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of Aerospace Engineering, Auburn University, Auburn, Alabama. 
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ABSTRACT 

The mutual aerodynamic interference problem for two axisymmetric 
bodies has been analyzed using the image system technique.    In order to 
facilitate this analysis, it has been assumed that small perturbation 
solutions are valid.    It is further assumed that the external stores  xre 
slender bodies and that the mutual interference can be analyzed by fi rst 
assuming a cross-flow solution.    T1-0 image system in the cross-flow 
plane consists of source-sink pairs appropriately located by using the 
Milne-Thomson circle theorem.    The actual three-dimensional source-sink 
pairs are displaced from the body axis according to the cross-flow image 
system.    Their strengths are then determined by the Rankine method. 
Good agreement has been found between the theoretical and experimental 
results. 

Distribution limited to U. S.  Government agencies only; 
this report documents test and evaluation; distribution 
limitation applied August 1973.    Other requests for 
this document must be referred to the Air Force Armament 
Laboratory (DLJA), Eglin Air Force Base, Florida 325h2. 
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SECTION I 

INTRODUCTION 

This work is part of a continuing effort to analytically examine the 
flow field beneath an ulrcraft with external stores in an effort to 
produce equations for   computing store separation trajectories which include 
the effects of mutual aerodynamic interference.    The application of the 
cross-flow solution is an alternate approach to the time-consuming and very 
complex method of solving the interference problem by using a prohibitively 
large number of singular solutions, such as that  obtained by Smith and 
Pierce (l)  for a surface source distribution on all the bodies.    Thus, 
the most obvious advantage of the cross-flow correction method is its 
relatively simple application to the case of interfering multiple dissimilar 
bodies. 

The previous  analytical solution proposed by Martin  (2)  in which the 
mutual aerodynamic interference problem was considered by using a cross- 
flow corrected axisymmetric solution, was re-evaluated.    In that work an 
approximate line source distribution was assumed as the solution for the 
isolated axisymmetric body.    This solution was then vised to generate the 
appropriate image system as  suggested by the two-dimensional cross-flow 
solution outlined in Reference 3.    In order to obtain a better correlation 
with experiment and to generate a consistent technique that could be used 
for any axisymmetric body shape, this more general approach has been 
developed. 

The calculation of the flow field for small disturbances requires 
a solution to the Prandtl-Glauert equation subject to the boundary condi- 
tions of no fluid flow into the body and vanishing perturbations at large 
distances from the body.    Since this equation is linear, superposition of 
elementary solutions will allow the build-up of a complex flow which satis- 
fies the boundary conditions.    The widely used vortex-lattice and line 
source solutions  for planar and axisymmetric flows represent two common 
examples of the superposition of simple solutions to form more complex 
flow fields.    However, when systems, such as the flow fields for planar 
wings and axisymmetric bodies, are combined, it  is not possible to simply 
superimpose the results for the separate systems.    The interference of the 
flow fields requires that  adjustments be made to the elementary source 
and/or vortex distributions in order to satisfy the body boundary conditions. 
The cross-flow correction discussed herein is an example of this type of 
adjustment for two interfering axisymmetric bodies. 

This  solution is based on a two-dimensional image system which utilizes 
the Rankine method (U)  of superposition of an axial source-sink distribu- 
tion to form a closed body.     In the cross-flow solution, however, the 
sources and sinks are displaced from the axes of the bodies in such a 
manner as to account for the interference effects and to satisfy the bound- 
ary conditions.     The  derivation of the cross-flow image system (3) 
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utilizes the Milne-Thomson circle theorem (5) and is based on the premise 
that the boundary condition for two-dimensional interference flow past 
two circular cylinders  can be  satisfied by displacing the  sourcv.3  in each 
body towards each other by a specified distance. 

This solution differs from that of Reference 2 in that instead of 
assuming that the strengths of the sources in the image system are known, 
as  in the previous work, these values  are determined so that when added 
to the predetermined axial source-sink distribution, the body boundary 
conditions  are satisfied. 

The new technique was  applied to  calculate the interference flow 
field for two M-11T bombs.     Results of the theoretical  calculations were 
compared with the experimental values  as obtained by tests performed in 
the low-speed wind tunnel at the contractor facility. 

The computer program used to compute the theoretical values is given 
as Appendix I. 
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SECTION II 

THEORETICAL CONSIDERATIONS 

The method of solution for analysis of the two-body aerodynamic inter- 
ference problem, as developed by Martin in Reference  3, has been investiga- 
ted,  and a new technique  for improving this method has been developed.    The 
basis of Martin's method was the combination of the single body axisymmetric 
solution and the cross-flow image system [3] to approximate the interference 
flow  field for two similar bodies  of revolution in a uniform flow.    It was 
found, however, that this technique does not satisfy the boundary condi- 
tions for the three-dimensional problem [6],    In order to correct the body 
boundary conditions, the EüCIsymmetric solution was combined with a cross- 
flow solution consisting of a source distribution displaced from the body 
center line and a sink distribution of equal magnitude along the body 
axis  as suggested by the two-dimensional cross-flow solution. 

The usual assumptions of small disturbances and inviscid flow are 
assumed.    Further, it is assumed that the flow is incompressible so that 
the familiar Laplace equation is the governing equation and the well-known 
elementary solutions, source-sink, doublet, etc., flows areavailable. 

