## UNCLASSIFIED

# AD NUMBER

### AD919769

## NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

## FROM

Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; APR 1974. Other requests shall be referred to Aeronautical Systems Division, Wright-Patterson AFB, OH 45433.

# AUTHORITY

ASD ltr dtd 21 Jan 1975

THIS PAGE IS UNCLASSIFIED

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

i,

NAMES OF A DESCRIPTION OF A DESCRIPTIONO APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED, SANS.

影響

### DRONE CONTROL AND DATA RETRIEVAL SYSTEM (DCDRS), PRELIMINARY DESIGN STUDY FINAL REPORT (U)

**VOLUME III -- TRADE STUDIES AND ANALYSES** 

PART II - MAN-MACHINE INTERFACE ANALYSIS

Sperry Univac Defense Systems

Technical Report ASD-TR-74-5, Volume III, Part II April 1974





Prepared for:

Deputy for Reconnaissance/Strike/Electronic Warfare **Aeronautical Systems Division** Air Force Systems Command Wright-Patterson Air Force Base, Ohio 45433

Distribution 17 5 Test and partic for this them

1971 un angueste 1971 UN 1975D/RWD,

### NOTICE

There is the

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

DRONE CONTROL AND DATA RETRIEVAL SYSTEM (DCDRS), PRELIMINARY DESIGN STUDY FINAL REPORT

VOLUME III - TRADE STUDIES AND ANALYSES PART II - MAN-MACHINE INTERFACE ANALYSIS



Copy No. - 030

1. 184.94

### FOREWORD (U)

This Technical Report was prepared by Sperry Univac Defense Systems under USAF Contract F33657-73-C-0665. This report, submitted on 15 May 1974, describes all technical work accomplished and information gained in performance of the Drone Control and Data Retrieval System (DCDRS) Preliminary Design Study during the time period from 5 March 1973 to 5 October 1973. This effort was accomplished for the Deputy for Reconnaissance/ Strike/Electronic Warfare, under the guidance of the Drone/RPV SPO, Launch/Control Systems Group (ASD/RWDTL), Lt Col Robert S. Greever, Chief.

The word "Book" is used interchangeably in this report with the word "Part" to mean the numbered Part of a Volume.

Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

WARD W. HEMENWAY, Colonel. USAF Director, Drone/RPV SPO Deputy for Recon/Strike/Electronic Warfare

### UNCLASSIFIED ABSTRACT

This program is a study effort leading to the preliminary design of the DCDRS. The system must be capable of control and data retrieval from multiple drones, operating through a relay in a dense jamming environment. Low acquisition and ownership costs are stressed.

The approach to the system design was divided into four primary tasks:

- Systems analysis
- System/subsystem trade studies and analyses
- System preliminary design
- System development planning (for follow-on phases)

In the systems analysis task, mission scenarios were developed and analysis was performed to define a broad realistic set of requirements for the DCDRS system. A detailed functional analysis (four levels) was performed to provide a detailed set of functional requirements for each element of the system. These included:

- Command/telemetry requirements
- Data processing and software requirements
- Display/control requirements

A time-phased mission analysis established data flow and computational requirements as a function of mission phase. Vehicle handling capacity, operator utilization, and vehicle phase summaries were also determined.

The subsystem trade studies concentrated on the key design areas of communications, man-machine interface, and data processing (hardware and software). Of the trade studies performed, 16 major trade studies were specifically addressed to the DCDRS subsystems; 8 in communications, 4 in data processing, and 4 for the man-machine interface. These trade studies have defined the approach, concepts, and optimum mechanization of the DCDRS.

A complete DCDRS preliminary design was generated which represents a cost-effective solution to the program objectives. Modular design is provided so that configuration can be varied to support several different missions and deployment of various sizes. Common processors are used throughout elements of the system:

- Drone Control Facility
- Airborne Drone Control Facility
- Launch/Recovery Facility
- Relay
- Drone (RPV)

The software is also modular with a high degree of commonality between the various control facilities.

Draft copies of the Final Report for the study effort were submitted to the Air Force on 12 November 1973; these volumes are the final version of this report.

### TABLE OF CONTENTS

369. **\***7

| Paragr | aph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Page                                                               |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1      | SCOPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                  |
| 2      | SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                  |
| 3      | ANALYSIS AND TECHNICAL APPROACH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                  |
| 4      | <ul> <li>FUNCTIONAL AND TECHNICAL CHARACTERISTICS</li> <li>a. Mission and Flight Planning and Replanning</li> <li>b. Orientation and Briefing</li> <li>c. Checkout and Maintenance</li> <li>d. Reporting</li> <li>e. Launch</li> <li>f. Handoffs</li> <li>g. Enroute Vehicle and Mode Control</li> <li>h. Situation Monitoring</li> <li>i. Status Monitoring</li> <li>j. Mission Execution</li> <li>k. Target Acquisition and Cueing Aids</li> <li>l. Vehicle Control During Weapon Delivery</li> <li>m. Bomb Damage Assessment</li> <li>n. Recovery</li> </ul> | 3<br>5<br>5<br>5<br>6<br>6<br>6<br>7<br>7<br>7<br>8<br>9<br>9<br>9 |
| 5      | SPECIFIC AREAS OF INVESTIGATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                 |
| 6      | CONCLUSIONS AND RECOMMENDATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                 |

### LIST OF TABLES

| Table |                                                           | Page |
|-------|-----------------------------------------------------------|------|
| 1.    | Degree of Automation of Functions                         | 2    |
| 2.    | MMI Trade Studies                                         | 4    |
| 3.    | Allocation of Functions Analysis - Planning Station       | 12   |
| 4.    | Allocation of Functions Analysis - Ground Control Station | 15   |
| 5.    | Allocation of Functions Analysis - Launch and Recovery    | 21   |
| 6.    | Allocation of Functions Analysis - DCDRS Logistics        | 24   |

### MAN-MACHINE INTERFACE ANALYSIS

### 1. SCOPE

The objectives of this analysis are to determine the tasks to be performed by man, those to be performed by the machine, and those which will be shared. This analysis provides an allocation of functions to man or machine, and is referred to as an automatic vs manual analysis. DCDRS tasks pertinent to consideration of manual participation cover a broad spectrum of functions including planning; briefing; and flight surveillance, monitoring, and control. Earlier man-machine interface studies sponsored by the USAF addressed the latter areas for strike vehicle missions; this analysis applies those results and further considers mixed and RECCE missions in the context of overall DCDRS operation:. This analysis complies with the contract DCDRS statement of work, paragraph 4.21.2.n.

### 2. SUMMARY

Table 1 summarizes the major man-machine related technical characteristics (functions) that were analyzed. For each major function, the recommended automatic or manual allocation (design method) is described, together with the significant performance parameters driving the selected method. Tables 3 through 6 describe in further detail the allocation of functions by mission phase for each DCDRS element. From the results of the analysis, it is concluded that a high level of automation of many functions is required, but that some form of manual participation is normally necessary.

