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Abstract 

In this paper we analyze the beam combining and atmospheric propagation of high-power lasers 

for directed-energy (DE) applications. The large linewidths inherent in high-power fiber, and to a 

lesser extent, slab lasers cause random phase and intensity fluctuations occurring on sub-

nanosecond time scales. To coherently combine these high-power lasers would involve 

instruments capable of precise phase control and operating at rates greater than ~10 GHz.  To the 

best of our knowledge, this technology does not currently exist. This presents a challenging 

problem when attempting to phase-lock high-power lasers, which is not encountered when phase-

locking low-power lasers, for example mW power levels. Regardless, we demonstrate that even if 

instruments are developed that can precisely control the phase of high-power lasers; coherent 

combining is problematic for DE applications. The dephasing effects of atmospheric turbulence 

typically encountered in DE applications will degrade the coherent properties of the beam before 

it reaches the target. Through simulations, we find that coherent beam combining in moderate 

turbulence and multi-km propagation distances has little advantage over incoherent combining. 

Additionally, in strong turbulence and multi-km propagation ranges, we find nearly 

indistinguishable intensity profiles and virtually no difference in the energy on the target between 

coherently and incoherently combined laser beams. Consequently, we find that coherent beam 

combining at the transmitter plane is ineffective under typical atmospheric conditions. 

  

_______________
Manuscript approved August 18, 2015. 
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I. Introduction 

Advances in solid state lasers, especially slab and fiber lasers, have made them candidates for 

directed-energy applications [1,2].  To achieve the power levels needed for these applications it 

is necessary to combine a large number of lasers into a single beam. The combined beam is then 

propagated many kilometers through a turbulent atmosphere.  Recently, much effort has been 

expended in coherent beam combining [2-7]. Coherent beam combining refers to matching the 

phases of multiple lasers either in the transmitter plane [2,3] or the target plane [4]. However, 

there are a number of important issues to be considered before a coherent combining architecture 

can be used for DE applications. These issues include the consideration of sources with a finite 

spectral linewidth and the dephasing effect of atmospheric turbulence. 

Coherent combining has proven to be effective in situations with very low-power lasers and 

weak turbulence [4]. However, these conditions are not applicable for DE systems which require 

high-power lasers and must be effective in conditions of moderate and strong atmospheric 

turbulence. High-power fiber lasers have significantly broader linewidths due to stimulated 

Brillouin scattering, Doppler shift, self-phase modulation, and Raman broadening in the gain 

medium. Stimulated Brillouin scattering (SBS) is the main contributor to the large linewidths in 

high-power fiber lasers. The SBS instability results in a threshold power level for fiber and slab 

lasers. To increase the threshold power level, the linewidth is intentionally broadened. 

The full width half max (FWHM) of the linewidth for high-power fiber lasers (multi-kW) is 

typically 10GHz   and the coherence time is 1 0.1nsecCt    (for all single peaked 

lineshapes) [9]. Phase locking of lasers requires measuring the output phase information and 

applying the corrective phase to the individual lasers. To be effective, the time scale required for 

this process should be less than the laser coherence time. The coherence time is the characteristic 

time over which the phase and intensity randomly vary and is due solely to the finite spectral 

linewidth in the gain medium and the statistical nature of the emission from the atoms or 

molecules [8]. Stated simply, if the process of measuring the output phase and applying the 

corrective phase takes longer than the coherence time, then the output phase has changed before 

the corresponding corrective phase can be applied. To the best of our knowledge, there do not 

currently exist instruments that can operate at rates comparable to the FWHM of the linewidth 

for high-power fiber lasers. However, in the following work we assume that there exist 
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instruments that can control the phase over time scales shorter than 1 0.1nsecCt   . 

Furthermore, we assume that these instruments operate with zero error.  

