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We have used large-eddy simulation with an immersed boundary method to study
turbulent flows over distributions of uniform height, staggered cubes. The computational
domains were designed such that both the roughness sublayer and a region of the inertial
layer are resolved. With this, we record vertical profiles of time series of fluctuating
streamwise and vertical velocity at different locations throughout the domain. Contour
images of these fluctuating quantities shown relative to elevation and time are studied;
contour images of Reynolds shear stresses owing to ‘sweeps’ and ‘ejections’ are also
studied. These images show that periods of momentum excess (deficit) in the inertial-
layer precede excitation (subdual) of cube-scale coherent vortices in the roughness
sublayer. We compute this time lag (termed advective lag) and demonstrate that it scales
linearly with wall-normal elevation. The advective lag is attributed to coherent, low-
and high-momentum regions in the aloft inertial layer. Vortex identification is used to
illustrate the presence of hairpin packets encapsulating low-momentum regions. Based
on this, the reported inclination angle associated with hairpin packets is used to guide the
development of a model for prediction of advective lag with height. The model captures
the advective lag profiles reasonably well. In the interest of generality, additional cases
of flow over homogeneous roughness (aerodynamic drag imposed with the equilibrium
logarithmic law) are considered. We again observe that advective lag scales linearly
with wall-normal elevation. Advective lag predictions from the aforementioned model
agree well with results for these cases.

Keywords: large-eddy simulation; roughness sublayer; atmospheric surface layer;
coherent motions; hairpin packets; advective lag

1. Introduction and motivation

The dynamics of turbulent flows over rough walls are important in numerous settings.
The performance of vapour power systems,[1] the efficiency of naval vessels,[2] and the
economics of pipeline transport are the examples of contemporary applications greatly
influenced by turbulent momentum exchanges in close proximity to the wall. Meanwhile,
turbulent momentum transport in atmospheric boundary layer flows is of critical importance
to the performance of modern wind farms,[3] aerodynamics of vegetative canopies [4,5] and
urban environments,[6–9] and geomorphological processes associated with the evolution of
aeolian desert landscapes.[10] The aforementioned engineering and geophysical examples
are distinctly different to smooth wall turbulence, owing to the presence of a distribution
of obstacles of height, h, that protrude into the inertial layer of the flow. These obstacles

∗Corresponding author. Email: wca140030@utdallas.edu

C⃝ 2015 Taylor & Francis
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absorb momentum through pressure drag, induce flow separation, and serve to produce
obstacle-scale coherent motions that occupy the region between the wall and approximately
three obstacle heights above the roughness sublayer.[11,12] In the roughness sublayer, the
aerodynamic drag distribution due to the presence of obstacles results in an inflected mean
streamwise velocity profile at the approximate average obstacle height.[13,14] As a result,
the mean flow gradient exhibits its maxima at the inflection [10] (not the wall), and the tur-
bulence kinematics are fundamentally different. For flow over vegetative canopies, Raupach
et al. [15] demonstrated that flow in the roughness sublayer resembled a turbulent mixing
layer with positively and negatively skewed streamwise and vertical velocity fluctuations,
respectively, and Reynolds stresses composed predominately of ‘sweeps’. With this, the
turbulence structure is characterised by Kelvin–Helmholtz spanwise ‘rollers’, which origi-
nate at the velocity profile inflection and undergo a downstream transformation leading to
hairpin packets [4] (while remaining contained within the roughness sublayer). Recently,
Ghisalberti [16] demonstrated the existence of an universality in roughness sublayer statis-
tics for flows over diverse canopies, and introduced the term ‘obstructed shear flow’ to
categorise such flows. Within the sublayer, the turbulence geometric macroscale is set by
the vorticity thickness,[15,17] δw = U(h)/(dU(z)/dz)|h, and streamwise spacing of vortex
cores, "x = 2πLẅ, where U(z) and Lẅ is the mean streamwise velocity and the integral
length scale, respectively.1 The mixing efficiency associated with these Kelvin–Helmholtz
roughness sublayer motions – which is commonly quantified via the correlation coefficient,
ruw = u2

τ/urmswrms, where uτ is friction velocity and rms denotes root mean square – ex-
ceeds the value exhibited by a logarithmic boundary layer by approximately 50%.[16,18]
Thus, turbulence in the roughness sublayer is characterised by vigorous mixing and complex
structural attributes.

Above the roughness sublayer – in the inertial layer – the mean flow profile exhibits
logarithmic scaling and the turbulence structure resembles smooth wall flow.[8,13,14] That
is, the domain is occupied by persistent streamwise-elongated coherent parcels of relatively
low and high momentum. For smooth walls, such low-momentum regions (LMRs) mean-
der,[19] and are encapsulated by hairpin packets [20–27] at the interface between zones
of quasi-uniform momentum.[28] For rough walls, the presence of persistent structures
is also reported,[8,25] however, experiments have indicated that h-scale coherent motions
associated with the roughness sublayer seemingly reduce the lengths of logarithmic-layer
coherent motions.[25,29] Recently, Coceal et al. [8] used direct numerical simulation (DNS)
to study flow over a staggered array of uniform height cubes [6] with characteristic scale,
h/H = 1

4 , where H is the boundary layer depth. They illustrated the existence of hairpin
packets (and ‘cane’ structures, which are inclined coherent parcels with only one leg of
the hairpin [24] around the LMR). Moreover, they used approximated conditional averages
[20,30] to illustrate the significant reductions in streamwise coherence of their rough wall
turbulence relative to a smooth wall. These efforts to characterise the structural attributes
of smooth and rough wall turbulence have typically focused on spatial characteristics.
Furthermore, most previous studies address either instantaneous, ensemble-averaged or
time-averaged statistically stationary turbulence statistics. Here, we have used large-eddy
simulation (LES) to study the temporal dynamics of turbulent flows over such roughness.
This is accomplished by recording time-series flow statistics across the depth of the bound-
ary layer at a variety of horizontal positions (thus, we use LES to generate data-sets that
would more typically be associated with field campaign data from a tower equipped with
sonic anemometers).[31] An advantage of our approach is that it would provide insight into
the interpretation of laboratory or field experimental results, which are often collected as
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Figure 1. Illustration of [6] block case (‘C20S’) considered as lower topography in this study: (a)
perspective image showing freestream flow direction, U0 and (b) planform image with indication of
positions at which time–height velocity data are recorded. Owing to the topography attributes, the
four points effectively capture temporal dynamics at all points in the domain. The above topography
is labelled here Case SC2.

time series. Moreover, illustrations of ‘time–height’ colour floods of fluctuating stream-
wise velocity offer a novel perspective on the presence of the aforementioned coherent flow
structures and clearly show the extent to which activity in the roughness sublayer is influ-
enced by inertial-layer dynamics. Moreover, by incorporating these results with arguments
relating to structural attributes of coherent flow structures in wall-bounded flows, we have
been able to develop a predictive model for the reported advective lag. We stress that the
results presented here (and related predictive capability) are not expected to apply only to
flow over urban-like complex topographies. Thus, the predictive capability could be used,
for example, in conjunction with an atmospheric LiDAR system for control of wind farms.

