Naval Research Laboratory

Washington, DC 20375-5320

NRL/MR/6115--15-9659

Analysis of Fatty Acid and Growth Profiles in Ten *Shewanella* spp. to Associate Phylogenetic Relationships

JUSTIN C. BIFFINGER LISA A. FITZGERALD

Chemical Dynamics and Diagnostics Branch Chemistry Division

Emily R. Petersen Kristina M. Myers

Nova Research Inc. Alexandria, Virginia

JEFFREY A. CRAMER

Navy Technology Center for Safety and Survivability Chemistry Division

ANTHONY P. MALANOSKI

Laboratory for the Study of Molecular Interfacial Interactions Center for Bio/Molecular Science and Engineering

Tyler M. Huggins

University of Colorado Boulder, Colorado

ROBERT E. MORRIS

Navy Technology Center for Safety and Survivability Chemistry Division

November 25, 2015

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE

Form Approved

		•••••		OMB NO. 0704-0188
Public reporting burden for this collection of maintaining the data needed, and complet suggestions for reducing this burden to De Suite 1204, Arlington, VA 22202-4302. Re-	of information is estimated to average 1 ho ting and reviewing this collection of inform epartment of Defense, Washington Headq spondents should be aware that notwithst hv valid OMB control number PI FASE DO	ur per response, including the ation. Send comments regar- uarters Services, Directorate anding any other provision of NOT RETURN YOUR COR	time for reviewing instru- ding this burden estimate o for Information Operations aw, no person shall be su	ctions, searching existing data sources, gathering and r any other aspect of this collection of information, including and Reports (0704-0188), 1215 Jefferson Davis Highway, bject to any penalty for failing to comply with a collection of
		NOT RETORN TOOR TOR		ATES COVERED (From - To)
25-11-2015	Memorandum		5.1	October 2013 = October 2015
4. TITLE AND SUBTITLE	Weinorundum		5a.	CONTRACT NUMBER
Analysis of Fatty Acid and C	Growth Profiles in Ten Shewane	5b.	GRANT NUMBER	
Phylogenetic Relationships				
			5c.	PROGRAM ELEMENT NUMBER
6. AUTHOR(S)			5d.	PROJECT NUMBER
Justin C. Biffinger, Lisa A. F Jeffrey A. Cramer, Anthony J	Fitzgerald, Emily R. Petersen, ¹ P. Malanoski, Tyler M. Huggins	Kristina M. Myers, ¹ s, ² and Robert E. Mor	rris 5e .	TASK NUMBER
			54	
			51.	61-6596-05
7. PERFORMING ORGANIZAT	TION NAME(S) AND ADDRESS	(ES)	8. 1	PERFORMING ORGANIZATION REPORT
Naval Research Laboratory			1	NUMBER
4555 Overlook Avenue, SW				
Washington, DC 20375				NRL/MR/611515-9659
-				
9. SPONSORING / MONITORII	NG AGENCY NAME(S) AND A	DDRESS(ES)	10.	SPONSOR / MONITOR'S ACRONYM(S)
Office of Naval Research				OND
One Liberty Center				UNK
875 N. Randolph Street, Suit	te 1425		11.	SPONSOR / MONITOR'S REPORT
Arlington, VA 22203-1995				NUMBER(S)
12. DISTRIBUTION / AVAILAB	ILITY STATEMENT			
Approved for public release;	distribution is unlimited.			
13 SUPPLEMENTARY NOTES	s			
¹ Nova Research Inc. 1900 F	Elkin St. Suite 230 Alexandria	VA 22308		
² University of Colorado Dei	partment of Civil Environment	al and Architectural	Engineering Bould	ler CO 80209
	partment of ervil, Environment	ai, and memocetural	Eligineering, Boule	61, 60 00209
14. ABSTRACT				
Shewanella spp. are from a	a large family of bacteria (Shew	anellaceae) used for	studying fundament	al stress responses from environmental cues.
Therefore, a systematic and o	controlled alteration of growth	conditions could be u	sed to uncover asso	ciations between phylogenetically dissimilar
microorganisms from the sar	me genus using physiological	esponses. To underst	tand these changes,	a shift in fatty acid length distributions and
growth of ten phylogenetical	Ily diverse Shewanella spp. we	ere monitored when g	grown in a chemica	lly defined culture medium at pH 6, 7, or 8.
Under these different growth	h conditions, the Shewanella sp	p. systematically shi	fted fatty acid carb	on chain length profiles to adapt to different
environments. There was an	observed shift to longer fatty	acid carbon lengths v	vith increased pH, a	is well as a change to a predominant type of
fatty acid (i.e., terminally bra	anched) in six of the ten species	at pH 7. However, the	ese trends were not o	consistent among all phylogenetically related
strains tested, but resulted in	new associations between diss	imilar <i>Shewanella</i> sp	p. based on physiol	ogy.
Shewanella Dhyloge	nv			
Fatty acid	11 y			
16. SECURITY CLASSIFICATION	ON OF:	17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON
		OF ABSTRACT	OF PAGES	Justin C. Biffinger
a. REPORT b. ABSTR	C. THIS PAGE	Unclassified	19	19b. TELEPHONE NUMBER (include area
Unclassified Unclas	ssified Unclassified	Unlimited	17	code) (202) 767-2398
Unlimited Unlir	mited Unlimited			
				Standard Form 298 (Rev. 8-98)

Analysis of fatty acid and growth profiles in ten Shewanella sp. to associate phylogenetic relationships

Significance and Impact of the Study: Ten strains from an aquatic bacterial genus (Shewanella) can be grouped based on growth and fatty acid profile shifts but the groupings are inconsistent with phylogenetic relationships. Specifically, S.loihica, s. oneidensis, and S. amazonensis are one potential grouping based on their uniform unique responses to a change in acidity but are not closely related phylogenetically. This is the first comparative study of 10 strains from the Shewanella genus which has led to novel insight into physiological changes based on fatty acid and growth profiles that are not predicted from phylogenetic relationships.

Abstract

Shewanella spp. are from a large family of bacteria (Shewanellaceae) used for studying fundamental stress responses Therefore, a systematic and controlled from environmental cues. alteration of growth conditions could be used to uncover associations between phylogenetically dissimilar microorganisms from the same genus using physiological responses. To understand these changes, a shift in fatty acid length distributions and growth of ten phylogenetically diverse Shewanella spp. were monitored when grown in a chemically defined culture medium at pH 6, 7, or 8. Under these different growth conditions, the Shewanella spp. systematically shifted fatty acid carbon chain length profiles to adapt to different environments. There was an observed shift to longer fatty acid carbon lengths with increased pH, as well as a change to a predominant type of fatty acid (i.e. terminally branched) in six of the ten species at pH 7. However, these trends were not consistent among all phylogenetically related strains tested, but resulted in new associations between dissimilar Shewanella spp. based on physiology.

