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1. Introduction 

1.1 General Problem 

The network simulation engine, ns-3, is a discrete-event network simulator. 
Simulations are composed of models that are coded using the C++ programming 
language. While some graphical tools exist for creating network topologies (e.g., 
Boston University Representative Internet Topology Generator [BRITE])1 writing 
models and scenarios remains a manual, complex, and time-consuming task. 
Models are used to represent nodes, computers, and other networking components 
such as physical network interface cards (NICs), network addresses, protocols, 
etcetera. When put together, these models compose a scenario. Many of the 
protocol models that are provided by ns-3 are generic and when analyzed with 
Wireshark,2 produce network traffic that differs greatly from real protocol traffic. 
The accuracy of simulation results relies on these models, yet there is a lack of 
model validation. To address these issues, we introduce a tool that can take a traffic 
capture of a network and extract the necessary protocol fields, their vocabulary and 
its state machine, automating the generation of a precise protocol model based on 
the behavior of real execution. 

1.2 Summary of Methodology 

Our steps in developing the model generator included researching existing 
technologies that could extract fields from binaries or protocols. We identified 
limitations and implemented a system that could utilize some of these tools to 
extract the vocabulary and grammar. We collected 3 network traffic captures. The 
first was a capture from a real network Internet Control Message Protocol (ICMP) 
Ping. For the second, we created an ns-3 scenario with 2 nodes; 1 node sent ICMP 
Ping packets to the other using the icmpv4 model (i.e., the Ping simulator that 
comes with ns-3). Third, we used our model generator to create a Ping model and 
a scenario automatically (using the live capture as input). In many aspects, the 
capture from our model generator was the most similar to the live capture. 

2. Methods and Procedures 

We started by investigating the current state of the art in reverse engineering and 
binary analysis of network protocols. We identified tools, algorithms, and 
approaches that we could leverage for our work. Afterward, we designed our 
system with a modular architecture to facilitate debugging and to support future 
component integration. Lastly, we built our system and tested its effectiveness by 
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comparing its outputs against 2 controls. We describe this in the following 
subsections.    

2.1 Gap Analysis 

The actual behavior of protocols can vary depending on their implementation. 
These variances within the same type of protocols can yield unexpected results 
when performing field tests. The success of these tests depends greatly on the 
accuracy of the protocol models that make up the scenario. The data that results 
from nodes communicating a protocol, including the field vocabulary (i.e., the 
possible values that packet fields can hold), can affect the outcome of these tests. 
Determining the information required for extraction from the network packets was 
crucial for the generation of precise models.  

2.1.1 A Survey of Commonly Used Protocol Reverse Engineering Tools 

Security analysts are often presented with network traffic captures that contain 
undocumented protocols or binary files. The content and purpose of these protocols 
is usually a manual process that consists of an analyst conducting reverse 
engineering. This is the process of extracting the structure, attributes, and data from 
a network protocol implementation without access to its specification.3 Several 
tools have been implemented in attempts to provide a solution to this problem. 
Some of these tools are described in the following subsections. 

2.1.1.1 Automatic Semantics-Aware Analysis of Network Payloads (ASAP) and 
Protocol Inspection and State Machine Analysis (PRISMA) 

The ASAP4 is an open-source tool, written for the “R”5 statistical computing 
language that is designed to automatically extract semantics-aware components 
from recorded traffic. The author, Tammo Krueger, utilized this tool to characterize 
normal network protocol behavior by analyzing information in specified fields, and 
then subsequently to identify and sanitize anomalous, malicious hypertext transfer 
protocol (HTTP) requests. The ASAP leverages 2 other tools as part of its analysis 
process. The PRISMA4 contributes to ASAP by learning the stateful models from 
the network traffic of a service that can be used for simulating valid 
communication. Sally6 is a small tool for mapping a set of strings to a set of vectors. 
Together these tools contribute to ASAP’s functionality: 

1) An alphabet of relevant strings is extracted from raw data and used to map 
payloads into a vector space for analysis.  

2) Matrix factorization is applied to identify base directions in the vector 
space, characterizing usage patterns of mapped payloads. 
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3) Base directions are traced back to a conjunction of strings from the alphabet 
resulting in a template of typical communication content. 

ASAP initially uses Sally to read a raw file, “asap.raw”, which contains raw 
network packet payloads. When Sally maps out the strings to a vector space, they 
are characterized by specific features that include bytes, tokens, n-grams of bytes, 
or n-grams of tokens. It also generates a sparse vector of count values. ASAP then 
takes in this output and extracts an alphabet constructed from a set of basic strings 
and relevant strings. This alphabet is then refined using filtering and correlation 
techniques.   