1.1. Present study

We use LES to model flow over topographies composed of a staggered distribution of
wall-mounted cubes (one of the cases considered is ‘C20S’ from the wind tunnel study by
Cheng and Castro [6], and considered in the more recent DNS study by Coceal et al. [8]).
Figure 1(a) shows a perspective view of the array of cubes with edge length, h. Figure 1(b)
shows the arrangement in planform, with indication of the streamwise spacing, s/h, between
rows of cubes (s/h = 1 for all cases in this study). Figure 1(b) includes points x1, x2, x3, and
x4; during LES, time series of streamwise and vertical velocity have been recorded across
the depth of the boundary layer at these points. This is better illustrated in Figure 2(a),
which shows the cubes and streamwise spacing (for the cube cases, the y coordinates of
positions x1–x4 are equal and set to intersect the centre of cubes; the x coordinates are
varied such that x1 is precisely at the centre of a cube, x2 is centred between the upwind
and downwind row of cubes, x3 is precisely at the centre of adjacent cubes, and x4 is
centred between the upwind and downwind row of cubes). For generality, we also model
flow over homogeneous roughness lengths, shown in Figure 2(b). The novelty of this work
resides in the insights gained from considering time–height contours of fluctuating velocity
components in the context of the aforementioned (and comprehensively studied) structural
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(a)
U0

(b)
U0

H h

s

z0

x1 x2 x3 x4 xc

Figure 2. Illustration of computational domains considered in this study: (a) uniform height, stag-
gered array of blocks [6] with h varying, s/h = 1 and (b) homogeneous roughness, z0. For panel
(a), see also Figure 1. For all cases, H = 1000 m and other simulation parameters are summarised
in Table 1. Illustrative locations of positions at which time series of streamwise and vertical veloc-
ity are recorded are shown for discussion (vertical red lines). In both, an illustrative time-averaged
streamwise velocity profile is shown, where U0 is the ‘outer’ freestream velocity.

attributes [8,20–22] of turbulence in the roughness sublayer [8,25] and inertial layer. The
results (Sections 3.1–3.3) and scaling arguments (Section 3.4) demonstrate the influence
of inertial-layer structures on dynamics of the roughness sublayer. Section 2 contains a
description of the LES code and validation against an available wind tunnel data-set [6]; a
description of the cases considered for this study is also provided in Sections 2. Section 3
shows a series of results that lead to a semi-empirical model for reported temporal dynamics
of the urban sublayer. The influence of resolution (spatial and temporal) is tested in Section
3.5; we report that advective lag does not exhibit dependence on resolution. Concluding
remarks are provided in Section 4.

2. Method and cases

We consider flow over Figure 2(a) and 2(b) topographies with attributes summarised in
Table 1. During LES, the spatially filtered three-dimensional incompressible momentum
transport equations are solved at high-Reynolds number [32–35] for a neutrally stratified
(i.e. no buoyancy forces) turbulent boundary layer without Coriolis accelerations:

∂ ũ
∂t

+ 1
2
∇ (ũ · ũ) − ũ × ω̃ = − 1

ρ
∇p̃ − ∇·τ + # + 1

ρ
f , (1)

where p̃ is the modified pressure, τ is the subgrid-scale (SGS) stress tensor, and ' =
{u2

τ/H, 0, 0} is the mean pressure gradient in the streamwise direction, where uτ is the shear
velocity (uτ = 0.45 m/s) and H is the boundary layer depth (H = 1000 m). A solenoidal

Table 1. Summary of simulation parameters and domain attributes. For all cases, H = 1000 m.

Description Name L/H h/H z0/H Nx × Ny × Nz

Staggered cubes SC1 4 1/8 2 × 10−5 128 × 128 × 128
Staggered cubes SC2 2 1/4 2 × 10−5 128 × 128 × 128
Uniform roughness U1 4 − 1 × 10−3 128 × 128 × 128
Uniform roughness U2 4 − 1 × 10−2 64 × 64 × 64
Uniform roughness U3 4 − 1 × 10−3 64 × 64 × 64
Uniform roughness U4 4 − 1 × 10−4 64 × 64 × 64
Uniform roughness U5 4 − 1 × 10−5 64 × 64 × 64
Uniform roughness U6 4 − 1 × 10−6 64 × 64 × 64
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velocity field is maintained by computing the divergence of Equation (1), applying the
incompressibility condition, ∇ · ũ = 0, and solving the resulting pressure Poisson equation
for a pressure correction. Note also that the viscous stresses, ν∇2ũ, are omitted from
Equation (1), owing to the high-Reynolds number typical of atmospheric surface layer
flows (the ‘macroscale’ Reynolds number is Reτ = U0H/ν ∼ O(109)). The deviatoric
component of τ ij is evaluated using the eddy viscosity modelling approach,

