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ABSTRACT

A high frequency flow noise study was conducted at the Applied Research
Leboratories (ARL), The University of Texas at Austin. The facility

for measurement of flow noise is described. Data are presented for two
frequencies, 100 kHz and 200 kHz, and for three soundhead array designs,
a planar array, a cylindrical arrey, and a liquid lens. Data from
acoustical measurements show (1) the effects of the speed of the sound-
head through the water, 2) the effects of array locgtion within a
planar hydrophone housing, (3) the effects of streamlining soundheads,
and (4) the effects of streemlining surface piercing struts. The liquid
lens hydrophone configuration proved most noise resistant. Recommenda~
tions are mede for reduction of flow noise by meens of soundhead design.
Parameters for future flow noise experiments are presented.
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ITEM 00C3: FLOW NOISE STUDIES
C. Dittmen, K. Vinson, and J. Byers

I. TNTRODUCTION

As currently practiced, minehunting is a slow, laborious process.
The nformetion rates of stote-of-the-art high resolution sonar systems
would allow higher operating speeds than those presently used; however,
atter yts to run the .aew systems at faster speedz have been unsuccessful
due to the self-noise appearing in the sonar output. This self-noise
is usually sttributable to water or hull borne noise from the propulsion
machinery or components, to water and spray action against the platform
hull, and to noise produced as the soundhead is propelled through the
water. The dominance of one or more of these noise sources as a function
of parameters such as frequency or speed cannot be predicted. Some
evidence has been collected, however, that indicates that noise caused
by the flow of water around the soundhead mey become the dominate source

of noise above speeds of 8 to 10 kt.

With plans now being developed for higher speed minehunting platforms
and sonars, an examination of high frequency, high resolution sonar flow
noise and noise reduction techniques was needed. Although this exsmination
focuses on only one aspect of the overall noise problem, it was felt that
significant reductions in flow noise levels, and hence higher operating

speeds, could be achieved with a modest research effort on flow noise.

Flow noise is a label cpplied to any signal received in a hydrophone
that is due to the hydrophone's mection through water., For the purpese
of analysis, water (like air) is characterized as a Newtonian fluid with
a large Reynolds number. A Newtonian fluid assumes the existence of
viscous forces acting tangentially between layers of fluid in addition
to the pressure acting normally on the layers. The Reynolds number is

determined by the ratio

1
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The motion characteristics of water may be closely approximated
by the simple equetions of motion of an ideal fluid, except in those
narrow regions of flow which surround any moving solid body of appre-
ciable size. In those regions, viscous forces are in effect, and at
low speeds, the flow of the fluid over the solid body is smooth and E
orderly. Flow speed varies from being at rest on the surface of the
body to being in motion only to the extent necessery to equalize the
stream velocity of the ideal Iluid outside the narrovw region immediately
surrounding the body; this narrow region is commenly called the boundary
layer. In this case of low speed end orderly flow, the thickness of the
boundary layer can be described as a stack of incremental layers of

fluid, with each layer having a velocity slightly different from its

neighbor. This is generally referred to as laminar flow. 5

The stage defined as turbulent flow occurs when the orderly laminar -
flow within the boundary layer begins to breek up and become erratic as
speed increases beyond a critical point. The critical point is determined

mainly by geometry of the body and roughness of the surface.

With further increases in speed, the pressure fluctuations present
in the turbulent flow will eventually become severe. Some localized
regions will lack sufficient pressure to maintain the liquid phase of

water, causing an adiasbatic transition to the gaseous phase in those

b et g
. . .

regions. Unlike turbulence, tne onset of cavitation is not purely a

function of speed end body geometry, but it also varies with static

pressure. In some cases involving the movement of unstreamlined bodies
through water, cavitation will occur before turbulence. With minehunting
sonars, unlike submarine and torpedo mounted sonar systems, the cavitation

suppression sometimes gained by operaling at great depths and pressure is

2
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not available. Most minehunting is done with the sonar suspended at
shallow depths; thus, operation tekes place in a low pressure, cavite-

tion prone region.

Tne agents causing flow noise are considered to be the small,
localized regions of pressure fluctuation in turbulent flow and the
stronger shocks caused by the rapid formation and collapse of the
bubbles of cavitation. Lower frequency hydrophones used in submarine
and torpedo mcunted sc .ars have element surfaces in their arrays which
are large compared to the size of “he pressure fluctuation encountered
in turbulent flow; thus, the effect tends to be integrated out. High
resolution minetunting sonars operating at high frequencies require
small elements and the integration effect is lessened as the size of
the fluctuetions approach that of the element face; thus, turbulence
affects minehunting sonars to a greater degree. Cavitation can occur
at any angularity or irreguiarity on the body of the hydrophone, and
the acousticeal effects of the change of state are stronger than those

effects dque to turbulence. The fact is well documented that the noise

generated by the formation, acoustic oscillation, and collapse of cavita-

tion bubbles greatly degrades the sonar performance at ship sonar and

torpedo frequencies. One can extrapolate thet the same effect will hold

at minehunting frequencies, except that the size of the bubbles affecting

the sonar should be smaller in order to generate the correspondingly

higher frequencies. However, extrapolation, no matter how well presented

and justified, must be verified by measirements or replaced by new theories

suggested by the experimental date.

Prior to the onset of this study, only two sets of high frequency

flow noise data were available. Flow noise data were gathered at Applied

Research Laboratories (ARL), The University of Texas at Austin, from

existing minehunting hydrophones operating at a 100 kHz frequency, at

speeds verying from 5 to 13 kt.l Data were a’so collected by Naval Ship

3
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avoidance sonar housed in a minimal cavitation body operating at 10C VHz ’ }
frequency, at speeds ranging f:om 25 to 42 kt.2 The results of these ’

studies are presented in Fig. L. Note that, before what is thought to : é
be the onset of cavitation, noise is observed to increase sbout 5 3B | é
per speéd doubling. After the onset of cavitation, the increase is : é

about 25 dB per speed doubling. The ARL date taken with existing mine-

hunting hydrophones show cavitation beginning around 10 kt, while NSRDC

data taken with its special minimel cavitation housing show the onset
of cavitation to be around 35 kt. DNote also that the effect attributed
to turbulent flow noise over the 5 dB per speed Qoubling slope appears
to match both sets of data. This match leads to the speculation uaat,
in the absence of cavitation noise, the turbulent flow noise could be i .
represented by the one single linear function with a slope of 5 4B per

spesed doubling, as shown in Fig. 1.