Manuscript approved September 15, 2015

Introduction

The stress response of a bacterium to its surrounding environment can provide valuable insight into its phylogenetic relationship to other strains within a particular familv (Lebedinsky, et al., 2014, Leong, et al., 2015). Many of the model organisms used for systematic physiological stress studies are from Bacillus or Escherichia spp. with only select environmental strains finding similar applications (Yin & Gao, 2011). Members of the Shewanella genus are endemic to aquatic environments and have been shown to be metabolically flexible (Venkateswaran, et al., 1999, Kato & Nogi, 2001, Hau & Gralnick, 2007) making them ideal candidates for broad applications in biogeochemical and bioremediation research (Fredrickson, et al., 2008). Greater than 52 strains of Shewanella have been identified and sequenced making it one of the top families of aquatic bacteria available for phylogenetic studies.

Investigating changes in phospholipid fatty acid trends is an established analytical method used from clinical epidemiological studies to environmental ecological community surveys (Welch, 1991). Fatty acid profiles can be used to characterize taxonomic differences in environmental samples such as changes in microbial community structure in soil (Frostegard & Baath, 1996, Narendrula & Nkongolo, 2015). Additionally, previous research suggests that the reliable identification of family classifications could be detectible from fatty acid profiles (Zelles, 1999). Depending on the target species, shifts in the distribution of fatty acids are more iconic and useful for characterization specific applications to species and genus. Ultimately, culture growth conditions are influential on cellular fatty acid quantification (Welch, 1991) and therefore responses to defined culture conditions controlling a single environmental variable (i.e., acidity) could lead to potentially new associations within deeply branching phylogenetic lineages like Shewanella.

The aim of this study was to determine if systematic shifts to the fatty acid and growth profiles would occur in response to changes in acidity using ten phylogenetically diverse Shewanella spp. in the same growth medium. These data will provide a better understanding of how acidity impacts several strains of Shewanella and are beneficial for ecological studies or downstream biotechnological applications where phylogenetic similarity cannot predict a particular physiological response. The growth characteristics are reported for each species when grown in native ATCC propagation medium (native media). When these species were

then grown in a defined medium composed of half-strength Marine Broth adjusted to pH 6, 7, or 8 in a 50 mM phosphate buffer, both growth characteristics and fatty acid profiles were able to be compared.

Results and Discussion

Shewanella spp. are part of a large aquatic bacterial family and have developed a wide range of regulatory systems that are both flexible and robust (Fredrickson, et al., 2008). The ten strains of Shewanella used for this work had broad phylogenetic diversity (Fig. 1) and were isolated from mostly marine environments. S. putrefaciens was the only strain that was not originally isolated from an aquatic environment but from an oil

pipeline (Obuekwe Westlake, & 1982). S. putrefaciens shares the closest phylogenetic relationship with freshwater S. oneidensis (Venkateswaran, 1999) and thus was included in this if studv to determine other strains of Shewanella share a similar response to acidity and develop a potential connection to strains isolated from within an environment aquatic to other environments.

Figure 1. Phylogenetic tree of the ten *Shewanella* spp. used in this study. The scale bar represents the amount of genetic change normalized by the length of the sequence.

Shewanella spp. growth at defined acidity

changes between phylogenetically Physiological diverse strains of Shewanella can be correlated in order to group the strains based on their response to identical growth conditions. The uniform growth conditions are in contrast to growth in their native propagation media which is considerably different between the strains. Changes in the growth rate from ten Shewanella spp. were compared using optical density measurements at 600 nm (OD₆₀₀) in native media and in a defined media at pH 6, 7, or 8 (Fig 2). After several iterations, the defined medium that supported growth of most of the strains tested was marine broth diluted to half strength with 50 mM phosphate buffer (1/2-MB). The 50 mM phosphate buffer mitigated any significant (>0.5 pH units) changes to the acidity of the culture medium during growth experiments. This defined media base was used to test physiological responses to growth in pH 6-8.

Figure 2. Growth curves for each *Shewanella* sp. in 4 different culture media.

All strains showed growth $(OD_{600} \ 0.33-1.47)$ in native medium (Table 1) but the complexity of the cellular responses to the different native media based on nutrient composition and salinity alone makes growth in a defined medium necessary to compare physiological changes across several strains. Only *S. baltica* and *S. denitrificans* were originally isolated from brackish waters and generated higher cell densities at pH 7 in ½-MB compared to the suggested propagation medium, which was (½-MB). At pH 8, the OD₆₀₀ for *S. denitrificans* was ~1.5 times higher than in native media.

Neither S. baltica nor S. denitrificans grew at pH 6 (>0.2 in $\frac{1}{2}$ -MB). Generally, strains whose native media was MB or $\frac{1}{2}$ -MB did not grow at pH 6 but were able to grow at pH 7 and 8. This trend was not observed for some of the strains with a native medium of tryptic soy broth (TSB) or Luria-Bertani (LB) when cultured in $\frac{1}{2}$ -MB.

TSB was the native propagation medium for S. loihica, S. oneidensis, and S. putrefaciens. When these strains were grown under all experimental conditions the OD₆₀₀ ranged from 5-31% of the growth in the native propagation medium with S. oneidensis growing to the highest turbidity at pH 6. S. putrefaciens showed the highest turbidity in ½-MB at pH 7, although there was little change in growth across the acidities tested. Lastly, S. amazonensis (native medium LB) showed similar trends to S. oneidensis, S. putrefaciens, and S. loihica with pH 7 generating the highest cell densities.

There was a strong correlation with growth between the 10 investigated Shewanella spp. outside of their phylogenetic relationship (Fig. 1) when comparing the growth results from the native growth medium (Table 1 and Figure 2) and defined medium. Even though these species were phylogenetically diverse, there were clear trends within the ½-MB media experiments. S. denitrificans and S. baltica are closely related and are both cultured in $\frac{1}{2}$ -MB. These strains also grew to a higher OD₆₀₀ at pH 7 (compared to growth in $\frac{1}{2}$ -MB) with no appreciable growth at pH 6. Shewanella strains such as S. colwelliana, S. pealeana, and S. woodyi could definitely be grouped based on growth responses in 1/2-MB outside of the phylogenetic lineage. S. amazonensis was another interesting outlier as the observed growth characteristics were more similar to a *Shewanella* sp. that was not isolated from a marine environment (i.e., oil pipeline) even though it was isolated from sea water sediment. This unique behavior is also consistent from a phylogenetic standpoint since no other strain tested is closely related to the S. amazonensis (Fig. 1).

