Distributed data-aggregation consensus for
sensor networks

Global connectivity assessment through local data exchange

A. Ajorlou
Concordia University, Department of Electrical and Computer Engineering

M. M. Asadi
Concordia University, Department of Electrical and Computer Engineering

A. G. Aghdam
Concordia University, Department of Electrical and Computer Engineering

Prepared By:

Concordia University

1515 St-Catherine West
Montréal, Québec H3G 2W1

PWGSC Contract Number: W7707-135655

Contract Scientific Authority: Stephane Blouin, 902-426-3100 ext. 216

The scientific or technical validity of this Contract Report is entirely the responsibility of the Contractor and
the contents do not necessarily have the approval or endorsement of the Department of National Defence of
Canada.

Contract Report
DRDC-RDDC-2014-C153
August 2014



© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2014

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2014



Abstract

In this report, the connectivity of a wireless sensor network with a random information flow
graph is studied. A threshold on the transmission range of the sensors is given based on
the properties of the underwater acoustic channel. Then, the probability of vertex isolation
is derived which addresses connectivity in the local sense. The notion of 1-connectivity
is subsequently proposed as a global measure of connectivity, and an upper bound on its
probability is provided. This upper bound is sufficiently close to the probability of 1-
connectivity for the case where the network size is large enough and the distribution of the
vertices is homogenous.
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1 Introduction

Note: At the time the present contract was awarded, the outcome of the “Adaptive Multi-
sensor Biomimetics for Unsupervised Submarine Hunt” (AMBUSH) Technology Investment
Fund (TIF) competition was not known. Since then, the TIF AMBUSH project has been
awarded. The present contract is thus viewed as an initial effort which will lead into and
benefit the extended TIF project. In light of this, the Project Authority has authorized the
contractor to write a shorter-than-normal contract report so as to focus on research and
staffing efforts which will ultimately benefit the TIF project.

One of the most popular measures for characterizing the connectivity of a network is the
second smallest (first non-zero) eigenvalue of the graph Laplacian, which is known as the
Fiedler eigenvalue [1]. The magnitude of this measure shows how well-connected the overall
graph is. However, this measure is zero for all disconnected networks, and hence it may
not be used for sparse and disconnected graphs [2]. Moreover, the notion of vertex (edge)
connectivity is introduced to evaluate the strength of connectivity of a graph as it represents
the minimum number of vertices (edges) which need to be eliminated such that the graph
loses its connectivity [3]. As another measure, natural connectivity is defined as the average
eigenvalue of the graph spectrum, which increases monotonically with the addition of edges
[4], and is closely related to the redundancy of the routes between different vertices. Intu-
itively, the connectivity of a graph with a higher number of alternative routes connecting
two vertices is more robust. This measure can also be used for the graphs which are not
connected or graphs whose links (between different pairs of vertices) are random. However,
there is no reported work in the literature for measuring the connectivity of a random graph
using the above technique. Reachability index, on the other hand, is a measure of connec-
tivity which is useful for sparse networks, and is defined as the fraction of the node pairs
in the network that are connected [5]. In particular, this measure is more expressive than
algebraic connectivity when dealing with sparse networks.

The notion of connectivity in random graphs has been investigated widely in the literature.
The most general form of random graphs is called Erdds-Rényi which is composed of n
vertices, where each possible edge between any pair of nodes occurs independently with
probability p [6]. Also, geometric random graphs are introduced as a special case of random
graphs where the probability p depends on the mutual distance of the vertices in a given
space. One can use statistical measures to characterize the robustness of random networks
[7]. To this end, it is required to define a proper performance index which deteriorates as the
network disintegrates. The most commonly used performance indices for this purpose are
diameter, the size of the largest connected component, the average path length, the number
of reachable vertex pairs, and the tree-width [8].

This report extends some of the existing measures for the connectivity of a graph, to the
random graphs. Some background on the relevant results in graph theory is provided first.
Then, an acoustic communication channel induced by harsh underwater environment like
limited bandwidth, propagation delay, and noise is modeled. A probabilistic connectivity
measure is developed for a geometric random graph representing an underwater wireless



sensor network. The trade-off between the network size and the transmission range of the
sensors is discussed, which needs to be addressed in the network design.

