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Underwater Munitions Expert System: Preliminary Design Report
S. E. Rennie and A. Brandt JHU/APL

Summary

This document describes the rationale for, and preliminary design of a computer-based
probabilistic expert system to predict the likelihood of burial and migration of abandoned
underwater munitions.

1. Introduction

As a legacy of years of naval activities, including training and testing, there are numerous
current and former Department of Defense (DoD) aquatic sites contaminated with
munitions and explosives of concern (MEC). At many of these inland water and coastal
areas, the risk of human interaction with unexploded ordnance (UXO) is of grave concern,
and efforts have been mandated to manage and clean up these contaminated sites. The
Munitions Response program of the Strategic Environmental Research and Development
Program (SERDP) is tasked with developing innovative methods to remediate and
sustainably administer areas polluted by discarded munitions. Towards this end, SERDP is
sponsoring the development of the Underwater Munitions Expert System (UnMES), for
predicting the location of munitions and their degree of burial at underwater sites of
interest.

Compared to terrestrial sites, underwater environments are more dynamic, with Uxo0'
often subject to mobility, burial, and excavation by bottom currents driven by waves and
tides. The extent of the search area covered for a region containing underwater UXO is
limited using present platform and sensor technology. Therefore it is advantageous to have
the ability to predict areas of munitions concentration, exposure and temporal variability,
to support planning for efficient site remediation.

The predictive model UnMES is built on a probabilistic Bayesian network whose construct
inherently quantifies and tracks the uncertainty of the predictions. This feeds naturally into
risk assessment framework needed by site managers for making informed remediation
decisions. Toward this end, the Bayesian network in the UnMES is embedded in a
Geographic Information System (GIS) framework to interpret and display spatial variation.

" The acronym UXO is used to denote MEC of all types and sources.



JOHNS HOPKINS FPS-T-15-0333
APPLIED PHYSICS LABORATORY TeChnical Report Page 2

The choice of a probabilistic approach is appropriate in situations where there is large
inherent uncertainty in the predictive models and particularly in the scope and range of
values of the governing input parameters. The state of the art of deterministic coastal
system models is at present not sufficient to permit the scaling of first-principle physical
processes, such as turbulence-forced sediment suspension that occurs at the scale of a
breaking wave, up to the larger coastal morphological response which occurs on timescales
from months to years or even decades [Hanson et al., 2003]. In the case of modeling UXO-
contaminated sites, there is substantial uncertainty in the boundary and forcing conditions:
the initial population of the munitions is usually not well-known, and the environment at
the site over the time since the deposition may not have been recorded. Therefore, we
must rely upon regional climatological distributions and assume most likely scenarios.

The design of UnMES is focused on providing quantitative probabilistic estimates that
address the questions site managers need answered. For example, given an estimate of the
initial distribution of UXO, one might want to know from which areas within the field the
munitions were more likely to migrate, and in what direction, and thus what specific
locations they might potentially aggregate. Furthermore, given knowledge of the types of
munitions onsite, one might want to know which types are more subject to mobilization.
An important prediction concerns how frequently UXO are likely to be buried versus proud
on the surface of the seabed, a factor that significantly impacts the performance of sensors
used to detect and classify munitions. Answers in the form of probability distributions can
provide risk information, and can be used to evaluate remediation alternatives.

1.1 Scope of the present study

The expert system currently under development will be a core component in the larger
effort under the SERDP Munitions Response (MR) Program to develop technologies
allowing rapid assessment of large-area underwater sites where detection and remediation
of munitions is required. For successful implementation, the overall assessment framework
will involve multiple components including:

Site specific environmental data and historical military archives.

UnMES: probabilistic estimate of UXO migration and burial.

Detection sensor performance predictions.

Risk assessment based on human exposure and removal issues.

Decision support tool providing graphical mapping and visualization of UX0O
distributions and burial state for site remediation managers and planners.

g1 W
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The present effort is specifically on the development of component 2, the UnMES, whose
relationship to the larger system is diagramed in Figure 1.1. The other components will be
part of the long-term SERDP/ESTCP program. To demonstrate and verify the operation of
UnMES, however, assessments at specific sites will be undertaken, requiring representative
site-specific data to be assembled and utilized.
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Figure 1.1 Conceptual diagram of components of the SERDP MR program required to
characterize risk and plan for remediation efforts at underwater munitions response sites.

The scope of the present effort to develop of the prototype UnMES entails the following
tasks:

1.

Development of physical and/or data-based process models for mobility, burial, and
re-exposure (in collaboration with other SERDP MR studies).
Development of a probabilistic BN, including rationale for the discretization of
parameter values within the network, and methodologies for generation of the
conditional probabilities that provide the basis for UXO state predictions.
Incorporation of the Bayesian network into a GIS framework to demonstrate the
spatial application of probabilistic prediction.
Acquisition of data from representative sites of interest for demonstration and
verification purposes using extant databases and current SERDP studies.
Demonstration GIS mapping of UXO accumulation and burial probabilities at
representative sites.
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These development efforts are being supported by modeling, laboratory and field studies
under by the SERDP MR program, especially Friedrichs (VIMS) and Garcia (U. Illinois) for
Task 1; along with Jenkins (SI0), Traykovski (WHOI), and Calantoni (NRL) for Task 4.

In order to provide useful estimates of munitions behavior probabilities, sufficient
environmental data is required for understanding the geologic setting and primary wave
and current forcing. The more detailed and extensive the available background
environmental data the more accurate and specific the resulting predicted probability
distributions will be. However, UnMES is designed to provide estimated probabilities even
when the input description is broad or generic.

2 Design of UnMES

The central paradigm of UnMES is a Bayesian Network [Pearl, 1988], a graphical
probability model that reflects current knowledge of the likely behavior of UXO migration
and burial in a given environment, as illustrated in Figure 2.1. This core construct should
be placed in a 2-D map framework in order to accommodate spatially varying input
parameters, and to distribute resulting predictions in a map-based management tool.
Populating the 2-D framework with the relevant environmental data requires building
connections from UnMES to a Geographic Information System (GIS) developed for the site
of interest. An overview of this software framework is diagrammed in Figure 2.2. The
prototype system now under development will be exercised at sites where input data is
currently available. Development of a full-featured management tool where in the UnMES
in embedded as a module with GIS support [e.g. Holland, 2014] remains a task for a future
phase of the SERDP MR program.

The focus of the preliminary UnMES design will be on wave-dominated climates, where the
important environmental forcing is primarily due to the bottom orbital flows from wind-
driven waves - a situation of primary interest for remediation efforts; and an environment
in which several SERDP field experiments have been conducted and can provide validation
data [Calantoni et al., 2015, Traykovski, 2015]. In these regions, encompassing the coastal
ocean and large lakes, the sediment is generally comprised of non-cohesive sands.
Subsequent to the development and proofing of this prototype version, the design
framework can be expanded to include the other underwater environments of interest,
including estuaries and rivers, which have different circulation patterns and include
additional forcing mechanisms, such as tides, flood erosion and fluvial deposition. Sand
sediments under waves are generally resistant to penetration, whereas in estuaries and
rivers the bottom type is often soft clays or muds where burial upon initial impact with the

4
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seabed may be important. Additional wave-driven regions with different underlying
geology, such as large cobbles, and coral reefs, can be added to future versions of UnMES.

For this preliminary UnMES design, the focus is on seasonal and annual timescales where
the process probabilities can be treated statistically. Modeling the dynamic evolution in
time steps over a specified time horizon will be explored in a more advanced version.

- l WaveDirection )  ("hsigma )

ShorelineRetreat
C )
\ B

( Erosion/Accretion )

TotalBurial

(" ScourBurial )
Figure 2.1. Diagram of the core Bayesian Network (BN) in UnMES modeling the burial and
migration response in a given environmental setting (specified by blue nodes). Knowledge of

the quantity, type, and initial burial condition of the munitions are provided in the orange
nodes. The resulting predictions are found in the output (green) nodes.

2.1 Introduction to Bayesian Networks

The core construct of UnMES, the Bayesian Network (BN), sometimes called a Bayesian
belief network [Pearl, 1988], is formed as a directed acyclic graph (DAG) of variables
(nodes) connected by directed links (arrows). Each node represents a random variable and
the links represent statistical dependencies between them. As the value at each node is a
probability mass function, a BN is a method to model a multivariate domain that contains
uncertainty. This uncertainty can be due to incomplete specification of the interactions
governing the behavior of the domain, such as the simplification of wave orbital velocities
using linear theory, or incomplete knowledge of the state of some of the variables, as when
water depth is estimated from an old or poorly-sampled bathymetry. The uncertainty is
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propagated through the BN by the probabilistic inference using Bayes theorem?. Figure 2.1
shows the DAG of nodes that form the core BN of UnMES for a wave-dominated
environment.