			sp.				
Strain	Origin [strain]	Reference	Native medium	Growth Native media [OD]	Growth: ☆-MB (pH 6) [OD]	Growth ¹ ₂-MB (pH 7) [OD]	Growth ¹ 2-MB (pH 8) [OD]
S. baltica	Brackish water [OS155]	(Brettar, <i>et al.,</i> 2001)	¹₂−MB	0.57	0.16	0.62	0.39
S. denitrifi cans	Brackish water [OS217]	(Brettar, <i>et al.,</i> 2002)	¹₂−MB	0.33	0.01	0.56	0.50
S. colwellia na	Estuarine containin g juvenile oysters [LST]	(Labare & Weiner, 1990)	MB	0.93	0.01	0.31	0.31
S. japonica	Sea Water (Troitza Bay) [KMM3299]	(Ivanova, et al., 2001)	MB	0.92	0.01	0.17	0.16
S. amazonens is	Sea water sediment [SB2B]	(Venkates waran, et al., 1998)	LB	1.39	0.27	0.34	0.15
S. woodyi	Seawater waste [MS32]	(Makemson , et al., 1997)	MB	0.91	0.02	0.42	0.50
S. loihica	Thermal Vent (Sea Water)[PV -4]	(Gao, et al., 2006)	TSB	1.47	0.45	0.45	0.11
S. pealeana	Gland of female squid [ANG-SQ1]	(Leonardo , <i>et al.,</i> 1999)	MB	0.73	0.01	0.68	0.52
S. oneidensi s	Freshwate r sediment [MR-1]	(Venkates waran, et al., 1999)	TSB	1.45	0.43	0.19	0.09
S. putrefaci ens	Oil pipeline [200]	(Picardal , <i>et al.,</i> 1995)	TSB	1.42	0.08	0.21	0.13

Table 1. Comparison of growth characteristics and origin of 10 Shewanella

OD: maximum optical density at 600nm from 4 replicates (standard deviation of all replicates was 8%); Descriptions of origin and strain from www.ATCC.org

Effect of pH on Fatty Acid Profiles

General growth trends are a crude (yet effective) indicator of general physiological responses to environmental stressors and are typically supported quantitatively by shifts in fatty acid profiles (Suutari & Laakso, 1994, Sajbidor, 1997, Quivey Jr, et al., 2000). A complete compilation of the fatty acid profiles from ten Shewanella spp. grown in three acidities (pH 6, 7, and 8) is presented in Table 2. Certain Shewanella strains could not be used for a complete comparison between all of the acidities tested based on their lack of growth in ½-MB. However, four species showed growth under all three conditions (S. oneidensis, S. baltica, S. amazonensis, and S. loihica) and nine species were able to grow in ½-MB at pH 7 or pH 8.

