1.4e8 2.1e11 n/a 

 (-) 0.49 0.3 n/a 

E (%) 0.23 n/a n/a 

 (kg/m³) 1100 7890 1000 

c (m/s)   1489 
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Good correlation with reference.  However we have tried to explain differences.  We have checked several meshes and 
also meshed various air-layers upstream and downstream slab… the curves do not change.  We believe that our results 

are more representative compared  the reference since (1) the anechoic coating alone is exactly case 1 that was 
validated; and (2) the homogeneous case (=without the inclusion) agrees with the Transfer Matrix Method (TMM) – see 

next page. 
Still, we are trying to find out what’s wrong with the input data!

 

Homogeneous case (without inclusion) 

Comparison between PCFEM (waveguide solver * ) and TMM (green curve) 
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CASE 4B : DOUBLY PERIODIC ALBERICH ANECHOIC COATING ON WATER – WATER/SLAB/WATER 

REFERENCES 

 Meng, H., Wen, J., Zhao, H., Lv, L. and Wen, X. (2012), Analysis of absorption performances of anechoic layers 
with steel plate backing, The Journal of the Acoustical Society of America, 132, 69. 

DESCRIPTION 

 Alberich anechoic coating with a cylindrical air inclusion with water of both sides = CASE 1.   
 As in case 1, however this time in absorption.   
 Normal incidence acoustic wave. 

PCF MODEL 

 \PCFEM\work\Test cases with inclusion\case4b\case4b.pcf 
 Waveguide solver with TETRA 10 elements 
 /6 criterion CPU time is 176 s      Number of elements: 6 410  Number of nodes: 10 936 

 

Elastic properties of material Rubber Water 

E (Pa) 1.4e8 n/a 

 (-) 0.49 n/a 

E (%) 0.23 n/a 

 (kg/m³) 1100 1000 

c (m/s)  1489 
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Good correlation with reference with same conclusions as in case 4 relatively to the differences.   

NOTE that usually the absorption coefficient is defined as 21 R  .  Here the absorbance they defined seems to be 

equal to 2 21diss D R T  which is in fact the energy dissipated in the coating.  While for the previous case 

both absorptions are very close due to the steel plate causing very low value of T, in this case this is no longer true.  

CASE 5 : DOUBLY PERIODIC COATED RIGID SPHERE COATING ON STEEL PLATE OR ON WATER 

REFERENCES 

 Meng, H., Wen, J., Zhao, H., Lv, L. and Wen, X. (2012), Analysis of absorption performances of anechoic layers 
with steel plate backing, The Journal of the Acoustical Society of America, 132, 69. (FIGURE 6) 

DESCRIPTION 

 Doubly periodic ALUMINUM coated sphere in a host rubber backed by a STEEL plate or WATER.  Water on 
incident side and air behind the steel plate if not water backing.  The core of the coated sphere is in Aluminum, 
while is coating is a soft silicon rubber. 

 Normal incidence acoustic wave. 

PCF MODEL 

 \PCFEM\work\Test cases with inclusion\case5\case5.pcf (for steel backing) 
 \PCFEM\work\Test cases with inclusion\case5b\case5b.pcf (for steel backing) 
 Waveguide solver with TETRA 10 elements 
 /10 criterion CPU time is 2202 s   Number of elements: 29 184 (24 576) Number of nodes: 42 471 (35 

937) 
 /6 criterion CPU time is  115 s    Number of elements: 6 528 (3 456)  Number of nodes: 10 115 (5 491) 
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/10 criterion for layer 1.  Manual for layer 2. 

 

Good correlation with reference.  Finer mesh yields better correlation around peaks.  
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CASE 6 : DOUBLY PERIODIC COATED SPHERE COATING – WATER/SLAB/AIR 

REFERENCES 

 Wen, J., Zhao, H., Lv, L., Yuan, B., Wang, G. and Wen, X. (2011), Effects of locally resonant modes on underwater 
sound absorption in viscoelastic materials, The Journal of the Acoustical Society of America, 130, 1201. (FIGURE 
3) 

DESCRIPTION 

 Doubly periodic STEEL coated sphere in a host rubber backed by a STEEL plate.  Water on incident side and air 
behind the steel plate.  The core of the coated sphere is in Aluminum, while is coating is a soft silicon rubber. 

 Normal incidence acoustic wave. 

PCF MODEL 

 \PCFEM\work\Test cases with inclusion\case6\case6.pcf (for steel backing) 
 Waveguide solver with TETRA 10 elements 
 /8 criterion CPU time is  901 s   Number of elements: 18 816   Number of nodes: 27 753 
 /10 criterion CPU time is   s       Number of elements: 34 992   Number of nodes: 50 653 

 

Elastic 
properties  

Steel Polymer Silicon Water Air 

E (Pa) 2.09e11 2.66e7 2.01e5   

 (-) 0.275 0.4952 0.4895   

E (%)  0.4 0.3   

 (kg/m³) 7890 1100 1300 1000 1.29 

c (m/s)    1480 340 

 

  

( /8) 
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Good correlation with reference; however some discrepancies are not explained.  We thought that coarser mesh was 
not enough to discretize geometry; however coarse and very fine meshes yield same results.  In the paper, only sound 

speeds in media were given.  So we deduced from equations the properties given in the table.  We expect the 
discrepancies result from errors in the input data given in the reference paper. 
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CASE 7 : RUBBER/STEEL PLATE WITH DOUBLY PERIODIC PRISMATIC VOIDS AT JUNCTION (PUC CASE) 

REFERENCES 

 Email by Jeff Szabo entitled "Test Case" and sent on February 20th , 2014. 

DESCRIPTION 

 Rubber/Steel plate with doubly periodic prismatic voids at junction.  
 Normal incidence acoustic wave. 
 Properties of material are frequency dependent and given in MAT file "rubber3.mat" and "steel.mat" of 

reference. 

PCF MODEL 

 \PCFEM\work\Test cases with inclusion\case7\case7.pcf (for 1x1 PUC) 
 \PCFEM\work\Test cases with inclusion\case7a\case7a.pcf (for 4x4 PUC) 
 Waveguide solver with TETRA10 elements 
 ~ /2 (USER DEFINED) criterion CPU time is  60 s (347 s)   Num. of elements: 1 008 (16 128)                                 

Num.  of nodes: 1 836 (24 615) 
 Dynamic complex material properties.  Their spectra are stored in MAT files:  Rubber3_table.mat and 

Steel_table.mat located in folder:  \PCFEM\work\Material Library 

 

  
hx=hy=[2.5   5   2.5]   and    hz=[2.5   2.5   8] 
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hx=hy= [2.5  5  2.5  5  2.5  5  2.5  5  2.5] and  hz=[2.5  2.5   
8] 

For the same mesh definition, one 1x1 PUC cell yields exactly the same results as one 4x4 PUC cell

 


