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OPTIMAL RADAR DOPPLER PROCESSORS

1. INTRODUCTION

Many receivers in communicatiuns, radar, and sonar are essentially finite-memory
digital filters. In its canonical form, a finite-memory linear filter is equivalent to a trans-
versal filter, which is a tapped delay line whose tap outputs are weighted and summed.
Therefore, optimization procedures for transversal filters would have wide use in com-
munications and detection systems.

One such application of the transversal filter is detection of moving targets by radar
systems in ground-clutter or sea-clutter backgrounds (Radar returns from stationary objects
are commonly referred to as clutter). This function is usually performed by the moving-
target indicator (MTI). The NITI, which is a special transversal filter, detects moving tar-
gets by sampling the doppler shifts of returns from fixed objects and moving targets (1).
'The moving targets produce a doppler shift and are passed by the MTI; returns from fixed
objects are filtered out. Theoretically the doppler filters used by MTI radars are relatively
simple in that they process .a small number of returns, typically two to four. If modern
digital filtering technology (2) is usea many more returns can be processed. Optimization
procedures for these more complex filters are needed to account for the effects of un-
known signal and clutter parameters. Because of the random nature of many types of
clutter returns, in this research clutter is treated as nonwhite noise.

Most of the work to date involving moving-target detection has been concerned with
developing a theoretical optimum and then showing that the performance of the simple
doppler filters in use is very close to the optimum. R. C. Emerson (3) has developed a
method for minimizing the response of a filter to clutter. An optimization procedure
developed by S. P. Applebaum (4) maximizes the signal-to-clutter ratio at the output of
such a filter when the doppler shift of the signal is known.

The method introduced in this report is based on an extension of the Applebaum
procedure and maximizes the signal-to-clutter ratio at the output of the filter when the
frequency or the doppler shift of the signal is unknown and the noise is nonwhite. The
investigation starts with a mathematical development of the optimization equations, using
the maximum-likelihood-ratio test. The optimal receiver structure depends on the
covariance functions of the signal and the noise, which are not usually known a priori.
In the second part of the investigation, this optimization procedure is applied to the MTI
problem to illustrate the improvements over conventional MTI. A generalized doppler
procegsor is developed by dividing the doppler space into regions and optimizing a
processor for each region. The results of these processors are compared with those of
conventional coherent integration filters (5).

Manuscript submitted January 17, 1974
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2. OPTIMIZATION CRITERION

The maximum-likelihood-ratio receiver processes the received data in such a way that
ratio

P(xlx = s + n)
P(xlx=n)

is maximum. Where the received data vector is

a1
x1l 81 ni

IIll

X2 2 n2

x s= , andn-

xN I"N nN

P(xlx = s + n) is the conditional probability of receiving vector x when signal s is trans-
mitted. P(xlx = n) is the conditional probability of receiving vector x when no signal is
present. When these probability distributions are Gaussian (that is when noise n has a
Gaussian distribution), maximizing the likelihood ratio corresponds to maximizing the
signal-to-noise ratio.

The optimal transversal filter is one that maximizes the output signal-to-noise ratio.
The output signal and output noise refer to the squares at the absolute values of the signal
and the noise respectively. The expected value of the output signal is

PS  a ssa*,(1)

where

Mls is the signal covariance matrix

a is the weight vector

T indicates the transpose of the vector

(*) indicates the complex conjugate of the vector.

The expected value of the output noise is

PN M aTMNa*

where MN is the noise wuvariance matrix. When the expected value of the input signal
and the expected value of the, input noise are normalized to unity, the improvement in
signal-to-noise ratio for a transversal filter can be defined as

2
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8TAI N a* (2)

The goal of this research was to find weight vectors a that maximize the improvement
factor 4 n when received signal s has an unknown doppler shift.

2.1. Single Filter (MTI)

The conventional NITI is designed to detect moving targets with no a priori knowledge
of the doppler shift of the target return. A single output is used to detect all such targets.

If no prior knowledge of the signal doppler shift can be assumed, this uncertainty is
maximized by giving the doppler shift equal probability of having any value within the
analyzing bandwidth. The analyzing bandwidth for a transversal filter is shown in Appen-
dix A to be (0, lIT), where T is the delay of each delay line (Fig. 1). Therefore, the
probability density function for dopr.!er frequency fd is

P(fd){ ::<4:<J
09 otherwise.

x Wn)TTT

Y(MT)

Fig. I - An n-stage, or n-canceler, MTI

The signal covariance matrix for this class of signals can be found by using*

N

x(t) = e j 2 xtd ( t - t d ) L 6(t -nt - t)
rn=O

which can be written as a column vecLor,

*As derived in Appendix A (Eq. (A 17)).

3
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X2

X3

x3

Ln_

where

xi= exp J21rfd(i - 1)T. (3)

Equation (3) is the ith sample cf the input function of time defined by Eq. (A17). It is
complex because Eq. (A17) is complex i.e., it is a function not of a real frequency but of
a frequency shift. With the demodulation procedure outlined in Appendix A, negative as
well as positive frequency shifts can be detected. Therefore, if the carrier frequency is
removed and the doppler shift is considered as a real frequency, complex signals and com-
plex autocorrelation functions will result in practical applications. A further result of this
is that if the mean square of the absolute value of this signal is considered as the power
spectrum this "power spectrum" may not be symmetrical with respect to the -zero-
frequency" axis.

Assuming stationarity and ergodicity, we find the element (i. k) of the covariance
matrix by taking the expected value with respect to the unknown doppler shift,

Elxix4 J exp [(rfd (i - k)T I P(fd )dfd

where P(fd ) is given above.

It follows that

=k exp [jir(i - k)] sin ir(i - k) (4)
e (i - k)

fori = 1, 2, ..., N and k = 1, 2, ... , N.

From Eq. (4),
1, i =k

Ii'k = , k .

Therefore, Le signal covariance matrix for unknown doppler shift is

Ms =1 (5)

4J
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where I is the identity matrix. The improvement factor is found by substituting Eq. (5)
into Eq. (2):

aIa- 
(6)

s/n aTMN a*

Maximizing Eq. (6) is equivalent to minimizing

where P, is the output noise power. This has been shown (3) to be minimum when
weight vector a is chosen to be the eigenvector that results in the smallest eigenvalue of

M n. The improvement in signal-to-noise ratio is given by the reciprocal of this eigenvalue.

2.2. Multiple Filters

It has been shown (5; that N independent filters can be generated with N samples of

the input data. By dividing the :nalyzing bandwidth (0, 1/T) into N equal intervals, a
filter can be designed to detect optimally a signal in each interval. In this way, the entire
analyzing bandwidth can be covered, but the signal for a particular filter can be assumed
to have equal probability of occurring anywhere within the interval covered by that filter

instead of anywhere within the analyzing bandwidth. This additional information on the
signal can be used to improve the detectability of the signal. The goal is to find the
weight vector to maximize Eq. (2) for a signal whose doppler shift is known to fall into
an interval((2m- 1)/2NT,(2m + 1)/2NT), m = 0, 1,...,N- 1.

Derivation of Optimal Weight Vector-The optimal weights are given by the vector

A that maximizes Eq. (2):
aTMsa"

[,/ aT.M~.a,

To find the desired vector, the following definitions will be used:

M= . WTMS W (7)

M'N WTMNW*. (8)

Further, matrix W will be defined in such a way that

MN 1. (9)

Rewriting Eq. (7) yields

Ms = (WT)'Ms(W*) . (10)

Rewriting Eq. (8) and making use of Eq. (9) results is

M NV ff(W T )-I(W *) °I .  G 11)

5



G. A. ANDREWS, JR.

Substituting Ews. (10) and (11) into Eq. (2), we have

8aT(WT)- M(W) a

Define a vector f as

f W-1a. (12)

Then
fTMSfX

I-n fTf

which can be written as

S/. f (13)

Ilf 112 _ f = 1. (14)

Equation (13) is maximized when f is chosen to be the eigenvector that results in the
largest eigenvalue of M .

Thus, it has been shown that the optimum weight, when the doppler shift is known
to be within some interval of values, is

opt =Wf (15)

where W is defined by

W W M- (16)T N

and f is the eigenvector that produces the largest eigenvalue of WTMSw.

Signal Covariance Matrix-The signal covariance matrix can be derived in a way
similar to that used when the doppler shift is assumed to be completely unknown. The
difference is that for this case the signal is assumed to. have equal probability of occurring
anywhere within a region ((2n - 1)/2NT, (2n + 1)/2NT), n = 0, 1, .., N - 1, where T is
the delay of each delay line and n is an index used to select the region of the analyzing
bandwidth (0, l/T) for this filter. Therefore, the probability density function for the
doppler frequency fd is

I"N" 2n - I d 2n +1

Pn (fd) T{ ff 2NT NT

So, otherwise.

