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We consider the one-dimensional impact problem in which a semi-infinite flyer collides with (and
adheres to) the front face of a stationary target plate of finite thickness, with the back face of the target
bonded to another semi-infinite medium. All three bodies are assumed to be linear elastic and homoge-
neous. Our interest is in explicit expressions for the stress and velocity in the target at all times after
impact. The analysis of this problem is simplified by reducing it to an initial-boundary value problem
for the target only, which is solved by combining the d’Alembert solution of the wave equation with
the Laplace transform method. An appropriate impact boundary condition is required on the front face
of the target. In the literature this is usually taken as a prescribed step in stress or velocity, but the correct
boundary condition involves a linear combination of the unknown stress and velocity at the impact face.
Our solutions are expressed in an apparently new, compact form involving the floor (or greatest-integer)
function. The results are amenable to asymptotic analysis; in particular, solutions for stress-free or rigid
back faces follow easily as limiting cases of the backing impedance, and the long-time asymptotes of
stress and velocity in the target are seen to be independent of the target’s elastic properties. All of our
results are corroborated by derivation of exact discrete solutions from recursive equations for the impact
problems.

Published by Elsevier Ltd.
1. Introduction

A large body of the literature concerning analytical or computa-
tional solutions to ‘‘impact” problems assumes an impact condition
in the form of an applied step in velocity or stress on the face of the
body being impacted (Ma and Huang, 1996; Lapczyk et al., 1998;
Wang and Sun, 2002; Dayal and Bhattacharya, 2006; Wuensche
et al., 2009; Sun et al., 2013; Talebian et al., 2013; Dutta et al.,
2013). However, for true impact in which at least one of the bodies
has finite thickness, is multilayered or is continuously inhomoge-
neous, multiple reflected or scattered waves will arrive at the
impact face and alter the stress and velocity there. Consequently,
the history of the stress and the particle velocity at the impact face
is generally time-dependent and may be difficult to determine in
advance of solution to the problem.

In the current study, we consider the one-dimensional, normal
impact problem in which a semi-infinite flyer collides with a sta-
tionary target plate of finite thickness l, with the rear face of the
target bonded to a semi-infinite backing medium (see Fig. 1). The
flyer, target and backing medium are assumed to be linear elastic
and homogeneous with generally distinct elastic properties. We
also assume that the flyer adheres (or ‘‘welds”) to the front face
of the target, in the sense that we do not allow separation of the
flyer and target after impact in those cases where wave reflections
would otherwise have resulted in separation.1 Of course, this
welding assumption is superfluous in those cases where separation
would not have occurred.

We are primarily interested in deriving closed-form expressions
for the stress and particle velocity in the target at all times after
impact. The solution to this problem is simplified by applying
appropriate boundary conditions to both faces of the target, so that
the one-dimensional wave equation need only be solved in the tar-
get itself. With the x-axis oriented as shown in Fig. 1, let r1ðx; tÞ
and v1ðx; tÞ denote the stress and particle velocity at the point x
in the target at time t, and let z0 denote the impedance of the flyer.
Then the appropriate impact boundary condition on the front face of
the target (x ¼ 0) is

z0v1ð0; tÞ � r1ð0; tÞ ¼ z0V0HðtÞ; ð1Þ
colliding
1).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2015.08.011&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2015.08.011
mailto:george.a.gazonas.civ@mail.mil
http://dx.doi.org/10.1016/j.ijsolstr.2015.08.011
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr
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Fig. 1. A semi-infinite flyer impacting a target of length lwith impact speed V0. The
back surface of the target is bonded to a half-space.

G.A. Gazonas et al. / International Journal of Solids and Structures 75–76 (2015) 172–187 173
where H denotes the Heaviside step function and V0 is speed of the
flyer at the moment of impact (t ¼ 0). The ‘‘þ” sign in (1) is used
when stress is taken positive in compression and the ‘‘�” sign when
stress is taken positive in tension. Note that in applying (1), the par-
ticle velocity and stress at the impact face, v1ð0; tÞ and r1ð0; tÞ, are
regarded as unknown—it is the relationship between them that
determines a boundary condition corresponding to impact. Further-
more, given our assumptions on the flyer, this impact boundary
condition is (with some qualifications) independent of the configu-
ration and properties of the target and of the initial conditions
within the target (see Section 3.2). Hence, (1) may be applied to
other one-dimensional impact problems where interfacial physics
effects such as adhesion (Jayadeep et al., 2014) are negligible.
Alternatively, for computational code verification purposes (1) is
sufficient, but for computational code validation, one may also need
to include interface physics effects (Jayadeep et al., 2014;
Israelachvili, 1991) in models of impact phenomena.

Condition (1) was used (without proof) by Scheidler and
Gazonas (2001) in a study of impact of a semi-infinite flyer on
inhomogeneous elastic media; see also Nicholas and Recht (1990,
Section 1.3.3) for a different impact problem. Chen et al. (2004)
have emphasized the need to account for time dependence of the
stress at the impact face for plate impact on periodically layered
media; and while their analysis properly accounted for this time
dependence, they did not state or use the impact boundary condi-
tion (1).

Our paper is organized as follows. Section 2 contains a brief dis-
cussion of the d’Alembert solution of the one-dimensional wave
equation for a linear elastic solid; this is limited to results that will
be used in the sequel. This section also serves to establish notation
and sign conventions. Section 3 contains our derivation of the
impact boundary condition (1), which utilizes the d’Alembert solu-
tion of the wave equation in the flyer. Some alternative forms of
this condition are discussed, and we determine when the ‘‘impact”
boundary conditions commonly used in the literature are correct —
either exactly or in some asymptotic sense.

In Section 4 we derive simple, explicit formulas for the stress
and velocity in the target for the impact problem described above.
We utilize the impact boundary condition (1) on the front face of
the target and an appropriate boundary condition on the back face,
so that the one-dimensional wave equation need only be solved
within the target. We show that the stress and velocity in the tar-
get can be obtained from the solution of a difference equation for
one of the d’Alembert functions; the Laplace transform method is
used to obtain this solution in terms of a series of Heaviside func-
tions. Next, from the Heaviside series we obtain simpler expres-
sions for the two d’Alembert functions in terms of the floor (or
greatest-integer) function, and these results are used to derive sev-
eral simple, explicit formulas for the stress and velocity in the tar-
get. These concise relations are valid for all times after impact and
all points in the target. In Section 5 we use these results to evaluate
the velocity and stress on either side of the shock.

Additional properties of the solutions are discussed in Sections
6 and 7. In Section 6 we determine the long time asymptotes of the
velocity and stress in the target and show that they are indepen-
dent of the properties of the target. We also determine the condi-
tions for which the stress at the impact face of the target can
(temporarily) become tensile — a situation that indicates separa-
tion of the flyer and target would have occurred were it not for
the assumption that they weld on impact. In Section 7 we obtain
solutions for the special cases where the back face of the target
is either stress-free or rigid. These cases are not included in the
main results, which assume that the impedance of the backing
medium, z2, is nonzero and finite. However, solutions for the
stress-free and rigid cases follow easily from our main results by
taking the limits as z2 ! 0 or 1, respectively.

Section 8 contains plots of the stress and velocity histories at
either the front face or the midpoint of the target for four different
impact problems. For comparison with these analytical solutions,
the figures also include the discrete solutions of a recursive system
of equations for impact on multi-layered targets, derived else-
where (Gazonas and Velo, in preparation), and applied to the
impact boundary value problem studied here. We close with a
discussion of various methods that have been used for solving
one-dimensional, linear elastic, impact-type problems and some
conclusions regarding the implications of the techniques used here
for other elastodynamic problems (Section 9). Closed-form expres-
sions for the jumps in stress and velocity within the target are
derived in Appendix A.

2. The d’Alembert solution of the wave equation

This section contains a brief discussion of the d’Alembert solu-
tion of the one-dimensional wave equation for a linear elastic solid
(Graff, 1975; Eringen and S�uhubi, 1975; Achenbach, 1984;
Drumheller, 1998; Davison, 2008). Only those results used in the
sequel are summarized here. This section also serves to establish
notation and sign conventions. The subscript k can take the values
0, 1 or 2 for the flyer, target or backing medium, respectively.

2.1. Solution for the displacement

We consider one-dimensional deformations of a homogeneous,
linear elastic solid, assuming small displacement gradients. Let
ukðx; tÞ denote the displacement of material k along the direction
of impact at the point x at time t, measured relative to the initial
configuration at t ¼ 0, the moment of impact. Let vkðx; tÞ and
rkðx; tÞ denote the corresponding particle velocity and the stress:

vkðx; tÞ ¼ @uk

@t
; rkðx; tÞ ¼ �Ek

@uk

@x
; ð2Þ

where Ek is the elastic modulus and @uk=@x is the longitudinal
strain. Here and below, the top sign corresponds to the convention
that stress is positive in tension, the bottom sign to the convention
that stress is positive in compression.

For the normal plate impact problem of interest here, there are
no other displacement or strain components. The analysis in this
paper can also be applied to the impact of isotropic, linear elastic
rods provided that lateral inertia can be neglected (Graff, 1975);
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the appropriate elastic modulus in this case is the Young’s modu-
lus, usually denoted by E. For the uniaxial strain state in normal
plate impact, the appropriate elastic modulus is the longitudinal
modulus. For isotropic materials this is given by kþ 2l or, equiva-
lently, by jþ 4

3l, where k;l and j are the Lamé, shear and bulk
moduli. There is no standard notation for the longitudinal modu-
lus, so we have simply used E here.

Momentum balance for material k is given by

� @rk

@x
¼ qk

@vk

@t
; ð3Þ

where qk is the density, assumed positive. The relations (2) and (3)
yield the one-dimensional wave equation for the displacement:

c 2
k
@2uk

@x2
¼ @2uk

@t2
; ck ¼

ffiffiffiffiffiffi
Ek

qk

s
; ð4Þ

where ck is the wave speed. Note that the wave equation for uk is
independent of the sign convention for the stress. d’Alembert’s
general solution of the one-dimensional wave Eq. (4) is

ukðx; tÞ ¼ f kðt � x=ckÞ þ gkðt þ x=ckÞ; ð5Þ

where f k and gk are arbitrary, sufficiently smooth functions on some
interval of the real numbers R. Any initial or boundary conditions
impose restrictions on the functions f k and gk. The first (second)
term on the right in (5) represents a plane longitudinal wave prop-
agating in the positive (negative) x-direction, which is to the right
(left) with the materials oriented as in Fig. 1.
2.2. Solution for the velocity and stress

Let Fk ¼ f 0k and Gk ¼ g0k, where a prime superscript denotes the
derivative. Then by (2) and (5), the velocity and stress satisfy

vkðx; tÞ ¼ Fkðt � x=ckÞ þ Gkðt þ x=ckÞ; ð6Þ

and

rkðx; tÞ ¼ � Ek

ck
�Fkðt � x=ckÞ þ Gkðt þ x=ckÞ½ �: ð7Þ

Henceforth, we take stress positive in compression, so that the bot-
tom (minus) sign holds in (2), (3) and (7). Then

rkðx; tÞ ¼ zk Fkðt � x=ckÞ � Gkðt þ x=ckÞ½ �; ð8Þ

where zk is the impedance:

zk ¼ qkck ¼
Ek

ck
¼

ffiffiffiffiffiffiffiffiffiffi
qkEk

p
: ð9Þ

Unless stated otherwise, we assume that zk;qk; ck and Ek are positive
and finite for each k ¼ 0;1;2. The only exceptions occur at the end
of Section 3.4 where some of the material constants in the flyer
(k ¼ 0) are allowed to approach zero or infinity, and in Sections
7.1 and 7.2 where some of the material constants in the backing
medium (k ¼ 2) are allowed to approach zero or infinity. From (6)
and (8), we see that

2Fkðt � x=ckÞ ¼ vkðx; tÞ þ rkðx; tÞ=zk;
2Gkðt þ x=ckÞ ¼ vkðx; tÞ � rkðx; tÞ=zk:

ð10Þ

These relations are useful for determining the restrictions imposed
on Fk and Gk by initial and boundary conditions. The functions and
ðx; tÞ# Fkðt � x=ckÞ and ðx; tÞ# Gkðt þ x=ckÞ are the Riemann
invariants; they are constant on the characteristic curves
t � x=ck ¼ constant and t þ x=ck ¼ constant, respectively.
2.3. Conditions at the shock front

In the remainder of the paper we will not work with the dis-
placement uk directly. Instead, we will utilize the expressions (6),
(8) and (10) for the velocity vk, stress rk, and d’Alembert functions
Fk and Gk for material k. For the impact problem considered here,
shock waves will be generated in the target, flyer and backing med-
ium. Thus uk will be continuous but only piecewise smooth, and
vk;rk; Fk and Gk will be piecewise continuous and piecewise
smooth (in fact, piecewise constant). If a shock front is located at
the point xs in material k at time ts, then vkðxs; tsÞ and rkðxs; tsÞ
are undefined, at least physically, whereas their one-sided limits
(see Appendix A) exist and are unequal, by definition. On the other
hand, there is no harm in assigning a value to the velocity and
stress at the shock front — reasonable choices being one of the
one-sided limits or their average.

