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Abstract 
Ships report their own position at predictable intervals via the Automatic Identification 
System (AIS) and Long Range Identification and Tracking (LRIT).  Those able to receive 
these position reports can track the movement of vessels, but using self-reported positions 
raises new estimation challenges.  One of these is the interpolation problem, which 
considers what happened between two successive position reports, A and B, from the 
same ship.  This paper illustrates the practical significance of this problem in issues from 
oil-spill investigation to maritime security and fisheries management.  It outlines a 
general Bayesian approach to the problem that is based on simulating large numbers of 
random tracks.  The approach is illustrated using a fictitious Arctic scenario in which a 
contact, obtained from a radar satellite system, is to be associated with one of three AIS 
tracks, in the presence of ice.   The method shows how the ice-breaking capabilities of the 
vessels can be accounted for in the association problem, a challenging task for traditional 
methods.  Finally, the paper shows how to generalize from this simple association 
problem to more complex cases. 
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1. Introduction 

This paper is concerned with reconstructing past events involving ships, events around 
which the ships were employing self-reporting systems.  The motivation behind such 
reconstruction is typically forensic.  In the classic scenario, one of the ships may have 
done something suspicious, but it is not clear which one.  In another common application, 
we are reconstructing the past behaviour of a suspect, looking for accomplices or 
verifying alibis.  We want to eliminate the impossible but also to identify the more 
probable courses of events.  This is a situation that arises in practice because of the 
widespread use of self-reporting systems. 

Self-reported data, such as from the Automatic Identification System (AIS), allow 
widely-separated position reports to be attributed to the same vessel because the vessel is 
uniquely identified in each report.  In contrast, radar contacts can typically only be 
associated with a given ship track when the contacts are relatively nearby.  Thus, the 
problem of considering the possible trajectories of a vessel between widely separated 
points in space-time is one that is naturally associated with self-reporting.   

With AIS data, as available in a nation’s common operating picture, it is typical for gaps 
between successive position reports from a given ship to vary from seconds, to days, or 
even longer, due to variability in AIS coverage over the ship’s trajectory (Hammond and 
Peters, 2012).  Long Range Identification and Tracking (LRIT), another self-reporting 
system, typically produces time gaps of several hours duration.  The present paper is 



concerned with what to do when interesting events take place in the wider time intervals, 
those with widths measured in hours.

1.1 Example Scenario 
The typical scenario is illustrated here with an example reproduced from Peters and 
Hammond, 2011.  Figure 1 shows the geography, in arbitrary units.  The five green 
polygons represent islands and the two red dots represent ports.  Two successive passes 
of a satellite in low earth orbit collect AIS data.  The first pass (at time t = 0) finds three 
vessels at the locations marked with black dots labelled “A(1)”, “A(2)”, and “A(3)”; and 
the second pass 12 hours later (at time t = 1) finds the same three vessels at the locations 
respectively marked with black dots labelled “B(1)”, “B(2)”, and “B(3)”.

The filled orange circle represents a waste spill, which took place at time t = 0.34.  The 
spill is of such a size that the vessel generating it should have been carrying and using 
AIS.  We want to know which of the vessels was most probably within that circle at that 
time. 

Figure 1: Representation of geographical data for the scenario reproduced from Peters 
and Hammond (2011). The five green polygons represent land masses; the two small red 
dots represent ports; the orange circle represents the waste spill; the black dots labelled 
A(n) and B(n) are the AIS position reports (t=0 for A(n) and t=1 for B(n), n from 1 to 3 
for the three suspect vessels). 

The type of output that we seek in answer to the problem is illustrated in Figure 2, which 
shows probability density contours for the position of each vessel at the time of the spill.  
With the aid of a few supplementary computations (see Peters and Hammond, 2011), 
these contours allow the user to identify the most likely culprit of the three, which is Ship 
1 (with probability 49%). 



