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The mechanical properties of light have found widespread use in the manipulation of gas-phase
atoms and ions, helping create new states of matter and realize complex quantum interactions.
The field of cavity-optomechanics strives to scale this interaction to much larger, even human-sized
mechanical objects. Going beyond the canonical Fabry-Perot cavity with a movable mirror, here
we explore a new paradigm in which multiple cavity-optomechanical elements are wired together to
form optomechanical circuits. Using a pair of optomechanical cavities coupled together via a phonon
waveguide we demonstrate a tunable delay and filter for microwave-over-optical signal processing. In
addition, we realize a tight-binding form of mechanical coupling between distant optomechanical cav-
ities, leading to direct phonon exchange without dissipation in the waveguide. These measurements
indicate the feasibility of phonon-routing based information processing in optomechanical crystal
circuitry, and further, to the possibility of realizing topological phases of photons and phonons in
optomechanical cavity lattices.

I. INTRODUCTION

Microscopic optical and microwave cavities, with their
wavelength or even sub-wavelength mode size, have re-
cently been used to greatly enhance the radiation pres-
sure interaction between electromagnetic waves trapped
in the cavity and mechanical vibrations of the cavity
walls [1]. Technical advances in our ability to fabricate
structures of ever smaller size and higher quality has led
to the demonstration of a number of new phenomena, in-
cluding laser cooling of mechanical resonators into their
quantum ground state [2, 3], optomechanically-induced
electromagnetic transparency [4–6], and microwave sig-
nal processing [7, 8]. To date these experiments have
largely involved single cavity elements. A new paradigm,
enabled by chip-scale cavity-optomechanics, involves the
integration of multiple optomechanical cavities together
to realize extended photon-phonon excitations for classi-
cal and quantum information processing applications [9–
11]. Among the different types of optomechanical sys-
tems currently being studied, the device architecture
based on thin-film optomechanical crystals [12–16] is
a particularly promising integration platform given the
large attainable radiation-pressure coupling and the abil-
ity to create photonic and phononic band-gap waveg-
uides.

In an integrated optomechanical network composed of
cavities and waveguides, propagating phonons can be
routed and stored among different nodes as controlled
by driving laser fields, providing various information pro-
cessing functions - such as buffering, delay, and filtering -
in a chip-scale footprint due to the slow velocity of acous-
tic waves [17–19]. As an initial step towards realizing
more complex multi-element cavity-optomechanical sys-
tems, here we explore the optical excitation and routing
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of GHz phonons in a small optomechanical circuit con-
sisting of two optomechanical crystal cavities connected
by a dispersion-engineered phonon waveguide. Pulsed
and continuous-wave measurements are first used to char-
acterize the coupling efficiency and phonon propagation
properties of the system. Utilizing separate optical driv-
ing fields for each optomechanical cavity, we use this sys-
tem to demonstrate an optically-tunable microwave de-
lay line in which microwave-over-optical signals sent in
one cavity port are efficiently converted into outgoing
microwave-over-optical signals on the other cavity port.

Owing to the continuum of modes supported by the
phonon waveguide, a tight-binding type of interaction
between distant cavities may also be realized. Such ideas
have recently been explored utilizing photonic waveg-
uides, both in the optical domain with photonic crystal
cavities [20] and in the microwave domain with super-
conducting qubits [21]. Here we use a phonon waveg-
uide to strongly couple two distant optomechanical cav-
ities, leading to an exchange-type phonon routing. The
hybridized mechanical cavity modes, while spatially ex-
tended, nevertheless have strong optomechanical cou-
pling with both localized optical cavity modes which are
not hybridized. Such a feature can be used to create
mechanical transducers capable of bridging two sepa-
rated physical systems [22], such as in quantum wave-
length conversion between optical and superconducting
microwave systems [23–26] and coupling between solid
state spins [27–29]. Scaling such strong coupling to arrays
of cavity elements may also enable novel optomechani-
cal metamaterials, where in combination with a spatially
distributed phase pattern of the optical driving field [30],
topological phases for photons and phonons are expected
to arise [31, 32].
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FIG. 1. GHz dispersion-engineerable phonon waveguide. a, A schematic diagram of the single cavity-waveguide device.
a and b represent the optical and mechanical cavity modes. The mechanical cavity mode couples to the phonon waveguide at
rate γe and has an optically induced decay rate γOM. b, Scanning electron microscope (SEM) image of a silicon optomechanical
cavity-waveguide device based on the scheme of a. c, Theoretical band structure of the phonon waveguide employed in this
work. Green curve is the waveguide breathing mode and yellow curves are the bands of the phononic shielding. Inset on the
right is the modal profile of the waveguide breathing mode corresponding to wavevector k = 0.8π

a
. d, Optically transduced

mechanical power spectral density (PSD) of a typical device showing a few hybridized cavity-waveguide resonances. e, Group
velocity as a function of frequency across the breathing mode waveguide band. Green is the theoretical curve and red dots are
the measured data.

II. PHONON WAVEGUIDE
CHARACTERIZATION

While integrated phonon waveguides with frequency
bands of kHz to a few hundred MHz have been pre-
viously studied [33–35], here we explore the properties
of thin-film, dispersion engineered phonon waveguides
in the GHz frequency range. A schematic diagram and
SEM image of a cavity-waveguide device used to study
such phonon waveguide properties are shown in Fig. 1a
and Fig. 1b, respectively. The device is fabricated from
the 220 nm silicon device layer of a silicon-on-insulator
wafer (see App. A), and consists of several parts: an op-
tomechanical cavity with co-localized optical and acous-
tic resonances, an optical coupling waveguide, and a long
phonon waveguide section which is end-fire coupled to the
cavity. The optomechanical cavity is realized in a pho-
tonic crystal nanobeam which supports an optical reso-
nance at λc ≈ 1550 nm in the telecom wavelength band
that is strongly coupled through the elasto-optic radi-
ation pressure effect to a “breathing mode” mechanical
resonance of the beam at a frequency of ωm/2π ≈ 6 GHz.
One end of the nanobeam is terminated by a two di-
mensional phononic crystal mirror with a full phononic
bandgap in the relevant frequency range [15]; the other
end is connected to the phonon waveguide consisting of

a similarly patterned central beam region surrounded by
phononic bandgap shielding on either side. The phonon
waveguide is designed to have large extrinsic coupling
γe to the nanobeam cavity mode, leading to hybridiza-
tion of the localized cavity mode and the nearly-resonant
phonon waveguide modes. The optical coupling waveg-
uide is fabricated in the near-field of the nanobeam cavity
(bottom beam of Fig. 1b), allowing for evanescent cou-
pling of laser light into and out of the cavity. A single
optical fiber taper is used to couple light into the on-
chip coupling waveguide, and a photonic crystal mirror
is etched in to the end of the optical coupling waveguide
so that light coupled into the nanobeam cavity can be
recollected by the optical fiber taper as per Ref. [36].