It was hoped that some of the gaps in the data could bte filled and

some experimental verification of present speculation could be obtained

“~ .

in this continuation of the high resolution sonar flow noise studies

T

at ARL. The purnhoses of this study were
(1) to measure the flow noise of conventionally designed high

resolution sonar soundheads,

PR

(2) to make minor changes in the fairing design to provide more
streamlined flow around the soundheads in order to determine the influence
of streamlining end fairing smoothness on flow noise, and

(3) to conduct a detailed study of soundhead design with a goal of
flow noise reduction.

The purpose of item one was to establish the level of flow roise contributed
by the soundhead alone and to establish a baseline upon which future work
could be evaluated. The zoal of item two was to reduce the existing flow
noise by simple, quick means end to provide guidelines for proper fairing
design. The purpose o. item three was to investigate in detail the in-
fluence of soundhead design on flow noise and to provide guidelines on * ;

the design of future higzh resolution sonar soundh~eds.

4 Y
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Durirg the course of this flow ncise study, data were collected from

(1} a 100 kHz hydrophone, ARL-300, especiaily designed for flow
noise measurements, with three housing configurations (bare facz (no dome),
cylindrical dome, and "ideal" streamlined dome) end a variable arrsy-to-
dome separation,

(2) a 200 kHz obstacle avoidance sonar (0AS) soundhead, and

(3) a 112 kxHz cylindrical lens soundhead.

Some effort was expended in investfgating the noise caused by the
hydrophone mounting strui. Two strut coiumns were used: a 1:4 wedge

column and a 1:12 plate column.

6
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IT. DESCRIPTION OF EQUIPMENT USED IN FLOW NOISE STUDY

Much of the equipment held over from the previous flow noise study
has been modified end new equipment has been built. A complete descrip-
tion of the flow ysise facility and data reduction equipment as it was

used in this stuuy is included here.

A. Data Acquisition Facility

The basic components of the fTlow noise facility at the ARL Leke
Travis Test Station (LTTS) were fabricated for the flow noise studies
conducted under Contract NO0O1L-70-A-0166, Task 0006, during the period
1 June 1971 through 31 August 197213

winch, located at a convenient spot on the lake shore, was used to tow a

A high speed, high power mobile

flow noise platform through the lake at selected speeds. The platform
consisted of a rigid aluminum freme supported by two 16 ft catamaran
hulls; the hydrophone was mounted on a strut and suspended between the
two hulls at a 2.5 It depth, The frame also provided support for the
electronic equipment necessary to record the flow noise generated by the

motion of water over the hydrophone face,

1. General Description of Operation

After the winch is located at a suitable spot on the lake shore,
the tow rope is attached to the platform and a power boat is used to tow
the platform away from the winch. After the platform has been towed
away from the winch assembly to the limit of the rope, the platform is
positioned so that it faces the winch, and a reading is made of the tape
recorder tape footage counter. Then a switch is deprexsed to start the
automatic sequence for the beginning of a run. A 15 sec delay permits

the operator of the powered tow boat to get it out of range and turn it

7
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off, so that its noise will not interfere with the experiment. The
recorder then begins recording the ambient noise level in the lake.

After ¢ prearranged interval, the winch accelerstes the platform to

the desired speed and holds that speed. The operator stops the winch
before the platform is in danger of ramming aground, and the drag of

the hydrophone in the water brings the platform tc an almost immediate
stop. The tape recorder turns off at the end of its preset time interval.
The power boat returns and tows tte platform back out to the limit of

the rope and the process is repeated.

2. Description of Facility Components

In accordance with the recommendations of the previous flow
noise study, some of the basic equipment has been modified and new
equipment has been constructed. The following is a description of the
flow noise facility, including both its original components and the

equipment fabricated during this study.

a. Winch and Tow Rope

The high speed, high power winch used to tow the catamaran
through the water is shown in Fig. 2. The surface of the take-up drum
was replaced with a 1/4 in. steel sheath, and several I-beam cross
supports were added to strengthen the cylindrical shell., These ections
were taken to prevent the threatened collapse of the drum and to ensure

a circular cross section so that the towing would be as smooth as possible.

A 1/2 in. diem polypropylene rope was chosen as the tow
line because of several iesirable properties. It exhibits a 4000 1b
breaking point, very low eluasticity, and so light a weight that the

entire rope ic out of the water when towing at any appreciasble speed.

8
FOR OFF{CIAL USE ONLY




3TOIHIA LS3L 3SION MOT4 ¥O4 HONIM 9HNIMOL
¢ 3¥N9Id

G s

e
e
L
:

0166(11)-3

L 5
< S NG

o
Nﬁwﬂ,ﬁrv

i

é.a? «

Prean”

o
&,

i 2

%

4 't\‘,\(,‘

by
0

MR
b

1

[,

: &Wm“.mﬁ%w"«, o
£ IV
ks el

o PN

3

1e5s
L5
e

A
5

Sk

FOR OFFICIAL USE ONLY

H




b. Flow Noise Platform

The basic flow noise platform shown in Fig. 3 has not

been changed. The two 16 ft catamaran hulls support a rigid aluminum

frame which in turn supports the instrumentation packages and a mounting
mechanism for the hydrophone. The tow rope is attached by a towing
harness to the front edges of the frame just above the front of each
hull. The attachment points between the frame and harness have been
redesigned to support the attachment from both top and bottom to prevent i
bending or breaking due to eny sudden stress during initial acceleration
of the platform.

To compensate for nose down torque caused by drag of the
hydrophone, longitudinal adjustment of the hydrophone location is made
possible by two slide rails that are approximately 6 ft long and are
mounted midlength of the catamsran frame. The hydrophone strut mounting
assembly can be tilted to a horizontal position to provide quick mainte-
nance. A set of knockout shear pins ensures thet the strut will remain
locked in its vertical position for data taking. The frame is notched
and provided with a removable section to permit swinging the hydrophone
strut past the horizontal; however, it now seems the need for this feature
has been alleviated by the design of a specialized flow noise hydrophone
which will not require any field changes to the hydrophone proper. All
the individual element wires are brought up to the electronics unit,
and the choice of palterns or individual elements to be tested is now

made via a quick disconnect socket arrangement.

