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Summary

We constructed redirection algorithms to efficiently generate networks with prescribed char-
acteristics. In redirection, each newly introduced node either links to a random target (prob-
ability 1−r) or to the parent of the target (probability r). When r is fixed, this gives linear
preferential attachment—the attachment rate to a node is a linear function of its degree.
When r is a decaying function of the parent degree, redirection reproduces sublinear pref-
erential attachment. When r an increasing function of the parent degree, highly-dispersed
networks arise. These contain multiple macrohubs—whose degree is a finite fraction of the
number of network nodes and exhibit non-extensive scaling of the degree distribution.

We found intriguing properties in the number of distinct degrees in a typical realization
of a complex network. The average number of distinct degrees grows algebraically with
network size, with an exponent that is the reciprocal of the degree distribution exponent.
The distribution of distinct degrees is a universal Gaussian. We also investigated choice-
driven network growth where a new node first provisionally selects set of target nodes and
attaches to either: (i) the target with the largest degree (greedy choice), and (ii) a target
whose degree is not the largest (meek choice). The resulting network may have either:

1
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(i) a non-universal power-law degree distribution or (ii) a single macroscopic hub. At the
transition between cases (i) and (ii) the degree distribution decays as (k ln k)−2

We generated heterogeneous social networks from homogeneous interaction rules. Het-
erogeneity emerges dynamically as the network grows, rather than being imposed explicitly
by homophily or by heterogeneous individual agents. The networks that result from our
algorithm resemble real social networks, such as those available from Facebook. Finally, we
constructed dense networks through a simple node copying mechanism. These networks ex-
hibit many unusual features, including multiple structural phase transitions in the densities
of cliques (small complete graphs), and a log-normal degree distribution in the dense regime.

Preliminary: Redirection Algorithm

In redirection, the addition of each new node n to the network occurs by (Fig. 1(a)):

1. Node n randomly selects an arbitrary “target” node x from the network.

2. With probability 1− r, with 0 < r < 1, node n attaches to x.

3. With probability r, node n links to the parent node y of x.

This rule generates a linear preferential attachment network, in which the induced rate
Ak at which a new node attaches to an existing node of degree k is given by

Ak = k+ λ, with λ = 1
r
− 2, namely, this algorithm reproduces shifted linear preferential

attachment [1]. Thus a purely local rule generates a network with a globally-defined design
criterion. This algorithm is extremely efficient, as the time required to build a network of N
nodes grows linearly with N . For r = 0, the classic random recursive tree (RRT) arises, in
which the fraction of nodes of degree k, nk = Nk/N , asymptotically scales as nk ' 2−k. For
r > 0, a non-universal power-law degree distribution nk ∼ k−(3+λ) arises. We emphasize that
the degree distribution is sensitive to the additive factor λ in the attachment rate Ak = k+λ.
Such a sensitivity contradicts conventional universality in critical phenomena, where such
microscopic model details are irrelevant.

Hindered Redirection and Sublinear Preferential Attachment

In hindered redirection, we constructed networks in which the attachment rate Ak to a node
of degree k is proportional to kγ, with γ < 1. We achieved this growth law by augmenting
redirection with local degree information [2]. In the original redirection algorithm, the prob-
ability of redirecting from an initial target to its parent is fixed. We extended this rule by
specifying the redirection probability r = r(a, b) to be a function of the degrees of the target
and parent nodes, a and b, respectively (Fig. 1(b)). Let us define fk as the total probability
that an incoming link is redirected from a randomly-selected target node of degree k to
the parent of the target. Similarly, we define tk as the total probability that an incoming
link is redirected to a parent node of degree k after the incoming node initially selected one
of the child nodes of this parent. Formally, these probabilities are defined in terms of the

2
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Figure 1: (a) Illustration of redirection. A new node n selects a target node x at random. With
probability 1−r, n links to this target (dashed arrow). With probability r, n links to y, the parent
of x (thick solid arrow). (b) In hindered and in enhanced redirection, the redirection probability r
is a function of the degrees of the initial target node and the parent node, a and b, respectively.

redirection probabilities by

fk =
∑
b≥1

r(k, b)N(k, b)

Nk

, tk =
∑
a≥1

r(a, k)N(a, k)

(k − 1)Nk

, (1)

where Nk =
∑

b≥1N(k, b) and N(a, b) is the correlation function that specifies the number
of nodes of degree a that have a parent of degree b. Thus fk is the redirection probability
averaged over all Nk possible target nodes of degree k. Likewise, since each node of degree k
has k− 1 children, there are (k− 1)Nk possible target nodes whose redirection probabilities
are averaged to give tk.