The BN portion of UnMES is designed and implemented using the commercial software
package ‘Netica’ [Norsys, 2015], which provides a convenient user interface for graphically
designing, building and modifying networks, as well as entering new input probabilities
(“findings”) and displaying the resulting predictions. To represent the spatial variability
across a contaminated underwater site, the core Bayesian Network is replicated at cells
across a two-dimensional representation of the geographic region of interest as
diagrammed in Figure 2.2. The overall structure is implemented in Matlab [MathWorks
Inc.,, 2014], which interacts with Netica through its JAVA Application Programmer Interface
(API). Further details are provided in Sections 2.2 and 5.

Replicate UnMES
BN at each cell [ oo o0

GIS - Input Properties

™ Province into cells
h with unique input ™=
combinations

Figure 2.2 Conceptual illustration of GIS software framework for spatial implementation of
UnMES.

After a Bayesian Network has been constructed, it can be applied to a particular situation
by entering information (known as “evidence” or “findings”), setting the values of nodes
that are known. For example, in UnMES, these nodes will include the environmental
observations for a particular location. Then probabilistic inference (also called “belief
updating” in a BN) determines new probabilities for the states of all the other dependent

? For background on Bayesian reasoning and its application to graphical models see Jensen and Nielsen [2007].
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nodes. These are displayed in Netica as “belief bars” which show the shape of the
probability distribution. Before performing belief updating, the BN must be compiled. For
this, Netica uses an efficient junction tree algorithm based the assumption of conditional
independence [Koller and Friedman, 2009]. In order to implement the inference algorithm
in Netica, every node must be discrete with a finite number of states. Some nodes are
naturally discrete, e.g. UXO type. However most environmental variables are inherently
continuous, so that total range of the variable must be broken into a number of intervals, or
states, whose sizes do not need to be constant. The intervals should be small enough to
discriminate different response states, but not so narrow that the intervals have a higher
resolution than the available data warrant and/or such thatthe computational requirement
is prohibitive. The discretization choice for each node is an important part of the design
process and will be discussed in more detail in Section 3 for the present UnMES application.

2.2 Nodes, Links and Conditional Probability Tables

A node in a BN with no links coming into it is considered a “parent” node, and will contain
an unconditional probability table quantifying the probability mass function (PMF) over
the states of the variable that it represents. In the UnMES, these parent nodes act as input
variables, providing the boundary conditions for an environmental scenario, for example,
the Wave Height and UXO Type nodes shown in Figure 2.1. If a node has one or more
links pointing into it, it is a “child” node, and has a conditional probability table (CPT). Each
entry in the CPT contains a conditional probability for a specific state of that child node,
given a specific configuration of the states of its parents. In UnMES, there are also
intermediate variables such as the computed Bottom Orbital Velocity, which is a child to
the wave forcing nodes, and also a parent to the node ScourBurial.

A Bayesian Network can be used in diagnostic mode, i.e. findings can be specified at a
“results” node (e.g. migration distance), and then the most probable configuration of values
for the rest of the network can be determined. Another important diagnostic feature that
Netica provides is the ability to do sensitivity analysis, producing a report of how much the
distribution of states at a selected node could be influenced by a particular specified state
at each of the other nodes in the net. The use of sensitivity analysis will be presented in the
forthcoming Demonstration Report on the prototype UnMES implementation [Rennie and
Brandt, 2015b]. Both this single-finding sensitivity analysis, and a comparison of results
from inputs of varying levels of detail can identify which factors contribute the most to the
predicted uncertainty. Because environmental data acquisition is often the most expensive
part of a site remediation study, this evaluation, performed early in the process, would be
important to help refine data requirements.
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Relationships in the network are defined by each node’s CPT, which is a multi-dimensional
array that has one probability value for each combination of parent and child states. The
CPT will be an N-dimensional table, where N is the number of parents, which has a a total
number of entries equal to Mi-Mz- ... My, where M; is the number of states in parent node i.
The number of entries in the CPT will be the multiple of the number of child states times
the number of states in each parent. Clearly, if variables are discretized into numerous
intervals (states), the size of the CPT grows rapidly.

Most of the variables in UnMES describe physical processes and are continuous in nature.
The choice of the discrete intervals by which to represent each node should correctly
reflect the sensitivity of its response to its forcing, yet cover the range of interest in as few
states as possible, so as to be represented by a compact CPT [Plant and Holland, 2011].
Note that there is no requirement that the intervals be the same size across the range of the
variable. When designing UnMES, the resolution of the discretization interval reflects a
trade-off between resolving important information and avoiding over-specification of
details occurring at scales smaller than the expected uncertainty. The choice of state
intervals is an important design decision; the rationale for UnMES state boundaries is
detailed in Section 3.

Populating each of the entries in the CPT is the main effort in building the BN. Often CPT
population in Bayesian Networks is accomplished by training on multiple data
observations. An example application of BN to predict coastal response to sea level rise by
Gutierrez et al. [2011] was trained on a large historical data set developed by the U.S.
Geological Survey (USGS). As there are only a modest amount of observations relating to
the migration and burial of underwater munitions, the CPTs in UnMES will be largely filled
in by a Monte Carlo exploration over the domain of interest using simple deterministic
process models. The deterministic models are “simple”, in that they are focused on
capturing the first-order response, and do not attempt to replicate small details of the
behavior, given our insufficient knowledge of the system. Available laboratory and field
data is used to calibrate the parameters of these models [Rennie and Brandt, 2014]. The
state of the deterministic models developed for use in the UnMES is described in Section 4.

2.3 Spatial Distribution: Replicas of the Bayesian Network
At UXO contaminated sites, managers may need to answer the question of whether certain

areas within the site are more susceptible to munitions migration/aggregation or burial
than others; or more specifically, what are the probabilities of UXO aggregation and burial
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for local areas within the site of interest. Another prediction requiring spatial mapping
occurs when regions of higher munitions contamination (i.e. larger abundance of UXO) are
identified in the initial site conceptual model, or if there are sub-regions where the
potential for human interaction is particularly great. To address these questions it is
important to implement the UnMES in a 2-D spatial configuration that will naturally
connect to map-oriented risk assessment products.

The application of Bayesian networks in a GIS framework for geospatial reasoning has been
explored in several fields, including hydrology [USEPA, 2007], ecosystem modeling
[Landuyt, et al., 2015], and military logistics [Laskey, et al, 2010]. However, the experience
with implementation of this construct is relatively new, with no established software
framework. Norsys is in the process of developing a product, GeoNetica, which facilitates
the use of Netica Bayesian Networks in conjunction with raster-style GIS input and output.
GeoNetica interfaces with multiple commercially available GIS systems and will be of great
benefit for implementing the UnMES in coordination with the site-specific environmental
GIS databases (Figure 2.2). GeoNetica is in “Beta” release to a limited customer base.
Recently, JHU/APL was approved to join this initial test group. For this preliminary
implement of UnMES, we will couple the UnMES Netica BN with the open-source
Geographic Information System QGIS [www.qgis.org] to demonstrate the spatial
framework analysis approach. Practical application of UnMES would require its integration
into a GIS framework that meets the geospatial data standards required by the agency with
cognizant authority for the contaminated property.

As with the continuous nodes in the BN, the spatial domain should be discretized into
regions of relative uniformity, analogous with the nodes’ state intervals. As with the state
intervals, the uniform geographic regions are not necessarily of all of the same size. Often
spatial areas are partitioned into a uniform grid of evenly spaced regions (pixels), as in
raster GIS format. This is a straightforward approach which is simple to work with, but can
be inefficient, since large numbers of pixels may contain the (approximately) same feature
value. The environmental data required by UnMES, such as bathymetry, is frequently
available as a GIS raster layer, and should be preprocessed to a pixel resolution no finer
than needed to resolve the state intervals in the corresponding BN node. Wave information
from gridded coastal models is naturally stored in raster (pixel) form.

Preprocessing steps are necessary to prepare the GIS data before the input nodes of the BN
can be populated. The several input layers must be reshaped for common pixel alignment
and resolution. There are two approaches to implementing a BN in a GIS framework: a fast
approach which is memory-intensive, or a slow one with less memory usage [Landuyt, et
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al, 2015]. The slow mode is based on GeoNetica and runs the BN model at each pixel
independently. For the fast approach, collections of pixels which represent unique
combinations will be combined and referred to as a “cell”. There usually will be many fewer
cells than pixels for a given site implementation. Then the BN is replicated at each of these
smaller set of locations. This approach requires a catalog that lists all unique cells with
their corresponding pixels, and then maps the probabilistic model output back into raster
form. This catalog allocates considerable amounts of memory. However, the unique cell
approach allows for customizing the nodes’ discretization intervals in the nodes for more
efficient dynamic range coverage (Section 3). The advantages of each approach will be
evaluated as we gain experience with implementation of UnMES at additional sites.