Since the body boundary condition for the two-body problem cannot be 
satisfied by simply superimposing the solutions  for isolated bodies, 
Martin  [2] developed the cross-flow image system as  a possible correction. 
In his original work, Martin proposed a solution in terms of a continuous 
distributed line source which was displaced according to the two-dimensional 
image system.     Generally,  it is  not possible to find a continuous  line 
source for generating the body,  and the solution is  approximated by a number 
of finite line sources.     This  approach leads to geometric complexities 
when the image system is  applied, because the line sources must be at 
angles corresponding to the slope of the displacement curve  (Figure l). 
For this reason, the line sources were replaced with a number of three- 
dimensional point sources  and sinks.    This  also has  the  advantage of re- 
quiring half as many calculations sis the solution for the same number of 
line sources, because the integrated effect of a line source at a field 
point is a function of the distance from each end of the source to the 
point, whereas the effect of a point source depends only on the distance 
between the points. 

Any particular solution of Laplace's equation, 

£i +  l!i +  aii  = o (i) 
>x2 3y2 3z2 
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which is  representative of an actual flow must satisfy the boundary con- 
ditions  at infinity and at the surfaces of any bodies which are present 
in the field.    /. physically meaningful boundary condition is that the 
perturbation velocity components tend towards zero at large distances from 
the disturbances.    This is known to be the case for source flow, as will 
be evident from the velocity derived from the potential function.    The 
boundary condition along the surface of an Impermeable body must express 
the condition of no fluid flow into the body.    This condition is satis- 
fied when the component of velocity normal to the body is  zero.    Equivalent- 
ly, the boundary condition is satisfied when the velocity at the fluid- 
solid interface is tangent to the body.    For an axisymmetrlc body, the 
boundary condition may be expressed mathematically as 

dr r    ■ 
dx        u /U +1 (2) 

x 

where dr/dx is the slope of the body in any meridional plane, vu and VL^ 
are the perturbation velocity components in the radial and axial directions, 
and Uoo is the magnitude of the free-stream velocity. 

For a single body at zero angle-of-attack the angular velocity com- 
ponent, UQ, is identically zero.    In the two-body case, ug is not generally 
zero, but it does satisfy the tangential flow requirement at all points 
on an axisymmetrlc body.    Therefore, equation (2) is the correct expression 
for the body boundary condition for the two-body case as well as for the 
isolated body. 
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SECTION III 

SINGLE BODY SOLUTION 

Assuming that any axlsymmetric tody can be represented by sources 
distributed    along its center line, the total velocity potential becomes 
the sum of these sources plus a constant and can be expressed as 

N    mi      1 

*. = -    2    rr   -^   + (T (3) pr-- i ^ p 1J 

where p-jj is the distance from the ith source to any point J in the flow M  is z 
id d)'   i field and 4)'  is  a constant and represents the free-stream velocity potential. 

Differentiating the summation term in equation (3) yields the per- 
turbation velocity components which, in cylindrical coordinates r, 9, x, 
can be expressed as 

N    mi     3 1 
x-. ~ J £7 9x.       p. , 

J i J iJ 

N m. - . 

>V - £ ^ f? < r-' (5) 

N    m.     . 1 ist k & (6) ufl    = - 
J i=l^"*J   -J     "ij 

Due to symmetry, ufi is zero for the case of a single body at zero 
angle-of-attack.    As  can be seen from Figure 2, p..  is not a function of 
9  and is given by 

If a new variable z   , defined such that  it  Is proportional to the 
source  strength,  i.e.. 
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m 
*.   = T~- (8) 

GO 

is introduced and equations i.k)  and (5) are used, the velocity components 
can be written in the forms, 

x, N        x.-x 
i . I ■   4-J- (9) 

1        piJ 

Ur. N r 

o. ■M'Ult <10) 

Equations (9) and (10) can be applied at any non-singular point in the 
flow field to determine the velocity ratios. Referring to equation (2), 
it can be seen that the body boundary condition in terms of the velocity 
ratios is specified by 

N    r 
.jJ  I  zs i 3 

dr    i   p.. 
_i =  -JJ  (11) 
dx.       N   x.-x. 

J    i_ z z. 4-i 
1  3 

1    PiJ 

By multiplying both sides of equation (ll) by the denominator on the 
right-hand side of that equation and simplifying the resulting equation, 
one may obtain the result, 

dr 
N          (x.-xJ ^-J-+ r,          dr. 
E z, i    -I    dXj J-   =    -r-J-        (J=1.2,3 N) (12) 

A, *** 
Equation (12) forms a set of n simultaneous linear equations for 

determining the required source strengths in terms of the known geometry. 
If the coefficients of z. in equation (12) are defined to be c. ., the 
equation may be written in the form 

N      dr. 
1  Zicij = dk     (J=1,2,3,...,N) (13) 
i        J 



Equation (13) may be written in the equivalent matrix form, 

[C](Z) - (dr/dx) (IM 

Solving for (Z) by matrix Inversion, one obtains the result 

(Z)  =  [Cj-Mdr/dx) (15) 

The array of strengths as calculated by this method satisfies the body 
boundary condition at the control points for any isolated axisymmetric 
body at zero angle-of-attack. 

