

 ARL-TR-7543 ● DEC 2015

 US Army Research Laboratory

Automatic Traffic-Based Internet Control
Message Protocol (ICMP) Model Generation
for ns-3

by Jaime C Acosta, Felipe Jovel, Felipe Sotelo, and
Caesar Zapata

Approved for public release; distribution is unlimited.

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-7543 ● DEC 2015

 US Army Research Laboratory

Automatic Traffic-Based Internet Control
Message Protocol (ICMP) Model Generation
for ns-3

by Jaime C Acosta and Felipe Jovel
Survivability/Lethality Analysis Directorate, ARL

Felipe Sotelo and Caesar Zapata
University of Texas at El Paso

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

December 2015
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

June–August 2015
4. TITLE AND SUBTITLE

Automatic Traffic-Based Internet Control Message Protocol (ICMP) Model
Generation for ns-3

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Jaime C Acosta, Felipe Jovel, Felipe Sotelo, and Caesar Zapata
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
Cybersecurity and Electromagnetic Protection Division
Survivability/Lethality Analysis Directorate ATTN: RDRL-SLE-I
White Sands Missile Range, NM 88005-5513

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-7543

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The urgency of measuring the security posture of network systems continues to increase with the development of new
technologies and the number of vulnerabilities that these introduce. The most effective way of testing these networks is
through field tests on real systems in operational environments. Although this provides the highest level of accuracy, the
disadvantages that arise with this approach can limit its efficiency and success. These challenges include high costs, time
constraints, and the coordination efforts involved in the execution of these tests. One potential solution is the generation of
system models that facilitate the continuous experimentation and testing on simulations of these networks in a laboratory
environment. Models aid in the testing and analyzing of network systems, but as things stand today, there are limitations to
this approach: models can lack synchronization with actual systems and must be built mostly from scratch. In this report, we
introduce the ns-3 Model Generator; a tool aimed at automating the generation of protocol models and scenario files that can
be run on the ns-3. Our focus for this work was to recreate the Internet Control Message Protocol (ICMP) Ping protocol and
an ns-3 scenario using only a 10-second Wireshark network capture. Our results show that in many aspects, the autogenerated
protocol is closer to ground truth.
15. SUBJECT TERMS

ns-3, simulation, emulation, ARL, US Army Research Laboratory

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

40

19a. NAME OF RESPONSIBLE PERSON

Jaime C Acosta
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

(575) 678-8115
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.

iii

Contents

List of Figures iv

1. Introduction 1

1.1 General Problem 1

1.2 Summary of Methodology 1

2. Methods and Procedures 1

2.1 Gap Analysis 2

2.1.1 A Survey of Commonly Used Protocol Reverse Engineering
Tools 2

2.1.2 Applicability and Limitations of Existing Tools for the Model
Generator 5

2.1.3 Model Generation 9

2.2 Path Forward 10

2.2.1 “pdmlExtractor.py” 11

2.2.2 “xmlToNs-3Scenario.py” 14

2.2.3 “packetTypeExtractor.py” 15

2.2.4 “fieldVocab.py” 15

2.2.5 “fieldVocabToNs-3Model.py” 17

2.2.6 Prospex 18

2.2.7 “dotToCppGrammar.py” 18

2.3 Accuracy Analysis 19

3. Results 20

4. Conclusions 21

5. References 22

Appendix. Detailed Analysis of Protocol Reversing Tools 25

List of Symbols, Abbreviations, and Acronyms 32

Distribution List 33

Approved for public release; distribution is unlimited.

iv

List of Figures

Fig. 1 Netzob main modules ..5

Fig. 2 Raw network packet ...6

Fig. 3 Prospex system overview7 ...7

Fig. 4 Prospex state machine inferencing tool input file8

Fig. 5 State tree file output (left); final Ping protocol state machine (right)8

Fig. 6 ICMP header format ..9

Fig. 7 ns-3 automated model generator system overview10

Fig. 8 PCAP to PDML sample ...12

Fig. 9 ICMP protocol found example...12

Fig. 10 “fields.txt” file example ...13

Fig. 11 “flows.txt” file example ...13

Fig. 12 ICMP “flows.xml” file ...14

Fig. 13 “packetTypeSequence.txt” generation ...15

Fig. 14 Vocabulary generation ...16

Fig. 15 Model standardized XML file ..17

Fig. 16 Ping “labeledStateMachine.dot” file ..18

Fig. 17 State objects with stored transitions ...19

Fig. 18 ns-3 Model Generator script execution parameters20

Fig. 19 PCAP accuracy comparison ...20

Approved for public release; distribution is unlimited.

1

1. Introduction

1.1 General Problem

The network simulation engine, ns-3, is a discrete-event network simulator.
Simulations are composed of models that are coded using the C++ programming
language. While some graphical tools exist for creating network topologies (e.g.,
Boston University Representative Internet Topology Generator [BRITE])1 writing
models and scenarios remains a manual, complex, and time-consuming task.
Models are used to represent nodes, computers, and other networking components
such as physical network interface cards (NICs), network addresses, protocols,
etcetera. When put together, these models compose a scenario. Many of the
protocol models that are provided by ns-3 are generic and when analyzed with
Wireshark,2 produce network traffic that differs greatly from real protocol traffic.
The accuracy of simulation results relies on these models, yet there is a lack of
model validation. To address these issues, we introduce a tool that can take a traffic
capture of a network and extract the necessary protocol fields, their vocabulary and
its state machine, automating the generation of a precise protocol model based on
the behavior of real execution.

1.2 Summary of Methodology

Our steps in developing the model generator included researching existing
technologies that could extract fields from binaries or protocols. We identified
limitations and implemented a system that could utilize some of these tools to
extract the vocabulary and grammar. We collected 3 network traffic captures. The
first was a capture from a real network Internet Control Message Protocol (ICMP)
Ping. For the second, we created an ns-3 scenario with 2 nodes; 1 node sent ICMP
Ping packets to the other using the icmpv4 model (i.e., the Ping simulator that
comes with ns-3). Third, we used our model generator to create a Ping model and
a scenario automatically (using the live capture as input). In many aspects, the
capture from our model generator was the most similar to the live capture.