6



NRL REPORT 7727

This leads to the element (i, k) of the signal covariance matrix,

rj2fn(i - k)1 sin Lkrk(7
r exp{ fs (k) (17)

for i 1, 2. N

k=1,2. N

n=0,1. N - 1.

If Eq. (17) is used, the signal covariance mat:'ix for a signal whose doppler shift is
known to be within the interval ((2' - 1)/2NT, (2n + 1)/2NT) can be generated. Then,
Eqs. (15) and (16), we can compute the optimal weight vector. For the case where M. I

does not exist, the determinant of AIN is zero, which implies that at least one eigenvalue
of M. is zero. The optimum weight vector for this case is the eigenvector that produces
one of the zero eigenvalues of MA"

3. OPTIMAL RADAR NITI PROCESSORS

The optimization procedures developed in the preceding section can be applied to
the detection of moving targets by a radar system. The doppler shift of the returns from
moving targets are unknown in general. Therefore, they are usually assumed to have equal
probability of occurring anywhere. For this reason, the detection system must be
optimized to detect a target that has any doppler shift within the analyzing bandwidth of
the radar (0, l/T), where 11T is the pulse repetition frequency (PRF).

3.1. Conventional MT!

The conventional MTI canceler delays the returns of a given transmittet , aise and
subtracts them from the returns of the next transmitted pulse. A number of cancelers n
cascaded as shown in Fig. 2 are equivalent to an (n + 1)-sample transversal filter with
weights corresponding to the nth-degree binomial coefficients with alternating signs. The
power transfer functions for these filters can be computed using P= aMa* with weight
vector a given by the binomial coefficients with alternating signs and the covariance matrix
given iy

mi, =cos 27rf 0 (k - i)T.

The results are shown in Fig. 3 for n - 1 through n = 7. These curves are normalized by
dividing the gain by the maximum gain

Gmax [ a ij (18)
oi=i

where a, are the binomial weights.

7



G. A. ANDREWS, JR.

M >-- lam...

Fig. 2 - An n-stage, or n-canceler, MTI

.. .. . . .... . . ....

S. ... ..... " ..

-.. ' ' *r-.,°

Fig. 3-Normalized power transfer function P, for an MTI having the
indicated number of cancelers

The improvement in signal-.to-noise ratio can be computed using Eq. (2). Weight
vector a represents the binomial weights. Sinco the doppler shift is considered to have
equal probability of as-uming any value, signal covariance matrix MS was shown to be the
indentity matrix. It remains only to define the clutter (noise) covariance matrix MN in
order to evaluate Eq. (2).

In a typical clutter environment, the clutter citergy received by the radar is made up
of the returns from a large number of scatterers within a resolution cell of the radar.
This resolution cell is determined by the antenna pattern and the transmitted pulse width.
The scatterers are randomly distributed within the resolution cell, and they generally have
random internal motion such as the fluttering of leaves on trees or falling raindrops.
Therefore, the clutter must be described as a random variable.

To design an optimum detection system, both the probability distribution of the clut-
ter amplitude statistics and the clutter snectral shape must be known. Nathanson and Reilly
(6) have considered the effects of clutter statistics on radar performance and have shown
that current knowledge does not allow an optimal detection criterion to be specified a priori.
With this dilemma, one is naturally led to adaptive techniques in which criticJ clutter param-
eters are estimated and the receiver characteristics are adjusted accordingly.

S"J
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When the clutter return in each resolution cell is due to many statistically independ-
ent scatterers, it follows from the central limit theorem that this clutter can be described
by a Gaussian amplitude distribution. This model is representative of many types of
clutter, stich as rain, forests, and sea returns, and is assumed to apply for this optimization.
The distribution of the doppler shift of clutter has been found to be highly dependent on
the type of clutter and on weather conditions, particularly wind.

In prior analyses of MTI systems, a Gaussian distribution of the clutter doppler shift
was used to evaluate the performance of the MTI system. For this reason, a Gaussian
distribution will be used to compare the performance of MTI systems using prior theory
with the performance of the optimal processor developed as a part of this research. The
model for this doppler shift is

P,(fd)-CoexP 2o j (19)

where p and o represent the mean and variance of this distribution and CO is the energy

level. Te Foruier transform of Eq. 119) is

0(T) = oC 0 V/2ii exp(- 21r2 or 2 -j2 Mr). (20)

Since the receiver design is not affected by Co, let

Co= 1

Therefore, element (i, k) of M, is

mi.k f exp[- 2r 2 o2(i - k) 2 T2 -j21rUc(i - k)T]. (21)

With Eq. (21), all the terms of Eq. (2) are defined, and the improvement factor for a
conventional MTI with binomial weights can be computed. The results are shown in Fig.
4 for p. = 0 and 0.001 < oT < 0.1 where lIT is the PRF. The mean has been set equal
to zero for this comparison, although many types of clutter do not have a zero-mean
doppler shift, in particular chtter from clouds and rainfall or that received when the radar
is on a moving platform. If this nonzero mean is not taken into account, a smaller im-
provement factor results. These effects will be considered further in a later report.

3.2. Optimal MTI

The procedure for deriving the optimal MTI weights was developed in Sec. 2. It was
shown that when any value for the doppler shift is equally probably, the optimum weights
are given by the eigenvectoi that produces the smallest eigenvalue of MN. The improve-
ment factor is the reciprocal of that eigenvalue.

If Eq. (21) is used to generate MN, the improvement factor for the optimal MTI is
shown in Fig. 5 for N = 1 through N = 4, where N is the number of cancelers. For

9
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comparison, the dotted curves represent the improvement factor for the conventional
binomial MTI. The corresponding eigenvectors (optimum weights) are tabulated in Ap-
pendix B for N = 2 through 4. A single canceler (N = 1) is optimized with weights (1, -1)
for all values of a,.T. These are the binomial coefficients with alternating signs for N = 1.
In general, the binomial weights are

a,(-)'), 1=0,1 . N. (22)

For a double canceler (N = 2), the binomial weights can be normalized to
1

a =(-0.5, 1.0,- 0.5) = - (-1, 2,- 1).
2

The normalized binomial weights for N = 3 and 4 are
1

a = (- .333, 1.0, - 1.0, 0.333) = - (- 1, 3, - 3, 1)

and

a = (0.1667, - 0.6667, 1.0, - 0.6667, 0.1667) - - (1, - 4, 6, - 4, 1).

If the clutter spectrum is very narrow (i.e., aoT - 0), the optimum weights are very
nearly equal to the binomial weights.* However, the small differences between these
optimum weights and the binomial weights result in an appreciable increase of the im-
provement factor. From this it can be concluded that the accuracy of the weights be-
comes very critical if the achievable improvement factor is large.

The transition of the optimum weights as the spectral width of the clutter doppler
shift increases is shown in Fig. 6 for N = 3. This is typical of the results for other values
of N. The absolute value of the weights toward the end of the transversal filter (a, and
a.,,), in general, increases as the width of the clutter spectrum increases. This results in a
filter transfer characteristic that has a narrower main lobe and higher side lobes, as shown
in Fig. 7. The dotted curve is the binomial weighted filter with no sidelobes, which is
shown for comparison with the optimal filter for a wide clutter spectrum (ocT = 0.5).
The appearance of side lobes for these filters is revealed by careful examination of the
filter characteristics near zero doppler shift.

When the signal doppler shift is considered to have equal probability of any value, it
has been shown that the signal covariance matrix is the identity matrix. As the clutter
spectrum width a c is increased, the clutter approaches the characteristics of white noise
in that the clutter covariance matrix approaches the identify matrix. For this case, it is
seen from Eq. (2) that the improvement factor approaches unity (0 dB) regardless of the
weights. Therefore, the accuracy of the optimum weight is less critical for a very wide
clutter spectrum and a small maximum achievable improvement factor. This is shown in
Fig. 8, where the clutter spectral width aT is increased to 0.5.

In summary, this optimization procedure results in a significant additional improve-
ment in signal-to-clutter ratio when (a) more than two pulses (N > 1) are processed, (b)
the clutter spectrum is narrow, and (c) the filter weights are accurate, as tabulated in

*This can he seen in Appendix B, tables BI, B2, and 83, ror small values of ,T.

11
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Fig. 8 - MTI improvement factor, optimum weights solid curves,
binomial weights broken curves. N - number of cancelers.

Appendix B. If the standard deviation of the clutter spectrum is 0.01 times the PRF,
Pig. 5 shows that the additional improvement factor achievable with optimum weights is
about 2 dB for a double canceler (N = 2), 3.5 dB for N = 3, and 5 dB for N - 4. Al-
though the weights must be accurate, Fig. 6 shows that they change very slowly as the
width of the clutter spectrum is changed. Therefore, if the approximate width of the
clutter spectrum is known for a given application, the optimum weights can be computed
and adaptation can be avoided.