In terms of these probabilities fk and tk, the master equation that governs the evolution
of the degree distribution Nk is

dNk

dN
=

(1−fk−1)Nk−1 − (1−fk)Nk

N
+

(k−2)tk−1Nk−1 − (k − 1)tkNk

N
+ δk,1. (2)

The first ratio corresponds to realizations of the growth process for which the incoming
node actually attaches to the initial target. For example, the term (1 − fk)Nk/N gives the
probability that one of the Nk target nodes of degree k is randomly selected and that the
link from the new node is not redirected away from this target. Similarly, the second ratio
corresponds to instances in which the link to the target node is redirected to the parent. For
example, the term (k − 1)tkNk/N gives the probability that one of the (k − 1)Nk children
of nodes of degree k is chosen as the target and that the new node is redirected. The term
δk,1 accounts for the newly-added node of degree 1.

Rearranging terms, we express the master equation (2) in the generic form,

dNk

dN
=
Ak−1Nk−1 − AkNk

A
+ δk,1 , (3)

where Nk is the number of nodes of degree k and Ak is the rate at which a new node attaches
to a target node of degree k. with attachment rate given by Ak/A = [(k− 1)tk + 1− fk]/N .

3

DISTRIBUTION A: Distribution approved for public release.



0 1 2 3 4 5 6 7
−20

−19

−18

−17

−16

−15

−14

−13

ln k

ln
(A

k
/A

)

 

 

γ = 0.75

γ = 0.50

γ = 0.25

kγ/N

(a)

(a)

0 200 400 600 800

−20

−15

−10

−5

0

k

ln
n
k

0 2 4 6

−20

−15

−10

−5

0

ln k

 

 γ = 0.75

γ = 0.50

γ = 0.25

(a)

(b)

Figure 2: (a) Simulated attachment probabilities Ak/A versus k from generalized redirection. (b)
Degree distribution nk versus k for generalized redirection with r(a, b) = bγ−1 for γ = 0.75 (◦),
γ = 0.5 (5), and γ = 0.25 (4). Inset: the same data on a double logarithmic scale.

When the redirection probability is constant, we have fk = tk = r, and the expected linear
dependence Ak ∼ k is recovered. Note that the large-k behavior of the attachment rate is
Ak ∼ k tk. Thus a redirection probability r(a, b) for which tk is a decreasing function of
k will asymptotically correspond to sublinear preferential attachment. We focused on the
specific example where r(a, b) = bγ−1, with 0 < γ < 1. Because r depends only on the degree
of the parent node, Eq. (1) reduces to tk = kγ−1. Using this form of tk in the attachment
rate asymptotically gives sublinear preferential attachment, with Ak ∼ kγ.

To test the prediction that Ak ∼ kγ with γ < 1, we simulated networks that are grown
to N = 108 nodes by generalized redirection. Once a network reaches this size, we measured
the probability that attachment to a node of degree k actually occurs by systematically
making ‘test’ attachments to each node of the network according to generalized redirection.
The term test attachment means that the network is returned to its original state after each
such event. We count all test events that ultimately lead to attachment to a node of degree
k. Dividing this number of events by the total number of nodes N gives the attachment
probability to nodes of degree k, AkNk/A.

Our simulations show that the Ak grows sublinearly with k (Fig. 2(a)). The agreement
is best for γ less than, but close to 1, where the degree distribution is sufficiently broad that
meaningful statistical tests can be performed, while for small γ, the asymptotic behavior
is contaminated by progressively more slowly-decaying sub-asymptotic corrections terms in
the expression for the attachment rate. Our simulated degree distribution is also close to
the analytic result [1]

nk =
µ

Ak

k∏
j=1

(
1 +

µ

Aj

)−1

∼ k−γ exp

[
− µ

1− γ k1−γ
]
. (4)
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Our primary result is that sublinear preferential attachment networks can be generated with
a similar algorithmic simplicity as in shifted linear preferential attachment.

Enhanced Redirection and Highly-Dispersed Networks

(a) (b) (c)

Figure 3: Example enhanced redirection networks of 103 nodes for λ = 3
4 . (a) Maximum degree

kmax = 548, C = 66 core (degree ≥ 2) nodes, and maximum depth (root has depth 0, its children
have depth 1, etc.) Dmax = 10. (b) kmax = C = 154, Dmax = 12 (the smallest kmax out of 103

realizations). (c) kmax = 963, with C = 23 and Dmax = 6 (the largest kmax out of 103 realizations).
White: nodes of degree 1; black: degrees 2–20; gray (red): degree > 20.

