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ABSTRACT

Bayesian cubic spline in computer experiments

Report Title

Cubic splines are commonly used in numerical analysis. It has also become popular

in the analysis of computer experiments, thanks to its adoption by the software JMP

8.0.2 2010. In this paper a Bayesian version of the cubic spline method is proposed, in

which the random function that represents prior uncertainty about y is taken to be a

specific stationary Gaussian process and y is the output of the computer experiment.

An MCMC procedure is developed for updating the prior given the observed y values.

Simulation examples and a real data application are given to show that the proposed 

Bayesian method performs better than the frequentist cubic spline method and the

standard method based on the Gaussian correlation function.
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Abstract

Cubic splines are commonly used in numerical analysis. It has also become popular

in the analysis of computer experiments, thanks to its adoption by the software JMP

8.0.2 2010. In this paper a Bayesian version of the cubic spline method is proposed, in

which the random function that represents prior uncertainty about y is taken to be a

specific stationary Gaussian process and y is the output of the computer experiment.

An MCMC procedure is developed for updating the prior given the observed y values.

Simulation examples and a real data application are given to show that the proposed
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Bayesian method performs better than the frequentist cubic spline method and the

standard method based on the Gaussian correlation function.

Introduction

Because of the advances in complex mathematical models and fast computation, com-

puter experiments have become popular in engineering and scientific investigations.

Computer simulations can be much faster or less costly than running physical exper-

iments. Furthermore, physical experiments can be hard to conduct or even infeasible

when only rare events, like land slides or hurricanes, are observed. There are many suc-

cessful applications of computer experiments as reported in the literature. The Gaus-

sian process (GP) has been used as the main tool for modelling computer experiments.

See the books by Santner, Williams and Notz [37], Fang, Li and Sudjianto [14], as

well as the November 2009 issue of Technometrics, which was devoted to computer

experiments.

First we introduce the GP model. Suppose an experiment involves k factors

x = (x1, . . . , xk)
t and n computer runs are performed at {x1, . . . ,xn}. We can write

the input as the n× k matrix D = (x1, . . . ,xn)t. The corresponding response values is

the vector YD = (y1, . . . , yn)t. The GP model assumes that

y(x) = btf(x) + Z(x), (1)

where f(x) = (f1(x), . . . , fs(x))t is a vector of s known regression functions, b =

(b1, . . . , bs)
t is a vector of unknown coefficients, and Z(x) is a stationary GP with mean

zero, variance σ2 and isotropic correlation function corr(y(x1), y(x2)) = R(x1,x2) =

R(‖x1 − x2‖). For the GP model in (1), the best linear unbiased predictor (BLUP) of

y(x) is an interpolator, which will be shown in (5).
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One popular choice of the correlation function is the Gaussian correlation func-

tion, which is the product exponential correlation function with power two. For the

one-dimension case, it can be written as:

R(d) = exp(−θd2), (2)

where d = ‖x1 − x2‖ is the distance between two input values x1 and x2, and θ is the

scale parameter. It has been used in many applications (O’Hagan and Kingman [30],

Sacks and Schiller [34], Sacks, Schiller, Welch [35] and Abrahamsen [1]) and software

including JMP 8.0.2 2010. However, a process y(x) with (2) as the correlation func-

tion has the property that its realization on an arbitrarily small, continuous interval

determines the realization on the whole real line. This global influence of local data is

considered unrealistic and possibly misleading in some applications (Diggle and Ribeiro

p. 54 [11]). We shall refer to this property as global prediction. Another well known cor-

relation function is the Matérn family (Matérn, 1960). For the one-dimension case, it

is a two-parameter family:

R(d) = {2ν−1Γ (ν)}−1(d/φ)νKν(d/φ),

where Kν(·) denotes a modified Bessel function of order ν > 0, and φ > 0 is a scale

parameter for the distance d. As ν →∞, the Matérn correlation function converges to

(2).

Another commonly used interpolation method is the spline. An order-s spline

with knots ξi, i = 1, ..., l is a piecewise-polynomial of order s and has continuous

derivatives up to order s − 2. A cubic spline has s = 4. The GP may also be viewed

as a spline in a reproducing kernel Hilbert space, with the reproducing kernel given

by its covariance function (Wahba [38]). The main difference between them is in the

interpretation. While the spline is driven by a minimum norm interpolation based
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on a Hilbert space structure, the GP is driven by minimizing the expected squared

prediction error based on a stochastic model.

In this paper, we focus on the cubic spline by considering it in the GP framework

via the cubic spline correlation function (Currin et al. [5], Santner et al. [37]):

R(d) =



1− 6(d
θ
)2 + 6( |d|

θ
)3, if |d| < θ

2
,

2(1− |d|
θ

)3, if θ
2
≤ |d| < θ,

0, if |d| ≥ θ,

(3)

where θ > 0 is the scale parameter. Currin et al. [8] showed that the BLUP with the

function in (3) as the correlation function gives the usual cubic spline interpolator. An

advantage of the cubic spline correlation is that θ can be made small, which permits

prediction to be based on data in a local region around the predicting location (Santner

et al. p. 38 [37]). We shall refer to this property as local prediction.