      Ship 1    Ship 2         Ship 3 

Figure 2: Probability density for the position of each vessel at the time of dumping, 
reproduced from Peters and Hammond (2011).  The spill site is indicated with a black 
circle. 

2. Approach 

We seek to make probabilistic inference about the path each ship in the area took 
between its two most relevant position reports (A and B).  These two reports are the ones 
that most tightly enclose the event of interest.  Thus, this paper suggests a probability 
measure over the space of possible trajectories connecting A to B.  It also illustrates a 
practical method by which probabilistic inference can be made over such a space.  The 
Bayesian approach advocated here was first described in Hammond and Peters, 2009 and 
refined in Peters and Hammond, 2011.  It involves generating a large set of tracks 
connecting A to B from a prior distribution over track space.  Given relevant data 
(including negative data), the randomly generated tracks are then weighted by their 
likelihoods.  Peters and Hammond (2011) illustrated how probabilistic responses to 
nearly any imaginable query follow straightforwardly.   

The prior distribution used in Peters and Hammond (2011) is parameterized by the 
maximum and preferred speed of the ships (vmax and vpref ), by the minimum, peak and 
mean duration of port stays (smin , speak and, smean , respectively), by an index of each 
ship’s tendency to visit ports rather than sailing on (the ‘land lust’ L), by a flag that 
permits or forbids immediate revisits to the same port (repeat_allowed), and by the 
minimum time interval over which paths are considered random (tmin).  Of these 
parameters, the maximum speed of the vessel vmax is the most important. 

This paper introduces a new consideration into problems like the one illustrated in Figure 
1, the presence of ice fields of the sort that impede navigation through polar waters.  The 
main motive for this added consideration is the fact that the Northwest Passage is said to 
be increasingly passable to ships in summer, despite some remaining ice fields.  Such ice 
fields are not always an absolute impediment to vessel progress, particularly for ships 
with ice-breaking capability.  Indeed, while land masses generally impose a hard 
constraint of vessel motion, ice can be regarded as a soft constraint, one that may merely 
slow the vessel down. This paper suggests a means by which the ice-breaking capabilities 
of the vessels in an ice-infested area can be considered in interpolation problems. 

Section 3, below, provides an overview of the existing track generation algorithm. 
Section 4 talks about how to identify shortest paths in the presence of ice.  Section 5 
points out that the ability to identify such shortest paths allows the method of Section 3 to 



be used to construct random tracks through ice fields.   That section illustrates the new 
ice interpolator on a toy scenario, featuring a contact-to-track association problem.  
Benefits and limitations of the method are discussed in section 6. 

3. Overview of Random Track Generation 

This section contains a rough overview of the track generation algorithm presented in full 
in Peters and Hammond (2011). 

Let A and B be the positions of the two reports between which we wish to interpolate the 
vessel’s path, and let tA and tB denote the respective time stamps of those two reports.  
We want our track generation method to be capable of generating any physically feasible 
route that we might imagine.  A simple way to accomplish this is by a recursive “divide 
and conquer” algorithm, in which a random intermediate point X is proposed for a 
random time tX in the interval between tA and tB.  If a trip from A to B via X is infeasible, 
given the land masses in the way, then the random selection of X is repeated.  The details 
on how one may determine whether or not the intermediate point X is feasible are 
presented in Annex A.  The implementation there is based on Dijkstra’s algorithm 
(Dijkstra, 1969).  When a feasible point X is found, the “divide and conquer” algorithm is 
called recursively, once from A at time tA to X at time tX and once from X at time tX to B
at time tB.  If the time interval is shorter than some pre-specified minimum (tmin ), the 
vessel is instead assumed to take the shortest path, at a constant speed – thus terminating 
the recursion. 