In enhanced redirection, the redirection probability r is an increasing function of the
parent degree b with r → 1 as b→∞ (Fig. 1). Here, for simplicity, we focus on the situation
where each node has out-degree equal to 1, and thus a unique parent [3, 4]; our approach
extends to networks where each node has out-degree greater than 1, so that closed loops
arise [4]. For convenience, we choose the initial condition of a single root node of degree 2
that links to itself. The root is thus both its own parent and its own child. To grow the
network, nodes are introduced one by one and each new node n first picks a random target
node (of degree a), and then (Fig. 1(b)):

(i) either n node attaches to the target with probability 1− r(a, b);
(ii) or n attaches to the parent (with degree b) of the target with probability r(a, b).

For enhanced redirection, we focused on the redirection probability r(a, b) = 1 − b−λ with
λ > 0, but other forms for which r(a, b)→ 1 as b→∞ give similar results. This redirection
rule gives rise to networks with the following intriguing properties (Fig. 3):

1. Multiple Macrohubs: Macrohubs are nodes whose degrees are a finite fraction of
N . While macrohubs arise in other models [1,5–7], the resulting networks are singular.

5
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For superlinear preferential attachment, where Ak ∼ kγ with γ > 1 [1, 5] and in the
fitness model, where the attachment rate is proportional to both the degree k and
fitness of the target [7, 8], a single macrohub arises that is connected to almost all
other nodes of the network. In contrast, enhanced redirection networks are highly
disperse (Fig. 3), with interconnected hub-and-spoke structures that are reminiscent
of airline route networks [6, 9–12].

2. Non-extensivity : In sparse networks, the degree distribution is extensive, with the
number of nodes of degree k, Nk, proportional to N . In linear preferential attachment,
for example, the degree distribution has an algebraic tail, Nk ∼ N/kν for k � 1, with
ν > 2. In contrast, enhanced redirection leads to the non-extensive scaling

Nk ∼
N ν−1

kν
with ν < 2. (5)

The allowed range of the exponent ν is key. While past empirical studies have observed
networks with degree exponent in the range 1 < ν < 2 [13], the range 1 < ν < 2 is
mathematically inconsistent for sparse networks because it leads to a divergent average
degree as N → ∞ if the degree distribution obeys the standard scaling assumption
Nk ∼ Nk−ν . This dilemma is resolved if the degree distribution is not extensive.
In enhanced redirection, almost all nodes have degree 1 (leaves), while, the number
C ≡ N − N1 of core nodes (nodes with degree > 1) grows sub-linearly with N ; that
is, as N ν−1 with exponent ν in the range 1 < ν < 2. All Nk with k ≥ 2 also grow as
N ν−1. This anomalous scaling can be summarized as:

C = N−N1 ' c1N
ν−1 , Nk ' ckN

ν−1 for k ≥ 2 (6)

where ck are constants. This scaling leads to a finite average degree 〈k〉 without
imposing an artificial cutoff in the degree distribution.

3. Lack of Self-Averaging : Different network realizations in enhanced redirection are
visually diverse (Fig. 3). The number of nodes of fixed degree, Nk with any k ≥ 2,
and the number of core nodes C, vary significantly between realizations. For instance,
the ratio of the deviation to the average,

√
〈C2〉 − 〈C〉2/〈C〉, converges to a positive

constant as N →∞, so that the number of core nodes do not self-average. In contrast,
preferential attachment networks do self-average, as the relative deviations in Nk or C

systematically decrease as N increases [14].

Our simulations show that the degree distribution (Fig. 4) scales anomalously, as given
by Eq. (6). The exponent ν depends on the redirection parameter λ, but is always less than
2 (Fig. 4) so that the degree distribution decays very slowly in k. Because ν < 2, Eq. (6)
implies that the number of nodes of degree 1 grow more rapidly with N than core nodes.
Thus, visually, a typical network in enhanced redirection is dominated by its leaves.

6
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Figure 4: (a) Nk versus N and (b) Nk/N
ν−1 versus k for enhanced redirection with λ = 3

4
and

ν = 1.73 (determined numerically). Data are based on 104 realizations, with equally-spaced
bins on a logarithmic scale in (b). The lines in (a) show the prediction of Eq. (6), while the
line in (b) shows the k dependence from the numerical solution of the master equations.