τ − 1
3
δTr(τ ) = −2νt S̃, (2)

where νt = (Cs))2|S̃| is the turbulent viscosity, Cs is the Smagorinsky coefficient,[36] )

is the filter size, S̃ = 1
2 (∇ ũ + ∇ ũTr) is the resolved strain-rate tensor, and |S̃| = (2S̃:S̃)1/2

is magnitude of the resolved strain-rate tensor. For this work, Cs is evaluated dynam-
ically during LES with the Lagrangian scale-dependent dynamic SGS model of Bou-
Zeid et al.[34]. Pseudospectral discretisation is used in the horizontal directions, while
vertical gradients are evaluated with centred second-order finite differencing. Periodic
boundary conditions are imposed on the vertical planes of the domain, owing to spec-
tral discretisation in the horizontal directions. At the domain top, the zero-stress Neu-
mann boundary condition is imposed on streamwise and spanwise velocity, ∂ũ/∂z|z/H=0 =
∂ ṽ/∂z|z/H=0 = 0. The zero vertical velocity condition is imposed at the domain top and
bottom, w̃(x, y, z/H = 0) = w̃(z, y, z/H = 1) = 0. Zero-stress Neumann boundary con-
ditions are imposed on the pressure Poisson equation solution at the domain top and bot-
tom, ∂p̃/∂z|z/H=0 = ∂p̃/∂z|z/H=1 = 0. The Adams–Bashforth time-advancement scheme
is used for temporal integration of Equation (1). The nonlinear advection term is de-aliased
in Fourier space with the 3/2 rule [37]; this is necessary since aliasing errors may contami-
nate the smallest resolved scales of the flow, compromising predictions of the SGS models.
The computational domain discretisation is )x = )y = Lx/Nx, and )z = H/Nz, where L
is indicated in Table 1 and Nx = Ny = Nz. The computational domain is staggered in the
vertical direction; the first computational level for ũ and ṽ is located at elevation 1

2)z.
Here, we consider cubic roughness cases with h/H = 1/4 and 1/8 (SC1 and SC2). For

cases SC1 and SC2, the cube spacing is a block height (i.e. s/h = 1). We also consider
six cases of homogeneous momentum roughness, z0 (U1 to U6). The computational mesh
for all cube simulations is discretised with Nx = Ny = Nz = 128, while the homogeneous
roughness cases are adequately resolved with Nx = Ny = Nz = 64.[34] Table 1 summarises
the simulation attributes, where L/H is the domain horizontal length (streamwise and
spanwise extent equal for all cases). We record time series of streamwise, ũ/uτ , and vertical,
w̃/uτ , velocity at all vertical computational levels across the depth of the boundary layer at
positions x1 to x4 for the cube cases (Figure 1(b)). Since the urban topography cube height
is uniform, selecting positions x1 to x4 ensures that we capture representative data at all
other ‘cell-centred’ positions. For the homogeneous roughness cases, we record time-series
data at the geometric centre of the domain.

The immersed boundary method (IBM) used here is based on a wall model, which
depletes momentum based on the unit-normal area on which the flow impinges [33,38] and
the associated drag is added as a body force in the momentum transport equation. For cases
U1 to U6 (homogeneous rough), the equilibrium logarithmic law [39,40] is used exclusively
to impose aerodynamic drag:

τw
i3

ρ
= u2

τ = −
[

κU

ln (z/z0)

]2 ̂̃ui

U
, (3)
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814 W. Anderson et al.

where i = 1 and 2 corresponds with the streamwise and spanwise, respectively, κ is the von
Kármán constant (κ = 0.4), z0 is a (momentum) roughness length, ũi and̂̃ui denote grid- and
test-filtered quantities, respectively, and U (x, y) =

[̂̃u2
(x, y) + ̂̃v2

(x, y)
]1/2

is magnitude of
the local test-filtered velocity. See Table 1 for the particular roughness lengths used. Here, we
follow Bou-Zeid et al. [34] by using the test-filtered velocities for computing the wall stress
(Equation (3)). This approach is typically used for modelling flows over heterogeneous
[41] or complex [33] topographies, since it serves to reduce variance of the streamwise
and spanwise velocity components close to the wall, thereby improving prediction of the
logarithmic law. For cases SC1 and SC2 (Table 1), we use the equilibrium logarithmic law
for regions with h(x, y) = 0 (Equation (3)) in conjunction with an IBM for regions with
h(x, y) > 0. The present IBM technique imposes aerodynamic drag owing to the obstacles
by computing a body force, f , in Equation (1) due to spatial variation of the topography,
h(x, y). For regions where h(x, y) > )z/2, the orographic drag force imposed on the flow
by h(x, y) is

F = −
∫

S

pwndS, (4)

where ni is the unit normal vector to h(x, y) and pw is the resolved wall pressure acting on
h(x, y). This IBM technique (previously named the gradient-based drag modelling tech-
nique, Anderson and Meneveau [33], and later, Anderson [38]) is used to model pressure
drag forces due to pw. After division by density, ρ, and local computational cell volume,
)x)y)z, Equation (4) reduces to a drag force per unit mass required in Equation (1):

1
ρ

f = − 1
ρ)2)z

∫

S

pwndS ≈ −ũR (ũ · ∇h)
1

)z

, (5)

where R(x) is the ramp function (R(x) = x if x ≥ 0, and R(x) = 0 if x < 0) and ∂h/∂xk (k =
1 and 2) is the gradient of h(x, y) in the x and y directions. This use of the ramp function
isolates frontal areas of h(x, y) on which ũi impinges. We assume the drag coefficient, Cd

= 2, for all cases, and therefore the typical 1
2Cd factor is omitted in Equation (5) (this

implies complete depletion of incoming momentum). The approach was tested against
numerous data-sets available in the literature for flow over different kinds of topography –
blocks, sinusoids, ellipsoidal mounds – and in all cases the performance was satisfactory
(agreement of time- and plane-averaged streamwise velocity profiles within 10%). The
Anderson and Meneveau [33] technique is somewhat unique, as it is used to specify drag
imposed by topography resolved in the horizontal directions but not the vertical (i.e. h(x,
y) does not exceed the height of the first computational mesh level, )z/2). Here we use
the vertically resolving version of this modelling approach,[38] where Equation (5) models
drag associated with ‘cut’ cells while the velocity at fully immersed, internal cells is set
to zero. For comparison of time- and plane-averaged flow statistics from this modelling
technique against literature data-sets for a variety of topographies, the interested reader
may consult Anderson [38].

