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A Distributed Representation of Remembered Time: 
Final report

Marc W. Howard
Department of Psychological and Brain Sciences

Center for Memory and Brain
Boston University

FA9550-12-1-0369

Abstract
The goal of the award was to extend a mathematical framework for repre-
senting time to also construct scale-invariant representations of space. The
extensive neurophysiological work done on the hippocampal place code
(which resulted in a Nobel Prize in 2014) places physical constraints on
this mechanism. We accomplished this goal by developing a computational
framework that describes a wide range of functional cellular correlates in the
hippocampus and related brain regions. Critically, this cellular-level model
is connected to behavioral memory performance via cognitive models that
take in the mathematical form of the representation. We have exceeded
the initial goals of the project by developing a representation of numeros-
ity as well as space using the same framework and a detailed model for
function translation that is constrained by neurophysiological data from the
hippocampal theta oscillation literature. This is an important development,
as it opens up new frontiers in cognitive computation. Taken together, the
work performed in this three year period was crucial in developing a math-
ematical model for cognitive operations that is constrained by neurophysi-
ology. This model connects data from the subcellular level, to the systems
neuroscience level to cognitive modeling. The mathematical framework is
capable of forming the basis of a general brain-inspired cognitive computer.

The award supported a diverse range of theoretical work leading towards an inte-
grative physical theory of brain function ranging from subcellular processes to systems
neurophysiology to cognition and behavior. In order to disseminate these results broadly,
we have published papers in a wide range of disciplines, including outlets that specialize in
machine learning and artificial intelligence (Shankar & Howard, 2013; Howard, Shankar,
& Tiganj, 2015; Shankar, 2015), cognitive science (Howard & Eichenbaum, 2015, 2013;
Shankar, 2014), neurobiology (Howard et al., 2014; Tiganj, Hasselmo, & Howard, 2015;
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Howard & Eichenbaum, 2015), and even theoretical physics (Shankar, Singh, & Howard,
2015). This document provides a narrative description of the state of the theoretical de-
velopment at the time of this writing and briefly describes future directions we hope to
pursue.

Theoretical overview

We have developed a formal mechanism that naturally computes a temporal memory
that can be self-sufficiently evolved. The key insight is that while the timeline itself cannot
be evolved self-sufficiently in time, the Laplace transform of the timeline can be (Shankar
& Howard, 2013). The model can be understood as a two-layer feedforward architecture
(Fig 1a). At each moment τ a single input node f projects to a set of units F(s) that store
the Laplace transform up to the current moment; s indexes the different units. Through
a local set of feed forward connections (represented by an operator L-1

k ), the second layer
approximately inverts the encoded Laplace transform to represent a fuzzy reconstruction of
the actual stimulus history itself, f̃ (

∗
τ).

There are two equations necessary to construct the representation. First, we must en-
code and update the Laplace transform, with real coefficients s. This can be accomplished
if each unit in F(s) is updated according to

dF(s,τ)
dτ

= α(τ) [−sF (s,τ)+ f (τ)] , (1)

where s indexes the unit. Note that this equation is both time- and space-local in that each
unit only needs to know its own value (local in space) at the previous time step (local in
time) in order to compute its new value. This ability to update self-sufficiently decouples
each value of s from its neighbors and enables the distribution of units across s to imple-
ment Weber-Fechner coding (Shankar & Howard, 2013; Shankar, 2015). The factor α(τ)
modulates all of the units in F(s) with some value that varies with time. Assigning different
functions α(τ) enables the same coding scheme to describe many different quantities. If
α(τ) is constant, F(s) codes for the Laplace transform (with real positive coefficients) of f
as a function of time. If α(τ) is set to velocity in a particular direction, dx/dτ, then F(s)
codes for the Laplace transform of f (x). By choosing α(τ) appropriately, this framework
can be used to describe functional correlates of a wide range of time cells and place cells
in the hippocampus (Howard et al., 2014; Howard & Eichenbaum, 2015). As described
later, a detailed biophysical simulation (Tiganj et al., 2015) shows that Equation 1 could be
implemented using a long-lasting current known to support persistent firing cells in slice
preparations of entorhinal and perirhinal cortex (Egorov, Hamam, Fransén, Hasselmo, &
Alonso, 2002; Fransén, Tahvildari, Egorov, Hasselmo, & Alonso, 2006; Navaroli, Zhao,
Boguszewski, & Brown, 2011).