As previously stated, the power spectral linewidth associated with the gain medium results in 

temporal fluctuations of the intensity and phase at the output. The nature of the temporal 

fluctuations depends on the shape of the power spectral linewidth.  As shown in Appendix B, the 

fluctuations associated with a Lorentzian power spectral density are characteristically different 

than the fluctuations associated with a Gaussian power spectral density due to the extended 

wings of the Lorentzian spectrum. A Lorentzian spectrum can result from collisional broadening, 

while a Gaussian spectrum can result from Doppler broadening or local random atom 

environments in a solid.  Regardless of the lineshape, the standard deviation of intensity is 

approximately equal to the average intensity.  In addition, the output phase of the field randomly 

fluctuates over 2  radians on time scales down to the coherence time. Experimental 

observations on the lineshapes of high-power fiber lasers have revealed lineshapes that are 

approximately Lorentzian.  

In this paper we discuss the physical processes associated with the combining and propagation 

of high-power laser beams.  We compare the energy delivered to a target for the case of 

coherently combined and incoherently combined laser beams. Through simulation, we 

demonstrate that in vacuum and weak turbulence, the effectiveness of coherent combining is 

limited by the phase fluctuations occurring due to the broad linewidth of high-power lasers 

(Figures 2 and 3). Furthermore, the advantages of coherent combining begin to diminish in 

moderate turbulence, as the turbulence induced phase distortions become dominant (Figures 5 

and 6). In strong turbulence and multi-km propagation ranges, we find negligible differences in 

the energy on the target between coherently and incoherently combined laser beams (Figures 7 

and 8). The incoherently combined architecture is far simpler to implement and both beam 

combining architectures have the capability of employing adaptive optics to extend the range. 

We begin in Section II by describing the model for the beam director. We present our 

propagation simulation results in Section III for weak, moderate, and strong turbulence. A 

discussion of our findings concludes this paper in Section IV. 

 

II. Beam Director Model 
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We model the beam director as a set of nine square beams which we refer to as tiles. The side 

length of each tile is a and the distance between the centers of adjacent tiles is b where b a . For 

example, a beam director with the parameters a=b would have no filling factor and appear as a 

single tile with side length 3a and centered at  0, 0x y  . The tile arrangement in the xy plane is 

shown in Fig. 1a. Tiles are indexed by the indices l and m corresponding to the x and y 

dimensions respectively. Indices l and m are integers defined on the set  1,0,1 . For example, the 

indices  1, 1l m     ,  0, 0l m  , and  1, 1l m   correspond to the bottom left, center, and top 

right tiles respectively. 

Figure 1b shows a side view of the beam director, i.e. yz plane. Each tile is positioned with 

tip-tilt correction so that the center of the tile propagates to the point  0, 0,x y z L    in vacuum 

where L is the distance from transmitter to the target and L b . The tilt applied to a tile with 

index m is defined as y mb L  . Similarly the tip applied to a tile with index l is defined as 

x lb L  .  

 

 

Figure 1: Beam director geometry. We define the side length of each tile as a and the distance 

between the centers of adjacent tiles as b where b a .  Each tile is indexed by the indices l and m 

defined on the set  1,0,1 . 

We follow the method presented in [10] and [11] for generation of a laser beam with arbitrary 

spectral power density. The method entails modeling the beam as radiation from a large number 

of independent radiators that radiate at discrete frequencies. We consider radiation from a total of 

N frequencies and write the nth frequency as 0n n    , where 0  is the center frequency,   
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is a small change in frequency, and n is an integer value ranging from 2N  to 2 1N  . The time 

dependence of the electric field for a single frequency 
n  can be written as   

                                                        1
2
( ) c.c.ni t

n n nE t a ib e


   ,                                               (1) 

where 
na  and 

nb  are random variables. As a consequence of the central limit theorem, na  and nb

are Gaussian random variables with zero mean and variance proportional to the number of 

radiators at frequency n , which is determined by the power spectrum of radiation. The 

implications of Gaussian and Lorentzian power spectra are discussed in Appendices A and B. 

The time dependence of the total electric field from all frequency components is 

                                              1
2

( ) c.c.ni t

n n n

n n

E t E t a ib e


     .                                       (2) 

Setting 
0n n    , the total electric field is given by  

                                            1
02

exp ( )exp c.c.n n

n

E t i t a ib in t      .                             (3) 

The term ( ) in t

n n

n

a ib e  is a time dependent complex value. We denote this value as 

   t i t  : 

                                                        
2 1

2

exp
N

n n

n N

t i t a ib in t  




    .                                (4) 

Numerically, t is a sequence of discrete values such that t m t   where m is an integer value 

ranging from 0 to N-1 and t  is to be determined.  