4. GENERALIZED N-PORT DOPPLER PROCESSORS

In the preceding section an MTI was optimized for detecting a signal whose doppler
shift is given equal probability of having any value. It was shown (Fig. 8) that using the
"best" weights gives significantly better results than using binomial weights if the returns
from a large number of pulses are processed. However, when the clutter spectrum be-
comes very wide, the improvement in signal-to-clutter ratio of the optimal MTI, as well
as the binomial MTI, approaches 0 dB, as shown in Fig. 8.

The improvement in signal-to-noise ratio of both the optimal and the binomial MTI
filters with a signal-plus-white-noise input is also 0 dB. This can be seen by referring to
Eq. (2) and remembering that the covariance matrix of white noise is the identity matrix,
and the covariance matrix of a signal whose doppler shift is unknown is also the identity
matrix. Therefore, the improvement factor is unity (0 dB) regardless of the weights used.

In a realistic radar system, the, receiver must contend with both clutter and white
noise produced in the input stage of the receiver. To cope with clutter-plus-noise inter-
ference, the doppler filters are generalized to form N independent doppler filters from N
samples of the input data. Each filter covers a fraction (1/NT) of the analyzing bandwidth

14
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(0, l/T). In this way the entire spectrum is covered, but each filter is optimized only for
the region to which it is assigned.

4.1. Interference Model for Clutter Plus Noise

To derive a model for clutter plus noise, it is assumed that (a) the total energy of the
interference, which includes clutter plus noise, is normalized to unity, (b) the clutter has a
Gaussian spectrum, (c) the noise has a "white" frequency spectrum, and (d) the clutter
and noise both have Gaussian amplitude probability density functions.

Let EG represent the power of the Gaussian spectrum and Ew represent the power
of the "white" spectrum. Then

FG + Ew=1

and the total interference sp(ctral density is

PI)exp{ [(F - 1+ EWT [ -U~f ~ (23)

where jc and a, are the mean and variance of the Gaussian spectrum and

u(f) <

1, f >0.

The total energy of the interference is found by integrating Eq. (23):

fP,(f)df - 1.

The Fourier transform of Eq. (23) is

ilf)= (1 - Ew) exp(- 2vr2 ar 2 -j21rpcr) + Ew s-( exp (24)

The element (i, k) of the covariance matrix is

M,= (1 - Ew) expf- 21r 2 o(i - k) 2 T2 -j 21rij,(i - k)TJ

sin fr(i - k)+ EW I(-) exp~i~r(i - h)],
W r(i-k
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which can be rewritten as

mik -(1 Ew) exp[- 21r202( - k)2T 2 -j2/Jc(i - k)T] + Ew6(i - k) (25)

where

6(i.-.k){ - I
0, i k.

4.2. Effect of White Noise on Optimal MTI

If Eq. (25) is used, the interference covariance matrix M1 can be generated. If Eq.

(25) is compared with Eq. (21), it can be seen that M! is

M, - (1 - EWw) C + Ewl (26)

where Mc is the covariance matrix of the Gaussian clutter spectrum. Identity matrix I is

the covariance matrix of the white spectrum. It has been shown that the optimum weight

vector for an MTI is the eigenvector that gives the smallest eigenvalue of M1. To find this
weight vector, the eigenvalues and eigenvectors of M, will be calculated from the eigen-
values and eigenvectors of Mr.

The eigenvalue equation for M, is

M u = (27)

where u is an eigenvector of M, and X, is an eigenvalue. If Eq. (26) is used,

[(1 - Ew)Mc + EwI1u - 1u,

which can be rewritten as
It - Ew

Mcu -E-U XcU (28)

where
X- EW

1 - Ew  
(29)

Since Eq. (28) is the eigenvalue equation for Mc, it follows that MC and M have the same

eigenvectors. The eigenvalues are related by Eq. (29).

The eigenvalues of M, are found by rewriting Eq. (29) as

X, - (I -Ew)Xc + Ew. (30)

When X is a minimum, Xj is also a minimum. Therefore, the eigenvector that produces

the minimum eigenvalue of MC also produces the minimum eigenvalue of M,.

16
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In summary, the optimum weight vector for a Gaussian clutter spectrum is also the
optimum weight vector when a white spectrum is added to the Gaussian spectrum. The
improvement in signal-to-noise ratio for the optimal MTI is given by the reciprocal of the
mi, imum eigenvalue of the interference covariance matrix,

1

s/n (X

where ! , is the improvement factor for a Gausm.ian spectrum plus a white spectrum. If
Eq. j30) is used,

1 (I -EW)
- + Ew ,  

(31)san lsin

where Is/n is the improvement factor for a Gaussian spectrum only. Equation (31) shows
that the improvement factor for the optimal MTI when white noise is added is related
only to the amount of white noise Ew and the improvement factor for a Gaussian spectrum

. The eigenvectors, or optimum weights, are not affected. This means that the deg.
-'ation of both the conventional and optimal MTI by white noise can be expressed by

Eq. (31), which is plotted in Fig. 9.

40 1EW 0-"4

40-

03

Ew- i0-
10-

0VoO.5

0 10 20 30 40 50 0
to

Fig. 9 - Effect of white noiae on the improvement factor of
both the optimum and the binomial MT1. iln is the improve-
ment factor if the interference is clutter alone. rl, is the
improvement factor for clutter plus noise. EW is the fraction
of the interference that is white noise.
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Figure 9 shows that when [sin becomes very large, !s'ln is determined (and limited) by
Ew. Under this condition, the achievable improvement in signal-to-noise ratio cannot be
increased by processing more samples (increasing N), which would increase I.,n but would
iot increase I'

ISM is also increased by decreasing clutter spectrum width a.. However, when 14,
becomes very large, I' is limited by the white noise energy Ew . This is shown in Fig.
10 for N = 2 through N = 4.

4.3. Optimization of the N-Port Doppler Processor

To improve the performance for wide clutter spectra and white noise, a contiguous
bank of N filters is formed by applying N independent weight vectors to the N sample
input. Each filter is optimized to cover a portion of the analyzing bandwidth. The
optimum weights are specified in this section and the performance of these filters are
illustrated.

The optimum weight vectors for signals whose doppler shift is known to be within a

bounded region was considered in the second section, where the optimum weights are

aop t =Wf. (32)

The Matrix W is defined by

WWT* =MN1  (33)

Vector f is the eigenvector associated with the largest eigenvalue of M.'.

where

M= W.M s W. (34)

Performance Against Clutter With Gaussian Spectrum-As shown above, the optimum
weights and the improvement factor can be found if the covariance matrix of clutter M.
and the covariance matrix of the signal M. are known. Equation (21) can be used to
generate the covariance matrix for a Gaussian clutter spectrum. Equation (17) can be
used to generate the covariance matrix for a signal whose doppler has a uniform probability
distribution within the region ((2n - 1)/2N1', (2n + 1)/2NT), n = 0, 1, ..., N.

If Eqs. (17) and (21) are used to generate M., and M, the optimum weights and the
improvement factor are found for N = 2 throughiN = 5. The results are shown in Fig. 11
for 1C = 0 and 0.005 < aot < 0.5. The N filters are shown by the solid curves graph,
the filters are numbered starting with the one at zero frequency. The average improve-
ment factor for all N filters are shown by the dotted curves. Since the solid curves
represent the average improvement factor for a doppler shift with uniform probability
distribution within the region of the filter, and since the entire analyzing bandwidth (0,
l/T) is covered by the N filters, the dotted curves represent the average improvement
factor for a doppler shift with a uniform distribution over the analyzing bandwidth.

18
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For comparison, the improvement factors using the optimum weights derived for the
MTI are shown by dotted curves in Fig. 11. The impruvemert factor for the optimal MTI
and the average improvement factor for the N-p(art doppler processor coincide until the
clutter spectrum becomes very wide. The reason for this can be understood by examining
Fig. 12, which shows the optimum weights of each filter for a two-pulse processor (N = 2).
The C3 curves are the real parts of the weights and the X curves are the imginary parts.
Both filters have weights of (1, - 1) until the clutter spectrum becomes ve'y wide (aCT >
0.15). Therefore, since both filters have the same weights, only one is needed for uT <
0.15. That one filter has the same weights as the optimum MTI for N = 2. It follows
that the improvement factor would be the same in eacn Lase.

When acT > 0.15, the weights on filter 1 become (1, 1). At this point the two fil-
ters are different, so that two filters are needed ard the improvement factor is greater
than for the optimum MTI, as was seen in Fig. 11. The transfer characteristics of the two
filters are shown in Fig. 13. The [ curve represents the optimum 2-pulse MTI. The A
and X curves represent the 2-port processor for oCT > 0.15.

The optimum weights for the four filters of a 4-port processor are shown in Figs.
14-17. When the clutter spectrum is narrow (ocT < 0.05), the optimum weights of all
four filters are identical and they are the same as the optimal weights of the optimal 4-
pulse MTI. Therefore, again, only one filter is needed for narrow clutter spectra, and
that filter is the optimal MTI.