2. Methods and Procedures

We started by investigating the current state of the art in reverse engineering and
binary analysis of network protocols. We identified tools, algorithms, and
approaches that we could leverage for our work. Afterward, we designed our
system with a modular architecture to facilitate debugging and to support future
component integration. Lastly, we built our system and tested its effectiveness by

Approved for public release; distribution is unlimited.

2

comparing its outputs against 2 controls. We describe this in the following
subsections.

2.1 Gap Analysis

The actual behavior of protocols can vary depending on their implementation.
These variances within the same type of protocols can yield unexpected results
when performing field tests. The success of these tests depends greatly on the
accuracy of the protocol models that make up the scenario. The data that results
from nodes communicating a protocol, including the field vocabulary (i.e., the
possible values that packet fields can hold), can affect the outcome of these tests.
Determining the information required for extraction from the network packets was
crucial for the generation of precise models.

2.1.1 A Survey of Commonly Used Protocol Reverse Engineering Tools

Security analysts are often presented with network traffic captures that contain
undocumented protocols or binary files. The content and purpose of these protocols
is usually a manual process that consists of an analyst conducting reverse
engineering. This is the process of extracting the structure, attributes, and data from
a network protocol implementation without access to its specification.3 Several
tools have been implemented in attempts to provide a solution to this problem.
Some of these tools are described in the following subsections.

2.1.1.1 Automatic Semantics-Aware Analysis of Network Payloads (ASAP) and
Protocol Inspection and State Machine Analysis (PRISMA)

The ASAP4 is an open-source tool, written for the “R”5 statistical computing
language that is designed to automatically extract semantics-aware components
from recorded traffic. The author, Tammo Krueger, utilized this tool to characterize
normal network protocol behavior by analyzing information in specified fields, and
then subsequently to identify and sanitize anomalous, malicious hypertext transfer
protocol (HTTP) requests. The ASAP leverages 2 other tools as part of its analysis
process. The PRISMA4 contributes to ASAP by learning the stateful models from
the network traffic of a service that can be used for simulating valid
communication. Sally6 is a small tool for mapping a set of strings to a set of vectors.
Together these tools contribute to ASAP’s functionality:

1) An alphabet of relevant strings is extracted from raw data and used to map
payloads into a vector space for analysis.

2) Matrix factorization is applied to identify base directions in the vector
space, characterizing usage patterns of mapped payloads.

Approved for public release; distribution is unlimited.

3

3) Base directions are traced back to a conjunction of strings from the alphabet
resulting in a template of typical communication content.

ASAP initially uses Sally to read a raw file, “asap.raw”, which contains raw
network packet payloads. When Sally maps out the strings to a vector space, they
are characterized by specific features that include bytes, tokens, n-grams of bytes,
or n-grams of tokens. It also generates a sparse vector of count values. ASAP then
takes in this output and extracts an alphabet constructed from a set of basic strings
and relevant strings. This alphabet is then refined using filtering and correlation
techniques.

Alphabet Extraction

Part of the alphabet extraction process involves applying correlation techniques in
order to identify nonconstant and nonvolatile strings. Strings within network
payloads naturally appear with different frequency, ranging from volatile to
constant occurrences. For instance, HTTP requests contain the string “HTTP” in
the header, whereas other parts—such as timestamps or session numbers—are
highly variable. Statistical t-tests are applied to determine a p-value, which
indicates the likelihood of encountering certain values. A tutorial for using this
application, provided by Tammo Krueger, included an example of GET requests,
HTTP, Simple Mail Transfer Protocol (SMTP), and File Transfer Protocol (FTP),
where the alphabet is based on tokens. For binary network protocols such as
Domain Name System (DNS), Server Message Block (SMB), and Network File
System (NFS), the tool utilizes n-grams for the alphabet. Additional correlation
techniques are applied to combine co-occurring strings.

Matrix Factorization

Mapping the network payloads to a vector space reflects characteristics captured
by the alphabet. Payloads that share several substrings will appear closer to each
other, while those with different content are farther apart. This process allows the
discovery of semantics-aware components and base directions in the vector space.

Generating Communication Templates

Strings of the alphabet that exceed a specific threshold are then selected inside the
base directions to construct a template. Alphabets of n-grams are concatenated to
regain parts of the original ordering. For example, if we have a basis containing the
3-grams “Hos”^”ost”^”st”, then it can be inferred that these tokens overlap and can
be concatenated to make up the string “Host”. The procedure is then repeated until
no more overlaps exist. This token is then added to the representation list and the
procedure is repeated for the next token with the highest value left.

Approved for public release; distribution is unlimited.

4

2.1.1.2 Prospex

Prospex7 is a system that can automatically infer specifications for stateful network
protocols, including state machine information. This tool can extract the format
specifications from a message by monitoring the application as it processes its
inputs. The Prospex system’s main contributions follow:

1) The system can determine when 2 messages in the session are similarly
based, not only on their formats, but on the effects that they have on the
receiving server’s execution.

2) A state machine can be inferred, which specifies the order in which
messages can be exchanged—given no prior knowledge of the protocol
under analysis.

This system consists of several modules. The state machine inference module,
which is available as open source, is used for our model generator. This module
accepts a text file, “sessions.txt”, which is composed of the sequences of messages
that are observed within a PCAP file. A state machine is then produced from these
sequences representing the behavior of the network protocol. Another algorithm,
Exbar8 is then applied to reduce (compress) the state machine by merging similar
states. This minimal state machine represents the behavior of the network protocol.

