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Isogeometric Phase-field Simulation of Boiling

Ju Liu and Thomas J.R. Hughes

This paper is dedicated to Tayfun E. Tezduyar on the occasion of his 60th birthday.

Abstract In this work we consider the Navier-Stokes-Korteweg equations, a diffuse-
interface model describing liquid-vapor phase transitions. A numerical scheme for
this model is constructed based on functional entropy variables and a new time inte-
gration concept. The fully discrete scheme is unconditionally stable in entropy and
second-order time-accurate. Isogeometric analysis is utilized for spatial discretiza-
tion. The boiling problem is numerically investigated by making proper assump-
tions on transport parameters and boundary conditions. Compared with traditional
multiphase solvers, the dependence on empirical data is significantly reduced, and
this modeling approach provides a unified predictive tool for both nucleate and film
boiling. Both two- and three-dimensional simulation results are provided.

1 Introduction

Boiling is a thermally induced phase transition process in which new liquid-vapor
interfaces are generated in a bulk liquid region [2]. It is an extremely effective mech-
anism in energy transfer and is widely used in energy conversion facilities. Despite
its importance in industry, the fundamental mechanism of boiling is still not well
understood [2]. A predictive model for boiling is highly desired for engineering de-
signs. Film boiling is regarded as most amenable to modeling, since its governing
mechanism is principally the Rayleigh-Taylor instability. However, existing simula-
tions all start with a preexisting perturbed flat interface as the initial condition [8].
In other words, none of those methods captured the film generation process. On the
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other side, very few simulations of nucleate boiling have been performed because
more physical mechanisms are involved in this phenomenon.

Traditional interface-tracking and interface-capturing methods are designed based
on geometrical information of existing interfaces. This is perhaps the reason why
these methods become intractable for phase transition phenomena. Phase-field
or diffuse-interface methods were proposed as an alternative interface-capturing
method, that use thermodynamic state variables to distinguish different phases [1].
The solid mathematical and thermodynamic foundations of phase-field models al-
low them to describe these complicated phenomena without resorting to model-
ing “tricks.” The initial instantiation of phase-field methods is the Navier-Stokes-
Korteweg equations, which are constructed based on the van der Waals theory [1, 4].
In the past decades, this theory has been developed further [3], and a rational ther-
momechanical framework for the Navier-Stokes-Korteweg equations has been pre-
sented very recently [10].

For phase-field problems, the non-convexity of the entropy function precludes
the possibility of directly applying many existing robust numerical methodologies
[11]. To overcome the challenges posed by the non-convexity of the entropy, first,
functional entropy-variables are introduced to construct an entropy-stable spatial
discretization [9, 10]. Second, to develop a stable temporal scheme, we adopt the
methodology based on special quadrature rules [5, 9]. This time integration concept
can be viewed as a second-order modification to the mid-point rule. The modifica-
tions are designed so that the temporal approximation is provably entropy dissipa-
tive. Since this temporal scheme does not require convexity for the entropy function,
it is anticipated to be applicable to many more general problems.

2 The Navier-Stokes-Korteweg equations

We consider a fixed, connected, and bounded domain Ω ⊂ R3. The time interval of
interest is denoted (0,T ), with T > 0. The dimensionless Navier-Stokes-Korteweg
equations are considered in the space-time domain Ω × (0,T ) as

∂ρ

∂ t
+∇ · (ρu) = 0, (1)

∂ (ρu)
∂ t

+∇ · (ρu⊗u)+∇p−∇ · τττ−∇ · ςςς = ρb, (2)

∂ (ρE)
∂ t

+∇ · ((ρE + p)u− (τττ + ςςς)u)+∇ ·q+∇ ·ΠΠΠ = ρb ·u+ρr. (3)

In the above equations, ρ is the density, u is the velocity, E is the total energy, p is
the thermodynamic pressure, τττ is the viscous stress, ςςς is the Korteweg stress, q is
the heat flux; ΠΠΠ is the interstitial working flux [3, 10], b is the prescribed body force
per unit mass, and r is the heat source per unit mass. The constitutive relations are
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p =
8θρ

27(1−ρ)
−ρ

2, τττ =
1

Re

(
∇u+∇uT − 2

3
∇ ·uI

)
, q =−κ∇θ ,

ςςς =
1

We

((
ρ∆ρ +

1
2
|∇ρ|2

)
I−∇ρ⊗∇ρ

)
, ιloc =−ρ +

8
27(γ−1)

θ ,

ι = ιloc +
1

2Weρ
|∇ρ|2, E = ι +

1
2
|u|2, ΠΠΠ =

1
We

ρ∇ ·u∇ρ,

wherein θ is the temperature, κ is the conductivity, Re is the Reynolds number, We
is the Weber number, γ is the heat capacity ratio, and ι is the internal energy density
per unit mass. The mathematical entropy function H and the local Helmholtz free
energy Ψloc are defined as

H :=
8

27
ρ ln

(
ρ

1−ρ

)
− 8

27(1− γ)
ρ ln(θ) ,

Ψloc(ρ,θ) := −ρ +
8

27(γ−1)
θ +

8
27

θ ln
(

ρ

1−ρ

)
− 8

27(1− γ)
θ lnθ .