In the initial version of UnMES, the core BN is run for each cell of the joint GIS database
independently. The probabilistic output is redistributed back through the catalog to the
corresponding pixel locations in output GIS raster layers that can be displayed as maps
visualizing the predictions and their corresponding uncertainty. The presentation of results
can be displayed in several forms, including maps of most probable state (or mode state),
accompanied by a map of the probability of that reported state; or a map of expected value
along with a second map of standard deviation. A discussion of the methods of visualizing
uncertainty is presented in Section 5.

2.4 Temporal Evolution

The process of UXO migration on the seabed is envisioned to be a repeated sequence of
movement, then burial, followed eventually by re-exposure, leading to possible further
movement. The ESTCP field tests conducted at the Field Research Facility (FRF) in Duck,
NC [Wilson et al., 2008a] observed surrogate UXO buried under sediment to depths several
times the object diameter. Subsequent observations revealed these UXO were at different
locations, but again deeply buried. It is inferred that local bathymetric change, either from
bedform migration or shoreface adjustment, caused the UXO to become unburied, allowing
the UXO to migrate, and then rebury. Based on a compilation of field test results from
SERDP researchers [Calantoni et al, 2015, Traykovski, 2015] as well as modeling studies
by Jenkins et al. [2013], burial is by far the most probable state of the UXO at any given
time, with re-exposure and movement occurring very infrequently at most sites. However,
it may be just these unusual events that are of most concern to site managers. At many of
the sites, the munitions have been in residence for years, if not decades. The potential for
infrequent events to occur, though small, is finite.

10
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The approach taken by UnMES is to model the burial-migration cycle, not explicitly as a
time-stepped sequence of processes, but as the combined probability of burial and motion
states, given a long-term distribution of environmental forcings. We focus here on a wave-
forced environment, so the temporal distributions of wave heights and their corresponding
periods are required input, along with a quantification of the probability of changes in
seabed elevation that provide the potential for re-exposure. The time scale of temporal
evolution is implicit in the duration over which the statistics are derived. For example, if
the distribution of seabed elevation changes are computed from measurements or modeled
processes representing weeks or a few months, that PDF captures re-exposure potential
due to local bedform migration, but not that caused seasonal shoreface adjustment, which
occurs over annual time scales.

3 Details of Nodes in UnMES

The nodes in the core UnMES BN can be grouped into three sets. In a predictive mode,
normally the input nodes which specify the geologic and meteorological setting (shown as
blue in Figure 2.1), will have their states set using values from the GIS environmental
database. There are several variables, denoted by orange, that provide existing knowledge
of the initial disposition of the UXO that are contaminating the site, such as the kinds of
munitions and their relative abundance.

The probability distributions resulting in the output prediction nodes (green set shown in
Figure 2.1) contain the information that will feed into site manager risk assessment tools.
The set of intermediate nodes is where the functionality of UnMES lies. The CPTs for these
nodes are filled in using our knowledge of ocean physics along with recent laboratory and
field research into the behavior of munitions on the seabed in the form of process models
(see Section 4) and rule based expert input for situations where physics based models are
not available.

A crucial step in constructing the BN is the choice of discretization intervals for both the
input and intermediate nodes. The primary determinant of the discretization choice is the
need to adequately resolve the behavior of the UXO. However, in order to maintain a
reasonable size for the multi-dimensional CPTs, there is a need to limit the number of
discretization intervals. For sufficient discrimination of the munitions burial and migration
patterns, a large number of states may be required, but the inherent uncertainty of input
measurements should be considered before creating unrealistically high-resolution
intervals. Whitehouse [1998] cites typical uncertainties, ranging from 10% to 20% for the
input environmental parameters in UnMES, when there has been an in-situ field survey. So
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the uncertainty when using generic regional predictions can be expected to be significantly
larger.

The precision with which UnMES needs to predict burial is determined by a number of
factors. Doctrinal burial categories used in the Navy’s Mine Warfare and Environmental
Decision Aids Library (MEDAL), which reflect the sensitivity of various underwater mine-
hunting sensors, are set to intervals with boundaries of 10%, 20%, 75% and 100% burial.
In addition to supporting sensor performance prediction, UnMES also calculates when UXO
are buried sufficiently so that mobility is suppressed. The percentage burial at which this
“lockdown” occurs has been estimated to be between 40% to 50% [Wilson et al., 2008a].
Therefore the scour burial states of 10%, 20%, 50%, 80% and 100% of the UXO diameter
are proposed for the initial version of UnMES. These discretization intervals are denoted on
Figure 3.1, and listed in column 1 of Table 3.1.

Table 3.1 Discretization Intervals for some UnMES Bayesian Network Nodes

Scour Bottom Water Wave Wave Wave Wave
Burial Velocity U, Depth h  Height (m) Period (s) Height (m) Period (s)
(%) (cm/s) (m) for h=2.5m for h=2.5m forh=7m forh=7m
<10 <10 1to 1.5m <0.3 <4 <04 <4
10to 20 10to 20 1.5to2m 0.3t00.4 >4 0.4t00.7 4t0 6
20to 50 20to 30 2to2.5m 0.4t00.5 0.7t0 1.0 >6
50 to 80 30to 40 2.5to3m 0.5t00.65 1.0to1.4
80 to 100 40 to 50 3to4m 0.65t00.8 1.4t01.7
fully 50 to 60 4to5m 0.8t0 1.0 1.7t02.0
buried 60 to 75 5to 6m 1.0to 1.2 2.0to 2.5
751090 6to8m 12to 1.4 2.5t03.0
90 to 105 8to 10m 14to1.7 3.0to 3.5
105to0 120 10to15m 1.7t02.0 3.5t04.0
120 to 160 2.0to 2.6 40to5.3
surf zone >2.6m >53m

The functional response to forcing is highly sensitive for many of the relationships
modeled here, but the domain of strong sensitivity to one variable can change depending
on the value of a second variable. This will be illustrated in detail for the Bottom Velocity
node in the following section. Because the UnMES GIS framework creates a new instance of
the BN at each spatial cell, we can take advantage of the reduction in dynamic range for
variables that are constrained within that spatial region, such as water depth and sediment
grain size. For example, because waves break in water depths on the order of their height,
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the Wave Height node for the BN replica at spatial cells in very shallow water need not
include states for the larger wave heights that may be found farther offshore.

In a previous implementation of a Bayesian network to predict mine burial [Rennie et al,
2007] the CPT was defined using an off-line Monte-Carlo computation of a predictive
deterministic model. For UnMES, several of the deterministic models (see Section 4) are
simple enough to specify the equation defining the relationship directly in Netica’s node
Equation box whereby Netica’s Equation-to-Table option can be used. The Equation-to-
Table option performs a similar Monte-Carlo sampling of all states on-the-fly to build the
table internally. This makes it possible to construct each BN replica in a custom manner for
each spatial cell in the joint GIS database (See Section 3.3.2).

3.1 Rationale for Discretization: Bottom Velocity

The bottom velocity (Unot) is an intermediate node that acts as a parent to both the burial
and migration nodes. Velocity at the bottom of the water column is the peak orbital velocity
computed from linear wave equations [Soulsby, 1997], as a function of the value of the
input states: Wave Height, Period and Water Depth. To determine the appropriate choice of
state interval width for the Bottom Velocity node, the sensitivity of the parameterized
model for scour burial is considered. This model was the focus of recent studies [Rennie
and Brandt, 2014], reviewed in Section 4.1.

Across a given spatial cell, the sediment characteristics are fixed to a single value. In Figure
3.1, scour burial, %B (in percent) is plotted against increasing bottom velocity for two
sediment values, and for two different UXO shapes. The type “bomb” is used to represent a
larger cylindrical UXO, nominal diameter of 150 mm, and “shell” denotes artillery with a
tapered shape of nominal diameter 80 mm. The model for %B is dependent on the
parameter 0, the sediment Shields number [Friedrichs, 2014], which is a function of the
sediment grain size and Upot?. The “bomb” curves show the relationship %B = 100-2.2-09-85,
the best fit parameters found from the data on cylinder burial in Rennie and Brandt [2014].
The two sediment sizes bound most of the range of sand grains, from dseq = 0.2 mm (very
fine sand) to dsea = 0.8 mm (coarse sand). The “shell” curves show %B = 100-5-0, the
empirical fit based on the burial of tapered shapes. At cells with the very small grain size,
burial is highly sensitive to bottom velocity, especially for the “shell” burial with the larger
scale factor applied. However, for a “bomb” in coarse sand, it takes a sizable increase in
bottom velocity to cause substantial burial.
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To understand burial behavior to the precision proposed in Table 3.1, Upot should be
resolved to within approximately 0.05 m/s intervals for a cell with a sediment type of very
fine sand (red and black lines in Figure 3.1). For a BN with dsq set to coarse sand, the
velocity intervals could be as wide as 0.15 m/s. In addition to considering the resolution
required to discern changes within the deterministic relation, the uncertainty of the
empirical fit (Section 4.1) should be considered. Overlaid on Figure 3.1 are the 95%
confidence ranges (dashed lines) for the empirical fits for burial behavior of the two UXO
shapes. Because there were very few sample data points for the tapered shapes, the
uncertainty is noticeable larger for the “shell” relationship. Taking the 95% confidence
ranges into account, a velocity interval of 0.10 m/s accurately reflects current knowledge of
the percent burial relationship with Uyo.. These Bottom Velocity intervals are indicated by
marks along the left half of the x axis in Figure 3.1.