2.1.1.3 Netzob

Netzob9 is an open-source reverse engineering toolset sponsored by IMOSSYS and
Supe`lec. Netzob has a rich feature set that includes inter- and intrapacket-
dependency inference, packet simulation, and exports for Wireshark and Peach10
pit files. It enables protocol message format and state machine inference through
passive (i.e., no human intervention) and active processes. Afterward, the model
can be used to simulate realistic and controllable traffic. This toolset has been
successful at reversing unknown protocols, such as the Zeroaccess botnet command
and control (C2) communication.11 Figure 1 shows the main modules of Netzob.

Approved for public release; distribution is unlimited.

5

Fig. 1 Netzob main modules

• Import module: Data can be imported utilizing the built in packet sniffer
or by specifying an existing capture, network flow, or other accepted
formats.

• Protocol inference modules: The vocabulary and grammar inference
methods constitute the core of Netzob. This tool has automated and manual
mechanisms built in, which allows the reverse engineering of
communication flows.

• Simulation module: Netzob utilizes the vocabulary and grammar models
previously inferred to understand and generate communication traffic
between multiple actors.

• Export module: Netzob can export an inferred model of a protocol in
multiple formats making it extendable to third-party software.

2.1.2 Applicability and Limitations of Existing Tools for the Model
Generator

We wanted to leverage existing tools, but we had to determine their suitability for
our problem. Most tools were either closed source, unavailable, or were not mature
enough for our needs. However, we were able to reuse some capabilities of
available tools (e.g., Exbar) and develop our software in a way that supports parallel
development (i.e., our tool will plug-and-play with other tools: Prospex, Netzob,
and ASAP). In the following subsections, we describe our analysis of these tools
and some limitations we encountered when considering them for our work.

Approved for public release; distribution is unlimited.

6

2.1.2.1 ASAP

The author of ASAP, Tammo Krueger, utilized ASAP/PRISMA to extract network
protocols by analyzing information in specified fields and then identified malicious
HTTP requests and sanitized them. He provides a step-by-step tutorial that shows
the process of passing a raw data file into ASAP and then viewing the results. This
tutorial includes the sample input files containing raw network payloads with HTTP
GET requests (see Fig. 2).

Fig. 2 Raw network packet

For the purposes of the model generator, we attempted to run this tool on payloads
containing non-HTTP data. We did this by executing every step in the tutorial, with
the exception of using a different file as input. When read into Sally, a new file
named, “asap2.sally”, was generated and then used as input for ASAP (which used
R). “R” successfully read the new file using the “loadPrismaData(asap2)”
command, but failed when attempting to create the dataset using “data(asap2)”.
This is the function that allows one to see the matrix and other pertinent data. After
further analysis and testing, we determined that the reason the “data(asap)”
instruction works on the original file is because the generated dataset is already
prepackaged inside of PRISMA. To arrive at this conclusion, we removed all of the
asap files from the folder that the “R” program accesses when testing the
“data(asap)” command. This command still succeeds, meaning that the file is not
being read from the local file system, but instead, is being accessed from the
installed packages.

Another limitation with ASAP is that it utilizes a delimiter that needs to be
manually specified for parsing of the raw data file. This means that prior knowledge
of the protocol is required for this program to succeed—rendering the process only
semiautomatic.

Approved for public release; distribution is unlimited.

7

2.1.2.2 Netzob

Netzob has been used to successfully reverse engineer unknown protocols, such as
the Zeroaccess botnet C2 malware communication.11 Being open source, we were
hoping to take advantage of this tool’s vocabulary and grammar inference modules.
However, it is currently not well suited for documented protocols; there is no way
to import structures, field sizes, or dependencies from specifications including
requests for comment documents or network sniffer data, such as Wireshark pdml
data. Grammar inference is not supported for Open Standards Interconnect (OSI)
Layer 3 and below protocols such as Optimized Link State Routing (OLSR), Open
Shortest Path First (OSPF), Ping, and etcetera. Lastly, there has been little
maintenance since 2013. The detailed evaluation steps of Netzob are in the
Appendix.

2.1.2.3 Prospex

Prospex7 was very promising due to its success at generating protocol state
machines. After researching several tools, one common property found in many
systems is that they focus only on extracting the format of individual protocol
messages. This makes generating the protocol state machine and producing the
specifications for stateful network protocols much more difficult. The initial
limitation found with the Prospex tool is that only the state machine inferencing
tool was available for download, along with the Exbar algorithm needed to
minimize the state machine. The last phase of Prospex is shown in Fig. 3.

Fig. 3 Prospex system overview7

The state machine inferencing tool reads a text file composed of sequences of
message types observed from a PCAP file. Figure 4 shows a sample input file.

Approved for public release; distribution is unlimited.

8

Fig. 4 Prospex state machine inferencing tool input file

Figure 4 shows one sequence of ICMP message type. Type 8 is a request, and type
0 is a reply. The input file describes the order in which the different message types
are found in the PCAP file. Utilizing this input, this tool generates a state tree dot
file. The dot utility is part of the Graphviz12 drawing package. This is used to
generate a visualization of the state tree as shown in Fig. 5a. Exbar compresses this
tree and generates the final state machine file. Figure 5b shows the final state
machine for the Ping protocol.

Fig. 5 State tree file output (left); final Ping protocol state machine (right)

Approved for public release; distribution is unlimited.

9

Based on our analysis, we determined that the State Machine Inferencing feature of
the Prospex tool would be beneficial to our work. In order to incorporate Exbar, we
had to generate compatible data (i.e., the input file, “sessions.txt”) that must only
contain integer values. This process is described in Section 2.2.3.

2.1.3 Model Generation

To generate an accurate protocol model, there is specific information needed from
the packet captures (i.e., PCAP files). This data includes:

• Protocol fields
o Size
o Position
o Value (hex)

• Field vocabulary
o Entropy

• Grammar (state machine)

2.1.3.1 Protocol Fields

Figure 6, which appears in Data Communications and Networking,13 shows the
fields that exist in the ICMP Ping protocol. Protocols are described by their fields,
including sizes, possible values, and states.