We use the recursive algorithm described above whenever we know (or assume, or 
choose to dictate) that no ports were visited in the time interval in question.  A more 
general version of the algorithm is used when one or more ports are available.  We start 
by randomly setting a “sojourn time” s – that is, an amount of time to be spent (possibly) 
at a port along the way.  Sometimes, as decided randomly based on a probability that 
derives from the ‘land lust’ parameter (L) and from the sojourn time, we ignore the ports 
and turn to the no-port “divide and conquer” method described in the previous paragraph.  
Otherwise, a port is chosen randomly, among all those that are feasible, with the relative 
probability for each port being based on the amount of flexibility in the time of arrival at 
that port.  In other words, ships are deemed more likely to visit ports when there is 
enough slack time between reports A and B that the ship can spend a “desirable” time in 
port (desirable sojourn times are defined with parameters smin and speak).  The arrival time 
tX is then chosen randomly.  The generalized “divide and conquer” algorithm is then 
called twice recursively – once from A at time tA to the chosen port at time tX and once 
from that port at time tX + s to B at time tB.

Finally, consider the case where the vessel is (moored) in port at the start or the end of 
the time interval.  A “sojourn time” is generated in the same way as it would be for a port 
to be visited along the way, but then only a randomly chosen portion of that sojourn time 
is considered to belong to the time interval of interest (between tA and tB).  The 
generalized “divide and conquer” algorithm, as described in the previous paragraph, is 
called for the truncated time interval.  For example, if the vessel starts in port, and a 
sojourn time s is determined for that port stay, then a random time amount u – typically, 
but not always, taken as uniform from zero to s – is taken out of the time interval of 
interest.  So in this example the generalized “divide and conquer” algorithm would be 
called from A at time tA + u to B at time tB.



4. Shortest Paths through Ice Fields 

This section describes how to generate the shortest route between two points through a 
field of hard and soft polygonal obstacles (where the soft obstacles are ice fields).  The 
presentation here assumes the reader is familiar with the graph construction process in 
Annex A1.  This section shows how to add vertices and edges from ice field polygons 
into the coastline graph discussed in that annex. We introduce a new parameter that is 
specific to both a given ship s and a given ice field f.  The parameter is called the 
icedelay. It represents the amount of additional time it takes ship s to traverse a given 
distance, when travelling through ice field f.  The icedelay is used to add additional 
‘length’ (sometimes called ‘cost’) to the graph edges, when these edges are entirely in 
ice. 

The process begins by taking an ice polygon, and introducing n vertices at regular 
intervals around the boundary, as illustrated in the first panel of Figure 3 below.  These 
boundary vertices are connected to one another with edges in the coastline graph 
whenever it is possible to sail between them without leaving the ice or crossing land.  The 
process is illustrated by the next panels of Figure 3.  These edges are assigned a ‘length’ 
in the graph that is artificially inflated by multiplying the actual length by the icedelay. 

Figure 3: Three panels are used to illustrate the process of adding vertices and edges for 
an ice field to the coastline graph.  The first panel shows the vertices introduced along the 
boundary of the field polygon.  The middle panel shows how an individual boundary 
vertex is connected with graph edges to other boundary vertices, when the path to these is 
entirely in ice (and does not cross land).  These edges have a length that is artificially 
inflated by the icedelay parameter. The right panel shows the final ice field sub graph- a
clique in this case. 

Figure 4, below, illustrates the process of adding the ice field sub-graph (Figure 3) to the 
main coastline graph produced by the process in Annex A1.  Generally, an ice field 
vertex is connected to a coastal vertex (with an edge in the graph) whenever it is possible 
to sail strait between the two without crossing either land or ice.  These connecting 
vertices have normal length, unmodified by the icedelay.  There is one special case, 
however, that occurs when a coastal vertex is itself encased in ice.  In that event, the 
coastal vertex in question is connected to those ice polygon vertices, and only those, 
which can be reached by travelling strait without crossing land and without leaving the 
ice.  In the special case, the edge lengths are inflated by the icedelay. 