		S. amazonensis		S. baltica			S. colwelliana		S. denitrificans			S. japonica				
		pH 6	pH 7	pH 8	pH 6	pH 7	pH 8	pH 6	pH 7	pH 8	pH 6	pH 7	pH 8	pH 6	pH 7	pH 8
	11:0											14%				
	12:0		3%	3%		3%	5%					3%				
Straight chain	13:0	7%	2%	5%			22%		4%						23%	
Straight Chain	14:0		5%	1%			5%									
saturated fatty	15:0	16%	6%	8%			7%		15%							
acius	16:0	8%	10%	9%		8%	5%		12%	19%		6%			8%	14%
	17:0			4%												
	18:0					24%										
	16:1w9	20%	21%	22%	20%		20%		32%	35%		30%			16%	17%
	17:1ω8		11%		7%				13%	11%		L	ļ			
Monounsaturated fatty acids	17:1ω9	10%	ļ	ļ		9%						L	ļ		L	
	17:1ω10			13%			7%	000000000000000000000000000000000000000			000000000000000000000000000000000000000					
	18:1w9											ļ	ļ		ļ	
	18:1w10						2%									
	18:1w11											ļ			L	
	10:0 iso												ļ			
Terminally	12:0 iso			ļ	4%					2%		3%				3%
branched	13:0 iso	5%	3%		41%	21%	20/		5%	4%		20%				22%
saturated fatty	14:0 iso	3%			2201	3%	2%		3%	4%						7%
acids	15:0 ISO	20%	23%	28%	22%	23%	1/%		10%	1/%		13%			43%	26%
	15:0 antelso														5%	
	17:0750			1.0/						3%		-			-	<u> </u>
Hudrowy fotty	12:0 3-0H			1%												
	14.0 3-0H															
acius	18:0 3-0H											2%				
70741	16.0 5-01	0.00/										570				
TOTAL*		0370	0470	9470	9470	9170	9270		59470	3370		9270	8		3370	0370
				<u> </u>	_		<u> </u>	_	÷	<u> </u>	<u> </u>		_	_	<u> </u>	<u> </u>
		<u>ع</u> الم	. loihica	7	S.	oneiden	sis	5.	pealear	na nu o	S. p	utrefaci	ens	S	. woody	<i>i</i> i n⊔ 2
	11-0	9 рН 6	. <i>loihicc</i> pH 7	рН 8	S. рН б	o neiden pH 7	<i>sis</i> рН 8	5. рНб	pealear pH 7	а рН 8	S. р рН б	utrefaci pH 7	<i>ens</i> рН 8	5 рН 6	. woody pH 7	и рН 8
	11:0	рН 6	рН 7	рН 8	5. рН б	pH 7	<i>sis</i> рН 8	s . рНб	pealear pH 7	ла рН 8	S. р рН б	pH 7	iens рН 8	у рН 6	. woody pH 7	и рН 8
	11:0 12:0 13:0	рН 6	5. loihice pH 7 5%	рН 8	5.0 pH 6	pH 7	<i>sis</i> рН 8	S. рНб	pealear pH 7 6%	ла рН 8	S. р рН б	pH 7	iens рН 8 8%	у рН 6	woody рН 7	и рН 8
Straight chain	11:0 12:0 13:0	5 рН б	. loihica pH 7 5%	рН 8	S. pH 6 11%	pн 7	<i>sis</i> рН 8	5. рНб	реаlear pH 7 6% 4%	та рН 8	S. р рН б	utrefaci pH 7 2%	епs рН 8 8% 2%	у рн 6	. woody pH 7	і рН 8
Straight chain saturated fatty	11:0 12:0 13:0 14:0 15:0	5 рН б	рН 7 5%	рН 8	5. pH 6 11%	рн7	<i>sis</i> рН 8	S. рНб	pealear pH 7 6% 4% 10%	рН 8	S. р рН б	utrefaci pH 7 2% 2%	ens pH 8 8% 2%	у рн 6	. woody pH 7	и рН 8
Straight chain saturated fatty acids	11:0 12:0 13:0 14:0 15:0 16:0	5%	5% рН 7 5%	рН 8	5.0 pH 6 11%	о пеіden рН 7 6%	sis pH 8	5 . рНб	pealear pH 7 6% 4% 10% 8% 11%	рН 8	5. р і рН б	utrefaci pH 7 2% 2% 9%	ens рН 8 8% 2% 9%	S рН б	woody pH 7	и рН 8
Straight chain saturated fatty acids	11:0 12:0 13:0 14:0 15:0 16:0 17:0	рН 6 5%	<u>рН 7</u> 5% 9%	рН 8 7%	5.0 pH 6 11% 8%	pH 7 6%	sis pH 8 10%	S . рНб	pealear pH 7 6% 4% 10% 8% 11%	рН 8 13%	5. р рН б	utrefaci pH 7 2% 2% 9%	ens pH 8 8% 2% 9%	<u>рн 6</u>	<u>woody</u> pH 7	и рН 8 15%
Straight chain saturated fatty acids	11:0 12:0 13:0 14:0 15:0 16:0 17:0 18:0	9 9H 6 5%	<u>рн 7</u> 5% 9%	рН 8 7%	5. pH 6 11% 8%	pH 7 6%	sis pH 8 10%	S . рНб	pealear pH 7 6% 4% 10% 8% 11%	рН 8 13%	5. р і рН б	utrefaci pH 7 2% 2% 9%	ens pH 8 8% 2% 9%	<u>рн 6</u>	- woody pH 7 5%	ri pH 8 15%
Straight chain saturated fatty acids	11:0 12:0 13:0 14:0 15:0 16:0 17:0 18:0 16:1µ9	9 pH 6 5%	. loihicc рН 7 5% 9%	pH 8	5.0 pH 6 11% 8%	<u>рн 7</u> 6%	sis pH 8 10%	s . рНб	pealear pH 7 6% 4% 10% 8% 11%	рН 8 рН 8 13%	<u>5. р</u> і рН б	utrefaci pH 7 2% 2% 9%	ens pH 8 8% 2% 9%	у рн 6	. woody pH 7 5%	i pH 8 15%
Straight chain saturated fatty acids	11:0 12:0 13:0 14:0 15:0 16:0 17:0 18:0 16:1u9 17:1u8	5% 5% 15% 7%	рН 7 5% 9% 19%	рН 8 7% 	5.0 pH 6 11% 8% 23% 13%	pH 7 pH 7 6% 18%	sis pH 8 10%	S. рНб	pealear pH 7 6% 4% 10% 8% 11% 19%	рН 8 рН 8 13% 14%	<u>5. р</u> рН б	utrefaci pH 7 2% 2% 9% 27%	ens pH 8 8% 2% 9% 30% 13%	<u>рн б</u>	woody pH 7 5% 30% 2%	i pH 8 15% 31%
Straight chain saturated fatty acids	11:0 12:0 13:0 14:0 15:0 16:0 17:0 18:0 16:1ω9 17:1ω8 17:1ω8	5% 5% 15% 7%	9%	рН 8 7% _20%	5.0 pH 6 11% 8% 23% 13%	pH 7 pH 7 6% 18%	sis pH 8 10% 19% 9%	5. рНб	pealear pH 7 6% 4% 10% 8% 11% 19%	рН 8 13%	<u>5. р</u> і <u>рН 6</u>	utrefaci pH 7 2% 2% 9% 27% 27%	ens pH 8 8% 2% 9% 30% 13%	<u>рн 6</u>	woody pH 7 5% 30% 2% 6%	i pH 8 15% 31%
Straight chain saturated fatty acids Monounsaturated	11:0 12:0 13:0 14:0 15:0 16:0 17:0 18:0 16:1ω9 17:1ω9 17:1ω10	5% 5% 15% 7%	<i>. loihicc</i> рН 7 5% 9% 19%	рН 8 7% 20%	5.0 pH 6 11% 8% 23% 13%	олеіdел рН 7 6% 18%	sis pH 8 10% 19% 9%	5 . рНб	реаlеат рН 7 6% 4% 10% 8% 11% 19%	рН 8 13%	<u>5. рг</u> рН 6	2% 2% 2% 9% 27%	ens pH 8 8% 2% 9% 30% 13%	<u>рн 6</u>	woody pH 7 5% 30% 2% 6%	i pH 8 15% 31%
Straight chain saturated fatty acids Monounsaturated fatty acids	11:0 12:0 13:0 14:0 15:0 16:0 17:0 18:0 16:1 ω 9 17:1 ω 8 17:1 ω 9 17:1 ω 10 18:1 ω 9	5% 5% 15% 7%	9%	рН 8 7% 20%	5.0 pH 6 11% 8% 23% 13%	опеіden pH 7 6% 18%	sis pH 8 10% 19% 9%	S . рНб	pealear pH 7 6% 4% 10% 8% 11% 19%	ла рН 8 13%	<u>5. рг</u> рН 6	utrefaci pH 7 2% 2% 9% 9% 27% 16%	ens pH 8 8% 2% 9% 30% 13%	<u>рн 6</u>	woody pH 7 5% 30% 2% 6%	ii pH 8 15% 31%
Straight chain saturated fatty acids Monounsaturated fatty acids	11:0 12:0 13:0 14:0 15:0 16:0 17:0 18:0 16:1ω9 17:1ω8 17:1ω9 17:1ω9 17:1ω9 17:1ω9 17:1ω9	5% 5% 15% 7%	ы loihicc рH 7 5% 9% 19%	рН 8 7% 20%	5.1 pH 6 11% 8% 23% 13%	oneiden pH 7 6%	sis pH 8 10% 19% 9%	5 . рНб	реаlеат рН 7 6% 4% 10% 8% 11% 19%	рн 8 	<u>5. рг</u> рн 6	иtrefaci рН 7 2% 2% 9% 27% 16%	ens pH 8 8% 2% 9% 30% 13%	рн 6	- woody рН 7 5% 30% 2% 6%	й рН 8 15% 31%
Straight chain saturated fatty acids Monounsaturated fatty acids	11.0 12:0 13:0 14:0 15:0 17:0 17:10 17:10 17:10 17:10 17:10 17:10 17:10 17:10 17:10 17:10 18:10 18:1011	5% 5% 15% 7%	ы loihicc рн 7 5% 9% 19%	рН 8 7% 20%	5.1 pH 6 11% 8% 23% 13%	опеіden рH 7 6% 18%	sis pH 8 10% 9%	5 . рНб	реаlеат рН 7 6% 4% 10% 8% 11% 19%	рн 8 рн 8 13%	<u>5. рг</u> рн 6	2% 2% 2% 2% 27% 16%	ens pH 8 8% 2% 9% 30% 13%	рн 6	- woody рН 7 5% 30% 2% 6%	ii pH 8 15% 31%
Straight chain saturated fatty acids Monounsaturated fatty acids	11:0 12:0 13:0 14:0 15:0 16:0 17:0 16:1u9 17:1u8 17:1u9 17:1u9 17:1u10 18:1u9 18:1u10 18:1u11 18:1u11 00 iso	5% 5% 15% 7%	. loihice pH 7 5% 9%	рН 8 7% 20%	5.0 pH 6 111% 8% 23% 13%	6%	sis pH 8 10% 9%	5 . рНб	pealear pH 7 6% 4% 10% 8% 11% 19%	13%	<u>5. рн 6</u>	27% 27%	ens pH 8 2% 9% 30% 13%	<u>рн 6</u>	рН 7 рН 7 5% 30% 2% 6%	ii pH 8 15% 31%