Alphabet Extraction 

Part of the alphabet extraction process involves applying correlation techniques in 
order to identify nonconstant and nonvolatile strings. Strings within network 
payloads naturally appear with different frequency, ranging from volatile to 
constant occurrences. For instance, HTTP requests contain the string “HTTP” in 
the header, whereas other parts—such as timestamps or session numbers—are 
highly variable. Statistical t-tests are applied to determine a p-value, which 
indicates the likelihood of encountering certain values. A tutorial for using this 
application, provided by Tammo Krueger, included an example of GET requests, 
HTTP, Simple Mail Transfer Protocol (SMTP), and File Transfer Protocol (FTP), 
where the alphabet is based on tokens. For binary network protocols such as 
Domain Name System (DNS), Server Message Block (SMB), and Network File 
System (NFS), the tool utilizes n-grams for the alphabet. Additional correlation 
techniques are applied to combine co-occurring strings.  

Matrix Factorization 

Mapping the network payloads to a vector space reflects characteristics captured 
by the alphabet. Payloads that share several substrings will appear closer to each 
other, while those with different content are farther apart. This process allows the 
discovery of semantics-aware components and base directions in the vector space. 

Generating Communication Templates 

Strings of the alphabet that exceed a specific threshold are then selected inside the 
base directions to construct a template. Alphabets of n-grams are concatenated to 
regain parts of the original ordering. For example, if we have a basis containing the 
3-grams “Hos”^”ost”^”st”, then it can be inferred that these tokens overlap and can 
be concatenated to make up the string “Host”. The procedure is then repeated until 
no more overlaps exist. This token is then added to the representation list and the 
procedure is repeated for the next token with the highest value left. 
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2.1.1.2 Prospex 

Prospex7 is a system that can automatically infer specifications for stateful network 
protocols, including state machine information. This tool can extract the format 
specifications from a message by monitoring the application as it processes its 
inputs. The Prospex system’s main contributions follow: 

1) The system can determine when 2 messages in the session are similarly 
based, not only on their formats, but on the effects that they have on the 
receiving server’s execution.  

2) A state machine can be inferred, which specifies the order in which 
messages can be exchanged—given no prior knowledge of the protocol 
under analysis. 

This system consists of several modules. The state machine inference module, 
which is available as open source, is used for our model generator. This module 
accepts a text file, “sessions.txt”, which is composed of the sequences of messages 
that are observed within a PCAP file. A state machine is then produced from these 
sequences representing the behavior of the network protocol. Another algorithm, 
Exbar8 is then applied to reduce (compress) the state machine by merging similar 
states. This minimal state machine represents the behavior of the network protocol.   

2.1.1.3 Netzob 

Netzob9 is an open-source reverse engineering toolset sponsored by IMOSSYS and 
Supe`lec. Netzob has a rich feature set that includes inter- and intrapacket-
dependency inference, packet simulation, and exports for Wireshark and Peach10 
pit files. It enables protocol message format and state machine inference through 
passive (i.e., no human intervention) and active processes. Afterward, the model 
can be used to simulate realistic and controllable traffic. This toolset has been 
successful at reversing unknown protocols, such as the Zeroaccess botnet command 
and control (C2) communication.11 Figure 1 shows the main modules of Netzob. 
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Fig. 1 Netzob main modules 

• Import module: Data can be imported utilizing the built in packet sniffer 
or by specifying an existing capture, network flow, or other accepted 
formats. 

• Protocol inference modules: The vocabulary and grammar inference 
methods constitute the core of Netzob. This tool has automated and manual 
mechanisms built in, which allows the reverse engineering of 
communication flows.  

• Simulation module: Netzob utilizes the vocabulary and grammar models 
previously inferred to understand and generate communication traffic 
between multiple actors.  

• Export module: Netzob can export an inferred model of a protocol in 
multiple formats making it extendable to third-party software. 

2.1.2 Applicability and Limitations of Existing Tools for the Model 
Generator 

We wanted to leverage existing tools, but we had to determine their suitability for 
our problem. Most tools were either closed source, unavailable, or were not mature 
enough for our needs. However, we were able to reuse some capabilities of 
available tools (e.g., Exbar) and develop our software in a way that supports parallel 
development (i.e., our tool will plug-and-play with other tools: Prospex, Netzob, 
and ASAP). In the following subsections, we describe our analysis of these tools 
and some limitations we encountered when considering them for our work. 
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2.1.2.1 ASAP 

The author of ASAP, Tammo Krueger, utilized ASAP/PRISMA to extract network 
protocols by analyzing information in specified fields and then identified malicious 
HTTP requests and sanitized them. He provides a step-by-step tutorial that shows 
the process of passing a raw data file into ASAP and then viewing the results. This 
tutorial includes the sample input files containing raw network payloads with HTTP 
GET requests (see Fig. 2). 