Figure 4: This figure illustrates the land in green and the ice field in blue.  The ice field 
graph of Figure 3 is connected to the coastline graph (Annex A1) by adding an edge for 
each distinct (ice vertex, coast vertex) pair between which the ship can sail without 
crossing either ice or land.  Those new edges are shown with dark blue lines. 

Once the graph has been constructed, Dijkstra’s algorithm allows for the computation of 
the shortest path between arbitrary points A and B.  It suffices only to specify how to add 
these two points to the graph (see also Annex A2).  There are two cases: the points are in 
ice or they are not.  If either is not in ice, connect it (with edges) to all graph vertices that 
can be reached by crossing neither ice nor land.  These edges have normal length.  If 
either is in ice, connect it to those vertices, and only those, that can be reached by 
travelling entirely through ice without crossing land, inflating the edge length by the 
icedelay.  Once this is done, Dijkstra’s algorithm can find the shortest route from A to B,
up to the precision induced by n, the number of ice field boundary vertices. 

The shortest paths through ice fields exhibit an interesting refraction effect (mimicking 
the bending of light rays in a prism), an effect that gets more pronounced the greater the 
icedelay. This property is illustrated in Figure 5.  To minimize travel time, it pays to turn 
the ship slightly on entering the ice field, so as to cross the ice faster. 

Figure 5: This figure has two panels, each showing 100 shortest paths (50 paths left-to-
right and 50 paths top-to-bottom) through a rectangular ice field, which is shown in light 
blue.  400 vertices were placed on the ice field boundary in graph construction. In the left 
panel, the icedelay parameter is 1.5, so that it sometimes pays to go around the ice field 
rather than traversing it.  In the right panel, the icedelay is only 1.2.   



5. An Ice Interpolator Scenario 
The ability to find shortest paths through ice, illustrated in the previous section, implies 
that the random track generation method (Section 3) can now be applied to polar waters.  
The only new consideration is the icedelay.  Recall that this parameter was specific to a 
ship.  As a result, each ship in the area of interest will have to have its own obstacle-
avoidance graph.  Otherwise, the algorithm works as before. 

Figure 6 shows the ice interpolator in action, generating random tracks (gray lines) 
between 3 pairs of points (points are in red, with one pair per panel) on the same coastline 
shown in Figure 1, albeit with different ports (red A, B, C) and the addition of an ice field 
(shown in light blue).  40 vertices were introduced on the boundary of that ice field (see 
Figure 3). 

Figure 6: This figure has three panels, each showing 50 randomly generated tracks 
(shown in shades of gray) between a pair of reports (in red).  The land is shown in green, 
and an ice field polygon is shown in light blue.  Port locations are shown with red points, 
labelled A, B, C.  

In Figure 6, the following parameter values were used (see section 4 and Peters and 
Hammond, 2011): vmax = 20 knots, vpref = 15 knots, smin = 1 hour, speak = 4 hours, smean = 5 
hours, repeat_allowed = FALSE, L = 1, tmin = 30 minutes, Nfrustration = 20.  The reports 
were 24 hours apart.  For the ship in the middle panel of that figure, the icedelay was 1.2, 
while for the others it was 1.8.  Thus, the middle ship was more capable than the others at 
breaking through the ice field shown.  To give a better sense of scale in Figure 6, the 
coordinates of the small triangular island on the left were (1.0, 1.0), (0.8, 2.0) and (2.0, 
1.5).  Each unit represented 50 nautical miles. 

Let us now add a slight twist to the scenario depicted in Figure 6.  After 12 hours, a 
radar-equipped satellite is overhead and makes a ship detection that happens to lie inside 
the ice field.  Which ship is it most likely to be?  The answer is suggested in Figures 7 to 
9, which show probability density contour maps for the location of each ship at the time. 
The contour lines in those figure were computed using the bkde2D function in the 
KernSmooth package in R (with smoothing parameter 0.15), so they are kernel density 
estimates.  The location of the ice field contact is shown as a red x.  The ice interpolator 
suggests that the most likely candidates are ship 1 and ship 2 (76% and 23% probability 
respectively leaving less than 1% for ship 3 (this last vessel was probably lurking much 
nearer the ports at the time).  Ship 3 also has more slack time than the others, and so is 
better able to spend a desirable amount of time in port.  In other words, the ports are more 
attractive for Ship 3 (see Section 3), whereas the other ships are more “pressed for time”.  