Our solutions for the stress and velocity in the target will be
obtained by first solving for the d’Alembert functions F1 and G1

and then using (6) and (8) to obtain v1 and r1. In solving for the
piecewise continuous functions F1 and G1, it is mathematically
convenient to regard these functions as being defined at all points
on some interval of R, their values at any jump discontinuities
being given by one of the one-sided limits. Consequently, our solu-
tions for v1ðx; tÞ and r1ðx; tÞ will have values assigned on the shock
front. These values have no physical significance, and the use of
different conventions in assigning values to F1 and G1 at their
points of discontinuity could result in different values for v1 and
r1 on the shock front.
3. The impact boundary condition for a semi-infinite flyer

We begin with the derivation of the boundary condition on the
face of the flyer, using the d’Alembert solution of the wave equa-
tion in the flyer. This result may also be derived by the method
of characteristics. The corresponding impact boundary condition
on the target is obtained in Section 3.2. An alternative form of this
impact boundary condition is discussed in Section 3.3. In Sec-
tion 3.4 we determine when the ‘‘impact” boundary conditions
commonly used in the literature are correct — either exactly or
in some asymptotic sense.

3.1. Boundary condition on the flyer

Consider a semi-infinite flyer which is initially stress-free and
traveling in the positive x direction at uniform speed V0 (see
Fig. 1). The flyer impacts the target at the instant t ¼ 0; the
target and the half-space backing it occupy the region x P 0, and
the flyer occupies the half-space x 6 0. The initial conditions
in the flyer are

v0ðx;0Þ ¼ V0 > 0 and r0ðx;0Þ ¼ 0; x 6 0: ð11Þ
The d’Alembert solution for the velocity and stress in the flyer is
given by (6) and (8) with k ¼ 0. On setting k ¼ 0 in (10)1, we have

v0ðx; tÞ þ r0ðx; tÞ=z0 ¼ 2F0ðt � x=c0Þ; x 6 0; t P 0: ð12Þ
On setting t ¼ 0 in (12) and using the initial conditions (11), we see
that V0 ¼ 2F0ð�x=c0Þ for x 6 0; equivalently, 2F0ð~tÞ ¼ V0 for ~t P 0.
Since t � x=c0 P 0 for x and t as in (12), it follows that

v0ðx; tÞ þ r0ðx; tÞ=z0 ¼ V0; x 6 0; t P 0: ð13Þ
On setting x ¼ 0 in the above, we see that the stress and velocity at
the impact face of the flyer are related by

z0v0ð0; tÞ þ r0ð0; tÞ ¼ z0V0; t P 0: ð14Þ



G.A. Gazonas et al. / International Journal of Solids and Structures 75–76 (2015) 172–187 175
3.2. Impact boundary condition on the target

Up to this point the target has not entered the analysis. As long
as the flyer and target are in contact, their displacements, velocities
and stresses must be continuous across the impact interface and
hence coincide at the interface. Thus2

v1ð0; tÞ ¼ v0ð0; tÞ;r1ð0; tÞ ¼ r0ð0; tÞ; 0 < t 6 tc; ð15Þ
where a ‘‘1” subscript is used for target variables and tc is the dura-
tion of contact of the flyer and target, which may be finite or infi-
nite. We do not assume that the velocities of the flyer and target
coincide at t ¼ 0. Indeed, v0ð0;0Þ ¼ V0 by (11), whereas the target
is assumed to be initially at rest and stress-free:

v1ðx;0Þ ¼ 0; r1ðx;0Þ ¼ 0; 0 6 x 6 l; ð16Þ
where l is the length of the target; in particular, v1ð0;0Þ ¼ 0.
Thus v1ð0;0Þ – v0ð0; 0Þ, and more significantly, limx#0v1ðx;0Þ–
limx"0v0ðx;0Þ.

The contact relations (15), together with the boundary
condition (14) on the flyer, yield a relation between the stress
and particle velocity in the target at the impact face x ¼ 0:
z0v1ð0; tÞ þ r1ð0; tÞ ¼ z0V0; 0 < t 6 tc; ð17Þ
see also Nicholas and Recht (1990, Eq. (52)) for impact of a finite
flyer on a finite target (with no backing). Our derivation of (17)
made essential use of the one-dimensional nature of the impact
problem considered here and also of the assumptions that the flyer
is homogeneous,3 linear elastic and semi-infinite. Since no informa-
tion about the target was utilized in the derivation of (17), it follows
that this impact boundary condition is essentially independent of the
configuration and properties of the target and of the initial conditions
within the target.4 The target need not have elastic (let alone linear
elastic) response, it may have any combination of discrete or contin-
uously varying inhomogeneities, and it may be initially deformed
and undergoing non-uniform motion.

If the duration of contact is finite, then the front face of the tar-
get is unstressed once separation occurs, and the appropriate
boundary condition on the front face of the target would be
r1ð0; tÞ ¼ 0 for tc < t < tr , where tr is the first instant at which
the flyer and target regain contact. However, the duration of con-
tact tc cannot be determined in advance except for the simplest
problems. These complications are bypassed by assuming (as is
done here) that the flyer and target weld on impact. Then tc ¼ 1,
and the impact boundary condition (17) becomes5

z0v1ð0; tÞ þ r1ð0; tÞ ¼ z0V0; t > 0: ð18Þ
3.3. Alternative forms of the impact boundary condition

We begin by considering a minor variation of the impact bound-
ary condition (18) — we assume that it also holds at the moment of
impact, t ¼ 0:
2 These relations do not strictly hold at an instant t ¼ ts at which the shock front
(reflected from the back surface of the target) arrives at the flyer/target interface,
since the velocity and stress are undefined at this instant. However, (15) holds in the
sense that v1ð0; tÞ and v0ð0; tÞ have the same the one-sided limits as t ! ts from
above or below, and similarly for the stresses.

3 It can be shown (by a different method) that (17) continues to hold if the density,
elastic modulus and wave speed of the flyer vary with position in such a way that the
impedance of the flyer is constant.

4 This statement requires some qualifications. The duration of contact tc clearly
depends on both the configuration and properties of the target. The initial velocity of
the target (if any) at x ¼ 0 must be less than V0 in order for impact to occur. Any
variations in target properties or initial conditions must be in the x-direction only, so
that the one-dimensional nature of the problem is retained and, in particular, so that
the stress and particle velocity on the impact face are uniform.

5 If stress had been taken positive in tension, then the appropriate boundary
condition would be z0v1ð0; tÞ � r1ð0; tÞ ¼ z0V0.
z0v1ð0; tÞ þ r1ð0; tÞ ¼ z0V0; t P 0: ð19Þ
Since this implies z0v1ð0; 0Þ þ r1ð0;0Þ ¼ z0V0, the initial conditions
(16) cannot hold at x ¼ 0. Instead, the initial conditions are

v1ðx;0Þ ¼ 0; r1ðx;0Þ ¼ 0; 0 < x 6 l; ð20Þ
with v1ð0;0Þ and r1ð0;0Þ to be determined, consistent with (19).
The impact and initial conditions (19) and (20) differ from (18)
and (16) only at a single point in ðx; tÞ space, namely ðx; tÞ ¼ ð0; 0Þ.
One would not expect this difference to appreciably affect the solu-
tion. Indeed, the solutions obtained from the two sets of impact and
initial conditions differ only in the values assigned to the stress and
velocity on the shock front; cf. the discussion in Section 2.3.

We are interested in determining the stress and velocity in the
target for all times t > 0. Conditions in the target at times t < 0 are
irrelevant. Nevertheless, if we regard v1ðx; tÞ and r1ðx; tÞ as defined
for all times t 2 R, then we are free to assume that the target was
stress-free and at rest for all times prior to impact, so that

v1ðx; tÞ ¼ 0; r1ðx; tÞ ¼ 0; 0 6 x 6 l; t < 0: ð21Þ
Clearly, the boundary condition (19) would not apply for t < 0. On
the other hand, if H denotes the Heaviside step function:

HðtÞ ¼ 0; t < 0;
1; t P 0;

�
ð22Þ

then the boundary condition

z0v1ð0; tÞ þ r1ð0; tÞ ¼ z0V0HðtÞ; t 2 R ð23Þ
is consistent with both the impact condition (19) and with (21).
This is the form in which the impact boundary condition was stated
by Scheidler and Gazonas (2001). The conventions described in this
subsection and, in particular, the impact boundary condition in the
form (23), will be used in the sequel.

Finally, recall that the derivation of this impact boundary condi-
tion makes essential use of the assumptions that the flyer is homo-
geneous, linear elastic, and semi-infinite and that the flyer adheres
to the target. Note that since the flyer is assumed to have positive
density, it necessarily has infinite mass. Consequently, our impact
boundary condition is not appropriate for the case of a flyer of
finite length and mass.

3.4. Common ‘‘impact-type” boundary conditions

The two most common ‘‘impact-type” boundary conditions
used in the literature are a step in velocity and a step in stress:

v1ð0; tÞ ¼ V1HðtÞ; V1 > 0; t 2 R; ð24Þ
and

r1ð0; tÞ ¼ R1HðtÞ; R1 > 0; t 2 R: ð25Þ
Here V1 and R1 are assigned constants. In this section we examine
when these conditions truly describe impact — either exactly or in
some limiting sense.