All velocities are normalised by shear velocity, uτ . For cases U1 to U6, shear velocity is
determined simply as uτ =

(
τw

13/ρ
)1/2

; for cases SC1 and SC2, shear velocity is determined
based on the maximum Reynolds shearing stress occurring in the roughness sublayer:

uτ = max
z

(
[
|⟨ũ′w̃′⟩x,y,t + ⟨τxz⟩x,y,t |

]1/2
), (6)

D
ow

nl
oa

de
d 

by
 [P

rin
ce

to
n 

U
ni

ve
rs

ity
] a

t 0
9:

53
 1

5 
M

ay
 2

01
5 



Journal of Turbulence 815

Figure 3. Vertical profiles of time- and plane-averaged streamwise velocity (solid: present LES;
dashed: direct numerical simulation by Coceal et al. [8]) in linear-linear axis scaling (a) and
logarithmic-linear axis scaling (b). In panel (b), a logarithmic profile is included (see figure an-
notation) for z0/H = 10−2. Vertical profiles of time-averaged streamwise velocity: (c) position x1
in Figure 1(b); (d) position x2 in Figure 1(b); (e) position x3 in Figure 1(b); and (f) position x4 in
Figure 1(b). In panels (c) to (f), solid line and circles denote results from present LES and experiments
(Cheng and Castro [6], case ‘C20S’), respectively.

where shearing stress associated with resolved fluctuations is evaluated under the horizontal
statistical heterogeneity condition,[3,5] ũ′ = ũ − ⟨ũ⟩x,y,t , and ⟨. . .⟩a denotes averaging
over dimension a. In spite of concerns posed by this approach owing to mean flow spatial
gradients in the sublayer, we have used this approach and accomplished close agreement
with the literature data-sets, as shown in Figure 3. We stress that for cases SC1 and SC2,
z0 is based on regions with h(x, y) = 0; additional aerodynamic drag due to the obstacles
(h(x, y) > 0) is imposed with the IBM. In Section 3.2, discussion regarding the ‘effective’
roughness length, z0, Eff., for cases SC1 and SC2 is provided (also summarised in Table 2).

In order to demonstrate fidelity of the IBM [38] technique used within the present
LES (Equation (1)) for resolving sublayer turbulence, results of a validation case are
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816 W. Anderson et al.

Table 2. Summary of simulation results. z0, Eff./H is evalu-
ated by fitting a logarithmic velocity profile with varying z0
to plane-averaged streamwise velocity profiles from LES.

Name z0, Eff./H ≈zRef./H

SC1 5.412 × 10−3 0.130
SC2 1.08 × 10−2 0.254
U1 1 × 10−3 0.012
U2 1 × 10−2 0.023
U3 1 × 10−3 0.023
U4 1 × 10−4 0.023
U5 1 × 10−5 0.023
U6 1 × 10−6 0.023

presented here. The case is in fact SC2 from Table 1; the literature data-sets are sourced
from Cheng and Castro [6] (wind tunnel) and Coceal et al. [8] (DNS). Although the
present LES Reynolds number is much larger than for the experimental and DNS data-
sets, all the below comparison is performed with outer-scaled statistics. Since outer-scaled
turbulence statistics exhibit Reynolds number dynamic similarity (‘fully rough’ conditions
[42]), meaningful comparison between the present LES results and literature data-sets
from DNS or experiments can be made (Figure 3). Figure 1(b) shows a plan view of the
topography, where the flow direction is aligned in the x-direction. Figure 1 shows locations
x1, x2, x3, and x4, at which vertical profiles of time-averaged streamwise velocity, ⟨ũ⟩t /uτ ,
are provided in the literature data-sets.[6,8] Figure 3 shows vertical profiles of ⟨ũ⟩t /uτ from
the present LES (solid line), along with experimental [6] (circles) and DNS [8] (dashed
line). Figure 3(b) shows Figure 3(a) profile, plotted in logarithmic-linear axis scaling; for
discussion, a logarithmic profile has been added, to illustrate that the LES profile (solid,
curved line) tends to a logarithmic for z/H ! 0.5 (or z/h ! 2).

3. Results

3.1. Time–height contours

Figure 4 shows time–height colour contours of streamwise (a) and vertical (b) velocity
fluctuations at position x1 (Figure 1(b)) for case SC1 (Table 1); fluctuation is defined as
deviation of a quantity from its time average:

ũ′(x, t) = ũ(x, t) − ⟨ũ(x, t)⟩t . (7)

In addition, we apply quadrant analysis [4,43] to the x − z component Reynolds shearing
stresses (i.e. {ũ′, w̃′}), to illustrate the temporal dynamics of turbulent momentum fluxes in
the urban roughness sublayer. Following is the established nomenclature,[43,44] we define
the four quadrants as

Q1 (Outward interaction): ũ′ > 0 and w̃′ > 0,

Q2 (Ejection): ũ′ < 0 and w̃′ > 0,

Q3 (Inward interaction): ũ′ < 0 and w̃′ < 0, and

Q4 (Sweep): ũ′ > 0 and w̃′ < 0.

(8)
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Journal of Turbulence 817

Figure 4. Time–height contours of fluctuating velocity (ũ′(x, t) = ũ(x, t) − ⟨ũ(x, t)⟩t ) components
for case SC1 (Table 1) at positions indicated in Figure 1(b): (a) ũ′(x1, y1, z, t) at x1; (b) w̃′(x1, y1, z, t)
at x1; (c) ũ′(x4, y4, z, t) at x4; and (d) w̃′(x4, y4, z, t) at x4. In addition to colour floods, line contours
denote contributions to x − z component of Reynolds shearing stresses, ũ′w̃′, due to Q4 ‘sweep’
(black) and Q2 ‘ejection’ (yellow) events. Note that in panels (a) and (b), ũ′(x, y, z/H < 1/8, t) = 0
owing to the presence of cubes of height h/H = 1/8.

Note that in Figures 4, 5, and 6, dimensional time has been ‘shear normalised’ by the
prescribed shear velocity, uτ and boundary layer depth, H. Unless noted otherwise, this
time normalisation is used hereafter. Also, we add that colour floods at positions x1 and x4

are shown since these represent the limiting cases (x2 and x3 are intermediate, as seen in
Figure 1(b)). Additional statistics below incorporate all positions.

At each vertical position, z, we determine the contribution from quadrant 1 to 4 events
to the overall turbulent stress based on

⟨ũ′w̃′⟩t,Q(xl , z, t ;H) = ⟨ũ′(xl , z, t)w̃′(xl , z, t)IQ(xl , z;H)⟩t , (9)
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818 W. Anderson et al.