Distinct Degrees

An unexpected byproduct of our research on generative models is that we found that the
number of distinct degrees that exist in a typical realization of a complex network display
intriguing statistical properties [15]. Our basic result: for a single realization of a preferential
attachment network of N nodes that is drawn from an ensemble in which Nk ∼ N/kν for
k � 1, the number of distinct degrees grows as N1/ν .

To determine the number of distinct degrees that appear in a typical realization of a
large network, first notice that for k in the range k ≤ K = (NR)1/ν , there are many nodes
with such degrees, so that Nk ≥ 1. In this dense regime of the degree distribution (Fig. 5),
all degrees with k < K are present. This range therefore gives a contribution of (NR)1/ν

to DN . In the complementary sparse range of k > K, we estimate the number of distinct
degrees, by integrating the degree distribution for k > K. Adding the contributions from
the dense and sparse regimes gives

Dnaive
N =

ν

ν − 1
K, K = (NR)1/ν . (7)

While the N -dependence is correct, DN ∼ N1/ν , the amplitude is wrong. We obtained a
better estimate by assuming that the probability distribution for the number of nodes of
each degree k is a Poisson distribution with average value Nk given by Nk ∼ N/kν . Then
Pk ≡ Prob[(# nodes of degree k) ≥ 1] = 1− exp(−Nk). Using this property, we found the
more accurate estimate DN =

∑
k≥1

[
1− e−Nk

]
which leads, in the large N limit, to

DN ' Γ
(
1− 1

ν

)
(RN)1/ν (8)

7
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Figure 5: (a) Number of nodes of degree k ≥ 10 for a single linear preferential attachment network
of N = 107 nodes. The largest degree is kmax = 6693, DN = 465, the last doublet occurs at
k = 782, the last dimer at k = 641, the last triplet at k = 518, the last trimer at k = 500, and
the first hole at k = 201 (arrows). (b) The average number of distinct degrees DN versus N . The
upper curve (◦) corresponds to the shifted linear preferential attachment rate Ak = k − 1

2 . Here

DN = BN2/5, with B = (3/2)2/5π−1/5Γ(3/5) = 1.393019 . . .. The lower curve (4) corresponds to
Ak = k. Each data point represents an average over 104 realizations. The dashed lines correspond
to our theoretical predictions.

for networks whose degree distribution has the algebraic tail Nk ' NRk−ν for k � 1, and
R is a constant of the order of 1.

For strictly linear preferential attachment, R = 4 and ν = 3, so that DN = BN1/3, with
B = 22/3Γ

(
2
3

)
= 2.149528 . . .. For this simplest model, we also studied the probability dis-

tribution Π(DN) of distinct degrees and found that it has the Gaussian form, with standard
deviation growing as

√
〈D2

N〉 − 〈DN〉2 ∼ N1/6.
Statistical characteristics of the sparse tail of the degree distribution exhibit interesting

universal behaviors. This includes the location of the first “hole” in the degree distribution—
the smallest degree value for which Nk = 0. Using probabilistic arguments, we found that
the first hole is asymptotically located at the degree value

〈h1〉 '
(
νNR

lnN

)1/ν

. (9)

We also determined the location of the last doublet, the largest two consecutive k values for
which Nk > 0, and the last dimer, the largest k value for which Nk = 2 (Fig. 5). Starting
with degree 1, the degree distribution first consists of a long string of consecutive “occupied”
degrees until the first hole, followed by a second string until the second hole, etc. As the
degree increases, these strings become progressively shorter and above a certain threshold
all remaining strings are singlets. For a large network, the last string that is not a singlet

8
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will almost certainly be a doublet (with probability approaching 1 as N → ∞). Using
probabilistic reasoning, the average position of this last doublet is given by

〈δ〉 = C(RN)1/(ν−1/2) . (10)

We also quantifies other characteristics of the sparse tail of the degree distribution, such as
the location of the last higher multiplets, and the last dimer, the last trimer, etc.

Our results apply to other heavy-tailed integer-valued distributions. The universal Gaus-
sian nature of the distribution of distinct elements arising in a given realization suggests a
new yet-to-be-proved central-limit theorem that underlies these results.

Choice-Driven Phase Transition

A remarkable outcome of network research is that realistic networks can be build via random
algorithms. The lack of any central planning is a virtue in many situations, but the lack of
local choice can be problematic [16]. We addressed this issue by the following choice-driven
growth rule [17]: a set of target nodes is first selected, and a new node attaches to the optimal
target. We defined optimality in terms of node degree. Specifically, the new node attaches
to the target with the largest degree; this defines the “greedy” choice model (Fig. 6).