Fig. 6 ICMP header format

After analyzing different tools, we found that Tshark14 was the best choice for
extracting the fields required for our model generation. This tool is a command line
version of Wireshark. It has a vast amount of existing protocol dissectors, which
allows it to parse the structure of protocols including field names, data types, sizes,
etcetera.

2.1.3.2 Field Vocabulary

Figure 6 shows that the ICMP header is composed of 4 fields. Type, for instance,
will contain the type of message that is being sent. In this case, this message would
be a Type 8, “request”, or Type 0, “response”. Extracting this information is crucial
for generating automated model generation. The vocabularies for protocol fields

Approved for public release; distribution is unlimited.

10

(i.e., the values that can exist in each field) can be identified from a PCAP file. To
measure the amount of variance in a field’s vocabulary, we calculate its entropy. If
the entropy is closer to “1”, then there is more randomness to this particular field.
If it is closer to “0”, then there is a smaller range of possible values that exist for
that field within the PCAP. Entropy of “0” indicates that the vocabulary is static,
which means that the vocabulary consists of a single, unchanging value.

To facilitate the process of extracting the vocabulary, we used Tshark to convert
the PCAP files (which are in binary format) to a Packet Details Markup Language
(PDML15—a markup language that is very similar to HTML or XML).

2.1.3.3 Grammar (State Machine)

Once the fields and vocabulary are extracted from the PCAP files, knowing how
the protocols need to behave is the next step. To closely mimic protocol behavior,
we needed to infer the state machine specification. We leveraged the State Machine
Inferencing tool from Prospex. To do this, we filtered out the protocol of interest
from the PCAP file and then extracted the message types from the fields to produce
an input file for Prospex to generate the state machine. This state machine is then
used to produce the ns-3 protocol models.

2.2 Path Forward

The ns-3 model generator reads a PCAP file and—by leveraging Tshark and
Prospex—generates the protocol model C++ files needed to run the simulation in
ns-3. Figure 7 shows the system overview.

Fig. 7 ns-3 automated model generator system overview

Approved for public release; distribution is unlimited.

11

This tool is composed of 7 different modules. It takes a PCAP file as input and
produces 3 C++ files that are the ns-3 scenario and protocol model. The modules
that make up this tool are listed below.

• pdmlExtractor.py

• xmlToNs-3Scenario.py

• packetTypeExtractor.py

• fieldVocab.py

• fieldVocabToNs-3Model.py

• Prospex (third party)

• dotToCppGrammer.py

The “pdmlExtractor.py” program generates 2 files: “fields.txt” and “flows.xml”.
The “flows.xml” file is used to generate the scenario standardized XML file that is
eventually passed to the “xmlToNs-3Scenario.py” program. This will produce the
“summerPing.cc” ns-3 simulation file. The “fields.txt” file is fed into the
“packetTypeExtractor.py” program to produce the “packetTypeSequence.txt” file
that Prospex will eventually use to produce the state machine. Both the “fields.txt”
file and “packetTypeSequences.txt” files are needed by the “fieldVocab.py”
program to produce the model standardized XML file that is input into the
“fieldVocabToNs-3Model.py” for the model generation. Prospex will then read in
the “packetTypeSequences.txt” file and produce the state machine in dot format.
The “dotToCppGrammer.py” then uses this file to generate a C++ class
interpretation of the state machine. All of the C++ files generated are used by ns-3
to generate the protocol simulation.

2.2.1 “pdmlExtractor.py”

The “pdmlExtractor.py” Python script reads a PCAP file as input. The first thing
this program does is filter all of the protocols in the PCAP and keep only the
protocol specified when the program is run. The program then converts the PCAP
file from binary to PDML using Tshark. Figure 8 shows how the PDML file is
formatted.

Approved for public release; distribution is unlimited.

12

Fig. 8 PCAP to PDML sample

Once the file is converted, the program will traverse each packet within the PCAP
file and find the protocol that is specified when the program is called. Once it finds
the position in the packet, it remembers that position for each packet. Figure 9
shows an example of the line in the PDML file that shows the name of the protocol.
In this example we use the ICMP protocol.

Fig. 9 ICMP protocol found example

Most of the lines contain the “name”, “showname”, “show”, “size”, “pos”, and
“value” attributes. The “pdmlExtractor.py” will extract all of these attributes and
write them out to a file, “fields.txt” with “#” as the delimiter. These will be part of
the vocabulary and will be used to calculate the entropy for each field of the
protocol. The program then continues the same process for each packet within the
PCAP file. Figure 10 shows an example “fields.txt” file.

python pdmlExtractor.py <name of PCAP> <Protocol Name>

Approved for public release; distribution is unlimited.

13

Fig. 10 “fields.txt” file example

The “pdmlExtractor.py” program also generates a “flows.xml” file. This file will
utilize other fields within each packet to extract the following information:

1) Source Internet Protocol (IP) address

2) Destination IP address

3) Source Mac address

4) Destination Mac address

5) Epoch time

This information is extracted from each packet within the capture and is also written
to the flows file. Figure 11 shows an example of the “flows.xml” file for a Ping
protocol.

Fig. 11 “flows.txt” file example

Approved for public release; distribution is unlimited.

14

This “flows.xml” file is also used to generate a scenario standardized XML file.
After researching other network simulation programs, we found a structure that
would be easy to integrate with other simulation engines. This structure describes
all of the protocols that come out of each node or computer—assuming that the
node can be distinguished based on a single-source Mac address. This part of the
program will tie each protocol with a specific node and will list the source addresses
and time, etcetera. Figure 12 shows a “scenarioStdConfigurationFile.xml” file for
a Ping protocol that was captured with Wireshark.

Fig. 12 ICMP “flows.xml” file

This example describes 2 nodes that were communicating with each other using the
Ping protocol. Each node is numbered and is distinguished with a unique Mac
source address. It also includes the protocol that is generated by the node,
encapsulated within the flow tag,“<flow>”. This flow includes the protocol name,
the Mac destination address, and IP addresses. The epoch time and the number of
times this flow was seen in the PCAP file are also described.