These probabilities are computed by comparing the relative heights of the density surface 
(Figures 7-9) at the radar contact location. 

Figure 7: This figure shows density contour lines for the location of ship 1 (from Figure 
6) after 12 hours.  The land is shown in grey, and the ice field polygon is outlined with a 
dashed line.  Port locations are shown with crossed black boxes.  Red crosses show the 
start and end positions of the ship and a red x in the ice shows the radar contact position.  



Figure 8: This figure shows density contour lines for the location of ship 2 (from Figure 
6) after 12 hours.  The land is shown in grey, and the ice field polygon is outlined with a 
dashed line.  Port locations are shown with crossed black boxes.  Red crosses show the 
start and end positions of the ship and a red x in the ice shows the radar contact position.  



Figure 9: This figure shows density contour lines for the location of ship 3 (from Figure 
6) after 12 hours.  The land is shown in grey, and the ice field polygon is outlined with a 
dashed line.  Port locations are shown with crossed black boxes.  Red crosses show the 
start and end positions of the ship and a red x in the ice shows the radar contact position.  

5. Discussion 

This paper took an existing general procedure for enabling probabilistic inference over 
track space and modified it for use in ice-infested waters. The paper also suggested, using 
a fictitious example, the relevance of such queries to practical maritime situational 
awareness questions from oil-spill investigation, to maritime security and fisheries 
management.  It must be emphasized that the procedure provides capabilities presently 
afforded by no other method.  Some of the key assumptions and limitations of this 
approach have already been touched on in the discussion in Peters and Hammond (2011), 
and will not be repeated here.  Instead, the reader may wish to consider an issue which 
that paper glossed over: the fact that graph construction is really slow. 

Annex A3 reveals that finding the shortest path through a field of polygonal obstacles is 
not a speedy process, and that the slow part is graph construction.  The figures in that 
annex do much to explain why the example applications shown here and in Peters and 
Hammond (2011) considered only simple, fictitious coastlines.  If the ideas in this paper 
are to be applied to realistic coastlines, something will have to be done to increase the 



speed.  We believe that it is possible to improve speed dramatically by relaxing the 
requirement to find the absolutely shortest path between two points.  If we are willing to 
accept a path that is, in some useful sense, nearly the shortest path, then we should be 
able to improve speed by breaking the obstacle avoidance graphs into smaller pieces. 
This, in a nutshell, is the direction we plan to take with this work in future. 
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A. Shortest Paths through Polygonal Obstacles 

This annex illustrates how this paper uses Dijkstra’s algorithm to find the shortest route 
between two given points in the presence of polygonal obstacles (land masses).  The 
method has two parts: converting a chart to a graph (described in A1) and using the graph 
to find the shortest route between two given points (described in A2).  Section A3 gives 
the reader some insight into how long it might take to perform the operations identified in 
A1 and A2.  It is not necessary to read A3 to follow the main ideas of the current paper.  
For that, the key thing is to understand what is meant by a ‘feasible’ intermediate point.

Given two position reports, A and B, an intermediate point X is considered feasible, if X
can be reached from A and B can be reached from X without exceeding the assumed 
maximum speed of the ship (vmax).  To verify whether X is feasible, it is sufficient to 
compute the shortest path between A and X and the shortest path between X and B. If both 
paths can be traversed in the time interval between A and B, then X is feasible. 

A.1 Converting a Chart to a Graph 
Start with a chart, which is a collection of polygons that separate the water from the land, 
as illustrated in Figure A1. 