Straight chain saturated fatty acids Monounsaturated fatty acids	11:0 12:0 13:0 15:0 15:0 15:0 16:0 17:0 18:0 17:1w8 17:1w10 17:1w10 18:1w10 18:1w11 10:0 iso 12:0 iso	5% 5% 15% 7%	. loihicc pH 7 5% 9%	рН 8 7% 20% 5%	5.0 pH 6 111% 8% 23% 13% 3%	0neiden pH 7 6% 18%	sis pH 8 10% 9%	<u>5.</u> рнб	реаlear pH 7 6% 4% 10% 8% 11% 19%	13%	<u>5. рн</u> рн б	27% 27% 27%	ens pH 8 2% 9% 30% 13%	<u>рн 6</u>	<u>woody</u> pH 7 5% 30% 2% 6%	ii pH 8 15% 31%
Straight chain saturated fatty acids Monounsaturated fatty acids Terminally branched	11:0 12:0 13:0 14:0 15:0 16:0 17:10 16:109 17:109 17:109 17:109 17:109 17:109 17:101 18:101 18:1011 100 iso 12:0 iso 13:0 iso	5% 5% 15% 7% 4% 16%	. loihicc pH 7 5% 9% 19% 	рН 8 7% 20% 5% 12%	5.0 pH 6 111% 8% 23% 13% 3% 3%	nneiden pH 7 6% 18% 18%	sis pH 8 10% 19% 9% 5%	5 . рнб	pH 7 6% 4% 10% 8% 11% 19% 24%	рН 8 рН 8 13% 14% 3% 25%	<u>5. рн</u> рн б	2% 2% 2% 9% 27% 16%	ens pH 8 2% 9% 30% 13%	<u>рН 6</u>	<u>woody</u> pH 7 5% 30% 2% 6% 5% 2%	ii pH 8 15% 31%
Straight chain saturated fatty acids Monounsaturated fatty acids Terminally branched saturated fatty	11:0 12:0 13:0 14:0 15:0 16:0 17:0 16:1u9 17:1u8 17:1u9 17:1u10 18:1u9 18:1u11 18:1u11 10:0 iso 12:0 iso 13:0 iso	5% 5% 15% 7% 4% 16%	6. Joihicos pH 7 5% 9% 19% 8%	рН 8 7% 20% 5% 12%	S. n pH 6 11% 8% 23% 13% 3% 4% 5%	nneiden pH 7 6% 18% 18%	sis pH8 10% 9% 9% 5% 8%	5 . рНб	pealean pH 7 6% 4% 10% 8% 11% 19% 19% 24% 3%	13% 14% 3% 25% 9%	<u>5. рн</u> рн 6	2% 2% 2% 2% 2% 2% 2% 16% 11%	PH 8 PH 8 8% 2% 9% 30% 13% 11% 2%	<u>р</u> Н6	- woody рH 7 5% 30% 2% 6% 6% 5% 23%	і рН 8 15% 31% 1% 15% 5%
Straight chain saturated fatty acids Monounsaturated fatty acids Terminally branched saturated fatty acids	11:0 12:0 13:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15	5% 5% 15% 7% 4% 16% 25%	5. Jolhicce pH 7 5% 9% 9% 19% 8% 8% 28%	рН 8 7% 20% 5% 12% 33%	S. pH6 111% 8% 23% 13% 3% 4% 5% 26%	nneider pH7 6% 18% 18% 1% 12% 10% 33%	sis pH 8 10% 19% 9% 9% 5% 8% 8% 33%	5 .	pealean pH 7 6% 4% 10% 11% 19% 24% 3% 11%	13% 13% 14% 3% 25% 25%	5. pH 6	2% 2% 2% 9% 27% 16% 11% 3% 21%	рН 8 рН 8 8% 2% 9% 30% 13% 11% 2% 19%	урн 6	woody pH 7 5% 30% 2% 6% 5% 5% 23%	ii pH 8 15% 31% 15% 5% 25%
Straight chain saturated fatty acids Monounsaturated fatty acids Terminally branched saturated fatty acids	11:0 12:0 13:0 14:0 15:0 16:0 17:10 18:0 16:109 17:109 17:109 17:109 17:109 17:101 18:101 18:101 18:101 18:101 18:101 18:101 18:101 18:101 18:10 11:0 10:10	5% 5% 5% 15% 7% 4% 16% 25% 2%	5. Joihice pH 7 5% 9% 19% 19% 8% 28%	рН 8 7% 20% 5% 12% 33%	S. рH 6 111% 8% 23% 13% 3% 5% 26%	nneidern pH7 6% 18% 18% 12% 12% 33%	sis pH 8 10% 19% 9% 5% 8% 33%	S. pH6	pealean pH 7 6% 4% 10% 11% 19% 24% 3% 11%	а рН 8 13% 14% 3% 25% 25%	5.pH 6	2% 2% 2% 2% 2% 2% 2% 16% 16%	рН 8 рН 8 8% 2% 9% 9% 30% 13% 11% 2% 19%	5 рн 6	woody pH 7 5% 30% 2% 6% 5% 23% 23%	i pH 8 15% 31% 1% 5% 25%
Straight chain saturated fatty acids Monounsaturated fatty acids Terminally branched saturated fatty acids	11:0 12:0 13:0 14:0 15:0 16:0 17:0 16:1u9 17:1u9 17:1u9 17:1u9 17:1u19 18:1u11 18:1u11 10:0 iso 12:0 iso 13:0 iso 14:0 iso 15:0 arteiso 15:0 arteiso	5% 5% 5% 15% 7% 4% 16% 25% 2%	5. Joihice pH 7 5% 9% 9% 19% 8% 28%	рН 8 7% 20% 5% 12% 33%	5. pH 6 11% 8% 23% 13% 3% 4% 5% 26%	nneidern pH 7 6% 18% 18% 1% 12% 33%	sis pH 8 10% 19% 9% 9% 5% 8% 33%	5 . рН6	pealean pH 7 6% 4% 10% 8% 11% 19% 24% 3% 11%	аа рН 8 13% 14% 3% 25% 9% 25%	5.pH 6	2% 2% 2% 2% 2% 2% 16% 11% 21%	ers pH 8 8% 2% 9% 30% 13% 11% 2% 111%	S pH 6	woody pH 7 5% 30% 2% 6% 5% 23% 23%	й рН 8 15% 31% 15% 15% 25%
Straight chain saturated fatty acids Monounsaturated fatty acids Terminally branched saturated fatty acids	11:0 12:0 13:0 14:0 15:0 16:0 17:0 16:1u9 17:1u8 17:1u9 17:1u9 17:1u10 18:1u9 18:1u10 18:1u10 18:1u10 18:1u10 18:1u10 18:1u10 10:0 ko 12:0 ko 15:0 ko 15:0 ko 15:0 ko 15:0 ko 15:0 ko 15:0 ko	5% 5% 15% 7% 4% 16% 25% 2%	5. Joihice pH 7 5% 9% 19% 19% 8% 28%	pH 8 7% 20% 5% 12% 33%	5. pH 6 11% 8% 23% 13% 3% 4% 5% 26%	nneidern pH7 6% 18% 18% 12% 10% 33%	sis pH 8 10% 19% 9% 9% 5% 8% 33%	S. рН6	pealean pH 7 6% 4% 10% 8% 11% 19% 24% 3% 11%	113% 113% 14% 3% 25% 9%	5.pH 6	utrefacion pH 7 2% 2% 2% 2% 2% 2% 2% 16% 11% 3% 21%	еня рН 8 8% 2% 9% 30% 13% 11% 2% 19%	<u>рн 6</u>	woodypH 7 pH 7 5% 30% 2% 6% 5% 23% 23%	й рН 8 15% 31% 31% 15% 5% 25%
Straight chain saturated fatty acids Monounsaturated fatty acids Terminally branched saturated fatty acids Hydroxy fatty	11:0 12:0 13:0 15:0 15:0 16:0 17:10 16:109 17:109 17:1010 18:109 17:1010 18:109 18:1010 18:1010 18:1010 18:1010 18:1010 18:1010 15:0 iso 15:0 iso 1	25% 2%	5. Joihice pH 7 5% 9% 9% 19% 8% 28%	pH 8 7% 20% 5% 12% 33%	S. pH 6 pH 6 11% 8% 23% 13% 3% 3% 4% 5% 26%	плеіdeт рН 7 6% 18% 18% 12% 10% 33%	sis pH 8 10% 9% 9% 5% 8% 33%	5. рН6	pealean pH 7 6% 4% 10% 8% 11% 19% 24% 3% 11%	13% 13% 3% 25% 9%	5. pH 6	27% 2% 2% 2% 2% 2% 16% 11% 3% 21%	еня рН 8 8% 2% 9% 30% 13% 11% 2% 19%	S рН 6	woodypH 7 pH 7 5% 5% 2% 6% 5% 23% 23%	й рН 8 15% 31% 31% 15% 5% 25%
Straight chain saturated fatty acids Monounsaturated fatty acids Terminally branched saturated fatty acids Hydroxy fatty acids	11:0 12:0 13:0 14:0 15:0 16:0 17:0 18:0 16:1u9 17:1u9 17:1u9 18:1u10 18:1u10 18:1u11 100 iso 12:0 iso	5% 5% 15% 7% 4% 16% 25% 2%	5. Joihicec pH 7 5% 9% 9% 19% 8% 28%	pH 8 7% 20% 5% 12% 33%	5. pH 6 111% 8% 23% 13% 3% 26%	nneidern pH 7 6% 18% 18% 12% 10% 33%	sis ρH 8 10% 19% 9% 5% 8% 33%	S. pH6	pealean pH 7 6% 4% 10% 8% 11% 19% 24% 3% 11%	ла рН 8 13% 14% 25% 25% 25%	5.pH 6	turrefacione pH 7 2% 2% 2% 2% 2% 2% 16% 11% 21%	ens pH 8 8% 2% 9% 30% 13% 13%	S рН 6	woodypH 7 pH 7 5% 30% 2% 6% 5% 23% 23% 23%	n pH8 15% 31% 15% 25%
Straight chain saturated fatty acids Monounsaturated fatty acids Terminally branched saturated fatty acids Hydroxy fatty acids	11:0 12:0 13:0 14:0 15:0 16:0 17:10 16:109 17:109 17:109 17:109 17:1010 18:109 18:1011 18:1010 18:1011 10:0 iso 15:0 iso 15:0 anteiso 15:0 anteiso 15:0 anteiso 15:0 anteiso 15:0 anteiso	25% 25% 5%	5. Johhice pH 7 pH 7 5% 9% 9% 19% 8% 28%	pH 8 7% 20% 5% 12% 33% 5%	s. рн 6 11% 8% 23% 13% 3% 4% 26%	nneiden pH 7 6% 18% 18% 12% 10% 33%	sis pH 8 10% 9% 9% 9% 5% 8% 33%	5 . рН6	pealean pH 7 6% 4% 10% 8% 11% 19% 24% 3% 11% 11%	13% 13% 3% 25% 9%	5. pH 6	turrefacione pH 7 2% 2% 2% 2% 2% 2% 2% 16% 11% 21%	ens pH 8 8% 2% 9% 30% 13% 13% 11% 2% 19%	S рН 6	woodypH7 pH7 5% 5% 2% 6% 5% 23% 23% 23%	# pH8 15%