A new watertight case for the T-~track Sangamo 3500
instrumentation recorder has been constructed and mounted Just in front
of the hydrophone mounting strut. The new case features a small window
through which the tape-turns counter (calibrated in feet of tape) can
be read and noted at the start of each run. A similar watertight case

for the amplifying and detection electronics is mounted behind the

S

10

FOR OFFICIAL USE ORLY

s U o T et

£y

s — T ——— - P aRan:sd



e et g

NJO4LY71d 3SION MOT1d
€ 3aNnoid

T A
e
in&;h.«.}\( 2
- .\V.\W
o

g ouny

£

A il
AR S SN

¥

537 aed
%

s e
A

P o
e TR,
.

i

1117-11

FOR Gr Flcissr WS OGHLY




R P

hydcophone mounting strut. Plastic cases for securing the batteries
which supply power for the recorder and electronics package are fastened

near the rear of the platform.

A switch is mounted at the rear of the flow noise platform
to initiaste the automatic control of the recording sequence. A micro-
precision limit switch was selected primarily for its large throw bar
which offers a convenient target for activation from an adjacent boat.

A detachable winch is positioned on the platform to assist in mounting

and removing the hydrophone.

To measure the catamaran speed, a small water-driven
propeller generates a frequency proportionesl to the flow velocity. This
signal is recorded continuously on one channel of the tape recorder to

provide the necessary speed information.

c. ARL-300 Hydrophone System

1) Hydrophone and Mounting Strut

The flow noise ARL-300 hydrophone features a T5-element
array enclosed in a streamlined housing. The housing is designed so that
the array can be mounted flat face (without a dome), or with a cylindrical
dome, or with a streamlined dome. The mounting bracket for the array also

permits the distance between the array and its dome to be varied.

An exploded view of the housing with a cylindrical
dome is shown in Fig. 4. The strut shown in Fiy. b4 was abandoned in
favor of the 1:U4 wedge strut shosm in Fig. 5. The new strut presents a
thinner dimension to the direction of water flow; it also is a much

stronger fairing.

12
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Figure 6 shows the ARL~300 hydrophone mounted on
the 1:12 plate strut with the streamlined dome in place. Figure T shows
the NACA 0020 airfoil shape chosen for the streamlined dome and housing
and the thickness function from which it was derived.S In Fig. T, 6 is
1/2 thickness at each point, t is maximum thickness, L is overall leagth,
and x is the length variable. Also in Fig. T is a plot of the pressure
coefficient for the NACA 0020 airfoil, calculated according to the
Th. von Karman and K. Pohlhansen approximation method as outlined in

Schlichting.6

As is shown in Hoerner,T the critical speed at which

cavitation at a depth of 2.5 ft will occur is given by

27
Voors = 1.04 == (knots) ,
critical < /oi>

where
Oi’ the incipient cavitetion number, is related to
¢ ., the minimum value of the pressure coefficient, c¢_, by
pmin o)

o, = lc . |
i pmin
It can be observed from the plot of the pressure

coefficient in Fig. T that lcpmin| is 0.73; therefore, V[8;=0.85 and
Veriticar™33 ¥t

This value assumes ideal conditions that never
really exist. Open water rarely exists without containing absorbed
gases, tiny bubbles, or other impurities that serve as cavitation

nuclei, and thus cause V. . . to be somewhat lower.
critical
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Reference can be made to Fig. T to determine the
physical location on the NACA 0020 airfoil at which cavitation will
begin, which is the location of cpmin'

Figure 8 shows a cross section of the ARL-300
hydrophone with c¢ylindrical dome. This shape is composcd of a NACA 0020
airfoil tail metched to a& cylindrical nose &t moximum thickness of the
NACA 0020 airfoil. The corresponding pressure coefficient is also

plotted in Fig. 8. By noting that cpminzl‘T’ v for this shape

critical
is 21.6 kt. Aas a worst case comparison, a 4 in. cylindrical strut would
give a vcricical of =16 kt. A geometric reference for the separation

of the face of the array from the outer surface of the cylindrical and
of the streamlined domes (as measured along the axis) is provided in

Fig. 9.

The T5 ceramic elements of the ARL-300 hydrophone
are arranged in & 5 x 15 matrix made of Channelite 5,00 ceramic. The
physical detail of the individusl elements is shown in Fig. 10. A
thickness of 0.552 in. is chosen because of its 100 kHz resonance. The
element numbering system and subsequent selection of six 15-element

1er3?
The arrows in the subarrays indicate the order of the elements in the

subarrays (P.,P.,P PM’PS’PG) are also shown in Fig. 10(a),(b),(c).

mltiplex scheme, which is explained in the next section. The base
plate is 1/2 in. stainless steel on which is mounted a pressure release
backing of 1/4% in. chloroprene. The array is mounted upon this pressure
release backing and each element of the array is separated by a 0.03 in.
layer of chloroprene. The outer edges of the array are covered with a
0.03 in. layer of chloroprene; the center slit of each element is filled
with a slab of 0.03 in. chloroprene. The array is potted with CPC-16

to a thickness of 1/8 in. over the face of the elements.

In Fig. 9., the dashed lines denote the -3 dB points

of the 80° beamwidth for an individual element, for each positicn of the
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array behind the respective domes. From the element beamwidth and
geometrical layout of the hydrophone housing, the areas of dome surface
contributing to flow noise recorded by the array in various positions
can be inferred. The horizontal beam pattern (0.353 in. dimension) for
one element of the ARL-300 is presented in Fig. 1l. The vertical beam

pattern (0.411 in. dimension) is quite similar.

A photograph of the face of the completed array is
presented in Fig. 12,

Signal wires from each element of the T5-element
array are brought out the back of the array through a suitable cable
with connectors, as shown in Fig. 13. This cable assembly is routed
to the electronic box through the hollow center of the 1:4 wedge strut

and up a chennel cevity in the rear of the 1:12 plate strut.