2.2.2 “xmlToNs-3Scenario.py”

Approved for public release; distribution is unlimited.

15

The “xmlToNs-3Scenario.py” Python script generates the actual scenario C++ file
that is used by ns-3 to run the simulation. This program takes the
“scenarioXMLConfigurationFile.xml” as input.

2.2.3 “packetTypeExtractor.py”

One common feature utilized in other protocol extraction tools is the use of a
vocabulary dictionary. This feature was useful when trying to extract the message
type for each protocol. Each protocol has a message type that is described by one
of its fields within the protocol. The challenge is that every protocol uses a different
naming convention to describe their type. For example, the ICMP message type can
be found in a field named “Type”, but other protocols might use the string,
“Command” as the field name. For this reason, each protocol would need to be
treated differently when extracting its type. The “packetTypeExtration.py” tool
takes in the “fields.txt” file produced by the “pdmlExtractor.py” program and reads
line by line, comparing every string against a dictionary of common words. This
dictionary is specified inside this method and is easily expandable. If a type is found
within the packet, the contents of that field will be stored in an array data structure
in Python named, “allTypes”. If this is the first occurrence of the type it will also
be stored in a separate array of unique message types called “uniqueTypes”. Once
all of the types are found, the array containing the unique message types found in
the PCAP file is used to generate the “packetTypeSequences.txt” file. This text file
is used to generate the state machine using Prospex. Because Prospex can only
accept integer data types in the sequences file, we use the index of their position in
the unique array as the message type in the order that they are found in the
“alltypes” array. Figure 13 illustrates this process.

Fig. 13 “packetTypeSequence.txt” generation

2.2.4 “fieldVocab.py”

allTypes:

uniqueTypes:

Approved for public release; distribution is unlimited.

16

The “fieldVocab.py” program will utilize the “fields.txt” output file from the
“pdmlExtractor.py” tool to generate the vocabulary for the protocol. This tool will
look at every field for each packet and will store the values that are different. Some
of the field values never change and therefore will only have one vocabulary stored,
while other fields may have a different value for every packet. This process is done
by creating a field class for every field in the packet. Figure 14 illustrates this
process.

Fig. 14 Vocabulary generation

As shown in Fig. 14, the initial step is to create an array of field objects. Each field
object contains a list that will hold the vocabulary for that field. The vocabulary in
every field of each packet in the “fields.txt” file will be compared to the values that
are already stored in the vocabulary list for that object. If that value does not exist
in the list, it will be added. If it exists, then the value will be ignored. This process
will occur for the entire “fields.txt” file. Once this process is complete, each list
that is generated for the fields will have their entropy calculated. The calculated
entropy describes the randomness of the vocabulary within a list. This entropy is
calculated using the number of values that are stored in the vocabulary list; the
length of the list. For example, Fig. 14 shows that the “Type” object contains a list
of 2 values: 0 and 8. This means that there are only 2 possible values for the “Type”
field in the entire PCAP file. The entropy for this vocabulary is 0.5. The algorithm
used to calculate entropy is:

 Entropy = (x-1)/x, where x is the size of the vocabulary (1)

This algorithm ensures that entropy is never >1. The larger the vocabulary, the
closer the entropy is to 1. If there is only one item in the vocabulary, the entropy is
0. This means that the value is the same in every packet in the PCAP file. Once the

Approved for public release; distribution is unlimited.

17

entropy is calculated, the values are used to generate the standardized XML file for
the model generation. Figure 15 shows an example of this file for the Ping protocol.

Fig. 15 Model standardized XML file

The standardized file is structured based on the message types. In this Ping
example, there are only 2 types of messages: 0 and 8. These are separated and
encapsulate all of the fields that pertain to that type. Each field also contains the
name of the field along with their size, position, vocabulary, and entropy. This is
used later to generate the protocol model.

2.2.5 “fieldVocabToNs-3Model.py”

This Python script takes in the model standardized XML file and will generate the
C++ model files needed by ns-3. The script executes 4 tasks to create the ns-3
model:

1) Extract all field attributes (i.e., names, sizes, vocabulary).

2) Using the data from 1, C++ variables are generated (using names) along
with data types (using sizes).

3) Append initialization values for variables (the first value in the vocabulary
is used).

Approved for public release; distribution is unlimited.

18

4) Append comments in the C++ code that indicate the entropy associated with
a variable (i.e., based on vocabulary).

2.2.6 Prospex

Prospex was used due to its State Machine Inferencing tool. This tool takes in the
“packetTypeSequences.txt” file, which is described in Fig. 3. Refer to the Prospex
Section 2.1.2.3 for further details. There are several files that are produced by the
program. The DOT file named, “labeledStateMachine.dot” is the one that we are
interested in. This file will be used to create the grammar and state machine, for the
protocol.

2.2.7 “dotToCppGrammar.py”

This module will read in the “labeledStateMachine.dot” file that is generated by the
State Machine Inferencing tool provided by Prospex. The format in which this file
is generated makes it easy to translate into a C++ file that is needed for the model
generation. Figure 16 shows an example DOT file for the Ping protocol.

Fig. 16 Ping “labeledStateMachine.dot” file

The Fig. 16 example shows how we distinguished states and transitions. The
“dotToCppGrammar.py” program takes advantage of this by creating State objects
in Python that will each contain their own transitions. This process is illustrated in
Fig. 17, which shows each state and the list of transitions stored inside the state
object. The outer arrows describe the transitions that are included in the objects.

Approved for public release; distribution is unlimited.