Table XXX. Fatty acid composition of *Shewanella* spp. when cultured at pH 6, 7, or 8 in half-strength Marine Broth.

Culture conditions that did not reach a threshold turbidity of $OD_{600} > 0.1$ were not included in this study and therefore are grayed out

The strains were compared using fatty acid methyl ester (FAMEs) analysis of extracted cellular fatty acids under the conditions in which there was growth (>0.1 OD_{600}). The results of the fatty acid chain length shifts from all strains at pH 6, 7, and 8 are shown on the intensity plots in Fig. 3. The graphical representation of these data shows clearly how fatty acid profiles changed with acidity. The prevalent fatty acid carbon chain length for *S. baltica* at pH 6 was C₁₃ (41%), with a total mass percentage of 45% from carbon chain lengths of C₁₁₋₁₄; compared to 27% at pH 7 and 34% at pH 8 with ~50% of the fatty acids at carbon chain lengths of 15-16. Two strains that were phylogenetically similar and showed similar fatty acid profile changes with regards to carbon chain length and acidity were *S. colwelliana* and *S. woodyi*. These similarities were more prominent at pH 8. These two strains were also isolated from sea water containing biological waste as

Figure 3. Intensity maps of fatty acid carbon chain lengths when grown in ½-MB medium adjusted to pH 6, 7, or 8.

opposed to being isolated from within another organism unlike S. paleana which exhibited a different fatty acid length profile from the rest of the Shewanella spp. tested. S. japonica was also unique it exhibited as changes to its fatty acid profile unlike other marine Shewanella spp. or similar members of its phylogenetic branch.

All of the changes in fatty acid branching and composition induced by

acidity were evaluated between pH 7 and pH 8 for nine of the Shewanella spp. tested. Radial maps of the fluctuations in the types of fatty acids at pH 7 or pH 8 are shown in Fig. 4. In all but three species (S. putrefaciens, S. colwelliana, and S. amazonensis), terminally branched fatty acids are the most prominent type at pH 7. S. woodyi also generated 40% monosaturated fatty acids but unlike S. putrefaciens, S. colwelliana, and S. amazonensis, S. woodyi also generated a high percentage of terminally branched fatty acids. The hydroxy acid type was only detected in S. loihica and S. woodyi at pH 8 which is consistent with their phylogenetic relationship. The largest difference in the terminally branched fatty acids at pH 8 is observed with S. pealeana and S. japonica.