### 3. ANALYSIS AND TECHNICAL APPROACH

The man-machine interface analysis, or automatic versus manual determination, is essentially Level 3, man-machine allocation analysis, of a four level system functional analysis. It was preceded by Levels 1 and 2. Level 1, DCDRS functional flow analysis, provided functional flow of the gross system functions among the various DCDRS and external system elements in a time ordered way. Level 2, functional analysis of individual elements, defined a system design approach, indicating the various data processing and communications functions required, and, in addition, the following display and control oriented functions: situation, status, control, caution and warning display data and interactive or discrete control data. Thus an allocation of functions to man or machine was accomplished by analysis of the Level 2 data on a function by function basis, for each mission type and phase, as described in paragraph 5. Rationale for the manual, machine, or combined approach selected is documented therein.

| Technical<br>Characteristics<br>(Functions) | Selected Method                     | Performance Parameters<br>(Rationale)          |
|---------------------------------------------|-------------------------------------|------------------------------------------------|
| Mission, Flight Planning<br>and Replanning  | Automatic with manual inputs        | Large amount of detailed data                  |
| Orientation and Briefing                    | Manual with autovisual aids         | Flexibility - realistic<br>environment         |
| Checkout and Mainte-<br>nance               | Automatic                           | Number of operations,<br>time, life cycle cost |
| Reporting                                   | Automatic with verification         | Rapid, unambiguous,<br>error free              |
| Launch                                      | Automatic with manual override      | Precision steering required                    |
| Handoffs                                    | Automatic with manual inputs        | Fatigue and complexity                         |
| Enroute Vehicle and<br>Mode Control         | Automatic with manual override      | Fatigue, multi-vehicle control required        |
| Situation Monitoring                        | Manual/visual with computer assist  | Positive separation assurance                  |
| Status Monitoring                           | Automatic with manual inputs        | Number of operations,<br>fatigue               |
| Mission Execution                           | Manual initiation and verification  | Operator responsibility                        |
| Target Acquisition and<br>Cueing Aids       | Manual/visual with automatic cueing | Visual perception, operator assist             |
| Vehicle Control During<br>Weapon Delivery   | Automatic with manual sensor aiming | Precision steering,<br>unburdening operator    |
| Bomb Damage<br>Assessment                   | Manual/visual                       | Visual perception                              |
| Recovery                                    | Automatic with manual override      | Precision steering required                    |

# Table 1. Degree of Automation of Functions

.,

1.1

and the second second

I

-----

ł

It is noteworthy that the Rockwell International RPV MMI Study report recommended that most functions be performed automatically or assisted by computation. We concur with this conclusion that a high level of automation is required for many of the functions. Table 2 generalizes some of the quantitative trade studies performed in that MMI study functional analysis, the results of which were applied to the DCDRS man-machine allocation.

ž.-

The allocation of functions resulting from this analysis provides an input to Level 4, element block diagrams, which also contain tabular characteristics of the functions including update rates, event times, range, and resolution. Additionally, the total man-machine system interface design process includes the definition of DCDRS organization structure, operator tasks and time loading, numbers of personnel, and gross operating procedures. The accomplishment of all of the aforementioned tasks is a highly iterative process which may, in turn, require further iterations in the functional man-machine allocation analysis itself.

### 4. FUNCTIONAL AND TECHNICAL CHARACTERISTICS

ì

ł

The following paragraphs describe the significant functions which are part of the man-machine interface. These functions are discussed in terms of their overall system application since many recur during various mission phases and are applicable to ground control, air control, operations and planning, launch and recovery control, and relay drone control DCDRS system elements. The various methods of manual or machine participation that were considered are identified. The rationale for selection of one of these methods in each general functional area is noted together with the consistency of approach to permit a unified system design. This part of the analysis provides a bridge between the functional requirements and the detailed allocation of each function to man or machine, which is covered in paragraph 5 of this report.

a. <u>Mission and Flight Planning and Replanning</u>. This function requires the conversion of FRAG data into programs for both the vehicle and the ground computer. In performing this planning task, the data from the FRAG must be converted into an RPV flight profile within the constraints of vehicle performance, intelligence data, time on target, and other RPV routes. Approaches to the planning task include complete manual planning and programming with manual data insertion, completely automatic programming, and automatic programming with manually inserted inputs. The last method was selected in conformance with table 2 because of the large amount of detailed information that can be handled by the computer and the ability of the computer to resolve flight conflicts and to provide for detailed programs. Manual inputs



 Table 2. MMI Trade Studies

are required at the executive decision level to provide for the interpretation of threat and weather data and to assess priorities at the local level.

b. Orientation and Briefing. This function requires the preparation and presentation of the flight plan data to the various operators in a form that will provide them with the pertinent facts required to conduct their phases of the mission. Approaches to orientation and briefing include complete manual briefing with the minimum use of aids, fully automatic presentation of data, and a combination of manual briefing supported by processed information. The last method was selected for briefing both terminal and enroute operators with the implementation dictated by the particular requirements of the individual tasks. It was also selected because it provides for the free interchange of ideas between briefer and operator to resolve any questionable areas. The support afforded by processed information places the operator in a realistic environment and presents the data in the format he will use during the mission.

c. <u>Checkout and Maintenance</u>. This function, which covers the checkout of all equipments pertinent to DCDRS operation, doust be performed rapidly with a degree of completeness that assures a full-up system with alternate backup readiness. A fully manual system, a computer aided system, and an automatic system were considered. The automatic system with manual monitoring, according to table 2, was selected because of the total number of operations required to achieve an in-depth check of all equipments to assure a high level of confidence in system operation. Using a fully manual approach to achieve the same response times and performance levels would lead to higher life cycle costs.

d. Reporting. This function covers issuing reports to various TAC operating groups to indicate items such as takeoff conformance and other ongoing operational events. Consideration was given to fully manual voice and automatic transmission of canned messages with operator notification. The reasons for selecting automatically initiated canned messages with operator notification were the routine nature of each of these messages; the requirement for verification of message transmission; and the rapid, unambiguous, and error free means afforded by this method. Voice communication is available as a backup to this automatic mode.

e. Launch. This function is associated with the method of launch employed, varying with air launch, rail launch and runway takeoff. The methods considered were manual control of the vehicle to provide stabilized path control, and, for runway takeoff, alignment on the runway; automatic control of the vehicle with the operator providing guidance through outer loop steering; and automatic control and guidance with the operator monitoring progress and providing outer loop steering only by exception. The last method was selected as it provides the precision and speed of response required to maintain flight under multiple rail and air launch conditions. If launch is by runway takeoff, visual monitoring may be provided through the EO sensor, if available, or by a remote operator visually monitoring the runway alignment at the takeoff facility. If the operator is included in the monitoring loop, he can quickly take over outer loop control to provide a high level of operational success as an independent backup to the automatic control system.

f. Handoffs. This function covers the exchange of control responsibility between the launch, enroute, terminal, and recovery operators as the RPV's progress through the mission phases. This is essentially a change in monitoring responsibility as the RPV's are programmed under automatic control. Also required are exchanges of data link paths among the RPV's, ground (or air) control stations, and relays as the RPV's pass through the effective antenna patterns. Alternative methods of providing for the above included manual control of all data link acquisitions with operator verification and exchange of RPV control responsibility by voice; automatic control of all data link acquisitions, with operator verification and exchange of RPV control responsibility by voice; automatic control of all data link acquisitions with operator notification of failure to acquire; and exchange of RPV control responsibility by operator-initiated message. The last method was selected as it provides for automatic computation of complex mathematics required for antenna pointing and data link acquisitions, a task rapidly and accurately performed by the machine. Failure to acquire is presented as a caution and warning signal with the operator available to initiate manual acquisition procedures or to effect alternative plans (e.g., programmed return to base). Handoff is a routine procedure most efficiently performed by utilizing canned messages initiated by a discrete operator action. Voice communication will provide a rapid and flexible backup mode to handle approximal handoff situations.

g. Enroute Vehicle and Mode Control. This function covers the vehicle control methods during the phases of flight wherein multiple vehicles are under control of one operator. The requirement is to insure fully stabilized flight and close adherence to flight plan. The various methods of vehicle control considered during and after the MMI effort were manual flight and guidance control; semiautomatic control and guidance with automatic flight control and manual up-date steering; and programmed guidance and automatic

flight control with manual intervention available through outer loop program and mode selection. The last method was selected, in accordance with table 2, as it relieves the operator of routine guidance and flight control duties which would be fatiguing and burdensome during control of multiple vehicles. This method permits control by exception, providing the operator with the capability of changing the internal RPV programs through alternative mode selection and flight reference changes. This method permits the operator to perform his tasks of evaluating the overall conduct of the mission, assuring RPV separation, counteracting enemy threats, and coordinating his handoffs with other operators.