 

Fig. 2 Raw network packet 

For the purposes of the model generator, we attempted to run this tool on payloads 
containing non-HTTP data. We did this by executing every step in the tutorial, with 
the exception of using a different file as input. When read into Sally, a new file 
named, “asap2.sally”, was generated and then used as input for ASAP (which used 
R). “R” successfully read the new file using the “loadPrismaData(asap2)” 
command, but failed when attempting to create the dataset using “data(asap2)”. 
This is the function that allows one to see the matrix and other pertinent data. After 
further analysis and testing, we determined that the reason the “data(asap)” 
instruction works on the original file is because the generated dataset is already 
prepackaged inside of PRISMA. To arrive at this conclusion, we removed all of the 
asap files from the folder that the “R” program accesses when testing the 
“data(asap)” command. This command still succeeds, meaning that the file is not 
being read from the local file system, but instead, is being accessed from the 
installed packages.  

Another limitation with ASAP is that it utilizes a delimiter that needs to be 
manually specified for parsing of the raw data file. This means that prior knowledge 
of the protocol is required for this program to succeed—rendering the process only 
semiautomatic.  
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2.1.2.2 Netzob 

Netzob has been used to successfully reverse engineer unknown protocols, such as 
the Zeroaccess botnet C2 malware communication.11 Being open source, we were 
hoping to take advantage of this tool’s vocabulary and grammar inference modules. 
However, it is currently not well suited for documented protocols; there is no way 
to import structures, field sizes, or dependencies from specifications including 
requests for comment documents or network sniffer data, such as Wireshark pdml 
data. Grammar inference is not supported for Open Standards Interconnect (OSI) 
Layer 3 and below protocols such as Optimized Link State Routing (OLSR), Open 
Shortest Path First (OSPF), Ping, and etcetera. Lastly, there has been little 
maintenance since 2013. The detailed evaluation steps of Netzob are in the 
Appendix. 

2.1.2.3 Prospex 

Prospex7 was very promising due to its success at generating protocol state 
machines. After researching several tools, one common property found in many 
systems is that they focus only on extracting the format of individual protocol 
messages. This makes generating the protocol state machine and producing the 
specifications for stateful network protocols much more difficult. The initial 
limitation found with the Prospex tool is that only the state machine inferencing 
tool was available for download, along with the Exbar algorithm needed to 
minimize the state machine. The last phase of Prospex is shown in Fig. 3.  

 

Fig. 3 Prospex system overview7 

The state machine inferencing tool reads a text file composed of sequences of 
message types observed from a PCAP file. Figure 4 shows a sample input file.  
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Fig. 4 Prospex state machine inferencing tool input file 

Figure 4 shows one sequence of ICMP message type. Type 8 is a request, and type 
0 is a reply. The input file describes the order in which the different message types 
are found in the PCAP file. Utilizing this input, this tool generates a state tree dot 
file. The dot utility is part of the Graphviz12 drawing package. This is used to 
generate a visualization of the state tree as shown in Fig. 5a. Exbar compresses this 
tree and generates the final state machine file. Figure 5b shows the final state 
machine for the Ping protocol.  

 

Fig. 5 State tree file output (left); final Ping protocol state machine (right) 
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Based on our analysis, we determined that the State Machine Inferencing feature of 
the Prospex tool would be beneficial to our work. In order to incorporate Exbar, we 
had to generate compatible data (i.e., the input file, “sessions.txt”) that must only 
contain integer values. This process is described in Section 2.2.3. 

2.1.3 Model Generation 

To generate an accurate protocol model, there is specific information needed from 
the packet captures (i.e., PCAP files). This data includes: 

• Protocol fields 
o Size 
o Position 
o Value (hex) 

• Field vocabulary 
o Entropy 

• Grammar (state machine) 

2.1.3.1 Protocol Fields 

Figure 6, which appears in Data Communications and Networking,13 shows the 
fields that exist in the ICMP Ping protocol. Protocols are described by their fields, 
including sizes, possible values, and states. 

 

Fig. 6 ICMP header format 

After analyzing different tools, we found that Tshark14 was the best choice for 
extracting the fields required for our model generation. This tool is a command line 
version of Wireshark. It has a vast amount of existing protocol dissectors, which 
allows it to parse the structure of protocols including field names, data types, sizes, 
etcetera.  

2.1.3.2 Field Vocabulary 

Figure 6 shows that the ICMP header is composed of 4 fields. Type, for instance, 
will contain the type of message that is being sent. In this case, this message would 
be a Type 8, “request”, or Type 0, “response”. Extracting this information is crucial 
for generating automated model generation. The vocabularies for protocol fields 
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(i.e., the values that can exist in each field) can be identified from a PCAP file. To 
measure the amount of variance in a field’s vocabulary, we calculate its entropy. If 
the entropy is closer to “1”, then there is more randomness to this particular field. 
If it is closer to “0”, then there is a smaller range of possible values that exist for 
that field within the PCAP. Entropy of “0” indicates that the vocabulary is static, 
which means that the vocabulary consists of a single, unchanging value.   

To facilitate the process of extracting the vocabulary, we used Tshark to convert 
the PCAP files (which are in binary format) to a Packet Details Markup Language 
(PDML15—a markup language that is very similar to HTML or XML). 