An N-point discrete Fourier transform JDFT) is given by

akfl~eP[-12.(n - 1)(k -1)] nk2,..

This operation corresponds to N contiguous filters. For N = 2, the DFT weights for the
two filters f and f2 are

f (1,1)
and

f 2 -iI,-I).

These weigh.s correspond to those of the optimal 2-port processor for : wide clutter
spectrum. For N - 4, the DFT weights fur the four filters are

fl-"(1, 1, 1, 1)

f 2 -" j, 1, -j -1)
S( '-1, 1,-I, 1)

f4- (-j, 1,,-1).

These weights are similar to those of the optimal 4-port processor for a wide clutter
spectrum. The optimal 4-port weights are modified by a "window" (0.83, 1, 1, 0.83).
ft is well known that the optimal window is uniform (1, 1, 1, 1) when the noise is white.
When the clutter spectrum is very wide, the optimal N-port processor is very close to an
N-point DFT.
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In summary, the optimal N-port processor is a single filter (i.e., the optimal MTI)
when the clutter spectrum is narrow and approaches an N-point DFT when it is wide. In
the transition region, the improvement factor is very low (Fig. 11), and the weights may
change drastically for small changes in the width of the clutter (Figs. 14-17). However,
the filter gain changes very slowly in this region (Fig. 11), and this implies that the values
of the weights are not critical in this region.

The filter transfer characteristics of three of the four filters of the 4-port processor
are shown in Fig. 18. The ] curves represent the filters when the clutter is narrow
(aT = 0.005). All four filters are the same for this condition and all four are also the
same as the 4-pulse optimal NITI (Fig. 3). Not all of the filters have maxima in their
detection regions when the clutter is narrow, as one might expect.

The X curves represent the optimal filters when the clutter is wide (ocT > 0.5).
Notice t'at each is very close to a (sin x)x shape, the shape a DFT would have. The
peak cf each filter is centered in the detection region for this case.

The A curvps represent the filter shapes in transition region (oCT = 0.1). The peaks
are closer to the detection region than for narrow spectrum clutter, and the mainlobes of
the filters are narrower and the sidelobes are higher than the (sin x)x shape. This cor-
responds to an inverse taper on the window function; i.e., the end samples are weighted
heavier than the center samples.

Similar curves of the filter shapes for N - 3 and N = 5 are shown in Appendic C.

Performance Against Clutter Plus White Noise-It was shown above that the optimal
MTI does not improve the signal-to-white-noise ratio. Thus, the MTI improvement factor
becomes limited by the white noise (Fig. 10), and processing more pulses or reducing the
clutter spectral width a, T does not lead to a higher improvement factor. This difficulty
is overcome by the N-port doppler processor.

If Eq. (25) is used to generate interference covariance matrix M and Eq. (17) to
generate signal covariance matrix Ms , one can find the largest eigenvalues of M. which,
along with the associated eigenvectors, give the improvement factor and the optimum
weights for the N-port doppler processor. The results of this computation are shown in
Figs. 19-22 for 2- through 5-port doppler processors. The improvement factors of the N
ports are averaged and shown along with the improvement factor of the optimal N-pulse
MTI for comparison.

Figure 19c shows that the average improvement factor for a 2-port doppler processor
(dotted curves) and the improvement factor for a 2-pulse MTI (dashed curves) are identical
unless the clutter spectrum is very wide. The reason for this is that the optimum weights
for the 2-port processor are unaffected by the addition of white noise until the noise level
becomes high enough to overcome the effects of the Gaussian clutter spectrum. This does
not happen as long as the noise level is less than the clutter level (Ew < 0.5).

Figures 20c, 21d, and 22d show that the N-port doppler processor for N > 2 gives a
better average improvement factor than the N-pulse MTI improvement factor even when
the clutter spectrum is narrow. As N is increased, this advantage of the N-port doppler
processor becomes greater, so that the need for an optimal design ecomes mc.:e important.
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Fig. 13 - Transfer characteristics of the 2-port doppler
processor. u represents both filters when the clutter spectrum
is narrow (ocT < 0.15). x represents filter 1 and A represents
filter 2 when ocT > 0.15.

Figure 18 shows the four filter shapes of a 4-port doppler processor for three values
of clutter spectral widths (ocT = 0.005, 0.1, 0.5). If the clutter is narrow, all four filters
are the same and are also the same as in the 4-pulse optimal MTI. If the clutter is wide,
all four filters approach a (sin x)/x shape centered at their respective detection regions.

The transition of these filter shapes from an optimal 4-pulse MTI to (sin x)/x filters
centered at their detection regions is shown in Fig. 23. If white noise is 10-4 of the total
interference, these filter shapes are altered appreciably, as shown in Fig. 24. The effect of
white noise is much more severe for narrow clutter. For wide clutter all four filters again
approach (sin x)/x.

Comparing Fig. 24(a) with Fig. 23(a), we see that filter 1 is drastically affected by
noise, especially for a narrow cluttpr pectrum. With the addition of noise the optimum
filter is no longer a 4-pulse MTI; it is seen that the peak response is moved closer to the
center of the detection region (zero doppler). If Fig. 24b, c, and d is compared with
Fig. 23b, c, and d, similar effects can be seen for filters 2, 3, and 4. The peak response
moves closer to the detection region and the sidelobe level increases (and the main lobe
level narrows) for a narrow clutter spectrum. These effects become more pronounced as
the fractional noise energy is increased, 0.01 for Fig. 25 and 0.5 for Fig. 26.

The results of this investigation show that the clutter-to-noise ratio is an important
parameter for determining the optimal N-port doppler processor.

CONCLUSIONS

An optimization procedure has been developed for the transversal filter using the
maximum-likelihood-ratio criterion. When the interference has Gaussian amplitude
statistics, the likelihood ratio is maximized when the output signal-to-interference ratio is
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maximized. Under these conditions, the optimum weights for the transversal filter can be
derived from the covariance of the signal and the interference.

If M1 is the covarianc~e maarix of the iiiterference and M. is that of the signal, the
maximum improvement in signal-to-interference ratio (the improvement factor) is given by
the largest eigenvalue of V where M' is defined by Eq. (34). The set of optimum
weights is given by the eigenvector MS that is associated with this largest eigenvalue. With
the design procedure reduced to finding the eigenvalues and eigenvectors of a matrix, the
filter for a given application can be designed using numerical techniques to compute the
eigenvectors and eigenvalues. The optimal design can be computed with this procedure
and the improvement factor can be obtained with no additional computing.

The covariance of a function of time is the Fourier transform of the power spectrum
of the function. Therefore, the spectrums of the signal and the interference must be
known prior to deriving the optimum weights. This optimization procedure has been
applied to the detection of a signal with an unknown doppler shift. Three cases were
considered in this research. These were defined in terms of the a priori knowledge of the
doppler shift, as follows: (a) the doppler shift is completely unknown, (b) the doppler
shift is known exactly, and (c) the doppler shift is known within a region.

It was shown that if the doppler shift is completely unknown this optimization
procedure gives the same results as the procedure of Emerson (3), which is to maximize
the rejection of interference. However, it has been shown in this research that his pro-
cedure is equivalent to one using the stronger criterion of maximizing the output signal.
to-interference ratio.

The procedure developed in this research is equivalent to that of Applebaum (4) and
Brennan (7) when the doppler shift is known exactly. For this condition a filter is
optimized to detect a signal at a given doppler shift.

When the doppler shift is unknown, it must be assumed to have equal probability of
occurring at any frequency within the analyzing bandwidth of the filter. However, this
bandwidth can be covered by several contiguous filters instead of a single filter. This in-
curs no additional data storage when several independent sets of weights are applied to the
data. In this way, each filter can be designed to detect a signal within a portion of the
total bandwidth instead of the entire bandwidth. The doppler shift of the signal can be
assumed to have equal probability of occurring anywhere within a region instead of the
entire doppler domain. This additional information about the signal has been used to im-
prove the output signal-to-interference ratio.

The results of this research were applied to a radar incorporating a single-port MTI
processor. In this, a single-filter output is used to detect returns from moving targets
which may have any doppler shift and to reject returns from fixed objects. These latter
returns are referred to as clutter. A zero-mean Gaussian clutter spectrum was used to
compare the improvement factor of the optimal MTI with that of the conventional MTI.
The results are shown in Fig. 8, which shows that the increased improvement factor is
affected only slightly by the width of the clutter spectrum or standard deviation of the
Gaussian spectrum. Typical values for this increase are 0 dB for a 2-pulse MTI, 2 dB for
a 3-pulse MTI, 3 dB for a 4-pulse MTI, and 5 dB for a 5-pulse MTI. The advantage of
using optimum weights is modest when the returns from only a small number of pulses
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are processed at one time, but it quickly becomes significant as the number of pulses for
which returns are processed is increased.