                                              
2 1

2

exp
N

n n

n N

m t i m t a ib inm t    




    .                          (5) 

If we choose  2t N   , we get the exact definition of a discrete Fourier transform (DFT) 

                                            
2 1

2

exp 2
N

n n

n N

m t i m t a ib i nm N    




                                (6)    

Thus it is convenient to solve for  t  and  t  with the use of a DFT on the sequence 

 n na ib where   and   are the real imaginary part of the resulting DFT respectively. The total 

electric field can be written as an amplitude and phase modulated monochromatic source 

                                                1
02

exp c.c.E t t i t i t       .                                   (7) 
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Combining the time dependence described by Eq. (7) with the spatial geometry of the beam 

director, we write the electric field of a single tile as   

            
          

   0 0 0

1
, , ,2

0

, , 0, rect rect

                                   c.c.y x

l m l m l m

ik y mb ik x lb i t

E x y z t t i t x lb y mb

E e e e
  

 

    

    

 
       (8) 

where  rect   is the rectangular function defined as  

       

0    if 2

rect( ) 1 2 if 2

1    if 2

a

a

a



 



 


 
 

                (9) 

The electric field of the beam director is obtained by summing over all tiles: 

       
          

   0 0 0

1 1

1
, ,2

1 1

0 0

, , 0, rect rect

                                                    c.cy x

l m

l m l m

l m

ik y mb ik x lb i t

E x y z t t i t x lb y mb

E e e E e
  

 
 

 

    

    

 


.     (10) 

In theory, two coherently combined tiles would have a phase difference of zero at any 

instance in time. However, in practice this is generally not the case for high-power lasers. 

Instead, coherent combining systems result in a reduction of the root mean square (RMS) phase 

difference between tiles. For reference, the RMS phase difference between two incoherently 

combined tiles is 2 12  as shown in Appendix C. To simulate a situation where the tiles are 

coherently combined in the transmitter plane, we generate a set of  ,l m t  and  ,l m t  in which the 

RMS phase difference between any two tiles can be precisely controlled. This procedure for 

generating a set of correlated  ,l m t  and  ,l m t  is described in Appendix C.  

 

III. Propagation in Turbulent Atmosphere 

We simulate the propagation of the tile arrangement described in Section II through the 

atmosphere for coherently and incoherently combined tiles. For comparison, we include the case 

of monochromatic, phase matched tiles. Following our previous work [12], we propagate the 

beam by numerically solving the paraxial wave equation. Atmospheric turbulence is modeled as 

phase screens located at discrete locations along the z-axis. For details on the split-step phase 

screen simulation see [12]. 
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 We use parameters that are typical for DE applications. Specifically, the center wavelength of 

radiation in vacuum 
0 1μm  , distance to the target  5 kmL  ,  tile side length 2 cma  , distance 

between tile centers 2.2 cmb  , bandwidth 2 37.5 GHz      , and RMS phase difference 

between any two coherently combined tiles 2 6RMS   . We consider the lineshape to be 

Lorentzian. These parameters give a fractional bandwidth of 4

0 1.3 10     and a coherence 

time of 128.5 10 secct
 . We consider three levels of atmospheric turbulence, 2 0nC  , 

2 14 2 310 mnC   , and 2 13 2 310 mnC   , corresponding to vacuum, moderate turbulence and strong 

turbulence respectively. Using the Rytov variance, 2 2 7 6 11/6

010.5R nC L  , as a measure of turbulence 

strength, these conditions correspond to 2 0R  ,  2 6.3R  , and 2 63R  . We use the Fried 

parameter,  
3/5

2 2

0 0.184 nr C L 


 , as a measure of the transverse coherence length. Strictly speaking, 

0r  corresponds to the diameter of a circular area in which the RMS phase of a plane wave is 1 

radian.  