Figure 5. Time–height contours of fluctuating velocity (ũ′(x, t) = ũ(x, t) − ⟨ũ(x, t)⟩t ) components
for case SC2 (Table 1) at positions indicated in Figure 1(b): (a) ũ′(x1, y1, z, t) at x1; (b) w̃′(x1, y1, z, t)
at x1; (c) ũ′(x4, y4, z, t) at x4; and (d) w̃′(x4, y4, z, t) at x4. In addition to colour floods, line contours
denote contribution to ũ′w̃′ due to Q4 ‘sweep’ (black) and Q2 ‘ejection’ (yellow) events. Note that in
panels (a) and (b), ũ′(x, y, z/H < 1/4, t) = 0 owing to the presence of cubes of height h/H = 1/4.

where xl ≡ local (two-dimensional) positions, x1, x2, x3 or x4 (see Figure 1(b)), H is the
so-called hole size and used to specify threshold, T, on the magnitude of terms contributing
to the turbulent stresses, subscript Q denotes the quadrant event of interest (i.e. sweep or
ejection, Equation (8)), and IQ(xj , z;H) is the indicator function which is used to isolate
the role of different events based on their magnitude (or some predefined criteria):

IQ(xj , z;H) =

⎧
⎨

⎩

1 if |ũ′(xj , z)w̃′(xj , z)|Q ≥ T , and

0 if |ũ′(xj , z)w̃′(xj , z)|Q < T ,
(10)
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Journal of Turbulence 819

Figure 6. Time–height contours of resolved and fluctuating velocity for flow over ho-
mogeneous rough surface, case U1, taken from centre of surface: (a) ũ(xc, yc, z, t)/uτ ;
(b) ũ′(xc, yc, z, t)/uτ = ũ(xc, yc, z, t)/uτ − ⟨ũ(xc, yc, z, t)⟩t /uτ ; and (c) w̃′(xc, yc, z, t)/uτ =
w̃(xc, yc, z, t)/uτ − ⟨w̃(xc, yc, z, t)⟩t /uτ . In addition to colour floods, line contours denote contri-
bution to ũ′w̃′ due to Q4 ‘sweep’ (black) and Q2 ‘ejection’ (yellow) events.

where, in this study, T = H = 0, although alternative criteria can be used to define the
threshold.[44] By selecting T = 0, the contribution of all events to ⟨ũ′w̃′⟩t is considered.
This is appropriate for the present purposes, since we wish to demonstrate how turbulent
mixing in the roughness sublayer varies with the passage of coherent, outer layer motions.
For boundary layer turbulence, the ejection (Q2) and sweep (Q4) events are most relevant
to the shear stress, while the contributions from Q1 and Q3 events are known to be rather
modest.[44] Moreover, in the roughness sublayer it is known that contributions to shear
stresses associated with Q4 events exceed Q2 [4,8,10]; in the aloft logarithmic region, Q2
stresses exceed Q4. Thus, Figure 4(a) and 4(b) contains rich information on the temporal
dynamics of turbulence above cubical topographies. First, Figure 4(a) (ũ′) shows a clear,
repetitive advective lag in the ũ′ time series, illustrated by negatively inclined low(blue)- and
high(red)-momentum structures. Thus, there is a time lag between the passage of coherent
structures in the outer layer and detection of their effects in the roughness sublayer, which
hereafter is called an advective lag. Figure 4(c) and 4(d) show the same flow quantities
for point x4 (Figure 1(b)). Here, the ũ′ advective delay is even more prevalent, a result of
coherent ‘roller’ motions produced at the cubes [16] (x1) and advecting downwind [8] while
remaining within the sublayer. We contend that the onset of such a momentum excess (in
the outer layer) precedes a sublayer ‘spike’ in Reynolds shear stresses associated with a Q4
event. Rollers play an important role, since they are contained within the roughness sublayer
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820 W. Anderson et al.

and facilitate downward momentum fluxes leading to elevated Reynolds stresses owing to
sweeps. Likewise, the passage of LMRs in the outer layer precedes periods of relatively
subdued mixing in the roughness sublayer. For example, consider the event beginning at
{tuτ H−1, z/H}≈ {10.2, 0.78} and the subsequent advective lag before excitation at the cube
height, {tuτ H−1, z/H}≈ {10.3, 0.1} (Figure 4(c)). The sublayer excitation corresponds with
significant Q4 ũ′w̃′. Consultation of Figure 4(d) shows the alternating sign of w̃′ and the
congruence of this with ũ′w̃′. To this extent, we note that w̃′ does not exhibit an advective
delay. We note also that the sampling period duration for Figure 4(a)–(b) is very similar,
tuτ H−1 ≈ 2; we showed different sampling periods for generality. This is true also for
subsequent results, shown below.

Finally, we emphasise here that periods of ũ′ ̸= 0 in the inertial layer (z/H ! 4h/H
≈ 0.5) are associated with the passage of coherent, quasi-streamwise-elongated coherent
motions [8,25] in the outer layer. Thus, it is interesting to note an apparent inner–outer
coupling between the passage of such logarithmic structures and the excitation and subdual
of sublayer mixing. One is reminded of the amplitude modulation findings developed for
smooth wall turbulent boundary layers regarding the ‘imprint’ of large-scale, outer layer
structures on near wall motions [45–48] (discussion to follow below). Specifically, Mathis
et al. [48] demonstrated that inner (viscous) layer streamwise velocity fluctuations are
subjected to an amplitude modulation by the passage of outer (logarithmic) layer coherent
structures. They developed a predictive model for this amplitude modulation, which required
inputs only from the outer layer (and experimentally determined empirical parameters). The
results presented heretofore suggest the presence of an analogous amplitude modulation
process for rough wall flows.

Figure 5 shows time–height contours for case SC2 (Table 1) at positions x1 and x4

(Figure 1(b)). This case is identical to SC1 (Figure 4), except that the cubes are effectively
doubled in size (i.e. H/h = 4 and, therefore, L/h = 8 or L/H = 2; these case attributes
are summarised in Table 1). Nonetheless, we observe similar advective lag in the ũ′ time–
height colour floods (Figure 5(b) and 5(d)). We also observe that the passage of a coherent
structure, ũ′ > 0, in the inertial layer, say z/H ≈ 0.75, manifests in the roughness sublayer
and canopy (Figure 5(c)) at a later time. Likewise, it is evident that elevated Reynolds
stresses owing to sweeps at the cube height, h/H = 1/4, are generally preceded by the aloft
passage of coherent ũ′ > 0 parcels in the logarithmic layer. We observe similar w̃′ patterns
for this case, with only mild advective lag relative to the ũ′.