Given the Laplace transform, it remains to approximate the inversion of the trans-
form. The Post inversion formula (Post, 1930) provides a neurally-plausible way to invert
the transform:

f̃ (
∗
τ,τ)≡ L-1

k F(s,τ)≡Ck sk+1 d
dsk , (2)
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Figure 1. Temporal representation in the brain. a. Schematic of the model for encoding a temporal
history f (τ). At each time step, input from a single node provides input to a set of nodes F(s). Each
node of F is indexed by a different value of s which can be identified with the real Laplace variable.
Nodes in F(s) project locally to another set of nodes in f̃ (

∗
τ) via an operator L-1

k . The nodes in

f̃ approximate the original function f (τ). The error in f̃ (
∗
τ) is scale invariant. We choose the

distribution of nodes across s and thus also
∗
τ to implement Weber-Fechner spacing (not shown). b.

Time cells in the hippocampus. Firing rate for each cell is shown as a function of time during the
delay period of a memory task. Each row is the average firing rate of an individual cell as a function
of time; the cells are sorted on their time of peak firing. If the width of receptive fields and number
density was constant, this plot would appear as a straight ridge with constant width. The curvature
and spread are qualitatively consistent with Weber-Fechner scaling and statistically reliable across
a range of time cell experiments. Unpublished data from the Eichenbaum lab. c. Time cells in the
striatum show the same qualitative properties. Time (on the x axis) is in seconds. Firing rate is
shown prior to (left) and after (right) food delivery in a fixed interval operant task. Food delivery
was approximately periodic so there was another stimulus at approximately -60. Here the color
scheme is different and the order of sorting is different, but the same qualitative properties hold.
From Mello, et al., (2015).

where k is an integer parameter that controls the accuracy of the inversion and Ck is just
a normalization constant that depends on k. The operator L-1

k is not only linear but also

local—each value of
∗
τ is in a one-to-one relationship with s (more precisely each value

of
∗
τ is proportional to the time constant determined by s). The time-dependence of f̃ is

attributable to the derivative operator, which can be approximated with on the order of k
near neighbors around s. Fortuitously, L-1

k is both neurally plausible—k = 2 can be imple-
mented with a Mexican hat feedforward projection—and computationally advantageous,
giving rise to scale-invariant representation such that the width of temporal receptive fields
proportional to

∗
τ. Because both Eqs. 1 and 2 are local, this gives us freedom to choose

the distribution of s. It can be shown that Weber-Fechner spacing, such that the difference
between adjacent values of

∗
τ goes up linearly with

∗
τ, is optimal for long-range correlated

signals (Shankar & Howard, 2013).
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Cognitive models for learning and memory

When α(τ) is constant over time, Eqs. 1 and 2 generate a representation as a function
of time. Howard, Shankar, Aue, and Criss (2015) developed relatively detailed cognitive
models of a number of memory tasks using this scale-invariant time-line. Much of con-
temporary memory research focuses on different “forms” of memory. We demonstrated
that if provided with a Weber-Fechner spaced representation of temporal history, differ-
ent forms of memory could be understood as different operations on the same underlying
representation. For instance, classic short-term working memory tasks (Hacker, 1980) can
be understood as the result of scanning along an internal timeline. In contrast, contiguity
effects in episodic memory tasks (Kahana, Howard, & Polyn, 2008; Howard, Youker, &
Venkatadass, 2008) can be understood as the result of a “jump back in time” in which a
remembered stimulus recovers the state of the history when that stimulus was previously
experienced (Howard, Viskontas, Shankar, & Fried, 2012; Manning, Polyn, Litt, Baltuch,
& Kahana, 2011). In addition to quantitative descriptions of long- and short-term mem-
ory tasks in humans, the Howard, Shankar, Aue, and Criss (2015) paper also provided an
account of animal conditioning tasks (Cole, Barnet, & Miller, 1995) and a review of the
neurophysiological data on time cells available at that time.