In this paper, we introduce a Bayesian version of the Gaussian process approach

for the cubic spline correlation function given in (3). One advantage of Bayesian predic-

tion is that the variability of y(x) given observations can be used to provide measures of

posterior uncertainty, and designs can be sought to minimize the expected uncertainty

(Ylvisaker [42], Sacks, Welch, Mitchell, and Wynn [35]). Some empirical studies have

shown the superiority of Gaussian processes over the other interpolating techniques,

including splines (see Laslett [23]). Here we show some potential advantage of using

Bayesian cubic spline in the GP model compared to the power exponential correlation

function (2) through simulation studies.

The paper is organized as follows. In Section 2, we give a brief review of the

kriging technique based on GP models. In Section 3.1, we develop a Bayesian version

of the cubic spline method, abbreviated as BCS. In Section 3.2, a nugget parameter is

added to the GP model underlying the BCS method when numerical and estimation
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stability is required. A summary procedure for the BCS is given. In Section 3.3, we

consider its extension to high dimensions. In Section 4, BCS is compared with two

competing procedures in three simulation examples: a GP based on the cubic spline

correlation function in (3), abbreviated as CS, and a GP based on the power exponential

Gaussian correlation function in (2), abbreviated as GC (CS and GC are explained in

more detail in Section 2). In Section 5, we compare the performance of BCS and GC

on some real data. Some concluding remarks are given in Section 6.

A Brief Review on Kriging

The GP model has been used in geostatistics and is known as kriging (Matheron [26],

Cressie [4], Diggle and Ribeiro [11]). Kriging is used to analyse spatially referenced

data which have the following characteristics (Cressie [4]): The observed values yi are

at a discrete set of sampling locations xi, i = 1, . . . , n, within a spatial region. The

observations yi are statistically related to the values of an underlying continuous spatial

phenomenon. Sacks et al. [35] proposed kriging as a technique for developing meta

models from a computer experiment. Computer experiments produce a response for a

given set of input variables. Our methodology development only considers deterministic

computer experiments, i.e, the code produces identical answers if run twice using the

same set of inputs.

Suppose we want to provide the prediction of a function y(x) at an untried

location x, given the observed y values at D = (x1, . . . ,xn)t. For the Gaussian process

in (1), the best linear unbiased estimator (BLUE) of b is:

b̂ = (f tDRD(θ̂)−1fD)−1f tDRD(θ̂)−1YD, (4)

where fD = f(D) = (f(xi))xi∈D, the dependence on θ is now explicitly indicated in the

notation, and θ̂ is an estimate of θ. The BLUP of Y0 = y(x0) at x0 ∈ R is:
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Ŷ0 = b̂tf0 + R0(θ̂)
tRD(θ̂)−1(YD − b̂tfD), (5)

where b̂ is given in (4), f0 = f(x0) and R0 = (R(x0−x1), . . . , R(x0−xn))t is the n× 1

vector of correlations between YD and Y0. If we denote µD = btfD and µ0 = btf0, then

(5) becomes:

Ŷ0 = µ̂0 + R0(θ̂)
tRD(θ̂)−1(YD − µ̂D).

One way to estimate θ and σ2 is by maximum likelihood. Maximum likelihood is a

commonly used method for estimating parameters in both computer experiments and

spatial process models (Wecker and Ansley [40]; Mardia and Marshall [24]; Currin et

al. [5]; Sacks, Schiller, and Welch [35]; Sacks, Welch, Mitchell, and Wynn [36]). For the

power exponential correlation function in (2), the estimate of σ2 yields:

σ̂2(θ) =
1

n
(YD − µD)′RD(θ)−1(YD − µD).

Estimation of θ is usually done by a constrained iterative search. We refer to this

method as kriging based on the power exponential Gaussian correlation (GC). If we

adopt the cubic spline correlation function in (3), the correlation parameter θ is both

a scale and truncation parameter. In this case, the estimation method of θ is based on

the restricted maximum likelihood method (REML). REML (Patterson and Thompson

[31]) was proposed as a method of obtaining less biased estimates of the variance and

covariance parameters than the (unrestricted) maximum likelihood method. We refer

to this method as kriging based on the cubic spline correlation function (CS).

Bayesian Cubic Spline

The Prior and Posterior Processes

With YD ∼ N (µD, σ
2RD(θ)), we now develop the Bayesian framework for the cubic

spline method, where R is the correlation matrix based on the function in (3). We first
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assign the non-informative priors to µD and θ, the conjugate prior to σ2, and further

assume that these priors are independent with each other:

µD ∝ 1,

σ2 | α, β ∼ InverseGamma(α, β),

θ | a ∼ U(0, a),

β ∝ 1/β,

where θ follows the uniform distribution in (0, a), and β−1 has a non-informative prior

over (0,∞). Here θ can be viewed as the knot location parameter in the spline literature.

In the Bayesian spline literature (Dimatteo et al. [13], Wang [39]), it is a common

practice to assign a uniform prior to the knot location parameter. The hyperparameter

a is fixed as:

a = max
xi,xj∈D

‖xi − xj‖.