The predicted pressure distribution for an M-11T bomb is compared 
with experiment in Figure 3 and shows good agreement. 
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SECTION IV 

SOLUTION FOR TWO SIMILAR BODIES 

Consider the case of two identical eucisymmetric bodies aligned such 
that one is directly above or to the side of the other. According to 
Reference 2, the image system for this case is formed by displacing each 
source towards its corresponding source in the other body, as in Figure 
k.    The distances which the sources are displaced are derived from 
repeated applications of the Milne-Thomson circle theorem [3] and are 
given by 

«1 = jja {l-Il-(2ri/yo)
2]J5} (16) 

where y0is the distance between body center linea and r^ is the radius of 
the body at the ith source. Since the bodies are identical, the sources 
at corresponding axial locations in each body are of the same strength. 

In the two-dimensional case, the image system consists of the dis- 
placed sources with corresponding sinks of equal strength at the center 
line. Since the strengths of the image pairs at any cross-section are 
the same as that of the original source, from the single body solution, 
the sink cancels this source. Hence, the two-dimensional system yields 
only the displaced line of sources as discussed above. In the three- 
dimensional case, however, this simple system does not produce a satis- 
factory result. 

In the three-dimensional case, there is a significant component of 
flow in the axial direction in addition to the radial flow. It is 
reasoned, however, that an equivalent line source can be assumed at the 
body center line which contributes only to the radial flow. This is 
purely a fictitious flow but suffices to Justify an equivalent two- 
dimensional flow field which would generate the sou-ce-sink pair described 
in the image system above. Note that the source displacement distance, 
6, depends only on the geometric relations and is independent of the two- 
dimensional source strength. 

It follows that an appropriate system for the three-dimensional case 
can be generated by retaining the sources along the center line of the 
two bodies (isolated solution) and adding an image system consisting of 
source-sink pairs in each body which are located according to the two- 
dimensional displacement distances. 
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The total velocity potential for this two-body system can now be 
expressed as before and,  for a body formed by N sources, the potential at 
a point is 

N    mi     1 1 N m{ 1 11 1 
J   i=l U7T pi    p2    i UTr  pl    p2    pi    p2 

■L    "LiJ    ij ^ij    ij    ij    ij 

where m. refers to the single body source strength and m^ is the strength 
of the added source and sink. p1  , p_ » p'-i  ■ and p'   are as 

^"ij  ^ij   -"-ij      ^ij 
illustrated in Figure h  and may be expressed as 

P1  = [(«j-rj sin e)2 + (xj-x^2 + (rj cos e)2]*4      (18) 

P2    = Ur0-*i-** sin ö)
2
 

+ (xj-xi)2 + (rj cos V**1       ^9) 

p'  = [(x.-x,)2 + r 2],S (20) 

p2  = [(yo"rJ sin e)2 + (xj"Xi)2 + (rJ C0S ^^ (21) 

Using equations (U), (5) and (6) for the velocity components and 
equation (8) for z^, one may obtain the velocity ratios 

Uxi N 

U ■ - I    Ua,', + zl U, - alJ] (22) ■^ ^hH* * zi laij " ^j 

where 

v     « 
ür=-1f1

[zibijtzi<bij-bij,] (23) 

u
e N 

3 1       ,     1    .) (25) 
\j = 3x    ^  p        + p 

J ij ij 
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b-, = x—i^-*r—^ (26) ij       3r      P-, Pp 

a.. =|^(r—+ r:—) (27) 
ij        36     P-, Pp 

ij iJ 

The terms a', t1     .  and d'       are formed from equations  (25),  (26), and 

(27)  with the values  for p. .,   replaced with the primed quantities  (see 

Figure h and equations  (l8) to  (2l)). The unprimed values of z correspond 

to the single body source strengths, and the primed values represent the 

image system. 

The source distribution to correct for the interference is developed 
by application of the requirement of tangential flow at the body.    Using 
equations  (22)  and (23)  for the velocity components  and equation (2)  for 
the boundary condition, one may obtain the result 

dr,      B dr, dr, dr 
= I  {z.(a:4 -r-J-- bl.) + zlUa,, x-^- b. .)-(a'    -r-J--b')]}    (28) 

dx        .      iv  ij  dx ij' il    ij dx,        ij IJ dx        ij 

Equation (28)  represents a set of N simultaneous equations for determining 

the source distribution required to account for the interference between two 

similar bodies.    By defining the coefficients of z.   and z'.   as e. . and f.., J * i i ij ij' 
respectively, equation (28)  can be written in the equivalent matrix form 

(dr/dx)  =  [e](z) + [fl(i') (29) 

Solving this equation for (z1) one obtains 

(z«)  =  [f]-1   {(dr/dx)  -  [e](z)} (30) 

The source distribution given by equation  (30)  will satisfy the body 
boundary conditions  at N control points and give good agreement  at all 
other points around the body.     It was found that the best location for 
the control points lies along the intersection of one body with the plane 
which passes through the  center lines of both bodies;  i.e.,  from Figure h, 
the 90-degree meridional plane.    The predicted slopes at other meridional 
planes are shown on Figure 5 for the M-117 bomb body shape. 