Representation of time and space in the hippocampus

Howard et al. (2014) generalized the approach for constructing a scale-invariant
timeline to generating representations of spatial location and compared the model’s pre-
dictions to neurophysiological findings from the rodent hippocampus and related regions
(Fig. 2,Howard et al., 2014 see also Howard & Eichenbaum, 2015). Choosing different
functions for α(τ) and different inputs enables us to reuse the same coding scheme for
time, spatial position, ordinal position, or numerosity.

When α(τ) is constant over time, f̃ can be understood as a scale-invariant timeline.
If hippocampal time cells are the neural mechanism constructing that representation, then
this makes several quantitative predictions that can be tested. One of the contributions of
the (Howard et al., 2014) paper was to test these predictions. First, the width of time fields
should grow with the cell’s time of peak firing. Second, time fields should be asymmetric.
We showed that real neurons, reported initially by our collaborators MacDonald, Lepage,
Eden, and Eichenbaum (2011), exhibit both of these properties. We did not find evidence
for another prediction, that the number of cells coding for distant times is smaller than the
number of cells coding for more recent times, but subsequent recordings have shown this
property in the hippocampus and striatum (Fig. 1).

In addition to testing predictions about time cells, we also reported simulations of a
range of place cell phenomena. For these simulations, we took actual paths navigated by
rats in various environments and set f (τ) and α(τ) appropriately. If we set α(τ) = dx/dτ,
f̃ (

∗
x) approximates a function of x. If α(τ) is set to the (one-dimensional) velocity of the

animal in an open environment, and if f (τ) is set to be non-zero when the animal encoun-
ters a specific boundary of the enclosure, the model predicts one-dimensional place fields
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a b

Figure 2. Model for time cells can also generalize to place cells. Both panels from Howard, et
al., (2014). a. Simulated place cell generated from the model. The four panels show firing rate maps
for a place cell in four deformations of a recording enclosure. The simulated cell is constructed as
a non-linear combination of the output of two one-dimensional “boundary vector cells.” One of the
boundary vector cells codes for distance from the north wall. The other codes for distance from
the Eastern wall. This resembles experimental findings from Burgess & O’Keefe (1996). b. The
model accounts for path-dependent firing, such as shown by “splitter cells.” The animal runs along
the maze in a “figure 8” pattern so that the movements along the center arm can be preceded by a
visit to either of the other arms (left vs right). The firing rate of a simulated cell are shown in false
color. Note that the cell fires along the center arm when coming from the West arm (left) but not
when coming from the East arm (right). Paths were provided from an experiment by Lipton, et al.,
(2007). This resembles experimental findings by Wood et al., (2000).

that appear as “strips” through a 2-D environment. This property closely resembles those
described for boundary vector cells, which have been observed in the subiculum (Lever,
Burton, Jeewajee, O’Keefe, & Burgess, 2009) and have long been hypothesized to provide
inputs to classic hippocampal place cells (O’Keefe & Burgess, 1996; Hartley, Burgess,
Lever, Cacucci, & O’Keefe, 2000; Barry et al., 2006). Not surprisingly, by taking conjunc-
tions of our simulated boundary vector cells, we were able to provide firing correlates that
resemble many classical findings for hippocampal place fields (Fig. 2a). In this way, the
Laplace transform modulated by velocity becomes a mechanism to answer the question of
how allocentric position is computed in the hippocampal formation.