195

Sec.

÷.

h. Situation Monitoring. This function covers monitoring of the RPV's ongoing situation. Situation monitoring is used by the operators to assure themselves that the vehicles for which they are responsible are performing satisfactorily and safely, and that they are adhering to the mission plan. The methods considered for situation monitoring were visual with the display of relative positions of the vehicles, visual with a readout of the individual coordinates of each vehicle, and fully automatic flight following with appropriate cautions and warnings. The selected method was visual with the display of the relative position of the vehicles. In this method, with the vehicles under automatic flight control, mission progress can be determined by evaluation of the overall positions of the RPV's and separation can be assured by noting their relative positions. Upcoming events and handoffs are automatically displayed to alert the operator. In the other method, the operator would have difficulty in assimilating the situation quickly enough to make a required response.

i. Status Monitoring. This function covers monitoring of both RPV operating subsystems and elements of the DCDRS. The requirement is to assure that all equipments are operating properly and, if a malfunction has occurred, to show which equipment has failed. The monitoring methods include manual judgment and evaluation of multiple operating parameters and automatic fault detection and indication of out-of-tolerance conditions through the use of warning signals. The automatic fault detection method was selected because of the number of variables that must be monitored, the improved judgment provided in assessing the overall operation under diverse operating conditions, and the resulting reduction in required space.

j. Mission Execution. This function is associated with the initiation and control of the prime mission equipment when direct manual participation is not required while the mission is being executed. This occurs during mixed (EW, chaff, photo RECCE, leaflet drop, and area sensor emplacement) and RECCE (ELINT and SIGINT) missions. Methods considered were fully automatic, as a function of vehicle location and time with operator notification, and manual initiation and operator monitoring. The latter method was selected,

as the initiation of the prime mission requires a level of responsible operator decision, coordination with external personnel and a judgment of mission situation prior to execution.

k. Target Acquisition and Cueing Aids. This function requires the detection, recognition, and acquisition (DRA) of the target, which precedes the final weapon delivery phase of a mission. During this acquisition phase, the target must be located, positively lentified, and subsequently entered into the weapon system through a designating procedure. Methods considered in performing this function include manual visual DRA, automatic pattern recognition for target comparison against stored data, and target location based on a comparison between known coordinates and the navigation position of the vehicle. The manual visual technique was selected, in accordance with table 2, because of the complexity of target patterns and the ability of the human to provide visual perception to the complex task. The human can provide the adaptation required to coordinate the differences between the stored target data and the appearance of the target as it is approached and finally positive target identification. The navigation technique was considered to be too inaccurate, and the automatic pattern recognition technique although potentially useful for operator search cueing has not been demonstrated to provide the necessary adaptation between stored and target data.

The simulation studies conducted at Boeing confirmed that orientation pictures were important in familiarizing the operator with the target area. The familiarization was useful in a process of broad scene scanning to locate prominent features prior to actual target detection, further substantiating the role of manual target detection. As a result of the simulation, it was found that a fixed frame rate in the order of one picture per second would not substantially reduce operator target detection capability.

3

Ì

Having made an initial acquisition of the suspected area, the operator manually controls the zoom level to enlarge the larget area for further search. Automatic stops will be provided to the operator to control the zoom to specific values. Zoom size corresponding to the field of view of the EO weapon is particularly important to permit a direct comparison in size between both sensors. This correspondence will aid the operator in transferring the target from the primary sensor to the weapon sensor for final targeting. The type of image or contrast enhancement needed to suit the particular target characteristics will be preselected before a mission. Cueing aids will automatically indicate the most likely area of target location based on RPV location and navigation and target uncertainties. This data will provide the operator with a most likely area to start his search problem. The cueing will continue to indicate this ground area as the target is approached. Automatic cueing will also be provided for estimated time to target, thereby permitting the operator to predict the approximate size of the target. The time cueing will also assist the operator to compare the scene with the orientation data, which exists at a known distance to the target. Further automatic cue positioning will indicate the alignment between the designated target and the boresight of the vehicle. This alignment will indicate to the operator when the target will probably be located within the field of view of the boresighted weapon head.

Manual controls will be provided to the operator to designate search areas, to commit targets to the system, to steer the aiming cues, weapon head, or vehicle, and to provide image control through zoom and enhancement.

1. Vehicle Control During Weapon Delivery. This function is associated with both the previously discussed target acquisition and with the final weapon delivery phase. Precise vehicle steering is required while the target is being acquired and the weapon is being delivered. Methods considered were manual steering of the vehicle during the acquisition and aiming, and automatic vehicle steering as a function of sensor aiming. The latter method was selected as it permits the operator to concentrate his attention on acquisition of the target and aiming refinement, while still providing the precise vehicle steering required. A two-level task of vehicle steering and target acquisition was considered too much of a burden to the operator and would result in reduced accuracy of weapon delivery.

m. Bomb Damage Assessment. This function is associated with rapid or more thorough evaluation of the strike success. It may or may not be performed by the same vehicle that conducted the strike. The method employed conforms with that selected for the attack on the target; that is, visual detection.

<u>n.</u> <u>Recovery</u>. This function is associated with the method of recovery employed and will vary for non-runway and runway landings. The methods considered were (1) manual control of the vehicle to provide for positioning in a recovery window or for approach and landing and (2) automatic control of vehicle steering with the operator providing monitoring and outer loop steering control by exception. The latter method was selected as it provides the precision guidance needed to position the vehicle and an acceptable level of operator workload. For a runway landing, visual monitoring may be provided through the EO sensor, if available, or by direct GCA if the EO sensor is not available. When the operator is included in the monitoring loop, he can quickly take over outer loop control (control by exception) to provide a high level of operational success as an independent backup to the automatic control system.

### 5. SPECIFIC AREAS OF INVESTIGATION

Tables 3 through 6 describe the detailed allocation of functions for the mean-machine interface analysis. The tables, which cover planning, ground control (air control is similar), launch and recovery, and DCDRS logistics define the selected methods for performing the required functions and the rationale and key factors that were the driving parameters in the selections. In these allocations, operator performance was considered to be the predominant factor. That is, automation was provided wherever possible to unburden the operator, but not to eliminate operator participation or to remove him from system control. Where pertinent to the man-machine allocation, the factors of cost, risk, schedule, flexibility, growth, and modularity were considered for their impact in the total system interface design.

#### 6. CONCLUSIONS AND RECOMMENDATIONS

The man-machine interface analysis assigned tasks to be performed by the man, tasks to be performed by the machine, and tasks that will be shared. Results of the analysis, conducted on an individual task basis, demonstrated that a high level of automation of many functions is required, but that manual participation in some form is normally necessary. The recommended general allocation of functions is as follows:

• Vehicle guidance and control during all mission phases should be automatic with manual override modes for backup, coordination of certain mission execution phases, and tactical maneuvers or quick reaction replanning.

- Target acquisition and BDA should be performed manually (visual) with automatic and manually controlled cueing aids provided.
- Most situation and status monitoring, mission reporting, and operator and communication handoffs should be performed automatically with the operators participating directly, but in an executive manner.
- Mission and flight planning, orientation and briefing, and checkout and maintenance are offline functions in which computerized and automated equipment should assume a major role, but the operator must participate significantly during briefing operations and planning refinement.