2.1.3.3 Grammar (State Machine) 

Once the fields and vocabulary are extracted from the PCAP files, knowing how 
the protocols need to behave is the next step. To closely mimic protocol behavior, 
we needed to infer the state machine specification. We leveraged the State Machine 
Inferencing tool from Prospex. To do this, we filtered out the protocol of interest 
from the PCAP file and then extracted the message types from the fields to produce 
an input file for Prospex to generate the state machine. This state machine is then 
used to produce the ns-3 protocol models.  

2.2 Path Forward  

The ns-3 model generator reads a PCAP file and—by leveraging Tshark and 
Prospex—generates the protocol model C++ files needed to run the simulation in 
ns-3. Figure 7 shows the system overview. 

 

Fig. 7 ns-3 automated model generator system overview 



 

Approved for public release; distribution is unlimited. 

11 

This tool is composed of 7 different modules. It takes a PCAP file as input and 
produces 3 C++ files that are the ns-3 scenario and protocol model. The modules 
that make up this tool are listed below. 

• pdmlExtractor.py 

• xmlToNs-3Scenario.py 

• packetTypeExtractor.py 

• fieldVocab.py 

• fieldVocabToNs-3Model.py 

• Prospex (third party) 

• dotToCppGrammer.py 

The “pdmlExtractor.py” program generates 2 files: “fields.txt” and “flows.xml”. 
The “flows.xml” file is used to generate the scenario standardized XML file that is 
eventually passed to the “xmlToNs-3Scenario.py” program. This will produce the 
“summerPing.cc” ns-3 simulation file. The “fields.txt” file is fed into the 
“packetTypeExtractor.py” program to produce the “packetTypeSequence.txt” file 
that Prospex will eventually use to produce the state machine. Both the “fields.txt” 
file and “packetTypeSequences.txt” files are needed by the “fieldVocab.py” 
program to produce the model standardized XML file that is input into the 
“fieldVocabToNs-3Model.py” for the model generation. Prospex will then read in 
the “packetTypeSequences.txt” file and produce the state machine in dot format. 
The “dotToCppGrammer.py” then uses this file to generate a C++ class 
interpretation of the state machine. All of the C++ files generated are used by ns-3 
to generate the protocol simulation.  

2.2.1 “pdmlExtractor.py” 

The “pdmlExtractor.py” Python script reads a PCAP file as input. The first thing 
this program does is filter all of the protocols in the PCAP and keep only the 
protocol specified when the program is run. The program then converts the PCAP 
file from binary to PDML using Tshark. Figure 8 shows how the PDML file is 
formatted. 
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Fig. 8 PCAP to PDML sample 

Once the file is converted, the program will traverse each packet within the PCAP 
file and find the protocol that is specified when the program is called. Once it finds 
the position in the packet, it remembers that position for each packet. Figure 9 
shows an example of the line in the PDML file that shows the name of the protocol. 
In this example we use the ICMP protocol.   

 

Fig. 9 ICMP protocol found example 

Most of the lines contain the “name”, “showname”, “show”, “size”, “pos”, and 
“value” attributes. The “pdmlExtractor.py” will extract all of these attributes and 
write them out to a file, “fields.txt” with “#” as the delimiter. These will be part of 
the vocabulary and will be used to calculate the entropy for each field of the 
protocol. The program then continues the same process for each packet within the 
PCAP file. Figure 10 shows an example “fields.txt” file.  

 

python pdmlExtractor.py <name of PCAP> <Protocol Name> 
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Fig. 10 “fields.txt” file example 

The “pdmlExtractor.py” program also generates a “flows.xml” file. This file will 
utilize other fields within each packet to extract the following information: 

1) Source Internet Protocol (IP) address 

2) Destination IP address 

3) Source Mac address 

4) Destination Mac address 

5) Epoch time 

This information is extracted from each packet within the capture and is also written 
to the flows file. Figure 11 shows an example of the “flows.xml” file for a Ping 
protocol.  

 

Fig. 11 “flows.txt” file example 
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This “flows.xml” file is also used to generate a scenario standardized XML file. 
After researching other network simulation programs, we found a structure that 
would be easy to integrate with other simulation engines. This structure describes 
all of the protocols that come out of each node or computer—assuming that the 
node can be distinguished based on a single-source Mac address. This part of the 
program will tie each protocol with a specific node and will list the source addresses 
and time, etcetera. Figure 12 shows a “scenarioStdConfigurationFile.xml” file for 
a Ping protocol that was captured with Wireshark.  

 

Fig. 12 ICMP “flows.xml” file 

This example describes 2 nodes that were communicating with each other using the 
Ping protocol. Each node is numbered and is distinguished with a unique Mac 
source address. It also includes the protocol that is generated by the node, 
encapsulated within the flow tag,“<flow>”. This flow includes the protocol name, 
the Mac destination address, and IP addresses. The epoch time and the number of 
times this flow was seen in the PCAP file are also described.  