110

shell in bombin / shellin "/ bombin

very fine sand very finesand / coarse sand 7/ coarse sand
/ 7 g ’
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Figure 3.1 Scour burial as a function of bottom velocity for a bomb-like object, and for a
tapered shell. The green and blue lines show burial in coarse sand, and the red and black
lines show burial in very fine sand. The dashed lines indicate 95% confidence about the
slope parameter from empirical fits. The grey horizontal bars delimit the scour burial state
boundaries at 10%, 20%, 50%, 80% and 100%. Grey triangles mark Uy, state intervals.

For velocities 1.2 m/s, the slowly-burying munitions will become fully buried even in
coarse sands. This discrimination interval of larger Upo is of interest for estimating
migration (Section 3.7) in the situation where erosional processes have unearthed the UXO.
Because our knowledge of migration distances is limited, the choice of wide Uy intervals at
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the higher speeds is appropriate. With bottom orbital velocities above about 2 m/s, the
wave starts to break, and linear wave formulation is no longer applicable. The physics of
water motion in the surf zone is extremely complex, and for the present we will simply
assign a “high” value to Uy for these conditions. For the initial version of UnMES, we set
the state interval widths for Upe at 0.1 m/s up to 0.6 m/s, increasing to 0.15 m/s widths up
to 1.2 m/s, followed by 0.4 m/s interval to 1.6 m/s. All larger values will be denoted “surf
zone” and assigned Upot > 2.0 m/s, as shown in Table 3.1. These state intervals are
illustrated in Figure 3.2 where the nodes are expanded to show their “belief bars”, the
method that Netica uses to display the updated PMF at each node. Note that the Wave
Height distribution represents the temporal variation within a given GeoNetica cell, while
Water Depth remains fairly constant within the cell. Further discussion of Figure 3.2 is
presented in Section 5.

5 EEEE - WaveDirection
0 t30t0.3 7.0 fromWest 0
Sto04 11.0 ;
041005 230 direct 100
fromEast 0
D5to 065 17.0 WaterDepth
065t00.8 14.0 0+12 1to 15 0
08to1 11.0 15t 2 0
1to 1.2 6.00 2to 25 0
12t014 110 - 25t03 100 ——
14t017 0+ B Period Tt0d 0
1.7to 2 0+ lessthand 36.1 4105 0
2t026 0+ greaterthand  64.0 Eto b 0
26t028 0+ 59127 6to 8 0
066 +0.33 8to 10 0
# 10 to 15 0
275+014
Ubot
lessthan10 8.63 i
from10to20 19.9 .
from20to30 15.8 ScourBurial
from30to40 147 lessthan10percent 26.7
from40to50 14.0 perc10to20 12.9
from50to60 8.71 . perc20tos0 23.2
fromB0to75 8.71 perca0tod0 13.7
from75to90 7.66 percad0to100 544
fomra0to105 1.84 fullyBuried 18.0
from105t0120 0+ 044F + 0 38
from120to160 0+
surfzone 0+
0376 +0.24

Figure 3.2 Netica BN for scour burial. Representative beliefs bars of the BN nodes for waves,
water depth, bottom orbital velocity and percent burial by scour, showing the discretization
choices defining the state intervals. Water depth is set to 100% belief for the BN replica
within a spatial cell defined by isobathic depths between 2.5 and 3 m. The UXO Type node is
set to represent an area where all underwater munitions are similar to naval artillery shells.
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3.2 Input Nodes: Geologic Setting

The geological characteristics of the location are specified in the UnMES by a node
specifying the sediment grain size, dsq, along with a bathymetric variable, the node
WaterDepth. A third node, called hsigma, quantifies the vertical variability in bathymetry
about the mean water depth, h. These variables are assumed to vary over the spatial
domain, but are temporally static. Sediment grain size will be constant within a given cell,
while the temporal variability of h is captured in the hsigmq statistic. The map region to be
modeled is partitioned into cells based on the merged GIS raster layers for these variables,
as discussed in Section 2.2 so that in each cell, these nodes have a fixed value; i.e. the input
PMF is 100% in a single state. By narrowing the range of several input (parent) nodes, the
size of the CPTs of the intermediate (child) nodes is reduced.

3.2.1 Sediment characterization

The characteristic of the sediment is given by a single parameter, ds.q, the diameter of the
sand grains in mm. At sites of interest, a sediment analysis would usually be performed,
where separation by sieving results in the PMF of sand grain size (e.g. Wilson et al., 2008a).
Because the scour process is sensitive to sediment size (as seen in Figure 3.1), the details of
the grain size distribution were shown to play a role in CFD studies of UXO burial [Jenkins
et al, 2012]. The UnMES approach is focused on first-order effects, under the assumption
that the overall uncertainty (due to imperfect knowledge of the location and history)
renders details irrelevant. Therefore the grain size distribution is represented by its
median value. This value is treated by Netica as a constant, rather than a state with a given
interval width, so no discretization choice is required for ds.s. Note that nodes in Netica
which represent constants do not require links, but are available as input to all other nodes.

For many U.S. coastal areas, there is sediment database available from NAVOCEANO. A map
of the NAVOCEANO Bottom Sediment Type data, forming a QGIS raster layer, is shown in
Figure 3.3 for the vicinity of Panama City, FL. In many wave-dominated locations, the sand
will be fairly well sorted by the wave action, so that water depth and sand grain size are
inversely correlated. However, due to geologic history, outcroppings of different sediments
can occur, as seen in Figure 3.3, where pockets of gravel and shell are interspersed.
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Figure 3.3 QGIS map of bottom sediment type from NAVOCEANO database from the region in
the Gulf of Mexico near Panama City, Florida. The sediment type can be mapped to a median
sand grain size, which is assumed to not vary with time. Red circles mark the locations of the
TREX13 field experiment locations [Calantoni, 2015].

3.2.2 Water Depth

Coastal bathymetry is generally available at all U.S sites at a minimum as charts from
NOAA'’s Office of Coastal Survey and digitally from the from the National Ocean Service
(NOS) hydrographic survey archive. Another source is the U.S. Naval Oceanographic Office
(NAVOCEANO) Digital Bathymetric Data Base - Variable Resolution (DBDB-V) product.
These archived bathymetries can be used as a baseline. At most sites of interest, at least
one high-resolution survey should have been performed to provide more detailed
bathymetry. At many locations, repeated surveys allow an assessment of bathymetric
variability which is crucial to predicting the likelihood of re-exposure of previously buried
munitions. Models of dynamic coastal morphology [Hanson et al., 2003, Jenkins and Inman,
2006] can be employed to estimate the variability if historic measurements are not
available. For the preliminary BN, the variability is specified as a standard deviation of
vertical variation (hsigma) about the local mean depth at each cross-shore location (see
Section 3.5). This statistic could be derived from repeated surveys, or computed from
Monte-Carlo exploration of models of cross-shore profile evolution in response to regional
wave climatology.
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Determining the appropriate width for the state intervals of the WaterDepth node
requires the consideration of both the measurement accuracy of h and the sensitivity of the
child node Upo. The average vertical resolution of bathymetry across the region of interest
varies according to its source. Modern bathymetry derived from airborne lidar should
achieve accuracy of 0.15 m, however, substantially more areas are covered by
hydrographic surveys, where recent standards for sonar soundings only require a vertical
uncertainty of less than 0.5 m in shallow (< 100 m) areas [Wells and Monahan, 2002].
There is a corresponding increase in horizontal resolution available from coastal lidar
studies (pixel size of 2 to 3 m?) higher than that available from archived hydrographic
sources (on the order of 100 m?). Figure 3.4 shows an example QGIS raster layer of water
depth formed from a combination of hydrographic and lidar sources. The bathymetry
shown illustrates this discrepancy in resolution: the regional bathymetry is taken from
DBDB-V which has 3 second resolution, i.e. pixels every ~93 m. A subsection of the
nearshore region (the beach out to less than 8 m depth), is formed from lidar data taken in
2005, in a USACE Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX)
survey after Hurricane Katrina, which has resolution of close to 2 m?, and vertical accuracy
between 15 to 30 cm [Guenther et al,, 2000].