In three dimensions, the vector of conservation variables is

UT = [U1,U2,U3,U4,U5] := [ρ,ρu1,ρu2,ρu3,ρE].

Due to the appearance of the gradient-squared term, the mathematical entropy func-
tion H is no longer just an algebraic function of the conservation variables, but
rather it is a functional of the conservation variables. We define the entropy vari-
ables VT = [V1,V2,V3,V4,V5] as the functional derivatives of H with respect to U:

Vi[δvi] =
δH
δUi

[δvi], i = 1, . . . ,5,

wherein δvT = [δv1,δv2,δv3,δv4,δv5] are the test functions. The entropy variables
V can be written explicitly as

V1[δv1] =
1
θ

(
νloc−

|u|2

2

)
δv1 +

1
We

1
θ

∇ρ ·∇δv1,

Vi[δvi] =
ui−1

θ
δvi, i = 2,3,4, V5[δv5] =−

1
θ

δv5,

wherein

νloc =−2ρ +
8

27
θ ln

(
ρ

1−ρ

)
− 8

27(γ−1)
θ (ln(θ)−1)+

8θ

27(1−ρ)

is the local electrochemical potential. Inspired from the form of V1, we introduce a
new independent variable V as

V :=
1
θ

(
νloc−

|u|2

2

)
− 1

We
∇ ·
(

∇ρ

θ

)
.
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The fundamental thermodynamic relation between p and νloc allows us to express
p in terms of V as

p = ρV θ −ρΨloc +
ρ|u|2

2
+

1
We

ρθ∇ ·
(

∇ρ

θ

)
. (4)

Making use of the relation (4), the original strong-form problem (1)-(3) can be
rewritten as

∂ρ

∂ t
+∇ · (ρu) = 0, (5)

∂ (ρu)
∂ t

+∇ · (ρu⊗u)+∇

(
ρV θ +

ρ|u|2

2
+

1
We

ρθ∇ ·
(

∇ρ

θ

))
−
(

V θ +
|u|2

2
+

1
We

θ∇ ·
(

∇ρ

θ

))
∇ρ−H∇θ −∇ · τττ−∇ · ςςς = ρb, (6)

∂ (ρE)
∂ t

+∇ ·
((

ρV θ −θH +
1

2We
|∇ρ|2 +ρ|u|2 +

1
We

ρθ∇ ·
(

∇ρ

θ

))
u
)

−∇ · ((τττ + ςςς)u)+∇ ·q+∇ ·ΠΠΠ = ρb ·u+ρr, (7)

V =
1
θ

(
νloc−

|u|2

2

)
− 1

We
∇ ·
(

∇ρ

θ

)
. (8)

The new strong-form problem (5)-(8) is an equivalent statement of the original
Navier-Stokes-Korteweg equations (1)-(3).

3 The fully discrete scheme

The time interval (0,T ) is divided into Nts subintervals (tn, tn+1), n = 0, · · · ,Nts−1,
of size ∆ tn = tn+1− tn. We use the notation

YYY h
n :=

[
ρ

h
n ,

uh
1,n

θ h
n

,
uh

2,n

θ h
n

,
uh

3,n

θ h
n

,
−1
θ h

n
,V h

n

]T

to represent the fully discrete solutions at the time level n. We define the jump of
density, linear momentum, and total energy over each time step as

Jρ
h
n K := ρ

h
n+1−ρ

h
n , Jρ

h
n uh

nK := ρ
h
n+1uh

n+1−ρ
h
n uh

n,[
ρ

h
n E(ρh

n ,uh
n,θ

h
n )
]

:= (ρΨloc)(ρh
n+ 1

2
,θ h

n+1)− (ρΨloc)(ρh
n+ 1

2
,θ h

n )

+(ρΨloc)(ρh
n+1,θ

h
n+ 1

2
)− (ρΨloc)(ρh

n ,θ h
n+ 1

2
)

−θ
h
n+ 1

2

(
H(ρh

n+1,θ
h
n+1)−H(ρh

n ,θ h
n )
)
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−
θ h

n+1−θ h
n

2

(
H(ρh

n+ 1
2
,θ h

n+1)+H(ρh
n+ 1

2
,θ h

n )
)

+
(θ h

n+1−θ h
n )3

12
∂ 2H
∂θ 2 (ρh

n+ 1
2
,θ h

n+1)

+
1
2

(
ρ

h
n+1|uh

n+1|2−ρ
h
n |uh

n|2
)

+
1

2We

(
|∇ρ

h
n+1|2−|∇ρ

h
n |2
)

.