Figure A1: This figure provides an example of a simple set of polygons that divide water 
from land.  

Construct a graph, which is a collection of vertices V (nodes) and edges E (line segments 
connecting the vertices, with an associated length (sometimes called cost)).  The vertices 
of the graph will be the vertices of the coastline polygons. Connect the vertices of the 
graph with edges whenever it is possible to sail straight from one vertex to the 
other without crossing land.  The graph that results from the coastline in Figure 
A1 is shown in Figure A2. 

Figure A2: This figure illustrates the final graph produced by connecting all the coastline 
vertices of Figure A1 between which ships can sail without crossing land.  

A.2 Determining Shortest Paths Using the Graph
This section describes how to use the graph, constructed in section A1 above, to find the 
shortest route between two given points A and B.  We illustrate the general method with a 
representative example.  Suppose that the positions of A and B are as illustrated (with 
pink dots) in Figure A3. 



Figure A3: This figure adds two points (A and B- shown in pink) to the coastline graph 
of Figure A2.  

The first step is always to check whether a ship could go straight between A and B
without crossing land.  If so, then this is the shortest route.   In the case illustrated in 
Figure A3, the strait path is obstructed, so there is more work to do.  We add A and B to 
the vertices of the graph, connecting these vertices to the rest of the graph with edges, as 
if they had been vertices of the original polygons.  In other words, we connect each to all 
the vertices that can be reached by sailing straight.  After connecting the pink dots, the 
graph looks like Figure A4. 

Figure A4: This figure connects points A and B to the rest of the graph. 

Now we don’t need the chart anymore: the shortest path connecting A to B must be made 
up of edges of this graph (Dijkstra, 1969).  In fact, you can find the shortest path by 
Dijkstra’s algorithm in O(|E|+|V|log|V|), where |E| is the number of edges and |V| is the 
number of vertices in the graph.  The A* algorithm (Nilsson, 1980) is even faster.   

A.2 Speed Considerations
In the process outlined above, the time-consuming part is graph construction, the part in 
section A.1.  The good news is that this need only be done once for a given chart, and can 
be done in advance of shortest path finding.  The task is also readily divisible between 
several processors.  The bad news is that this is very time consuming indeed.  The 
purpose of this section is to provide the reader with fair warning. 

The section defines a sequence of gradually increasing coastline complexity and 
computes the graph construction time and the time needed to compute 100 benchmark 
shortest paths, for each entry in this sequence.  The sequence of coastlines used and the 
benchmark paths are illustrated in Figure A5.  Each entry in the sequence was 
constructed from its predecessor by taking each coastline edge and introducing a new 
coastline vertex randomly along the perpendicular bisector of the edge (the length of the 



perpendicular bisector segment was 20% of the length of the original edge).  In other 
words, each entry in the sequence has twice as many coastline vertices as the previous 
one, and we could carry on creating more and more complex coastline fractals, to the 
limits of computer memory. 

Figure A5: A sequence of coastlines (green polygons) of increasing complexity is shown 
in four panels, with the simplest coastline at top left and most complex at bottom right. 
100 shortest paths are computed in each panel, 50 from top to bottom and 50 from left to 
right. 

Figure A6 gives the time required to construct the coastal graph as a function of the 
number of coastline vertices in the sequence defined above.  Note the logarithmic scale 
on the vertical axis.  The long run times occur despite a number of speed enhancements 
and tricks that were not documented above, in the interest of brevity.  Once the graph is 
constructed, however, the news is much better.  Figure A7 gives the time required to find 
100 shortest paths as a function of coastline complexity.  In that figure, the run time is 
almost linear in the number of vertices. 



Figure A6: The time needed to construct the coastline graph is shown as a function of the 
number of coastline vertices in the sequence of coastlines of Figure A5. 

Figure A7: The time needed to construct the coastline graph is shown as a function of the 
number of coastline vertices in the sequence of coastlines of Figure A5. 