As noted earlier, this man-machine interface analysis was predicated on DCDRS system functional analyses and other studies completed and in-process. While specific conclusions may change as a consequence of design iterations, the aforementioned basic conclusions and recommendations are expected to remain valid.

| Ē                                                                                                             |                                           |                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| r unction                                                                                                     | Selected Method                           | Rationale (Key Factors)                                                                                               |
| PREPLANNING                                                                                                   |                                           |                                                                                                                       |
| 1. Initiate facility self-test                                                                                | Manually initiated auto<br>test           | Supervisory command required<br>Number of operations (time and cost)                                                  |
| 2. Receive and insert FRAG<br>order                                                                           | Automatic computer entry<br>Manual review | Speed for replanning and amount of data<br>Planning operator appraisal of overall plan                                |
|                                                                                                               | Manual insertion                          | required<br>Required for backup and autonomous voice/hard<br>copy input                                               |
| <ol> <li>Receive and insert other<br/>planning data<br/>Weather (insert in pictorial<br/>displays)</li> </ol> | Manual (digital table)*                   | Manual interpretation and computer insertion                                                                          |
| Threat instruction - EOB                                                                                      | Manual (digital table)*                   | Manual interpretation and computer insertion<br>required                                                              |
| ATC Coord., AOB, manned<br>aircraft                                                                           | Manual (digital table)*                   | Manual interpretation and computer insertion                                                                          |
| Interface, other constraints                                                                                  | Manual (digital table)*                   | Manual interpretation and computer insertion<br>required                                                              |
| 4. Receive resource status                                                                                    | Automatic computer entry<br>Manual review | Speed for preplanning and amount of data<br>Planning operator appraisal of overall resources                          |
|                                                                                                               | Manual insertion                          | required<br>Required for backup and voice/hard copy input                                                             |
| 5. Process FRAG orders<br>Relay optimization<br>Time optimization                                             | Manual review<br>Automatic<br>Automatic   | Operator confirmation of developed plan required<br>Complex mathematical computation<br>Large amount of data handling |
| <ol> <li>Process orientation data (TUOC)<br/>Selection of material<br/>Assembly and formatting</li> </ol>     | Manual<br>Manual . machine aided          | Human judgment of complex data                                                                                        |
| Annotation                                                                                                    | Manual                                    | required<br>Human judgment relating diverse data; hard copy                                                           |

10.58

274.74

2

181 mar - 500

d.

\*Could be digitized data; auto insert after manual review

are de

156

Table 3. Allocation of Functions Analysis - Planning Station

1

1

-

Table 3. Allocation of Functions Analysis - Planning Station - Continued

51.246.

1000

į

1

Į

1

i

1 1

| Function                                                                                                                                                          | Selected Method                                                                                                | Rationale (Key Factors)                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| PREPLANNING (Cont)                                                                                                                                                |                                                                                                                |                                                                                                                                          |
| 7. Flight plan generation<br>Flight strips                                                                                                                        | Automatic hard copy print-                                                                                     | Large amount of data; operator confirmation                                                                                              |
| Flight programs (RPV,<br>relay, ADCF)<br>Flight contingency programs<br>Vehicle time history (com-<br>mand 3d position/velocity/<br>ID and PME actions)           | out - manual review<br>Automatic; with supervisory<br>appraisal through fast time<br>enroute situation display | of sample quantities prior to transmit<br>Detailed complex data; visual confidence check<br>of input/programs required                   |
| 8. Briefing generation<br>Selection and notation of<br>material                                                                                                   | Manual                                                                                                         | Human judgment of complex data                                                                                                           |
| 9. Briefing and rehearsal<br>Enroute mission rehearsal                                                                                                            | Automatic fast time enroute<br>situation display with verbal                                                   | Provides visual association; keys briefer and<br>operator to pertinent data factors                                                      |
| Terminal mission briefing<br>(see item 5)                                                                                                                         | information exchange briefer/<br>enroute operator<br>Verbal information exchange                               | Interactive communication                                                                                                                |
| REPLANNING                                                                                                                                                        |                                                                                                                |                                                                                                                                          |
| <ol> <li>Additional targets (second<br/>strike)*</li> <li>Operator reassign<br/>Handoff reschedule<br/>Launch and recovery re-<br/>schedu<sup>1</sup>e</li> </ol> | Automatic computer entry<br>Manual review<br>Manual insertion                                                  | Speed for replanning and amount of data<br>Planning operator appraisal of plan required<br>Required for backup and voice/hard copy input |
| 11. Lost vehicles<br>Complete time optimization                                                                                                                   | Automatic                                                                                                      | Large amount of data handling                                                                                                            |
| Reschedule for other vehi-                                                                                                                                        | Automatic                                                                                                      | Large amount of data handling                                                                                                            |
| cles as required<br>Flight plan gen. and adjust.                                                                                                                  | Automatic with supervisory<br>appraisal through fast time<br>enroute situation display                         | Detailed complex data; visual confidence check<br>of input/programs required                                                             |

\*Strike mission

Table 3. Allocation of Functions Analysis - Planning Station - Continued

Ŀ

A REAL PROPERTY AND A REAL

ι

1

|    |        | Function                                                                                       | Selected Method                                                                         | Rationale (Key Factors)                                                                                                                  |
|----|--------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| н  | LEPL.A | NNING (Cont)                                                                                   |                                                                                         |                                                                                                                                          |
|    | 12.    | Quick reaction capability (TAF)<br>Receive special instructions                                | Automatic computer entry<br>Manual review                                               | Speed for replanning and amount of data<br>Planning operator appraisal of overall plan                                                   |
|    |        | Transmit implementation                                                                        | Manual insertion<br>Automatic; manual review                                            | required<br>Required for volce/hard copy input<br>Large amount of data; operator confirmation of<br>semule dismittees wither to transmit |
|    |        | Operator action and verifi-<br>cation                                                          | Automatic; with supervisory<br>appraisal through fast time<br>enroute situation display | Detailed complex data; visual confidence check<br>input/programs required                                                                |
| 14 | 13.    | Backup another DCF*<br>Receive mission time<br>history DCF*, channel,<br>codes, failure status | Automatic computer entry<br>Manual insertion                                            | Speed for replanning and amount of data<br>Required for voice input                                                                      |
|    |        | Revert to emergency condi-<br>tion, stop launch cycle of<br>RDV's                              | Automatic                                                                               | Large amount of data handling                                                                                                            |
|    |        | Establish communications<br>with lost RPV's* and re-                                           | Automatic                                                                               | Large amount of data handling                                                                                                            |
|    |        | lays* inrougn packup relay<br>Determine range capability<br>of RPV's*                          | Automatic                                                                               | Large amount of data handling                                                                                                            |
|    |        | Replan for slowed mission<br>schedule and recovery at<br>L/R* and L/R sites                    | Automatic<br>Manual revi¢w                                                              | Complex mathematical computation<br>Operator confirmation of developed plan required                                                     |
| ł  | 14,    | Degraded facilities and re-<br>sources -<br>MMI (console, control)<br>Computation              | Automatic computer entry<br>Manual review                                               | Speed for replanning and amount of data<br>Planning operator appraisal of overall resources                                              |
| 1  |        | Communication                                                                                  | Manual insertion                                                                        | required for backup and voice/CW status input                                                                                            |