The Lt-chniques developed in research were also applied to a radar N-port doppler
processor in which N independent sets of filter weights were used to design N filters. For
this, the doppler domain was divided into N regions. Each filter was optimized for a tar-
get whose doppler shift has equal probability of occurring anywhere within one of the
regions. These results are shown in Fig. 11. Comparing the average improvement factor
of the N flters of an N-port processor with the improvement factor of the optimal MTI
shows that the optimal MTI approaches a 0-dB improvement factor when the clutter
spectrum is wide. The N-port processor provides an improvement in signal-to-clutter ratio
even under this condition. The value of this improvement factor depends on the number
of returns processed. Typical values are 2.5 dB for a 2-port processor, 4 dB for a 3-port
processor, 5 dB for a 4-port processor, and 6 dB for a 5-port processor.

The optimum weights, or filter shapes, vary as the width of the clutter spectrum is
changed. This is shown in Fig. 18 for a 4-port processor. When the width of the clutter
spectrum is very small, all four filters are the same. Furthermore, they are the same as
the optimal MTI with a single output. Therefore, when the width of the clutter spectrum
is very small, only one output is needed, and that output is the optimal MTI. Unexpect-
edly, the peak response of the filters was sometimes found to occur outside the detection
region for that particular filter. This implies that for clutter with a very narrow spectrum,
maximization of the improvement factor results mainly from minimizing the output
clutter.

For clutter with a large spectral width, the characteristic of each of the four filters
identified by triangles on the curves is very close to a (sin x)/x function in shape, and the
peak response is centered in the detection region of each filter. This implies that for
clutter of large spectral width, the optimal processor is a discrete Fourier transform with
no weighting of the input data.

In the transition region between small and large spectral widths of the clutter, the
peaks of the filter responses are closer to the center of the detection regions. In this
region, the sidelobes of the filter response are found to be very high, even higher than
those of the (sin x)/x filter shape. The shapes of the filters are controlled by weighting
the input data.

The optimum filter weights are easily computed when the clutter has either a very
narrow or a very wide spectrum. in the transition region, it is necessary to go through
the optimization procedure developed during this research. The design parameters of a
radar system must be chosen with many factors in mind. In general, they cannot be
selected in such a way that the ratio of the clutter spectrum and the PRF is either very
small or very large. For most applications, the doppler processor must be designed to
operate within this transition region. Furthermore, as the number of returns to be
processed is increased, this transition region becomes wider. That is, the clutter spectrum
must be much narrower before all the filters approach the optimal MTI, or the spectrum
must be much wider before the N-port processor approaches the discrete Fourier trans-
form. Therefore, for a radar system processing a large number of returns this optimiza-
tion procedure is necessary to ensure the best performance in detecting moving targets.
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Fig. 21 - The effect of white noise on the improvement factor of a 4-port doppler
processor. EW is the fraction of the total interference energy that is white noise.
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(b) Filter No. 2, centered at 1/4 PRF

Fig. 23 - The effect of the width of the clutter spectrum (acT) on the filter shapes
of a 4-port doppler processor. No white noise.
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Fig. 24 - I%* effect of the width of the clutter spectrum (acT) on the filter shapes
of a 4-port doppler processor. The white noise input energy is 10-4 of the total in-
put interference energy.
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Fig. 25 - The effect of 'the width of the clutter spectrum (*cT) on the filter shapes
of a 4-port doppler processor. The white noise input energy is 10-2 of the total in-
put interference energy.
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Fig. 25 (Continued) - The effect of the width of the clutter spectrum (0,Tn
on the filter shapes of a 4-port doppler processor. The white noise input energy

is 10-2 of the total input interference energy.
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Fig. 26 - The effect or the width of the clutter spectrum (ocT,) on the filter shapes

of a 4-port doppler procesbor. The white noise input energy is10.5 of the total input

interference energy.
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It has also been shown by this research that neither the conventional nor the optimal
MTI provides any improvement factor when the interference corresponds to white noise.
Therefore, when the total interference consists of both clutter and white noise, the im-
provement factor is reduced significantly (Figs. 9 and 10). The N-port processor provides
a larger improvement factor against clutter plus white noise (Figs. 19-22). The shapes for
the optimal filters of a 4-port processor are shown in Fig. 23-26 for noise levels constitut-
ing fractions (0, 0.0001, 0.01, and 0.5) of the total interference. As the noise level is
increased, the optimal filter shapes never approach the optimal MTI for narrow clutter,
even when the ratio of the standard deviation of the clutter to the PRF of the radar is as
small as 0.005. However, the optimal shape approaches that of the (sin x)/x function
when the spectral width of the clutter is smaller than necessary for interference consisting
only of clutter. Therefore, the width of the transition region seems to be unaffected by
the addition of white noise. The transition region as a whole, though, is shifted down-
ward.

Since the shapes of the optimal filters are altered drastically by the addition of white
noise, the clutter-to-noise ratio is an important parameter for determining the optimal N-
port doppler processor. Therefore, the optimization procedure developed during this re-
search will ensure the best performance in the most important and general case, in which
a radar system must contend with both clutter and white noise.
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Appendix A
THEORY OF TRANSVERSAL FILTERS

In many fields of science and technology, signals are detected or analyzed on the
basis of their spectral content. In such fields as communications, radar, and sonar, the
transmitted signal is designed to have special spectral characteristics. These characteristics
are used at the receiver to detect and identify the signal. In such fields as medical
technology, radiometry, and passive sonar, the receiver designer does not have control of
the signal characteristics; however, particular spectral characteristics can be related to
particular physical occurrences. The fundamental theory used in these and many other
branches of science and technology is that associated with linear filtering and spectrum
analysis. A review of digital filtering theory can be obtained from the work of Gold and
Rader*. The most important difference between digital and analog filtering is that in the
former the input signal must be sampled. Assuming a constant sampling rate, the sam-
pling interval determines the highest frequency that can be analyzed. Frequency com-
ponents higher than this maximum are "folded" back into the analyzing bandwidth and
cause "aliasing."

The canonical form for a digital filter is defined as that form which requires the
minimum storage, or memory, to perform a particular operation. From Gold and Rader
(Al), the canonical form for an Nth-order filter is shown in Fig. Al. The output y(t) for
this filter can be described in terms of the input x(t) by an Nth-order difference equation,

N N
y(nT) = aix(nT - iT) - by(nT - iT), (Al)

i-o i=1

where T is the sampling interval. The input and output are defined only at the particular
times t - nT. The form of Eq. (Al) shows the recursive relationship r.eeded to derive
output y(t) at time t = nT. The nonrecursive form of Eq. (Al) is obtained by setting
bi - 0, for all i. The canonical form for a nonrecursive digital filter is shown in Fig. A2.
All digital filters can be classed as either recursive or nonrecursive.

Transversal Filters

A transversal filter is a nonrecursive filter as shown in Fig. A2. The input/output
relationship for this filter is

N

y(nT) - L aix(nT - iT). (A2)
i-o

*B. Gold and C. M. Rader, Digital Processi 1 of Signals, McGraw-Hill, New York, 1969.
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2N

Alg A-Cannonical form for an nth-order digital filter

Fig. A2 - Canonical form for an nth-order nonrecursiv digital filter

This equation can also be expressed as either of two matrix operations,

y(nT) UTX

or

y(nT) x a

where

al x(nT) 1 1
a2  x(nT -T) X

a- and xi

x(nT -NT) XN~
IaN+ jl~ +

Subscript T represents the transpose of the matrix.
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The output power, as shown by Applebaum*

p - Iy(nT)12 _ yyT"

The asterisk represents the complex conjugate. If Eqs. (A3) and (A4) are used,

P - argxa*. (A5)

Expected Output Power-The expected output power is found by taking the ex-
pected value of Eq. (A5):

P-E EaTxa}I a STxx~.J

If

M W XXT,

then

- aTMa*, (A6)

where M, the covariance matrix of the input, can be derived from the Fourier transform
of the normalized input power density spectrum. The normalization is such that

Ix(t)12dt - 1

or, using Parseval's theorem,

p,(fwdf -1,

where p,(f) - IX(f)12 and X(f) is the Fourier transform of x(t).

Power Transfer Function--The power transfer function is usually found by taking
the ratio of the output power to the input power as a function of the frequency of the
input. With the normalization described above, the power of a single-frequency input is
unity, and it is only necessary to compute the power at the output as a function of
frequency. Also, since the filter characteristic repeats at multiples of the sampling fre-
quency (l/T), it is only necessary to compute the output power for frequencies between
zero and 11T. Consider an input:

x(t) - cos (21rf 0 t + 0). (A7)

*8. P. Applebaum, "Adaptive Arrays," Syracuse University Research Corp. SPL-769, June 1964.
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If N is the number of delay lines (or memory elements) in the transversal filter and T is
the time interval between samples, NT is the total processing time of the filter. N + 1
samples are taken during this time. When sampled at t - iT, Eq. (A7) becomes

N
x(t) - L 8(t - iT) cos (21rfot + 0).

i-O

The covariance of this input is found by

4(r) x(t)x(t - r)dt (A8)

L (t 6t- kT) cos (2rfot + ) [ -(t -iT)cos(2rfol(t-)+ ]dt.- =0 i=0 01

The integral is zero except when t - T -0 and t -r - iT - 0 or r - (k - i)T. Therefore
the (, h) term of the covariance matrix is

Milk M COS (2f 0 hT + ) cos (2rf0 T+@ ), (A9)

where i 0, 1... N and k 0, 1, ... , N. To normalize M, it is necessary for

x(t,2dt." x2(t)dt 1

When 7 = 0, Eq. (A8) becomes

0(0) - x 2 (t)dt.