2) Noise Detecticn Electronics

The functions of the noise detection electranics
will be explained with reference to the block diasgram in Fig. %, The
signal from each element in the hydrophone is dbrought into the water-.
tight electronics unit vie the connectors Cl and C2. The sign-ls from
each of the elements involved in the formation of the six arre: combina-
tions (Fig. 10(b),(c)) are routed to the respective plugs marh.d Pl
through P6. The connector Jx is then sed to select the desisred array.
The signals from the 15 elements of the selected array are separately
fed into the 15 preamplifiers shown in Fig. 14. The preamplifier gains
have been measured as 28 dB. The outputs of these preamplifiers are
used in two ways. They are used as inputs to the summing ampiifier
and as inputs to the next stage of amplifiers marked AD-YU emplifiers
in Fig. 14, These AD-YU amplifiers and the sum amplifier sre individ-
uelly fed into identical detector circuitry which provides a dec level

corresponding to the signal generated by each element. The multiplexed
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output, the multiplexer clock, and the detected sum output are brought
to the output connectors of the electronics uwnit. As can be inferred
from Fig. 14, one AD-YU type amplifier is used to amplify the signal
from the velocimeter, which then becomss the fourth output from the

electronics unit. i

These outputs from the electronics unit are fed
into four channels of a Sangamo 3500 tape recorder loceted in a separate
watertight case, marked recorder unit in Fig. 14. The sutomatic sequence
control electronics, also in the recorder unit, are connected to the

externally mounted initielization switch,

The 30 Vdc power needed for the Sangamo tape recorder
is provided by a series connection of one 6 V and two 12 V automobile
batteries. The sum emplifier and multiplexer are directly powered by
the 12 Vdc. The 12 Vdec is also fed into an 8 Vdc regulator which pro-
vides power for the preamplifiers. The AD-YU amplifiers are powered

by a bank of dry cells totaling 24 V, which are mounted inside the

watertight electronics unit. The automobile batteries, mounted in

individual water protective plastic cases, are wired for charging

through the connection as shown in Fig. 1k.

d. OAS Hydrophone System

1)  OAS Hydrophone

( The ARL-253-2 hydrophone is a prototype of the
AN/WQS-1 constructed by ARL as an obstacle avoidance sonar (OAS) for
free-flooded submersible swimmer delivery vehicles. The final version
of the AN/WQS-1 contains smaller square elements in an array pattern
different from this prototype. The OAS array configuration used in
flow noise tests, shown mounted on a 1:12 strut in Fig. 15 and

represented in Fig. 16, is mounted on the curved surface of a right
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cylinder, which has a 1k in. diam and a 2 3/4 in. height. The prototype
array is composed of two rows of 1/2 in. diam disk elements which are
resonant at 200 kHz. The individual elements exhibit a sensitivity of
-185 @B re 1 V/pPa. The beam pattern presented in Fig. 1T shows a
beamwidth of Th°, WNote the element is a disk, so the patterns shown

are essentially symmetric about the axis of the disk element. Fifteen

of these elements from the top row, spanning an 84° sector of the cylinder,
were selected for flow noise measurements, The separation of the elements
is 3/4 in., sand they are located 1 1/16 in. from the top edge of the OAS
housing. To measure flow noise, it was necessary to construct two lids:
one to make the bottom watertight, and the other to seal the top and to
provide a mount for the strut. The upper 1lid was 1/2 in. thick, the

lower, 1/4 in. thick. As shown in Fig. 16, the elements were mounted

on intervals of 6° around the cylindrical body. An arbitrary element
numbering system was assigned, with element 1 as the element closest

to the side of the array, and elements 14 and 15 straddling the front

of the hydrophone. Flow noise measurements were performed with the tow
direction indicated by the arrow between elements 14 and 15, as represented

in Fig. 16.

2)  OAS Electronics

The preamplifiers used in the ARL-300 measurements
were not applicable to the OAS measuremenis, because they were bandpassed
for 100 kHz operation. The OAS preamplifiers mounted within the housing
were used., The OAS preamplifiers have a 20 kHz baendwidth centered at
200 kHz, and they were set for a gain of 60 dB, which increased the gain
of the predetected signals by 20 dB over that of the ARL-300 measurements
(70 B amplification for ARL-300 signels versus 90 dB for the OAS). The
signals from the OAS preamplifiers were used as inputs to the electronics
described for the ARL-300 system; specifically, they were used as inputs
to the AD-YU amplifiers represented in Fig. 1k.
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FIGURE 17
BEAM PATTERN FOR ONE ELEMENT OF OAS HYDROPHONE 200 kHz
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e. Lens Hydrophone System

1)  Lens Hydrophone

The lens hydrophone is an experimental minehunting
sonar provided by Naval Coastal Systems Laboratory (NCSL). It consists
of a fluid-filled cavity which focuses the incoming sound waves on an
array of PZT elements. The housing, a right cyiinder which is 20.5 in.
in diameter by 3 3/4 in. in height, is pictured in Figs. 18 and 19.

The window opening, observed in Figs. 18 and 19 and represented in

Fig. 20, is 1 1/2 in. in height and extends across the 180° forward
sector of the hydrophone. The window material and gasket shown in

Fig. 19 are clamped firmly to the housing to contain the lens fluid,
designated as FCT5 fluid. As represented in Fig. 20, the element array
can be moved along the rear radius of the housing in order to plece the
elements at the focal plane of the lens. The elements, as shown in the
array detail of Fig. 20, are sbout 1/4 in. square by 1 in. high; the
long axis of the elements is eligned witi. the axis of the cylindrical
housing. Elements 1, 3, and 4 were resonant at 112 kHz with a 1.8 kHz
bandwidth. Element 2 exhibits a 100 kHz center frequency and a 2 kiz
bandwidth.