1. A. 1. 1. 1.

2. A. A.

\*Facility and elements requiring backup

| round Control Station            | Rationale (Key Factors) |                                  | Large iformation content; permanent copy referral | Multiple copies and categories required |                                                  | Supervisory command required<br>Number of operations (time and cost) | Initial confirmation; continuing checks automatic | Initial confirmation; further reporting by exception                     | Executive decision from multiple alternatives                         |           | Supervisory command required    | Supervisory appraisal   | Number of operations (time and cost)<br>Operator appraisal required to establish reason- | As applicable         | Supervisory appraisal                               | Supervisory appraisal            |
|----------------------------------|-------------------------|----------------------------------|---------------------------------------------------|-----------------------------------------|--------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------|---------------------------------|-------------------------|------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------|----------------------------------|
| cation of Functions Analysis - G | Selected Method         |                                  | Data link*/printer                                | Data link*/printer                      |                                                  | Manually initiated auto test                                         | Manual examination                                | Manual examination                                                       | Manual interpretation and mes-<br>sage formulation; computer<br>aided |           | Manually initiated              | Manually verified       | Automatic<br>Manually verified, all consoles                                             | Automatic data checks | Manually verified                                   | Manually verified                |
| Table 4. All                     | Function                | PLANNING (Set up ground station) | 1. Receive control station plan                   | 2. Receive flight strips                | SYSTEM READINESS TESTS AND<br>BRIEFING/REHEARSAL | 1. Initiate facility self-test                                       | 2. Verify facility operating status               | 3. Obtain resource data and com-<br>pare with planning require-<br>ments | <ol> <li>Start replan cycle for contin-<br/>gencies</li> </ol>        | PRELAUNCH | 1. Initiate RPV (or relay) pro- | Verify program complete | 2. Load and store planning data<br>Verify inserted plan data                             |                       | 3. Verify vehicle/remote instal-<br>lation checkout | 4. Verify vehicle initialization |

ł

1

ł

١

NY: SH

\*Applicable to quick reaction inputs only; normally hand carried

~

Accuracy and workload (manual backup available) Large amount of repetitive detailed information required provides rapid and flexible contingency mode Routine task; easily automated (manual backup Executive decision from multiple alternatives Positive operator agreement required; voice Operator and supervisor appraisal required Enroute operator appraisai prior to handoff Rapid; unambiguous and error free Available as handoff is imminent Rationale (Key Factors) acceptance available) Manual interpretation and mes-Automatic; manual verification (based on step 1 timing and Autor-tic; manual verification sage formulation; computer Interractive canned message Data communication between Backup to launch operator operators, voice backup Automatic (DL to TAF) Manual verification Manual monitoring 4 on step 3) Selected Method Enroute operator predicted path) (voice backup) aided <u>م</u> 1. Takeoff verification (off re-Perform on-going functions 7. Handoff to enroute operator Imitiate flight data record-2. Issue conformance report Nonconformance report Monitor stabilized path/ 3. Establish vehicle track Transmit tracking data (ID/pos/direction) ing and verify Function (standby) systems port LAUNCH 4. **2**• **œ .**9

¢

7

Table 4 Allocation of Functions Analysis - Ground Control Station - Continued

| Function                                                    | Selected Method                                                                                                                               | Rationale (Kev Factors)                                                                                                                                       |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ENROUTE                                                     |                                                                                                                                               |                                                                                                                                                               |
| <ol> <li>Antenna pointing CMD com-<br/>putations</li> </ol> | Automatic                                                                                                                                     | High speed mathematical computation                                                                                                                           |
| 2. Navigation<br>Tracking<br>Updating                       | Automatic<br>Automatic (with manual visual<br>update growth)                                                                                  | High speed mathematical computation<br>High speed mathematical computation<br>(man provides unique visual perception input)                                   |
| 3. On-board status monitoring                               | Automatic (with m2.nual verifica-<br>tion by exception)                                                                                       | Continuous evaluation of a large amount of data<br>(reduced fatigue and improved response to mai-<br>function)                                                |
| 4. Path control<br>Revised program                          | Automatic except as noted below<br>Automatic with notification of                                                                             | Accuracy, multivehicle workload<br>Operator appraisal of new situation required                                                                               |
| Override steering/mode<br>control<br>Jinking                | Manual outer loop control<br>Manual select canned manual                                                                                      | Operator Tesponse to immediate situation; no pre-<br>programmed alternate available<br>Operator appraisal required; vehicle performance;<br>operator workload |
| 5. Situation monitoring                                     | Automatic flight following and<br>threat warning with alert sig-<br>nals, manual responsibility<br>for separation assurance and<br>rendezvous | Multi-vehicle control with independent human<br>appraisal or flexible mission performance                                                                     |
| 6. Data link handoffs                                       | Automatic with indication;<br>manual intervention for<br>exceptions                                                                           | Routine task; easily automated (manual backup<br>available)                                                                                                   |
| MISSION EXECUTION                                           |                                                                                                                                               |                                                                                                                                                               |
| 1. Perform window comparison                                | Automatic (with manual verification)                                                                                                          | Operator appraisal                                                                                                                                            |
| 2. Adjust flight parameters and select modes                | Manual outer loop control                                                                                                                     | Operator response to immediate situation (vernier control)                                                                                                    |
| 3. Coordinate mission with TAF<br>elements                  | Voice communication                                                                                                                           | Voice provides rapid and flexible coordination<br>mode                                                                                                        |
|                                                             |                                                                                                                                               |                                                                                                                                                               |

. .

|          | Function                                                                    | Selected Method                                                                                         | Rationale (Key Factors)                                                                                                                                |
|----------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| OISSI    | N EXECUTION (Cont)                                                          |                                                                                                         |                                                                                                                                                        |
| 4.       | Command PME and verification                                                | Manual Initiation and verification                                                                      | Requires responsible operator decision                                                                                                                 |
| 5.       | Receive and transmit PME<br>data                                            | Automatic relay and status                                                                              | Real time wide band data precludes manual partici-<br>pation except for status monitoring                                                              |
| 6.       | Notification and conduct of<br>orientation (terminal oper-<br>ator)         | Automatic notification and<br>manual selection and perusal                                              | Time notification routine automation task maximum<br>flexibility; minimum cost                                                                         |
| 7.       | Handoff to terminal operator                                                | Automatic handoff notification<br>and manually controlled data<br>communication between opera-<br>tors. | Positive operator agreement required; voice pro-<br>vides rapid and flexible contingency mode                                                          |
| <b>.</b> | Perform weapon (or sensor)<br>checkout                                      | Automatic with manual initiation<br>and verification                                                    | Rapid performance evaluation; operator appraisal                                                                                                       |
| θ.       | Perform navigation update<br>(same as item 10 below)                        |                                                                                                         |                                                                                                                                                        |
| 10.      | Search and acquisition                                                      | Manual search target and com-<br>mit automatic vehicle steering                                         | Man provides unique visual perception for DRA<br>Precision steering and reduced workload burden                                                        |
| 11.      | Attack, release and BDA                                                     | Manual enable and BDA;                                                                                  | Requires responsible operator decision; man<br>provides unique visual perception for BDA<br>Precision steering and release; reduced workload<br>burden |
| 12.      | Initial mission reporting<br>Strike<br>Leaflet drop<br>Photo RECCE          | Manually composed message<br>Automatic<br>Automatic                                                     | Only means for quick BDA<br>Operator workload and quick response<br>Operator workload and quick response                                               |
| 13.      | Handoff to enroute perator<br>(same as item 7 above)                        |                                                                                                         |                                                                                                                                                        |
| 14.      | Perform enroute ongoing<br>functions (same as enroute<br>items 1 through 6) |                                                                                                         |                                                                                                                                                        |

`,

.

1. Starter

Table 4. Allocation of Functions Analysis - Ground Control Station - Continued

ł

. !