a) Vacuum 

To observe effects exclusively associated with the linewidth of the laser sources, we begin by 

considering propagation in vacuum corresponding to 2 0nC  , 2 0R  , and 
0r   . Figure 2 

displays the intensity profiles at 5 kmz  for the incoherently combined beam (a), coherently 

combined beam (b), and monochromatic, phase matched beam (c). The intensity profiles are 

averaged over a time scale much greater than the coherence time, specifically 6 ns. The 

incoherently combined tiles diffract independently resulting in a radially symmetric, 

approximately Gaussian intensity profile. The energy from the incoherently combined beam is 

spread over a much larger area than for the coherently combined beams. The coherently 

combined beam produces a far field intensity pattern similar to the monochromatic beam. 

However, there are considerable differences. The coherently combined beam has diffracted more 

than the monochromatic beam which results in more beam spreading and a lower on axis 

intensity.  
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Figure 2: Intensity profiles for propagation through vacuum at 5 kmz  for the incoherently 

combined beam (a), coherently combined beam (b), and phase matched monochromatic beam 

(c). Each tile of the incoherently combined beam diffracts independently resulting in significant 

spreading. The coherently combined beam has an initial RMS phase difference 2 6RMS    

between any two tiles. The far-field intensity profile of the coherently combined beam resembles 

that of the monochromatic beam. 

Figure 3 displays the intensity profile along the transverse x-axis for the incoherent beam 

(blue), coherent beam (green), and monochromatic, phase matched beam (red). Intensity is 

normalized by the on-axis intensity of the monochromatic, phase matched beam. The on axis 

intensity of the coherently combined beam is approximately 6.4 times greater than the on-axis 

intensity of the incoherently combined beam. However, the decrease in on-axis intensity of the 

coherently combined beam in comparison to the monochromatic beam is a fundamental 

limitation caused by the random temporal characteristics of the phase associated with each 

individual tile.  
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Figure 3: Vacuum intensity profiles along x-axis at 5 kmz  for the incoherently combined beam 

(blue), coherently combined beam (green), and phase matched monochromatic beam (red). 

Intensity is normalized by the on-axis intensity of the monochromatic beam. The on axis 

intensity of the incoherently and coherently combined beams are approximately 11% and 71% of 

the on-axis intensity of the monochromatic beam respectively. 

A common metric used in DE applications is power in the bucket (PIB), which describes the 

amount of power contained in a specific area. We calculate the PIB centered at the origin as a 

function of bucket radius for the time averaged intensity profiles. The results are displayed in 

Fig. 4 where the PIB is normalized by the total power. Again, incoherent, coherent, and 

monochromatic results are denoted by blue, green, and red respectively. The coherently 

combined beam and monochromatic beam each have a distinct central lobe with a radius of 

approximately 7.5 cm. At a radius of 7.5 cm, the incoherent and coherently combined beams 

contain 37% and 78%, respectively, of the power contained by the monochromatic beam. Unlike 

the coherently combined and monochromatic beam, the incoherently combined beam remains 

radially symmetric at radii greater than the central lobe radius. Consequently, the PIB of the 

incoherently combined beam increases more rapidly than coherently combined beam after a 

radius of 7.5 cm. At a radius of 20 cm, the contained power is approximately equal for all beams. 
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Figure 4: : Power in the bucket (PIB) at 5 kmz   through vacuum as a function of bucket radius 

for the incoherently combined beam (blue), coherently combined beam (green), and phase 

matched monochromatic beam (red). The coherently combined beam and monochromatic beam 

contain significantly more power near the axis due to the distinct central lobe. The contained 

power within a radius of 20 cm is approximately equal for all beams. 

 

b) Moderate turbulence 

Now we consider propagation through moderate turbulence corresponding to

2 14 2 310  mnC   , 2 6.3R  , and 
0 1.76 cmr  . All other parameters remain the same. An ensemble 

average is performed over the intensity profiles from 100 independent instances of turbulence. 