 

 

2.2.2 “xmlToNs-3Scenario.py” 
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The “xmlToNs-3Scenario.py” Python script generates the actual scenario C++ file 
that is used by ns-3 to run the simulation. This program takes the 
“scenarioXMLConfigurationFile.xml” as input.  

2.2.3 “packetTypeExtractor.py” 

One common feature utilized in other protocol extraction tools is the use of a 
vocabulary dictionary. This feature was useful when trying to extract the message 
type for each protocol. Each protocol has a message type that is described by one 
of its fields within the protocol. The challenge is that every protocol uses a different 
naming convention to describe their type. For example, the ICMP message type can 
be found in a field named “Type”, but other protocols might use the string, 
“Command” as the field name. For this reason, each protocol would need to be 
treated differently when extracting its type. The “packetTypeExtration.py” tool 
takes in the “fields.txt” file produced by the “pdmlExtractor.py” program and reads 
line by line, comparing every string against a dictionary of common words. This 
dictionary is specified inside this method and is easily expandable. If a type is found 
within the packet, the contents of that field will be stored in an array data structure 
in Python named, “allTypes”. If this is the first occurrence of the type it will also 
be stored in a separate array of unique message types called “uniqueTypes”. Once 
all of the types are found, the array containing the unique message types found in 
the PCAP file is used to generate the “packetTypeSequences.txt” file. This text file 
is used to generate the state machine using Prospex. Because Prospex can only 
accept integer data types in the sequences file, we use the index of their position in 
the unique array as the message type in the order that they are found in the 
“alltypes” array. Figure 13 illustrates this process.  

 

Fig. 13 “packetTypeSequence.txt” generation 

 

2.2.4 “fieldVocab.py” 

  

  

 
 

allTypes: 

uniqueTypes: 



 

Approved for public release; distribution is unlimited. 

16 

The “fieldVocab.py” program will utilize the “fields.txt” output file from the 
“pdmlExtractor.py” tool to generate the vocabulary for the protocol. This tool will 
look at every field for each packet and will store the values that are different. Some 
of the field values never change and therefore will only have one vocabulary stored, 
while other fields may have a different value for every packet. This process is done 
by creating a field class for every field in the packet. Figure 14 illustrates this 
process.  

 

Fig. 14 Vocabulary generation 

As shown in Fig. 14, the initial step is to create an array of field objects. Each field 
object contains a list that will hold the vocabulary for that field. The vocabulary in 
every field of each packet in the “fields.txt” file will be compared to the values that 
are already stored in the vocabulary list for that object. If that value does not exist 
in the list, it will be added. If it exists, then the value will be ignored. This process 
will occur for the entire “fields.txt” file. Once this process is complete, each list 
that is generated for the fields will have their entropy calculated. The calculated 
entropy describes the randomness of the vocabulary within a list. This entropy is 
calculated using the number of values that are stored in the vocabulary list; the 
length of the list. For example, Fig. 14 shows that the “Type” object contains a list 
of 2 values: 0 and 8. This means that there are only 2 possible values for the “Type” 
field in the entire PCAP file. The entropy for this vocabulary is 0.5. The algorithm 
used to calculate entropy is: 

                   Entropy = (x-1)/x, where x is the size of the vocabulary (1) 

This algorithm ensures that entropy is never >1. The larger the vocabulary, the 
closer the entropy is to 1. If there is only one item in the vocabulary, the entropy is 
0. This means that the value is the same in every packet in the PCAP file. Once the 
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entropy is calculated, the values are used to generate the standardized XML file for 
the model generation. Figure 15 shows an example of this file for the Ping protocol.  

 

Fig. 15 Model standardized XML file 

The standardized file is structured based on the message types. In this Ping 
example, there are only 2 types of messages: 0 and 8. These are separated and 
encapsulate all of the fields that pertain to that type. Each field also contains the 
name of the field along with their size, position, vocabulary, and entropy. This is 
used later to generate the protocol model.  

2.2.5 “fieldVocabToNs-3Model.py” 

This Python script takes in the model standardized XML file and will generate the 
C++ model files needed by ns-3. The script executes 4 tasks to create the ns-3 
model: 

1) Extract all field attributes (i.e., names, sizes, vocabulary). 

2) Using the data from 1, C++ variables are generated (using names) along 
with data types (using sizes). 

3) Append initialization values for variables (the first value in the vocabulary 
is used). 
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4) Append comments in the C++ code that indicate the entropy associated with 
a variable (i.e., based on vocabulary).  

2.2.6 Prospex 

Prospex was used due to its State Machine Inferencing tool. This tool takes in the 
“packetTypeSequences.txt” file, which is described in Fig. 3. Refer to the Prospex 
Section 2.1.2.3 for further details. There are several files that are produced by the 
program. The DOT file named, “labeledStateMachine.dot” is the one that we are 
interested in. This file will be used to create the grammar and state machine, for the 
protocol.  