53

Figure 6: Illustration of network growth by greedy choice out of two alternatives. Two nodes in
the network are selected according to preferential attachment. A new node attaches to the target
with the larger degree, in this case, degree 5.

The simples non-trivial case is choice from two alternatives—two nodes are provisionally
selected, and the new node links to the node with with maximal degree (with random
choice if both selected nodes have equal degrees). The initial selection of the target is made
according to shifted linear preferential attachment. As we already know, this is efficiently
done through the redirection mechanism with fixed redirection probability r. We find that
the degree distribution for greedy choice has the algebraic tail, nk ∼ k−ν2 for k � 1, where
the decay exponent is given by

ν2(r) =

{
1 + 1/(2r) 0 < r < 1

2
,

1 + 1/(2− 2r) 1
2
< r < 1.

(11)

9
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and the subscript refers to greedy choice from two alternatives. The two forms for ν2(r)
coincide when r = 1

2
, which corresponds to the strictly linear preferential attachment. In this

case, the degree distribution acquires an additional logarithmic correction, nk ' 4(k ln k)−2.
The most interesting feature is the emergence of a macrohub when 1

2
< r < 1. The degree

of the macrohub is hN with h = 2r−1
r2

.
These results generalize to greedy choice from p ≥ 2 of alternatives. Now a macrohub

with degree h(r)N emerges when the redirection probability exceeds rc = 1
p
, where

h = 1− (1− hr)p (12)

The degree distribution has an algebraic tail with exponent

νp(r) =

{
1 + 1/(pr) 0 < r < 1

p
,

1 + 1/(pr[1− rh]p−1) 1
p
< r < 1.

and h=h(r) implicitly determined by (12).
We also investigated attaching to a node in the target set whose degree is not the largest.

For a target set of p nodes, there are p − 1 possible such choices—to the 2nd-largest degree
node, the 3rd largest, . . . , to the smallest-degree node. These meek choice models all exhibit
a double-exponential degree distribution of the form exp(−const.×ek). The maximal degree
is of the order of logm logmN in the specific case where a new node attaches to the mth-
largest degree out of a target set of p nodes. For the meek choice from two alternatives,
for instance, in simulations of 50 realizations of networks grown to 108 nodes, the largest
observed degree was only 9. Thus meek choice provides an powerful control strategy to keep
the degree distribution homogeneous.

Spontaneous Clustering in a Homogeneous Acquaintance Model

We introduced an agent-based acquaintance model in which social links are created by pro-
cesses with no explicit homophily [18]. In spite of this homogeneous interaction, highly-
clustered social networks can arise. The crucial feature of our model is a variable triadic
closure rate. Namely, when an agent introduces two unconnected friends, the rate at which
these friends connect depends on the number of their mutual acquaintances. As this triadic
rate is varied, the social network undergoes a dramatic clustering transition. Close to the
transition, the network consists of a collection of well-defined communities. As a function of
time, the network can also undergo an incomplete gelation transition, in which the gel, or
giant cluster, does not constitute the entire network, even at infinite time. Some of the clus-
tering properties of our model also arise, but more gradually, in Facebook networks. Finally,
we constructed a more realistic variant in which network realizations can be constructed that
quantitatively match Facebook networks.

In our acquaintance model there are two disparate ways that new social connections are
made (see Fig. 7):

10
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(a) Direct connections. An agent that possesses zero or one acquaintances directly links
to a randomly-selected agent.

(b) Triadic closure. An agent with at least two acquaintances introduces a pair of them
to each other. These two agents then make a link.

The distinction between zero/one and two or greater acquaintances is arbitrary and has
been implemented for tractability. However, qualitatively similar phenomenology arises is
the transition between direct and induced connections occurs that threshold value k > 2,
rather than k = 2.

(b)(a)

Figure 7: Illustration of (a) direct and (b) induced linking. In (a), the selected node (solid circle)
has degree zero and it directly links to another node (dashed line). In (b), a node (open circle) is
first selected, and two acquaintances (shaded) of this selected node may link (dashed line).

These induced interactions are the crucial new feature of our model. By controlling
their rate, highly clustered networks can arise. Moreover, as the network evolves, it can
undergo an unusual gelation transition from a state where the social network consists of many
small disjoint communities to a dense network in which most agents are interconnected. We
formulated the two distinct mechanisms to determine the rates of direct and induced linking:

1. Threshold-Controlled: When two agents are selected as a result of induced linking, they
connect if the ratio of the number of their mutual friends (inside the oval in Fig. 8) to
the total number of friends of either agent equals or exceeds a specified threshold T .