A symmetrical set of beam patterns of the four
elements (Fig. 21) shows the adjacent 2° beams formed by this hydrophone
scheme. These beam patterns were taken in T8°F fresh water at LTTS,

The hydrophone sensitivity using element 1 was measured to be

-156 @B re 1 V/yPa. The sensitivity using the other three elements can
be inferred from the superimposed beam patterns in Fig. 21. Due to the
focusing properties of the lens hydropnone, the individusl elemente
exhibit a 29 dB higher output than that of an individual element of the
ARL-300 line array.
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2) Lens Electronics

Since the lens element output is 29 dB higher
than that of the ARL-300 and OAS hydrophone elements and since the
112 kHz resonant frequency lies outside the bandpass of the readily
available 100 kHz filter, a preamplifier was not used. The signals
from the elements were patched into the electronics system at the inputs
of the AD-YU amplifier in the same manner as for the OAS. The outputs
of the four elements were amplified and recorded on four separate channels
of the Sangamo 3500 recorder without use of a multiplex scheme. The
overall gain of the system was determined experimentally through input
of known signal levels and measurement of those signal levels at various

stages of gain throughout the dats acquisition system.

B. Data Reduction Procedures

Tapes recorded on the Sangamo 3500 on board the flow noise platform ‘
were removed at the end of each day. While further date runs were being
made at the lake, the tapes were played back by a Honeywell T600 at
ARL's main laboratory. The detected sum data and platform speed informa-
tion were recorded directly on a Clevite Bush Mark 620 strip chart recorder.
The multiplexed channel and mu.tiplex clock served as inputs to a digital
demultiplexer. The 15 separated outputs were then recorded on the strip

chart recorder.

By visual inspection of the strip chart recordings, various data
runs vere selected for digitization and analysis on the HP 9810 calculator
and the CDC 3200 computer.

e
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ITI. MEASURED FLOW NOISE

During the period of work covered by Contract N0O0O24-T3-C-111T7,
Task 0003 (March 1973 through February 1974), flow noise measurements
have been performed on three hydrophones. These are the ARL-300 flow
noise hydrophone, constructed by ARL for this flow noise study; the
ARL-253-2 hydrophone, an OAS prototype of the AN/WQS-1l constructed by
ARL as an obstacle avoidence sonar; and a lens hydrophone, FCT75 fluid
filled, provided by NCSL.

A. ARL~-300 Hydrophone

The basic preamplifier used in the ARL-300 hydrophone system,
described in detail in sn earlier section, contains a 100 kHz filter
with a 10 kHz bandwidth., The individual sensitivity of the elements
is -~185 dB re 1 V/pPa, with a variation of #1 dB. The data presented
for this hydrophone have been corrected to a 1 Hz bandwidth.

1. FNSPL Variation Due to Array to Dome Separation

A comparison of flow noise sound pressure level (FNSPL),
plotted as a functicn of speed for three array positions behind a
cylindrical dome on the ARL-300 hydrophone housing (pictured in Fig. b
and represented in Fig. 9, using the 1l:4 wedge strut shown in Fig. 5)
is presented in Fig. 22. Position C2 is for the array at the position
closest to the dome and ClU is for the array at the position farthest
from the dome. These data represent the average of the outputs of all
15 elements of the subarray P5 (see Fig. 10). The average of this line
was chosen to minimize any variation along the axis of the hydrophone.
The maximum speed at which the flow noise platferm could be towed with

this hydrophone-strut configuration was 18 kt. The minimum detectable
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noise level is set by the breakover point of a diode in the detector
circuit that converts the noise signal into a dc level for multiplexing

and recording; the process is ou:lined on the block diagram in Fig. 1k.

Further data showing the effect of array to dome separation

are presented for the case of the streamlined dome configuration of the

e re e vt s et s e ot A‘MWW~WM‘;&:&%
A

ARL-300 hydrophone housing supported by a 1:12 plate strut (shown in
Fig. 6 and represented in Fig. 9). Data from two positions, labeled S1

and 83 in Fig. 9, are presented in Fig. 23. Maximum speed achieved in
this configuration was 19 kt. The date are again the averasge of 15

elements of the PS5 subarray.

Note the variation in FNSPL at 18 kt (Fig. 22) with the
cylindrical dome is & 3 dB/in. change in dome to array separation
(Fig. 9), while in the case of the streamlined dome the variation at %
18 kxt (Fig. 23) is only a 0.5 dB/in. change. Also note that for the !
case of the FNSPL at 18 kt for the axrray located in position 3
(the physical location within the hydrsphone housing is the same for
both dome configurations), the streamlined dome is 10 dB quieter than

the cylindrical dome.

The one-half scale geometrical presentation of the ARL-300
hydrophone presented in Fig. 9 can be used to determine

(1) the dome area seen by a center element in each
array position,

(2) the distance of element face from onset of cavitation
point (arrow denoting t .. in Fig. 9), and

(3) (in conjunction with the element beam pattern in Fig. 11)

the effecy of the relative intensity of direct path radiastion from the ;
E cevitation onset point to the center element in each array position. '
‘ Note that the angular geometrical locations of the point of cavitation
with respect to the center elements of subarray PS5, as shown in Fig. 8

for each array position, are marked on the beem pattern presented in

Eadi e b A i
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Fig. 11. In the case of the streamlined body, the separation between the
center element and cavitation onset point, for array positions S1 and S3,
is 2.7 in. and 2.0 in., respectively. For the cylindrically domed body,
the separation between center element to cavitation onset point for array
positions €2, C3, and Ch is 2.2 in., 2.0 in., and 2.3 in., respectively.
Since the distances are not very different, the main criteria for calcula-
tion of relative sound pressure level would be the amount of attenuation
caused by the element!s directivity. The use of the farfield beam pattern,
Fig. 11, for noise sources located at a distence of 2 to U4 in., well
inside the nearfield, is not completely correct, but is used here as a
rough approximation. If the noise source were a point located at the
calculated point of *the onset of cavitation (Fig. 9), the attenuations
relative to position Ch (Fig. 11) would be 14,5 dB for C3 and 24.5 4B

for C2. As can be seen in Fig. 22, the measured FNSPL at 18 kt relative
to Ch was 3 dB lower for C3 and 6 dB lower for C2. It would be interesting
to set up an integration problem, using the directivity effects (Fig. 11)
and assuming a reasonable degree of correlation, integrating the effects
of noise sources spreading ahead of the onset of cavitation point across
the cylindrical dome (Fig. 9) until the point is reached at which the
relative theoretical levels for C3 to C2 reach 3 dB and 6 dB separations,
respectively. With certeain simplifying assumptions, this integration
could give a rough idea of thie locations on the dome of flow noise sources
at 18 kt.