The reason for choosing this particular a is because the function in (3) is truncated and

equals zero for |d| ≥ θ. Because we want the GP to have a local prediction property, we

choose a to be the largest distance among the x values in D. A simulation study (not

reported here) shows that a larger value of a does not change overall performance in es-

timation. Because an unknown shape parameter α will bring unnecessary complication

in the computation, we assume α to be fixed and known.

We use the Markov chain Monte Carlo (MCMC) method to perform the

Bayesian computation (Christian and Casella [33]; Gill [17]). It samples from prob-

ability distributions by constructing a Markov chain that has the desired distribution

as its equilibrium distribution. Gibbs sampling can be implemented to obtain the pos-

terior distribution of µD and β:
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µD | YD, θ, α, β ∝
∫

P(YD | µD, θ, σ2)P(µD)P(σ2 | α, β) dσ

∝
∫
N (µD,RD(θ, σ2))× InverseGamma(α, β) dαdβ, (6)

β | YD, µD, θ, α ∝
∫

P(YD | µD, θ, σ2)P(β)P(σ2 | α, β) dσ

∝
∫
N (µD,RD(θ, σ2))× β−1 × InverseGamma(α, β) dαdβ.

However, the parameters θ are embedded into the covariance function R in (3) and have

no posterior distribution in closed form. Thus we will sample θ using the Metropolis-

Hastings (MH) algorithm (Metropolis et al. [27], Hastings [20]). The MH algorithm

works by generating a sequence of sample values in such a way that, as more and more

sample values are produced, the distribution of values more closely approximates the

desired distribution. Specifically, at each iteration, the algorithm picks a candidate for

the next sample value based on the current sample value. Then, with some probability,

the candidate is either accepted (in which case the candidate value is used in the next

iteration) or rejected (in which case the candidate value is discarded, and the current

value is reused in the next iteration).

Specifically, we sample a new value of θ (denoted as θnew) using a normal density

with respect to the existing θ (denoted as θold). The normal densities work as a jumping

distribution, because they choose a new sample value based on the current sample. In

theory, any arbitrary jumping probability density Q(δold | δnew) can work, where δ is

the parameter of interest. Here we choose a symmetric jumping density Q(δold | δnew) =

Q(δnew | δold) for simplicity. The variance term in the normal distribution is the jumping

size from the old sample to the new sample of the MH algorithm. Here we choose the

variance to be one. As this jumping size gets smaller, the deviation of new parameters

from previous ones should get smaller. The jumping distribution is therefore:
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log θnew ∼ N (log θold, 1). (7)

After getting θnew, the acceptance ratio is defined as:

r1 = P(YD|µD,θnew,σ2)P(θnew|a)
P(YD|µD,θold,σ2)P(θold|a)

=
|RD(θnew,σ2)|−1/2 exp(− 1

2
(YD−µD)′RD(θnew,σ2)−1(YD−µD))1θnew∈[0,a]

|RD(θold,σ2)|−1/2 exp(− 1
2
(YD−µD)′RD(θold,σ2)−1(YD−µD))1θold∈[0,a]

.

We accept θnew with probability r1 if r1 < 1. If r1 ≥ 1, we accept θnew.

Nugget Parameter

One possible problem with the kriging approach is the potential numerical instability

in the computation of the inverse of the correlation matrix in (5). This happens when

the correlation matrix is nearly singular. Numerical instability is serious because it

can lead to large variability and poor performance of the predictor. The simplest and

perhaps most appealing way is to add a nugget effect in the GP modeling. In the spatial

statistics literature (Cressie [4]), a nugget effect is introduced to compensate for local

discontinuities in an underlying stochastic process. A well-known precursor is the ridge

regression in linear regression analysis. Gramacy and Lee [19] gave justifications for the

use of nugget in GP modeling for deterministic computer experiments. Here we consider

the option of adding a nugget parameter in GP model by using ridge regression.

Consider the Gaussian model:

Y ∼ N (µ,R(σ2, θ) + τ 2I),

where τ 2 is the nugget parameter. Adding the matrix τ 2I to R makes the covariance

matrix nonsingular and helps stabilize the parameter estimate. We can use the MH

sampling to estimate τ 2 by letting γ2 = τ 2/σ2 and assigning a uniform [0, κ] prior on

γ2, where κ is fixed and known. We can then replace RD and R0 in Section 3.1 by

VD = RD + γ2I and V0 = R0 + γ2I. To use MH sampling for γ2, we choose the

jumping distribution:



10

log γ2new ∼ N (log γ2old, 1), (8)

with the acceptance ratio:

r2 = P(YD|µD,γ2new,θ,σ2)P(γ2new|κ)
P(YD|µD,γ2old,θ,σ2)P(γ2old|κ)

=
|VD(γ2new,θ,σ

2)|−1/2 exp(− 1
2
(YD−µD)′VD(γ2new,θ,σ

2)−1(YD−µD))1γ2new∈[0,κ]
|VD(γ2old,θ,σ

2)|−1/2 exp(− 1
2
(YD−µD)′VD(γ2old,θ,σ

2)−1(YD−µD))1γ2
old
∈[0,κ]

.