The predicted pressure distribution and experimental points  are shown 
in Figures 6 to 11  for meridional    angles between 90°  and -90°.     These 

-lU- 
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distributions were calculated using a 30-point solution for the axisym- 
metric body and for the cross-flow correction. 
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SECTION V 

SOLUTION FOR TWO DISSIMILAR BODIES 

The two-body solution of the previous section can be extended to 
include the case of dissimilar axially misaligned bodies.    Again,  and in 
the solution for two similar bodies,  it will be assumed that the isolated 
body solution has an equivalent two-dimensional source distribution which 
causes the  radial flow outward from the body centerline.    Also,  it  should 
be noted that this radial flow occurs both forward and aft of the body 
as well as  along the body.    Thus,   in order to generate the cross-flow 
image system,  it is assumed,  conceptually, that the flow field forward 
and aft  of an isolated body is spread Ly equivalent sources  distributed 
along the extension of the body center line.     The  image system in body 
2 at cross-flow station a (see Figure 12) can be generated using the 
Milne-Thomson circle theorem for source  flow over a cylinder and is  illu- 
strated as Figure 13(a) where 60 is given by 

o        r22 
02-— (31) 

yo 

The complete image system at  station b  can be generated by repeated 
application of the Milne-Thomson circle theorem and consists  of a line of 
sources and sinks within both bodies.     The complete development is  given 
in Reference 3.    It has been found, however, that one source-sink for 
each body with the source displacement  distances given by 

2 
62 = f2  

^0 - V 

yo - r22 

yo - r, 2 

(32) 

^o 
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BODY 

STATION  A STATION B 

BODY  2 BODY   2 

IDY  1 

T- /T; ~r 
* ,  * s •f 

CROSS  SECTION AT STATION A 

BODY 1 

CROSS SECTION AT GTATION B 

Figure 13. Schematic of Cross-Section for Dissimilar Bodies. 
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and 

61 = 

rl2 

yo "  r22 

'O 1 
2 

yo - r2
2 (33) 

yields good results  as will be shown later.    Also note that equations  (32) 
and (3*0   reduce to the truncated series  representing equation (l6)  for 6 
in the solution for tvo similar bodies where r    = r«. 

Because of the  asymmetry of this  case, the  strength  and the dis- 
placements of the  source-sink pairs are  different  for the two bodies. 
Thus, if there are N image pairs in each body  (corresponds  to N sources 
for the  isolated body solution) , then there will be  a set  of 2N simultan- 
eous equations to be solved. 

The velocity potential  function for this case  can be expressed as 

* N i N 

u        A "i. V'   ;     . , zi. V 

1.1 »1 ^ 1.12i %3 %s  ". 

where the subscripts 1 and 2 correspond to bodies 1 and 2, respectively, 
as shown on Figure 12. The other terms are consistent with the previous 
notation and as  defined by Figure 12. 

Performing the  appropriate differentiations  on equation (3^)  in 
order to obtain the velocity  components  and using equation    (2)   for the 
boundary condition generates the set of 2N simultaneous  equations which 
can be written in matrix form as equation (30).     The  z'   values  in this 
case are N values  of z'^ and N values of z'2 corresponding to the image 
source-sink pairs  in bodies  1 and 2, respectively. 

The N control points on body 1 were taken  along the top of the body 
at the intersection of the meridional plane passing through both body 
center lines.    The  other N control points were taken at the  corresponding 
lower surface of body 2. 
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The predicted pressure distribution and experimental results for 
body 1 with body ] displaced two diameters downstream from body 2 are 
shown on Figure ih. 
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O Experimental 
— Theoretical 

u e = 90° 

O Experimental 
— Theoretical 

b.   e = o = no 

O  Experimental 
— Theoretical 

■I   I 

c.     9  = - 90° 

Figure  ih.     Comparison of Theoretical  and Experimental Prosüure 
Distribution  for the Solution  for Dissimil'tr Bodies, 
x    » 2.0 Dla.  and y 

o o 
! .Oh? Dia. 
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SECTION VI 

CONCLUSIONS 

This method led to good agremeent between the experimental and 
theoretical pressure distributions.    Also, the slope of the body stream- 
line calculated using this method and the slope of the actual body were 
in good agreement.    Thus, this method can be considered a valid solution 
for the mutual aerodynamic interference problem for two axisymmetric 
bodies at zero angle-of-attack. 
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APPENDIX I 

PORTRAN COMPUTER PROGRAM FOR 

2-BODY INTERFERENCE 

The program vhich  follows is the FORTRAN computer program used to 
calculate the flov field for two parallel bodies in close proximity co 
each other by the source-sink image pairs approach.    The program was 
written for the IBM 360 system and compiled on the FORTRAN G Compiler. 
All calculations were performed in single precision arithmetic. 
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c 
c 
c 

TWO   SI^ILAK   BODIES 

DINtNSICN   RAD(31),X(3l),SLOPE(31),XA(30),XÖI30),DRDXA(30), 
-ZA(3J)      ,C^CXB(30)tDELA(30),D£L6(30) 

DIMENSION   t<A(i0),   ^B(30),    ZB(30) 
COMMON   /TWC/      XA,Xll,RA,DRDXA,CRDXB,CbLA,CtLRt74 
tüUlVALLNCt    (RAID fKB( l),RAD( 1) ),    ( Z A ( 1 ) ,/B( 1 ) » 

C 
C 
c 

c 
c 
c 

NS = 30 
DX=0.20 
X0=0.0 
CALL   GtCM(RöC,X,DX,NS,SLOPE) 