Figure 1c shows the band structure of the phonon
waveguide with silicon slab thickness d = 220 nm and
lattice constant a = a0 = 480 nm, numerically simu-
lated using the finite-element method [37]. For clarity,
only the bands with even z−symmetry (out-of-plane di-
rection) are shown, with the green curve corresponding
to the breathing mode waveguide band. For a lattice
constant of a0 = 480 nm this band has a bandwidth of
approximately 1 GHz surrounding the 6 GHz frequency
of the localized acoustic mode of the nanobeam cavity.
Scaling of the planar waveguide dimensions by scale fac-
tor s′ = a/a0, where a is the new lattice constant, re-
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sults in an approximate scaling of the waveguide bands
by (s′)−1. This is a good approximation for the lower ly-
ing bands of thin structures in which d/a0 ≤ 1. As such,
here we plot the bandstructure in terms of a (unitless)
normalized frequency s = (f/6 GHz)s′, where f is the
physical waveguide band frequency. With the phonon
waveguide terminated on one end by the nanobeam cav-
ity and on the other end by cutting out a slot in the center
beam, the continuous waveguide band is transformed into
discrete waveguide resonances with free spectral range
fFSR = vg/(2l), where vg = |dω/dk| is the group ve-
locity of the band and l is the length of the waveguide.
For those waveguide modes spectrally located within a
bandwidth γe of the localized cavity mode, optical exci-
tation of the optomechanical cavity can be used to detect
phonons propagating in the waveguide section of the de-
vice.

Optical excitation and detection of the waveguide
phonon resonances are performed using a tunable nar-
rowband laser with frequency (ωp) blue-detuned from the
optical cavity frequency (ωc) by the mechanical cavity
frequency (ωm), ∆ ≡ ωp − ωc ≈ ωm. Efficient Stokes
scattering of the laser pump field occurs for the mechan-
ical breathing mode resonances of the cavity-waveguide
system which lie within an optical cavity linewidth (κ) of
the bare mechanical frequency ωm. For the blue-detuned
sideband pumping employed throughout this work, the
mechanical modes also experience amplification by the
optical pump wave corresponding to a negative (phonon)
decay rate of γOM = −4g2

0nc/κ, where g0 is the vacuum
optomechanical coupling rate characterizing the strength
of the radiation pressure interaction [2], nc is intra-cavity
photon number determined by the optical pump power,
and κ is optical cavity damping rate.

All experiments are performed at room temperature
and atmospheric pressure. The reflected optical signal
from the cavity is detected on a photodetector, with
the beating of the pump wave and resulting Stokes
waves yielding a photocurrent spectrum containing the
(mostly) thermal motion of the mechanical resonances of
the cavity-waveguide system. Figure 1d shows a typ-
ical microwave photocurrent spectrum of a fabricated
device with a waveguide length l = 145 µm, cavity-to-
waveguide coupling rate γe/2π = 2.4 MHz, and loaded
optical cavity linewidth κ/2π = 0.8 GHz. A series of hy-
bridized modes with free-spectral range fFSR = 4 MHz
are observed around the main cavity resonance peak at
ωm/2π = 6.017 GHz, from which one can infer a waveg-
uide group velocity of vg = 1160 m/s. In order to trace
out the group velocity evolution along the entire breath-
ing mode waveguide band a set of devices is fabricated
with the planar dimensions of the waveguide scaled by
different scaling factors s′ = a/a0. The nanobeam cav-
ity parameters are held fixed. In this way the waveguide
band can be shifted in frequency relative to the nomi-
nally fixed cavity, allowing us to effectively scan across
the whole waveguide band using the cavity as a frequency
(and spatial mode) filter. Figure 1e shows the measured

group velocity evolution along the waveguide band as in-
ferred from the measured fFSR of the waveguide reso-
nances versus normalized frequency s. The green curve
corresponds to the theoretically calculated group velocity
curve. We note that in the lower frequency portion of the
band there exists two k-points for each frequency, result-
ing in two group velocity curves, a feature also seen in the
measured data. In analogy to the slow light in photonic
crystals [19], here we measure slow phonon group veloc-
ities [35] near both band edges as well as at the band
minimum occurring near k ≈ 0.5(π/a). The minimum
measured phonon group velocity is as small as 150 m/s,
a reduction by a factor of 40 compared to the group ve-
locity of transverse acoustic waves in bulk silicon at room
temperature.

III. OPTOMECHANICAL MICROWAVE DELAY
LINE AND FILTER

We next study the utility of cavity-waveguide optome-
chanical systems for coherent microwave-over-optical sig-
nal processing. Similar signal processing based on stimu-
lated Brillouin scattering has recently been investigated
in photonic nanoscale waveguides [38–40]. Here we em-
ploy cavities as localized sites for enhancing the interac-
tion of photons and phonons, and phonon waveguides for
the routing and filtering of microwave signals. The ba-
sic circuit, shown schematically in Fig. 2a, consists of two
optomechanical cavities, labeled L and R, which are con-
nected by a common phonon waveguide. The microwave
signal encoded in the single sideband of an optical car-
rier with wavelength λL, is fed into cavity L which coher-
ently drives the localized cavity breathing mode through
the radiation-pressure force. The excited phonons then
couple into the phonon waveguide and propagate to cav-
ity R, providing the desired delay and filter functions for
the microwave signal. In cavity R, the arriving phonons
modulate the internal optical field, re-encoding the mi-
crowave signal on an outgoing carrier at wavelength λR.

A schematic of the experimental set-up used to mea-
sure the two-cavity system is shown in Fig. 2b. SEM
images of the cavity and waveguide elements as they
are arranged in the optomechanical circuit are shown in
Fig. 2c. An adiabatic fiber-to-chip coupling waveguide
followed by a ’Y’-branch splitter is used to couple laser
light into and out of each of the cavity devices using a
single optical fiber taper. The two nanobeams are de-
signed to have similar mechanical cavity frequencies but
different optical resonant frequencies so that they may
be simultaneously and independently probed using two
separate laser sources (see App. A).