See See

ł

| Function                                                      | Selected Meil.od                                                                               | Rationale (Key Factors)                                                                                                                        |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| RETURN ENROUTE AND<br>RECOVERY                                |                                                                                                |                                                                                                                                                |
| 1. Respond to request for RPV<br>ID and verification          | Manually controlled data com-<br>munication between operators,<br>voice backup                 | Positive operator agreement required; voice<br>provides rapid and flexible contingency mode                                                    |
| 2. Monitor stabilized path/systems<br>(zame as launch item 5) |                                                                                                |                                                                                                                                                |
| 3. Handoff to recovery operator<br>(same as launch item 7)    |                                                                                                |                                                                                                                                                |
| 4. Verify recording and track reporting off                   | Automatic; manual verification                                                                 | Operator appraisal required                                                                                                                    |
| 5. Receive recovery notification<br>and record                | Manual                                                                                         | Cost, workload compatible                                                                                                                      |
| POST-FLIGHT OPERATIONS                                        |                                                                                                |                                                                                                                                                |
| 1. Data extraction<br>Flight strips                           | Manual                                                                                         | Multiple copies must be collected from various                                                                                                 |
| Narrow band                                                   | Manual                                                                                         | Large amount of stored data must be collected;                                                                                                 |
| Voice, Mission video,<br>orientation data                     | Manual                                                                                         | Increase and the stored data must be collected for processing and filing                                                                       |
| 2. Maintenance                                                | Manual; prepare equipment<br>repair request (form 1)                                           | Operator and supervisor judgment and appraisal<br>required                                                                                     |
| IN-FLIGHT TRAINING AND<br>REHEARSAL                           |                                                                                                |                                                                                                                                                |
| 1. Mission supervision                                        | Manual observation of<br>automatically generated data<br>in fast time at planning sta-<br>tion | Visual observation of actual displays/information<br>optimize4 performance<br>Slack time and formatted data available at plan-<br>ning station |

. .

۶.,

، -

<u>,</u> 2,2

٢.,

• •

Table 4. Allocation of Functions Analysis - Ground Control Station - Continued

j

- 東京学 通信 日本

|               | Function                            | Selected Method                           | Rationale (Key Factors)                                       |
|---------------|-------------------------------------|-------------------------------------------|---------------------------------------------------------------|
| IN FL<br>REHI | IGHT TRAINING AND<br>EARSAL         |                                           |                                                               |
| 2.            | Contingency supervision             | Same as 1 except real time                | Same as 1 except cannot speed up desired type<br>rehearsal    |
| ຕ             | Enroute situation monitoring        | Same as 1 above                           | Same as 1 above                                               |
| 4.            | Mission execution<br>(RECCE/support | Same as 2 above                           | Same as 2 above                                               |
| ີ້            | Mission execution                   | Manual selection of orienta-<br>vion data | One-to-one rehearsal of terminal operator orienta-<br>tion    |
| û.            | Launch<br>(GNC and status)          | Same as 2 above                           | One or several RPV's sufficient for real time eval-<br>uation |
| 7.            | Recovery<br>(GNC and status)        | Same as 2 above                           | One or several RPV's sufficient for real time eval-<br>uation |

and the

Table 5. Allocation of Functions Analysis - Launch and Recovery

-

1

. A KART

| Function                                                                                                                   | Selected Method                                                | Rationale (Key Factors)                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| SYSTEM READINESS TEST                                                                                                      |                                                                |                                                                                                                           |
| <ol> <li>Initiate facility self-test<br/>Accept test initiation and<br/>performance<br/>Verify system readiness</li> </ol> | Manually initiated auto test<br>Manual examination             | Supervisory command required<br>Number of operations (time and cost)<br>Initial confirmation; continuing checks automatic |
| PRELAUNCH                                                                                                                  |                                                                |                                                                                                                           |
| 2. Accept and store planning data                                                                                          |                                                                |                                                                                                                           |
| Launch sequences and<br>flight strips                                                                                      | Data link*/printer                                             | Multiple copies and categories required                                                                                   |
| Channel codes and flight<br>programs<br>Contingency programs                                                               | Manually initiated<br>Automatic Insertion<br>Manually verified | Supervisory command required<br>Number of operations (time and cost)<br>Supervisory appraisal                             |
| 3. Accept logistics readied vehicle                                                                                        | Interractive message (voice)                                   | Rapid; unambiguous; positive operator agreement                                                                           |
| 4. Vehicle system checkout<br>Establish and verify data link                                                               | Mainally initiated                                             | Supervisory command required                                                                                              |
| Initiate vehicle computer<br>check<br>Load and verify flight and                                                           | Automatic                                                      | Large amount of data handling                                                                                             |
| contingency program<br>Checkout and verify vehicle<br>systems                                                              | Manually verified                                              | Supervisory appraisal                                                                                                     |
| 5. Perform vehicle store check                                                                                             | Automatic<br>Manually verified                                 | Number of operations (time and cost)<br>Supervisory appraisal                                                             |
| 6. Perform overall vehicle<br>initialization                                                                               | Automatic<br>Manually verified                                 | Number of operations (time and cost)<br>Supervisory appraisal                                                             |
| 7. Configure for launch and desafe                                                                                         | Automatic<br>Manually verified                                 | Number of operations (time and cost)<br>Supervisory appraisal                                                             |

| Rationale (Key Factors) |       | Operator command required | Continuous evaluation of a large amount of data<br>(reduced fatigue and improved response to mi<br>function) | Routine task; easily automated  | i; Routine task; easily automated (manual backup<br>available)    | erifi- Evaluation of a large amount of data         | nter Accuracy; operator workload<br>n) Operator response to immediate situation (back | ge Rapid; mambiguous and error free        | Launch operator appraisal prior to handoff to<br>enroute operator | Launch operator appraisal prior to handoff to<br>enroute operator | reen Positive operator agreement required; volce.  |
|-------------------------|-------|---------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|
| Selected Method         |       | Manually initiated        | Automatic (with manual verification by exceptio                                                              | Automatic                       | Automatic with indication<br>manual intervention for<br>exception | Automatic (with manual $v$ cation by exception)     | Automatic (with manual o<br>loop control by exception                                 | Interactive canned messa<br>(voice backup) | Manual monitor                                                    | Manual monitor                                                    | Data communication betw<br>operators; voice backup |
| Function                | Н     | Signal engine start       | Provide engine performance<br>analysis and verify                                                            | Signal switch to internal power | Acquire data link communica-<br>tions (as applicable)             | Final flight control and flight<br>programmer check | Execute launch control func-<br>tions                                                 | Provide off report                         | Monitor vehicle system<br>climbout performance                    | Monitor stabilized path<br>systems                                | Perform handoff                                    |
|                         | LAUNC | 8.                        | ი                                                                                                            | 10.                             | 11.                                                               | 12.                                                 | 13.                                                                                   | 14.                                        | 15.                                                               | 16.                                                               | 17.                                                |
| I                       | 1     |                           |                                                                                                              |                                 |                                                                   |                                                     |                                                                                       |                                            |                                                                   |                                                                   |                                                    |

3.2.5

Sec. 16

Table 5. Allocation of Functions Analysis - Launch and Recovery - Continued

------

. Burgal

| Table 5. All                       | location of Functions Analysis - Laun | ch and Recovery - Continued                                           |
|------------------------------------|---------------------------------------|-----------------------------------------------------------------------|
| Function                           | Selected Method                       | Rationale (Key Factors)                                               |
| ENROUTE AND<br>RY                  |                                       |                                                                       |
| fonitor stabilized path/<br>ystems | Manual monitor                        | Recovery operator appraisal prior to handoff<br>from enroute operator |
| reart handoff                      | Data communication between            | Positive operator agreement required; voice                           |