2 Preliminaries

In this section, the geometric random graph Gf(n,r) with vertex set V and edge set F,
along with some related notions, are defined.

Definition 1 Let the randomly chosen independent, identically distributed (i.i.d.) points
{q1,q2, .., qn} € [0,1]% correspond to the location of the vertices V. = {vy, v, ...,v,} of a
geometric random graph Gld(n,r) = (V,E) in the R? space. Then, (i,7) € E for any two
arbitrary vertices i, j € V if and only if ||q¢; — g;||i < 7, where ||.||; represents the l-norm.

In this work, it is assumed that the agents belong to the 2D space and the distances are
measured by the Euclidean norm. Thus, d =1 = 2.

Definition 2 From the definition of the geometric random graph G3(n,r), the neighbor set
of an arbitrary agent i is defined as:

Ni={jeVl|llg—qgjll2 <r} (1)

Also, the degree of vertex i, denoted by d;, is defined as the number of its neighbors, i.e.
d; = Card(Nj;).

A path between two distinct vertices in graph G is a subgraph of G defined by a set of
consecutive edges connecting two vertices. Two paths in G are said to be independent if any
vertex common to both paths is an end vertex of both paths. The notion of k-connectivity
which is defined below, is considered as one of the preferred connectivity measures for the
case of underwater sensor network [9].

Definition 3 A graph G is said to be k-connected (k € N) if for each pair of vertices, there
exist at least k mutually independent paths connecting them. Equivalently, G is k-connected
if and only if there is no set of (k—1) vertices whose removal would disconnect the graph. In
other words, if any set of (k — 1) vertices fail, the graph is guaranteed to be still connected.
Obuviously, a k-connected graph is also (k — 1)-connected for i =1,2,....k — 1.

3 Acoustic Channel Characterization

The path loss for a signal of frequency f in an underwater acoustic channel over a distance
r is denoted by A(r, f), and is given by [10]:

A(r, f) = Aor®a(f)" (2)



where Ap is a normalizing constant, x is the spreading factor, and a(f) is the absorption
coefficient. The spreading factor s represents the propagation geometry and is typically
chosen as k = 2 for spherical spreading, x = 1 for cylindrical spreading, and x = 1.5 for the
practical spreading cases. In the case of radio channels, x is usually between 2 an 4. Also,
the absorption coefficient a(f) can be obtained experimentally. The path loss describes the
attenuation of an acoustic signal on a single unobstructed propagation path. Therefore, if
an acoustic signal of frequency f and power p; is transmitted over a path, the power of the
received signal, denoted by p,, is as follows [11]:

_ Y43
P = A IN(B) )

where N(f) shows the power spectral density of the channel noise at frequency f, and B(f)
is the usable bandwidth around the center frequency f.

Assume that two sensors form a wireless link if the received power p,. is larger than or equal
to a threshold power, and let all sensors have the same received threshold power p;.4,. Then,
two sensors establish a communication channel if the following inequality holds:

Alr, )N(f)B(f) < 2 (4)
DPr.th

Since the acoustic path loss is both frequency-dependent and distance-dependent, it causes
bandwidth limitation in underwater communication systems, such that a greater bandwidth
is available for shorter distances. Thus, the network throughput can be improved by using
the multihop communication channels in which each sensor relies on its neighbors to relay
its transmission to the desired destination.

By choosing an optimal fixed frequency fy which maximizes the channel bandwidth, ry,
can be found as the threshold transmission range for successful inter-agent communication,

described as:
bt
Tth =9 (fo, ) (5)
Prth

where g(.) is a function obtained by solving equation (4) numerically. Therefore, two arbi-
trary sensors with mutual distance r can form a communication link if 7 < 74,.