A typical mechanical spectrum of the double-cavity
system with phonon waveguide length l = 43 µm is
shown in Fig. 2c. For this device the two funda-
mental optical cavity modes OL(R) have wavelength
λL(R) = 1539(1559) nm and linewidth κL(R) = 2π ×
1.15(0.80) GHz. The blue curve corresponds to blue-
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FIG. 2. Microwave signal processing using optomechanical cavity-waveguide system. a, An optomechanical scheme
for microwave signal processing relying on phonon routing. b, Schematic of the experimental set-up. VOA, variable optical
attenuator; FPC, fiber polarizer controller; PG, pulse generator; EOM, elector-optic modulator; λ-(D)mux, wavelength (de-
)multiplexer; PD, photodetector; EDFA, erbium doped fiber amplifier; SA, spectrum analyzer; NA, network analyzer; BPF,
bandpass filter; OS, oscilloscope. c, SEM image of the double-cavity device, showing the ’Y’-branch optical splitter which feeds
both left and right optical cavities and the intermediary mechanical waveguide that couples the left and right cavities together.
The mechanical spectrum of the device as measured from cavity L (blue curve) and R (orange curve) is shown in the top inset.

detuned sideband pumping of cavity L (∆L/2π = 6 GHz;
PpL = 180 µW; ncL = 1200) and the laser resonant
with cavity R turned off. The orange curve is for similar
pumping of cavity R (∆R/2π = 6 GHz; PpR = 50 µW;
ncR = 360). The two spectra are seen to share a number
of common resonances, a result of the connecting phonon
waveguide. We label the mechanical resonances as Lj
(Rk), with the index j (k) indicating the relative optical
coupling strength of the resonance to cavity L (R). The
most intense mechanical resonance peaks in the cavity
spectra, L1 (= R4) and R1, are found to have vacuum
optomechanical coupling rates of g0L1

/2π = 0.85 MHz
to optical mode OL and g0R1

/2π = 1.39 MHz to op-
tical mode OR, respectively, determined from the vari-
ation of the mechanical linewidth with pump power.
The intrinsic Q-factor of the measured mechanical res-
onances are all approximately 1500 as determined from
the resonance peak linewidths at low optical probe power
(γi/2π ≈ 3.7 MHz).

We next study the propagation of short phonon pulses
within the double-cavity system. In this experiment
the two cavities are simultaneously being probed with
two separate continuous wave lasers (PpL = 80 µW,

ncL = 530; PpR = 50 µW, ncR = 360), each tuned to
the blue sideband of their respective cavity resonance.
A 20 ns microwave pulse is used to phase modulate the
laser light input to cavity L at a frequency of 5.952 GHz
resonant with the L1 mechanical resonance, exciting a
coherent phonon population in cavity L (see App. A).
Figure 3a shows the optically-transduced signal in both
cavities after the initial excitation pulse. For pulses with
bandwidth larger than the free-spectral range (FSR) of
the waveguide modes connecting the two cavities, the
delay associated with phonons traversing the waveguide
can be resolved and is given by, τ = 1/2fFSR. Multiple
bounces of the initial phonon pulse are seen in the sig-
nal from each cavity, with a period between bounces of
58 ns (corresponding to τ = 29 ns) consistent with the
measured FSR of 17 MHz. The pulse propagation can
be simulated with coupled mode equations (see App. B),
and are shown as dashed lines in Fig. 3a. From a fit
of the model to the measured pulsed response, the ex-
trinsic mechanical cavity-to-waveguide coupling rate is
estimated to be γeL(R)/2π = 35(26) MHz for the L (R)
cavity, corresponding to an internal efficiency of phonon
transmission from cavity L to R of 89% (67%) excluding
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FIG. 3. Pulsed and CW signal propagation. a, A short
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simulated results. b, CW microwave propagation from cavity
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Ps = −20 dBm. d, |SRL|2 spectrum around R1 resonance cor-
responding to peak delay of 13.3 µs. Red curve is a Lorentzian
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(including) phonon waveguide decay.

Continuous-wave (CW) measurements of the same de-
vice are presented in Fig. 3b in which the frequency (ω)
of the phase modulation applied to the laser light sent
into cavity L is varied. The displayed S−matrix com-
ponent SRL (see App. B) is for an average optical pump
power of PpL(R) = 80 µW for both cavities. Signal de-
lay in this case can be inferred from the phase φ of SRL,
τ = − dφ

dω , where τ now includes both the delay asso-
ciated with propagation through the phonon waveguide
and the resonant storage time in each cavity. Unlike pre-
viously studied optomechanically-induced transparency
in a single cavity [4–6], where delay is associated with

reduced transmission because of the destructive interfer-
ence between direct optical transmission and phonon me-
diated optical transmission, here the delay purely relies
on phonons as no light directly propagates through the
waveguide and one can simultaneously realize high trans-
mission efficiency and large delay. For blue-detuned side-
band pumping, which results in parametric amplification
of the phonon signal, the peak optical transmission gain
between cavities for the phonon-waveguide mediated pro-
cess can be greater than unity, and is given for excitation
of mechanical resonance Lj (= Rk) by,

Gj,k,max =
4CLjCRk

(1− CLj − CRk)2
, (1)

where CLj(Rk) = |γOM,Lj(Rk)|/γi is the cooperativity be-
tween the Lj (= Rk) mechanical resonance and the OL(R)

optical cavity mode. This is the internal gain, and ne-
glects optical loss outside of the cavities and photodetec-
tor inefficiency.

Figure 3c shows the measured delay for a 5.991 GHz
microwave signal resonant with the R1 mode as a func-
tion of the optical pump power sent into cavity R for
fixed pump power PpL = 0.2 mW in cavity L. The delay
is tunable with optical pump power, reaching a value as
large as τ = 13.3 µs for PpR = 0.21 mW. Figure 3d dis-
plays the measured S−matrix amplitude spectrum cor-
responding to the longest measured delay, showing a nar-
row 3-dB bandwidth of 17 kHz and a peak internal gain
of 3 dB. Viewed as a tunable bandwidth microwave fil-
ter [38, 41, 42], this device realizes an out of band rejec-
tion of up to 70 dB and a thermal-noise-limited sensitiv-
ity of −30 dBm referred to the microwave input of the
electro-optic phase modulator (see App. D).

IV. WAVEGUIDE-MEDIATED DISTANT
MECHANICAL COUPLING

In addition to guiding the propagation of acoustic
waves, phonon waveguides may also be used to medi-
ate coupling between distant optomechanical cavities via
virtual phonons, i.e. without energy distribution in the
mediating waveguide modes. Such a scenario can be
used to realize highly efficient signal conversion between
cavity elements, or in the case of mechanical sensing,
may be employed to realize new sensing modalities in
which read-out and sensor are separated spatially. As
recently demonstrated for optical photons in photonic
crystals [20], when the cavity-to-waveguide coupling rate
is substantially smaller than the FSR of the waveguide
modes, γe/2π � fFSR, the excitation of real waveg-
uide phonons is suppressed and only second-order virtual
transitions between cavity and waveguide modes con-
tribute to the inter-cavity coupling. For nearly degen-
erate bare cavity modes the waveguide mediated inter-
cavity coupling strength scales as γ̄e =

√
γeLγeR, and for
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γ̄e > γi+γOM such a configuration can provide both high
internal (i.e. phonon routing between cavities) and exter-
nal (i.e. phonon-photon exchange in the cavity) efficiency
for the microwave filter demonstrated in the previous sec-
tion.

