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Scientific Progress

Summary of the most important results

In the case of the hybrid material project, the most important results include:

• Development of computational method to enable the building of hybrid polymer-ceramic structures without overlapping atoms.
• Optimization of charge optimized many-body potential for Al2O3 to enable reactive, atomic-scale modeling in simulations.
• Examined laminar and brick-and-mortar hybrid material structures subjected to compression and tension; documented atomic-
scale responses and showed how the responses varied with the volume fraction of polymer.
• Introduced atomic-scale roughness and molecular grafts to the Al2O3 to see how these factors changed the mechanical 
responses. We have not yet been able to draw firm conclusions regarding their effects.

In the case of the doped YAG project, the most important results include:

• When Gd dopants are added, its f-electrons modify the optical properties of the YAG in the IR region. In contrast, Sc and Ga 
are not predicted to substantially modify the optical properties of YAG in the IR region.
• Doping with Gd, Sc, and Ga individually or in combination with one another is predicted to increases the opaque nature of the 
YAG in all cases, but less in the IR region than at higher wavelengths.

Technology Transfer
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Statement of the problem studied 

We used classical molecular dynamics simulations to identify the nanometer-scale 

mechanisms by which a ceramic-based hybrid composite of PMMA and Al2O3 responds to 

mechanical deformation. The influence of factors such as the arrangement of the phases in 

lamellar and brick-and-mortar structures, atomic-scale roughness of the Al2O3 phases, and 

attachment of molecular grafts to the Al2O3 were explored.  

We also used first-principles, density functional theory calculations to examine the way in 

doping of yttrium aluminum garnet (YAG) influenced its optical properties. In particular, the 

identity of the dopants, their location within YAG unit cell, and their concentrations were 

considered with guidance from experimental data from Lawrence Livermore National 

Laboratory. 
 

Summary of the most important results 

 In the case of the hybrid material project, the most important results include: 

 Development of computational method to enable the building of hybrid polymer-ceramic 

structures without overlapping atoms. 

 Optimization of charge optimized many-body potential for Al2O3 to enable reactive, 

atomic-scale modeling in simulations. 

 Examined laminar and brick-and-mortar hybrid material structures subjected to 

compression and tension; documented atomic-scale responses and showed how the 

responses varied with the volume fraction of polymer. 

 Introduced atomic-scale roughness and molecular grafts to the Al2O3 to see how these 

factors changed the mechanical responses. We have not yet been able to draw firm 

conclusions regarding their effects. 

In the case of the doped YAG project, the most important results include: 

 When Gd dopants are added, its f-electrons modify the optical properties of the YAG in 

the IR region. In contrast, Sc and Ga are not predicted to substantially modify the optical 

properties of YAG in the IR region. 

 Doping with Gd, Sc, and Ga individually or in combination with one another is predicted 

to increases the opaque nature of the YAG in all cases, but less in the IR region than at 

higher wavelengths. 
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Predicting Optical Properties of Doped YAG

2



Yttrium Aluminum Garnet

Y3Al2Al3O12 unit cell comprised of 160 
atoms

• 24 Y—dodecahedral 
coordination

• 16 Al—octahedral 
coordination

• 24 Al—tetrahedral 
coordination

• 96 O
Structure with space group Ia3d



Garnet Systems

Non-doped: YAG

• Y3Al5O12
Gd-doped: GdYAG

• (GdxY3-x)Al5O12

x % Gd

0.120 4

0.375 12.5

0.750 25

0.999 33.3

1.500 50

2.250 75

3.000 100



Computational Methods

Density functional theory using Vienna Ab initio Simulation Package (VASP)

• PBE pseudopotentials

• Single k-point (gamma) calculations

• Cut-off energy = 400 eV

• Energy convergence = 10-6 eV

• Force convergence = 10-2 eV/atom
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Comparison with experiment

Fig. (a): ε1(0) ~   3.40

Fig. (b): ε1(0) ~   3.54

Above:  ε1(0) ~   3.72

On left: Non-doped YAG, Xu, Y.N., Chen, Y., et al., Phys. Rev. B 65, 235105 (2002). 

On right: Results from this work.
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Electronic structure of pure YAG

DOS for YAG showing absence of any state in the infrared region



Partial density of states (PDOS), band-structure of pure YAG



For Official Use Only – Not for Public Release

Introduction of Gd in YAG: Active in IR region

Gd3Sc2Al3O12:

Gd-f electrons are contributing extra energy states in the infrared region of YAG,

may be responsible for infrared activity.

DOS for (Gd0.375Y2.625)Al5O12
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Relation between heat of vaporization and energy gap of 
lanthanide based organic and inorganic compounds

10

• Energy gap of lanthanide doped YAG, 
lanthanide-TCNQ (= 7, 7, 8, 8-tetracyano-p-
quinodimethane) [1] complexes and 
lanthanide oxides. 