As can be seen in Fig. 11, the attenuation for a point source
located at the point of onset of cavitation on the streamlined dome
body for positions Sl and S3 is 7 dB. The actual measurements involving
the sum of all the noise sources at 18 kt in Fig. 13 indicate a 1.5 dB

relative attenuation between Sl and 33.

Note that the cylindrical dome date provided in Fig. 22 cannot
be directly compared to the streamlined dome data in Fig. 23 to determine
the effect of the dome on FNSPL because the strut shapes used in the two
data gathering procedures were different and significantly affect the

FNSPL, 2s presented in the following sections.
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2. FNSPL Data Comparison Between Bare Face and Cylindrical Dome
Configurations

FNSPL data teken with the bare face and cylindrical dome
configuration of the ARL-300 hydrophone mounted on a 1l:l4 strut are
plotted versus speed in Fig. 24. The data presented are again the
average of the 15 elements of P5 and the array is mounted in position 3,
Note that at 17 kt the cylindrical dome is 8 1/2 4B quieter than the
bare face. The maximum speed limit in each case is the maximum speed
at which the flow noise platform could be towed with that particular

hydrophone-strut configuration.

3. FNSPL Data Comparison Between Bare Face and Streamlined Done
Configurations

TFNSPL data teken with the bare face and streamlined dome
configurations of the ARL-300 hydrophone mounted cn a 1:12 plate strut
as a function of speed are shown in Fig. 25. The data shown are the
average of the 15 elements of the PS5 subarray with the array in position
3. DNote that at 17 kt the streamlined dome is 15 dB quieter than the

bare face configuration.

L, FNSPL Attributable to Strut Configuration

As can be observed through comparison of the data of Figs. 2
and 25 that have been replotted in Fig. 26, the FNSPL plot versus speed
for the bare face configuration of the ARL-300 hydrophone is a function
of strut shape. Both sets of data were taken under identical conditions
with one exception, which was the strut shspe. Both sets of data are
averages of the data from the 15 elements of subarray P5 with the array
mounted in position 3. The greatest variation of 8 dB occurs at 1U kt.

The two levels are about the same at 9 kt, diverge to 8 dB difference

at 14 kt, and then converge to a difference of 2 dB at 17 kt. Convergence,

if extrapolated, would occur at approximately 18 kt.
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ARL-300 HYDROPHONE, 1:12 PLATE STRUT, 100 kHz, 10 kHz BANDWIDTH

FOR OFFICIAL USE ONLY

AS-74-1581
CWD-1117-3

s 1
Pute L0y

o




- AR T
PRI RY

Bare faced ARL-300 Hydrophone
Average of 15 Elements
Subarray P5 in Position 3

©1:4 Wedge Strut
*1:12 Plate Strut

480

T

+70

+60
+58

Spectrum FNSPL - dB re 1 upPa

Noise Level

-
=3

Speed ~ kt

FIGURE 26

FNSPL VERSUS SPEED, 1:4 WEDGE AND 1:12 PLATE STRUT COMPARISON :
BARE FACE ARL-300 HYDROPHONE, 100 kHz, 10 kHz BANDWIDTH

AS-74-1582
LY CWD-1117-3

FOR OFFICIAL USE ONLY

e i i | i A 7=t
R e T A

“« ¥




A possible source of this FNSPL variation with strut shape
is the air cavity behind the strut, which is ceused by ventilation.
The speed at which this cavity extends all the way down to the hydro-
phone housing is dependent upon the shape of the strut and the depth

of the housing. The critical velocity at which this occurs mey be g

calculated from the formula

Vcritical = Fh vexh ?

e o n

where V., | is the velocity at which the ventilation cavity behind
critical

the strut reaches h, and where F, , the Fronde number, is given by )

o,

PEI, NS L Y

2 2 :
using j
C__ . = minimum prassure coefficient around strut calculated from j
PN otential flow theory, "
g = gravitational constant, and i
h = distance from water surface to hydrophone housing. f
The critical velocities for three shapes of struts calculated for g
h=2.5 ft, the depth used in this flow noise study, are presented in ‘j
the table below. ]
CRITICAL VELOCITIES g
i
Strut Shape  Coy Ty Veritical .
Cylindrical -0.62 1.8 9.7 kt 4{

1:l wedge -0.35 2.k 13.0 kt

1:12 plate -0.10 4.5 24.3 kt

‘This calculstion for the case of the 1l:h wedge strut indicates

the strut ventilation cavity reached the hydrophone housing at 13.0 kt.
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This result means that the FNSPL versus speed data presented
in Figs. 22 and 24, taken with the 1:4 wedge, hed a ventilation cavity
riding on the top of the hydrophone casing, or deeper, for all speeds
greater than 13,0 kt. In addition, since this cavity size increases
with speed, there should be more noise as the speed increases. In the
case of the bare face hydrophone, a direct measurement of the noise
difference between the 1l:4 wedge and 1:12 plate struts is available.
(See Fig. 26.) This noise difference may be attributeble to & venti.-
lating cavity that is present in the case of the 1:U4 wedge strut data
but is absent for the 1:12 plate strut data. The sharp noise increase
in the 1:12 strut data at 14 Xt can be attributed to the pressure

fluctuation caused by the bare face hydrophone configuration.

Note that the calculation for critical speeds for penetration
of the surface ventilating cavity to & depth of 2.5 £t was based on the
strut alone. The added effects of a hydrophone housing mounted on the

end were ignored.

Statistically, the noise measurement near the minimum detectable
noise levels represented in Figs. 22 through 28 can be considered suspect.
The following two factors enter into this.

(1) Statistical averages of samples near the detection limit
lines will begin to be averages only of the data points in the high
range of values; therefore, the averages will tend to be higher than the
averages teken over data points not near such a detection boundary for
vhich the entire range of values is averaged.

(2) The minimum detect level in an electronic system is normally
limited by a system noise level. In the case of an acoustical signal
of low level, near the level of the system noise, the measurement in
absolute terms is really the sum of the acoustical and electrical systiem

noise; thus the measured value can be higher than it should be.