Figure 4a shows the measured (thermal) mechanical
spectra of a device with two optomechanical cavities cou-
pled together by a 30 µm long phonon waveguide which
is designed to have γe/2/pi� fFSR. This device is simi-
lar to that in Fig. 2c with one key difference: the central
holes of the waveguide have been removed, reducing the
cavity-to-waveguide coupling. An optically-transduced
spectrum measured through both the left (L) and right
(R) optical cavities is shown. The two hybridized me-
chanical cavity modes, labeled C+ and C−, have a fre-
quency splitting ∆+−/2π = 4 MHz and are separated
from the nearest waveguide mode by δ = 17 MHz. Both
of the C+ and C− mechanical resonances are measured
to have large optomechanical couplings of over 700 kHz
with both optical cavity modes, indicating strong mixing
of the L and R mechanical cavity modes. The weakly
transduced waveguide modes are measured to have a FSR
of fFSR = 54 MHz.

From the matrix of optomechanical rates between the
hybridized mechanical modes and the (uncoupled) op-
tical cavity modes we determine a waveguide-mediated
coupling of V/2π = 1.94± 0.06 MHz and a bare mechan-
ical mode splitting of ∆LR/2π = 0.98 ± 0.48 MHz (see
App. E). The coupling rate between nearly degenerate
L and R mechanical cavity modes can be shown to be
given to lowest order by V = γ̄e/ sin(πδ/fFSR), yield-
ing an average cavity-to-waveguide coupling of γ̄e/2π ≈
1.62 MHz, consistent with the numerically-simulated de-
sign value for this device. Despite the distant separation
between the two cavities, phonons can nevertheless tun-
nel between them via virtual excitation of the waveguide
modes. To show this, a 50 ns pulse of a 5.95 GHz mi-
crowave modulation signal is applied to the optical laser
beam input to optical cavity L, locally exciting a coherent
phonon population in the left cavity. Following the pulse,
Fig. 4b shows the resulting oscillation of the phonon pop-
ulation between the two cavities. The measured period
of oscillation is 250 ns, corresponding to a Rabi frequency
of 4 MHz commensurate with the hybridized mode split-
ting ∆+−/2π. This result should be contrasted with the
previously demonstrated phonon pulse bouncing shown
in Fig. 3, where the period is set by the free spectral
range of the waveguide modes.

V. DISCUSSION

The devices presented in this work, involving pairs of
optomechanical cavity elements connected together by a
phononic waveguide, demonstrate the feasibility of creat-
ing small optomechanical crystal circuits for microwave-
over-optical signal processing and novel sensing modal-
ities. Advantages of the optomechanical approach are
myriad. For instance, the use of radiation pressure as op-
posed to the piezo-electric effect to couple to microwave
phonons allows one to work with a wider variety of ma-
terials, such as silicon in the devices studied here, and to
realize high efficiency of signal conversion. Purely elec-
tromechanical nanoscale devices [43, 44], by comparison,
suffer from capacitance and impedance mismatch which
limits efficiency. Implementation of two-dimensional op-
tomechanical crystals, as has been recently demonstrated
in Ref. [45], can also be used to create multi-tap phonon
waveguide structures capable of realizing diverse spectral
filter shapes and dispersion control without the need for
additional electrical or photonic hardware.

Further scaling of optomechanical circuits, to arrays
of a large number of cavity elements, is also interest-
ing. A straightforward one-dimensional extension of the
currently studied structures to a chain of mechanically-
coupled optomechanical crystal cavities, for instance, can
be used to study mechanical collective dynamics [46].
An even richer set of physical phenomena and device
functionality, however, may be realized in optomechan-
ical circuits in which both phononic and photonic con-
nectivity of cavity elements are employed. For exam-
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ple, building on the tight-binding mechanical coupling
of cavities demonstrated in this work, an acoustic and
optical isolator may be realized using a phase-correlated
optical pumping scheme in which the cavities are also
coupled together by a photonic waveguide [10, 47]. In
this scheme [48], analyzed in App. F, the interference
between optical and mechanical hopping amplitudes be-
tween the cavities picks up the phase difference between
the laser pump beams at each cavity site, giving rise to
the required non-reciprocal behavior. With the help of
post-processing methods, such as scanning probe nano-
oxidation lithography [49] which has been successfully
employed to tune photonic crystal cavities [50], the task
of aligning both mechanical and optical resonances of the
optomechanical cavities could be fulfilled. This would al-
low, at least in moderate lattice sizes, the study of topo-

logical phases and effective magnetic fields for photons
and phonons [30–32].
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Appendix A: Methods

1. Fabrication

The devices are fabricated using a silicon-on-insulator
wafer with silicon device layer thickness of 220 nm and
buried-oxide layer thickness of 2 µm. The device geom-
etry is defined by electron beam lithography followed by
inductively-coupled-plasma reactive ion etching to trans-
fer the pattern through the 220-nm silicon device layer.
The devices are then undercut using an HF:H2O solu-
tion to remove the buried oxide layer, and cleaned using
a piranha etch.

2. Experimental Set-Up

Two lasers are used to probe the two nanobeam
cavities individually, one of which can be encoded with
microwave signals by an electro-optic phase modula-
tor. The output of the two lasers are combined in a
wavelength multiplexer and coupled into the device
through a tapered optical fiber. The on-chip optical
waveguide is split into two paths to transmit light
into the two nanobeam cavities through side-coupled
optical couplers. The reflected light from the cavities
is re-collected by the optical fiber and passed through
an optical circulator to separate it from the input light.
A fiber-based wavelength de-multiplexer with 20 nm
channel spacing is then used to separate the two cavity
signals. Finally, the reflected light is amplified by an
erbium-doped fiber amplifier and sent to a high speed
photodetector (12 GHz bandwidth). The electrical
signal from the photodetector is measured either with
a spectrum analyzer, network analyzer, or high speed
oscilloscope.

3. Pulse and CW measurements

For the phonon pulse measurement, a pulse genera-
tor is used to gate the microwave source which drives
the electro-optic modulator with a repetition rate of
20 kHz. The photodetected optical signal is mixed down
to 300 MHz with a second microwave source which is
locked to the one driving the electro-optic modulator.
The down-converted signal is filtered, amplified and av-
eraged 104 times on an oscilloscope with sampling rate of
10 GSa/s. For the CW measurements a network analyzer
is employed, with the microwave output of the analyzer
(port 1) connected to the electro-optic modulator used
to phase modulate the light sent into cavity L, and the
photodetected optical signal reflected from the cavity R
is connected to port 2 of the analyzer. We define the S-
matrix component SRL = S̄21, where S̄21 has been nor-
malized to remove the effects of optical insertion loss into
the devices, optical pre-amplification, and photodetector
gain.