The bottom orbital velocity is proportional to the reciprocal of the square root of h (given
the same wave height), therefore Uyo: varies slowly in relatively deep water. For h > 7 m, it
requires a decrease of over 2 m to cause an increase in Upo larger than the state intervals
specified in Table 3.1. In very deep water, the width of the interval can be even larger.
However, in shallow water, the orbital velocity becomes substantially more sensitive to
changes in h, so that the water depth interval must be as small as 0.5 m to resolve Upot
sufficiently. The choice of state intervals for the WaterDepth node are listed in Table 3.1
and illustrated in Figure 3.2. Note, again, that the value of h is considered to be fixed in
time. Also, for any given spatial cell, the value lies completely within a single state interval;
in fact, that is how the boundaries of that spatial cell were defined (see Section 2.2). The
color scale in Figure 3.4 uses the water depth state intervals, so that the color changes
delimit the isobars where there is a state change.
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Figure 3.4 Water Depth near Panama City, Florida. Large scale bathymetry from DBDB-V.
High-resolution near shoreline from 2005 survey by USACE JALBTCX. Red dots mark the
locations of the TREX13 field experiment locations [Calantoni, 2015].

3.3 Input Nodes: Wave Forcing

The nodes describing the characteristics of wave forcing must capture the temporal
variation of the dynamic forcing which causes UXO burial and migration. The input PDF of
wave heights should be computed as a histogram over a time period that is long enough to
be representative of the conditions at the site. For the probabilistic approach taken by
UnMES, the exact burial-motion sequence phasing (Section 2.3) is assumed to be
unimportant; therefore, for adequate statistics, the PDF should be developed over a time
period encompassing multiple cycles of burial-motion as well as multiple cycles of wave
patterns (diurnal, seasonal, annual). Figure 3.5 shows an example histogram of wave height
computed from 8 years of wave buoy measurements offshore of FRF at Duck, NC [FRF,
2011]. Note at any moment in time an entire spectrum of waves is present; the single
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statistic represented here is significant wave height, Hsig, computed as 40 of the sea surface

elevations measured during the measurement window (usually %2 hour).
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Figure 3.5 Probability distribution of significant wave height computed from measurements
at the FRF Waverider buoy: a) shows the histogram of wave heights measured at a location
in a water depth of 17 m during the years 1998 to 2006 with magenta line the best fit
lognormal distribution. b) transformed wave heights at 7 m depths; green line is the best fit.
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3.3.1 Shallow Water Wave Transformation

For most coastal locations, instruments measuring wave conditions are located offshore in
deep water. Many U.S coastal sites are serviced by offshore wave buoys maintained by
National Data Buoy Center (NDBC), part of the National Oceanic and Atmospheric
Administration (NOAA). Offshore wave model predictions are available at locations in
between buoys from the operational wave model WAVEWATCH III (Tolman, 2009), with
hindcast re-analyses archived back to 1999. To populate the cells of the GIS framework for
UnMES, which is generally most concerned with shallower regions close to shore, the
transformation of the shoaling waves must be computed. NOAA’s National Centers for
Environmental Prediction (NCEP) is currently developing the Nearshore Wave Prediction
System (NWPS) to provide high-resolution nearshore wave products [van der Westhuysen,
2012]. Until NWPS is routinely operational, the shoaling of deep-water waves to the
shallow region of most interest to UnMES will require using a gridded nearshore wave
transformation model such as SWAN, which was developed at Delft University and is being
incorporated into NWPS [Settelmaier et al, 2011], or the US Army Corps of Engineers
(USACE) model STWAVE [Smith et al., 1999].

Figure 3.6 illustrates the effect of shoaling on two waves approaching the beach at FRF,
apply the wave-evolution model by Thornton and Guza [1983]. The water depth (in brown)
shows a pronounced longshore bar at 200 m offshore, then increases with a slope of about
0.008 out to the depth of 8 m where a wave gauge is located. An offshore wave height of 2.4
m is plotted in dark blue; this wave can be seen to steadily decrease in height as it moves
inshore, its energy dissipating due to the combined effect of bed friction and depth-induced
breaking. At the crest of the longshore bar, this wave breaks, losing height rapidly, then
continuing with Hsjz about 0.75 m to just before the shore. In comparison, a wave in 8 m
with Hsig = 0.72 m, shown in cyan, does not dissipate, but experiences slight Hsz growth as
the shallower depths slow the wave, reducing its wave length, causing a compensating
increase in height. Breaking again occurs at the crest of the longshore bar. Overlaid on
Figure 3.6 are dashed vertical lines marking the discretization intervals for the water depth
parameter determined in the Section 3.2.2. It can be seen that in order to spatially resolve
the nearshore, closely-spaced cells are required. However, the near-surf-zone is a region of
large uncertainty, so that such high resolution may not be warranted.
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Figure 3.6 Cross-shore bathymetry and shoaling wave heights at FRF, Duck NC. Two example
waves are shown with offshore heights of 2.4 m and 0.7 m (marked by magenta dots).

The use of Bayesian networks to model wave evolution from offshore into the surf zone has
been explored [Plant and Holland, 2011] and, in the future, UnMES could be expanded to
handle that portion of the required modeling effort. For the current version, it is assumed
that wave characteristics at all spatial cells are determined offline, and provided to UnMES
as an input PDF.

When modeling a single location, the prior distribution of the Hsi; input node can be
approximated using a histogram such as shown in Figure 3.5. To provide wave information
for all the cells in a spatial implementation of UnMES, it is more practical to represent the
PDF of Hsi parametrically, by fitting the observations to a parametric continuous
probability distribution using maximum likelihood estimation. Then the GIS input consists
of one or two layers of the appropriate parameter values. Netica provides an extensive
library of built-in functions, including many analytic probability distributions. Wave
formation via energy cascade is a multiplicative process; wave heights are all positive
values and their distribution is highly skewed, with a low mean value but a large variance.
Therefore the lognormal distribution is a reasonable approximation, requiring two
parameters, u, and o. Overlaid on Figure 3.5a in magenta is the best fit lognormal
distribution for the wave heights observed at the offshore FRF buoy in 17 m depth. The
green line in Figure 3.5b shows the wave height distribution after application of the
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Thornton and Guza [1983] shoaling transformation for a nearshore location with a water
depth of 7 m. The lognormal parameterization is satisfactory for representing the bulk of
the wave distribution at this site. In order to precisely model the tail of the distribution (the
largest wave heights), which represents the most important forces driving burial, the use of
an exceedance probability formulation will be investigated.

3.3.2 Discretization of Wave Height and Period

For fixed water depth h, bottom orbital velocity is approximately linearly proportional to
wave height, Upot = m * Hsig , with a secondary dependence on wave period T. The slope m
approaches 1 in shallow water (h < 2 m). This strong sensitivity of the child node Uyt to
changes in Hsig constrains the state intervals of the WaveHeight node to be fairly small. At
a given spatial location in UnMES, h is considered fixed, but wave height and period will
vary over time. Figure 3.7 illustrates the sensitivity of Upo to Hsig and T for two water
depths. In Figure 3.7a the depth is shallow (h = 2.5 m) and Uy, is seen to increase rapidly
with Hsig, with m = 0.6 at T= 3 s, up to m > 0.9 for T > 6 s. To resolve this relationship
requires very small state widths for the WaveHeight node, with Hsig intervals as small as
10 cm. However, the maximum wave height in the CPT is only 2.6 m; all larger waves are
breaking (plotted as white), and can be assigned to the “surf zone” category. There is very
little dependence on wave period, so that node can adequately be represented by only two
states, below and above T = 4 s. This Hsjg; discretization for a shallow water depth is
illustrated in Figure 3.2 and marked by the black arrows along the x-axis of Figure 3.7a.

In deeper water with h = 7 m (Figure 3.7b), Upo: increases more slowly with Hsig; m ranging
from 0.15 to 0.5. The maximum Hsig to delimit is 7.6 m; all larger waves would break before
reaching this depth. The state interval boundaries for Hsig are computed at the Uy interval
contours (plotted in white) for the wave period (T = 6 s), which is the mean T for the
example Gulf of Mexico location shown in Figures 3.3 and 3.4. The variation over wave
period at this depth will be captured with three states. Note that wave period is invariant; it
does not change as the waves shoal towards shore, and can therefore be represented by the
same distribution at every cell. It is clear that, given local water depth, the BN at each
spatial cell can be designed to adequately resolve the relevant wave height forcing using
the number of intervals that were chosen for the bottom velocity node. The resulting
choices of state intervals are listed in Table 3.1 for the two example water depths. In this
manner, the CPTs for the nodes’ relationships can be represented using a manageable
number of entries.
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3.3.3 Wave Direction

Due to refraction, shoaling waves are constrained to increasingly be directed toward the
shoreline (angle £ = 0°). Because it has been shown in some locations that shore erosion is
sensitive to directional changes in the incoming waves [Ruggiero et al, 2006] an input node
for the incident angle is included in UnMES. Also, the longshore current direction is driven
by this angle and used for predicting the UXO migration direction. Measurements of wave
direction are not available as readily as those for height and period. The percentage of
waves that approach obliquely from either the east or the west (assuming a shoreline along
constant latitude) may be estimated from beach observations including video monitoring
[Holman and Stanley, 2007]. In this version of the UnMES the wave direction parameter is
used as a general indicator, therefore a coarse discretization of 3 states is chosen, with the
state boundaries at £ = £20°.