First, consider the case where both the flyer and the target are
homogeneous, linear elastic and semi-infinite. Then both (24) and
(25) hold with V1 and R1 determined by the impact speed V0 of
the flyer and the impedances z0 and z1 of the flyer and target:

V1 ¼ z0
z0 þ z1

V0; R1 ¼ z1V1 ¼ z0z1
z0 þ z1

V0; ð26Þ

see Davison (2008, Eq. (3.21)) and the discussion below. Note that
V1 < V0. It is easily verified that the relations (24)–(26) are consis-
tent with the impact boundary condition (23); that is, if (24)–(26)
hold then so does (23). Of course, when the assumptions in italics
above are satisfied, only one set of conditions, either (24) and



6 If stress had been taken positive in tension, then the appropriate boundary
condition would be r1ðl; tÞ þ z2v1ðl; tÞ ¼ 0; see also Nonaka et al. (1996, Eq. (17)).
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(26)1 or (25) and (26)2, would have to be imposed as a boundary
condition on the target. From (26) it follows that

V0 ¼ z0þz1
z0

V1 ¼ z0þz1
z0z1

R1;

z0 ¼ V1
V0�V1

z1 ¼ R1
z1V0�R1

z1:
ð27Þ

Thus for a given flyer impedance z0, the boundary condition (24)
holds for an arbitrarily prescribed V1 provided that the impact
speed of the flyer is given by the first expression for V0 in (27);
and the boundary condition (25) holds for an arbitrarily prescribed
R1 provided that the impact speed of the flyer is given by the second
expression for V0 in (27). Similarly, for a given flyer speed V0, the
boundary condition (24) holds for an arbitrarily prescribed
V1 < V0 provided that the impedance of the flyer is given by the
first expression for z0 in (27); and the boundary condition (25) holds
for an arbitrarily prescribed R1 < z1V0 provided that the impedance
of the flyer is given by the second expression for z0 in (27).

The boundary condition (24) or (25) is often used for ‘‘impact-
type” problems in which the conditions in italics above are not sat-
isfied. While there is nothing inherently wrong with this, neither
(24) nor (25) is the appropriate boundary condition for impact in
such cases. For example, consider a homogeneous, linear elastic
target of finite length l, with or without a backing medium. Let t�
denote the travel time in the target, that is, the time it takes the
shock wave to travel the length of the target:

t� ¼ l
c1

: ð28Þ

Then 2t� is the time it takes the shock wave to travel from the
front (impact) face of the target, reflect off the back face, and return
to the front face. If (24)–(26) are indeed valid for a semi-infinite
target, then one would expect that these relations hold for all times
t < 2t� in the finite target, but generally not beyond that. In Sec-
tion 5.3 we will show that this result follows easily from our expli-
cit solutions. For a semi-infinite target, the relations (24)–(26)
follow by taking the limit of the result for the finite target as its
length l, and hence the travel time t�, approaches infinity.

Finally, we indicate how the ‘‘impact-type” boundary conditions
(24) and (25) can be obtained as (different) extreme limiting cases
of the true impact boundary condition (23), without imposing any
conditions on the target. First, let V0 ¼ V1 and write (23) as
v1ð0; tÞ ¼ V1HðtÞ � r1ð0; tÞ=z0. Then (24) holds in the limit as the
impedance z0 of the flyer becomes infinite. By (9) with k ¼ 0, this
latter condition corresponds to a flyer of infinite modulus and non-
zero density (i.e., a rigid flyer), or a flyer of infinite density and non-
zero modulus. Next, let V0 ¼ R1=z0, in which case (23) can be
written as r1ð0; tÞ ¼ R1HðtÞ � z0v1ð0; tÞ. Then we obtain (25) in
the limit as the impedance of the flyer goes to zero with R1 fixed,
in which case the speed of the flyer becomes infinite. By Eq. (9), the
flyer has zero impedance if the density is zero and the elastic mod-
ulus is positive and finite, or vice versa.

4. Solution in the target by combined d’Alembert and Laplace
transform methods

In this section we derive explicit formulas for the stress and
velocity in the target for the impact problem described in the intro-
duction. We utilize the impact boundary condition on the front
face of the target (Section 3) and an appropriate boundary condi-
tion on the back face (Section 4.1). In Section 4.2 we express the
impact problem in non-dimensional form and show that the
non-dimensional stress and velocity in the target can be obtained
from the solution of a difference equation for one of the non-
dimensional d’Alembert functions. In Section 4.3 we use the
Laplace transform method to obtain the solution of this difference
equation in terms of a series of Heaviside functions. A simpler form
of the solution for the two non-dimensional d’Alembert functions
in terms of the floor (or greatest-integer) function is obtained in
Section 4.4, and these results are used in Section 4.5 to obtain sev-
eral simple, explicit formulas for the non-dimensional stress and
velocity in the target. These results are recast in dimensional form
in Section 4.6. We follow the conventions in Section 3.3; in
particular, we regard the stress and velocity as defined for all times
t 2 R. However, the explicit formulas for the stress and velocity in
Section 4.6 are only valid for t P 0.

4.1. Back face boundary condition

The d’Alembert solution for the velocity and stress in the
half-space backing the target are given by (6) and (8) with k ¼ 2.
On setting k ¼ 2 in (10)2, we have

2G2ðt þ x=c2Þ ¼ v2ðx; tÞ � r2ðx; tÞ=z2; t 2 R; x P l: ð29Þ
The domain of G2 is all of R. Since the half-space is at rest and
unstressed for all times t 6 0, the right-hand side of (29) is zero
for t 6 0 and x P l. As x and t range over these semi-infinite
intervals, t þ x=c2 takes on all real values. Hence G2 � 0, and (29)
reduces to

r2ðx; tÞ ¼ z2v2ðx; tÞ; t 2 R; x P l: ð30Þ
In particular, at the interface with the target (x ¼ l), the velocity and
stress in the half-space are related by

r2ðl; tÞ ¼ z2v2ðl; tÞ; t 2 R: ð31Þ
Then by continuity of stress and velocity across material interfaces,
the velocity and stress in the target at x ¼ l are related by6

r1ðl; tÞ ¼ z2v1ðl; tÞ; t 2 R: ð32Þ
This boundary condition, like the impact boundary condition (18), is
independent of the properties of the target.

4.2. The d’Alembert solution in the target

From the d’Alembert solution of the wave equation, the velocity
and stress in the target are given by (6) and (8) with k ¼ 1:

v1ðx; tÞ ¼ F1ðt � x=c1Þ þ G1ðt þ x=c1Þ;
r1ðx; tÞ ¼ z1½F1ðt � x=c1Þ � G1ðt þ x=c1Þ�:

ð33Þ

for t 2 R and 0 6 x 6 l. The domains of F1 and G1 are all of R. Recall
that the initial conditions are given by (20) and the conditions prior
to impact by (21). On setting k ¼ 1 in (10) and using (20) and (21),
we obtain the following restrictions on the d’Alembert functions F1

and G1:

F1ð~tÞ ¼ 0; ~t < 0 and G1ð~tÞ ¼ 0; ~t 6 t� ¼ l=c1: ð34Þ
The derivation of the solutions for F1 and G1, and the subsequent
expressions for v1ðx; tÞ and r1ðx; tÞ, are simplified if we cast
the problem in non-dimensional form. We define the
non-dimensional distance y and time s by

y � x
l
¼ x

c1t�
; s � t

t�
¼ c1t

l
; ð35Þ

then 0 6 y 6 1 and s 2 R. For t > 0; c1t is the total distance (includ-
ing reflections) that the wave has traveled from the moment of
impact; hence s is also the total non-dimensional distance the wave
has traveled from the moment of impact. The velocity and stress are
often non-dimensionalized by dividing by the wave speed and elas-
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tic modulus, respectively. For the impact problem considered here,
it turns out to be more convenient to use

vðy; sÞ � v1ðx; tÞ
V1

; rðy; sÞ � r1ðx; tÞ
R1

ð36Þ

for the non-dimensional velocity and stress. Recall that V1 and R1

are given in terms of the impact speed V0 and the impedances z0
and z1 of the flyer and target by the expressions in (26). This choice
is motivated by the fact that V1 and R1 are the initial jumps in
velocity and stress in the target (see Section 5); however, at this
point we simply regard the expressions in (26) as definitions of
V1 and R1.

On dividing the impact boundary condition (23) by z0V0 and
then using (35), (36) with x ¼ 0, the expressions (26) for V1 and
R1, and the fact that HðtÞ ¼ HðsÞ, we obtain

z0
z0 þ z1

vð0; sÞ þ z1
z0 þ z1

rð0; sÞ ¼ HðsÞ; s 2 R: ð37Þ

Similarly, on dividing the back face boundary condition (32) by R1

and using (26), (35) and (36) with x ¼ l, we obtain

rð1; sÞ ¼ z2
z1
vð1; sÞ; s 2 R: ð38Þ

These are the non-dimensional forms of the boundary conditions on
the target. Since the d’Alembert functions F1 and G1 have the
dimensions of velocity and since, by (35),

t � x=c1 ¼ t�ðs� yÞ; ð39Þ
we define non-dimensional d’Alembert functions F and G as
follows:

FðsÞ � F1ðt�sÞ
V1

; GðsÞ � G1ðt�sÞ
V1

: ð40Þ

Then by (33), (36), (39) and (40), the d’Alembert solution for the
non-dimensional velocity and stress in the target is

vðy; sÞ ¼ Fðs� yÞ þ Gðsþ yÞ;
rðy; sÞ ¼ Fðs� yÞ � Gðsþ yÞ; ð41Þ

for s 2 R and 0 6 y 6 1. The domains of F and G are all of R.
The following non-dimensional parameters occur repeatedly in

the sequel:

a ¼ z0 � z1
z0 þ z1

; b ¼ z2 � z1
z2 þ z1

; A ¼ ab: ð42Þ

Since the impedances are positive,

jaj < 1; jbj < 1; jAj < 1: ð43Þ
On substituting (41) with y ¼ 0 into the non-dimensional impact
boundary condition (37) and rearranging terms, we obtain

FðsÞ þ aGðsÞ ¼ HðsÞ; s 2 R: ð44Þ
Similarly, on substituting (41) with y ¼ 1 into the non-dimensional
back face boundary condition (38) and rearranging terms, we obtain

Gðsþ 1Þ ¼ �bFðs� 1Þ; s 2 R: ð45Þ
Also, by (40), the non-dimensional form of the initial conditions
(34) is

FðsÞ ¼ 0; s < 0 and GðsÞ ¼ 0; s 6 1: ð46Þ
Next, observe that the relation (45) is equivalent to

GðsÞ ¼ �bFðs� 2Þ; s 2 R: ð47Þ
On substituting this relation into (44) and using (42)3, we obtain the
following difference equation for F:

FðsÞ � AFðs� 2Þ ¼ HðsÞ; s 2 R: ð48Þ
Also note that by (47) and (46)1, the condition (46)2 can be
strengthened to

GðsÞ ¼ 0; s < 2: ð49Þ
In the next section, we will see that the difference Eq. (48) for F,
subject to the initial condition (46)1, is easily solved by the Laplace
transform method. Then the solution for G follows from (47), and
the non-dimensional velocity and stress can be obtained from (41).