The intensity profile for each instance of turbulence is averaged over many coherence time 

intervals, 6 ns, to account for the fluctuating intensity and phase. The average intensity profiles at 

5 kmz  are displayed in Fig. 5 for the incoherently combined beam (a), coherently combined 

beam (b), and phase matched, monochromatic beam (c). Through comparison of the average 

intensity profiles we can observe a slight advantage of coherent beam combining over incoherent 

beam combining. These advantages include a smaller spot size and higher maximum intensity. 

However, the effects of coherent beam combining are nearly insignificant when compared to the 

impact of moderate turbulence as shown in Fig. 6.  
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Figure 5: Intensity profiles for propagation through moderate turbulence, 2 14 2 310  mnC   , at 

5 kmz  for the incoherently combined beam (a), a coherently combined beam (b), and phase 

matched monochromatic beam (c). The coherently combined beam and monochromatic beam 

have smaller spot size and higher on-axis intensity than the incoherently combined beam. 

Figure 6 displays the intensity profile along the x-axis for the incoherent (blue), coherent 

(green), and monochromatic (red) beam profiles. Again, the intensity is normalized by the on-

axis intensity of the monochromatic beam in vacuum (black). The on-axis intensity of the 

coherently combined beam in moderate turbulence is approximately 25% of the on-axis intensity 

of the coherently combined beam in vacuum. Turbulence has a profound impact on the 

coherently combined beam in comparison to the incoherently combined beam. The on-axis 

intensity of the incoherently combined beam in moderate turbulence is approximately 78% of the 

on-axis intensity of the incoherently combined beam in vacuum. 
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Figure 6: Average intensity profiles in moderate turbulence, 2 14 2 310  mnC   , along x-axis at 

5 kmz  for the incoherently combined beam (blue), coherently combined beam (green), and 

phase matched monochromatic beam (red). Intensity is normalized by the on-axis intensity of a 

monochromatic beam propagated through vacuum. Propagation through vacuum is denoted by 

the black curve. The on-axis intensity of the coherently combined is approximately twice the on-

axis intensity of the incoherently combined beam. 

We also find that moderate turbulence significantly impacts the advantage of PIB for 

coherently combined beam. Figure 7 displays the PIB as a function of radius at 5 kmz  for 

beams propagating through moderate turbulence. The coherently combined beam and 

monochromatic beam no longer have a distinct central lobe as in the case of propagation through 

vacuum. As a result, the PIB of each beam has a similar trend. The coherently combined beam 

and monochromatic beam still contain more power near the axis than the incoherently combined 

beam, but the difference is not as significant. The advantage of coherent combining appears 

minor when compared to the PIB to a phase matched, monochromatic beam in vacuum. Even in 

moderate turbulence, it is clear that the phase distortions caused by atmospheric turbulence are 

dominant over the effects of coherent beam combining.    
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Figure 7: Power in the bucket (PIB) at 5 kmz   through moderate turbulence, 2 14 2 310  mnC   , as a 

function of bucket radius for the incoherently combined beam (blue), coherently combined beam 

(green), and phase matched monochromatic beam (red). For reference, the PIB of the 

monochromatic, phase matched beam propagated through vacuum is denoted by the dashed 

black curve. The coherently combined beam and monochromatic beam contain more power near 

the axis than the incoherently combined beam, however the difference is not as significant as in 

vacuum. 

 

c) Strong turbulence 

Finally, we consider propagation through strong turbulence corresponding to 2 13 2 310  mnC   , 

2 63R  , and 
0 .44 cmr  . All other parameters remain the same. Again, an ensemble average is 

performed over the intensity profiles associated with 100 independent instances of turbulence 

and the intensity profile for each instance of turbulence is averaged over 6 ns. The average 

intensity profiles at 5 kmz  are displayed in Fig. 8 for the incoherently combined beam (a), 

coherently combined beam (b), and phase matched, monochromatic beam (c). All three intensity 

profiles are nearly indistinguishable from each other. The intensity profiles of the coherently 

combined beam and monochromatic beam have no resemblance to the vacuum far-field pattern 

displayed in Fig. 2b,c. 
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Figure 8: Intensity profiles for propagation through strong turbulence, 2 13 2 310  mnC   , at 5 kmz 

for the incoherently combined beam (a), coherently combined beam (b), and phase matched 

monochromatic beam (c). The intensity profiles are nearly indistinguishable. 