19

Fig. 17 State objects with stored transitions

The characteristics of this state machine are all incorporated into the C++ code that
is generated by this script. Included in this code is a function called '
“getNextState()”, which is used to know the message type that needs to be
described in the model at a specific point during the simulation. The state object is
responsible for keeping track of the protocol current state and, when requested, will
return the next possible states. The “getNextState()” method will accept an integer
value that represents the message type the model is changing to, or receiving, and
the method will return the possible types that the model can then change to, or reply
as. This is all written in one C++ file generated by the “dotToCppGrammar.py”
program (i.e., <protocolName>.cc.)

2.3 Accuracy Analysis

For testing purposes, as part of ns-3, a PCAP file is generated when the simulation
of the Ping protocol is run. This capture file is used to compare the packets that are
produced by the simulation with the actual packets in the original PCAP. In
addition, the packets are also compared with those from existing ns-3 models
available through ns-3 and other resources. This process shows firsthand, the
accuracy of the ns-3 models being produced by the model generator.

The experiments that we ran used a 10-second (s) PCAP capture using the
Wireshark network protocol analyzer. This program takes in the PCAP file, the
name of the protocol that we want to simulate with ns-3, and the naming convention
we want to use for the model (see Fig. 18).

node0

empty ->node29

w/ "8"

empty
->node0

w/ "0"

node29

8

0

Approved for public release; distribution is unlimited.

20

Fig. 18 ns-3 Model Generator script execution parameters

The entropy—which is included in the model standardized XML file—is crucial
for the accuracy of the protocol models. This is because some protocols might
include a large list of possible vocabulary for some fields. If this is the case, the
user must manually choose one of the vocabularies for that field, or choose to ignore
it completely. This can affect the fidelity of the models.

3. Results

This tool was tested using the ICMP Ping protocol. It created an accurate Ping ns-
3 model and generated a simulation file that runs successfully on ns-3. The ns-3
simulation also creates a PCAP file, as described earlier, which we use to determine
the accuracy of the model. By comparing the packets that are produced by our
simulation with the actual packets in the original PCAP file, we find that the
autogenerated model produces data very similar to the original.

Figure 19 shows images of the PCAP files (i.e., in Wireshark). The original 10-s
capture is the ground truth. The ns-3 sample PCAP contains only null values in the
data field. The PCAP file generated by our tool contains realistic data and values
that match the data field from the 10-s capture. In the generated model, several
fields had low entropy (e.g., field type, code, and others) and some had high
entropy. High-entropy fields include the checksums, timing, and sequence
numbers. While human intervention will be required to more closely mimic the
original protocol, an analyst is provided with an annotated template as a starting
point.

Fig. 19 PCAP accuracy comparison

python ns-3ModelGenerator.py 10secs.pcap ICMP ICMPTest

 PCAP File Protocol Model Name

Approved for public release; distribution is unlimited.

21

4. Conclusions

We have created a model generator and demonstrated how it can be used to extract
protocol fields, vocabulary, and state machine specifications for a Ping protocol.
These features are crucial in the generation of accurate protocol models. By
leveraging Tshark and Prospex, this tool can generate the ns-3 C++ files needed to
run a simulation of a protocol from a PCAP file. Due to the vast implementations
of different protocols, the entropy of the vocabulary needs to be calculated to
determine the values included in the model. The model standardized XML file lists
the possible vocabulary that can be chosen for all fields.

Some future near-term improvements that need to be made include testing with
more protocols (especially at different layers of the OSI model), implementing an
inference engine to extract inter- and intrapacket dependencies, and also adding the
ability to generate models that can be used in other simulator/emulators as well as
network scripting engines (e.g., scapy).

Approved for public release; distribution is unlimited.

22

5. References

1. Swenson BP, Riley GF. Simulating large topologies in ns-3 using BRITE and
cuda driven global routing. Proceedings of the 6th International ICST
Conference on Simulation Tools and Techniques; 2013; Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering (ICST).

2. Chappell LA, Combs G. Wireshark 101: Essential skills for network analysis.
Protocol Analysis Institute, Chappell University, 2013.

3. Lee D, Sabnani K. Reverse-engineering of communication protocols. Network
Protocols, 1993. Proceedings 1993 International Conference on IEEE; 1993.

4. Bossert G, Guihery F, Hiet G. Towards automated protocol reverse
engineering using semantic information. Proceedings of the 9th ACM
Symposium on Information, Computer and Communications security. ACM;
2014.

5. Ihaka R, Gentleman R. (1996); R: A language for data analysis and
graphics. Journal of computational and graphical statistics, 5(3), 299–314.

6. Rieck K, Wressnegger C, Bikadorov A. Sally: A tool for embedding strings in
vector spaces. The Journal of Machine Learning Research 13.1. 2012;3247–
3251.

7. Comparetti PM, Wondracek G, Kruegel C, Kirda E. Prospex: Protocol
specification extraction. Security and Privacy, 2009 30th IEEE Symposium.
IEEE, 2009.

8. Lang KJ. Faster algorithms for finding minimal consistent DFAs.
4 Independence Way, Princeton (NJ): NEC Research Institute (US); 1999.

9. Bossert G, Guihéry F. Security evaluation of communication protocols in
common criteria using Netzob. ICCC, 2013.

10. Peach Fuzzing Platform; 2008 [accessed 21 Sep 2015].
http://peachfuzzer.com.

11. Shearer J. Trojan: Zeroaccess threat report. Symantec, 2011.

12. Ellson J, Gansner E, Koutsofios L, North SC, Woodhull G. Graphviz—open
source graph drawing tools. Graph Drawing. Springer Berlin Heidelberg,
2002.

13. Forouzan BA. Data Communications and Networking (4th ed.). Boston (MA):
McGraw-Hill; 2007. p. 621–630.

Approved for public release; distribution is unlimited.

23

14. Combs G. TShark: The Wireshark Network Analyser. [accessed 21 Sep 2015].
http://www. wireshark.org.

15. PDML Specification, 2015. [accessed 21 Sep 2015].
ftp://ftp.tuwien.ac.at/.vhost/analyzer.polito.it/docs/dissectors/PDMLSpec.htm

16. Postel J. RFC 792: Internet control message protocol. InterNet Network
Working Group (1981).

Approved for public release; distribution is unlimited.