^.00   CONTINUE 
\Fl    XO   .NE.   0.0   )   GO   TC   18 

SINGLE   BCDV   SOURCE   STRENGTHS 

Y0=1C0CÜ.0 
r,C   TC   17 

TWO-BODY   SOLUTION 

18   CONTINUE 
Y0=1.0A2 

17   DC   2C0   I=lfNS 
XA(I )=X(I ) + X0 
XB(I )=XII) 
DRDXAIIl=SLCPE(I) 
DRCXBII)=-SLOPE(I) 

200   CGNTINUt 
IF(YO.Gt.lOOOO.O)    GO   TC   16 
DC   150   1 = 1,NS 
M=XA( I)/DX 
N=(XB(I)-XC)/OX 
IF(M.GT.NS)   GO   TO   156 
DELA( n=RA( I )**2/(Y0-(RB(M)**2)/Y0) 

lb6     CONTINUE 
IF(XA(I).Gt.XB(NS))   DE LA(I)=RA(I)**2/Y0 
IF(N.Lc.O)   GC   TO   155 
DELBII)=RB(I>**2/(Y0-(RAIN)**2)/Y0) 

155 CONTINUE 
IF(XB(n.LT.XO) DELB( I )=R6(I )«*2/Y0 

150 CONTINUE 

WKITE(6,11C) 
I 10 FORMAT!IHl,' 

-FIG.?//«  I 

XO,YO 
TWO-BODY SOLUTICN»/' XO = •»FIO^,« YO 

DELA(I)   DELB(I)'//) 

s  • 
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WRlTt(6(lll)(I,0tLA(I)VCELB( I)tI
slfNS) 

111 fDKMAn IX, I2,2H2.5/) 
16 CALL CKÜSS2(NSfX0fY0) 

IFIYO.GL.10000.0) GO TC 18 
IF( XO .NE.0.0 )   CO   TO 300 
X0»2.0 
GO TO AGO 

300 STOP 
tND 
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SUBRÜuriNE CROS$2(NS,X0,Y0) 

c 
c 
c 
c 

30 

DIMENSICN   200(60,60),    E(60),   DELA(30 ) ,DELB( 30),   X(3C». 
K(30)fX/»(30),   XB( 30),DRDXA( 3O),0RDXB(30) tZA(30) 

,UX(30),UR(3&),BC(30),CP(30» 
DIMENSION   PCn0,30),   KA(30),   RB ( 30 ) , / B( 30 ) , Z AP ( 30 ) , ZBP ( 30 ) 
DI^ENSICN   LT{30) 
COMMON   /TWO/      XA,XB,RA,DRDXA,DRDXRtDtLA,OFLBtZA 
tüUlVALENCt    iPCdt ItfZCOf lf Uli 

(KA(l),RIU 1)),(ZA(l),Zß( 1 ) ), 
(ZAP(l),fc( D) f (ZBP( !),»:{ 31)) 

SIMHPPP)= SIN(PPP/57.29578) 
C0S0(PPP)= CUS(PPP/57.29578) 

EV4LUATICN ALONG BOCY A 

DO 301 J=l,NS 
X(J)=XA(J) 
R(J)=RA(J) 
E(J)=DKDXA(J) 

1 CONTINUE 

DO 
DO 

100 
100 

J=1,NS 
1=1,NS 

PAI= SÜRT( (X(J)-XA(I) )'**2+R(J)**2) 
11 AX = (X(j)-XA(I) )/PAl**3 
12 AR=R(J)/PAI**3 

IF(YO.LT.IGOOO.O) GO TC 
t'Cl J,I)=AR-6X*DRDXA( J) 
GO TO 100 

10 

10 PA2= SURT( (X(J)-XA( I) )**2 + (DELA( n-R(J) )*»2) 
PB1= SÜRT( (XU)-XB( I ) )**2 + (R( J)-Y0)**2) 
PB2= SURT((X{J)-XB<I))♦♦2+(R(J)+0618(I)-Y0)«*2) 

BX=(X( J)-XA(I) )/PA2**3-iX( J)-XA( I ) )/PAl'>*3 
CX=(X(J)-XB( I) )/PBl**3 
DX=IX(J)-XB(I))/PB2**3-(X(J)-XB(I))/PBl**3 

C. 

c 

BR=(R(J)-DELA(I))/PA2**3-R(J)/PAl**3 
CR={ (J)-YC)/PB1**3 
DR = (K(J)<-DELB( I )-Y0 )/P 82**3-(R I J)-YO)/Pßl**3 

AA=AK-AX*DRCXA|J) 
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Ca=CK-CX*DKi:XA( J) 

c 

c 

c 
c 
c 
c 

c 

c 

ZCÜ(J,I )=BB-BX*DRDXA(J) 
ZCü(J,I+NS)=DR-DX*DRDXA(J) 
t(J)        ■ t(J)-ZA( I )*AA~ZBCn*CA 

ICO CONTlNUt 

IF(YO.LT.10000.0) GO TO U 
CALL Sim   (PC,DRDXA,NS,KS) 
DO 15 1=1,NS 

15 ZA(I)=DRDXA(I) 
RtTURN 

1A CONTINUE 

fcVALUATICN   ALONG   BODY   B 

DC 302 J=1,NS 
X(J)=XH(J) 
R(JJ=YO-RB(J) 
t(J*NS)-DRCXB(J) 

302 CONTlNUt 

DO 200 J=1,NS 
DO 200 1=1,NS 

PA1= SÜRT( (XU)-XA( I) )**2+R(J)**2) 
PA2= SORT((X(J)-XA(I))**2+(0ELA(I)-R(J))**2) 
PB1= S(JRT( (X(J)-XB( U )'?"»2*(R(J)-Y0)**2) 
PB2= SuRT( (X(J)-XB( I) )**2*(R(J)+DELB(n-Y0)**2) 