4.3. Solution for F by Laplace transforms

Let f denote a real-valued, piecewise-continuous function
defined on R, with

f ðsÞ ¼ 0; s < 0: ð50Þ
We employ the right-sided or unilateral Laplace transform of f
(Doetsch, 1974):

�f ðsÞ ¼ LffgðsÞ ¼ Lsff ðsÞgðsÞ �
Z 1

0
f ðsÞe�ssds; ð51Þ

where s ¼ rþ ix is generally a complex number with RðsÞ > 0. The
Laplace transform of the Heaviside step function is given by

�HðsÞ ¼ 1
s
: ð52Þ

We also need the Laplace shifting theorem for functions satisfying
(50): if s1 > 0, then

Lsff ðs� s1ÞgðsÞ ¼ e�ss1�f ðsÞ: ð53Þ
On taking the Laplace transform of the difference Eq. (48) for F and
using (52), (46)1, and (53) with f ¼ F and s1 ¼ 2, we obtain

ð1� Ae�2sÞ�FðsÞ ¼ 1
s
: ð54Þ

Since RðsÞ > 0, we have je�2sj ¼ e�2RðsÞ < 1, so that by (43)3,

jAe�2sj < jAj < 1. Hence 1� Ae�2s – 0, and (54) yields the following
expressions for the Laplace transform of F:

FðsÞ ¼ 1
s

1

1� Ae�2s
¼ 1

s
1þ

X1
n¼1
ðAe�2sÞn

" #
¼ 1

s
þ
X1
n¼1

An 1
s
e�2ns: ð55Þ

The inverse transform of (55) yields the non-dimensional d’Alem-
bert function F. On using (52) and the shifting theorem (53) with
f ¼ H and s1 ¼ 2n, we see that

1
s
e�2ns ¼ LsfHðs� 2nÞgðsÞ: ð56Þ

Then by (56) and (52) it follows that F is given by

FðsÞ ¼ HðsÞ þ
X1
n¼1

AnHðs� 2nÞ; s 2 R; ð57Þ

and by (47),

GðsÞ ¼ �bHðs� 2Þ � b
X1
n¼1

AnH s� 2ðnþ 1Þð Þ; s 2 R: ð58Þ

It follows that F has jump discontinuities at the non-dimensional
times s ¼ 0;2;4; . . .; and G has jump discontinuities at the non-
dimensional times s ¼ 2;4;6; . . .

If s < 0, then HðsÞ ¼ Hðs� 2nÞ ¼ 0, and we recover the initial
condition (46)1 from (57). More generally, for any s 2 R there are
only a finite number (possibly zero) of nonzero terms in the sum
in (57), since

Hðs� 2nÞ ¼ 0 iff s� 2n < 0 iff n > s=2; ð59Þ
and Hðs� 2nÞ ¼ 1 otherwise, that is for n 6 s=2. Thus (57)
reduces to
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FðsÞ ¼ HðsÞ þ
X

16n6s=2
An

; s 2 R; ð60Þ

provided the sum is regarded as zero if there is no integer n satisfy-
ing 1 6 n 6 s=2, that is, if s=2 < 1. An analogous result holds for G.

4.4. Solution for F and G in terms of the floor function

If s is not a positive even integer, then there will be no integer
n P 1 that is equal to s=2, in which case it would not be correct to

write the sum in (60) as
Ps=2

n¼1A
n. Let Z denote the set of integers.

The floor function (or greatest-integer function) �b c : R! Z is
defined by the condition that rb c is the greatest integer less than
or equal to the real number r. Some properties of the floor function
are listed below; here r is a real number and n and m are integers:

n 6 r < nþ 1() rb c ¼ n; r � nb c ¼ rb c � n; ð61Þ

n 6 r () n 6 rb c; r < m() rb c 6 m� 1: ð62Þ
On setting r ¼ s=2 in the left relation in (62), we see that (60) can be
written as7

FðsÞ ¼ HðsÞ þ
Xs=2b c

n¼1
An

; s 2 R; ð63Þ

provided the sum is regarded as zero if s=2b c < 1, equivalently, if
s < 2. In particular, (63) yields

FðsÞ ¼
0; s < 0;
1; 0 6 s < 2;
1þ A; 2 6 s < 4:

8><
>: ð64Þ

Next, we claim that

FðsÞ ¼ 1� A s=2b cþ1

1� A
; s P �2; ð65Þ

provided that we use the convention 00 � 1 when A ¼ 0. Since

A0 ¼ 1 for any nonzero A, this convention implies

A0 ¼ 1: ð66Þ
for all A. To prove the claim, first note that for any real number q– 1
and any integer N P 1,

1þ
XN
n¼1

qn ¼ 1� qNþ1

1� q
: ð67Þ

This relation also holds for N ¼ 0 provided the sum is regarded as
zero in this case. Suppose that sP 0. Then by (63),

FðsÞ ¼ 1þP s=2b c
n¼1 An. Since A – 1 and since s=2b cP 0 in this case,

we may apply (67) with q ¼ A and N ¼ s=2b c, which yields the
expression in (65). Now suppose that �2 6 s < 0. In this case
s=2b c ¼ �1, so the right-hand side of (65) reduces to

ð1� A0Þ=ð1� AÞ, which is zero by the convention (66). Since
FðsÞ ¼ 0 for s < 0, (65) gives the correct result for �2 6 s < 0,
which proves the claim.The concise expression in (65) is not valid
for s < �2 since it yields a nonzero result. However, a closed-
form expression for FðsÞ for sP �2 is all that is really needed here,
since by (47) it yields a closed-form expression for GðsÞ for sP 0.
Indeed, since ðs� 2Þ=2b c ¼ s=2� 1b c ¼ s=2b c � 1, from (47) and
(65) we obtain

GðsÞ ¼ �b 1� A s=2b c

1� A
; sP 0: ð68Þ
7 The ceiling function d�e : R! Z is defined by the condition that dre is the smallest
integer greater than or equal to the real number r. Any expression involving floor
functions, such as (63), can be converted to an equivalent expression in terms of
ceiling functions by using the floor-to-ceiling transformation rb c ¼ �d�re.
The concise expression in (68) is not valid for s < 0 since it yields a
nonzero result, contrary to (49). However, for 0 6 s < 2 we have

s=2b c ¼ 0 and thus A s=2b c ¼ 1, so that GðsÞ ¼ 0, consistent with
(49). For 2 6 s < 4 we have s=2b c ¼ 1, so that (68) yields

GðsÞ ¼ �b; 2 6 s < 4: ð69Þ
4.5. Expressions for the non-dimensional velocity and stress in the
target

On substituting the expressions (65) and (68) for F and G into
the relations (41) for the non-dimensional velocity and stress, we
obtain the compact formulas

vðy; sÞ ¼ 1
1� A

1� A ðs�yÞ=2b cþ1 � b 1� A ðsþyÞ=2b c
� �h i

; ð70Þ

rðy; sÞ ¼ 1
1� A

1� A ðs�yÞ=2b cþ1 þ b 1� A ðsþyÞ=2b c
� �h i

: ð71Þ

These relations and those below are valid for all 0 6 y 6 1 but
only for sP 0. At a given non-dimensional position y in the
target, vðy; sÞ and rðy; sÞ suffer jump discontinuities at those
non-dimensional instants sP 0 for which either ðs� yÞ=2b c or
ðsþ yÞ=2b c jump to the next integer value.
To shorten subsequent expressions, we will use an abbreviated

notation for the exponents in (70) and (71). By (28) and (35) (see
also (39)), we have

s� y
2
¼ t � x=c1

2t�
¼ c1t � x

2l
: ð72Þ

Let

Mðy; sÞ � sþ y
2

j k
¼ t þ x=c1

2t�

� �
¼ c1t þ x

2l

� �
� Mðx; tÞ; ð73Þ

and

Nðy; sÞ � s� y
2

j k
þ 1 ¼ t � x=c1

2t�

� �
þ 1 ¼ c1t � x

2l

� �
þ 1 � Nðx; tÞ:

ð74Þ
Mðy; sÞ and Nðy; sÞ are piecewise-constant, integer-valued functions
of y and swhich, for fixed y, are nondecreasing functions of s. While
these functions are well-defined for all real y and s, for use in (70)
and (71) we consider only their values for sP 0 and 0 6 y 6 1.

On rearranging the terms in (70) and (71) and using (73) and
(74), we obtain

vðy; sÞ ¼ 1
1� A

1� b� ANðy;sÞ þ bAMðy;sÞ
h i

; ð75Þ

rðy; sÞ ¼ 1
1� A

1þ b� ANðy;sÞ � bAMðy;sÞ
h i

: ð76Þ

From (42) we have

A ¼ z0 � z1
z0 þ z1

z2 � z1
z2 þ z1

; b ¼ z2 � z1
z2 þ z1

: ð77Þ

It follows that

1� A ¼ 2z1
z1 þ z2

z0 þ z2
z0 þ z1

;

1� b ¼ 2z1
z1 þ z2

; 1þ b ¼ 2z2
z1 þ z2

:

ð78Þ
4.6. Expressions for the velocity and stress in the target

From the non-dimensionalization (36), we see that the particle
velocity v1 and stress r1 are related to the non-dimensional veloc-
ity and stress, v and r, by
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v1ðx; tÞ ¼ V1vðy; sÞ; r1ðx; tÞ ¼ R1rðy; sÞ: ð79Þ
Expressions for v1ðx; tÞ and r1ðx; tÞ for 0 6 x 6 l and t P 0 follow
from (79), the relations for vðy; sÞ and rðy; sÞ in Section 4.5, and
the fact that Mðy; sÞ ¼ Mðx; tÞ and Nðy; sÞ ¼ Nðx; tÞ (see (73) and
(74)). For example, from (75) and (76) we obtain

v1ðx; tÞ ¼ V1

1� A
1� b� ANðx;tÞ þ bAMðx;tÞ
h i

; ð80Þ

r1ðx; tÞ ¼ R1

1� A
1þ b� ANðx;tÞ � bAMðx;tÞ
h i

: ð81Þ

The piecewise-constant, integer-valued functions Mðx; tÞ and Nðx; tÞ
are nondecreasing functions of t for fixed x. Additional properties of
these functions are derived in Section 5.1. For comparison with the
concise expressions (80), (81), we state the solutions in the more
traditional form of an infinite series of Heaviside functions:

v1ðx; tÞ ¼ V1

X1
n¼0

An Hðt � t1Þ � bHðt � t2Þ½ �; ð82Þ

r1ðx; tÞ ¼ R1

X1
n¼0

An Hðt � t1Þ þ bHðt � t2Þ½ �: ð83Þ

where

t1 ¼ 2lnþ x
c1

; t2 ¼ 2lðnþ 1Þ � x
c1

: ð84Þ

These can be obtained by substituting the series solutions (57) and
(58) for F and G into (41) and using (79).

Recall that A and b are given by (77), 1� b and 1� A by (78),
and V1 and R1 by (26). Alternative expressions for the leading coef-
ficients in (80) and (81) are given by

V1

1� A
¼ z0

z1

z1 þ z2
z0 þ z2

V0

2
;

R1

1� A
¼ z1

V1

1� A
¼ z0

z1 þ z2
z0 þ z2

V0

2
:

ð85Þ

For the next set of results, it is convenient to introduce the terms

V1 � z0
z0 þ z2

V0 ¼ z0 þ z1
z0 þ z2

V1; ð86Þ

R1 � z2V1 ¼ z0z2
z0 þ z2

V0 ¼ z0 þ z1
z0 þ z2

z2
z1

R1; ð87Þ

where the expressions on the right follow from (26). Clearly, V1 and
R1 are positive; in Section 6.1 we will show that they are the long
time asymptotes of velocity and stress in the target. On substitution
of (77)2, (78)2,3, (85)–(87) into (80) and (81), we obtain the concise
expressions

v1ðx; tÞ ¼ V1
2

2� z2
z1
þ 1

� 	
ANðx;tÞ þ z2

z1
� 1

� 	
AMðx;tÞ


 �
; ð88Þ

r1ðx; tÞ ¼ R1
2

2� z1
z2
þ 1

� 	
ANðx;tÞ þ z1

z2
� 1

� 	
AMðx;tÞ


 �
: ð89Þ
5. Solutions on either side of the shock

The concise relations for the velocity and stress in Section 4.6
are valid for all times t P 0 and all points 0 6 x 6 l in the target.
We begin this section by evaluating the exponents Mðx; tÞ and
Nðx; tÞ in these relations. These results are used in 5.2 to determine
the position of the shock at each instant and in Section 5.3 to eval-
uate the velocity and stress on either side of the shock. In Appendix
A we use the results in Sections 3–5 to derive several expressions
for the jumps in velocity and stress across the shock.
5.1. Evaluation of the exponents Mðx; tÞ and Nðx; tÞ