In addition to time cells and place cells, the same computational model can describe
more elaborate firing correlates as well (see also Howard & Eichenbaum, 2015). Many
“place cells” in the hippocampus do not fire only in dependence on position, but in a way
that depends on the history leading up to that location. For instance Figure 2b shows a sim-
ulation of “splitter cells.” In this experiment animals run alternately turn left and then right
at the end of the central arm. This means the animal may run along the central arm having
come from the left or having come from the right. Splitter cells fire at a particular location
on one type of path or the other. The instantaneous position (and velocity) is the same, but
the firing of splitter cells differentiates location based on history. In order to simulate this,
we set f (τ) to the animal’s current head direction and set α(τ) to the current speed. Note
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that the simulated cell fires on the central arm on only one type of journey, resembling the
canonical splitter cell phenomenon (see also Frank, Brown, & Wilson, 2000). In this way,
the set of all cells in f̃ code for a scale-invariant ordinal representation of the sequence of
movements along the path. Of course ordinal representations can also be understood as
representations of numerosity.

Detailed biophysical implementation of Eq. 1

The mathematical framework described thus far represents something of a challenge
to the conventional understanding of neural dynamics. In order to implement Eq. 1 to de-
scribe time cells that fire at latencies of a minute or more, we must be able to generate
functional time constants that are much longer than membrane time constants. One possi-
bility is that the “units” in F(s) are not single neurons, but rather populations of recurrently
connected neurons with eigenvalue less than 1. Moreover, in order to build representa-
tions of space and number, these time constants must be able to be rapidly modulated by a
continuously-varying signal α(τ). Inspired by these constraints, Tiganj et al. (2015) instead
pursued the hypothesis that units in F(s) correspond roughly to single neurons. If single
neurons can implement Eq. 1, this vastly expands the capacity of the network relative to a
population of neurons with recurrent connections. It also connects to a large body of work
on persistently-firing neurons from the slice literature.

Persistent firing neurons have effectively infinite functional time constants (Fig. 3a;
Egorov et al., 2002). This sustained firing in slice preparations is a consequence of a
nonspecific calcium-sensitive cation (CAN) current that depends on the concentration of
acetylcholine in the bath. Neurons with similar properties have been observed in medial
entorhinal cortex (Egorov et al., 2002), amygdala (Egorov, Unsicker, & von Bohlen und
Halbach, 2006) and perirhinal cortex (Navaroli et al., 2011), suggesting that persistent fir-
ing cells are an important component of the computational function of the MTL. A promi-
nent model of persistent firing cells (Fransén et al., 2006) hypothesizes that stable persis-
tent firing is regulated by a metabolic cascade that maintains stable calcium concentration
in the absence of a large perturbation. Equation 1 does not require stable persistent firing,
but rather gradually decaying firing. The basic idea of the computational model of (Tiganj
et al., 2015) is that if calcium concentration responded to smaller perturbations, this would
enable decaying persistent firing. In this model, in the absence of other processes, intra-
cellular calcium decays exponentially with some relatively short time constant. However,
spikes cause the entry of calcium. The CAN current is sensitive to the presence of calcium
and causes more spiking. In this way, spiking causes the actual calcium concentration, and
spiking, to decay much more slowly than the intrinsic time constant of calcium clearance.
Using parameter settings chosen either from empirical values or those chosen from other
computational models, Tiganj et al. (2015) showed that this mechanism enables the model
to account for exponentially-decaying firing with arbitrarily large time constant (Fig. 3b).

The derivation of Tiganj et al. (2015) identified several factors that can alter the func-
tional time constant. Intriguingly, that paper showed that, in the presence of the CAN
current, any manipulation that changes the slope of the f-I curve (relating firing rate to the
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a b

to a state of sustained firing always led to well-defined increases of
stable discharge rates in all neurons tested (n ¼ 13 in 10 mM CCh
and n ¼ 8 in 5 mM CCh). These increases consisted of three to seven
levels up to a ceiling (Fig. 2a) where no further enhancement in
firing rate was observed. The average maximum persistent firing
frequency induced in this manner was 9.8 ^ 4.6 Hz (n ¼ 9) in
10 mM CCh and 8.5 ^ 2.9 Hz (n ¼ 7) in 5 mM CCh.