: Site

Alter and a

ł

| MONITC      | DR ENROUTE AND<br>VERY                  |                                                            |                                                                                          |
|-------------|-----------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 18.         | Monitor stabilized path/<br>systems     | Manual monitor                                             | Recovery operator appraisal prior to handoff<br>from enroute operator                    |
| 19 .        | Accept handoff                          | Data communication beiween<br>operators; voice backup      | Positive operator agreement required; voice provides rapid and flexible contingency mode |
| <b>2</b> 0, | Monitor vehicle approach                | Manual monitor                                             | Recovery operator appraisal prior to recovery                                            |
| 21.         | Shut down engine, as<br>required        | Manually initiated auto sequence                           | Operator command required; routine detailed<br>tasks; easily automated                   |
| 22.         | Jetttson fuel, as required              | Manually initiated auto sequence                           | Operator command required; routine detailed<br>tasks; easily automated                   |
| 23.         | Deploy recovery system                  | Manually initiated auto sequence                           | Operator command required; routine detailed<br>tasks; easily automaied                   |
| 24.         | Handoff to special recovery<br>guidance | Automatic (with manual outer<br>loop control by exception) | Accuracy; operator workload<br>Operator response to immediate situation (backup)         |
| 25.         | Issue recovery notification             | Interactive canned message<br>(voice backup)               | Rapid; unambiguous and error free                                                        |

23

ŝ, <u>\_\_\_\_\_</u>

1 蒙陵

Table 6. Allocation of Functions Analysis - DCDRS Logistics

S CANADA S

ない

No. of Concession, Name

-

1

;

1

-

-----

| Function                                                                                                                                         | Selected Method                                                                                                                                                         | Rationale (Key Factors)                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Provide resource status<br/>Monitor spares complement</li> <li>Receive status from TAF</li> </ol>                                       | Automatic accounting of avail-<br>able and needed spares<br>Manual data insertion* into<br>computer<br>Automatic                                                        | Central bookkeeping needed, implying large<br>amount routine data handling<br>Minimum cost, sufficient speed provided<br>Large amount of data |
| Monitor DCDRS maintenance<br>Schedule DCDRS maintenance<br>activity<br>Monitor equipment avail-                                                  | Automatic scheduling; manual<br>revision and monitoring<br>Automatic scheduling; manual<br>revision and monitoring                                                      | Focus supervisor's attention to overall require-<br>ments and potential problem areas while<br>eliminating multiple routine tasks             |
| Recorder supplies<br>Request non-DCDRS mainte-                                                                                                   | Fully automatic, offline handling<br>(see item 6 below)                                                                                                                 | Large amount of data; low priority (emergency<br>reorders manual for increased overall handling<br>speed and response emphasis)               |
| nance<br>Report DCDRS logistics status                                                                                                           | Automatic data transfer                                                                                                                                                 | Large amount of data; rapid and timely response                                                                                               |
| <ol> <li>Receive equipment orders</li> <li>Check availability of equipment</li> <li>Assign equipment</li> <li>Perform vehicle buildup</li> </ol> | Manual review and selection;<br>automatically prepared lists<br>Manual review and selection;<br>automatically prepared lists<br>Manual handling and installa-<br>tion** | Human judgment of acceptability and/or time to<br>complete assessment of multiple alternates<br>Minimum cost approach                         |
| Transport vehicle to launch<br>Adjust resource status                                                                                            | Manual handling and installa-<br>tion**<br>Automatic data transfer                                                                                                      | Minimum cost approach<br>Large amount of data, rapid and timely response                                                                      |
| *Snares consumed by maintenance be                                                                                                               | rsonnel                                                                                                                                                                 |                                                                                                                                               |

24

.,

\*spares consumed by manuemente personner \*\*Utilizing appropriate transport/handling/alignment vehicles and/or fixtures

Ŷ

| Function                             | Selected Method                                                  | Rationale (Key Factors)                                                                    |
|--------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 3. P. "form system self-lest         | (Periodic test of shelf equip-<br>ment and GSE or preinstal-     |                                                                                            |
| Connect equipment                    | Manual with assist from any<br>handling continuent               | Low frequency task; least costly approach                                                  |
| Initiate test                        | Manual initiation, automatic<br>testing                          | Minimum number and skills of personnel; amount,<br>sneed and accuracy of data              |
| Collect test results                 | Automatic data transfer                                          | Minimum personnel; amount and speed of data                                                |
| Modify resource data                 | Automatic, with manual review<br>and monitoring                  | Supervisory judgment allows local contingency<br>operation to avoid unnecessary replanning |
| Transmit resource data               | Automatic data transfer                                          | Minimum personnel, amount, and speed of data                                               |
| 4. Receive recovery notification     | Voice message, possible alert                                    | Most rapid, flexible, unambiguous approach                                                 |
| Dispatch transport team*             | Manual chart briefing and                                        | Most flexible and rapid method                                                             |
| Transport vehicles*                  | Beaus data<br>Manually controlled machines                       | Machine strength, speed required                                                           |
| 5. Transfer recorded data*           | Manual handling, vehicular<br>aided transport                    | Minimum cost approach                                                                      |
| 6. Initiate refurbishment and        |                                                                  |                                                                                            |
| Perform post-flight inspec-<br>tions | Manual with assist from self-<br>test circuitry and any required | Most rapid, flexible, thorough, and economical approach                                    |
|                                      | handling equipment                                               | What mutic flavible thereast and accompany                                                 |
| kemove and replace detective<br>LRU  | test circuitry and any required<br>handling equipment            | approach                                                                                   |
| Transport defective LRU to           | Manual with assist from self-                                    | Most rapid, flexible, thorough, and economical                                             |
| repair station                       | test circuitry and any required<br>handling equipment            | approach                                                                                   |
| Request non-DCDRS mainte-            | Manual, contingency operation                                    | Positive intercommunication required to achieve                                            |
| nance                                | only (voice)                                                     | desired performance                                                                        |
| Initiate DCDRS LRU repair            | Manual with assist from field<br>support equipment               | FULLY AUTOMATIC TEPAIT CYCLE NOT LEASIDLE                                                  |
| Monitor maintenance activity         | (see item 1 above)                                               | (see item 1 above)                                                                         |
| Adjust resource status               | AUTOMALIC UALA L'AUSICI                                          | THATE ALL WILL VI WALA, ARVIN ANU ULUTUT A SPUNIDO                                         |

.

Table 6. Allocation of Functions Analysis - DCDRS Logistics - Continued

Ł

L

|                                                                                                                   | • ,                                                       |                                                                                                                                              |                                    |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| UNCLASSIFIED                                                                                                      |                                                           | ,                                                                                                                                            |                                    |
| DOCIMENT C                                                                                                        |                                                           | )                                                                                                                                            |                                    |
| (Security classification of title, body of abstract and inde                                                      | exing annetation must be ente                             | red when d                                                                                                                                   | he everall report is classified)   |
| ORIGINATING ACTIVITY (Corporate author)                                                                           | 28.                                                       | REPORT                                                                                                                                       | SECURITY CLASSIFICATION            |
| Sperry Univac Defense Systems                                                                                     |                                                           | U                                                                                                                                            | NCLASSIFIED                        |
| Sperry Rand Corporation                                                                                           | 28                                                        | GROUP                                                                                                                                        |                                    |
| REPORT TITLE                                                                                                      |                                                           |                                                                                                                                              |                                    |
| DRONE CONTROL AND DATA RETRIEVAL SY<br>VOL III - TRADE STUDIES AND ANALYSE<br>PART II - MAN-MACHINE INTERFACE ANA | STEM (DCDRS), PRELIN<br>IS<br>Alysis                      | INARY                                                                                                                                        | DESIGN STUDY FINAL REPOR           |
| DESCRIPTIVE NOTES (Type of report and inclusive dates)                                                            |                                                           |                                                                                                                                              |                                    |
| Final report for period from 5 Merch 1973 through                                                                 | 5 October 1973                                            |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
| April 1974                                                                                                        | 74. TOTAL NO. OF P.                                       |                                                                                                                                              | 75. NO. OF REFS                    |
| . CONTRACT OR GRANT NO.                                                                                           | M. ORIGINATOR'S RI                                        | PORT NU                                                                                                                                      | Murr(s)                            |
| F33657-73-C-0665                                                                                                  | A8D-TR-74-5                                               |                                                                                                                                              |                                    |
| с.                                                                                                                | S. OTHER REPORT                                           | 10(1) (Any                                                                                                                                   | other numbers that may be assigned |
|                                                                                                                   | this report)                                              | • • •                                                                                                                                        | • • • • • • • •                    |
| d.                                                                                                                |                                                           |                                                                                                                                              |                                    |
| DISTRIBUTION STATEMENT                                                                                            |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   | المستركين ومعالي المسترين المسترين                        | <u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u> |                                    |
| I. SUPPLEMENTARY NOTES                                                                                            | 12. SPONSORING MIL                                        | TARY AC                                                                                                                                      | TIVITY                             |
|                                                                                                                   | Aeronautical Syst<br>Air Force System<br>Wright-Patterson | ems Divis<br>Comma<br>Air Force                                                                                                              | Non<br>nd<br>  Base, Ohio          |
| . ABSTRACT                                                                                                        |                                                           |                                                                                                                                              | -<br>                              |
| Sae the following nega                                                                                            |                                                           |                                                                                                                                              |                                    |
| See the following page.                                                                                           |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
| D 1 NOV 41473                                                                                                     |                                                           | U                                                                                                                                            | NCLASSIFIED                        |
|                                                                                                                   |                                                           |                                                                                                                                              |                                    |
|                                                                                                                   |                                                           | Secu                                                                                                                                         | rity Classification                |