3.4 Input Nodes: Distribution of UXO
3.4.1 UXO Type & Abundance

The exact composition of munitions at a site is usually not well known. However an
estimate of the type of munitions present is critical to the prediction of the current state of
UXO burial and accumulation as their size, shape, and density affect burial and migration
behavior. The size of munitions of interest ranges from small 20 mm bullets, through
projectile shells and mortars with diameters from 40 to 81 mm, and howitzers as large as
155 mm. Diameter, length and weight data for common Naval munitions are readily
available, and several studies have relied on estimating density by assuming a cylindrical
shape. However many UXO of concern have more complex shapes. (Access to additional
munitions details in DoD restricted ordnance databases will be beneficial for the
development of UnMES.) Preliminary site surveys can provide a prior probability for the
input nodes for UXO Type and UXO Abundance. At some sites, such as Camp Perry, OH,
there are historical firing documents that allow estimates of the likely artillery areal
concentration [Wilson et al, 2008b]. In this version of UnMES, UXO Types include the
category “bullet” with a diameter of 22 mm and a high density (specific gravity, Sg = 7).
The type “shell” is assigned an intermediate diameter of 10 cm and is considered to have a
tapered shape and moderate density (Sg = 4.5), while “bomb” represents a larger,
cylindrical UXO with Sg = 2.7. Figure 3.2 illustrates the UXO Type node instantiated with
100% of the type “shell”.
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3.4.2 Initial Burial

The possibility of burial upon impact in sandy sediments is very low for munitions that
were dumped at sea off a ship, based on research performed for the ONR Mine Burial
program [Rennie et al, 2007]. The hardness of a sand seabed, usually measured as
sediment shear strength, is quite high (>12 kPa), and the impact velocity of ship-dropped
munitions is usually low, less than 10 m/s. However, air-dropped bombs or fired artillery
shells could have impact velocities exceeding 100 m/s. Future work will investigate the
use of a proposed model for high-velocity sediment penetration [Chu et al, 2011]. In the
current version of UnMES, the Impact Burial node is a placeholder, indicating minimal
burial (i.e., the state “less than 10%"” instantiated).

3.5 Input Nodes: Probability of Erosion or Accretion of Sediments

The node Erosion/Accretion in the BN represents our knowledge of changes in the seabed
level on spatial scales larger than the immediate area around the UXO. There are several
mechanisms under investigation that could cause buried munitions to re-surface or be
excavated. Most of these mechanisms also have the opposite potential and can bury the
munitions by covering them with sediment. At very long time scales, the shoreline erosion
is an obvious mechanism that can expose previously buried objects. Within an annual time
frame, the dominant process on many coastal regions is the shoreface equilibrium profile
adjustment to seasonal variation in wave climate. At many wave-dominated coastal
nearshore sites, the evolution of surf-zone sand bar position is the largest cause of change
in sediment depth [Plant et al, 1999]. At a range of scales from weeks to years, the
migration of sand ridges (also referred to as sand waves or megaripples) contributes to
bathymetric variation.

It is a challenge to deterministically model these erosion/accretion patterns which are
driven by far-field mechanisms occurring at very much longer time scales (months to years,
or even decades) than the elementary processes from which they are built, which occur on
time scales of wave events (hours to days) [Hanson et al.,, 2003]. For the purpose of UnMES,
it is required to estimate the probability that the amplitude of bathymetric variation will be
comparable to the dimensions of the munitions of concern within some fairly extended
time period. To model long-term migration probabilities, the exact temporal phase of short
time-scale processes may not be required. For the preliminary UnMES, an empirical
approach is taken, with erosion or accretion (E/A) specified statistically, assuming a
Gaussian distribution of seabed levels. The input value is given as a standard deviation of
vertical variation about the local mean depth (hsigma). The choice of the time period over
which the variation is determined sets the temporal scale of the model. Similar to the
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treatment of dseq, for the GIS implementation a single value (hsigma = constant) is
appropriate within each spatial cell.

Figure 3.8 shows the annual variation of cross-shore bathymetry at FRF, derived from 15
years of survey data [FRF, 2011]. The variation about the mean within each year, is
computed, and then averaged over the 15 samples. The standard deviation hsigma is plotted
in red over the mean bathymetry in brown. It should be noted that the standard deviation
computed over the entire 15 year period is about twice as large as the annual hsigma shown
here, so the choice of time scale is an important factor in setting the probability distribution
of erosion and accretion.

At two locations, marked by black dots, the histograms of depths are compared with the
Gaussian PDFs used to represent them in the E/A node (Figure 3.8b and c). The fits could
be improved by including a second parameter quantifying skewness, if the quantity and
quality of the bathymetry data warranted the added complexity. The location of the
sandbar is characterized by a maximum in hsigma, Wwhere changes in seabed level of over
0.35 m occur relatively frequently (about one third of the time). A change of this magnitude
is enough to cover or uncover many UXO. Farther offshore, hsigma should approach zero,
marking the depth of closure, where the seabed is static over the time scale considered. The
standard deviation computed here does not decrease to zero, but asymptotes to about 0.1
m; most likely that is the measurement error for these bathymetric surveys. In Figure 3.8a,
the boundaries of spatial cells, based in the water depth discretization, are again indicated
by the dashed black lines.

The E/A node is then populated with a normal distribution with mean zero using Netica’s
internal equation capability. The E/A node must be discretized at intervals fine enough to
discriminate changes in percentage burial for the UXO of interest: 5 cm bins are used out to
* 45 cm, then larger intervals (0.5m) to encompass the tails.

A separate node, labeled ShorelineRetreat (see Figure 2.1), is included in the BN to
capture the process of shoreline erosion and its contribution to UXO unburial, which may
be important at some sites. For example, at Camp Perry on Lake Erie, the shoreline retreat
has been documented at rates of about 2 m per year, and appears to be a major contributor
to the problem of UXO reappearance on the beach [Wilson et al., 2008b]. While this process
could be represented using a negative skewness in the E/A distribution, it is clearer to
break shoreline retreat out as a separate variable. While the E/A distribution can be
developed from data or model results covering a yearly to decadal time scale, the rate of
shoreline erosion must usually be estimated by extrapolation of large-scale data sets
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[Thieler and Hammar-Klose, 1999], or the use of long-term profile evolution models
developed to simulate the response to sea level rise [Hanson et al, 2003]. At some sites,
rapid erosion can be triggered by the construction of structures such piers or groins.
Estimates from sediment transport models customized to the local beach engineering
should provide the mean value to use at each spatial cell in the UnMES GIS.
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Figure 3.8. Example annual bathymetric variability statistics from a 15 year measurement
record at FRF, Duck, NC.

3.6 Intermediate Nodes: Scour Burial and Total Burial

The scour burial node has two parents, Upot and UXO Type (Figure 3.2). The state intervals

for the scour burial node were chosen early in the design process (Table 3.1) and have
units of percentage, denoting the percent of the UXO diameter that is buried. The CPT for
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the scour burial node is built from the equations defining the burial behavior as
determined by laboratory and field experiments [Rennie and Brandt, 2014] which is
reviewed in Section 4.1 and illustrated in Figure 3.1. Netica allows the specification of a
multipart equation; in this initial UnMES, the equation is tripartite with a different
parameter used for each of the three example UXO types (Section 3.4.1). When Netica
converts an equation to a CPT, a decision must be made as to where within each discretized
state to evaluate the equation. Netica’s algorithm chooses a number of points at random
positions within the state, and uses the average of the results obtained. To reduce
sampling uncertainty, the CPTs in UnMES are built using a large number, 0(1000), of
random points.

Total burial represents the interplay between the predicted scour and impact burial and
the erosion or accretion at the cell. = The parents for the TotalBurial node are
ScourBurial, ImpactBurial, E/A, and UXO Type, which specifies the UXO diameter.
TotalBurial is presented in dimensional units (cm) and is discretized to have finer
discrimination at low burial (state interval widths of 2, 3, or 5 cm for burial less than 20
cm), but coarser resolution at deeper burial (widths of 10 to 25 cm up to 1 m burial). In this
UnMES version, the equation is simply the sum of the dimensional scour burial and E/A.
Future work will investigate an additional parameter, a multiplicative factor applied to
scour burial to adjust for the time scales of the different processes. Figure 3.9 presents an
illustration of the section of the BN with TotalBurial combining the ScourBurial and
E/A distributions, at a location with the E/A parameter set to hsigma = 0.12m, and zero
shoreline retreat. The water depth for the spatial location in this example is h = 7 m, and
the UXO Type is “bomb”, which as a diameter of 15 cm.