In our computation, we use the criterion introduced by Peng and Wu [32] to

determine whether or not to include a nugget effect. We use the condition number of a

square matrix as the primary measure of singularity, that is, the ratio of its maximum

eigenvalue over its minimum eigenvalue. Here we use the LAPACK reciprocal condition

estimator in MATLAB to determine whether the covariance matrix R is ill-conditioned.

If (κ1(R))−1 < 10ε, where ε = 2−8 is the floating-point relative accuracy, then R is

ill-conditioned and we will introduce the nugget effect into the model. Otherwise, we

will set the nugget effect to be zero.

With the option of adding a nugget parameter, the steps to perform the Bayesian

cubic spline are summarized as follows:

1. Set initial values for µD, θ, σ2 and let γ2 = 0.

2. Calculate κ1(R).

3. If (κ1(R))−1 ≥ 10ε, where ε is a specified constant, set γ2 = 0, sample µD and θ

from (6), (7) respectively. If the parameters do not converge, go back to step 2.

4. If (κ1(R))−1 < 10ε, use V = R + γ2I instead of R and sample µD, θ and γ2 from

(6), (7) and (8) respectively. Repeat this step until convergence.

5. Calculate the estimate of Y0 using (5) with µD, θ and γ2.

In step 1, we choose the posterior mode as the starting value. This choice is

sensible and can avoid the need of doing “burn-in” in MCMC. See its justification in

Geyer [12].
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Extension to High Dimensions

For multiple dimensions, let x ∈ Rk and assume the correlation function R(xi,xj) =∏k
t=1Rt(xi,t−xj,t) =

∏k
t=1Rt(dt), where xi and xj are in Rk, dt is the distance between

xi and xj on the tth dimension and Rt is the correlation function for the tth dimension.

The multi-dimensional spline correlation function R(d) is the product of the

one-dimension spline correlation function with individual parameter θt estimated for

each dimension (Ylvisaker [41], Chen, Gu, and Wahba [3]). The corresponding Bayesian

computation is done by doing MH sampling for each dimension until convergence. Our

criterion for convergence is when the change of ‖θ‖ between consecutive iterations of

the MCMC computation is smaller than 10−4. In our simulation studies, θ converges

within three minutes.

Simulation study and results

First, we compare the performance of the proposed Bayesian cubic spline (BCS) method

with two other methods: GC and CS (described in Section 2). The criterion for evalu-

ating the performance of the estimators is the integrated mean squared error (IMSE),

defined as:

IMSE(f̂) =

∫
Ω

(f̂(x)− f(x))2dx,

where f and f̂ are respectively the true function values and estimated values and Ω is

the region of the x values. The following mean squared error (MSE) is a finite-sample

approximation to the IMSE:

MSE(f̂) =
1

m

m∑
i=1

(f̂(xi)− f(xi))
2, (9)

where m is the number of randomly selected points {xi} from Ω. Three choices of

the true function f(x) are considered in Examples 1-3, which range from low to high

dimensions and from smooth to non-smooth functions.
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Example 1.

f1(x) = {1− exp(−.5/x2)}
2300x31 + 1900x21 + 2092x1 + 60

100x31 + 500x21 + 4x1 + 20
.

This two-dimensional function is from Currin et al. [8], where x ∈ [0, 1]2 and f1 ∈

[4.1, 13.8]. We scale f1 into [0, 1]. Currin et al. [8] studied a 16-run design in their paper.

Four designs are considered here: 42 design (16 runs) with levels (.125, .375, .628, .875)

(Joseph [21]) and (0, .3333, .6667, 1) (Currin et al. [8]), 52 design (25 runs) with levels

(0, .25, .5, .75, 1), and 62 design (36 runs) with levels (0, 0.2, 0.4, 0.6, 0.8, 1). Four types

of noise ε are added to f1(x): U(0, 0) (no noise), U(0, .2), U(0, .5) and U(0, 1). As the

range of the noise increases from 0 to 1, the function f1(x) + ε becomes more rugged.

It allows us to compare the performance of the three methods as the true function

becomes less smooth.

For noise based on U(0, 0) (and U(0, .2), U(0, .5) and U(0, 1) respectively), we

conduct the simulation as follows. First, a noise is randomly sampled from U(0, 0) (and

U(0, .2), U(0, .5) and U(0, 1)). For each simulation, the noise is fixed and denoted as

{ε1, . . . , εn}. Here n, the number of design points, is 16, 16, 25 and 36 respectively for

the four designs. Second, the values of {f1(x1), . . . , f1(xn)} are calculated. Then the

values of {f1(x1) + ε1, . . . , f1(xn) + εn} are treated as the response values by GC, BCS

and CS in parameter estimation. The purpose of this step is to facilitate the study of

the robustness of estimation against noise of various sizes. Then, the MSE (see (9)) is

calculated on m = 100 of x randomly sampled from [0, 1]2. We sample repeatedly and

independently {ε1, . . . , εn} and {x1, . . . ,xm} for each simulation and record the average

of the MSE values from 500 simulations for each noise and design setting in Table 1.