Appendix B: Simulation of phonon pulse
propagation

In this section, we show propagation and bouncing of
phonon pulses in the cavity-waveguide system (Fig. 3a)
can be well simulated by a group of coupled mode equa-
tions using input-output formalism. The dynamics cap-
tured by the coupled mode equations is a phonon pulse
travelling in a waveguide terminated by two cavities with
bare mechanical frequency ωmL,R and waveguide cou-
pling rate γeL,R. We approximate ωmL,R to be the fre-
quency of cavity-dominated modes L1 and R1 in the sim-
ulation. Since the response time of the optical cavity is
much shorter than that of the mechanical cavity, we can
exclude the dynamics of optical modes from these equa-
tions. Thus, the coupled mode equations can be written
as follows,

dbL
dt

= −(iωmL +
γ + γeL

2
)bL − ig0Lα0Lα

?
+Le

−iωstΘ(t)Θ(τ − t) +
√
γeLbin,L(t), (B1)

dbR
dt

= −(iωmR +
γ + γeR

2
)bR +

√
γeRbin,R(t), (B2)

bin,L(t) = e−αl
(√
γeRbR(t− tw)− bin,R(t− tw)

)
, (B3)

bin,R(t) = e−αl
(√
γeLbL(t− tw)− bin,L(t− tw)

)
, (B4)

where α0L and α+L are the amplitudes of optical pump
and its red sideband in the left cavity, τ is the duration of
excitation pulse, ωs is the frequency of pulse, Θ(t) is the
Heaviside step function, γ is the effective decay rate of
the excited mechanical mode, α ≈ γ/vg is the waveguide
loss rate, and tw = 1/(2fFSR)−1/(γeL+γ)−1/(γeR+γ)
is the single trip time the pulse spent in the waveguide.

From the mechanical spectrum we find γ = 2π × 2.1
MHz for L1 mode (the main coherently-driven mode)
during the pulse measurement; and by fitting the pulse
tails detected in each cavity we find γeL = 2π×34.7 MHz
and γeR = 2π × 25.5 MHz. Using these parameters, |bL|
and |bR| can be numerically calculated from the coupled
mode equations and the proportional voltage signals are
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TABLE I. Mechanical mode parameters

g0/2π (MHz) γi/2π (MHz) γe/2π (MHz)
L1 0.85 3.7
L2 0.75 3.7 34.7
L3 0.63 3.9
R1 1.39 3.6 25.5

shown in Fig. 3a. The simulated result captures the main
features of the measured pulse data. In particular, the
pulse splitting observed from cavity R is due to the fact
that the pulse frequency is not in resonant with cavity R
and thus experiences destructive interference inside this
cavity.

The phonon transfer efficiency from cavity L to cavity
R is about e−γ/(2fFSR) ≈ 67%. The phonon transfer ef-
ficiency from cavity to waveguide for cavity L and R is

γeL(R)/(γeL(R) + γ) ≈ 94%(92%).
We summarize the measured mechanical mode param-

eters of the device in Fig. 3 in Table I, where g0 for the
Lj(Rk) modes is with respective to OL(R) optical cavity
modes.

Appendix C: Derivation of the microwave S−matrix
for the optomechanical cavity-waveguide system

Here, we derive the S−matrix for a microwave signal
traversing the optomechanical cavity-waveguide system.
We assume the mechanical amplitude is small such that
only the first-order optical sideband needs to be consid-
ered. In the next section, we will verify the small me-
chanical amplitude assumption.

The Hamiltonian of the system under continuous wave
operation involves two optical cavity modes aL,R with
frequency ωcL,R parametrically coupled to a common me-
chanical mode b,

Ĥ =
∑
k=L,R

~ωckâ†kâk + ~ωmb̂†b̂+
∑
k=L,R

~g0k(b̂† + b̂)â†kâk +
∑
k=L,R

i~
√
κekαpke

−iωpkt(âk − â†k), (C1)

where the last term is the pumps of the two optical cav-
ities. For simplicity we assume the pumping lasers are
blue-detuned from the cavity resonances which is true
for all of our experiments. Suppose the pumping laser
for cavity L is modulated at frequency ω by a microwave
signal, then the operators of the system can be decom-
posed into carriers and sidebands,

âk = α0ke
−iωpkt +α+ke

−i(ωpk−ω)t, b̂ = β−e
−iωt, (C2)

where we only keep the red sideband of the pumping
lasers because of rotating wave approximation, given the
sideband resolved condition ωm � κk of our device. Sup-
pose the pumps are strong enough such that the car-
rier operators can be treated as static variables, then the
equations of motion of the system can be derived after
substituting Eq. C2 into Eq. C1,

iωα+k = (i∆k −
κk
2

)α+k − ig0kα0kβ
?
− −
√
κekαin,k,

(C3)

−iωβ− = −(iωm +
γi
2

)β− −
∑
k

ig0kα0kα
?
+k, (C4)

where ∆k = ωpk−ωck ≈ ωm. Solving Eq. C3 and Eq. C4
in the frequency range |ω − ωm| � κk, we obtain

β− =
ig0L
√
κeL

2
κL
α0L

i(ωm − ω) + γi
2 −

∑
k

2g20k|α0k|2
κk

α?in,L, (C5)

αout,R = −
√
κeRα+R (C6)

= −
4g0Lg0R

√
κeLκeR/(κLκR)α?0Lα0R

i(ωm − ω) + γi
2 −

∑
k

2g20k|α0k|2
κk

αin,L.

From Eq. C6, peak optical gain at ω = ωm is

Gmax =
|αout,R|2

|αin,L|2
=

4CLCR
(1− CL − CR)2

, (C7)

where CL(R) = |γOM,L(R)|/γi is the coorperativity of me-
chanical mode b with optical modes aL(R).

Using the result of Eq. C6, the microwave signal trans-
fer S−matrix can be derived

SRL (C8)

≡ VNA,in

VNA,out

=
ηoLηoRGeGEDFA(i~ωcRωm/

√
κeR)αout,Rα

?
0R

(2Vπ/π)
(
αin,L/(iωmα0L/

√
κeL)

)
=
ηoLηoRGeGEDFA

2Vπ/π

4g0Lg0R~ωcRω2
m/(κLκR)|α0L|2|α0R|2

i(ωm − ω) + γi
2 −

∑
k

2g20k|α0k|2
κk

where VNA,out and VNA,in are the output and detected
electrical voltage of the network analyzer respectively,
ηoL,R is the optical loss of the input and output ports of
the device and fiber respectively, GEDFA and Ge are the
gain coefficients of EDFA and photodetector respectively,
and Vπ is the voltage required to produce a phase shift
of π of the electro-optic modulator.
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Appendix D: Analysis of linear operation and noise
characteristics of the optomechanical microwave

filter/delay line

In this section, we examine the assumption of weak
mechanical amplitude under strong optical pump and an-
alyze the optomechanical microwave filter/delay line per-
formance in terms of linearity and noise characteristics.
We find that thermo-optic effect constrains the mechan-
ical amplitude due to saturation of the optomechanical
gain. This effect sets the linear operation range and the
suppression of the mechanical thermal noise.