24

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

25

Appendix. Detailed Analysis of Protocol Reversing Tools

Approved for public release; distribution is unlimited.

26

A.1 Setting Up the Automatic Semantics-Aware Analysis of
Network Payloads (ASAP)/Protocol Inspection and State
Machine Analysis (PRISMA)

1) Download PRISMA from https://github.com/tammok/PRISMA.

2) Download Sally from http://www.mlsec.org/sally/.

3) Install the latest version of R.

 It is necessary for the version of R to be 3.2 or higher.

“R” Install Instructions

a) Add the following lines to source.list in etc/apt/sources.list.

R BACKPORTS FOR WHEEZY

deb http://cran.revolutionanalytics.com/bin/linux/debianwheezy-cran3/

#deb-src
http://cran.revolutionanalytics.com/bin/linux/debianwheezycran3/

b) Then do the following commands:

apt-get update

apt-get upgrade

apt-get install r-base r-base-dev

4) Run “R” and enter the following commands. This step will install the
necessary libraries into R for running ASAP/PRISMA.

install.packages (“PRISMA”)

library (“PRISMA”)

There are some dependencies that might need to be installed manually due to
incompatible versions. This can be done using the same
command: install.packages(“<NAMEOFDEPENDENCY>”).

5) Install Sally.

a) Install the necessary packages as listed in the README.md provided in
the downloaded Sally directory. To do so enter the following
commands:

1. apt-get install libz-dev

Approved for public release; distribution is unlimited.

27

2. apt-get install libconfig8-dev

3. apt-get install libarchive-dev

4. (if gcc isn’t installed) apt-get install gcc

b) Run the following commands:

1. ./configure

2. make

3. make check

4. make install

Sally should be ready to run.

Running ASAP on a sample Payload.

6) From here the steps from the tutorial should be followed. The steps are listed
here as well.

a) Extract asap.tar.gz which is located under /PRISMA-
master/inst/extdata/.

b) Create the Sally output file from the raw data provided by using the
following steps.

It is necessary to change some of the features in the sally.cfg file.

To do this, follow these steps:

i. Open the sally.cfg file.

ii. Under the feature configuration section add the following
line: granularity = “tokens”.

iii. Under the same section, change the variable name
“ngram_delim” to “token_delim” without changing its value
delimiter.

iv. Save changes.

Create the Sally file using the following command.

sally-c asap.cfg asap.raw asap.sally

c) To speed up the loading of the data in “R”, apply the
“sallyPreprocessing.py” Python script with the following command:
python sallyPreprocessing.py asap.sally asap.fsally.

Approved for public release; distribution is unlimited.

28

d) Load the data into “R”

i. Start-up “R” (enter “R” in the terminal).

ii. Load the data via: loadPrismaData (“PRISMA”).

Following the tutorial, additional information is provided about the payload that is
being analyzed.

Keywords:

1) Payload: a string of bytes contained in network communication.

2) T-test: a statistical t-test result is one in which the difference between 2
groups is unlikely to have occurred due to chance.

3) Pearson correlation coefficient: a measure of the linear correlation
between 2 variables X and Y, giving a value between +1 and –1
inclusive.

Converting to XML:

T-shark command to get PDML transformation:

tshark-r “<.pcap_file>” -T pdml -E separator=, > <.pdml_file>

-r : read from file

-T: transform to specified format

-E: Use delimeter

> output to specified file

Command to get all the protocols that exist within the PCAP file to extract all
protocols:

tshark -r test.cap -z io,phs -q | tr -s ' ' | cut -f 2 -d ' ' | tail -n +7 | head -n -1

A-2 Netzob Detailed Evaluation

We evaluated Netzob by running through the example provided on the website
tutorial. We were able to complete the tutorial using the sample data provided on
the website and we then proceeded to rerun the tutorial with our 10-second (s)
ICMP PCAP file.

The following are the steps in the tutorial:

• Import of a PCAP file

Approved for public release; distribution is unlimited.

29

• Format message inference

o Partitionment of messages following a specific delimiter

o Regroupment of messages following a specific key field

o Partitionment of a subset of each message following a sequence
alignment

o Search for relationships in each group of messages

o Modification of the format message to apply found relationships

• Grammar inference

o Generation of an automaton with one main state according to a
captured sequence of messages

o Generation of an automaton with a sequence of states according to
a captured sequence of messages

o Generation of a Prefix Tree Acceptor (PTA) automaton according
to a captured sequence of messages

• Traffic generation and fuzzing

o Generation of messages following the inferred message format of
each group and through visiting the inferred automata

o Fuzzing of an implementation by generating altered message
formats

We tested with 3 versions of Netzob. First, we used the official stable release of the
software (that allows using the guided user interface [GUI]). Second we tried with
the github branch labeled “next”, and third with the source code branch labeled
“master”. It seems, by looking at the Git log that the developers quickly removed
the GUI functionality after the release of Netzob 0.4.1, probably due to several
modifications to the application programming interface (API); making the GUI
interface no longer usable. We noticed that a developer by the name of Georges
was actively updating both branches of the source code (different files in each
branch).

While running Netzob, the first problem occurred when importing the PCAP file
from the tutorial. We had to modify the call to the
“PCAPImporter.readFile(“target_src_v1_session1.pcap”).values()” by adding a
parameter that specified that data only up to the network Layer 3 (i.e., the Internet
Protocol [IP] layer) should be parsed. After fixing the “PCAPImporter” call, the

Approved for public release; distribution is unlimited.

30

tutorial code ran all the way through to completion, but the results were incorrect.
In the next step of the tutorial, the authors show that they partition the messages in
the sample PCAP using a “#” delimeter. This character is used to separate the
commands in the command and control (C2) traffic. In our PCAP file (i.e., the 10-
s live Ping capture), this character was present, but it was not meant to be a
delimeter. We looked into other ways to partition the data.