When *S. baltica* was cultured at pH 8, there was significantly less terminally branched fatty acids but a larger percent of straight chain and monounsaturated fatty acids. There was a clear connection between hydroxyl acid fatty acids and phylogenetic similarity but no general correlation between branching and phylogenetic similarity observed from the radial maps in relation to straight chain, monounsaturated or terminally branched fatty acids.

Four strains (S. amazonesis, S. loihica, S. oneidensis, and S. baltica) were able to grow at all three acidities which allowed for fatty acid profiles to be compared across all acidities. The largest variance in the fatty acid profiles with decreasing acidity was observed with S. baltica. The straight chain fatty

shifted acids from undetected at pH 6 to 38% at pH 7 and 48% at pH 8. The percentage of terminally branched acids also fatty decreased as the рΗ When s. increased. baltica was grown at pH 6, 71% of the fatty acids were terminally branched: this decreased to 21% when

Figure 4. Radial maps of the different types of fatty acids when the pH of the ½-MB medium was shifted from pH 7 to pH 8.

the pH increased to pH 8. As was discussed previously, branching of the fatty acid chains was a poor indicator of similarity but clearly from the results shown in Fig 5a confirms that the changes in chain length can be used for these physiological comparisons. data clearly show that even though S. baltica These is phylogenetically similar to S. oneidensis it is different based on carbon chain length distribution induced by acidity which would not have been predicted using phylogenetic analysis. The intensity graph in Fig. 5b indicates that even though all 4 strains are different from a phylogenetic and origin standpoint, S. baltica was dissimilar to the other three strains at pH 6, there were similar trends evident with S. amazonensis, S. loihica, and S. oneidensis.

These data show that the response to acidity observed in these experiments cannot be correlated to phylogenetic similarity. Instead, this analysis showed that the fatty acid and growth profiles from different species from the same genus could be altered if grown in the same medium with a defined pH. Based on growth, fatty acid, and native growth media it was clear from these results that *S. loihica*, *S. oneidensis*, and *S. amazonensis* are

potentially unique members of the *Shewanella* genus based on the physiological effects to changes in acidity but are not closely

related based on the phylogenetic tree. These systematic changes in carbon chain length and branching of fatty acids during microbial growth at pH 6, 7 and 8 from the ten Shewanella spp. represents an association of how shifts in the fatty acid distribution provides insight into grouping of strains from the same genus. These experiments provide а straightforward method for fully evaluating the importance of environmental conditions and their connection to a physiological response which would be important for ecological or clinical studies. This work has also identified three strains of Shewanella that are unique based on their physiological response to acidity that were not evident from phylogeny.

Figure 5. Analysis of the 4 Shewanella spp. which were able to grow at pH 6, 7, and 8 in $\frac{1}{2}$ -MB. a) Radial and b) intensity maps of fatty acids composition between pH 6-8.

Materials and methods Bacterial strains and culture conditions

Ten Shewanella spp. were purchased from American Type Culture Collection (ATCC) and used in this study (S. amazonensis (ATCC Number: BAA-1098), S. baltica (ATCC Number: BAA-1091), S. colwelliana (ATCC Number: 39565), S. denitrificans (ATCC Number: BAA-1090), S. japonica (ATCC Number: BAA-316), S. loihica (ATCC Number: BAA-1088), S. oneidensis (ATCC Number: 700550), S. pealeana (ATCC Number: 700345), S. putrefaciens (ATCC Number: 51753), and S. woodyi (ATCC Number: 51908)). For fatty acid analysis, 50 mL starter cultures were grown in a 125 mL flask from a -80°C glycerol stock, in their designated ATCC growth medium and temperature. Once the culture was at stationary phase a 1:100 transfer was made into a 250 mL flask containing 102 mL of halfstrength marine broth (1/2-MB) (Difco 2216) in 50 mM phosphate buffer at pH 6, 7 or 8 or in the native medium. The cultures grew at 25°C with agitation at 100 rpm until reaching stationary phase. At this point, the cultures were harvested for fatty acid extractions. Culture conditions that did not reach a threshold turbidity of $OD_{600} > 0.1$ were not included in this study.

Phylogenetic analysis

A phylogenetic tree was generated using the 16S rRNA National Center for Biotechnology Information (NCBI) nucleotide sequences from the following Shewanella spp.: S. amazonensis (Accession: AF005248), S. baltica (Accession: AJ000215), S. colwelliana (Accession: NR 043074), S. denitrificans (Accession: NR 027556), japonica (Accession: NR 025012), S. loihica (Accession: S. NR 043689), S. oneidensis (Accession: NR 036917), S. pealeana (Accession: AF011335), S. putrefaciens (Accession: X81623), and S. woodyi (Accession: AF003549). The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-Nei model (Tamura & Nei, 1993). The tree with the highest log likelihood (-3454.8062) is shown. Initial tree(s) for the heuristic search were obtained automatically as follows: when the number of common sites was < 100 or less than one fourth of the total number of sites, the maximum parsimony method was used; otherwise BIONJ method with MCL distance matrix was used. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 10 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 1306 positions in the final dataset.

Evolutionary analyses were conducted in MEGA5 (Tamura, *et al.*, 2011).

Growth curve analyses

From -80°C glycerol stocks, all ten Shewanella strains were grown for 48 hr according to the propagation procedures provided by ATCC. Using the 48 hr cultures, 1:100 transfers (200 µL total volume) were made into the 100-well plates fitted for Bioscreen C^{*} , which is an automated multi-well turbidity recording system. Each of the ten species were transferred into four types of growth media in quadruplicates, in addition to a negative control (blank). The four types of media used for each species were $\frac{1}{2}$ -MB in 50 mM phosphate buffer at pH 6, 7 or 8, in addition to the native medium designated per species by ATCC (Luria Bertani (LB) for S. amazonensis; MB for S. colwelliana, S. japonica, S. pealeana, and S. woodyi; 1/2-MB for S. baltica and S. denitrificans; and trypticase loihica, soy broth (TSB) for S.S. oneidensis, and s. putrefaciens). OD₆₀₀ measurements were taken every two hours for three days with gentle shaking (25°C). The quadruplicate data curves were averaged to establish growth curves of all 10 Shewanella spp. in the four defined growth media.

Fatty acid methyl ester (FAMEs) extractions

After reaching early stationary phase, 50 mL of each culture were harvested and pelleted by centrifuge for 15 min at 3,000 rcf. The pellet was analyzed using published protocols for fatty acid methyl esters (FAMEs) (Eder, 1995). Briefly, the FAMEs extraction procedure involved harvesting the cells, saponifaction with rapid mixing and heat, methylation at 80°C for 10 min, extracting the FAMEs using a 1:1 ratio of hexane and methyl-tert-butyl ether, then washing with an aqueous base solution. A single additional wash with 18MΩ MilliQ[™] water was performed to remove trace impurities. Samples were stored in crimp-top vials at -20°C before analysis.