The thermo-optic effect induced optical cavity fre-
quency shift can be described by the following equa-
tions [51]

δωc = −ωcnSi(T0)
dnSi(T0)

dT
AδT, (D1)

δT =
rςc2

nSi(T0)2VTPA
n2
c , (D2)

where nc is cavity photon number, nSi, r, and ς is the
refractive index, thermal resistance, and two-photon ab-
sorption coefficient of silicon respectively, c is the speed
of light, VTPA is the cavity volume for two-photon ab-
sorption, and A is a perturbation theory coefficient A =∫

Si
|E(r)|2dr∫

nSi(T0)2|E(r)|2dr . Substituting Eq. D2 into Eq. D1, and

using the parameters of silicon given in Ref. [51], along
with A ≈ 7.5× 10−2, VTPA ≈ (λ/nSi(T0))3, we have

δωc = ξn2
c , ξ ≈ −33.9 Hz. (D3)

We proceed to include the term of thermo-optic effect
(Eq. D3) to the equations of motion (Eqs. C3 and C4),
which are then modified to be

iωᾱ+ =
(
i
(
∆ + ξ(|α0|2 + |ᾱ+|2)2

)
− κ

2

)
ᾱ+ − ig0α0β̄

?
−, (D4)

−iωβ̄− = −(iωm +
γi
2

)β̄− − ig0α0ᾱ
?
+ −
√
γiβin, βin =

√
γinth/2, (D5)

where we have denoted ᾱ+ and β̄− as the static value of
the corresponding operators without input optical side-
band signal and we have included the mechanical thermal
noise input. Also, we specifically consider the operation
with the R1 mode, and thus ignore optical cavity L which
has much weaker coupling with R1 compared to optical
cavity R. Eqs. D4 and D5 can only be solved numerically
for a generic pump condition. To reveal the thermo-optic
effect on the mechanical amplitude, we consider a special
pump condition corresponding to the original threshold
of mechanical self-oscillation, i.e. 4g2

0 |α0|2/(κγi) = 1.
In this case, we can analytically solve for the down-
converted photon number and mechanical amplitude at
ω = ωm from Eqs. D4 and D5, assuming ∆ = ωm and
|ᾱ+| � |α0|,

|ᾱ+|2 = (
κγinth

4ξ2
)1/5, (D6)

|β̄−|2 =
κ

γi
(
κγinth

4ξ2
)1/5 + nth. (D7)

For κ = 2π×0.8 GHz, γi = 2π×3.6 MHz, g0 = 2π×1.39
MHz, nth = kBT0

~ωm ≈ 1000, we have |ᾱ+|2 ≈ 1900,

|α0|2 ≈ 380, and |β̄−|2 ≈ 3.7 × 105. It is the optical
resonance shift induced by thermo-optic effect that sat-
urates optomechanical gain and prevents runaway of the
mechanical amplitude at the threshold.

Now we can estimate whether the mechanical ampli-
tude is large enough to induce nonlinearity through exci-
tation of higher order optical sidebands. The nonlinear-

ity arises due to pump saturation and occurs when the
amplitude of the first order optical sideband significantly
deviates from being linearly proportional to the mechan-
ical amplitude, i.e. approximation J1(z) ≈ z

2 breaks

down [52], where z = g0

√
4|β̄−|2 + 2/ωm is the normal-

ized mechanical amplitude. For |β̄−|2 ≈ 3.7× 105 calcu-
lated above, the deviation is only about 1%. In the ex-
periment, we find for the largest pump power PpL,R ≈ 0.2
mW, |β̄−|2 ≈ 2.0 × 105, which gives z = 0.18 and a lin-
ear deviation of 0.4%. As a result, scattering into higher
order optical sidebands does not need to be included in
Eq. (D4) and (D5).

Next, we consider the response of the mechanical os-
cillator to a small input optical sideband signal by per-
turbative expansion of Eqs. D4 and D5. In this case the
coherent mechanical amplitude of Eq. C5 is modified to
be

β− =
ig0L
√
κeL

2
κL
α0L

i(ωm − ω) + γi
2 −

∑
k

2g20k|α0k|2
−2iδk+κk

α?in,L, (D8)

where δk = ξ(|α0k|2 + |ᾱ+k|2)2 is the thermo-optic-effect
induced optical frequency shift. Eqs. C6 and C8 can be
modified correspondingly. According to Eq. D8, the ef-

fective mechanical loss rate is γeff = γi −
∑
k

4g20k|α0k|2
κk

+∑
k

4g20k|α0k|2
κk

( δk
κk/2

)2. The deviation from a linear re-

sponse can be caused by the additional cavity photons
from the input signal, and is characterized by the ra-
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FIG. 5. Phase noise suppression ratio between microwave
signal power of -15 dBm and -30 dBm at largest optical pump
level. Solid line is theoretical value calculated using Eq. D11
and dots are experimental data.

tio r = |α+k|2/|ᾱ+k|2 (in our device the contribution
is mainly from α+R). At the theoretical self-oscillation
threshold, we find the 1 dB compression point of the
S−matrix to be equal to a microwave power of -19 dBm
(assuming |α0L|2 = |α0R|2). In the experiment, we find
for the largest optical pump power PpL,R = 0.2 mW
(which is slightly above the self-oscillation threshold),
the 1 dB compression point occurs at a microwave signal
power of -15 dBm. For reversed operation (cavity R as
input), the 1 dB compression point is reduced by a factor
of γOM,L/γOM,R (assuming |α0L|2 = |α0R|2).

We now analyze the noise characteristics of the op-
tomechanical cavity-waveguide system. The dominant
form of noise is from thermally excited phonons in the
system. From the thermally-added mechanical noise ref-
ered to the input signal (κe/κ)−1γinth/|γOM| [23], we
define the noise-equivalent optical signal power

PNE =
κ

κe
~ωc

γinb
γOM

2πB, (D9)

where B is the bandwidth of the coherent signal and all

the quantities are referred to the input cavity. Then the
noise-equivalent microwave signal power is

V 2
NE =

4

π2

PNE

Pp
V 2
π . (D10)

We find that for the largest pump power when operating
at R1 resonance, if the input port is cavity L, the noise
equivalent microwave power is -30 dBm; if the input port
is cavity R, the noise equivalent microwave power reduces
to -70 dBm because of the significantly enhanced γOM of
cavity R with R1 mode.