For each simulation setting, the method with the smallest average MSE is highlighted

in boldface.
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The MCMC iterations of the BCS terminate if the change of parameter estimate

is smaller than 10−4. The running time takes about 20 seconds for an Intel Xeon CPU

with 2.66 GHz and 3.00 GB of RAM to reach convergence. The power exponential

method performs best when the noise is small (U(0, 0) and U(0, .2)) or the design size

is large (36-run). This is because the example is relatively smooth when noise is small,

and the function f1 contains the exponential term exp(−.5/x2), which is best captured

by the non-zero exponential correlation function. GC also benefits from the larger

sample size of 62, which helps to stabilize the estimate. For relatively small designs

(16- and 25-run) with large noise (U(0, .5) and U(0, 1)), CS and BCS perform better

than GC. When the design is small and noise is large, the response surface tends to

be very rugged and there is not enough data for GC to estimate the surface with good

precision. A localized estimate like CS and BCS with truncated correlation function

give smaller MSE. BCS in most cases outperforms CS. The over-smoothing property of

GC can result in large estimation errors as will be shown in Example 2 and in Section

5.

Example 2.

f2(x) = 0.3 exp−1.4x|cos(10πx)|+ 3x.

This is a one-dimension function and contains a non-smooth term |cos(10πx)|. Here f2

is scaled into [0, 1]. As in Example 1, four types of random noise are added to f2 and 5,

10, 20 and 30 design points (i.e., {x1, . . . , xn} values) are uniformly sampled from [0, 1].

In each simulation, noise is sampled and fixed, denoted as {ε1, . . . , εn}, where n = 5 (and

10, 20 and 30 respectively). Then 5 (and 10, 20 and 30) design locations {x1, . . . , xn}

are uniformly sampled from [0, 1]. The values of {f2(x1)+ε1, . . . , f2(xn)+εn} are used as

the response values. The MSE for each simulation is calculated on m = 100 randomly

sampled x values in [0, 1]. For each design, we repeat this procedure 500 times by

taking random samples of {εi}ni=1 and {xi}ni=1. The average MSE based on the 500
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Table 1. Average MSE Values for GC, BCS and CS Predictors in Example 1

U(0, 0) U(0, .2) U(0, .5) U(0, 1)

GC 1.0034 1.0437 1.7192 1.8951

42(J) BCS 1.0901 1.1024 1.6722 1.8642

CS 1.1036 1.2518 1.6714 1.9854

GC 1.1223 1.3495 1.6545 2.4491

42(C) BCS 1.1651 1.4475 1.5819 2.1270

CS 1.1710 1.4322 1.6318 2.1476

GC 0.9087 1.0186 1.3516 1.4845

52 BCS 1.0112 1.0574 1.2416 1.3391

CS 1.0481 1.1204 1.2665 1.5816

GC 0.2171 0.2588 0.5604 0.6352

62 BCS 0.2716 0.3079 0.7008 0.6893

CS 0.2942 0.2769 0.7479 0.8042

simulations is given in Table 2 for each noise and design setting . Again, the method

with the smallest average MSE is highlighted in boldface.

In all cases, CS and BCS beat GC even when no noise is added to the true

function. BCS performs better than CS in most cases. CS performs better than BCS in

four cases, three of which the difference is not significant. GC gives much worse results

when the design size is small (5, 10) and the noise is large (U(0, .5) and U(0, 1)). This is

due to the global prediction property of GC. For non-smooth functions, this can bring

in unnecessarily large errors. On the other hand, the better performance of CS and

BCS benefits from their local prediction property.

Example 3.

f3(x) =
2πx1(x2 − x3)

ln(x4/x5)[1 + 2x1x6
ln(x4/x5)x25x7

+ x1
x8

]
.

This is an 8-dimensional smooth function from Morris et al. (1993), where

x1 ∈ [63070, 115600], x2 ∈ [990, 1110], x3 ∈ [700, 820], x4 ∈ [100, 5000], x5 ∈ [.05, .15],
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Table 2. Average MSE Values for GC, BCS and CS Predictors in Example 2

U(0, 0) U(0, .2) U(0, .5) U(0, 1)

GC 0.0026 0.2857 0.7214 0.8147

5 BCS 0.0018 0.0772 0.2135 0.2740

CS 0.0021 0.0518 0.2768 0.2853

GC 0.0017 0.0389 0.1626 0.3260

10 BCS 0.0013 0.0261 0.0508 0.1892

CS 0.0013 0.0259 0.0591 0.1964

GC 0.0015 0.0092 0.1443 0.1547

20 BCS 0.0004 0.0057 0.0721 0.1208

CS 0.0011 0.0063 0.1125 0.1248

GC 0.0011 0.0049 0.0754 0.1853

30 BCS 6.70E-04 0.0032 0.0341 0.1807

CS 7.20E-04 0.0028 0.0596 0.2005

x6 ∈ [1120, 1680], x7 ∈ [9855, 12046] and x8 ∈ [63.1, 116]. It is also referred to as the