3.7 Results Nodes: Migration probability

A number of studies have been conducted to determine the bottom flow required to initiate
motion of sediment particles on the seabed. The more relevant literature, involving larger
particles (gravel or pebbles) on heterogeneous sediment mixtures, has been extended with
laboratory experiments to study the mobility of UXO-sized objects, as described in Section
4.2.
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Figure 3.9 Section of the UnMES BN showing Burial and Migration nodes. The wave forcing
(not shown) represents a strong event in the location water depth of 7 m.

3.7.1 Migration Distance

In this preliminary UnMES design, the MigrationDistance node is partitioned into
three states; these are labeled "Stay” for no significant movement; “Near” for distances less
than 50 m; and “Far” for further movement. An intermediate node called Exposure is
introduced to determine whether the UXO is “locked down” by burial. The exposure node
has two states: “exposed” when TotalBurial is less than half the UXO diameter, and
“buried” for all other conditions. The CPT entries in the MigrationDistance node with
the parent state “buried” are all set to “Stay”. If “exposed”, then the probability of motion is
based on the bottom velocity distribution and UXO density (formulated as the Object
Shields parameter discussed in Section 4.2) compared to the UXO size versus the bottom
roughness scale, represented by the node DoverkK.

While the equation to compute a threshold of mobilization is given in Section 4.2, there is
little guidance yet on how far the UXO will travel once motion is initiated. For the current
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UnMES implementation, an ad hoc formulation is utilized. When the mobility threshold is
just slightly exceeded (i.e. Object Shields parameter within an order of magnitude of the
threshold) UXO are envisioned to slide or roll along the seabed. Laboratory studies of
rolling cylinders [Davis et al.,, 2007] show the object velocity to be about 70% of the bottom
flow speed. Therefore, for these cases a rule-of-thumb distance is estimated based on the
speed 0.7-Upot, acting over half the wave period. When the forcing strongly exceeds the
mobility threshold (by more than one order of magnitude), the object travels suspended in
the current, and a full 100% of Upot is used. When the forcing dramatically exceeds the
threshold (more than two orders of magnitude), it is assumed that conditions are such that
the entire seabed is mobilized, with burial unlikely, and multiple instances of mobilization
occur. Only these extreme conditions can generate migration in the “Far” state. These ad
hoc rules make the MigrationDistance node conditionally dependent on at least five
parent nodes. To refine these coarsely-determined migration estimates will require
further research, especially the inclusion of results from recent field experiments in
energetic conditions.

3.7.2 Migration Direction

Because generally detailed knowledge is lacking about the direction that a UXO will move,
the MigrationDirection node is discretized into a small number of states.
MigrationDirection is set up representing directional quadrants: onshore (+45°),
“east” (to the left facing onshore), “west”, and offshore (which is separated into two states
to encompass -180 to -135° and +135 to +180°). A straightforward prediction of migration
direction, proceeding from a simple assumption of mobilization during the passage of a
wave’s crest, will be onshore, with some component of alongshore, based on the input
wave direction. However, consideration of the general tendency of objects to migration
downslope increases the likelihood of offshore movement. A detailed CFD modeling study
using the UX0-MM code [Jenkins et al., 2013] at a site Adak, AK, driven by a 20-year wave
record, showed that the dominant direction of movement was offshore, with less than 10%
of the modeled migration towards the beach, and about a third traveling alongshore. Field
studies over 3 to 5 months offshore of FRF at Duck, NC [Wilson et al, 2008a] reported
onshore movement for 12% to 20% of the UXO surrogates, with offshore migration in a
third to a half of the observations. Our ability to predict the dominant direction of UXO
migration will require additional site-specific environmental knowledge, such as
prevalence of the longshore current. For the current UnMES implementation, a prior PMF
is assigned to the MigrationDirection node that reflects the long-term Adak model
results, and is shown in Figure 3.9.
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4 Core Physics: process models in UnMES

Process models for UXO scour burial, mobility and re-exposure are at the core of the
UnMES. Significant progress has been made on development of appropriate models for
UXO burial and mobility based on the extant literature, available field data and experiments
designed specifically for the properties of UXO (size and density). A brief summary of these
models is presented below while the details of their development are presented in Rennie
and Brandt [2014]. Appropriate process models for UXO re-exposure are currently under
development.

4.1 Scour Burial Model

Water flow, either the oscillatory motion of waves, or steady currents, is accelerated in the
vicinity of an object lying on the seabed, causing sediments to erode at the ends of the UXO.
Scour pits are thus formed, and, as scouring continues, the UXO falls into the enlarging pit.
The pit then becomes a sediment trap and can fill in. This process and the following process
model results are described in Rennie and Brandt [2014].

As the extant data on scour around finite objects is quite limited. Available studies include a
laboratory study by Demir and Garcia [2007] on cylinders in oscillatory flow, field studies
of large sea-mine surrogates [Trembanis et al, 2007]. and a series of experiments utilizing
UXO surrogate shapes conducted at JHU/APL [Rennie and Brandt, 2014]. In these recent
studies large “shell” like cylinders, tapered cylinders and small “bullet” sized cylinders
were utilized.

The results and prior data are shown in Figure 4.1, where the fraction of final scour burial
is plotted as a function of the sediment Shields parameter, 6, which is the dimensionless
parameter that encompasses the driving parameter for the scour process. 0 is defined as

g = 1f:U?

= 4.1
9 (Ssed—1Ddsed ( )

where U the bottom current, g gravitational acceleration, Ssea = ps/pw, with ps the sediment
grain density, pw the water density, and dseq the median sand grain size. The friction drag
force coefficient f; represents the skin-friction shear stress acting on the bed, rather than
the form drag acting on any individual sand particle (Soulsby, 1997).
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Figure 4.1 shows the previously compiled laboratory data [Demir and Garcia, 2007],
labeled “DG2007” and field data [Trembanis et al, 2007], labeled “ONR MBP FIELD.” Red
circles indicate JHU/APL laboratory results using cylinder with diameter D = 10 cm. Brown
triangles show the burial observed with the tapered cylinder (D = 7.94 cm). The small
diameter (D = 2.54 cm) cylinders shown as magenta circles. The considerable scatter
apparent is the result of the natural variability of the turbulent scouring process, the
variability in the scour pit growth and differences in the local sediment environment.
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Figure 4.1. Observations of scour burial of UXO and sea-mine surrogates. Burial is reported
as the fraction of the surrogate diameter and plotted versus the Sediment Shields number 0.

It was found that the burial fraction can be reasonably represented by the relationship

Bea _ 490, (4.2)
D

where Beq is the equilibrium burial depth and a and b are empirically determined
constants. This relationship gives a reasonably simple process model for burial depth for
use in the UnMES that relates the UXO properties to the environmental conditions through
the Shields parameter.
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The blue, black and green dashed lines show the empirical fits to Equation 4.2 from
Friedrichs [2014], Demir and Garcia [2007] and Whitehouse [1998], respectively. For large,
cylindrical objects, b lies between 0.8 and 1.0 and a is about 2.2. The scale factor a is larger
for tapered shapes or very small UXO such as bullets, which exhibited a tendency to bury
more easily. The magenta line represents the best fit of Equation 4.2 for the combined
tapered and small UXO observations with values of a = 5.9 and b = 1. These empirical
parameters are applied in the Netica equations defining the CPT for the ScourBurial
node (Section 3).

4.2 Mobility Model

Motion of a bottom-sitting object results when the force on the object due to its drag in the
local flow exceeds the resisting force due to the objects weight and inertia. For large
objects compared to the bed sand grain size, the appropriate parameter governing the
criteria for the onset motion is the Object Shields number 0op; [Friedrichs, 2015] defined in
analogy to the Shields parameter, 6, as

U2

Hobj = g (Sobj — 1) D’ (4-3)

where the object diameter, D, replaces the characteristic sand grain size, dseq, and the
specific gravity of the object, Sobj , replaces the specific gravity of the sand grains used in
Equation 4.1.

Figure 4.2 shows the mobility threshold, 8.5, data plotted versus the ratio of the object
diameter D to bed roughness, k. This ratio D/k, parameterizes geometrical aspects of the
force balance, and is represented by the BN node DoverK in UnMES. The prior extant data
considered large objects in field studies shown in green, magenta and brown on the right
and the motion of the particles from a it sand bed itself in black on the left (see Rennie and
Brandt [2014] for details). As UXO fall in the intermediate range that was not covered, a
series of laboratory studies were performed to provide these data, shown as red symbols.