2. Rate-Controlled: The direct and induced linking rates are 1 and R.

The rate at which triadic closure occurs can be either threshold controlled or explicitly
rate controlled. Both versions lead to highly-clustered networks near a critical value of the
relative rates of direct and triadic linking. In the parameter regime where the long-time
network is highly clustered, there always remains a small population of marginal individuals
that are part of isolated groups

Visualizations of small networks that evolve by our acquaintance model with both di-
rected and induced interactions are shown in Fig. 9. Strong macroscopic clustering emerges
for intermediate values of the threshold for induced linking events.

11
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Figure 8: Illustration of induced linking in our threshold-controlled acquaintance model. An agent
(solid circle) with five friends (open circles) is initially selected. This agent introduces two of
them (shaded). These become friends (thick line) if the ratio of their mutual acquaintances (inside
the oval) to their total acquaintances (dashed circles) exceeds a specified threshold T . Links to
acquaintances external to this cluster are not shown. Here, induced linking occurs if T < 4

9 .

(a) (b) (c) (d)

Figure 9: Example networks of N = 200 for representative threshold values: (a) T = 0.3, (b)
0.35, (c) 0.4, and (d) 0.6. For the case T = 0.35 the social network breaks up into tightly-knit
macroscopic communities.

Dense Networks by Node Copying

There are few generative models for dense networks per se. This dearth of knowlege mo-
tivated our investigation of networks that evolve by node “copying”, a mechanism that
generates dense networks with a host of intriguing properties. In our copying model (see
also [19]), nodes are introduced sequentially and each connects to a random pre-existing
target node, as well as independently to each neighbor of the target (friends of a friend)
with probability p (Fig. 10). This simple mechanism underlies social media, such as Face-
book, where an individual is invited to make a connection with a friend of a friend (see, e.g.,
Ref. [20]).

Specifically, a new node is connected to a randomly chosen existing node (direct linking),
and it also “copies” its connections (induced linking) as indicated in Fig. 10. This copying
is imperfect in that the new node links to each neighbor of a selected node in the existing
network with fixed probability p.

This simple copying mechanism plays a dramatic role on the network evolution. As
illustrated in Fig. 11, the network densifies as the copying parameter p is varied. When
p < 1/2, the network is sparse, as the average number of links L grows with the total
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(1−p) p p p
2

2

Figure 10: Illustration of the link copying model. A new agent joins a network (red). Subsequently,
the each possible link to a second-order friend is independently copied with probability p.

number of nodes N as N/(1− 2p). In contrast, when p > 1/2, L grows super-linearly with
the network size, namely as N2p. Thus for a fixed value of p > 1/2, the average node degree
diverges with the size of the network. Thus the network densifies as it grows and the resulting
network is non-sparse. At the boundary between the sparse and dense regime, p = 1/2, the
number of links grows as N lnN .

Figure 11: Illustration of the network structure in the copying model for the cases of copying
probability p = 0, 0.2, 0.4, 0.6, 0.8, and 1 (left to right).

Based on the visual densification of the network (Fig. 11), we studied the behavior of the
number of elemental motifs, such as links, triads, and higher-order cliques. To obtain the N
dependence of the number of links L(N), consider how the network evolves when a new node
attaches to an existing node of degree k. In this case, 1+pk additional links are created; the
factor 1 accounts for the initial link and the factor pk for the links to friends of the target.
Averaging over all targets, the number ∆L of new links added is 1 +p〈k〉 = 1 + 2pL/N . The
asymptotic solution to this recursion is

L(N) =


N/(1− 2p) p < 1

2
,

N lnN p = 1
2
,

N2p/
[
(2p− 1)Γ(1 + 2p)

]
1
2
< p ≤ 1.

(13)
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For 0 < p < 1
2
, the network is sparse, as L is linear in N . For p > 1

2
, a dense network arises,

as the mean degree, 2L/N , grows with N . A related, but more intricate series of structural
transitions arise for higher-order m-cliques Qm(N), namely, complete subgraphs of m nodes.
For example, the number of triangles Q3(N) ∼ L(N) for p < 2

3
, while T ∼ L3p/2 for p > 2

3
,

and similarly for m > 3.
In the dense regime of p > 1

2
, we also found that the degree distribution now has a

log-normal degree form, with strong correlations in the degrees of nearby nodes and huge
fluctuations in network observables between different realizations.
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