There are several ways that one can parse symbols (or packet types). The tutorial
uses sequence alignment, but with Ping—in this particular case with the loopback
traffic—the fields were parsed out most correctly when using the simple
partitioning technique (this technique separates data based on the dynamicity of
bytes, whether they change across messages.) Looking more closely at the source
code, we identified the location of the partitioning functions:
“src/netzob/Inference/Vocabular/Format.py”.

In the code, the name of the module is “Format” and the function is called
“splitStatic”. It is possible to call this function with 4 parameters the “unitSize”,
“mergeAdjacentStaticFields”, and “mergeAdjacentDynamicFields”. We obtained
the best results specifying only the unitSize. We also tried splitting the input into
8-bit segments and then using merge to create fields from the ICMP Ping
specification.16 While this did work for display purposes (i.e., splitting fields into
8-bit segments), when merged the field types become aggregate instead of raw
causing incompatibility with the other algorithms in Netzob (e.g., the clustering
algorithm no longer worked on the data). We proceeded by using the splitStatic
function with only the symbol array as an input. We originally thought that we
could create a converter module that could take as input a protocol specification
and then use Netzob to parse symbols based on that specification. However, we
were unsuccessful in finding a nontrivial way to do this.

The next step in the tutorial uses the “clusterByKeyField” function in the Format
module (the actual file is located at
src/netzob/inference/Vocabulary/FormatOperations/ClusterByKeyField.py). This
will use values in the fields that are specified to cluster message types. When we
ran this with Field 5 (i.e., the ICMP type field that contained 2 values: \x00 and
\x08), Netzob (the next branch) would crash stating that the last field in the message
was not aligned correctly (i.e., by the ParallelDataAlignment.py module). We
modified the code to use the DataAlignment module instead. We isolated the
problem in the “ClusterByKeyField.py”; it was using the “\x00” (i.e., valid ASCII)
character to infer the type of the field as ASCII. When “\x08” was read, the
character was invalid (i.e., not a valid ASCII character) and Netzob would crash.
We modified the code to force the type as HexaString. This fixed this problem.

Approved for public release; distribution is unlimited.

31

The splitStatic algorithm worked well with this particular instance of the Ping
traffic (which was loopback traffic, but did not work the same way when using a
capture of pings to a google.com server; this was strange because the Netzob 0.4.1
stable release gave correct results).

We executed the next step in the tutorial (i.e., search for relationships in each group
of messages), but this produced no relationships.

Afterwards, we used the Automata module to generate state machines using
different functions: “generateChainedStateAutomata”,
“generateOneStateAutomata”, and “generatePTAAutomata”. The
“generateChainedStateAutomata” generates all possible states for each unique
transition. The “generateOneStateAutomata” generates a universal receiver (i.e.,
will accept all traffic as valid input). Regardless of what is received, it will respond.
The “generatePTAAutomata” takes as input several communication sessions and
then identifies common paths and merges these into a single automata. The
resulting state machines only consisted of 3 states: start state, open channel, and
close channel (i.e., end state). To generate an automata that can work with real
traffic, the user must pass real traffic into Netzob. Only then will a usable grammar
(i.e., state machine) be generated.

The final steps in the tutorial create a traffic generator and a fuzzer. Because the
previous steps did not yield successful results, we were not able to complete these.

Approved for public release; distribution is unlimited.

32

List of Symbols, Abbreviations, and Acronyms

API Application Programming Interface

ASAP Automatic Semantics-Aware Analysis of Network Payloads

BRITE Boston University Representative Internet Topology Generator

C2 command and control

DNS Domain Name System

FTP File Transfer Protocol

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IP Internet Protocol

NFS Network File System

NIC Network Interface Card

OLSR Optimized Link State Routing

OSPF Open Shortest Path First

OSI Open Standards Interconnect

PDML Packet Details Markup Language

PRISMA Protocol Inspection and State Machine Analysis

PTA Prefix Tree Acceptor

SMB Server Message Block

SMTP Simple Mail Transfer Protocol

Approved for public release; distribution is unlimited.

33

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL SLE I
 J ACOSTA

Approved for public release; distribution is unlimited.

34

INTENTIONALLY LEFT BLANK.

	List of Figures
	1. Introduction
	1.1 General Problem
	1.2 Summary of Methodology

	2. Methods and Procedures
	2.1 Gap Analysis
	2.1.1 A Survey of Commonly Used Protocol Reverse Engineering Tools
	2.1.1.1 Automatic Semantics-Aware Analysis of Network Payloads (ASAP) and Protocol Inspection and State Machine Analysis (PRISMA)
	Alphabet Extraction
	Matrix Factorization
	Generating Communication Templates

	2.1.1.2 Prospex
	2.1.1.3 Netzob

	2.1.2 Applicability and Limitations of Existing Tools for the Model Generator
	2.1.2.1 ASAP
	2.1.2.2 Netzob
	2.1.2.3 Prospex

	2.1.3 Model Generation
	2.1.3.1 Protocol Fields
	2.1.3.2 Field Vocabulary
	2.1.3.3 Grammar (State Machine)

	2.2 Path Forward
	2.2.1 “pdmlExtractor.py”
	2.2.2 “xmlToNs-3Scenario.py”
	2.2.3 “packetTypeExtractor.py”
	2.2.4 “fieldVocab.py”
	2.2.5 “fieldVocabToNs-3Model.py”
	2.2.6 Prospex
	2.2.7 “dotToCppGrammar.py”

	2.3 Accuracy Analysis

	3. Results
	4. Conclusions
	5. References
	Appendix. Detailed Analysis of Protocol Reversing Tools
	A.1 Setting Up the Automatic Semantics-Aware Analysis of Network Payloads (ASAP)/Protocol Inspection and State Machine Analysis (PRISMA)
	A-2 Netzob Detailed Evaluation
	List of Symbols, Abbreviations, and Acronyms