 

Figure 9 displays the intensity profile along the x-axis for the incoherent beam (blue), 

coherent beam (green), and monochromatic beam (red). Again, the intensity is normalized by the 

on-axis intensity of the monochromatic beam in vacuum. Atmospheric turbulence is dominant 

over the method of beam combining; consequently, the shape of each intensity profile is nearly 

identical. The main noticeable difference is that the coherently combined beam and 

monochromatic beam have slightly higher spatial fluctuations in the time averaged intensity.  
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Figure 9: Intensity profiles in strong turbulence, 2 13 2 310  mnC   , along x-axis at 5 kmz  for the 

incoherently combined beam (blue), coherently combined beam (green), monochromatic beam 

(red). Intensity is normalized by the on-axis intensity of a monochromatic beam in vacuum. The 

intensity profiles are nearly indistinguishable. 

 

Figure 10 displays the PIB as a function of radius for the incoherent beam (blue), coherent 

beam (green), and monochromatic beam (red). The initial condition of the phase at 0z   has very 

little discernible impact on the PIB at 5 kmz  in strong turbulence. The advantages of coherent 

beam combining that were apparent in vacuum have completely diminished in strong turbulence. 
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Figure 10: Power in the bucket (PIB) at 5 kmz   through strong turbulence, 2 13 2 310  mnC   , as a 

function of bucket radius for the incoherently combined beam (blue), coherently combined beam 

(green), and phase matched monochromatic beam (red). All beams deliver approximately the 

same power. 

 

IV. Discussion 

We have demonstrated that the linewidth of the source places a fundamental limit on the 

ability to coherently combine beams. The large linewidth associated with high-power lasers must 

be carefully considered if they are to be coherently combined. However, coherently combining 

beams at the transmitter plane has no benefit for DE systems in conditions of strong turbulence. 

We have shown that the initial RMS phase difference between tiles has negligible impact on the 

quality of the beam after propagation through multiple kilometers of moderate or strong 

atmospheric turbulence. In strong turbulence, coherent beam combining at the transmitter plane 

merely adds to the complexity of the transmitter. Situations of strong turbulence and multi-km 

distances require adaptive optics to compensate for the phase distortions caused by atmospheric 

turbulence. Depending on the implementation of the adaptive optics, the linewidth of high-power 

lasers may need to be taken into consideration. For instance, coherent combining at the target can 

be considered an adaptive optics method because it partially compensates for distortions caused 



17 

 

by atmospheric turbulence. In this case, the linewidth of high-power lasers places even greater 

limitations on coherent combining due to the transit time of light to the target and back to the 

receiver. If the transit time is longer than the coherence time of the lasers, then it is inconceivable 

to coherently combine the lasers at the target without first phase matching the beams at the 

transmitter.  

There are multiple limitations that the linewidth of a laser places on the ability to coherently 

combine beams. Due to the dominant effect of atmospheric turbulence, it is not effective to 

coherently combine lasers at the transmitter plane. Incoherent combining of lasers is a much 

simpler approach with comparable results in moderate to strong turbulence. A more effective 

approach for delivering energy to a target in moderate to strong turbulence may be in using 

adaptive optics solutions to compensate for the turbulent distortions.  
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Appendix A 
 

For a continuous power spectrum of radiation,  2  , the variance of 
na  and 

nb  in Eq. (1) are 

     2Var Varn n na b    . Here we consider a Gaussian power spectrum, 2

G , and a Lorentzian 

power spectrum, 2

L , defined as 

                                          
 
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,                                  (A1) 
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                                       (A2) 

respectively, where 
G  and  

L  are parameters that determine the width of each power spectrum. 