But r - 0 implies k - i in Eq. (A9), and therefore M is normalized if

- mij - cou2 (27rfoiT + 0) - 1.

Since phase 0 is arbitrary it is chosen to be 0 = -2rrf 0 iT. Then M is normalized and mih
becomes

mi'k = cos 27rf0 (k - i)T. (A10)

In summary, the power transfer function of a transversal filter can be derived by
using Eq. (A6) with a rcal input from Eq. (A7), which results in a covariance matrix de-
fined by Eq. (A10).

Complex Filter Weights--For most applications of digital filters, it is desirable for the
spectrum being filtered to be at "baseband."; that is, the bandwidth should span a region
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Fig. A3 - Translation or a real spectrum to baseband.
(a) Real signal to be analyzed. (b) Sinusoidal refer-
ence signal. (c) Spectrum (a) times spectrum (b).
(d) Aliaaing caused by using a reference signal greater
than to-B/2.

(6) I I

0 fo

(bI ..

-3/2 0 8/2

Fig. A4 - Complex translation of a real spectrum to baseband.
(a) Complex exponential reference signal. (b) Spectrum of Fig.
A3(a) times complex reference signal (a).

from zero to some maximum frequency. The maximum frequency determines the mini-
mum sampling frequency to meet the Nyquist sampling criterion. If the signal spectrum
of interest is not at baseband, it is usually multiplied by a sinusoidal signal of appropriate
frequency to translate the spectrum to baseband. This is shown in Fig. A3a, b, and c. If
the spectrum is translated more, then aliasing occurs as negative frequencies interfere with
positive frequencies, as shown in Fig. A3d.

This aliasing problem could be overcome by multiplying the signal of interest with a
complex exponential signal. The spectrum of this complex signal is not an even function,
and positive frequencies, therefore, can be distinquished from negative frequencies as

shown by Fig. A4.

A transversal filter can be designed to have a complex impulse response simply by
using complex weights aj. In this way, a filter can be designed which discriminates be.
tween positive and negative frequencies. An example of this is the discrete Fourier trans-
form, which can be considered a contiguous bank of transversal filters. N filters are
formed when N samples are taken. The effective weights of the kth filter are

a., ej2(1k1)IN, n - 1, 2, ... ,N (All)
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where k 1 1, 2, .... N. Using the weights defined by Eq. (All) and a complex signal in-
put, we have

x(t) - eij~f* (A12)
the power transfer function of a discrete Fourier transform can be derived using Eq. (A6).
The autocorrelation of Eq. (A12) is

0,(7) - eJSf "

which results in a covariance matrix defined by

M =k ej2w'fO(/-k)T.

The power transfer function for 9 of the 16 filters generated by a 16-sample discreteFourier transform is shown in Fig. A5. The filter characteristics shown in Fig. A5 repeatwith multiples of the sampling frequency f4. Therefore the filter response to negativefrequencies from zero to -f, is simply the shapes of these filters translated to the negativefrequency region. In this way, an unambiguous analyzing frequency bandwidth can bedefined either from -f4/2 to +f,/2 or from 0 to f. These filters can discriminate betweenpositive and negative frequencies over the region from -f4/2 to +f,/2.

Complex transversal filters can be implemented with real operations. Consider realinput signal x(t) which has a spectrum and center frequency 4, as shown in Fig. A4. The
spectrum is translated to baseband, so that

x'(t) - x(t)e' 2 "fo .

When an input signal is sampled, a vector can be defined,

X2

x3

XN

where

xi x[(i - 1)Tie

x[(i - 1)T] [cos 2xfo(i - 1)T +j sin 27tf0 (i - 1)T]
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The real component of the input is

xR - x[I(i - 1)T] cos 2rfo (i - 1)T.

The imaginary component is

x? - x[(i - 1)T sin 2rf 0 (i - 1)T.

The complex transversal filter is formed by the matrix multiplication of this input
vector by the transpose of the complex weight vector:

a- a +  majl

aNj N+jII
The output is

y -aTx (R +j )(xR+ j')

where

i Xi

2 X2
xR = and xI

N Nj~

y=(TXR TxI) +TX) yR + jyl. (A13)

The complex transversal filter described by Eq. (A13) is shown in Fig. A6.

Doppler Filtering

It is well known in the fields of optics and acoustics as well as electromagnetics, that
if there is relative motion between the source of oscillation and the observer, an apparent
shift in frequency will result. This is the doppler effect that is put to use in many fields,
such as radio astronomy, coherent communication, radar, and sonar. Each field has a
need to measure accurately the doppler caused by relative motion. The doppler shift fd
of a frequency ft is
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Fig. AS (Continued) - Transfer characteristics of
a 16-sample discrete Fourier transform. Of the
16 filters, 9 are shown; the remaining 7 filters are
the mirror images of filters 2 through 8.

61



G. A. ANDRE WS, JR.

Rx

F Rg A6 A Toe fracmlXtrnvsatt.

X6



NRL REPORT 7727

fd -2

where c is the speed of propagation and u is the relative velocity between source and
observer.

Complex Demodulation-Consider a signal at the source,

v(t) - m(t) cos 21rftt, (A14)

where m(t) is the modulation and f, is the carrier frequency. With relative velocity v be-
tween source and observer, this signal appears to the observer to be

u(t) - m(t + td) [cos 21r(ft + fd)(t + td)]

where td is the propagation time.

For many applications of this waveform, such as in radar, sonar, and communica-
tions, the modulation bandwidth is small as compared with the carrier frequency. In this
case, the modulation bpectrum is altered very little as compared with the shift in fre-
quency of the carrier, so that the receiver spectrum can be considered to be the same
shape as that of the transmitted spectrum but translated by the carrier doppler shift. The
received spectrum is approximately

v'(t) - m(t + td) cos (27r(ft + fd)t + 01

where 2r(f t + fd)td.

The attenuation due to propagation loss has been ignored since it does not affect
the design of the optimum receiver for detecting this signal. As described above, this
signal can be translated to baseband by forming the product x(t) - v'(t)ei2. f t t and filter-
ing out the difference frequency,

x(t) - m(t + td) [cos (2r(ft + fd)t + 0) cos 27rftt + j cos (21r(f t + fd)t + 0) sin 2 frftt].

After filtering, we have
1

x(t) = m(t + td) [cos (2frfdt + 0) -j sin (2 7rfdt + 0)1

2
. 2 MY + td)e j(Rd+)(A15)

The demodulated complex signal, Eq. (A15), has been translated to baseband and is
now of a form to be processed by a digital doppler filter.

Pulse Doppler Radar-The doppler shift created by a moving target can be measured
with a pulse doppler radar. Although many transmitted waveforms are used for this pur-
pose in radar, most of them can be related to conventional scanning pulsed radars. These
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radars transmit a carrier frequency that is gated on and off by a sequence of pulses. The
envelope of the basic pulse is

-P- --- o <_t < AtT

,. O, otherwise,

where Ep is the energy per pulse and AT is the pulse width. The transmitted waveform
is therefore

U(t) . ei2xfct  p(t-nT),

where f is the carrier frequency and T is the interpulse period. The composite returns
from these transmitted pulses are made up of moving target returns and usually much
larger returns from fixed objects (clutter). The objective is to design a prcessor that can
pass the moving targets and reject the clutter by processing the returns from a fixed num-
ber N of pulses.

If a moving target is at azimuth a with respect to the axis of the antenna pattern
G(O) and if the antenna scans at a rate of w. rad/s, the detailed model of the signal re-
turn for the conventional scanning pulsed radar is

N
x(t) = aG 2 (w 8,t -_ C) 2 xfd(t-td) L p(t - nT - td).

n-O

The carrier frequency has been removed at the receiver. The term a - A ei represents the
unknown amplitude and phase of the carrier signal return; 1j2 1rfdt) is the doppler modulation
due to the target motion. The delay t. corresponds to the distance from the radar to the
target. Signal parameters a, a, fd, and td are not known a priori.

If it is assumed that the modulation of the returned signal by the antenna pattern
G(O) is small and that the received complex amplitude a is not significant to the receiver
design, then the signal to be processed by the doppler filters becomes

N

x(t) - e) 2wfd( t - d) L p(t - nT - td ) ,  (A16)
n-0

which is of the same form as Eq. (A15).