Finally, it is of interest to contrast Figures 4 and 5 cubical roughness results against
those for case U1, a homogeneous rough wall (Figure 6). For case U1, drag is exclusively
imposed via the equilibrium logarithmic law (Equation (3)). We selected z0 for case U1 to
closely match the effective roughness length, z0, Eff., for case SC2 (where z0, Eff. is evaluated
by fitting a logarithmic streamwise velocity profile to the inertial-layer velocity profile).
Table 2 summarises z0, Eff. for all cases in this study, where z0, Eff. = z0 for cases U1 to
U6. Thus, for case U1, the roughness sublayer and canopy processes responsible for mo-
mentum depletion are all parameterised by the equilibrium logarithmic law. Nevertheless,
we report similar patterns in the time–height colour floods. Figure 6(a) shows the resolved
streamwise velocity, ũ, which is included here to demonstrate that the homogeneous rough
case possesses the kinds of temporal structural attributes observed for flow over cubes,
even though a roughness sublayer is not resolved. Figure 6(b) and 6(c) show ũ′ and w̃′,
respectively. Advective lag of ũ′ is apparent in the time–height contours, as is the relative
maxima in sweep-driven Reynolds stresses at the ‘conclusion’ of a ũ′ > 0 coherent motion.
It is apparent for this case also that the w̃′ contours exhibit negligible advective lag.
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z zRef. zRef.

)b()a(

Figure 7. Sketch showing: (a) cube topography (SC1 to SC2, Table 1) and (b) homogeneous
roughness transect and indication of reference elevation, zRef. (U1 to U6, Table 1).

Figure 8. Correlation coefficient, γuu(xl , z, τ ; zRef .) (Equation (11)), for cases SC2 (position x4,
panel a) and U1 (panel b). Black markers denote shear normalised maximum advective lag, τmax.uτ H−1

(Equation (12)).

3.2. Advective lag computation

We quantify the ũ′ advective lag qualitatively observed in Figures 4–6. This is accomplished
in two steps. First, we must select a reference height, zRef., at which a reference data-set can
be collected. Figure 7 is a sketch of the cubic topography and homogeneous roughness cases,
with indication of the selected zRef. positions. Precise zRef. values are presented in Table 2.
We selected zRef. to be slightly above the ‘top’ of the roughness. We adopted this approach
since it facilitates comparison between these fundamentally different topographies. From
here, we compute correlations maps as the convolutions:

γuu(xl , z, τ ; zRef .) =
(
ũ′(xl , z, t)I ũ′(xl , zRef ., t)

)
(τ ) =

∫ ∞

−∞
ũ′(xl , z, t)ũ′(xl , zRef ., t + τ )dt, (11)
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Figure 9. Advective lag versus wall-normal elevation for cases U1 (blue symbols), SC1 (black
symbols), and SC2 (red symbols). For cases SC1 and SC2, symbols correspond with: x1 (circles), x2
(squares), x3 (‘plus’ sign), and x4 (asterisk). Blue symbols correspond with xc for the homogeneous
rough case. Vertical dashed lines denote zRef. for different cases (dashed blue: U1; dashed black:
SC1; and dashed red: SC2). Solid lines represent Equation (17) predictions of time-lag for effective
roughness lengths summarised in Table 2.

where xl represents a spatial (x − y) position (Figure 1(b)). Figure 8(a) and 8(b) show
γuu(xl , z, τ ; zRef .) for cases SC2 and U1, respectively. In Figure 8(a), the lower and upper
horizontal dashed black lines represent the cube height and three times the cube height,
respectively (where three cube heights is approximately equal to the roughness sublayer
depth). It is clear that both data-sets exhibit an advective lag, as evidenced by positive
correlation with aloft preceding events. We also observe similar patterns for the cubic and
homogeneous rough cases, which is consistent with observations of Figures 5(c) and 6(b).
We compute advective lag as

τmax.(z; zRef .) = arg max
t

((ũ′(xl , z, t)I ũ′(xl , zRef ., t))(t)), (12)

where arg max denotes the value t for which the convolution is strongest. We discard
τmax. values corresponding with γuu(xl , z, τmax.; zRef .) < χ , where χ = 0.3 is a predefined
threshold. We experimented with a range of χ values, finding generally that increasing the
threshold only serves to remove spurious values for z > >zRef. while the underlying τmax.(z;
zRef.) trends were robust and indifferent to χ . Figure 9 shows shear normalised advective
lag, τmax.(z; zRef.)uτ H−1 for cases SC1, SC2, and U1 (case attributes found in Table 1).
For cases SC1 and SC2, it is clear that positions x1 to x4 exhibit effectively the same
τmax.uτ H−1 profiles. Above zRef., the profiles are roughly linear, and we remind the reader
that zRef. is the approximate obstacle elevation (or centre of the mean streamwise velocity
profile inflection). Furthermore, the advective lag is always negative above zRef., which is
precisely consistent with qualitative observations in Figures 4–6. For position x1, there of
course are no τmax.uτ H−1 datapoints below zRef. due to the solid cube. A few datapoints are
available for position x2, owing to its position in the lee of the cubes. However, at positions
x3 and x4, a broad range of τmax.uτ H−1 values are available. We emphasise also that the
τmax.uτ H−1 values in Figure 9 are only associated with γ uu > χ (i.e. they represent only
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Journal of Turbulence 823

Figure 10. Sketch of low-momentum region (LMR) above array of cubes. The LMR, ũ′ < 0, is
denoted by transparent grey. Encapsulating the LMR are hairpins (blue). The LMR is inclined at
angle, γ , and the hairpin heads exhibit positive spanwise vorticity (sketch denotes sweep event, Q4).
The individual hairpin ‘legs’ would themselves be inclined at ≈45◦.[24]

strongly correlated datapoints). Thus, the approximate linearity, τmax. ∼ −z for z > zRef.,
is a product of actual processes within the roughness sublayer and inertial layer. In the
following subsections, we provide a conceptual explanation and scaling argument for the
underlying dynamics responsible for the advective lag reported in Figure 9.