We begin by determining the subsets of the ðx; tÞ plane on
which the integer-valued functions Mðx; tÞ and Nðx; tÞ are constant.
Let m be any integer. From the definition (73), we see that

Mðx; tÞ ¼ m ð90aÞ

() t þ x=c1
2t�

� �
¼ m ð90bÞ

() m 6 t þ x=c1
2t�

< mþ 1 ð90cÞ

() 2mt� � x=c1 6 t < 2ðmþ 1Þt� � x=c1 ð90dÞ

() c1ð2mt� � tÞ 6 x < c1½2ðmþ 1Þt� � t�: ð90eÞ
From the definition (74), we see that

Nðx; tÞ ¼ m ð91aÞ

() t � x=c1
2t�

� �
¼ m� 1 ð91bÞ

() m� 1 6 t � x=c1
2t�

< m ð91cÞ

() 2ðm� 1Þt� þ x=c1 6 t < 2mt� þ x=c1 ð91dÞ

() c1ðt � 2mt�Þ < x 6 c1½t � 2ðm� 1Þt��: ð91eÞ
To simplify the subsequent discussion of these results, we introduce
abbreviations for some of the expressions above (the arrow super-
scripts will be motivated in the next subsection):

s m ðxÞ � 2mt� � x=c1 ¼ ð2m� x=lÞt�;
s!m ðxÞ � 2ðm� 1Þt� þ x=c1 ¼ ½2ðm� 1Þ þ x=l�t�;

ð92Þ

and

S m ðtÞ � c1ð2mt� � tÞ ¼ 2ml� c1t;

S!m ðtÞ � c1½t � 2ðm� 1Þt�� ¼ c1t � 2ðm� 1Þl: ð93Þ

Observe that

t ¼ s m ðxÞ () x ¼ S m ðtÞ;
t ¼ s!m ðxÞ () x ¼ S!m ðtÞ:

ð94Þ

Using (92) and (93), we can rewrite the bottom two equivalences in
(90) and (91) as

Mðx; tÞ ¼ m() s m ðxÞ 6 t < s mþ1ðxÞ;
() S m ðtÞ 6 x < S mþ1ðtÞ;

Nðx; tÞ ¼ m() s!m ðxÞ 6 t < s!mþ1ðxÞ;
() S!mþ1ðtÞ < x 6 S!m ðtÞ:

ð95Þ

The relations (90)–(95) are valid for any real numbers x and t. How-
ever, the expressions (80), (81) and (88), (89) for the velocity and
stress in the target are only valid for

0 6 x 6 l and t P 0: ð96Þ
These restrictions are assumed in the sequel. A graphical represen-
tation of the inequalities (95) and (96) is given in Figs. 2 and 3.

Subject to the restrictions (96), for m ¼ 1;2;3; . . . the set of
points in the ðx; tÞ plane given by t ¼ s m ðxÞ is the mth line of jump
discontinuity of the function M; similarly, t ¼ s!m ðxÞ is the mth line
of jump discontinuity of the function N. These lines intersect only
at x ¼ 0 and x ¼ l, that is, at the front and back faces of the target.
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For x ¼ 0 this occurs at t ¼ 2t�;4t�;6t�; . . .; for x ¼ l the intersec-
tions occur at t ¼ t�;3t�;5t�; . . ..

5.2. The shock wave

Since jAj < 1, it follows that AMðx;tÞ and ANðx;tÞ suffer jump discon-
tinuities along the same lines in the ðx; tÞ plane as the exponents M
and N. From the relations (80) and (81) or (88) and (89), these are
also the lines of jump discontinuity of v1ðx; tÞ and r1ðx; tÞ in the
ðx; tÞ plane. In other words, the locus of the shock in the ðx; tÞ plane
is the union of the lines t ¼ s!m ðxÞ and t ¼ s m ðxÞ (equivalently, the
lines x ¼ S!m ðtÞ and x ¼ S m ðtÞ), subject to the restrictions (96), as
m ranges over all positive integers. This is illustrated in Fig. 4.8

The line x ¼ S!m ðtÞ has positive slope and represents the mth
forward propagating shock (m ¼ 1;2;3; . . .). Note that the forward
direction is to the right when the target is oriented as in Fig. 1;
hence the right arrows. The line x ¼ S m ðtÞ has negative slope and
represents the mth backward propagating shock (m ¼ 1;2;3; . . .).
The backward direction is to the left when the target is
oriented as in Fig. 1; hence the left arrows. The changes in the
direction of propagation of the shock at t ¼ t�;3t�;5t�; . . . and
t ¼ 2t�;4t�;6t�; . . . are due to reflection from the back and front
faces of the target, respectively. The triangular shaped regions in
Fig. 4 are the regions in which both M and N are constant. The
relations

Nðx; tÞP Mðx; tÞP 0;
Nðx; tÞ ¼ Mðx; tÞ or Mðx; tÞ þ 1;

ð97Þ

are evident in this figure and also in Figs. 2 and 3; analogous rela-
tions hold for the functions Mðy; sÞ and Nðy; sÞ in (73) and (74). By
(80) and (81) or (88) and (89), it follows that the triangular regions
in Fig. 4 are also regions of constant velocity and stress. As indicated
in the figure, VR

0;V
R
1;V

R
2; . . . and RR

0;R
R
1;R

R
2; . . . denote the sequences

of (constant) velocity and stress values to the right of the shock;
VL

1;V
L
2;V

L
3; . . . and RL

1;R
L
2;R

L
3; . . . denote the sequences of (constant)

velocity and stress values to the left of the shock. Simple expres-
sions for these values will be derived in the next subsection. The
sequences of velocity and stress values at a fixed point x in the
interior of the target are VR

0 ¼ 0; VL
1; V

R
1; V

L
2; V

R
2; . . . and

RR
0 ¼ 0; RL

1; R
R
1; R

L
2; R

R
2; . . ., with VL

1 ¼ V1 and RL
1 ¼ R1, as will be

shown in the next subsection. On the other hand, the sequences
of velocity and stress values at the front face of the target are
VL

1; V
L
2; V

L
3; . . . and RL

1; R
L
2; R

L
3; . . .; and at the rear face they are

VR
0 ¼ 0; VR

1; V
R
2; . . . and RR

0 ¼ 0; RR
1; R

R
2; . . ..

The results described above are expected on physical grounds. A
shock is generated at the front face of the target at the moment of
impact: t ¼ s ¼ 0. It travels at the characteristic (or acoustic) wave
speed c1 of the target material,9 and arrives at the back face of the
target at t ¼ t� ¼ l=c1, the travel time (equivalently, at the non-
dimensional time s ¼ 1). The shock reflects off the back face and
arrives at the front face of the target at t ¼ 2t� (equivalently,
s ¼ 2). Thus the shock completes its first round trip in the target dur-
ing the time interval I1 : 0 6 t 6 2t� (equivalently, 0 6 s 6 2). The
shock then reflects off the front face and completes a second round
trip during the time interval I2 : 2t� 6 t 6 4t� (equivalently,
2 6 s 6 4), and so on for all t P 0. The mth round trip of the shock
wave (m ¼ 1;2;3; . . .) occurs during the time interval

Im : 2ðm� 1Þt� 6 t 6 2mt�: ð98Þ
8 An exception to the results in this paragraph occurs for the special case A ¼ 0.
Note that by (42) or (77), b ¼ 0 implies A ¼ 0.

9 This property does not extend to nonlinear elastic materials, for which the shock
speed depends on the strength of the shock.
We also will refer to this interval itself as the ‘‘mth round trip”.
Aside from the instants 2ðm� 1Þt�; ð2m� 1Þt� and 2mt� at which
the shock is at the boundary of the target, Im is the union of the open
subintervals

I!m : 2ðm� 1Þt� < t < ð2m� 1Þt�;
I m : ð2m� 1Þt� < t < 2mt�:

ð99Þ

These time intervals are illustrated on the right side of Fig. 4. For
t 2 I!m (i.e., during the first half of the mth round trip), the shock
is propagating forward with position S!m ðtÞ given by (93); the region
of the target to the right of the shock (which is ahead of it) has



Fig. 4. Locus of the shock front in the ðx; tÞ plane. M and N are both constant in the triangular shaped regions, and consequently so are the velocity and stress. VR
m and RR

m

(m ¼ 0;1;2; . . .) are the values of the velocity and stress to the right of the shock. VL
m and RL

m (m ¼ 1;2;3; . . .) are the values of the velocity and stress to the left of the shock.
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velocity VR
m�1 and stress RR

m�1; and the region to the left of the shock

(which is behind it) has velocity VL
m and stress RL

m. For t 2 I m (i.e.,
during the second half of themth round trip), the shock is propagat-
ing backward with position S m ðtÞ given by (93); the region of the
target to the right of the shock (which is behind it) has velocity
VR

m and stress RR
m; and the region to the left of the shock (which is

ahead of it) still has velocity VL
m and stress RL

m, since the reflected
shock has yet to alter this state. Finally, from the results in the pre-
vious subsection it follows that the left values of velocity and stress
hold on the forward propagating shock, and the right values of veloc-
ity and stress hold on the backward propagating shock; however, as
discussed in Section 2.3, values assigned to the shock have no real
physical significance.

5.3. Expressions for the velocity and stress on either side of the shock

From Fig. 4 it follows that the mth values of the velocity and
stress on the right side of the shock, VR

m and RR
m, are obtained by

setting Mðx; tÞ ¼ Nðx; tÞ ¼ m in the relations for v1ðx; tÞ and
r1ðx; tÞ in Section 4.6. In particular, on using (88) and (89) and
observing that the impedance ratios cancel, we obtain the follow-
ing relations (for m ¼ 0;1;2 . . .):

VR
m ¼ V1ð1� AmÞ; RR

m ¼ R1ð1� AmÞ ¼ z2V
R
m: ð100Þ

The relation RR
m ¼ z2V

R
m follows from the fact that R1 ¼ z2V1 (see

(87)1). Also, recall that expressions for V1 in terms of V0 or V1 are
given in (86), and expressions for R1 in terms of V0 or R1 are given
in (87). Similarly, from Fig. 4 we see that the mth values of the
velocity and stress on the left side of the shock, VL

m and RL
m, are

obtained by setting Mðx; tÞ ¼ m� 1 and Nðx; tÞ ¼ m in the relations
for v1ðx; tÞ and r1ðx; tÞ in (88) and (89). This yields the following
relations (for m ¼ 1;2;3; . . .):

VL
m ¼ V1 1þ z2 � z1

z0 þ z1
Am�1

� 	
¼ V1

z0 þ z1
z0 þ z2

þ z2 � z1
z2 þ z0

Am�1
� 	

;

ð101Þ

RL
m ¼ R1 1� z2 � z1

z0 þ z1

z0
z2

Am�1
� 	

¼ R1
z0 þ z1
z0 þ z2

z2
z1
� z2 � z1
z2 þ z0

z0
z1

Am�1
� 	

:

ð102Þ
In deriving these relations, we used the identities

1
2

z2
z1
� 1

� 	
� 1
2

z2
z1
þ 1

� 	
A ¼ z2 � z1

z0 þ z1
; ð103Þ

1
2

z1
z2
þ 1

� 	
A� 1

2
z1
z2
� 1

� 	
¼ z2 � z1

z0 þ z1

z0
z2

: ð104Þ

The expressions on the right in (101) and (102) follow from (86)
and (87).