The power spectra are normalized such that  

                                                  2 2 1G Ld d     
 

 

   .                                    (A3) 

The linewidth,  , is defined as the full width at half maximum (FWHM) of the power 

spectrum.  The FWHM of a Gaussian function is defined as  
1 2

2 2ln 2G G    and the FWHM 

of a Lorentzian function is defined as 2L L   .  For comparison of the two spectra, it is 

convenient to pick 
G  and 

L  such that 
G L       .  For example, 100GHzG   and 

 
1 2

2ln 2 117.7GHzL G     which gives the relation 235.5GHzG L        . The coherence 

time is defined as 2ct   .  The linewidth ratio for this example is
4

0 1.24 10     . Figure 

A1 displays a comparison of two power spectra for these parameters. 
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Figure A1: Comparison of a Gaussian and Lorentzian power spectrum when the linewidths are 

matched, i.e. 
G L       . The Gaussian power spectrum contains 98% of the total power 

within   of 
0  . The Lorentzian power spectrum contains 70% of the total power within   of 

0 . 

The Lorentzian power spectrum decays more slowly than the Gaussian power spectrum and 

thus a greater fraction of the total power is contained at frequencies far from 
0 . For example, 

the Gaussian power spectrum contains 98% of the total power within   of 
0 , while the 

Lorentzian power spectrum contains 70% of the total power within   of 0 . Appendix B 

illustrates this importance by comparing the random fluctuations in the intensity and phase for 

Gaussian and Lorentzian power spectral densities. 

 

Appendix B 

 

Here we illustrate the random fluctuations in the intensity and phase. We examine the 

behavior of the intensity and phase for a single tile at 0z   and on time scales comparable to the 

coherence time, ct . The intensity of a tile is defined as 

                                                     
0

2 2 2

2

( )
4 8t

c c
I t E t t t

 
 

 

   ,                       (B1) 
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where the angled brackets indicate a temporal average performed over a time scale of 
02  . It 

is convenient to define a normalized intensity as      2 2

0I t t t   . Due to the statistical 

properties of   and   we have the relation 
0 ( ) 1

ct t
I t . The phase of a tile is defined as 

                                                     arctant t t      .                                            (B2) 

We note that strictly speaking, the arctan function has a range of  2, 2  . Numerically, we 

utilize the atan2 function so that the phase of a tile is defined on the interval  ,  . 

We begin by considering a tile with a Gaussian power spectrum defined by Eq. (A1). Figure 

B1 shows the intensity fluctuations at 0z   for a single tile with a Gaussian power spectrum. The 

intensity fluctuates randomly, but still appears as a smooth function in time. Major fluctuations 

occur over intervals greater than the coherence time as displayed in figure Fig. B1. Calculating 

the long term average intensity for this specific instance of   and   gives the result

0 750
( ) 1.01

ct t
I t


. 

 

Figure B1: Intensity fluctuations for a single tile with Gaussian power spectrum. The intensity 

has random fluctuations when observed on time scales comparable to the coherence time. The 

standard deviation of intensity is equal to the average intensity.   

Figure B2 shows the phase fluctuations at 0z   for a single tile with a Gaussian power spectrum. 

Similar to the intensity, the phase fluctuates randomly when observed on a time scale 

comparable to the coherence time.  
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Figure B2: Phase fluctuations for a single tile with Gaussian power spectrum. The phase fluctuates 

randomly when observed on time scales comparable to the coherence time. 

The intensity and phase as a function of time is characteristically different when the tile has a 

Lorentzian power spectrum described by Eq. (A2). Figure B3 shows the intensity fluctuations at 

0z   for a single tile with a Lorentzian power spectrum. Similar to the case of the Gaussian 

power spectrum, large scale fluctuations occur over times of a few coherence time intervals. 

However the intensity fluctuations do not appear as a smooth function. Regardless, performing a 

long time average gives the result 0 750
( ) .98

ct t
I t


, which is close to the expected value of 1. 

 

Figure B3: Intensity fluctuations for a single tile with a Lorentzian power spectrum. The standard 

deviation of intensity is equal to the average intensity.   
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Figure B4 shows the phase fluctuations at 0z   for a single tile with a Lorentzian power 

spectrum. The phase displays the same random fluctuations over time scales comparable to the 

coherence time. 