In the particular design of this system, the minimum detectable

noise level is not the system electronic noise limit, but is a level
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caused by a diode in the detector. This problem can be circumvented by
similtaneously teking a second set of data with higher gain prior to
detection. Keeping in mind the 20 dB dynemic range limitation of the
tape recorder, this would permit the selection of & second 20 dB band
of data overlepping the first. With proper selection of increased gain,
this would produce a second band of data in which the higher set of
values in the dynamic range would overlap the lower set of values in
the first set of data, thus allowing observation of the effect on the
points in question. A third possibility is that the data are true, and
the curve in the lower levels of data is real and correct. However,

this problem will heve to remain unresolved for a time.

The difficulty with the data limitation stems from assumptions
and design decisions made at the onset of this study. The use of a
Sangamo 3500 tape recorder limited the dynamic range of the data to 20 dB.
The maximum speed of the platform was limited due to the drag of hydrophone-
strut combinations versus power winch capabilities. The choice of gain
to be installed in the electronics was based on the limitation of 20 dB
recorder dynamic range and on an estimete of probable FNSPL's at the
higher speeds planned for towing the plaetform. Becsuse the lower signal
levels present at lower speeds were not of primary interest, the lower
detect limit took the data almost out of the range of comperison with

those data of the previous flow noise study.

B, 0OAS Hydrophone

The OAS hydrophone is described in an earlier section of this report.
The shape of the housing and the location of the elements are presented
in Fig. 16. Signals recorded from 15 selected elements of the OAS display
a 20 kHz bandwidth centered at 200 kEz. The measured beam pattern of a
single OAS zlement, & 1/2 in. diam PZT disk, exhibits a beamwidth of T3°
at the -3 dB points (sez Fig. 17) and a sensitivity of -185 dB re 1 V/yPa.

The data are corrected to a 1 Hz bandwidth.
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For the case ot the OAS hydrophone supported by a l:4 everage strut,
FNSPL is plotted versus speed in Fig. 27. Figure 28 presents the FNSPL
versus speed for the OAS hydrophone supported by a 1:12 plate strut.

The variation in FNSPL as a function of position around the curved face
of the hydrophone is indicated by the multiple plot on each graph of
the FNSPL from six selected elements. As observed in the case of the
ARL-300 measurement, data taken with the 1:4 wedge exhibit a higher
FNSPL for speeds greater than 10 kt. At 15 kt the FNSPL difference is

7 to 8 dB. The data taken on the OAS are virtually the same for both
struts at speeds up to 10 kt. The I'NSPL became highly erratic and non-
reproducible for speeds higher than 10 kt with the 1:4 wedge. No such
erraticism was observed in date teken using the 1:12 plate strut. Note
that the regularity and lower levels of the data taken with a 1:12 plate
strut (see Fig. 28) compared to that from a 1:h wedge strut (see Fig. 27)
confirm that the 1:4 wedge strut was responsible for increases in FNSPL.
At 15 kt in the forward direction, this level reduction amounts to 6 dB;
at 11 kt, it amounts to T dB; while at 12 kt, it remained the same.

The FNSPL plotted as a function of position on the OAS hydrophone
face with selected speeds as paremeters and plotted for both strut
configurations is presented in Figs. 29 and 30. In reference to Fig. 29,
note the crossover between 11 and 12 kt. At 0°, forward position, FNSPL -
is higher for 1l kt than for 12 kt.

C. Lens Hydrophone

The shape of the lens housing and the locations of the elements
are indicated in Fig. 20. Since the lens hydrophone is an experimental
hydrophone, the elements are not identical. Elements 1, 3, and L
exhibited a bandwidth of 1.8 kHz, centered at 112 kHz. Element 2 had
a center frequency of 100 kHz with a bandwidth of 2 kHz. The hydrophone
sensitivity using element 1 was measured to be -156 dB re 1 V/uPa; the
sensitivity using the other elements can be inferred from the beam

pattern in Fig. 21.
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FIGURE 29

FNSPL VERSUS ELEMENT POSITION, SPEED AS A PARAMETER,
OAS HYDROPHONE, 1:4 WEDGE STRUT
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FIGURE 30

FNSPL VERSUS ELEMENT POSITION, SPEED AS A PARAMETER,
OAS HYDROPHONE, 1:12 PLATE STRUT

55 AS-74-1587
CWD-1117-3
FOR OFFICIAL USE ONLY




The flow noise from the lens hydrophone was much lower than
anticipated. As a consequence, the electronic system did not contain
enough gain; therefore, the flow noise was below the minimum detectable
level. This level was calculated to be +53 dB re 1 pPa, corrected to
1 Hz bandwidth. The hydrophone was mounted on the 1:12 plate strut.
The speed for the tests was limited to 1 kt to avoid rupturing the
fragile window on the fluid lens housing. The flow noise detection
apparatus was tested by placing a high level signal projector into the
water in front of the hydrophone. The total system was found to be in
working order, from the hydrophone to the date playback system to the

strip chart recorder.

With proof that the system is functional, it can be validly stated
that the spectrum FNSPL for the lens hydrophone does not exceed +53 dR
re 1 yPa for speeds up to 14 kt. Note that the housing was irregular
end unstreamlined. This datum is remerkeble because at 14 kt it is at
least 5 4B better than the ARL-300 hydrophone with streamlined housing
supported by a 1:12 plate strut (both sets of data were taken at 100 kHz).
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IV. CONCLUSIONS

During the period March 1973 through February 1974, the goals
originally set for Contract NOOO24-73~C-1117, Task 0003, have been
fulfilled. Flow noise was measured for the two conventional high
frequency minehunting sonar hydrophones which were immediately available:
the ARL-253-2, an OAS prototype of the AN/WQS-1, and a lens hydrophone,
FCT5 fluid filled, provided by NCSL. The combination of design and
subsequent flow noise measurement of the ARL-300 hydrophone housing has
provided some pointers and references for fubture housing design., 1In
addition to the original tasks, data have been provided that indicate

that support strut shape significantly affects flow noise.

The flow noise measurements on the OAS have provided some FNSPL
versus speed information and have indicated some geometric variation
about the cylindrical face of a 14 in. diam by 3 1/2 in. high disk for
a frequency of 200 kHz and for a 20 kHz bandwidth. Measurements on the
lens hydrophone were significant because the FNSPL was much less than
expected. This irregular unsireamlined housing produced an FNSPL at
least 5 dB below that of a streamlined line hydrophone. Speculation
as to the causes of this result includes the following possibilities.