The solid blue in Figure 4.2 line is the best fit power law for all data, while the red line
shows the fit for D/k > 4 excluding field data of natural sediments, with dashed lines
indicating the 95% confidence limit. This latter curve provides the process model needed
in UnMES as

34



@ JOHNS HOPKINS
A

PPLIED PHYSICS LABORATORY

FPS-T-15-0333
Technical Report Page 35

-0.62
By = 1.2(D/k) @.4)
Equation 4.4 is used in the definition the CPT of the MigrationDistance node (Section
3.7). It should be noted that the onset of UXO motion for objects on a sand bed is somewhat
more complicated due to the fact that some scour may occur prior to the onset of motion

which will alter the flow pattern around the UXO and thus the appropriate value of 6opj, as
discussed in Rennie and Brandt [2014].
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Figure 4.2. Compiled data for the mobility threshold of objects on the seabed. JHU/APL
laboratory results shown are in red. The solid blue line is the best fit power law for all
previous and new data combined; the red line shows the fit for D/k > 4, which excludes field
data of near-homogenous sediments. The dashed lines indicate the 95% confidence limit
around the large D/k fit. The grey lines indicate the state interval boundaries for the Object
Shields parameter, delimiting different defined modes of migration behavior (Section 3.7.1).
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4.3 Re-exposure Models

Predicting the probability of re-exposure is a particularly important factor in estimating
migration potential, as UXO can be mobilized only when buried less than about half of its
casing diameter. In addition, estimation of the percentage of time spent covered by
sediment is important to predicting the condition of the munitions’ casings. Complete
burial in anoxic conditions can result in casings displaying very little corrosion even after
decades, whereas prolonged periods of exposure on the seabed results in corroded, leaking
UXO. Prediction of the casings’ condition could be included in future versions of UnMES
that tackle the problem of estimating seawater pollution from dissolved chemical
components of munitions.

Re-exposure is the result of temporal changes in far-field sediment morphology with
different processes dominant at different time-scales. At the MR Program Review
Workshop [SERDP, 2014], it was noted that progress is needed in modeling far-field
processes in order to understand long-term UXO migration patterns. The proposed
continuation of the present study [Rennie and Brandt 2015a], in collaboration with the
upcoming SERDP Project MR01-026 [Friedrichs, 2015] will develop improved
parameterized model formulations describing far-field phenomenology including ripple
and dune migration as well as larger-scale shoreward movement of the shoreline and
associated shoreface, both cyclical (e.g., winter/summer beach profile adjustments) or uni-
directional (e.g., net coastal erosion). The current version of UnMES uses a data-derived
statistical representation of exposure probability (Section 3.5) as a placeholder until these
far-field process models are sufficiently developed.

5 Example Implementation

Environmental data is being gathered in order to populate the input GIS layers for two
example implementations of UnMES: the Gulf of Mexico (GoM) off the coast of Panama City
(shown in Figures 3.3 and 3.4); and at the FRF in Duck NC (Figures 3.5 and 3.6). These sites
are chosen because field test observations will be available for future comparison with
UnMES predictions for verification of the expert system utility. The behavior of a number of
surrogate munitions deployed in the GoM was studied during the TREX13 field test
[Calantoni, 2015] in April through May 2013. An earlier field test was conducted at FRF
over a more extended period of time in 2005 to 2006 [Wilson et al,, 2008a].
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In Figures 3.2 and 3.9 sections of the UnMES core BN are shown for the GoM example.
Figure 3.2 illustrates the Scour Burial response for a wave height distribution
representative of the coast off Panama City in shallow water (h is between 2.5 and 3 m).
The characteristics of each node are displayed as “belief bars”, the probability distribution
approximated by a PMF (normalized histogram). At this water depth, which is inshore of
the sandbar dissipation has reduced all larger offshore waves so that Hsig < 1.4 m, resulting
in a local peak in the wave height distribution in the state “1.2 to 1.4 m”. The wave period
distribution is based on observations, so that its relationship with wave height is
represented. Here the mean period is 5.9 * 2.7 s, which is displayed at the bottom of the
Period node. The distribution of bottom orbital velocity is computed by Netica in the Upot
node using the linear wave equations. The UXO Type input node is set to all of state “shell”
(Section 3.4.1). The seabed sediment is composed of medium sand grain size dseq = 0.45
mm, so that scour process falls in between that of very fine and coarse sand behavior as
shown in Figure 3.1. Note that because dseq is treated as a Netica constant, that node’s
value is available to all other nodes in the BN without a link (arrow).

Because the Wave Height node here represents the distribution of wave conditions over an
extended temporal period, the ScourBurial PMF can be interpreted as the percentage of
time for which conditions are such that a proud UXO would become buried The
ScourBurial node computes a ~27% chance of very slight burial (less than 10% buried)
that corresponds approximately to the combined probability of the two lowest states in the
Upot distribution, representing bottom flow speeds less than 20 cm/s, and consistent with
Figure 3.1. Note that state intervals for a node may have different widths - this can result in
a PMF’s belief bars appearing oddly irregular. For example, the first two ScourBurial
states encompass 10 percentiles, while the central two states are wider, and therefore
contain a larger portion of the PDF, even though the probability of degree of burial is
actually decreasing monotonically. The state “fully buried” is populated with all
possibilities where wave forcing is strong enough to arrive at equilibrium burial, which is
quantified as a burial depth of 115% the object diameter [Whitehouse, 1998]. Given the
empirically-determined parameters for the burial behavior of a “shell” type UXO (Section
4.1), the “fully buried” state occurs for all Upot > 60 cm/s, and therefore contains the sum of
the probabilities over the six highest Uy states.

The section of the UnMES BN addressing Total Burial and Migration is shown in Figure 3.9.
In this example the wave conditions represent a storm event (Hsig ~ 2.5 m, WaveHeight
node not shown), in a water depth of ~7 m. The UXO Type modeled is “bomb” which is
larger and less dense than the other types. Initial impact makes no contribution to burial in
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this example. After storm conditions, the ScourBurial node reports the large majority
(88%) of the bomb casings would likely be more than half buried. However, the possibility
of seabed erosion at the site reduces that likelihood somewhat, so that “buried” state in the
Exposure node is less than 66%. Of the exposed UXO, most are predicted to remain in their
original positions (“Stay” is the most probable state in MigrationDistance), while
about one third are predicted to move a short distance. There is an almost zero probability
predicted for substantial “Far” migration. A comparison of UnMES predictions with field
observations is currently in progress and will be reported in the forthcoming
Demonstration Report on the prototype UnMES implementation [Rennie and Brandt,
2015b].

6 Summary and Future Work

The preliminary design for the Underwater Munitions Expert System (UnMES) is described.
UnMES is a computer-based probabilistic expert system to predict the likelihood of burial
and migration of abandoned underwater munitions. This approach utilizes simple
deterministic models in a probabilistic framework, combined with statistical
parameterizations to define the joint conditional probability space for UXO behavior.
Probabilistic modeling is appropriate given the inherent uncertainties in a munitions site’s
history and imperfect knowledge of the environment and complex physical processes
governing UXO burial and mobility. UnMES will be a component of a larger risk assessment
tool developed for use by site managers as remediation guidance. This larger framework
will require GIS support for environmental input and visualization of spatially varying
assessments. The Bayesian network for the prototype UnMES makes use of the GeoNetica
software product, and a QGIS framework to interpret and display map-based information.

The component variables of the Bayesian network are specified as belonging to input,
output, and intermediate node sets. The interrelationships between nodes determines the
causal structure of the predictive system. Methods are developed to determine the
required discretization of the continuous variables delimiting the states of each node,
balancing the need for adequate resolution with operational tractability. Future work will
investigate the application of alternative probabilistic programming environments which
can handle continuous distributions with techniques for performing the Bayesian inference
parametrically. This would eliminate the requirement to make prior selections of the state
intervals for discretizing the PDFs.

Environmental data from two sites of interest are compiled in QGIS layers and are being
used as input to the prototype UnMES implementation. The task of demonstration and
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verification of UnMES predictions is being undertaken using field test observations from
recent SERDP-funded experiments conducted in wave-dominated coastal locations off
Florida and North Carolina. Additional environmental data will be acquired from the field
experiments near Martha’s Vineyard [Traykovski, 2015]. Access to details of these UXO
burial and migration observations should be available in the near future.

The Underwater Munitions Expert System will be part of a decision support tool providing
graphical mapping and visualization of UXO distributions and burial state for site
remediation planning. A key aspect of the continued development of UnMES will be
forming the metrics by which prediction uncertainty can be presented and assessed for the
evaluation of management alternatives. A QGIS plug-in, the Probabilistic Map Algebra Tool
(PMAT) [Landuyt et al, 2015], is under evaluation for possible use. PMAT produces
different formats of Bayesian belief network maps to aid in understanding risk, including
(1) the most probable state accompanied by a map of the probability of that reported state;
and (2) a map of expected value along with a second map of standard deviation cumulative
probability below or above a specified threshold. These formats will be evaluated during
the prototype UnMES evaluation.

Use of the preliminary UnMES design has made clear that additional work needed on
understanding re-exposure probabilities. Further research is proposed [Rennie and Brandyt,
2015b, Friedrichs, 2015], to develop rational parameterized models for UXO re-exposure
due to far field effects such as seasonal beach profile shaping as well as sand wave or large
bedform migration. Other topics requiring additional research are the potential for impact
burial and a better understanding of the distance that munitions can travel once mobilized.
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