4 Proposed Connectivity Measure

Consider an underwater sensor network consisting of n sensors distributed randomly in a
2D space A of area A and denote the location of an arbitrary sensor by ¢. The sensing
area of this sensor is a circle of radius 7y, centered at ¢q. Let a second vertex be randomly
placed at ¢’ € A. Considering a uniform distribution of vertices, the probability of having
a communication link between ¢ and ¢’ is equal to ﬂrfh/A.

Since the notion of k-connectivity highly depends on the degree of vertices in the graph, it is
assumed that the degree of vertices is represented by a random variable D € Ny. For a large



n, the probability that the degree of the vertex associated with ¢ is d can be approximated
with the Poisson distribution given below [9]:

d
Pr{D =d| q} = 7<”°gf)) e Hola) (6)
where 110(q) = E{D| ¢} is the expected value of the degree of the vertex. By considering a
homogenous uniform distribution for the vertices, the expected degree can be simplified as
follows:

n
no(a) = pro = —riy, = prry (7)

where p is the density of the network, defined as the number of vertices per unit area. In
the next two sections, this simplified formulation is used to find a measure for connectivity.

4.1 Local Connectivity

The concept of local connectivity is concerned with the probability of the existence of a link
between an arbitrary vertex and its neighbors. The isolation probability of a single vertex,
denoted by Pr{iso}, is defined as the probability that a vertex of a geometric random graph
has no connection to any other vertices, meaning that its corresponding degree is zero. Using
the results of [12]:

Pr{iso} = Pr{D = 0} = ¢ P{P} (8)

Considering a homogenous uniform Poisson distribution of density p for the sensors as
described in (7), the isolation probability of each vertex can be rewritten as:

Pr{iso} = e”A™ih = ¢/ (9)

(note that in a homogeneous distribution, the density of the network p = n/A remains
constant even if both n and A tend to infinity).

4.2 Global Connectivity

The notion of 1-connectivity, denoted by Pr{l-con}, is defined as the probability that every
pair of vertices in the network are connected by at least one path. Since the considered
underwater sensor network is time-varying, Pr{l-con} can be interpreted as the fraction of
time that the random network is 1-connected for a given number of sensors n with a sensing
range threshold r4,. The choice of a proper threshold 7y, involves a trade-off: on the one
hand, the value of 7y, should be large enough to keep the entire network connected; on the
other hand, it should be small enough for optimal power consumption and minimum channel
interference. In general, the notion of 1-connectivity provides a relatively strong measure
for the overall network connectivity, and an upper bound on this measure is given as follows
[12]:

Pr{l-con} < Pr{no-iso} (10)

where Pr{no-iso} is the probability that there is no isolated vertex in the network. It is to
be noted that having no isolated vertex in a graph is necessary but not sufficient condition



for the 1-connectivity of the network. Note also that and Pr{no-iso} can be written in terms
of Pr{iso} as:

Pr{no-iso} = (1 — Pr{iso})" (11)
(the isolation of the vertices are independent of each other). According to [9], the upper
bound on Pr{l-con} in (10) becomes tight for high probability of no isolation in (10). In

other words,
Pr{l-con} = Pr{no-iso} — ¢ (12)

for some € > 0 and € — 0 as Pr{no-iso} — 1. Considering the Poisson distribution as noted
earlier, (11) can be written as:

2
i A (_p”th)>
Pr{no-iso} = e "r{iso} — e< e (13)
By considering a sufficiently high probability for Pr{no-iso}, the 1-connectivity of the net-

work is implied. Equation (13) can be used to find an appropriate threshold 7y, for a given
network size n, such that the network connectivity is preserved.

5 Future Plan

The previous results for 1-connectivity was based on the assumption that the network size
is sufficiently large, and that the sensors are placed according to a Poisson point process
with certain finite density. This can limit the applicability of the proposed method in a
practical network. For the future work, it is desired to introduce the path probability as a
connectivity measure to address the above-mentioned limitation and make the result more
applicable for practical sensor networks. Path probability is defined as the probability that
two arbitrary nodes are connected via either a direct link or a multihop path. Also, the
acoustic channel described in this work can be modified properly to characterize a more
realistic underwater communication channel.
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