AX = (X(J )-XA(I))/PAl**3 
HX=(X(J)-XA(I) )/PA2**3-(X(J)-XAn) )/PAl**3 
CX = (X{J)-XÖ( I))/PBl**3 
DX«(XlJl-Xe(tl)/PB2**3-(X(J»-XB<I))/PBl**3 

C 
c 

AR=R(J)/PAl**3 
P«=(^(J)-CtLA(I))/PA2**3-R( J)/PA1**3 
CR=(K«J)-Y0)/PB1«»3 
DR=lRlJ)+0ELB(I)-Y0)/PB2**3-{R(J)-Y0)/PB1**3 

AB=AR-AX*CRCXB(J) 
CP=CR-CX*0RDXBIJ) 

ZCO(J + iMS,I)   =BR-BX*DRDXB( J) 
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ZCC( J + MS, I*Ni>)=DK-DX*URCXB(J) 
fc(J*NS)=     E(J*NS)-ZA(I)*AB-ZB(I)*CB 

C 
200 CONTINUE 

NS?=2*NS 
C 

CALL SIMQ (ZCü,t,NS2fKS) 
IF(QS.fcQ.l.O) GC TC 2200 
GC TO 300 

2200 WrUrE(6,A0C) 
AOU HORMAK IHl,«SOLUTION FOR SOURCt STP6NGHTS IS SINGULAR«,/) 

RETURN 
300 WRITfc(6,50C) 
bOO FORMAT( IHl,//,IX,«NON-DIMENSIONAL SOURCE STRENGHTS«,//,4X, 

-•M.yx, «Zd ) «,//) 
MRITE(6,50n ( I,E(n,Ul,NS2) 

501 FORMAT! IX, IA,E16.8) 
C  ZAP«I) ARE THE NON-DIMENSIONAL STRENGTHS OF THE SOURCE-SINK 
C PAIKS IN BODY A  THAT ARE SOLVED FOR IN SUBROUTINE SIMQ. 
C  ZBP(I) ARE THE NON-DIMENSIONAL STRENGTHS OF THE SOURCE-SINK 
C PAIRS IN BUCY 6  THAT ARE SOLVED FOR IN SUBROUTINE SIMQ. 

c 
f        EVALUATE CP AND BC ALONG BODY A 
C 

DC 303 J=1,NS 
UX«J )=0.0 
UR(J)=0,0 
BC(J)=0.0 
CP(J)*0.0 
X(J)=XA(J) 
Rl J)=RA(J) 

"^03 CONTINUE 
C 

DO ^AOO J»l,NS 
DO 405 1=1,NS 
PA1= SORT!(XIJ)-XA(I))**2+R(J)**2) 
PA 2= SURTI (XU)-XA( I) )**2 + «DELA(I )-R« J) )**2) 
PBl= SURTC(X(J)-XB(I))**2+(R(J)-Y0)**2) 
PR 2= SORT( (X(J)-XB(n )♦♦? + ( R ( J ) ♦DEL b( 1)-YD) ♦♦2) 

C 
AX=(X(J)-XA( I) )/PAl**3 
UX=(X(J)-XA(I))/PA2**3-(XlJ)-XA(I))/PAl**3 
CX={X(J)-XB( I) )/pei**3 
DX=(X(J)-XB( 1))/PB2**3-(X«J)-XB( I) )/PBl**3 

C 
AR=R«J)/PA1**3 
BR=|R(J)-DtLA(I))/PA2*«3-R(J)/PA1**3 
CR=(R(J)-Y0)/PB1**3 

-36- 

1 



c 
c 
c 

c 

DR=(R(J)*CfcLh(I)-Y0)/Pb2**3-(K(J)-YO)/PBl**J 

UX( J)=UX( JWAM )*AX + ZAP( I )*BX+ZB( I )*CX + ZBP( n*DX 
UR(J)xUR(J)*ZA( I)*AK+ZAPJI)*BR + ZB(I)*CR+ZBP(I)*0R 

A05 CPNTINUb 

ftUJ)=UR(J)/(1.0+UX(J)) 
CP(J)=-2.0*UX(J)-UX(J)**2-UR(J)**2 

C 
A^OU CONTINUE 

WRITE(6,60C) X0,Y0 
ftOO KORMATtIH1,« BODY A   XO = •♦F10,5ft  YO -   «.FIO.S/ 
-•I        XA KA DRDXA BC 
-UX UR CP ZA ZAP«//) 

2     WRITE(6v700)(ItXA(I),RA(I),DRDXA(1),BC(I),UX{I ),UR( I) 
- , CP( I ). ZA(I ), ZAPII || I=UNS ) 

700 FORMATIIX,I2,9F13.5/) 
C 
C        tV&LUATt CP AND BC ALONG BODY B 
C 

DO 304 J=l,NS 
UX(J)=0.0 
UR( J)=0.0 
DC(J)=0.0 
CP(J)=0.0 
X(J)«Xtt(J) 
R( J)=YO-RB(J) 

30A CONTINUE 

00 5500 J=1,NS 
DO 505 1=1,NS 
PAl= SüRTI(X(J)-XA(1))**2+R(J)**2) 
PA2= SORT! {X(J)-XA(I))**2*(DELAm-R(J) »♦*2) 
PB1= SQRT( (X(J)-XB(I))**2+(R(J)-Y0)**2) 
PB2= SURT( (X{J)-XB(I))**2 + (R(J)+DELB(n-Y0)**2) 