Once persistent firing was initiated we noticed that it could only
be turned off by prolonged membrane hyperpolarizations (Figs 2c
and 3a). The larger the amplitude of the hyperpolarization, the
shorter the time required to turn off the persistent active state, but
durations of at least 5–10 s for hyperpolarizations to about 80 mV
were required to fully stop persistent firing. Graded increases in
firing frequency can be effected by repetitive activating stimuli, so

we examined whether repetitive application of hyperpolarizing
current pulse steps would have the opposite effect; that is, lead to
graded stable decreases in firing rate (n ¼ 8). Indeed, as in the case
illustrated in Fig. 2c, discrete decreases in firing rate could always be
obtained by repetitive step hyperpolarizations of duration equal to,
or longer than, those used to induce persistent firing.

Given the unique phenomenon of intrinsic persistent firing
elicited by current-step-driven spike trains, we tested whether
local synaptic activation could also lead to a state of persistent
firing. As illustrated in Fig. 3a, during intact neurotransmission,
plateau potentials that sustained stable firing could either be
induced by transiently activating the cells synaptically at about
10–20 Hz or by step depolarizations in all neurons examined
(n ¼ 7). In addition, graded increases in persistent firing frequency

Figure 2 Graded persistent activity. a, Repetitive stimulation with a 4-s depolarizing step

gives rise to five distinct increases (traces 1 to 6) of stable discharge rate (CCh, 10 mM).

b, Fourier analysis plots for the corresponding numbered segments in a (left) and c (right).

c, Repetitive application of 6-s hyperpolarizing steps gives rise to discrete decreases of

stable discharge rate and to the eventual cessation of firing (CCh, 5 mM). The lower

diagrams in a and c correspond to the peristimulus histograms (bin width of 580 ms).

Initial Vm in a is 264 mV. Final Vm in b is 255 mV.
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Figure 3. A simple biophysically plausible mechanism for generating long, modifiable func-
tional time constants. a. Persistent firing cells observed in slice preparations in entorhinal cortex,
perirhinal cortex, and amygdala have an effectively infinite functional time constants. The top trace
shows voltage across the membrane of a synaptically-isolated cell. As current is injected, the cell
starts firing at a stable firing rate. As additional current injections are provided, the cell adapts to a
new, stable firing rate (bottom). Note that the scale bar is 4 s. This persistent activity depends on a
nonspecific cation (CAN) current which is modulated by calcium. After Egorov, et al., (2002). b.
A biophysically-plausible simulation can adapt the effectively infinite time constants to a range of
finite values that can be modulated by several factors. Here, firing rate from an integrate-and-fire
simulation is shown as a function of time for several values of the conductance of the CAN current.
The bottom plot shows log of the firing rate; the straight lines indicate that the firing is exponential
but with different time constants.

magnitude of the CAN current) has the effect of modifying the time constant, implement-
ing the variation necessary for α(τ). There is extensive neurophysiological evidence that
such divisive inhibition can be induced by external inputs (e.g., Chance, Abbott, & Reyes,
2002; Longtin, Doiron, & Bulsara, 2002 for a review, see Silver, 2010).

Translation of 1-D spatial and temporal representations via hippocampal theta oscillations

Access to the Laplace transform of f enables efficient neural computation. Shankar
et al. (2015) described a mathematical and neurophysiological model for translation of
functions f̃ (

∗
τ,τ+ δ) to construct an estimate of the future (Fig. 4a; Shankar et al., 2015).