(1) The extra distance from element location to dome surface
(12 in. to 16 in. versus 2 in.) places the elements out of reach of
the pseundosound.

(2) The element essentially integrates pressure fluctuations over
the entire face of the hydrophone, giving the same effect as if it were

a larger diameter element subjected to minute areas of pressure variations.

Improvement of flow noise characteristics of a planar array due to
streamlining is most dramatically demonstrated by the data presented in

Fig. 24, The noise reduction at 17 kt is 7.2 dB. Even a not so perfectly

5T
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streamlined housing represented by a cylindrical dome on the same
streamlined tail demonstrates a 4 dB reduction in noise over the unstream-
lined case (see Fig. 24). The importance of mounting the hydrophone on

a streamlined narrow strut and of measuring the special noise problem

due to ventilating cavities behind surface piercing struts are stressed

in Fig. 26. The noise level due to strut ventilation is reduced by 8 4B f
at 14 kt by going from a 1:4 wedge strut to & 1:12 plate strut. Calcula-
tions show that a ventilating cavity behind the cylindrical strut which
supported the hydrophone used in the previous flow noise study at ARL ~
(and referenced in Fig. 1) would have reached the top case of the hydro-

phone at 9.7 kt. Thus, these data may be measuring the noise caused by

support strut ventilation more than the noise caused by flow about the

hydrophone housing. WNevertheless, the data are valid for thet particular

strut-hydrophone crrangement.

It can be noted that the 1:4 wedge strut, cylindrical dome, line
array is 4 dB quieter at 14 kt than the cylindrical strut, cylindrical
dome, line array; the 1:12 plate strut, bare face, line array is 5 dB
quieter at 14 kt. Any further comparison is inhibited by the lack of
overlap of the two data sets. The previous study was speed limited at
14 kt; the present study is limited by a minimum detection level of
+58 dB re 1 yPa which permits data comparisons only at the highest

speeds and noise levels represented in Fig. 1.

The design criteria used in streamlining the ARL-300 hydrophone
housing and the sources referenced should be sufficient to provide a
starting point for further effort toward streamlining high frequency
minehunting sonar soundheads. These design criteria, combined with
the measured results, should present some idea for reduction of flow
noise. Some consideration should be given toward flow noise reduction
through selection of an ar:ay shape or coniiguration less susceptible
to flow noise, i.e., streamlined, small frontal erea, mounted in dome

well ahead of onset of cavitation location, narrower element beam
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patterns to reduce effect of flow noise generated to rear of array, etc.

It is also important to make sure that the dome, if free flooded, is

)
.

tight fitting and that any access port is not located in an area prone
to cavitation. Such a port location will rapidly drein the aome and

leave an air cavity in front of the hydrophone array.

Some thought should go into the possibility of sealing the dome and
filling the cavity with castor oil or a similar pressure conduction fluid
with a pc approximating that of water. In designing hydrophones which
will operate in flow noise prone conditions, care should be taken to
restrict regions of dome or window coverage to those regions through
which it is necessary to accept data., All other regions should be con- =
structed of sound opaque maeterials to shield the array from flow noise
originating from sources not in the direction of desired data transmission.

Dome areas should be minimized. Element to turbulence region separation
should be increased to get out of pseudosound noise regions. Flow noise
characteristics of sonar soundhead shapes and methods of flow noise re-
duction should be considered vital parts of early design stages or even

of the theoretical planning of systems.

Mounting struts, specifically surface piercing mounting struts,
must be designed to resist the formation of ventilating cavities. If 2
this is not possible, means, such as slanting the strut forward or
piercing the cavity prone region with horizontal plates, must be found
to limit the depth of penetration of this cavity so that it does not
reach the hydrophone housing. An implication can be made that care
must be taken to reduce the flow noise characteristic of any hydrophone
mounting strut, whether it is surface piercing or not. Finally, the
lens beamforming concept needs to be thoroughly examined for use in
high flow noise environments. The fact that the lens hydrophone in an
irregulsar unstreamlined housing outperformed a line-type hydrophone
mounted in a streamlined housing implies a streamlined housing on an

acoustic lens sonar soundhead may be quite flow noise resistant.
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V. RECOMMENDATIONS FOR FUTURE FLOW NOISE STUDIES

Practically no flow noise data exist for frequencies above 80 kHz.
A method should be devised for determining the frequency variation of
flow noise. Due to the limitations of tape recorders in frequency, band-
width, dynamic range, and tape flutter, some means should be developed
for running the data directly through a spectrum analyzer before recording.
One primary concern for minimizing flow noise in future sonars should be
consideration of operating frequency. Another parameter requiring inves-
tigation is flow noise dependence on element radiating face size. The
effect of ambient pressure in the reduction of flow noise could be measured

with an eye toward specifying operation at greater depths.

Specifically, for the cesign of another flow noise experiment, the
use of single element housings having shapes with well-known flow character-
isties is recommended. The variation of only one parameter should be
permitted at a time. The effect of increased dome to element separation
should be measured. Attention should be paid to locations at which
cavitation occurs on the body, end an attempt should be made to have
element beamwidths narrow enough to keep the location well down on, or
off of, the main lobe. Caution should be taken in mounting housings as
it is necessary to design mounting struts as carefully as possible. Lens

beamforming as a flow noise resistant device should be investigsated.

The use of & water flow tunnel, analogous to the wind tunnel of
aerodynamics, would greetly aid flow noise study in several respects.
For example, visual evidence of the onset of cavitation could be obtained.
Visual recording of turbulence flow through the use of Schlieren photo-
graphic techniques could be used. No tape recording equipment would be
necessary, because all equipment would be put on line for real time

measurements; therefore, dats would not be limited by the poor parameters

of tape recorders, such as tape flutter.
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water, (2) the effects of array location within a planar hydro-
phone housing, (3) the effects of streamlining soundheads, and
(4) the effects of streamlining surface piercing struts. The
liquid lens hydrophone configuration proved most noise resicsiant.
Recommendations are made for reduction of flow noise by means of
soundhead design. Parameters for futures flow noise experiments
are presented. (U)
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