For a self-oscillating mechanical oscillator, the intrinsic
oscillator noise can be suppressed by the injection of an
external coherent signal [53]. The suppressed phase noise
(ignoring input signal noise) can be modeled by [54]

S̃φφ(ω − ωm) =
1

1 + ( γeff
ω−ωm )2ρ2

Sφφ(ω − ωm), (D11)

where Sφφ(ω) is the intrinsic phase noise spectral density
without injection and ρ = |β−|/|β̄−| is the ratio between
injected mechanical amplitude and free-running ampli-
tude. Experimentally, we infer the phase noise from the
measured noise power spectral density using the defini-
tion Sφφ(ω) = Sbb(ω)−

∫
Sbb(ω)dω. At the largest optical

pump level, the phase noise suppression ratio between the
microwave signal power -15 dBm (1 dB S−matrix com-
pression point) and -30 dBm (noise equivalent power) is
shown in Fig. 5. The model of Eq. D11 explains well the
measured noise suppression level in the offset frequency
(ω−ωm) range between γeff/4 and 3γeff/4 (γeff = 2π×17
kHz).

Appendix E: Waveguide-mediated cavity-cavity
coupling

1. Analytical derivation

When γeL,R/2π � fFSR, and all the waveguide modes
are outside of the line width of the cavities, two mechan-
ical cavities can acquire a waveguide mediated coupling.
The generic Hamiltonian describing this case is

Ĥ = ~ωmLb̂†Lb̂L + ~ωmRb̂†Rb̂R +
∑
k

~ωk b̂†k b̂k +
∑
k

~(gLk b̂
†
Lb̂k + g?Lk b̂Lb̂

†
k) +

∑
k

~(gRk b̂
†
Rb̂k + g?Rk b̂Rb̂

†
k), (E1)

where b†k(bk) is the creation(annihilation) operator of the
k−th waveguide mode, gLk =

√
2γeLfFSR and gRk =

(−)k
√

2γeRfFSR are the coupling coefficients of the left
and right mechanical cacity modes with the k−th waveg-
uide mode, and the summation is over all waveguide
modes. Note the relative sign between gLk and gRk comes
from the symmetry of waveguide modes with respect to

the center of the two cavities.

In the degenerate cavity case, i.e. ωmL = ωmR, we
can calculate the coupling V between the two cavities
mediated by the waveguide modes using second order
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perturbation theory as follows,

V

2π
=

∞∑
k=−∞

gLk
2π

gRk
2π

δ − kfFSR
(E2)

=

√
γeLγeR

2π

∞∑
k=−∞

(−)k

δ
fFSR

π − kπ

=

√
γeLγeR

2π

1

sin δ
fFSR

π
,

where δ is the frequency difference between the degener-
ate cavity modes and their nearest waveguide mode. For
the perturbation theory to be valid, we require

|gL,Rk|/2π =
√

2γeL,RfFSR/2π � δ. (E3)

We consider two special cases. First, when δ = fFSR/2,
i.e. the two cavity modes are in the center of two nearest
waveguide modes, then V =

√
γeLγeR. In the other limit

when δ � fFSR, then V ≈ √γeLγeR fFSR

πδ . One can prove

in this case, V �
√

2γeL,RfFSR = |gL,Rk|, by taking into
account of the condition of Eq. E3. Different from the
previous case, here the contribution to the coupling can
be almost exclusively attributed the nearest waveguide
mode (k = 0).

2. Measurement modeling

We model how to estimate the phonon waveguide me-
diated coupling between two optomechanical cavities. In
the device for demonstrating waveguide-mediated cavity
coupling, we used a phonon waveguide without air holes.
The band structure of the waveguide is shown in Fig. 6a.
Such a waveguide provides large phonon group velocity
and thus large free spectral range in order to isolate cav-
ity modes from waveguide modes.

In the sample device shown in Fig. 4 of the main text,
virtual phonons in waveguide mixes the mechanical cav-
ity modes ML and MR of cavity L and R into hybridized
modes C+ and C−. The coupling strength can be inferred
by measuring the optomechanical coupling of hybridized
modes C+ and C− with the two optical modes OL and
OR based on the following model. C+ and C− can be ex-
pressed as linear superposition of ML and MR, assuming
ignorable energy distribution in the waveguide (as C+,−
are well separated from waveguide modes),

C+ = α1ML + α2MR, (E4)

C− = β1ML + β2MR. (E5)

The superposition coefficients αi and βi satisfy the fol-
lowing relation

|β1

α1
| = |α2

β2
| = 2|V |

∆LR + ∆+−
, (E6)

where V is the waveguide mediated coupling between ML
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FIG. 6. a Band structure of shielded phonon waveguide with-
out air holes. Inset is the modal profile with k = 0.8π/a.
b,c Characterization of optomechanical coupling between hy-
bridized mechanical modes C+ and C− with the optical modes
of cavity L (b) and R (c). γ = γi+γOM is effective mechanical
decay rate and nc is the cavity photon number.

and MR, ∆LR is the fabrication induced frequency dif-
ference between ML and MR, and ∆+− =

√
∆2
LR + 4V 2

is the frequency difference between the hybridized modes
C+ and C−. On the other hand, the ratio of the super-
position coefficients is directly related to the measurable
optomechanical coupling

g+L

g−L
= |α1

β1
|, g+R

g−R
= |α2

β2
|, (E7)
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where, for example, g+L stands for the coupling between
mechanical mode C+ and optical mode OL.

We inferred the optomechanical couplings by mea-
suring the pump dependent effective mechanical damp-
ing rate of C+,− (Fig. 6b,c) using the relation γ =
γi − g2nc

κ
(∆−ωm)2+κ2/4 , and obtained

g+L = 927± 25 kHz, g−L = 710± 55 kHz (E8)

g+R = 683± 90 kHz, g−R = 870± 35 kHz (E9)

As a result, the ratio of superposition coefficients is

|α1

β1
| = 1.30± 0.14, |α2

β2
| = 0.79± 0.14. (E10)

Along with ∆+−/2π = 4.0 MHz as read from the spec-
trum, we find, according to Eq. E6,

|V |/2π = 1.94± 0.06 MHz, ∆LR/2π = 0.98± 0.48 MHz.
(E11)

To compare with the analytical formula of V (Eq. E2),

in this device, we have fFSR = 54 MHz and δ = 17
MHz. And using the measured V/2π = 1.94 MHz, we
find
√
γeLγeR/2π = 1.62 MHz.

Appendix F: Optical non-reciprocity based on
distantly-coupled optomechanical cavities

We provide theoretical analysis of achieving optical
non-reciprocity in the distantly-coupled optomechanical
cavities, and show its viability based on the typical pa-
rameters of our fabricated devices. In this case, the
waveguide connecting the two cavities should support
both guided mechanical and optical modes, and the two
optomechanical cavities are designed to be identical. As
already been demonstrated in our experiment and in
Ref. [20] respectively, such a waveguide can mediate a
tight-binding type coupling for the mechanical and op-
tical cavity modes. The Hamiltonian of the system can
thus be written as follows,

Ĥ =
∑
k=L,R

~ωckâ†kâk + J(a†LaR + aLa
†
R) +

∑
k=L,R

~ωmk b̂†k b̂k + V (b†LbR + bLb
†
R) (F1)

+
∑
k=L,R

~gk(b̂†k + b̂k)â†kâk +
∑
k=L,R

i~
√
κekαpke

−iωpt−iϕk(âk − â†k),

where J and V are the waveguide mediated optical and
mechanical coupling strength, and the last two terms are
the optical pumps in the two cavities which have a same
frequency and correlated phases.