 

Figure B4: Phase fluctuations for a single tile with a Lorentzian power spectrum. 

Appendix C 

 

Ideally, the phase of two coherently combined beams would fluctuate synchronously and have 

a phase difference of zero at any instance in time. However, in practice this is generally not the 

case, especially for high-power lasers. Instead, coherent combining systems result in a reduction 

of the root mean square (RMS) phase difference between beams. To simulate a situation where 

the tiles are coherently combined in the transmitter plane, we develop a method to generate a set 

of  ,l m t  and  ,l m t  in which the RMS phase difference between any two tiles can be controlled. 

As an illustration, we consider 2 tiles whose amplitude and phase are modulated by  1 t ,  1 t ,

 2 t , and  2 t . These variables are generated through the Fourier transform of the Gaussian 

random variables (1) (1) (2) (2), , ,n n n na b a b  where we have added the superscript to distinguish between 

tiles. If we assume that perfect coherent combining is implemented for all frequency components 

within a certain frequency bandwidth, 0n    , where   is the half width of the coherent 

combining instrument bandwidth, then (1) (2)

n na a  and (1) (2)

n nb b for n   . In other words, 

random variables associated with frequency components contained within the coherent 

combining bandwidth are shared between the tiles. Conversely, random variables associated with 
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frequency components outside of the coherent combining bandwidth are uncorrelated between 

the tiles. The coherent combining bandwidth is determined by the time scale over which the 

coherent combining instruments operate. We assume that the instruments have zero error and 

thus can precisely phase match all frequency components within the instrument bandwidth. 

We define 1 2,  and     as the phase of tile 1, phase of tile 2, and the phase difference 

between the two tiles respectively. In terms of  1 t ,  1 t ,  2 t , and  2 t  we have the relations 

                                                     1 1 1arctant t t        ,                                       (C1) 

                                                     2 2 2arctant t t         ,                                      (C2) 

                                                          1 2t t t             .                                      (C3) 

The RMS phase difference between the two tiles is defined as: 

                                                         
1 2

21
RMS

t

t
N

 
 
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 
 .                                             (C4) 

We can analytically calculate 
RMS  for the cases of incoherently combined tiles and perfectly 

phase matched tiles. If the two tiles are incoherently combined, then  is a random variable 

with a uniform distribution on the interval  0,  and 
1 2

2Erms     . From the properties of a 

uniform distribution we know the expected value,  E 2   , and variance,   2Var 12   . 

Using the definition of variance,    
22Var E EX X X    , we calculate 2 2E 3     and 

3RMS   . On the other hand, if the two tiles are perfectly phase matched then  is uniquely 

zero and clearly 0RMS  . These simple situations of incoherent combining and perfect phase 

matching correspond to 0   and   respectively. Coherently combining monochromatic 

sources is an example of perfect phase matching. We calculate intermediary values  RMS   for 

both Gaussian and Lorentzian power spectra displayed in Fig. C1. 

For a Gaussian power spectrum, the RMS phase difference between the two tiles is effectively 

zero when frequency components within 2     of 
0  are matched. However, the result differs 

greatly when the two tiles have a Lorentzian power spectrum. Since a higher percentage of 

power is contained at frequencies far from 0 ,  RMS   decays much slower. From Fig. C1, it is 

clear that it becomes very difficult to achieve a small RMS phase difference between two tiles 

with a Lorentzian power spectrum.  
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Figure C1: The RMS phase difference between two tiles with a Gaussian power spectrum (blue) 

and Lorentzian power spectrum (red) as a function of instrument bandwidth.  

Recalling that   is the half width of the coherent combining angular frequency bandwidth, 

we can use Fig. C1 to calculate the rate at which the instruments must operate to achieve any 

arbitrary RMS phase. For example, to achieve coherent beam combining with an RMS phase 

difference of 2 6  would require instruments that operate at a rate of  2 .48 2 36 GHz   and

2 2 75 GHz    for a Gaussian and Lorentzian linewidth respectively. In the following 

simulations, we consider the propagation of coherently combined beams with a Lorentzian 

power spectrum. 

 




	Blank Page
	Blank Page