AX=(X(J»-XA(I))/PAl**3 
BX = (X(J)-XAn) )/PA2**3-(X(J)-XA(I ) )/PAH>*3 
CX = (X(J)-XB( I) )/PBl**3 
DX=(X(J)-XB{I))/PB2**3-(X(J)-XB(I))/PBl**3 

AR=R(J)/PA1*«3 
RR = (R( J)-DeLA( in/PA2»*3-R( J)/PAl**3 
CR=(R(J)-YC)/PB1**3 
nR = (K{J)+DEL8( I)-Y0)/PB2**3-(R(J)-Y0)/PB1**3 
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UX( J)=UX(J) + ZA(I)*AX + ZAP(I)*BX*ZB(I)*CX*ZBP(I)*DX 
UK(J)*UK(J)♦ZA(I)♦AR+ZAP(I)»BR+ZB(I)»CR+ZBPtI)*DR 

C 

C 
SOO CüMTINUt 

BC(J)=UR(J)/(1.0*LX(J)) 
CP(J)=-2.C*tiX( J)-tX(J)**2-UR( J)**2 

C 
c 
c 
c 

.^OO CCNTINUE 
WRITEJö.SCC) XO.YO 

BOO FOKMATdHlt* BODY B   XO = •fFlO.St*  YO « «»FIO.S/ 
-•  I        XB RB ORDXB BC 
-OX UK CP ZB ZBP«//) 
WKlTt(6,70C) t I,XB(I),RB(I ),DROXB(I) ,BC( I ),UX ( . ) ,UR( I ) 

- , CP(I), ZB(I ), ZBP1I), I = 1«NS ) 

EVALUATION OF LX, UR, UT, CP, ANO BC AROUND BODY A 

T=S0.0 
2A DC 20 J=1,NS 

UX(J)=0.00 
UK(J)=U.OO 
UT(J)»0.00 
BC(J)=0.00 
CP(J)=0.00 
X(J)=XA(J) 
R(J)=KA(J) 

20 CONTINUE 

DO 
DO 

21 J=I,NS 
22 I=lfKS 

PXA= X(J)-XA(I) 
PXB= X(J)-XB(I) 
PZ= COSD{T)*R{J) 

PA1 = SURT( PXA**2+PZ**2+( SINDIT)*R(J) )**2 ) 
PA2 ■ SQRT( PXA«*2+PZ**2-M SIND{T)*RIJ)-DELA(1)   )**2 ) 
PBI = SCRTC PXB*»2+PZ**2*|-SIND(T)*R{J)        ♦Y0)**2 ) 
PB2 = StRT( PXB**2 + PZ**2+(-SIND(T)*R( J)-DELB(n + YG)**2 ) 

/\X = r»YA/PÄl«*3 
^X = PX4/PA2<1*3 - AX 
CX=PXB/PBl**3 
DX=PXH/PB2**3 - CX 
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c 
c 

c 
c 

c 
c 

AR= R(J)/PAl**3 
HK= (H(J)-SIND(T)*DELA(1))/PA2**3   -   ÄR 
CR= -(SIND(T)*YO-RIJ))/PBl**3 
DR=-(SIND(T)*(YO-DELB(I))-R(J))/PB2**3   -   CR 

AT   =      0.0 
BT   =   -CnSD(T)*   DELAd) /PA2**3     -      AT 
CT   =   -CQSD(T)*   YO /PBl**3 
DT   ■   -CCSC(T)«(YO-DELB(I))/PB2**3     -      CT 

UX(J)=UX{J)   ♦   ZA{I)*AX   ♦   ZAP(I)*BX   ♦   ZBJD^CX   +   ZBP(n*DX 
UR(J)=UR(J)   +   ZA(n*AR   ♦   ZAPm*BR   ♦   ZB(I)*CR   ♦  ZBP(n*DR 

22   UT(J)=UT(J)   ♦   ZA(I)*AT   ♦   ZAP( I )*BT   ♦   ZBID+CT   ♦   ZBP(I)*DT 

BC(J)=UR(J)/(l.O+UX(J) ) 
21   CP(J)=-2.0*UX(J)-UX(J)**2-UR(J)**2-UT(J)**2 

THbTA=T 
WRIT£(6,25)    XOt   YOt   THETA 

25   FORNATUHlt'   BODY  A XO   «'.FS^,' YO  =«fF8.5,» 
- THETA   =',F6.2/ 
-•  I XA RA DRDXA BC 
-UX UR CP ZA ZAP 
-UT«//) 
WRITE!6,333)(I , XA(1),KA(1),DRDXA(I),BC( I ) ,UX(I),UR( I) 

- i CPU), ZA(I)« ZAP(I), UTd), 1*1,NS ) 
333 FORMATdX, I2,10F13.5/) 

IF(T.LE.-90.0) GO TO 23 
T = T - 30.0 
GO TO 2A 

23 CONTINUE 
RETURN 
END 
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SUBROüTINt GfcOM(RAD,X,0XtNS,SLOPE) 
C 
C        GEOMETRY FOR M117 BOMB 
C 