Fatty acid analyses by gas chromatography-mass spectrometry

Products in the FAMEs extracts were identified by gas chromatography-mass spectrometry (GC-MS). Data were acquired with an Agilent 7890A GC equipped with a standard multimode inlet and a 5975C mass selective detector. An Agilent autoinjector with a 10 μ L syringe was used to introduce 1.0 μ L of neat extract into the inlet which was split at a 60:1 ratio. A DB-1MS (Agilent, 60 m x 0.25 mm x 0.25 μ m film) column was used with an oven temperature

program that began at 40°C, held for 1.5 min, ramped at 10° C/min to 290°C and held for 10 min. The MS was scanned from 40 to 350 m/z, resulting in a scan rate of 5.19 Hz.

GC-MS data were analyzed using an in-house program that identified all detected constituents by matching the mass spectra with archived library data through the NIST Mass Spectral Search Program for the NIST/EPA/NIH Mass Spectral Library (version 2.0g, 2011) (Scientific Instrument Services, Inc.). Peak identification proceeded, using a previously-published technique (Stein, 1999), over the retention time range of 17 to 27 min, the timeframe within which the desired FAMEs products eluted. Once peak definitions established, product quantification was performed were by calculating the peak areas found in the total ion chromatograms (TICs) summed from the original GC-MS data, using trapezoidal representations of the defined ranges. Both the blank and target TICs were corrected for baseline drift and the differences in areas between each defined TIC peak and the same retention time range in the blank TIC were calculated. Peak areas are reported as percentages of the sum of all peak areas.

Acknowledgements

The authors would like to acknowledge the Office of Naval Research and the Naval Research Laboratory for funding this research. We thank Gary Vora from Naval Research Laboratory for the use of the Bioscreen C^{m} .

References

Brettar I, Moore ERB & Hofle MG (2001) Phylogeny and abundance of novel denitrifying bacteria isolated from the water column of the central Baltic Sea. *Microb. Ecol.* **42**, 295-305.

Brettar I, Christen R & Hofle MG (2002) Shewanella denitrificans sp. nov., a vigorously denitrifying bacterium isolated from the oxic-anoxic interface of the Gotland Deep in the central Baltic Sea. Int. J. Syst. Evol. Microbiol. **52**, 2211-2217.

Eder K (1995) Gas chromatographic analysis of fatty acid methyl esters. J. Chromatogr. B Biomed. Sci. Appl. 671, 113-131.

Fredrickson JK, Romine MF, Beliaev AS, et al. (2008) Towards environmental systems biology of Shewanella. Nat. Rev. Microbiol. 6, 592-603. Frostegard A & Baath E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. *Biology* and Fertility of Soils 22, 59-65.

Gao H, Obraztova A, Stewart N, *et al.* (2006) Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean. *Int J Syst Evol Microbiol* **56**, 1911-1916.

Hau HH & Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol. **61**, 237-258.

Ivanova EP, Sawabe T, Gorshkova NM, Svetashev VI, Mikhailov VV, Nicolau DV & Christen R (2001) Shewanella japonica sp. nov. *Int. J. Syst. Evol. Microbiol.* **51**, 1027-1033.

Kato C & Nogi Y (2001) Correlation between phylogenetic structure and function: Examples from deep-sea Shewanella. *FEMS Microbiol. Ecol.* **35**, 223-230.

Labare MP & Weiner RM (1990) Interactions between Shewanella colwelliana, Oyster Larvae, and Hydrophobic Organophosphate Pesticides. Appl Environ Microbiol 56, 3817-3821.

Lebedinsky AV, Mardanov AV, Kublanov IV, et al. (2014) Analysis of the complete genome of Fervidococcus fontis confirms the distinct phylogenetic position of the order Fervidicoccales and suggests its environmental function. Extremophiles 18, 295-309.

Leonardo MR, Moser DP, Barbieri E, et al. (1999) Shewanella pealeana sp. nov., a member of the microbial community associated with the accessory nidamental gland of the squid Loligo pealei. Int. J. Syst. Bacteriol. **49**, 1341-1351.

Leong S-lL, Lantz H, Pettersson OV, *et al.* (2015) Genome and physiology of the ascomycete filamentous fungus Xeromyces bisporus, the most xerophilic organism isolated to date. *Environ. Microbiol.* **17**, 496-513.

Makemson JC, Fulayfil NR, Landry W, Van Ert LM, Wimpee CF, Widder EA & Case JF (1997) Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol 47, 1034-1039.

Narendrula R & Nkongolo KK (2015) Fatty acids profile of microbial populations in a mining reclaimed region contaminated with metals: relation with ecological characteristics and soil respiration. J. Biorem. Biodegrad. 6, 1000274/1000271-1000274/1000279.

Obuekwe CO & Westlake DWS (1982) Effects of medium composition on cell pigmentation, cytochrome content, and ferric iron reduction in a Pseudomonas sp. isolated from crude oil. *Can. J. Microbiol.* **28**, 989-992.

Picardal F, Arnold RG & Huey BB (1995) Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200. Appl. Environ. Microbiol. **61**, 8-12.

Quivey Jr RG, Faustoferri R, Monahan K & Marquis R (2000) Shifts in membrane fatty acid profiles associated with acid adaptation of Streptococcus mutans. *FEMS Microbiology Letters* **189**, 89-92.

Sajbidor J (1997) Effect of some environmental factors on the content and composition of microbial membrane lipids. *Crit. Rev. Biotechnol.* **17**, 87-103.

Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. Journal of the American Society for Mass Spectrometry 10, 770-781.

Suutari M & Laakso S (1994) Microbial fatty acids and thermal adaptation. Crit. Rev. Microbiol. 20, 285-328.

Tamura K & Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. *Molecular Biology and Evolution* **10**, 512-526.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M & Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Molecular Biology and Evolution* **28**, 2731-2739.

Venkateswaran K (1999) Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int. J. Syst. Bacteriol. **49**, 705-724.

Venkateswaran K, Dollhopf ME, Aller R, Stackebrandt E & Nealson KH (1998) Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. *Int. J. Syst. Bacteriol.* **48**, 965-972.

Venkateswaran K, Moser DP, Dollhopf ME, et al. (1999) Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int. J. Syst. Bacteriol. **49**, 705-724.

Welch DF (1991) Applications of Cellular Fatty-Acid Analysis. Clinical Microbiology Reviews 4, 422-438.

Yin J & Gao H (2011) Stress responses of shewanella. Int. J. Microbiol. 863623, 1-8.

Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. *Biology and Fertility of Soils* 29, 111-129.