On setting m ¼ 0 in (100) and using A0 ¼ 1 (see (66)), we see
that

VR
0 ¼ RR

0 ¼ 0; ð105Þ
as indicated in Fig. 4. That is, the region ahead of the first forward
propagating shock is stress-free and at rest, consistent with the
initial conditions. On setting m ¼ 1 in the expressions on the right

(101), (102) and using A0 ¼ 1, we find that

VL
1 ¼ V1 and RL

1 ¼ R1; ð106Þ
as indicated in Fig. 4. That is, during the first round trip of the shock
the region to the left of the shock has velocity V1 and stress R1 given
by (26). In particular, the conditions (24) and (25) on the front face
of the target hold for t < 2t�, as claimed in Section 3.4.

On setting m ¼ 1 in (100), we obtain the relations on the left
below and also the relation on the far right for RR

1:

VR
1 ¼ V1ð1� AÞ ¼ 2z1

z1 þ z2
V1 ¼ 2z0z1

ðz0 þ z1Þðz1 þ z2Þ V0 > 0; ð107Þ

RR
1 ¼ R1ð1� AÞ ¼ 2z2

z1 þ z2
R1 ¼ 2z0z1z2

ðz0 þ z1Þðz1 þ z2Þ V0 ¼ z2V
R
1 > 0:

ð108Þ

Then the expressions for VR
1 and RR

1 in terms of V1 follow from (86),
(87) and (78)1, and the expressions in terms of V0 follow from (26).

6. Additional properties of the solutions

Throughout this section we continue to assume that z0; z1, and
z2 are positive and finite. The limiting cases z2 ! 0 or 1 are
considered in Section 7.
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6.1. Long time asymptotes of velocity and stress

Let x be any point in the target. Recall thatMðx; tÞ and Nðx; tÞ are
given by (73) and (74). Clearly,

Mðx; tÞ ! 1 and Nðx; tÞ ! 1 as t !1: ð109Þ
Since jAj < 1, it follows that

AMðx;tÞ ! 0 and ANðx;tÞ ! 0 as t !1: ð110Þ
Now refer to the expressions (88) and (89) for the velocity and the
stress. On taking the limit as t !1 and using (110), we see that

v1ðx; tÞ ! V1 > 0 and r1ðx; tÞ ! R1 > 0 as t !1: ð111Þ
Thus V1 and R1 are the long time asymptotes of velocity and stress
in the target. This conclusion also follows from (100)–(102). From
(86) and (87) we see that V1 and R1 depend only on the impact
speed V0 and the impedances of the flyer and backing material. It
follows that at all points in the target, the long time asymptotes of
the velocity and stress are positive and independent of the properties
of the target.10

Since the times t in the mth round trip Im of the shock (cf. (98))
approach1 as m!1, and since jAj < 1, from the jump conditions
in Appendix A we conclude that

½½v1��ðtÞ ! 0 and ½½r1��ðtÞ ! 0 as t !1: ð112Þ
This result also follows directly from (A.4) and (110).

6.2. Sign of the velocity and stress

During the first round trip of the shock, the velocity and stress
to the right of the shock are zero when the wave is propagating for-
ward, that is for 0 < t < t� (see Fig. 4 or (105)). However, for t > t�
and for all points x to the right of the shock, we have v1ðx; tÞ > 0 and
r1ðx; tÞ > 0, that is, the particle velocity is in the direction of impact
and the stress is compressive. Indeed, for t > t� the velocity and
stress to the right of the shock take on the sequence of values
VR

1;V
R
2; . . . and RR

1;R
R
2; . . ., as determined by (100). Since jAj < 1

and V1 and R1 are positive, it follows that

VR
m > 0 and RR

m > 0 for m ¼ 1;2;3; . . . : ð113Þ
From (106) the velocity VL

1 ¼ V1 and stress RL
1 ¼ R1 to the left of the

shock during the first round trip are positive, a result which is to be
expected for the impact problem considered here. On the other
hand, the sign of VL

m and RL
m for m > 1 is not so obvious. For those

cases where wave reflections would have resulted in separation of
the flyer and target if such separation had been permitted, we
expect that the‘‘welding” condition will result in a temporary11

state of tensile stress at the flyer-target interface as well as at all
points to the left of the shock. The problem that we now address
is to determine the conditions under which this can occur.

For the remainder of this section we assume that t > 2t� and
hence that t 2 Im for some integer m P 2. The stress RL

m to the left

of the shock is given by (102), and it follows that RL
m < 0 if and only

if

z2 � z1
z0 þ z1

z0
z2

Am�1
> 1: ðtensile stress criterionÞ ð114Þ

Clearly, this condition requires that z2 – z1 and A– 0. Since A can be
positive or negative depending on the relative magnitudes of the
impedances (see (77)1), there would seem to be three cases to
10 As will be shown in Sections 7.1 and 7.2, this conclusion is also true if the back
face of the target is either stress-free or rigidly fixed, with the exception that R1 ¼ 0
in the former case and V1 ¼ 0 in the latter case.
11 That this tensile state is necessarily temporary follows from (111).
consider: (1) z2 > z1 and A > 0 ; (2) z2 > z1 and A < 0, in which case

Am�1 must be positive, and hence m odd; (3) z2 < z1 and A < 0, in

which case Am�1 must be negative, and hence m even. However,

we can rule out the first two cases. By (A.3), RL
m ¼ RR

m�1 þ R1A
m�1

for t 2 I!m . Since R1 > 0 and since RR
m�1 > 0 for m P 2 (as shown in

the first paragraph above), we see that a necessary (but not suffi-

cient) condition for RL
m < 0 when m P 2 is that Am�1

< 0, which is
possible if and only if A < 0 and m is even. This rules out cases (1)
and (2) above. Now restrict attention to case (3):

z2 < z1; A < 0; m 2 f2;4;6; . . .g: ð115Þ
We claim that if RL

n < 0 for some n 2 f4;6; . . .g, then in fact RL
m < 0

for all m 2 f2; . . . ;n� 2g. It follows that if the stress to the left of the
shock ever becomes tensile, then it first becomes tensile during (the
entire) second round trip of the shock.12 To prove this, it suffices to
show that if (114) holds for some m ¼ n 2 f4;6; . . .g, then it holds
for all m 2 f2; . . . ;n� 2g. But the latter property follows easily from
the former since jAjm1 > jAjm2 for 0 < m1 < m2 and jAj < 1.

Referring to the expression (77)1 for A, we see that the inequal-
ities in (115), together with the assumption that all impedances are
positive, are equivalent to the inequalities

0 < z2 < z1 < z0: ð116Þ
This and the condition thatm P 2 is even are necessary but not suf-
ficient for RL

m < 0. A necessary and sufficient condition is obtained
by determining the additional restrictions imposed on z0; z1; z2
and m by the inequality (114). We will restrict attention to the case
m ¼ 2. From the result in the previous paragraph, we know that if
(114) holds for some even m > 2 then it is necessarily holds for
m ¼ 2. To put this another way, satisfaction of (114) for m ¼ 2 is
necessary (but not sufficient) for (114) to hold for other even values
of m > 2.

For m ¼ 2, the inequality (114) reduces to

z2 � z1
z0 þ z1

z0
z2

A > 1; ð117Þ

and substitution of the expression (77)1 for A yields, after some
algebraic manipulations, the equivalent inequality

pðz10Þ < 0; pðzÞ � z2 � ð1� z20Þzþ 3z20; ð118Þ
where

z10 � z1=z0; z20 � z2=z0: ð119Þ
Then the inequalities (116) are equivalent to

0 < z20 < z10 < 1: ð120Þ
Since the graph of pðzÞ is concave up, pðzÞ can take on negative val-
ues if and only if it has two distinct real roots, say z� < zþ, in which
case pðz10Þ < 0 if and only if

z� < z10 < zþ: ð121Þ
The roots z� of pðzÞ depend on z20 and are given by

2z� ¼ 1� 2z20 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qðz20Þ

p
; qðzÞ � z2 � 14zþ 1: ð122Þ

These roots are real and distinct if and only if qðz20Þ > 0. The roots of
qðzÞ are 7� 4

ffiffiffi
3
p

. Since the graph of qðzÞ is concave up, qðz20Þ > 0 if
and only if z20 < 7� 4

ffiffiffi
3
p

or z20 > 7þ 4
ffiffiffi
3
p

. But the latter inequality
violates (120), so we must have

0 < z20 < 7� 4
ffiffiffi
3
p

< 0:071797: ð123Þ
12 If the assumption that the flyer and target weld on impact were not imposed, then
a tensile stress cannot be supported at the front face of the target. Consequently,
separation of the flyer and target, if it occurs at all, would necessarily occur at
t ¼ tc ¼ 2t�.
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Summarizing, we have shown that pðz10Þ < 0 if and only if (123)
and (121) hold, provided that the middle and right inequalities in
(120) are also satisfied in this case. This turns out to be the case,
although we omit the proof. Then from the earlier discussion it fol-
lows that RL

2 < 0 (that is, the stress to the left of the shock is tensile
during the second round trip: 2t� < t < 4t�) if and only if the impe-
dance ratio z20 � z2=z0 satisfies (123) and the impedance ratio
z10 � z1=z0 satisfies (121),with z� determined by z20 as in (122). Once
z20 and z10 have been chosen to satisfy these conditions, all three
impedance ratios are determined since z1=z2 ¼ z10=z20; hence, the
selection of z20; z10 and one of the impedances determines all three
impedances. For example, z20 ¼ 1=20 satisfies (123). Thenffiffiffiffiffiffiffiffiffiffiffiffiffi
qðz20Þ

p ¼ 11=20; z� ¼ 1=5 and zþ ¼ 3=4, so that (121) is satisfied
if we take z10 ¼ 1=2. If we choose z1 ¼ 1, then z0 ¼ z1=z10 ¼ 2,
and z2 ¼ z20z0 ¼ 1=10, and for this set of impedances RL

2 < 0. A plot
of the stress and velocity histories at the impact face for an impact
problem with this particular set of impedances is given in
Section 8.

7. Solutions for special cases of the impedance

In this section we consider the special cases z2 ¼ 0 (Section 7.1),
and z2 ¼ 1 (Section 7.2). The analysis up to this point has also
assumed that z2 is positive and finite, so the results for the cases
z2 ¼ 0 and z2 ¼ 1 are obtained by taking limits of our earlier
results as z2 approaches zero or infinity.

7.1. Target with stress-free back face ðz2 ¼ 0Þ

In this section, we derive solutions for the impact problem
when the back face of the target is stress-free:

r1ðl; tÞ ¼ 0; t 2 R: ð124Þ
This boundary condition corresponds to the case where there is no
backing material; it also follows from the back face boundary con-
dition (32) in the limit as

z2 ! 0: ð125Þ
Consequently, the appropriate relations for the stress and velocity
in the target for the stress-free boundary condition (124) can be
obtained by taking the limit of the results in Sections 4–6 as
z2 ! 0. 13. From (42) we see that a is unchanged as z2 ! 0, whereas

b! �1; A! �a ¼ z1 � z0
z1 þ z0

ð126Þ

in this case. By (85)–(87), we see that as z2 ! 0,

V1

1� A
! V0

2
;

R1

1� A
! z1

V0

2
; V1 ! V0; R1 ! 0: ð127Þ

On using (126) and (127)1,2 in (80) and (81), we see that in the limit
as z2 ! 0 the velocity and stress are given by

v1ðx; tÞ ¼ V0

2
2� ANðx;tÞ � AMðx;tÞ
h i

;

r1ðx; tÞ ¼ z1
V0

2
�ANðx;tÞ þ AMðx;tÞ
h i

;

ð128Þ

for any t P 0 and 0 6 x 6 l, with A as in (126). Here we have used
the fact that the nonnegative, piecewise-constant, integer-valued
functions M and N defined in (73) and (74) are independent of z2.
13 Actually, this statement requires proof, as does the analogous statement for the
fixed back face (z2 !1) in the next subsection. The solutions for stress-free or fixed
back faces can also be derived directly by procedures analogous to those used in
Sections 4–6. We have done this, and the results agree with those derived here by
taking limits of the back face impedance. This agreement is also corroborated (for two
special cases) by the discrete solutions in Section 8.
From (128) and (110), or from (111) and (127)3,4, we see that

v1ðx; tÞ ! V0 > 0 and r1ðx; tÞ ! 0 as t !1: ð129Þ
At all points in the target, the long time asymptote of the velocity is

the impact speed of the flyer and the long time asymptote of the stress
is zero, independent of the properties of the target.