2.2.7 “dotToCppGrammar.py” 

This module will read in the “labeledStateMachine.dot” file that is generated by the 
State Machine Inferencing tool provided by Prospex. The format in which this file 
is generated makes it easy to translate into a C++ file that is needed for the model 
generation. Figure 16 shows an example DOT file for the Ping protocol.  

 

Fig. 16 Ping “labeledStateMachine.dot” file 

The Fig. 16 example shows how we distinguished states and transitions. The 
“dotToCppGrammar.py” program takes advantage of this by creating State objects 
in Python that will each contain their own transitions. This process is illustrated in 
Fig. 17, which shows each state and the list of transitions stored inside the state 
object. The outer arrows describe the transitions that are included in the objects.  

 



 

Approved for public release; distribution is unlimited. 

19 

 

Fig. 17 State objects with stored transitions 

The characteristics of this state machine are all incorporated into the C++ code that 
is generated by this script. Included in this code is a function called ' 
“getNextState()”, which is used to know the message type that needs to be 
described in the model at a specific point during the simulation. The state object is 
responsible for keeping track of the protocol current state and, when requested, will 
return the next possible states. The “getNextState()” method will accept an integer 
value that represents the message type the model is changing to, or receiving, and 
the method will return the possible types that the model can then change to, or reply 
as. This is all written in one C++ file generated by the “dotToCppGrammar.py” 
program (i.e., <protocolName>.cc.)  

2.3 Accuracy Analysis 

For testing purposes, as part of ns-3, a PCAP file is generated when the simulation 
of the Ping protocol is run. This capture file is used to compare the packets that are 
produced by the simulation with the actual packets in the original PCAP. In 
addition, the packets are also compared with those from existing ns-3 models 
available through ns-3 and other resources. This process shows firsthand, the 
accuracy of the ns-3 models being produced by the model generator.  

The experiments that we ran used a 10-second (s) PCAP capture using the 
Wireshark network protocol analyzer. This program takes in the PCAP file, the 
name of the protocol that we want to simulate with ns-3, and the naming convention 
we want to use for the model (see Fig. 18).  
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Fig. 18 ns-3 Model Generator script execution parameters 

The entropy—which is included in the model standardized XML file—is crucial 
for the accuracy of the protocol models. This is because some protocols might 
include a large list of possible vocabulary for some fields. If this is the case, the 
user must manually choose one of the vocabularies for that field, or choose to ignore 
it completely. This can affect the fidelity of the models.  

3. Results 

This tool was tested using the ICMP Ping protocol. It created an accurate Ping ns-
3 model and generated a simulation file that runs successfully on ns-3. The ns-3 
simulation also creates a PCAP file, as described earlier, which we use to determine 
the accuracy of the model. By comparing the packets that are produced by our 
simulation with the actual packets in the original PCAP file, we find that the 
autogenerated model produces data very similar to the original.  

Figure 19 shows images of the PCAP files (i.e., in Wireshark). The original 10-s 
capture is the ground truth. The ns-3 sample PCAP contains only null values in the 
data field. The PCAP file generated by our tool contains realistic data and values 
that match the data field from the 10-s capture. In the generated model, several 
fields had low entropy (e.g., field type, code, and others) and some had high 
entropy. High-entropy fields include the checksums, timing, and sequence 
numbers. While human intervention will be required to more closely mimic the 
original protocol, an analyst is provided with an annotated template as a starting 
point. 

 

Fig. 19 PCAP accuracy comparison 

  

 
python   ns-3ModelGenerator.py    10secs.pcap      ICMP       ICMPTest 
 
 PCAP File Protocol Model Name 



 

Approved for public release; distribution is unlimited. 

21 

4. Conclusions 

We have created a model generator and demonstrated how it can be used to extract 
protocol fields, vocabulary, and state machine specifications for a Ping protocol. 
These features are crucial in the generation of accurate protocol models. By 
leveraging Tshark and Prospex, this tool can generate the ns-3 C++ files needed to 
run a simulation of a protocol from a PCAP file. Due to the vast implementations 
of different protocols, the entropy of the vocabulary needs to be calculated to 
determine the values included in the model. The model standardized XML file lists 
the possible vocabulary that can be chosen for all fields.  

Some future near-term improvements that need to be made include testing with 
more protocols (especially at different layers of the OSI model), implementing an 
inference engine to extract inter- and intrapacket dependencies, and also adding the 
ability to generate models that can be used in other simulator/emulators as well as 
network scripting engines (e.g., scapy).  
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Appendix. Detailed Analysis of Protocol Reversing Tools  
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A.1 Setting Up the Automatic Semantics-Aware Analysis of 
Network Payloads (ASAP)/Protocol Inspection and State 
Machine Analysis (PRISMA) 

1) Download PRISMA from https://github.com/tammok/PRISMA. 

2) Download Sally from http://www.mlsec.org/sally/. 