3

. .

| KEY WORDS                              | LIN  | K A | LIN  | K 8 | LIN  | K C |
|----------------------------------------|------|-----|------|-----|------|-----|
|                                        | ROLE | WT. | ROLE | WT  | ROLE | WT  |
|                                        |      |     |      |     |      |     |
| Airborne drone control facility (ADCF) |      |     |      |     |      |     |
| Air data system (ADS)                  |      |     |      |     |      |     |
| Air Force Logistics Command (AFLC)     |      |     |      |     |      |     |
| Air Force Systems Command (AFSC)       | 1    |     |      |     |      |     |
| Aerospace ground equipment (AGE)       |      |     |      |     |      |     |
| Alphanumerics (A/N)                    |      |     |      |     |      |     |
| Air order of battle (AOB)              |      |     |      |     |      |     |
| Air traffic control (ATC)              |      |     |      |     |      |     |
| Bomb damage assessment (BDA)           |      |     |      |     |      |     |
| Built in test equipment (BITE)         |      |     |      |     |      |     |
| Character generator and                |      |     |      |     |      |     |
| refresh memory (CG and RM)             | 1    |     |      |     |      |     |
| Communications intelligence (COMMINT)  |      |     |      |     |      |     |
| Central processor unit (CPU)           |      |     |      |     |      |     |
| Control reporting center (CRC)         |      |     |      |     |      |     |
| Control reporting post (CRP)           |      | 1   |      |     |      |     |
| Character and vector generator (CVG)   |      |     |      |     | 1    |     |
| Direct air support center (DASC)       |      |     |      |     |      |     |
| Drone control and data                 |      |     |      |     | Į .  |     |
| retrieval system (DCDRS)               |      |     |      |     |      |     |
| Drone control facility (DCF)           |      | ]   |      |     |      |     |
| Digital data link (DDL)                |      |     |      | :   |      |     |
| Differential phase shift keying (DPSK) |      |     |      |     |      |     |
| Data source terminal (DST)             |      | Į   |      |     |      |     |
| Electronic countermeasures (ECM)       |      | ]   | 1    |     | 1    |     |
| Environmental control unit (ECU)       |      |     |      |     |      |     |
| Electronic intelligence (ELINT)        |      |     |      |     |      |     |
| Electromagnetic compatibility (EMC)    |      |     |      |     |      |     |
| Electromagnetic interference (EMI)     |      |     |      |     |      |     |
| Electro optical (EO)                   |      | }   |      |     |      | }   |
| Electronic order of battle (EOB)       |      |     |      |     | -    |     |
| Electrical power generator (EPG)       |      |     |      |     |      |     |
| Forward air control post (FACP)        |      |     |      |     |      |     |
| Forward edge of battle area (FEBA)     | }    |     | 1    |     | Ì    | 1   |
| Fragmentary (order) (FRAG)             |      |     |      |     |      |     |
| Ground control station (GCS)           |      |     |      |     |      | ł   |
| High altitude reconnaissance           |      |     |      |     |      |     |
| center (HARC)                          |      |     |      |     | 1    | 1   |
| Integrated logistics support (ILS)     | l    |     |      |     | 1    |     |
| Land line interface (LLI/F)            |      |     |      |     |      | 1   |
| Launch and recovery $(L/R)$            |      |     |      |     | 1    | 1   |
| Launch and recovery control            |      |     | 1    |     | 1    | 1   |
| facility - low value (LRCF-LV)         |      |     |      |     |      |     |
| tautity - tow value (LILOT - LIV)      |      | l   | 1    | Į   | 1    | 1   |

S.

ς.

| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LINK A |    | LINK B |    | LINK C |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|--------|----|--------|-----|
| KEY WORDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ROLE   | WT | ROLE   | WT | ROLE   | WT  |
| Launch and recovery control<br>facility - high value (LRCF-HV)<br>Multibeam (MB)<br>Omnidirectional (OMNI)<br>Operations and planning station (OPS or O/PS)<br>Pulse code modulation (PCM)<br>Precision emitter locator (PEL)<br>Prime mission equipment (PME)<br>Performance monitoring system (PMS)<br>Pseudorandom noise (PN)<br>Phase shift keying (PSK)<br>Rocket assisted takeoff (RATO)<br>Reconnaissance (RECCE)<br>Radius of action (ROA)<br>Remotely piloted vehicle (RPV)<br>Special repair activity (SRA)<br>Strike support (SS)<br>Tactical air control center (TACC)<br>Tactical air force (TAF)<br>Tactical information processing<br>information (TIPI)<br>Time of arrival/distance measuring<br>equipment (TOA/DME)<br>Transmit and receive (T/R)<br>Track support unit (TSU) | ROLE   |    |        |    |        | K C |
| Special repair activity (SRA)<br>Strike support (SS)<br>Tactical air control center (TACC)<br>Tactical air control system (TACS)<br>Tactical air force (TAF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |    |        |    |        |     |
| Tactical information processing<br>information (TIPI)<br>Time of arrival/distance measuring<br>equipment (TOA/DME)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |    |        |    |        |     |
| Transmit and receive (T/R)<br>Track support unit (TSU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |    |        |    |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |    |        |    |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |    |        |    |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |    |        |    |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |    |        |    |        |     |

### DISTRIBUTION LIST

S. S. S.

Ř

\*\*\*

×.

1. 28. 34

| Copy No.   | Addressee     |
|------------|---------------|
| 001        | AFAL/AAI      |
| 002        | AFFDL         |
| 003        | AMRL/HE       |
| 004        | ASD/ENAE      |
| 005        | ASD/RWDD      |
| 006        | ASD/RWDE      |
| 007        | ASD/RWDK      |
| 008        | ASD/RWDL      |
| 009        | ASD/RWDPP     |
| 010 - 015* | ASD/RWDTL     |
| 016        | ASD/RWS       |
| 017        | ASD/XR        |
| 018        | ECAC/ACZ      |
| 019, 020   | ESD/XRL       |
| 021        | NAS S-412     |
| 022, 023   | RADC DDC      |
| 024        | RADC/DCR      |
| 025        | SAC/XPHO      |
| 026        | TAC/DR        |
| 027        | USAECOM/AMSEL |
| 028        | USAFSS/DOY    |

\*Copy 015 is reproducible copy