The time duration AT of the modulating pulse is usually very short as compared
with the period of the doppler frequency. Therefore, the demodulated signal is essen-
tially a sampled version of the doppler-shifted signal where the sampling rate is the radar
PRF. Thus, digital filtering technology is directly applicable to radar doppler processing.
For analysis, the pulse duration can be considered to be zero, and the input signal to the
doppler filter becomes

64

JI



NRL REPORT 7727

N
x(t) e ej 2asd(t-td) 6(t -niT-td). (A17)

n-0

With Eq. (Al7) as an input, a transversal filter can be designed to detect moving targets
and reject returns from fixed objecta (clutter).
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Appendix B
OPTIMUM WEIGHTS FOR MTI RADAR PROCESSORS

Table B1
Two Cancelers (Three Pulses)

o T Improvement Factor Optimum Weights
(dB) Real [ Imagining

0.0050 64,8868 00.5002 -0.0000
1.0000 0.0000

•0.5002 0.0000
n.0056 62;A868 -0.5003 -0.0000

1.0000 0.0on
-0.5003 0.0000

M.0063 60;8876 -0,5004 -0.0000
1.0000 0.0OO0
-0.5004 0.0000

n.07 58.881 -0.5005 -0.0n0
140000 0.0on
-0.5n05 0.0nO

0 79 56,8888 -0.5006 -0.0On
1.0000 0.0nO0
-0.5006 0.0000

0.0089 54,4897 -0.5008 -o.OnOO
1.0000 O.OOO
P0.5008 o.o0

0.01110 52,P909 -0.5n10 -o.ono
1.0000 0.0000
-0.5010 0.0noo

fl.1112 50.4924 -0.5012 -0.0000
1.0000 0.0n0
-0.5012 0.00n

..0126 48,A943 -0.5016 -0.0000
1.0000 0.0000
-0.5016 0.OnOl

Mn(1141 46,4966 -0.5020 -0.000

1.0nOO 0.0noo
-0.5020 0.0nOf

0,1158 44,1996 o0,5025 -0,000
1.0000 o.o oo
-0.5M25 0.Oono

1.0177 42,9034 -0.5031 -0.0000
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Table Bl--Continued

OCT Improvement Factor Optimum Weights

•(dB) Real Imagining

I1.000 0.00o
-0.5031 o.0no

O.n199 40,9081 V0.5039 -0.0nO0
1.0000 0.0000

-0,5n39 O.O00
M 38.9141 -0.5n49 -0.0000

1.0000 o.ono
-0.5049 0.0000

n.1251 3A,9218 -0.5061 0.00a
1.0000 0.000

-0.5n61 -0.000a
n.0281 34,9314 V0,5077 0.0000

1,0000 0.0000
-0,5077 0.0000

0.0315 32,9437 -0,5097 0.0n00
1.0000 0.0non
-0,5097 O.O0

m.nJ54 30,9594 -0,5121 0.0000
1.0n00 0.000

-0.5121 0.0n0
n.n397 2A.0794 -0.5152 -0.0n0

1.0000 0.0100
-0.5152 0.00n

0.n446 27,0051 -0.5190 O.O0O
1.0000 0.OOO

V0.5190 0.0000
0.n5no 25;C381 -0.5236 0.0n0

1.0000 0.0000
-0.5236 0.0ON

23,n807 -0.5294 -0.0n0
1.0000 0.0 0

-0.5294 O.OOO
n.o?9 21.1360 -0.5365 -0.On0

1.0000 0.0000
-0.5365 0.0nO0

0.11706 19,2080 -0.5451 0 .00
1.0000 00.nOO
-0.5451 00n00

0.n/92 17.3022 -0.5554 0 .0000
1.0nO0 0.orio9

-0.5554 -0.0O0
'.flo9 15,4258 -0,5677 0.0ON0

1.0nOn OO0Ml
-0.5677 0.000
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Table BI-Continued

oT Improvement Factor Optimum Weights
(dB) Real Imagining

n.0998 13,5883 -0.5819 -0.0n0
1.0000 0.0non
-0.5819 o.o0o

n.1119 11.A021 -0.598M -0.0no0
1.0000 0.0no0

*0.598n 0.0nOO
0.1256 10.n824 -0.6157 -0.0600

1.0000 0.0aa
-0.6157 0.0 0

1.1409 P,4477 -0.6342 -0.0nO0
1.0no0 O.06O0
-0.6342 0.0on0

n.1581 6,918a -0.6525 -0.0nO0
1.0000 0.0000
-0.6525 0.0noo

0.1774 5,5175 -0.6694 -0.0000
1.0000 0.0O0
-0,6694 O.0OO0

0.1Q91 4,2642 -0.6836 -0.0ON
1.0n0 0.0000
-0.6836 0.0on

1.2233 3.1756 -0,6942 -0.no0
1.0n0 o.onoo
*0.6942 O.O0

1.2506 262616 -0,7011 -1].0000
1.0000 U.AWO0
-0,7011 O.O00

n.2812 1,5246 -0.7n48 -0.0600
1.0000 0.0non
-0.7048 0.000

0.3155 0,95f8 -0,764 -0.0000
1.0000 O.On0
-0,7064 0.0600

0.3!%40 0,5513 -0.7070 -0.000a
1.0000 0.0600

-0.7070 0.06o0
0.3972 PI819 -0.7071 -0.0non

1.00on 0.0noo
-0.7n7i 0.0on

M.4456 n,1236 -0.7671 -0.60M
1.000M o.ono0

-0,7071 0.OnO0
0.50no nn444 -0.7n7i -0.0nOO

1.0000 0.0on0
-0.707 o.ono0
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Table B2
Three Cancelen~ (Four Pulses)

Improvement Factor IOptimum Weights
a~T (B) eal Imagining

0.0050 95;6728 -0.3337 0.0600
1.0000 0.0000
-1.0000 -0.0n00
0,3337 0.0000

0.0056 92,1967 '0.3337 -0 .0600
1.0000 0.0600O
-1.0000 0.0600o(
0,3337 0 .000f)

n.0063 09,4701 -0.3339 0.0M6
1.0000 0.0600

0,3339 0.0n00
0.0071 86,4063 0,3340 0.0600

01.0000 0.0600
180000 0.0000n
-0.3340 -0.0600

0.0079 63,4174 -0,3342 -0,0n00
1,0000 0 .06n0 f
-1.0000 0.0600
0,3342 0.06100

0.0089 80,4001 0.3344 -0.0606
.1#0000 0.0600

1.00000.0600t
-0,3344 -0.0"6

-0.0100 7794124 0.3346 -0.0606
-1.0000 0.0600

-0,3346 -0.0n00
0.n112 74,4093 -0.3350 0.0600

1.0000 010000
-1.0000 -0.0600
0.3350 0.06100

n.0126 71,4135 0.3354 -0.0600
-1.0000 0.0p00
1.0000 0.0006

-0.3354 -0.0000
n.0141 68,4156 0,3359 -0.0600

V1.0000 0.0606
1.0000 0 .a000
-0.3359 -0.0600

0.0158 65,4193 0,3366 -0.0600
-1.0000 0.0600
1,0000 0.0000

P0.3366 -0.0600
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Table B2-Continued

a T Improvement Factor Opiu Weights
C(dB) RelImagining

0.0177 62,4244 0,3375 -0.0000
-1.0000 0.0000
1.000,i 0.00fla

-0.3375 -0.0000
G.0199 594311 0.3385 -0.0000

-.,0000 0.0000
1.0000 0.0000
-0.3385 -000000

0.0223 56,4392 '0.3399 0.0000
1.0000 0.0000

'1.0000 -0.0000
0.3399 0.0000

0.0251 53,4498 -0.3416 0.0000
1.0000 0 .0000

"q'DO00 -0.0000
0.3416 0.0000

0.0281 50,4632 00,3437 0,0000o
110000 0.0000
.1,0000 -0.0n00
0,3437 0.0000

0.0315 47,4804 0,3463 ..0000
'1.0000 0.0000
1.0000 0.0000

:0,3463 -0.0000
nl.0354 44,5024 -0.3497 0.0000

140000 0.0000
-1,0000 -0,0000
0,3497 0.0000

0.0397 41,5309 -0.3538 0.0000
1.0000 0.0000

"I.0000 -0.0000
0.3538 0.0000

n .0446 38;5678 -0,3590 0.0006
1.0000 0.Oflo(
110000 -0.0fl00
0.3,390 0.0000

0.0500 35;6160 0,3655 -0.0000
-1,0000 0.0000
1 ,0000 0.0000

-0,3655 -0.0000
fl.Ob61 32,s6793 0.3736 -0.0000

-1.0000 0,0000
1.0000 0.0000
-0.3736 -0.0000
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Table B2-Continued