3) Install the latest version of R. 

     It is necessary for the version of R to be 3.2 or higher.  

“R” Install Instructions 

a) Add the following lines to source.list in etc/apt/sources.list. 

## R BACKPORTS FOR WHEEZY 

deb http://cran.revolutionanalytics.com/bin/linux/debianwheezy-cran3/ 

#deb-src 
http://cran.revolutionanalytics.com/bin/linux/debianwheezycran3/ 

b) Then do the following commands: 

apt-get update 

apt-get upgrade 

apt-get install r-base r-base-dev 

4) Run “R” and enter the following commands. This step will install the 
necessary libraries into R for running ASAP/PRISMA. 

install.packages (“PRISMA”) 

library (“PRISMA”) 

There are some dependencies that might need to be installed manually due to 
incompatible versions. This can be done using the same 
command:  install.packages(“<NAMEOFDEPENDENCY>”). 

5) Install Sally. 

a) Install the necessary packages as listed in the README.md provided in 
the downloaded Sally directory. To do so enter the following 
commands: 

1. apt-get install libz-dev 
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2. apt-get install libconfig8-dev 

3. apt-get install libarchive-dev 

4. (if gcc isn’t installed) apt-get install gcc 

b) Run the following commands:  

1. ./configure 

2. make 

3. make check 

4. make install 

Sally should be ready to run. 

Running ASAP on a sample Payload. 

6) From here the steps from the tutorial should be followed. The steps are listed 
here as well. 

a) Extract asap.tar.gz which is located under /PRISMA-
master/inst/extdata/. 

b) Create the Sally output file from the raw data provided by using the 
following steps. 

It is necessary to change some of the features in the sally.cfg file.  

To do this, follow these steps: 

i. Open the sally.cfg file. 

ii. Under the feature configuration section add the following 
line: granularity = “tokens”. 

iii. Under the same section, change the variable name 
“ngram_delim” to “token_delim” without changing its value 
delimiter. 

iv. Save changes. 

Create the Sally file using the following command. 

sally-c asap.cfg asap.raw asap.sally 

c) To speed up the loading of the data in “R”, apply the 
“sallyPreprocessing.py” Python script with the following command: 
python sallyPreprocessing.py asap.sally asap.fsally. 
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d) Load the data into “R”  

i. Start-up “R” (enter “R” in the terminal). 

ii. Load the data via: loadPrismaData (“PRISMA”). 

Following the tutorial, additional information is provided about the payload that is 
being analyzed. 

Keywords: 

1) Payload: a string of bytes contained in network communication. 

2) T-test: a statistical t-test result is one in which the difference between 2 
groups is unlikely to have occurred due to chance. 

3) Pearson correlation coefficient: a measure of the linear correlation 
between 2 variables X and Y, giving a value between +1 and –1 
inclusive. 

Converting to XML: 

T-shark command to get PDML transformation: 

tshark-r “<.pcap_file>” -T pdml -E separator=, > <.pdml_file> 

-r : read from file 

-T: transform to specified format 

-E: Use delimeter 

> output to specified file 

Command to get all the protocols that exist within the PCAP file to extract all 
protocols: 

tshark -r test.cap -z io,phs -q | tr -s ' ' | cut -f 2 -d ' ' | tail -n +7 | head -n -1 

A-2 Netzob Detailed Evaluation 

We evaluated Netzob by running through the example provided on the website 
tutorial. We were able to complete the tutorial using the sample data provided on 
the website and we then proceeded to rerun the tutorial with our 10-second (s) 
ICMP PCAP file.  

The following are the steps in the tutorial:  

• Import of a PCAP file 
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• Format message inference  

o Partitionment of messages following a specific delimiter 

o Regroupment of messages following a specific key field 

o Partitionment of a subset of each message following a sequence 
alignment 

o Search for relationships in each group of messages 

o Modification of the format message to apply found relationships 

• Grammar inference  

o Generation of an automaton with one main state according to a 
captured sequence of messages 

o Generation of an automaton with a sequence of states according to 
a captured sequence of messages 

o Generation of a Prefix Tree Acceptor (PTA) automaton according 
to a captured sequence of messages 

• Traffic generation and fuzzing  

o Generation of messages following the inferred message format of 
each group and through visiting the inferred automata 

o Fuzzing of an implementation by generating altered message 
formats 

We tested with 3 versions of Netzob. First, we used the official stable release of the 
software (that allows using the guided user interface [GUI]). Second we tried with 
the github branch labeled “next”, and third with the source code branch labeled 
“master”. It seems, by looking at the Git log that the developers quickly removed 
the GUI functionality after the release of Netzob 0.4.1, probably due to several 
modifications to the application programming interface (API); making the GUI 
interface no longer usable. We noticed that a developer by the name of Georges 
was actively updating both branches of the source code (different files in each 
branch).  