“borehole” data in the literature. Here we scale x1, . . . , x8 and f3 into [0, 1]. Morris

et al. [28] proposed a 10-run design with two levels 0 and 1 based on the maximin

distance criterion (see Table 3). In the study, we consider the 10-run design together

with 10-, 20- and 50-run Latin hypercube designs (McKay et al. [9]). A n-run Latin

hypercube design in [0, 1]k is based on the Latin hypercube sampling. For each di-

mension, we independently sample n values randomly from each interval (0, 1/n), . . .,

(1 − 1/n, 1) and randomly permute the n values. Here we apply the maximin crite-

rion to choose the Latin hypercubes, i.e., maximizing the minimum distance between

points. As before, four types of noise are added to the true function. In each simu-

lation, after the noise {ε1, . . . , εn} is sampled, one Latin hypercube design is gener-

ated, denoted by {x1, . . . ,xn}, where n = 10, 20, 50. Then apply GC, CS and BCS to

{f1(x1) + ε1, . . . , f1(xn) + εn} for parameter estimation. The MSE is calculated based
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on m = 5000 random samples {xi}5000i=1 in [0, 1]8. The simulations are repeated 1000

times and the average MSE values are given in Table 4. The running time for each

simulation of BCS is less than 2 minutes on the same machine.

The results are similar to those of Example 1. This is expected as they are

both smooth functions. GC gives best results among the three methods when the

noise is small (U(0, 0) and U(0, .2)) or the sample size is large (50LH). BCS and CS

perform well when sample size is small (10 and 20) and the noise is large (U(0, 1)). BCS

generally outperforms CS. Noting that x4 and x5 appear in the f3 function through the

ln function, we have run an alternative simulation by taking the log transformation of

x4 and x5 and rescale them into [0, 1]. Since it does not change the overall picture of

comparisons, we do not report these results in the paper.

Table 3. A Maximin Distance Design in [0, 1]8 for n=10 (Morris et al. 1993)

x1 x2 x3 x4 x5 x6 x7 x8

1 1 0 0 1 0 1 1

1 1 1 1 0 0 1 0

1 0 0 1 1 0 0 0

0 1 0 0 1 1 0 0

1 1 0 1 0 1 0 1

0 1 1 0 0 0 0 1

0 0 1 1 1 0 1 1

0 0 0 0 0 1 1 1

0 0 1 1 0 1 0 0

1 0 1 0 1 1 1 0
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Table 4. MSE Values for GC, BCS and CS Predictors in Example 3

U(0, 0) U(0, .2) U(0, .5) U(0, 1

GC 0.0386 0.0457 0.0695 0.1850

10 BCS 0.0490 0.0516 0.0855 0.1608

CS 0.0501 0.0672 0.0884 0.1691

GC 0.0277 0.0473 0.0721 0.1821

10LH BCS 0.0473 0.0655 0.0890 0.1542

CS 0.0458 0.0632 0.0876 0.1409

GC 0.0013 0.0125 0.0405 0.1714

20LH BCS 0.0067 0.0366 0.0784 0.1509

CS 0.0077 0.0298 0.0868 0.1621

GC 5.10E-04 0.0096 0.0311 0.1355

50LH BCS 0.0039 0.0117 0.0520 0.1428

CS 0.0043 0.0159 0.0581 0.1523

Application

Instead of simulating from known functions, we perform another comparison study by

using the methane combustion data from Mitchell and Morris [28]. Table 5 shows its

50-run design. In addition, Mitchell and Morris gave 20-, 30-, 40- and 50-run, 7-variable

maximin designs in their paper. The first 20, 30, 40 and 50 runs in Table 5 consist of

these designs, which we denote as D20, D30, D40 and D50. The response y is the

logarithm of the ignition delay time.

Before conducting the comparison, a careful data analysis is performed to show

some feature of the data. For D20, D30 and D50, we randomly take 90%, 80% and

50% of the original data as the response values for GC and BCS to estimate θ. The

average values of θ̂j, j = 1, . . . , 7, based on 100 simulations, are calculated and given

in Table 6 for each setting. For each design, the value of θ̂ from GC increases as the

number of input data decreases, while the θ̂ values for BCS are more stable. The
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divergent behaviour between GC and BCS for this data can be partially explained by

their respective global and local prediction properties. First, note that a larger θ value

indicates a smoother surface. As the size of input data gets smaller, the data points are

spread more thinly in the design region [0, 1]7. The fitted response surface by GC will

become more smooth due to its global prediction property. The change will not be as

dramatic for BCS thanks to its local prediction property. Even though we do not know

what the true response surface is or how rugged it is, this divergent behavior seems to

suggest that BCS is a better method for the data. This is confirmed in the next study

based on cross validation.