KLAL L1,L2,L3,L4,L^ 
INTEGER FINS 
DIMENSION RAD(3l),X(3l»fSLOPE(31) 
11=1.32288 
12=2.54375 
L^4.3bCOO 
L4=^.9^000 
L^ = t>.3ü 
RADTttO.261 
1AM=0. 755S289 
TAN2=0.1316500 
MSR1=NS+I 
X( I)=OX 
F INS = 2 

C 
C        FINS=1  CORRESPONDS TO SIMULATED FIN BCDY 
C        FINS=2  CORRESPONDS TO STRAIGHT TAPER TAIL BODY 
C 

DO 9 I=2fNSPl 
X( I )=X(I-l)+DX 

C 
C        NOSt. SECTION 
C 

IF(XlI-1).GT.LI) GO TO I 
KAD(I-I)= SeRT(4.0-(X{I-l)-1.32)**2)-1.500 
SL0PF(I-l)=-(X(I-I)-l.32)/ SQRT(4.-(X(I-l)-l.32)»*2) 
GO TH 9 

C 
C        MID-SECTION 
C 

1 IF(X< I-1).GT.L2) GO TO 2 
KAD( I-l )=0.50 
SLOPE!I-1)=0.0 
GO TO 9 

C 
C        STRAIGHT REGION OF TAIL 
C 

2 IF(X(I-1).GT.L3) GO TO 3 
RAD(I-l)=0.5-{X(I-l)-l2)*TAN2 
SLOPE!I-l)=-0.13165 
GO TO 9 

3 GO TO 14,7),FINS 
C 
C        SIMULATED FIN RUDY 
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'♦ IMX( I-n.GT.LM GU TO 5 
KAD( I-l) = RÄni + (X( I-l)-L3)*(C.2«0/(L4-L3») 
SLUPEJI-l)=C.2^0/(L4-L3) 
GO TO 9 

•j IF(X(I-n .GT.L5) GO TO 6 
rtAD( I-l)=0.502 
SLOPE( i-n=o.o 
GO TO 9 

ft RAD(l-l)=0.0 
GC rn 9 

c 
C        STRAIGHr TAPtR TAIL 
C 

7 IF(X(I-l).GT.L5) GO TO 8 
RAO(I-l>=0.5-TAN2*(X(I-l)-L2) 
SLOPE(I-l)=-0.13165 
GO TO 9 v 

H RAD(I-l1=0.0 
SLOPH(I-l )=0.0 

C 
9 CONTINUt 

C 
GO TO ( 10, 12),FINS 

10 WRITE(6,11) 
11 fORMAT(1H1,«GEOMETRY FOR SIMULATED FIN BODY*//'  I    X(I) 
-RAC(I)     SLOPEd)«/) 
GO TO U 

12 WRITt(6,13) 
13 FORMATdHl,«GEOMETRY FOR STRAIGHT TAPER TAIL«//'  I   XU) 
-RADII)     SLOPEII)'/) 

U WRITE(6,15) lI,X(I),RAD(I),SLOPE(I),Ial,NS) 
15 FORMAT!I5,3F10.5) 

C 
RETURN 
END 
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SlißRÜUTINh   SIMQ(A,BfNf KS) 
C 
C DOUBLE   PRLCISION   SIMO 
C 
C DIMfcNSION   A( I) ,B(1) 

DIMENSION   A(l)fB( l) 
C 
C   FORWARD SÜLLTION 
C 

TOL^O.O 
KS = 0 
JJ=-N 
DO 65 J=l,N 
JY=J+l 
JJ=JJ*N+l 
BIGA=0 
IT=JJ-J 
DO 30 I=J,N 

C 
C   SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN 
C 

IJ^IT+I 
IF(   ABS(BIGA)-   ABSUlIjni   20f30,30 

20   BIGA=A( U) 
IMAX=I 

30   CONTINUE 
C 
C TEST   FOR   PIVOT   LESS   THAN   TOLERANCE   (SINGULAR   MATRIX) 
C 

IF(   ABS(BIGA)-TOL)   35,35,40 
35   KS   =   1 

RETURN 
C 
C   INTERCHANGE RCWS IF NECESSARY 
C 

AO Il=J+N*(J-2) 
IT=IMAX-J 
DO 50 NK=J,N 
Il=Il+N 
12 = 1 1 + IT 
SAVE=A(II) 
A( I1)=A(I2) 
A( I2)=SAVE 

C 
C   DIVIDE EQUATION BY LEADING COEFFICIENT 
C 

50 A(11)=A(I1)/BIGA 
SAVE=B(IMAX) 

-1*2- 



Ill IMAX)=H( J) 
B(J)=SAVE/BIGA 

C 
C        EUMINAU   NEXT   VARIABLE 
C 

IE(J-N)55f70,55 
55   IQS«N*(J-1) 

DO  65   IX«JY,N 
IXJ=I0S+IX 
IT=J-IX 
DO  60   JX=JY,N 
IXJX=N*(JX-l)MX 
JJX=IXJX+IT 

60  A(IXJX)=A(IXJX)-(A(IXJ)*A(JJX)) 
65   B(IX)=B(IX)-(B(J)*A(IXJ)) 

C 
C        BACK   SOLUTION 
C 

70   NY-N-1 
ir=N*N 
DO   80   J*l,NV 
IA=IT-J 
IB=N-J 
IC*N 
DO   80  NK=1,J 
B(IB)=B(IB)-A(IA)*B(IC) 
IA=IA-N 

80   IC=I01 
RETURN 
END 
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