With the jump operators defined above, the fully discrete scheme can be stated as
follows. In each time step, given Yh

n and the time step ∆ tn, find Yh
n+1 such that for

all wh
1 ∈ V h, wh = (wh

2;wh
3;wh

4)
T ∈

(
V h
)3, wh

5 ∈ V h, and wh
6 ∈ V h,

BM(wh
1;Yh

n+1) :=
(

wh
1,

Jρh
n K

∆ tn

)
Ω

−
(

∇wh
1,ρ

h
n+ 1

2
uh

n+ 1
2

)
Ω

= 0, (9)

BU (wh;Yh
n+1) :=

(
wh,

Jρh
n uh

nK
∆ tn

)
Ω

−
(

∇wh,ρh
n+ 1

2
uh

n+ 1
2
⊗uh

n+ 1
2

)
Ω

−

∇ ·wh,ρh
n+ 1

2
V h

n+ 1
2
θ

h
n+ 1

2
+

1
2

ρ
h
n+ 1

2
|uh

n+ 1
2
|2 +

1
We

ρ
h
n+ 1

2
θ

h
n+ 1

2
∇ ·

∇ρh
n+ 1

2

θ h
n+ 1

2


Ω

−

wh,

V h
n+ 1

2
θ

h
n+ 1

2
+
|uh

n+ 1
2
|2

2
+

1
We

θ
h
n+ 1

2
∇ ·

∇ρh
n+ 1

2

θ h
n+ 1

2

∇ρ
h
n+ 1

2


Ω

−
(

wh,Hh
n+ 1

2
∇θ

h
n+ 1

2

)
Ω

+
(

∇wh,τττh
n+ 1

2
+ ςςς

h
n+ 1

2

)
Ω

−
(

wh,ρh
n+ 1

2
b
)

Ω

= 0, (10)

BE(wh
5;Yh

n+1) :=

(
wh

5,

[
ρh

n E(ρh
n ,uh

n,θ
h
n )
]

∆ tn

)
Ω

−

(
∇wh

5,

(
ρ

h
n+ 1

2
V h

n+ 1
2
θ

h
n+ 1

2

−θ
h
n+ 1

2
Hh

n+ 1
2
+
|∇ρh

n+ 1
2
|2

2We
+

ρh
n+ 1

2
θ h

n+ 1
2

We
∇ ·

∇ρh
n+ 1

2

θ h
n+ 1

2

+ρ
h
n+ 1

2
|uh

n+ 1
2
|2
)

uh
n+ 1

2

)
Ω

+
(

∇wh
5,τττ

h
n+ 1

2
uh

n+ 1
2

)
Ω

+
(

∇wh
5,ςςς

h
n+ 1

2
uh

n+ 1
2

)
Ω

−
(

∇wh
5,q

h
n+ 1

2
+ΠΠΠ

h
n+ 1

2

)
Ω

−
(

wh
5,ρ

h
n+ 1

2
b ·uh

n+ 1
2

)
Ω

−
(

wh
5,ρ

h
n+ 1

2
r
)

Ω

= 0, (11)

BA(wh
6;Yh

n+1) :=

(
wh

6,V
h
n+ 1

2
− 1

2θ h
n+ 1

2

((
νloc(ρh

n ,θ h
n+ 1

2
)+νloc(ρh

n+1,θ
h
n+ 1

2
)
)

+
Jρh

n K2

12
∂ 2νloc

∂ρ2 (ρh
n ,θ h

n+ 1
2
)
)
−

uh
n ·uh

n+1

2θ h
n+ 1

2

)
Ω

−

∇wh
6,

∇ρh
n+ 1

2

Weθ h
n+ 1

2


Ω

= 0. (12)

In our work, Non-Uniform Rational B-Splines (NURBS) basis functions are used to
define V h as well as the computational domain. Consequently, this approach may
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be considered as isogeometric analysis method [7]. The main results of the fully
discrete scheme (9)-(12) are stated in the following two theorems.