Table 5: Methane Combustion Data

Run x1 x2 x3 x4 x5 x6 x7 y

1 0 0 0 0.5 1 1 0.25 7.9315

2 0.25 0.5 0.5 0.75 0 1 0 6.2171

3 0 1 0 0.25 0 0 1 7.8535

4 0.5 0.5 0.75 0 1 0.25 0 7.5708

5 0 0.75 0.75 1 1 1 0.5 6.3491

6 1 0 1 0.25 0 1 0 5.3045

7 0 1 0 0.75 1 0.5 1 8.5372

8 0.75 0.25 0 1 1 0 1 7.871

9 0.5 0.75 0.25 0 0.25 0.5 0.5 7.8725

10 0.25 1 0.75 0.75 0.5 0 0.25 6.593

11 0.5 0 1 0.25 1 0.75 1 6.2131

12 1 0 0 0.5 0.5 0.5 1 7.6311

13 1 0.5 1 0.75 0 0.25 0.5 5.109

14 0 1 0.25 0.25 0.75 1 0 8.4206
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Table 5 – Continued from previous page

Run x1 x2 x3 x4 x5 x6 x7 y

15 1 1 0 1 0.25 0 0.5 7.2242

16 0.5 0 0.25 1 0 0.25 0.75 6.0216

17 1 1 1 1 0.5 1 0 5.3495

18 1 1 0.5 0.25 0 1 1 6.0325

19 1 0 1 0 0.75 0 0.25 6.4065

20 0.5 1 0.75 1 0.25 0.75 1 5.5674

21 0.25 0 0.5 0.25 0.25 0 1 6.5214

22 0 0.5 0.5 0 0.75 0.5 0.75 7.7907

23 0.25 0 0 0.25 0 0.75 0.5 7.3542

24 0.75 0.75 1 0 0 0 0 5.8651

25 0.25 0 1 0.5 0.75 0.5 0 6.4489

26 0.75 1 0.25 0.75 1 0.75 0.25 7.6225

27 0 1 1 0.5 0.25 1 0.5 5.8572

28 1 0.5 1 0 1 1 0.5 6.5656

29 1 0.25 1 1 1 0.25 0 5.7137

30 0 0 0 1 0.25 1 1 6.5603

31 0.5 0 0.5 0 0.75 1 0.25 7.5044

32 1 0 0.75 0.75 0.5 0.75 0.25 5.8721

33 1 0 0 0 1 0.25 0 8.206

34 1 0.5 0 1 0 0.75 1 6.3746

35 0.25 0.5 1 0.75 0.5 1 1 5.4478

36 1 0.75 0 0 0.5 1 0.75 7.6953

37 0.5 0 1 0 0 0.5 0.75 5.3423
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Table 5 – Continued from previous page

Run x1 x2 x3 x4 x5 x6 x7 y

38 0.5 1 0 1 0 1 0.25 6.4493

39 1 0.25 0 0.5 0 0.5 0 6.8957

40 0.75 0.5 0.25 0.5 1 1 1 7.5563

41 0.75 0.75 0.25 0.5 0 0.25 1 6.7549

42 0.75 0 0.75 0.75 0 1 1 5.0056

43 0 0.25 0.25 1 0.75 0.25 0.75 7.4006

44 1 0.25 0.75 0 0.25 0 1 5.6656

45 0.5 0.5 0.5 0.5 0.5 0 0 7.4111

46 0.75 1 0.75 0.25 0.25 0.75 0.25 6.7111

47 1 0.5 0.25 0.25 0.75 0.75 0 7.9182

48 1 0.25 0.5 1 1 1 0.5 6.2543

49 0 0.75 0.5 0.75 0.25 0.25 0.5 6.7319

50 0.25 1 0.25 1 0.75 1 0.75 6.9749

We now use the same data and design settings to run cross validations on D50,

D40 and D30 for each of the three methods. One round of cross-validation involves

partitioning the data into complementary subsets, performing the analysis on one sub-

set (called the training set), and validating the analysis on the other subset (called

the validation set). To reduce variability, multiple rounds of cross-validation are per-

formed using different partitions, and the validation results are averaged over the rounds

(Geisser [15] and Kohavi [22]). Each time we take a fixed number of data out of D50

(and D40, D30 respectively) and use them for model fitting. The remaining data are

used to calculate the MSE in (9). Because CS gives much larger MSE in each case, we
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Table 6. Average θ̂ values using GC and BCS