While running Netzob, the first problem occurred when importing the PCAP file 
from the tutorial. We had to modify the call to the 
“PCAPImporter.readFile(“target_src_v1_session1.pcap”).values()” by adding a 
parameter that specified that data only up to the network Layer 3 (i.e., the Internet 
Protocol [IP] layer) should be parsed. After fixing the “PCAPImporter” call, the 
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tutorial code ran all the way through to completion, but the results were incorrect. 
In the next step of the tutorial, the authors show that they partition the messages in 
the sample PCAP using a “#” delimeter. This character is used to separate the 
commands in the command and control (C2) traffic. In our PCAP file (i.e., the 10-
s live Ping capture), this character was present, but it was not meant to be a 
delimeter. We looked into other ways to partition the data.  

There are several ways that one can parse symbols (or packet types). The tutorial 
uses sequence alignment, but with Ping—in this particular case with the loopback 
traffic—the fields were parsed out most correctly when using the simple 
partitioning technique (this technique separates data based on the dynamicity of 
bytes, whether they change across messages.) Looking more closely at the source 
code, we identified the location of the partitioning functions: 
“src/netzob/Inference/Vocabular/Format.py”. 

In the code, the name of the module is “Format” and the function is called 
“splitStatic”. It is possible to call this function with 4 parameters the “unitSize”, 
“mergeAdjacentStaticFields”, and “mergeAdjacentDynamicFields”. We obtained 
the best results specifying only the unitSize. We also tried splitting the input into 
8-bit segments and then using merge to create fields from the ICMP Ping 
specification.16 While this did work for display purposes (i.e., splitting fields into 
8-bit segments), when merged the field types become aggregate instead of raw 
causing incompatibility with the other algorithms in Netzob (e.g., the clustering 
algorithm no longer worked on the data). We proceeded by using the splitStatic 
function with only the symbol array as an input. We originally thought that we 
could create a converter module that could take as input a protocol specification 
and then use Netzob to parse symbols based on that specification. However, we 
were unsuccessful in finding a nontrivial way to do this.  

The next step in the tutorial uses the “clusterByKeyField” function in the Format 
module (the actual file is located at 
src/netzob/inference/Vocabulary/FormatOperations/ClusterByKeyField.py). This 
will use values in the fields that are specified to cluster message types. When we 
ran this with Field 5 (i.e., the ICMP type field that contained 2 values: \x00 and 
\x08), Netzob (the next branch) would crash stating that the last field in the message 
was not aligned correctly (i.e., by the ParallelDataAlignment.py module). We 
modified the code to use the DataAlignment module instead. We isolated the 
problem in the “ClusterByKeyField.py”; it was using the “\x00” (i.e., valid ASCII) 
character to infer the type of the field as ASCII. When “\x08” was read, the 
character was invalid (i.e., not a valid ASCII character) and Netzob would crash. 
We modified the code to force the type as HexaString. This fixed this problem.  
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The splitStatic algorithm worked well with this particular instance of the Ping 
traffic (which was loopback traffic, but did not work the same way when using a 
capture of pings to a google.com server; this was strange because the Netzob 0.4.1 
stable release gave correct results).  

We executed the next step in the tutorial (i.e., search for relationships in each group 
of messages), but this produced no relationships.  

Afterwards, we used the Automata module to generate state machines using 
different functions: “generateChainedStateAutomata”, 
“generateOneStateAutomata”, and “generatePTAAutomata”. The 
“generateChainedStateAutomata” generates all possible states for each unique 
transition. The “generateOneStateAutomata” generates a universal receiver (i.e., 
will accept all traffic as valid input). Regardless of what is received, it will respond. 
The “generatePTAAutomata” takes as input several communication sessions and 
then identifies common paths and merges these into a single automata. The 
resulting state machines only consisted of 3 states: start state, open channel, and 
close channel (i.e., end state). To generate an automata that can work with real 
traffic, the user must pass real traffic into Netzob. Only then will a usable grammar 
(i.e., state machine) be generated.  

The final steps in the tutorial create a traffic generator and a fuzzer. Because the 
previous steps did not yield successful results, we were not able to complete these.  
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List of Symbols, Abbreviations, and Acronyms 

API Application Programming Interface 

ASAP Automatic Semantics-Aware Analysis of Network Payloads 

BRITE Boston University Representative Internet Topology Generator 

C2 command and control 

DNS Domain Name System 

FTP File Transfer Protocol 

GUI Graphical User Interface 

HTTP Hypertext Transfer Protocol 

ICMP Internet Control Message Protocol 

IP Internet Protocol 

NFS Network File System 

NIC Network Interface Card 

OLSR Optimized Link State Routing 

OSPF Open Shortest Path First 

OSI Open Standards Interconnect 

PDML Packet Details Markup Language 

PRISMA Protocol Inspection and State Machine Analysis 

PTA Prefix Tree Acceptor 

SMB Server Message Block 

SMTP Simple Mail Transfer Protocol
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