Although the model applies equally well to time and one-dimensional position, we will
restrict our attention to time in this discussion for simplicity. The model assumes that
at each moment stimuli are associated to the state of the timeline at the time they are
experienced. Suppose we want to predict what stimulus will occur 10 s into the future. If
we had access to the future state of the timeline, we could determine what will happen at
that future time using simple association. The method for estimating the future proceeds by
translating the current state of the timeline into the past (i.e., in the future the present will
be in the past). In the Laplace domain, translation is mathematically straightforward and
can be understood as manipulating the weights in L-1

k . Critically, the computational time
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Figure 4. A neural mechanism for constructing an ordered representation of future time
comports with phase precession data. a. The goal of translation is to generate an estimated
timeline of future events. Here δ indexes the distance into the future; following presentation of A, B

is predicted earlier in the future than C. b. The mapping hypothesis is that δ is swept from zero to
some large value within each theta cycle. The rate at which δ changes within a theta cycle accelerates
as the cycle proceeds. c. Phase precession data from a place cell in the rodent hippocampus (top)
and in the model (bottom). Each spike fired by a particular neuron is an individual point. The
animal’s location within the place field as it traverses left-to-right (x axis) has an effect on the
phase of firing relative to theta (y axis). Representative data from Mehta, et al., (2002). d. Theta
phase precession shows properties resembling translation to different future points of the trajectory
within a theta cycle. Top: neurophysiological data from Kjelstrup et al., (2008). Place cells from
different positions along the dorsoventral axis of the hippocampus have place cells of different size.
However, cells at all scales still precess over the same range of phases. Bottom: model predictions
from Shankar, et al., (2015) show the same qualitative patterns. d. A phase precessing cell in the
rodent ventral striatum as the animal traverses a multiple-choice maze. Left, data from van der Meer
et al. (2011). At F1, a reward was presented. The start of the maze is labeled S. The cell ramps up
its firing over the entire maze, phase precessing relative to hippocampal theta. Right, mathematical
model. In this case, the simulated cell corresponds to prediction of the reward, which gradually
ramps up over the length of the maze.

it takes to translate a certain distance does not depend linearly on that distance, enabling
logarithmic compression of the future.

The mapping hypothesis is that translation takes place within each theta cycle
(Fig. 4b). We derived the properties of translation constrained by a set of findings from
the place cell literature operationalized as phenomenological equations (O’Keefe & Recce,
1993; Lubenov & Siapas, 2009; Kjelstrup et al., 2008; van der Meer & Redish, 2011). In
particular, we used the constraints that the scale of place cells varies along the dorsoventral
axis of the hippocampus (Jung, Wiener, & McNaughton, 1994; Kjelstrup et al., 2008), and
that theta is a traveling wave along the dorsoventral axis of the hippocampus (Lubenov &
Siapas, 2009; Patel, Fujisawa, Berényi, Royer, & Buzsáki, 2012). Given these constraints,
the derivation requires that the representation of the predicted future must be organized on
a logarithmically-compressed axis, closely analogous to the logarithmically-compressed
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representation of past time (Shankar & Howard, 2013; Howard, Shankar, Aue, & Criss,
2015). It naturally accounts for the finding that hippocampal phase precession proceeds
across the same range of phases—and thus larger spatial scales—across the dorsoventral
axis (Kjelstrup et al., 2008). In addition, cells coding predicted future outcomes should
show ramping activity from the time the cue becomes available to the time the outcome
is realized, phase precessing throughout the duration. This prediction is qualitatively con-
sistent with findings from ramping cells in the ventral striatum (Fig. 4d; van der Meer &
Redish, 2011).