Alternative expressions for the stress and velocity hold on
either side of the shock. Form ¼ 0;1;2; . . ., themth values of veloc-
ity and stress on the right side of the shock are obtained from (100)
and (127)3,4:

RR
m ¼ 0; VR

m ¼ V0 1� Am� 

: ð130Þ

Note the zero stress condition above is consistent with the bound-
ary condition (124). For m ¼ 1;2;3; . . ., the mth values of velocity
and stress on the left side of the shock are given by

RL
m ¼ R1A

m�1
; VL

m ¼ V0 1� z1
z0 þ z1

Am�1
� 	

: ð131Þ

The expression for VL
m follows from (127)3 and the relation on the

left in (101) as z2 ! 0. The relation for RL
m on the left in (102) is

indeterminate as z2 ! 0; the relation on the right approaches the
result above.

Finally, by (131)1, we see that the stress to the left of the shock
is tensile during the mth round trip if and only if A < 0 and m is
even; and by (126), A < 0 iff z0 > z1. Thus if z0 > z1 then the stress
to the left of the shock is tensile during the 2nd, 4th, 6th, . . .round
trips; see Section 8 for a particular example of this case.

7.2. Target with fixed back face ðz2 ¼ 1Þ

In this section, we derive solutions for the impact problem
when the back face of the target is fixed:

v1ðl; tÞ ¼ 0; t 2 R: ð132Þ
This boundary condition corresponds to the case where the backing
medium is rigid; it follows from the back face boundary condition
(32) on dividing by z2 and then taking the limit as

z2 !1: ð133Þ
Consequently, the appropriate relations for the stress and velocity
in the target for the rigid boundary condition (132) can be obtained
by taking the limit of the results in Sections 4–6 as z2 !1. From
(42) we see that a is unchanged as z2 !1, whereas

b! 1; A! a ¼ z0 � z1
z0 þ z1

ð134Þ

in this case. By (85)–(87), we see that as z2 !1,

V1

1� A
! z0

z1

V0

2
;

R1

1� A
! z0

V0

2
; V1 ! 0; R1 ! z0V0: ð135Þ

On using (134) and (135)1,2 in (80) and (81), we see that in the limit
as z2 !1 the velocity and stress are given by

v1ðx; tÞ ¼ z0
z1

V0

2
�ANðx;tÞ þ AMðx;tÞ
h i

;

r1ðx; tÞ ¼ z0
V0

2
2� ANðx;tÞ � AMðx;tÞ
h i

;

ð136Þ

for any t P 0 and 0 6 x 6 l, with A as in (134). From (136) and (110),
or from (111) and (135)3,4, we see that

v1ðx; tÞ ! 0 and r1ðx; tÞ ! z0V0 > 0 as t !1: ð137Þ
At all points in the target, the long time asymptote of the velocity is

zero and the long time asymptote of the stress is the product of the
impedance and impact speed of the flyer, independent of the properties
of the target.
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Alternative expressions for the stress and velocity hold on
either side of the shock. For m ¼ 0;1;2; . . ., themth values of veloc-
ity and stress on the right side of the shock are obtained from (100)
and (135)3,4:

VR
m ¼ 0; RR

m ¼ z0V0 1� Am� 

: ð138Þ

Note that the zero velocity condition above is consistent with the
boundary condition (132). For m ¼ 1;2;3; . . ., the mth values of
velocity and stress on the left side of the shock are given by

VL
m ¼ V1A

m�1
; RL

m ¼ z0V0 1� z0
z0 þ z1

Am�1
� 	

: ð139Þ

The expression for RL
m follows from (135)4 and the relation on the

left in (102) in the limit as z2 !1. The relation for VL
m on the left

in (101) is indeterminate as z2 !1; the relation on the right
approaches the result above.

Finally, since jAj < 1 and z0=ðz0 þ z1Þ < 1, from (138) and (139)
we see that the stress is never tensile in this case.
for impact speed V0 ¼ 5. The flyer, target and backing impedances are z0 ¼ 4; z1 ¼ 2
and z2 ¼ 1:5, respectively.

Fig. 7. Stress and particle velocity histories at the midpoint of the target (x ¼ l=2)
8. Stress and velocity histories for several impact problems

In this section we plot the time histories of the stress and
particle velocity at either the front face or the midpoint of the
target for four different impact problems. The results are shown
in Figs. 5–8. Also included in these figures are the long-time
asymptotic relations for the stress and velocity and, for Figs. 5
and 6, the numerical values of these asymptotes. In all four exam-
ples the velocity of the flyer is V0 ¼ 5. The Time on the horizontal
axis is the non-dimensional time s ¼ t=t�. The Time can also be
interpreted as the dimensional time t provided that the travel time
t� ¼ 1, in which case we must have l ¼ c1 since t� ¼ l=c1. The stress
and velocity values are dimensional, that is, r1 and v1.

Fig. 5 is a plot of the stress and velocity histories at the impact
face (x ¼ 0) for flyer, target and backing impedances of
z0 ¼ 2; z1 ¼ 1 and z2 ¼ 1=10, respectively. The histories are calcu-
lated from the relations (88) and (89). The impedances are taken
from the example at the end of Section 6.2, which is a case for
which the stress should temporarily becomes tensile after the first
round trip of the shock. As is evident in the figure, the stress is neg-
ative, and hence tensile, for non-dimensional times 2 < s < 4. Note
that since the stress and velocity at the impact face is not constant
Fig. 5. Stress and particle velocity histories at the front face of the target (x ¼ 0) for
impact speed V0 ¼ 5. The flyer, target and backing impedances are z0 ¼ 2; z1 ¼ 1
and z2 ¼ 1=10, respectively. Observe that the stress is tensile for non-dimensional
times 2 < s < 4.

for a stress-free back face. The flyer and target impedances are z0 ¼ 4 and z1 ¼ 2,
and the impact speed is V0 ¼ 5.

Fig. 8. Stress and particle velocity histories at the midpoint of the target (x ¼ l=2)
for a rigid back face. The flyer and target impedances are z0 ¼ 4 and z1 ¼ 2, and the
impact speed is V0 ¼ 5.
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after impact, the common ‘‘impact-type” boundary conditions,
consisting of a step in stress or velocity at the front face of the tar-
get, would provide an incorrect solution to this impact problem.
Fig. 6 is for the case of a backing material with impedance
z2 ¼ 1:5; the histories are calculated from the relations (88) and
(89). Figs. 6–8 are plots of the stress and velocity histories at the
midpoint of the target, x ¼ l=2, with flyer and target impedances
of z0 ¼ 4 and z1 ¼ 2. Fig. 7 is for the case of a stress-free back face,
and Fig. 8 is for the case of a rigid back face; the time histories are
calculated from the relations (128) and (136), respectively.
Since z0 > z1, the tensile stress during the 2nd and 4th round trips
for the stress-free case in Fig. 7 is consistent with the observation
at the end of Section 7.1.

In a companion paper (Gazonas and Velo, in preparation), we
develop an algorithm for solving impact problems in multilayered
media with an arbitrary number of homogeneous layers. The algo-
rithm becomes especially useful for impact problems involving
many layers, where explicit analytical solutions may be intract-
able; see also Gazonas and Velo (2012) and Velo et al. (2009) for
related work involving other loading conditions. The algorithm is
based on the method of characteristics and involves a coupled sys-
tem of recursive relations for the sequences of stress and velocity
values in the interior14 of each layer; a discrete version of the impact
boundary condition (18) is used. Closed-form solutions of the system
of recursive relations are obtained by using the z-transform. Figs. 6–
8 include the corresponding discrete solutions for the particular
impact problems considered in these figures. The figures demon-
strate the agreement between the explicit analytical solutions in
Sections 4.6 and 7 and the explicit discrete solutions from Gazonas
and Velo (in preparation) for all the three back face boundary condi-
tions: a semi-infinite backing medium, a stress-free or fixed back
face. In addition, for the cases considered here we have also verified
that the analytical and discrete solutions are in agreement with the
values for the velocity and stress on either side of the shock obtained
from the expressions in Sections 5.3 and 7.15
9. Discussion and conclusions

We begin with a discussion of other methods (both classical
and more recent) for solving the one dimensional wave
equation in multilayered, linear elastic media (Sections 9.1 and
9.2). This is followed by a discussion of the techniques used here
(Section 9.3).

9.1. Time-domain d’Alembert methods

Techniques based on d’Alembert’s solution of the one-
dimensional wave equation are quite common and have been
extremely effective; cf. Goldsmith (2001, p. 38) or Graff (1975, p.
95) for the solution of simplified rod impact problems in linear
elastic media. In more recent studies, Rossikhin and Shitikova
(2007) considered the thermoelastic rod impact problem using a
time-domain d’Alembert formalism. Similar time-domain solutions
were developed by Bityurin (2011) who investigated rod stability
due to repeated rod impact onto a rigid barrier. Hu et al. (2003)
considered the impact problem of a rigid sphere onto a free rod
and validated a hybrid St. Venant–Hertz impact model with
experimental measurements of strain and velocity at fixed
positions in the rods. The problem of wave propagation induced
14 For this reason, the discrete solution is not plotted in Fig. 5.
15 In Gazonas and Velo (in preparation) we give an algebraic proof that for the
impact problems considered in this paper and for arbitrary values of the parameters,
the closed-form discrete solutions in Gazonas and Velo (in preparation) are
equivalent to the the relations (100)–(102), (130) and (131) or (138) and (139) for
the velocity and stress on either side of the shock.
by impact was solved using the d’Alembert method by Yu et al.
(2010) and was subsequently used to verify an explicit space time
finite-volume scheme for solving linear/nonlinear hyperbolic
systems.

9.2. Other semi-analytical methods

Analytical methods other than the d’Alembert solution have
been used to solve more difficult impact and wave propagation
problems, and Laplace transform methods are almost universally
applied to transform and simplify the governing equations. In such
cases, a number of either analytical or numerical inverse Laplace
transform techniques have been used to invert the transformed
solutions back into the time-domain. For example, Schwarz et al.
(2010) invoked the so-called Laguerre polynomial technique for
Laplace transform inversion and derived solutions for rod interac-
tions with deformable barriers applicable to stamping tools,
whereas Werner and Fischer (1995) determined the inverse
Laplace transform using the method-of-residues for problems
involving the sudden arrest of rods in motion. The use of residue
calculus and the evaluation of the Bromwich integral (akin to the
Heaviside expansion theorem, cf. Fodor (1965, p. 87)) for impact
and wave propagation problems results in solutions that exhibit
the Gibbs phenomenon (Bracewell, 1965), as they are written in
terms of an infinite series of transcendental functions. One may
also invoke the method of separation of variables and Fourier anal-
ysis by superimposing waves of different wavelengths to generate
solutions to the wave equation (Graff, 1975); such methods of
superposition are generally inefficient for solving elastodynamic
problems with jump discontinuities and they also suffer from the
Gibbs phenomenon. More sophisticated integral representation
solutions of the wave equation can be derived using a Green’s func-
tion formalism and often combine both Laplace and Fourier trans-
forms (Graff, 1975; Achenbach, 1984).