3.3. Passage of coherent motions

The presence of meandering, coherent parcels of relatively low and high momentum in
turbulent wall-bounded flows over smooth [20–24,26,27] and rough [8,25,50,51] walls is
well known. The LMRs are encapsulated by hairpin packets at the interface between regions
of differing momentum.[24,28] For the case of cube roughness such as the cases considered
here, Figure 10 is a sketch of the aforementioned structural attributes. A streamwise-vertical
transect through the LMR would reveal a typical inclination of γ ≈ 15◦.[8,20,25,52] Quan-
titative visualisation of Figure 10 dynamics can also be attained with vortex visualisation
techniques.

Here, we compute swirl strength, λci, of the instantaneous three-dimensional velocity
field, ũ.[20,53–55] Swirl strength is computed by first evaluating the velocity gradient
tensor, A = ∇ ũ, and computing its eigenvalues. λci is the imaginary component of the
second eigenvalue of A. From this, we obtain the signed swirl strength, λ∗

ci , simply based
on the vorticity component of interest. In the following, we wish to study streamwise-
wall normal vortical activity, so spanwise vorticity, ωy = ∂ũ/∂z − ∂w̃/∂x, is the apropos
vorticity component with which to sign λci:

λ∗
ci = λci

ωy

||ωy ||
. (13)

Swirl strength is an illuminating tool for studying vortical activity, since it resolves only ro-
tation and not shear. Figure 11 shows contours of λ∗

ci superimposed on vector fields of fluctu-
ating velocity components, {ũ′, w̃′}. The figures clearly show the presence of LMRs beneath
a series of hairpin heads (evidenced by local regions of elevated λ∗

ci). Figure 11(a) is for case
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824 W. Anderson et al.

Figure 11. Transects of flow field statistics for: (a) case SC1 and (b) case U1. Vectors denote fluc-
tuating velocity components, {ũ′, w̃′}, while colour contours are signed swirl strength, λ∗

ci (Equation
(13)). On both, the solid black line represents an approximate demarcation between an LMR (below)
and an ambient fluid (above) and is inclined at γ = 15◦. Local regions of positive λ∗

ci represent the
heads of hairpins above the LMR, which are followed by a Q2 ‘burst’ event,[49] as indicated above.

SC2, and the presence of immersed blocks corresponds with regions of {ũ′, w̃′} ≈ {0, 0}.
To facilitate discussion, we have added solid black lines inclined at γ = 15◦, which is the
approximate inclination angle of hairpin trains in such flows.[8,50,51] The coherent hairpin
heads precede Q2 burst events and we have indicated these events for discussion on the
figures. Note also in Figure 11(a) the presence of canopy vortices associated with separation
and cube-scale coherent motions, evidenced by elevated λci contours (for example, at {x/H,
z/H} ≈ {1.4, 0.15} and {3, 0.15}). For homogeneous roughness case U1, Figure 11(b)
shows the same quantities as Figure 11(a). Again, the presence of coherent LMRs and
a series of inclined hairpin heads are apparent. We emphasise finally that the Figure 11
images are taken from only one timestep during LES. However, these images are entirely
representative of instantaneous flow patterns observed at other times during the simulation.

In Section 3.1 and Figure 9, we showed vertical profiles of advective lag, τmax.uτ H−1,
based on a reference elevation just above the canopy (see Figures 7 and 9). The linearity
exhibited by τmax.uτ H−1 points to an underlying physical process in the roughness sublayer
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and inertial layer. Here, we attribute τmax. ∼ −z scaling to the passage of regions of alter-
nating low and high momentum in the roughness sublayer and inertial layer, as illustrated
in Figure 11.

3.4. A model for advective lag

Following the passage of a LMR, Figure 11 shows that the first position in the domain to
experience relatively higher momentum would be in the inertial layer, above the LMR. As the
LMR advects downstream, relatively higher momentum would be recorded at progressively
lower elevations. Since representative information is known about the macroscale attributes
of these coherent motions, we below propose a simple, semi-empirical model to predict the
advective lag between passage of such motions in the inertial layer and evidence of their
‘imprint’ on roughness sublayer and canopy dynamics.

If a LMR (i.e. ũ′ < 0, above) has depth, δ′, its length can be evaluated based on
assumption of a hairpin train inclination angle:

Ls ≈ δ′/ tan (γ ) . (14)

Furthermore, if we assume that a representative advective velocity for LMRs and high-
momentum regions (HMRs) is the ‘outer’ velocity, U0, we can use the equilibrium loga-
rithmic law [40] and aerodynamic roughness length, z0, to predict U0:

U0

uτ

= 1
κ

log
[
H

z0

]
, (15)

where κ is the von Kármán constant. For cases U1 to U6, a large inertial region will
be resolved within the computational domain. For cases SC1 and SC2, the streamwise
velocity profile will be inflected in the roughness sublayer, before exhibiting logarithmic
wall-normal scaling in the inertial layer. Recall that for cases SC1 and SC2, h/H = 1/8
and 1/4, respectively, which may raise concern to some readers about the presumption of
attaining a logarithmic profile in the computational domain (especially for SC2). Figure 3
shows mean streamwise velocity profiles (plane-averaged and local) for case SC2, and a
logarithmic profile is clearly attained for z/h ! 2 (Figure 3(b) shows the mean streamwise
velocity profile with logarithmic-linear axis scaling, clearly demonstrating the presence of
a logarithmic profile in the inertial layer). We note also Figure 5(a) from Coceal et al. [8],
which shows local streamwise velocity profiles superimposed on one another and the very
rapid tendency to logarithmic form about the canopy. Thus, an inertial layer exhibiting
logarithmic scaling is present for all simulations considered in this work. τmax.(z; zRef.)
is the advective lag between passage of a coherent motion at elevation, z, and associated
modulation of processes at reference height, zRef.. Thus, Equations (14) and (15) can be
combined to obtain the advective lag:

τmax.(z; zRef .) = zRef . − z

tan (γ ) U0
= κ(zRef . − z)

tan (γ ) uτ log(H/z0)
. (16)
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Figure 12. Vertical profiles of τmax.(z; zRef.) for cases U2-U6 from LES (symbols) and Equation
(17) predictions (lines). Cases: U2 (blue squares, solid blue line), U3 (red circles, dashed red line),
U4 (red squares, solid red line), U5 (black circles, dashed black line), and U6 (black squares, solid
back line). Direction of increasing z0 is included for illustration. In the above, zRef./H ≈ 0.023.