• HOMO-LUMO gaps for all the lanthanides 
TCNQ complexes were not available. 

• Energy and HOMO-LUMO gaps follow 
specific patterns.

[1] Zhang et al., Systematic study on electrochemical
properties of a series of TCNQ lanthanide complexes,
Journal of Organometallic Chemistry 695 (2010) 1493–1498.
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Energy gap dependence on Hvap/OX, OX, where

Hvap and OX are the heat of vaporization of

metal and highest oxidation state of the metal,

respectively.

Relation between heat of vaporization and energy gap of 
lanthanide based organic and inorganic compounds
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Predicting Mechanical Properties of Al2O3-PMMA Hybrid Materials

12
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Objectives

13
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Classical molecular dynamics simulations

Atomistic treatment

Forces on the atoms calculated with the third-generation charge optimized 
many-body potential

Focus on mechanical properties of Al2O3-PMMA hybrid materials as a function 
of hybrid structure, PMMA chain length, and system size

Currently running: influence of surface roughness

Computational approach

14
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Stacking fault energy predicted for Al

15

Stacking fault map predicted for Al using (left) the embedded atom

method (EAM) potential and (right) the charge optimized many-body

(COMB) potential.

The symmetry in the contours represents the periodicity in the

system.
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Stacking fault and dislocation splitting 
behavior of Al

16

Stacking fault 3D-map using COMB that successfully predicts the  

direction would be preferred over        for dislocation propagation.

Dislocation splitting of an edge dislocation within a (111) plane of bulk Al is 

illustrated. 

112

101
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Mechanical deformation of polycrystalline Al predicted 
in MD simulations with COMB potentials

17

Left: A 13.8% strained Al polycrystal

following constant strain. Red atoms 

represent disordered atoms (non-12 

coordinates), light blue atoms are in 

an hcp environment. Atoms in an fcc

environment are not shown for clarity.

(a) Extended dislocations within the (111) 

plane are indicated by the black arrows. 

(b) The yellow square highlights twinned 

region. 
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COMB predictions for Al2O3

18
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Predicted charge-spilling across the Al2O3(0001)/Al(100) interface

1.164

-0.8499



Uniaxial compression and tension tests of pure PMMA
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• Effect of chain length investigated

• Response to the compression depends on chain length

• Response to tension highly non-linear



In-situ brick-and-mortar building

Brick and mortar building starts 
with defining regions of alumina 
(bricks) and PMMA (mortar) in 
the simulation box.

First PMMA chains are built using 
three constraints:
• Angle between two segments of 

chain should be greater than 
120.

• Distance between any beads 
should be greater than 
approximate size of the monomer 
(~0.5 nm).

• Distance between any PMMA 
atom should be larger than 0.08 
nm to prevent over-coordination

Random tacticity used. Torsion 
angle between monomer and 
chain is set to avoid overlaps 
between polymer atoms in 
different chains.



System configuration

Brick-and-mortar structures built in three different sizes along the direction of 
the deformation axis with brick dimensions 7.8 nm, 11.7 nm, 15.6 nm for small, 
medium and large structures, respectively. Other dimensions are same at 6.8 nm 
and 3.9 nm, respectively. There is a 1.2 nm gap between bricks in all three 
dimensions. Periodic boundary conditions are applied on three axis. Average 
PMMA chain length is 50 monomers per chain.
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Illustration of loading accommodation in the brick-and-
mortar compression test
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Illustration of the brick-and-mortar compression test
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Laminar versus brick-and-mortar structures

Compression of laminar system
25



Uniaxial compression test predictions
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• Mechanisms for brick-and-mortar and laminar composites are quite 

different

• Brick-and-mortar Young’s modulus > laminar Young’s modulus

• Elastic properties are dependent on size, especially for brick-and-mortar 

1

Region 1: Linear region

Region 2: non-linear region

2
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• Pressure along the compression and tension axis given

• Response to tension is more linear than response to compression

• Off-axis motion of bricks results in nonlinear response to the compression

Uniaxial compression and tension tests
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Surface roughness implemented by randomly deleting surface atoms of the 

ceramic layers (polymer atoms are not shown)

Surface roughness



For Official Use Only – Not for Public Release

Large scale molecular dynamics simulations of hybrid 
materials with smaller fraction of polymer

29

• Large scale MD simulations of hybrid materials to understand the effect of surface 
roughness and functionalization to the mechanical properties.

• System size extends to 32.5 nm in x and y axis and 25.7 nm in z axis. 

• Polymer/Ceramic ratio is 95%.

• Total number of atoms is ~ 3,000,000.

32.5 nm

11.9 nm

1.9 nm