Method % of input θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 θ̂6 θ̂7

D20 GC 90 0.1137 0.0368 0.2697 0.0606 0.0712 0.0101 0.0137

D20 GC 80 0.1892 0.0878 0.4891 0.0928 0.1082 0.0348 0.0647

D20 GC 50 0.4092 0.2977 0.7952 0.3177 0.3580 0.2476 0.2681

D20 BCS 90 4.1345 4.0635 3.6870 3.8788 3.8440 4.2943 3.3749

D20 BCS 80 4.5264 4.5190 3.6424 3.8407 4.5733 4.6059 4.0459

D20 BCS 50 4.1244 4.8617 3.8581 3.4646 4.2030 5.5327 3.1355

D30 GC 90 0.0958 0.0318 0.1582 0.0335 0.0700 0.0079 0.0144

D30 GC 80 0.1216 0.0647 0.3231 0.0667 0.1017 0.0292 0.0256

D30 GC 50 0.2293 0.1874 0.5877 0.1790 0.2252 0.1315 0.1348

D30 BCS 90 3.7533 4.9328 4.6481 3.6454 5.2628 4.6647 2.0442

D30 BCS 80 3.4020 5.2822 5.4022 3.4501 5.8690 4.6797 2.5237

D30 BCS 50 4.5891 4.9748 5.8604 3.4380 5.5703 4.9078 2.4123

D50 GC 90 0.1297 0.0441 0.1057 0.0394 0.0529 0.0112 0.0129

D50 GC 80 0.1189 0.0404 0.1676 0.0506 0.0741 0.0093 0.0124

D50 GC 50 0.1200 0.0449 0.2086 0.0641 0.0956 0.0123 0.0155

D50 BCS 90 3.3356 4.9131 4.9231 3.2469 3.8125 3.5908 5.0959

D50 BCS 80 3.3427 5.4804 4.3651 3.4601 3.6676 3.3073 4.9948

D50 BCS 50 3.8516 4.7773 4.5888 3.6960 3.8341 3.3936 5.3051

only report the MSE results for GC and BCS. For D50, the results of training data

size of 40 and 30 are plotted in Figures 1 and 2. In each figure, one dot indicates the

MSE from GC versus the MSE from BCS for a given design. The reference line of

45◦ indicates that the two designs are equally good since they render the same MSE.

When the majority of the dots is below the line, it means BCS has smaller MSE. This

is evident in Figure 2. GC gives some very bad predictions with MSE as high as 5.5

(dots in right bottom of Figure 2), while the majority of MSE of BCS center around

1.5. The average of MSE from 100 simulations for each cross validation setting for BCS
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and GC and the percentage of BCS outperforming GC are given in Table 7. There is a

much larger difference between GC and BCS when the training data size is relatively

small (20 for D30, 25 for D40 and 30 for D50). This is probably caused by the global

prediction and over-smoothing properties of GC.

Table 7. Comparison of GC and BCS

Design Training Data Size MSE(GC) MSE(BCS) % Improvement

D50 40 0.6237 0.6524 58

D50 30 2.4980 1.3908 92

D40 30 0.8812 0.7132 61

D40 25 2.8516 1.5590 89

D30 25 1.6108 0.7888 69

D30 20 1.9498 1.2729 86

Conclusions

The cubic spline is widely used in numerical approximation. In GP modeling, use of

the cubic spline correlation function in (3) can lead to a sparse correlation matrix with

many zero off-diagonal elements. By comparison, the two commonly used correlation

functions, the Matérn family and the power exponential correlation, do not enjoy this

property. A sparse correlation matrix can reduce the cost of computation and enhance

its stability. The viability of cubic spline for computer experiment applications received

a further boost when JMP 8.0.2 2010 (and its update 11.1.1 2014) provided the power

exponential correlation and the cubic spline correlation as its only two choices in GP

modeling. The prominence that JMP gives to the cubic spline was one motivation for

us to develop a Bayesian version of the cubic spline method. By putting a prior on

the parameters in the cubic spline correlation function in (3), Bayesian computation
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can be performed by using MCMC. The Bayesian cubic spline should outperform its

frequentist counterpart because of its smoothness and shrinkage properties. It also

provides posterior estimates, which enable statistical inference on the parameters of

interest.

In this paper we compare BCS with CS and GC in three simulation examples

and application to real data. We have also considered other correlation functions with

compact support such as the spherical family:

R(d) =


1− 3|d|

2θ
+ 1

2
( |d|
θ

)3, if |d| ≤ θ,

0, if |d| > θ.
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Because the performance of the frequentist version of the spherical family is similar to

that of the cubic spline, these results are omitted in the paper. In the three simulation

examples, BCS outperforms CS in most cases. GC performs the best when the true

function is smooth or the data size is large. BCS and CS perform better than GC

when the true function is rugged and the data size is relatively small. This difference

in performance can be explained by the local prediction property of BCS and CS and

the global prediction property of GC. Recall that, in global prediction, the prediction

at any location is influenced by far-away locations (though with less weights). This

leads to over-smoothing, which is not good for a rugged surface. Local prediction does

not suffer from this as the prediction depends only on nearby locations. In the real
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data application, BCS outperforms GC in all choices of design. In summary, when the

response surface is non-smooth and/or the input dimension is high, the BCS method

can have potential advantages and should be considered for adoption in data analysis.

There are other methods that also attempt to balance between local and global

prediction. See, for examples, Kaufman et al. [7] and Gramacy and Apley [6], although

the main purpose of these two papers was to leverage sparsity to build emulators for

large computer experiments. Comparisons of our proposed method with these and other

methods in the literature will require a separate study and it lies outside our original

scope of comparing the Bayesian and the frequentist methods for cubic spline.

Some issues need to be considered in future work. When the dimension is high,

the parameter estimation is based on the MH sampling which can be costly. Grouping

parameters to reduce computation is an alternative. Also, we have considered mostly

non-informative priors. If more information is available, informative prior assignments

should be considered.
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