Normalising τmax.(z; zRef.) by friction velocity and boundary depth (‘shear normalised’)
yields

τmax.(z; zRef .)uτH
−1 = κ (zRef . − z)

tan (γ ) H log(H/z0)
. (17)

Since we have run the LES for cases SC1 to SC2, Equation (15) can be used to retrieve an
appropriate effective roughness length, z0, Eff., by matching the inertial-layer profiles from
LES with predictions from Equation (15). These values are summarised in Table 22. Follow-
ing deduction of z0, Eff., U0 is recorded also for substitution in Equation (17). Finally, we use
γ = 15 deg for Equation (17) predictions considered here, which is comparable to values
for rough wall flows.[8,25,50–52] For cases SC1, SC2, and U1, Figure 9 shows predictions
from Equation (17) (solid lines). For zRef./H " z/H " 0.2, Equation (17) predictions exhibit
reasonable agreement with the LES results for case U1. This is the case of homogeneous
roughness in which the roughness sublayer may be z/H " 0.1. For cases SC1 and SC2,
Equation (17) predictions agree somewhat well with the LES data for zRef./H " z/H " 0.4,
corresponding with 2 to 4 times the cube height. Thus, the model performance is moderately
successful in the roughness sublayer and into the inertial layer. To broaden the test cases,
we include Figure 12, which shows τmax.(z; zRef.) from cases U2 to U6 and predictions
from Equation (17). Once more, we observe moderate agreement between the model and
LES data for zRef./H " z/H " 0.2. Note also the apparent monotonic increase in slope of
the advective lag profile, ∂τmax.(z; zRef.)/∂z, with increasing aerodynamic roughness length
(partial derivative here is a reference to assertions that aspects of the Equations (14)–(17)
development could be generalised, for example the choice of advective velocity and incli-
nation angle [22]). We attribute this to intensification of roughness sublayer processes with
greater imposed drag. To this extent, we note that ∂τmax.(z; zRef.)/∂z for sase SC2 exceeds
sase SC1 (see Figure 9); the cube height for sase SC2 is double that of SC1. Note also
that zRef./H ≈ 0.023 for sases U2–U6 (Figure 12), although the nominated z0, Eff./H varies
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Figure 13. Vertical profiles of τmax.(z; zRef.) for flow over topography SC2, resolved with Nx =
Ny = Nz = 64 (light grey symbols), Nx = Ny = Nz = 128 (dark grey symbols), and Nx = Ny =
Nz = 256 (black symbols). Solid black line is Equation (17) prediction with z0/H = 1.08 × 10−2

(Table 2). Symbols correspond with position x1 ( + ), position x2 (⋄), position x3 (◦), position x4 (∗)
in Figure 1(b).

considerably. Increasing z0, Eff./H is tantamount to ‘more rough’ topographies with greater
heights.

3.5. Resolution testing

A final component of this study involves evaluating the extent to which resolution – spatial
and temporal – influences the advective lag profiles. In the results presented so far, case
SC2 (Table 1) was resolved with Nx = Ny = Nz = 128. For generality, we have also
modelled flow over the SC2 topography with Nx = Ny = Nz = 64 and Nx = Ny = Nz =
256. The resulting advective lag profiles are shown in Figure 13, where the symbol colour
corresponds with different resolutions. Included on this figure is the Equation (17) profile
for the appropriate effective roughness length. It is apparent that the advective lag profiles
(symbols) and model profile (solid line) exhibit the same slope. Moreover, no significant
resolution dependence is apparent. As per the procedure outlined in Section 3.2, we omit
advective lag computations for cases in which γ uu < χ .

4. Conclusion

LES with an IBM has been used to model neutrally stratified atmospheric boundary layer
flows over urban-like topographies. We also consider a suite of cases with differing ho-
mogeneous momentum roughness, without the presence of urban-like cubes. We recorded
time-series fluctuating velocity statistics across the depth of the boundary layer, providing
data-sets that would typically emerge from field studies using a micrometeorological tower
and series of sonic anemometers. However, owing to the use of LES, we can achieve high
resolution measurements in both time and elevation (at predefined locations). With this,
we considered contour maps of fluctuating streamwise and vertical velocity components
with respect to shear-normalised time and elevation; superimposed on these images were
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contours of Reynolds shearing stresses owing to turbulent ‘sweeps’ and ‘ejections’.[43]
The colour flood contours clearly revealed the presence of an advective lag between mo-
mentum excess(deficit) in the inertial layer and excitation(subdual) of flow processes in the
roughness sublayer. This advective lag was observed for all cases – cube topography and
homogeneous roughness.

We computed the advective lag, τmax.uτ H−1, and observed a linear scaling against
elevation. This prompted consideration of underlying physics responsible for the advective
lag. We used spatial flow and vortex visualisations to argue that coherent outer layer motions
(LMRs and HMRs) are responsible for the advective lag between sublayer and inertial-layer
dynamics. With this, we used canonical attributes of the LMRs (hairpin head inclination
angle, γ , and advective velocity, U0), to develop scaling arguments for the advective lag.
We observed promising results.

This work is inspired by the amplitude modulation concepts developed in recent years
by Marusic and co-workers [45–48]. The existing literature on amplitude modulation is
in the context of smooth wall flows (thus, ‘inner’ refers to the viscous sublayer, not the
roughness sublayer). Nonetheless, it is interesting to observe some qualitative similarities in
the present findings. Moreover, the present work has been performed in the context of urban-
like topographies, although one could imagine applications to, for example, control of very
large wind farms over which the atmospheric boundary layer is fully developed. Indeed,
the modelling framework (Equation (17)) presented herein requires only two inputs: γ and
z0, Ref.. We used a somewhat standard value of γ , and computed z0, Ref. by fitting logarithmic
velocity profiles to the time- and plane-averaged streamwise velocity profiles. We expect that
for urban topographies exhibiting greater height variability than the present (uniform height)
cases, or for entirely different classes of complex topography, the modelling arguments
presented here would be valid.
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Notes
1. Throughout this study, we adopt the following nomenclature: ũ = {ũ, ṽ, w̃} is the streamwise,

spanwise, and vertical velocity component, respectively; x = {x, y, z} is streamwise, spanwise,
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and vertical position, respectively; and indices (where used) i = 1, 2, and 3 are streamwise,
spanwise, and vertical direction, respectively.

2. Alternatively, one could use predictive models for z0 based on attributes of the topography
[56–58] although this would require empirical parameters.[59]
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