The optical non-reciprocity arisen from this system
can be intuitively understood from a schematic shown
in Fig. 7a. The input optical signal undergoes a Mach-
Zehnder type of interference through the system: one
path is the direct photon hopping and the other path is
through radiation-pressure interaction induced transition
to phonon and phonon hopping. The phase of the lat-

ter path involves the phase difference of the two pumps,
which is ϕL − ϕR for one direction and ϕR − ϕL for the
reversal direction. Such a non-reciprocal phase resem-
bles an effective magnetic flux for photons, resulting in
the non-reciprocal transmission [48].

We first consider the case when both cavities are be-
ing pumped with blue detuned lasers (ωp − ωck = ωmk).
The equations of motion of the system, in terms of red
optical sidebands of the pumps, can be derived from the
Hamiltonian of Eq. F1 using rotating wave approxima-
tion, given sideband resolved condition ωmk � κk,

daL
dt

= (iδL −
κL
2

)aL − iJaR − igLαLeiφLb?L −
√
κeLaL,in, (F2)

daR
dt

= (iδR −
κR
2

)aR − iJaL − igRαReiφRb?R −
√
κeRaR,in, (F3)

dbL
dt

= −(iωmL +
γi
2

)bL − iV bR − igLαLeiφLa?L, (F4)

dbR
dt

= −(iωmR +
γi
2

)bR − iV bL − igRαReiφRa?R, (F5)

where δk = ωp − ωck and αke
iφk is the steady state am-

plitude of the local optical cavity mode, which is related
to the pumping amplitudes as follows
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FIG. 7. a Schematic of the optical non-reciprocity in distantly-coupled optomechanical cavities stemmed from the non-reciprocal
optical pump phases and interference between photonic and phononic transmission paths. b-e Transmission coefficient b(d)
and isolation ratio c(e) for blue(red) detuned optical pumps with practical device parameters γi = 2π×3 MHz, gL,R = 2π×0.8
MHz, cavity photon number ncL,R = 2000, κL,R = 2π × 2 GHz, κeL,R = 2π × 1 GHz, φL − φR = π

2
, J = 2π × 422 MHz, and

V = 2π × 10 MHz.

αL(R)e
iφL(R) =

(iδR(L) − κR(L)/2)
√
κeL(R)αpL(R)e

−iϕL(R) + iJ
√
κeR(L)αpR(L)e

−iϕR(L)

(iδL − κL/2)(iδR − κR/2) + J2
. (F6)

We find the steady state amplitude is approximately√
κekαpke

−iϕk/iδk under the condition δk ≈ ωmk �
κk, J , which means each cavity is effectively only driven
by its own optical pump. This can be intuitively under-
stood by the fact that even and odd hybridized optical
cavity modes are driven equally (as δk � J) and thus the
amplitude of one local cavity mode is cancelled out and
effectively not being driven. Thus, each cavity-enhanced
optomechnical coupling can be independently controlled
by the pump.

After solving the equations of motion, we calculate the
ratio between right transmission coefficient TR and left
transmission coefficient TL of the optical signal and find

TR
TL

=
J − V gLgRαLαR

(i(ω−ωmL)+
γi
2 )(i(ω−ωmR)+

γi
2 )+V 2 e

i(φL−φR)

J − V gLgRαLαR
(i(ω−ωmL)+

γi
2 )(i(ω−ωmR)+

γi
2 )+V 2 e

−i(φL−φR)
.

(F7)
Interestingly, this ratio is not explicitly dependent on δk
and κk as an intrinsic property of the device. At the
poles ω = (ωmL + ωmR ±

√
(ωmL − ωmR)2 + V 2)/2, i.e.

frequency of the hybridized mechanical modes, and as-

suming t� γi, we have

TR
TL

=
J ± i V gLgRαLαR

γi
√
V 2+(ωmL−ωmR)2/4

ei(φL−φR)

J ∓ i V gLgRαLαR

γi
√
V 2+(ωmL−ωmR)2/4

e−i(φL−φR)
. (F8)

Thus perfect non-reciprocity, i.e. one direction has van-
ishing transmission while the other direction has maximal
transmission, can be achieved by satisfying the following
condition

φL − φR = ±π
2
, J =

V gLgRαLαR

γi
√
V 2 + (ωmL − ωmR)2/4

.

(F9)
Under this condition, the transmission coefficient for the
through direction is (for simplicity assuming ωmL =
ωmR)

T6=0 =
√
κeLκeR

2 gLgRαLαRγi

(κL2 −
gLgRαLαR

γi
)(κR2 −

gLgRαLαR
γi

)
.

(F10)

Similar results can be derived for the case of red de-
tuned pumps, and we find the perfect non-reciprocity
condition (Eq. F9) remains the same; while the trans-
mission coefficient for the through direction at poles is
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given by

T6=0 =
√
κeLκeR

2 gLgRαLαRγi

(κL2 + gLgRαLαR
γi

)(κR2 + gLgRαLαR
γi

)
.

(F11)
We note, in general, an amplified transmission in blue
detuned case and an attenuated transmission in red de-
tuned case for the through direction at poles. One
can prove from Eq. F11 that in the red detuned case,
T6=0 ≤

√
κeLκeR/(κLκR) < 1 and equality is achieved

when κk/2 = gLgRαLαR
γi

. Comparing to Eq. F9, the max-

imal transmission efficiency is achieved when loss rate
κk/2 and coupling rate J is matched at the two cavities
(note we used ωmL = ωmR for Eqs. F10 and F11).

Based on our fabricated devices, realizing the condi-
tions for perfect non-reciprocity (Eq. F9) is quite promis-

ing. For a typical device with γi = 2π × 3 MHz, gL =
gR = 2π × 0.8 MHz, maximal available cavity photon
number ncL = ncR = 2000, and assuming ωmL = ωmR,
Eq. F9 determines Jmax = 422 MHz. Thus, as long as
J ≤ Jmax in this device, perfect non-reciprocity condi-
tion can always be achieved by tuning the pump power
and phase. We have numerically simulated waveguide
(without acoustic shielding) mediated optical coupling
between two optomechanical cavities to be 500 MHz and
less. Thus it is indeed viable to demonstrate optical non-
reciprocity in our devices. Using these parameters along
with δk = ωmk, κk = 2π× 2 GHz, κek = 2π× 1 GHz and
φL − φR = π

2 , J = 2π × 422 MHz, V = 2π × 10 MHz,
we plotted the transmission coefficients and isolation ra-
tio as calculated from Eqs. F2–F5 for the blue-detuned
pump In Fig. 7b,c and red-detuned pump In Fig. 7d,e,
respectively.
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