O Improvement Factor Optimum Weights
°eT (dB)

Real hImagining

0.0629 29;7630 0.3835 -0.0000
-1.0000 O.000
1.0000 0.0000
-0.3835 -0.0000

p.'/06 26,A744 0.3957 -0.0nO0
-1.0000 0.0000
1.0000 0.0n0

-0.3957 -0.06o0
0.0792 24;0237 0.4105 -0.0000

-1.0000 0.0000
1.0000 0.0000
-0.4105 -0.0000

O.Oe89 21;2248 -0.4282 0.Oa0
1.0000 0.0000
91.0000 -0.0000
0.4282 0.0000

0.0998 1P,4964 -0.4488 0.000
1.0000 O.OOO0
-1.0000 -0.0000
0.4468 0.0000

0.1119 15,8628 -0.4723 O.000
1.0000 0.0000
-1.000 -0.0000
0.4723 O.OPO0

0.1256 13,3541 -0.4978 0.0000
1.0000 0.0000
-1.000 -0.0"0
0.4978 0.0000

n.1409 11,0048 0.5242 0.0000
-1.0000 0.0000
1.0000 0.0000

90.5242 0.000
0.1581 8,8511 -0,5497 0.0"00

1.0000 0.0000
-1.0000 -O.O000
0.5497 0.000

M.1774 6;9257 -0.5722 0.000n
1.0000 0.0000
-1.0000 -0.OO0
0.5722 0.0000

0.1991 502523 -0.5903 0.000n
1.0000 0.00O0

-1.0000 -0.0000
0.5903 0.0000
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Table B32-Continued

oT I Improvement Factor O~ptimum Weightsj(dB) R~eal ( Imagining

M.2233 3;8424 0.6032 -0.0"00
-1.0000 0.0000
110000 0.0000
%0,6032 -0.0000

0.2506 2s6936 0.6112 -0.0000
-1.0000 0.0000
1.0000 0.0000
-0,6112 -0.0000o

0.2d12 I1,f7920 0,6155 -0.-0M0 0
-1.0000 0.0fl00
1*0000 0.0000

-0.6155 -0.0000o
P.3155 1,1155 0.6173 -0.0000

-1.0000 0.0000
1.0000 0.0000ol
-0.6173 -0.0000

n.3540 0,6367 -0.6179 0.0000
1.0000 0.0000
-1.0000 -0.000n
0,6179 0.-0000

n.3972 0,3240 0.6180 -0.0000
-1.0000 0.0000o
110000 0.0n00
-0.6180 -0.0000

n.4456 0.1417 0,6180 -0.0m00
-1.0000 0.0000
1.0000 0.0000

-0.6180 -0.0000
r.5000 0,0508 -0,6180 0.0000

1,0000 0 .0 M0M
-1.0000 -0.0000
0,6180 0 .0000
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Table B3

Four Canceler. (Five Pulse.)

aTImprovement Factor Optmu Weights
aT(dB) Real Imagining

0.0100 102,7361 0.1680 000006
00,6680 0,0600

140000 0.00011
w0,6680 0.0m00
0.1680 0.0000

0,0112 96;-8687 0.1683 0.0000
v0,6683 -0.0m00
1.0000 0,0000
90,6683 -0.0600
0,1683 090A00

0.0126 93,0812 0,1687 -0.0n00
06687 0600O
1,0000 0.0000
e0.6667 0.0000
0.1667 010W0

0.0141 88,9450 0,1693 0.0000
90@6693 0606O
100000 0.0600o
s0.6693 0.0600
011693 -0.0600

010158 84,3900 0,1700 -0.0600
e0,6699 0.0606
1.0000 0.0n606
w0.6699 -0.0600
0,1700 0,0n06

0.0177 80,9018 0,1708 -0.0600
00,6708 0.0600o
I10OUO0O 0.0600
a0.6708 -0.0000
0,1708 0 .0M0 0

0.0199 76,;232 0.1719 -0.0M6
*0,6718 0.0m00
1.0000 0.0606

e0,6718 0 . 06
0.1719 0.0606

0.0223 72,9281. 0.1733 0.O06
*0,6732 -0.0606

1.0000 0.0600
*0,6732 -0.0600
0,1733 0 .a00
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Table B3--Contimued

T I Improvement Factor JOptimum Weights
(dB) j Real J Imagining

0.0251 68.9416 0,1750 0.0000
.0.6748 0.0n00
110000 OfO
e0r6746 0,0100

0.0281 64,9587 0.1771 -0.0000
*0.6769 0.0006
1.0000 0.0000t
*0.6769 -0.0000
0.1771 0.0000

0.0315 6P,9817 0,1799 -0.0"06
s0,6795 0.0006
1,0006 0.0n06
qQ.6795 -0.0000
0.1799 0.0000

0.0354 57,n111 0.1833 00.0000
e0,6827 0 .0006a

- " 1.0000 0.-0M0 0
*0,6827 .0.0000
0.1833 0.0000

0.0-397 53,0496 0,1877 -0.0006
s0,6868 0,0000i
1.0000 0,0m00

*0.6868 -0.0na00
0,1877 040"00

0,0446 49,1001 0.1932 -..000
v0.6918 0.0000
1.0000 0.0000
*0.6918 -0.0000
0.1932 0.0000

n.0500 45,1669 0,2002 -0.0006
*0.6979 0.0006
Is 0000 0.0000

'0.6979 -0.Q000
0,2002 0.0006

0.0561 41,2562 0,2090 -0.0006
s0.7054 0.0006
100000 0.-0000a
.0.7054 .0.0000
0,2090 0.0n00
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Table B3-Continued

aT Improvement Fcto J Optimum Weights

Real Imagining

0.0629 37,3763 0.2700 -0.000fl
90,7146 0.0000
160000 0.0000t
wO.714A -0.0000
0.2200 0.0000

0.0706 33,5394 0,2338 -0.0000
00.7255 0.0000
1.0000 0C0A0
s0#7255 -..000
0.2338 0.0000

0.0792 29t7622 0.2510 "0.0"06
*0.7384 0.0000
100000 0.0000
90,7384 .0.0000
0.2510 0.0000

0.0889 26.0680 0,2720 -0.0onf
90,7533 000606
1.0000 0.0000
a097533 -0.0000
0,2720 0.0000

0.0998 22,4881 0.2971 -0.oo
"0.7699 0.0000
1.0000 0.0000
w0.7699 00.0000o
0,2971 0,0000

0.1119 19,0624 0,3260 00.0000
90,7876 0.0000
1.0000 0.0000

.0,7876 -0.0000
0,3260 0.0000

0.1256 15,8386 0,.579 - 0,0n0 0
0.8055 0.0000
140000 0.10 n0P
.0,8055 .0.0000
0,3579 0.0000

0.1409 12,8681 0,3908 -0.0000
.0.8223 0.0000o
1,0000 0.0000

w0#8223 -..000
0.3908 0.0n000
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Table B3-Continued

OCT Improvement Factor Optimum Weights
(dB) Real Imagining

0.1581 10,1984 0,4219 *0.0006
90.8368 0 .Oman
1,0000 CAW00
v0,8368 -0.0000
0.4219 0.0"00

0.1774 7,4~650 0,4489 -10.00Ome
90,8481 0.0000
1.0000 0.0000
.0.8481 *000 0
0,4489 0.0m06

0.1991 5,8846 0,4697 -000 Oa
w0.8561 0.0000
1.0000 0.0000
00,8561 -0.0n00
0,4697 0.0m00

0.2233 4,2538 0,4841 -..000
.0t8611 CAW00
1,0006 0.O00
60.8611 -0.0m00
0,4841 a0. 0M0 0

n.2506 2,9522 0.4928 -0.0000
e0.8639 0.0M06
1.0000 0.-0 M0M
90.8639 .0.0000f
0.4928 0.0000l

0.2a12 1,9484 0.4973 00.0n00
.008652 0.0000
1.0600 0.0000

90o8652 .0.0n000
0,4973 0.0000

n.3155 1,2056 0.4992 .0.0000
40.865A 0.000M
1,0000 0.0000

60.858 "..0000
014992 0.-0 M00

0.3540 006853 0,409A -0.0n00
a0,8660 0.0m00
1.0000 0.0000
.8660 -0,0000
0,4998 0.0000

r.3972 0,3478 0.5000 -..000
e0,8660 0.0000l

1.0000 0 .0000a
%0,8660 .0.0000
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Table B13-Continued

acT I Improvement FactorOpmuWegt
(dB) Real Imagining

0.4456 011519 0,5000 M0.0000
e0#8660 0.0M00
100000 0.0MO00

0.8660 -0.0m00
015000 0 .00000.5000 0-0544 0.5000 00.0000
0.8660 010000
110000 0.0000
s0.8660 000
0.5000 0.0000

BEST AVAILABLE COPY
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Appendix C

FILTER CHARACTERISTICS OF N-PORT PROCESSORS
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