Theorem 1. The solutions of the fully discrete scheme (9)-(12) satisfy

∫
Ω

(
H(ρh

n+1,θ
h
n+1)−H(ρh

n ,θ h
n )

∆ tn
+∇ ·

(
H(ρh

n+ 1
2
,θ h

n+ 1
2
)uh

n+ 1
2

)
−∇ ·

qh
n+ 1

2

θ h
n+ 1

2


+

ρh
n+ 1

2
r

θ h
n+ 1

2

)
dVx =−

∫
Ω

1
θ h

n+ 1
2

τττ
h
n+ 1

2
: ∇uh

n+ 1
2
dVx−

∫
Ω

κ|∇θ h
n+ 1

2
|2(

θ h
n+ 1

2

)2 dVx

−
∫

Ω

1
θ h

n+ 1
2
∆ tn

(
Jρh

n K4

24
∂ 3νloc

∂ρ3 (ρh
n+ξ1

,θ h
n+ 1

2
)− Jθ h

n K4

24
∂ 3H
∂θ 3 (ρh

n+ 1
2
,θ h

n+ξ2
)
)

dVx ≤ 0.

Theorem 2. The local truncation error in time ΘΘΘ(t) =
(

Θρ(t);ΘΘΘ T
u (t);ΘE(t)

)T
can

be bounded by |ΘΘΘ(tn)| ≤ K∆ t2
n 15 for all tn ∈ [0,T ], where K is a constant indepen-

dent of ∆ tn and 15 = (1;1;1;1;1)T .

The proofs of the above two theorems can be found in [10]. Theorem 1 states that the
method is unconditionally entropy stable, because ∂ 3νloc/∂ρ3 ≥ 0 and ∂ 3H/∂θ 3 ≤
0, which follow from properties of the van der Waals fluid. Theorem 2 establishes
the second-order time-accuracy of the method.

4 Boiling

To obtain successful boiling simulations, there are several additional modeling con-
siderations. First, the transport parameters need to be density dependent in order to
differentiate the properties of the liquid and vapor phases. In our simulations, the
dimensionless viscosity coefficient and the dimensionless conductivity are modeled
as

µ̄ = Cboil
µ ρ, κ = Cboil

κ ρ,

with Cboil
µ and Cboil

κ being constants independent of ρ . Second, the gravity ef-
fect need to be taken into account to generate buoyancy. The dimensionless body
force b is chosen as b = (0;0;−0.025)T for the three-dimensional case and b =
(0;−0.025)T for the two-dimensional case. Third, the ninety-degree contact angle
boundary condition is used for the density variable, and the slip boundary condition
is applied to the velocity. To specify the boundary condition for Y5 = −1/θ , the
boundary ∂Ω is divided into three non-overlapping parts:

∂Ω = Γt ∪Γb∪Γv, Γt = {x ∈ ∂Ω |n(x) ·b < 0} ,
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Γb = {x ∈ ∂Ω |n(x) ·b > 0} , Γv = {x ∈ ∂Ω |n(x) ·b = 0} .

With the above partition, the boundary condition for Y5 is

Y5 = − 1
0.950

+δY5,h(x), on Γb× (0,T ),

Y5 = − 1
0.775

+δY5,c(x), on Γt × (0,T ),

−q ·n = 0, on Γv× (0,T ),

wherein δY5,h(x) and δY5,c(x) are small scalar perturbation functions that mimic the
uneven temperature distribution on the solid surface. The initial conditions represent
a static free surface, with liquid in the bottom region and vapor in the top region. It is
worth emphasizing that, in contrast to existing boiling models, there is no artificial
manipulation used to serve as boiling onset in this model; the initial liquid and vapor
densities are uniform with no perturbations.

4.1 Two-dimensional nucleate boiling

In this example, we simulate boiling flows in a two-dimensional rectangular domain
Ω = (0,1)× (0,0.5). The material parameters are chosen as We = 8.401× 106,
γ = 1.333, Cboil

µ = 1.150× 10−4, and Cboil
κ = 1.725× 10−5. The initial conditions

for this problem are

ρ0(x) = 0.3660−0.2971tanh
(

x2−0.35
2

√
We
)

,

u0(x) = 0,

θ0(x) = 0.775.

The perturbation for the temperature on the boundary δY5,h(x) and δY5,c(x) are uni-
form random distributions and satisfy

δY5,h(x) ∈ [−5.0×10−2,5.0×10−2], δY5,c(x) ∈ [−5.0×10−3,5.0×10−3].