Future Directions: General Cognitive Computing

Howard, Shankar, and Tiganj (2015) sketched a research strategy for developing
this mathematical apporach into a general neural computer for one-dimensional quanti-
ties. Cognitive computation in the brain is fast, efficient and flexible. Emulating this abil-
ity would result in extremely important technological advances. A general computational
framework should be able to operate on a wide range of content without learning each ex-
emplar. Such a framework should generalize across not only different specific operands
but also across sensory domains, providing a general computational language for cortical
computation. Mathematical operations are an important aspect of symbolic processing.
Because of the combinatorics of these problems, learning each set of operands and the ap-
propriate outcome is not feasible. This concern, along with the observation that cognition
exhibits properties such as productivity and compositionality that are difficult to imagine in
standard connectionist architectures has long been seen as an intrinsic limitation on neural
computing (e.g., Fodor & Pylyshyn, 1988).

If time, space, and number, as well as sensory representations share a common coding
scheme, then mechanisms for computing with representations of that form could be reused
across many types of information. Translation is an example of a general computation that
can be used on representations from any number of modalities. Translation of functions of
time can be used to anticipate the future to inform decision-making in the present; transla-
tion of functions of other variables can be used to imagine alternative states of the world to
inform decision-making in the world in its current state.

In the same way that point-wise multiplications in the Laplace domain can imple-
ment translation of any function, (Howard, Shankar, & Tiganj, 2015) also showed that it is
possible to perform addition and subtraction operations on any two functions by point-wise
parallel computations in the Laplace domain. If we have two functions, f (x) and g(x), that
represent probability density functions over x, then the sum of those two density functions
can be represented by the convolution of f and g. Whereas convolution in x is an O(N2)
operation (where N is the number of cells supporting x), it turns out that the convolution
of f and g can be computed using pairwise multiplication in the Laplace domain. In par-
ticular, the Laplace transform of the convolution is just F(s)G(s), which requires O(N)
operations which can be performed in parallel. The inverse operator L-1

k can be used to
invert the transform, recovering an approximation of the convolution. Again, because L-1

k
is linear, this can be performed in parallel. The subtraction of f and g can be computed
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using cross-correlation, which is similarly efficient in the Laplace domain.
We have not yet carefully considered the neurophysiological substrates that could

support these arithmetic operations. However, the computational efficiency of performing
these operations in the Laplace domain is considerable. Given these considerations, it may
be reasonable for the brain to encode the Laplace transform even for variables that are
provided along a Weber-Fechner scale due to the property of the sensory receptors.

This suggests a general strategy for implementing symbolic computation in neural
architectures. It is clear that arithmetic obeys the properties of compositionality and pro-
ductivity (modulo edge effects). If the result of an addition operation is a function with the
same neural code as the addends, then one can in principle represent an effectively infinite
number of possible problems. For instance, given only two input functions f and g one
could compute f +g, or ( f +g)+g, or ( f + f )+g, etc.

Given a set of simple operations one one-dimensional representations of functions
such as time, space, and number, a natural extension is to develop an N-dimensional frame-
work with similar flexibility. This leads to the question of how the brain represents higher-
dimensional quantities. We have seen that one-dimensional quantities x are in many cases
represented by supporting different parts of x with the firing rate of different neurons. How
about functions over two-dimensional quantities? Take for example the hippocampal place
code, which represents 2-D (x,y) position within an enclosure. The brain might have cho-
sen to have a set of N cells that support position along the x direction and another N cells
that support y position. If that were the case, we would require 2N cells, each of which
would show place fields that are “stripes” through the environment. In contrast, the real
place code is constructed by cells that approximate radial basis functions, firing in some
circumscribed region of the environment. This coding scheme requires N2 cells to tile the
surface, but is nonetheless preferred. Of course, general cognitive computation, for instance
operating over a semantic space, would require many more than two dimensions. Consid-
eration of neural coding in the prefrontal cortex (Rigotti et al., 2013) and hippocampus
(Komorowski et al., 2013) suggests that the brain supports multiple dimensions with the
same sort of coding scheme, at least in these “high level” cognitive processing centers. A
set of simple operations that work on high-dimensional representations, including semantic
representations, could be used to develop a general neurally-inspired cognitive computer.
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