Finally, we mention the class of discrete methods for solving the
wave equation in multi-layered media which, for certain loading
conditions, yield exact solutions. These methods are represented
by a set of coupled recursion relations for the stress and velocity
in the layers. A variety of recursive solutions to the wave equation
have been developed for impact-type problems (Drumheller, 1998;
Gazonas and Velo, in preparation), wave propagation and inverse
problems arising in geophysics (Bube and Burridge, 1983), reso-
nance phenomena in multilayered media (Gazonas and Velo,
2012), and optimal design problems (Velo et al., 2009).

9.3. Combined d’Alembert and Laplace transform methods

Less common are solution methodologies that combine the
d’Alembert solution with Laplace transformmethods, as illustrated
in some recent wave propagation (Hopkins and Gazonas, 2011)
and impact (Randow and Gazonas, 2009; Gazonas et al., 2014;
Gazonas et al., 2015) studies. This combined analytical approach
was employed in the current study.

Two additional features of the current study are the application
of an impact boundary condition on the front face of the target and
the use of the floor (or greatest integer) function. The impact
boundary condition (1), together with the more conventional back
face boundary condition (32), allowed us to reduce the impact
problem to an initial-boundary value problem for the target alone.
Both of these boundary conditions are, with some qualifications,
independent of the target properties. The use of the floor function
allowed us to express the Heaviside series for the Laplace trans-
form solution of the d’Alembert functions in a simple explicit form.
This led to apparently new, compact expressions for the stress and
particle velocity in the target which are amenable to long-time
asymptotic analysis.
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Floor function constructs are used ubiquitously in mathematical
programming (Iverson, 1962), number theory (Hardy and Wright,
1979), and related unsolved number-theoretic problems (Guy,
1994). Since a subset of these solutions is exact (i.e., they exhibit
no round off error), they form an important contribution to the
class of benchmark problems (Idesman et al., 2009) relevant to ver-
ification of large-scale computational codes (Oberkampf and Roy,
2010).

Our results are corroborated by discrete solutions of a recursive
system of equations, derived in Gazonas and Velo (in preparation),
and applied to the impact boundary value problem studied here.
On the other hand, the agreement of the two methods provides
partial verification of the these recursive methods for this special
case. This is important since exact, analytical solutions for a wider
class of impact problems involving targets with multiple layers are
difficult to obtain.

Our current work in this area indicates that the impact bound-
ary condition (1) is also applicable to the impact of a semi-infinite
elastic flyer on a piezoelectric target backed by a semi-infinite elas-
tic half-space (Gazonas et al., 2014). Furthermore, this boundary
condition can be modified to apply to both elastic and piezoelectric
flyers of finite thickness (Gazonas et al., 2015).

The use of floor functions for solving problems in elastodynam-
ics has implications beyond problems involving impact. For exam-
ple, the classic problem of a finite elastic strip fixed at x ¼ 0 with a
transient traction pðtÞ applied at x ¼ l, cf. Eringen and S�uhubi
(1975, Section 6.6), can also be written in explicit form using floor
functions. Also, the solution for a string (with unit wave speed)
subjected to a transient displacement f ðtÞ at x ¼ 0 with the end
x ¼ l allowed to slide freely along a line perpendicular to the unde-
formed string, cf. Courant and Hilbert (1962, pp. 508–510), is also
solvable in terms of floor functions.
16 The relation (A.5) can be established independently of (A.2) and (A.3). Since there
is no wave reflection during either of the time intervals in question, momentum
balance across the shock is given by ½½r1�� ¼ q1U1½½v1��, where U1 is the shock velocity
(i.e., the signed speed): U1 ¼ �c1, with the þ (�) case holding when the wave in the
target is propagating in the positive (negative) x direction.
Appendix A. The jumps in stress and velocity across the shock

Let SðtÞ denote the position of the shock at time t P 0. At an
instant t when SðtÞ is in the interior of the target, that is,
0 < x < l, the jump in a field variable u across the shock, denoted
by ½½u��, is defined as follows:

½½u��ðtÞ � lim
x!SðtÞ

frombehindtheshock

uðx; tÞ � lim
x!SðtÞ

fromaheadoftheshock

uðx; tÞ

¼ lim
~t # t

uðSðtÞ;~tÞ � lim
~t " t

uðSðtÞ;~tÞ: ðA:1Þ

The opposite sign convention, that is, (A.1)1 with the two limits
interchanged, is also used in some of the literature. The equivalence
of these relations is easily seen from Fig. 4 if we recall that for a for-
ward propagating shock, positions x to the right of the shock are
ahead of it and positions x to the left of the shock are behind it,
while for a backward propagating shock the reverse is true. The
relation on the right is also well-defined at an instant t when SðtÞ
is on the front or back face of the target, so this is the definition
of the jump that will be used in these cases. Observe that ½½u�� is
positive (negative) if and only if the value of u behind the shock
is larger (smaller) than the value of u ahead of the shock, equiva-
lently, if u increases (decreases) on the passage of the shock. Of
course, ½½u�� ¼ 0 if and only if u is continuous. The shock wave is
compressive (tensile) at the instant t if ½½r1��ðtÞ is positive (negative),
that is, if the stress behind the shock exceeds (is exceeded by) the
stress ahead of it. Note that this definition refers to the sign
of the jump in stress, not to the signs of the stress on either side
of the shock. Now consider the jump in velocity and stress across
the shock during the mth round trip Im (m ¼ 1;2;3; . . .). Restricting
attention to those instants t at which the shock front SðtÞ lies in the
interior of the specimen, we claim that
½½v1��ðtÞ ¼

VL
m � VR

m�1 ¼ V1A
m�1

; t 2 I!m ;

¼ z0
z0þz1 V0A

m�1
;

VR
m � VL

m ¼ �bV1A
m�1

; t 2 I m ;

¼ � z2�z1
z2þz1

z0
z0þz1 V0A

m�1
;

8>>>>>>><
>>>>>>>:

ðA:2Þ

½½r1��ðtÞ ¼

RL
m � RR

m�1 ¼ R1A
m�1

; t 2 I!m ;

¼ z0z1
z0þz1 V0A

m�1
;

RR
m � RL

m ¼ bR1A
m�1

; t 2 I m ;

¼ z2�z1
z2þz1

z0z1
z0þz1 V0A

m�1
;

8>>>>>>><
>>>>>>>:

ðA:3Þ

The relations on the left follow immediately from Fig. 4 and the def-
inition (A.1) of the jump. The top expressions on the right can be
obtained from the relations (100)–(102) for VR

m;R
R
m;V

L
m and RL

m after
some algebraic manipulations; we can also proceed as in the next
paragraph. The bottom expressions on the right follow from (77)2
and (26). From (80) and (81) we see that the jumps in velocity
and stress at any time t P 0 are given by

½½v1��ðtÞ ¼ V1

A� 1
½½AN ��ðtÞ � b½½AM��ðtÞ
h i

;

½½r1��ðtÞ ¼ R1

A� 1
½½AN ��ðtÞ þ b½½AM��ðtÞ
h i

:

ðA:4Þ

Consider the case where t 2 I!m . Then from Figs. 2, 3 or 4, Mðx; tÞ is a
continuous function of x and t, and (A.4) reduces to

½½v1��ðtÞ ¼ V1

A� 1
½½AN��ðtÞ; ½½r1��ðtÞ ¼ R1

A� 1
½½AN ��ðtÞ:

From Fig. 4 and the definition (A.1) of the jump, we see that

½½AN ��ðtÞ ¼ Am � Am�1 ¼ ðA� 1ÞAm�1, which together with the above
relations yields the top middle expressions in (A.2) and (A.3). Sim-
ilar arguments yield the bottom middle expressions; note that in
this latter case Nðx; tÞ is continuous and Mðx; tÞ suffers a jump dis-
continuity. This completes the proof of (A.2) and (A.3).

From (42) we see that the sign of A depends on the signs of the
impedance differences z0 � z1 and z2 � z1. Consequently, by (A.2)
and (A.3), the signs of the jumps in velocity and stress depend on
the signs of these impedance differences and, if A < 0, on whether
m is even or odd. From the middle or left expressions in (A.2) and
(A.3), we see that the jump in velocity (stress) across the backward
propagating shocks is a constant multiple, namely �b (þb), of the
corresponding jump across the forward propagating shocks. Also,
from the middle expressions for ½½v1��ðtÞ and ½½r1��ðtÞ and the fact
that R1 ¼ z1V1 (see (26)), or directly form the expressions on the
right in (A.2) and (A.3), we see that

½½r1��ðtÞ ¼ �z1½½v1��ðtÞ ðin the interior of the targetÞ; ðA:5Þ
independent ofm and also independent of the properties of the flyer
and backing medium. Here the ‘‘þ” case holds for forward propagat-
ing shocks and the ‘‘�” case holds for the backward propagating
shocks.16

From (66) and (A.2)–(A.3) withm ¼ 1, or directly from Fig. 4, we
see that the jumps in velocity and stress across the first forward
propagating shock (t 2 I!1 : 0 < t < t�) are given by V1 and R1,
respectively. These are also the jumps in velocity and stress at
the front face of the target at the moment of impact, t ¼ 0. How-
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ever, the definition of the jump on the left side of (A.1) does not
apply at the front or back face of the target for times t > 0, and
the relations (A.2) and (A.3) are not valid there. At the front and
back faces, the velocity and stress suffer jumps at any instant when
shock reflection occurs, and we apply the expression for the jump
on the right in (A.1). For the back face, shock reflection occurs at
t ¼ t�;3t�;5t�; . . . (see Fig. 4), and the jumps in velocity and stress
at these instants are given by

½½v1�� ð2m� 1Þt�ð Þ ¼ VR
m � VR

m�1 ¼ VR
1A

m�1
; ðA:6Þ

½½r1�� ð2m� 1Þt�ð Þ ¼ RR
m � RR

m�1 ¼ RR
1A

m�1
; ðA:7Þ

for m ¼ 1;2;3; . . .. Recall that expressions for VR
1 and RR

1 are given in
(107) and (108). For the front face, shock reflection occurs at
t ¼ 2t�;4t�;6t�; . . ., and the jumps in velocity and stress at these
instants are given by

½½v1��ð2mt�Þ ¼ VL
mþ1 � VL

m ¼
z1 � z2
z0 þ z1

� VR
1A

m�1
; ðA:8Þ

½½r1��ð2mt�Þ ¼ RL
mþ1 � RL

m ¼
z2 � z1
z2 þ z0

z0
z2
� RR

1A
m�1

; ðA:9Þ

for m ¼ 1;2;3; . . .. Note that these are constant (i.e., independent of
m) multiples of the corresponding jumps on the back face. The rela-
tions on the left in (A.6)–(A.9) follow easily from Fig. 4. The relations
on the right follow from (100)–(102) and (107)–(108). They can also
be obtained from (A.4); note that M and N suffer jump discontinu-
ities simultaneously in these cases. Since RR

1 ¼ z2V
R
1 (see (108)), the

relations (A.6)–(A.9) imply17 that for t ¼ t�;3t�;5t�; . . .,

½½r1��ðtÞ ¼ z2½½v1��ðtÞ ðon the back faceÞ; ðA:10Þ
and for t ¼ 2t�;4t�;6t�; . . .,

½½r1��ðtÞ ¼ �z0½½v1��ðtÞ ðon the front faceÞ: ðA:11Þ
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