The spatial mesh consists of 2048×1024 quadratic NURBS elements. The problem
is integrated up to the final time T = 100.0 with time step fixed as ∆ t = 5.0×10−4.
In Figure 1, snapshots of the density are depicted at different time steps. It can be
observed that tiny vapor bubbles are generated at discrete sites of the heated wall
surface during the initial times. The increase of bubble size leads to the increase of
buoyancy. At about t = 18.75, the first three bubbles get detached from the bottom.
More bubbles are generated on the bottom surface subsequently. Interestingly, small
droplets can be observed at t = 62.5 and t = 100.0 as a result of the breakage of the
liquid film when the vapor bubbles reach the free surface. There are 30 bubbles
formed in the time interval of 0 < t < 100.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 Two-dimensional nucleate boiling simulation: Density profiles at (a) t = 0.0, (b) t = 1.25,
(c) t = 18.75, (d) t = 31.25, (e) t = 62.5, and (f) t = 100.0.

4.2 Two-dimensional film boiling

In the second example, the same two-dimensional problem considered in the preced-
ing section is simulated again with a different parameter Cboil

µ . Here, the parameter
Cboil

µ is chosen to be 4.600× 10−4, which is four times larger than that of the pre-
vious example. Since the fluid motion in this example is slower, the simulation is
integrated in time up to T = 500.0. All the other conditions are identical to those
of the previous case. In Figure 2, snapshots of the density at different time steps
are depicted. A thin vapor film is gradually generated at the bottom during the early
stage of the simulation. As time evolves, the interface becomes unstable and there
are vapor bubbles formed. From t = 200.0 to t = 225.0, the first two vapor bubbles
pinch off from the vapor film and rise upward in ellipsoidal shapes. This process
repeats itself periodically. By final time t = 500.0, there are seven bubbles detached
from the vapor film.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Two-dimensional film boiling simulation: Density profiles at (a) t = 0.0, (b) t = 100.0, (c)
t = 175.0, (d) t = 200.0, (e) t = 225.0, and (f) t = 500.0. The generation of the thin vapor film is
visible at t = 100.0.

4.3 Three-dimensional boiling

As the last example, we simulate the Navier-Stokes-Korteweg equations in a three-
dimensional domain Ω = (0,1)× (0,0.5)× (0,0.25). The material properties are
chosen as We = 6.533×105, γ = 1.333, Cboil

µ = 1.289×10−4, and Cboil
κ = 7.732×

10−5. The initial conditions for this three-dimensional problem are

ρ0(x) = 0.33565−0.26675tanh
(

x3−0.15
2

√
We
)

,

u0(x) = 0,

Y5,0(x) = −1.2334−0.0569tanh
(

x3−0.15
2

√
We
)

.

The perturbations of the temperature on the boundary δY5,h(x) and δY5,c(x) are uni-
form random distributions and satisfy

δY5,h(x) ∈ [−5.0×10−2,5.0×10−2], δY5,c(x) ∈ [−5.0×10−3,5.0×10−3].
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The spatial mesh consists of 600×300×150 quadratic NURBS elements. The prob-
lem is integrated in time up to T = 20.0 with a fixed time step size ∆ t = 2.0×10−3.
In Figure 3, snapshots of density isosurfaces and velocity streamlines are presented.
At the initial stage, there is an unstable vapor film formed over the heated wall sur-
face. This film soon separates into isolated vapor bubbles located at random sites.
Since the simulation domain is very shallow in the vertical direction, these bubbles
reach the free surface before they get fully detached from the bottom. When these
high-temperature vapor bubbles reach the cooled top surface, they condense into
liquid droplets instantaneously (see Fig. 3 (e)). At t = 20.0, a second round of vapor
bubbles is clearly generated on the bottom and the liquid droplets on the top surface
merge together.

(a) (b)

(c) (d)

(e) (f)

Fig. 3 Three-dimensional boiling simulation: Density isosurfaces and velocity streamlines at (a)
t = 0.0, (b) t = 0.6, (c) t = 5.0, (d) t = 11.0, (e) t = 14.0, and (f) t = 20.0.
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5 Conclusion

In this work, we presented theoretical and numerical methodologies for the study
of boiling, capable of describing complicated phase transition phenomena without
resorting to empirical assumptions. Our algorithm is provably entropy-stable and
second-order accurate in time. It provides a unified predictive framework for nu-
cleate and film boiling in two and three dimensions. In the future, the presented
methodologies will be applied to the study of other important phase transition phe-
nomena, such as cavitation, spray and mist formation.
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