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Multiple Body Interferences, dated August 1971.

The Computer program for this work was written by Charles J. Smith
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of Aerospace Engineering, Auburn University, Auburn, Alabama.
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ABSTRACT

The mutual aerodynamic interference problem for two axisymmetric
bodies has been analyzed using the image system technique. In order to
facilitate this analysis, it has been assumed that small perturbation
solutions are valid. It is further assumed that the external stores are
slender bodies and that the mutual interference can be analyzed by first
assuming a cross-flow solution. T-< image system in the cross-flow
plane consists of source-sink pairs appropriately located by using the
Milne-Thomson circle theorem. The actual three-dimensional source-sink
pairs are displaced from the body axis according to the cross-flow image
system. Their strengths are then determined by the Rankine method.

Good egreement has been found between the theoretical and experimental
results.

Distribution limited to U. S. Government agencies only;
this report documents test and evaluation; distribution
limitation applied August 1973. Other requests for

this document must be referred to the Air Force Armament
Laboratory (DLJA), Eglin Air Force Base, Florida 32542,
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SECTION I

INTRODUCTION

This work is part of a continuing effort to analytically examine the
flow field beneath an nircraft with external stores in an effort to
produce equations for :omputing store separation trajectories which include
the effects of mutual aerodynamic interference. The application of. the
cross-flow solution is an alternate approach to the time-consuming and very
complex method of solving the interference problem by using a prohibitively
large number of singular solutions, such as that obtained by Smith and
Pierce (1) for a surface source distribution on &ll the bodies. Thus,
the most obvious advantage of the cross-flow correction method is its
relatively simple application to the case of interfering multiple dissimilar
bodies,

The previous analytical solution proposed by Martin (2) in which the
mutual serodynamic interference problem was considered by using a cross-
flow corrected axisymmetric solution, was re-evaluated. In that work an
approximate line source distribution was assumed as the solution for the
isolated axisymmetric body. This solution was then used to generate the
appropriate image system as suggested by the two-dimensional cross-flow
solution outlined in Reference 3. In order to obtain a better correlation
with experiment and to generate a consistent technique that could be used
for any axisymmetric body shape, this more general approach has been
developed.

The calculation of the flow field for small disturbances requires
a solution to the Prandtl-Glauert equation subject to the boundary condi-
tions of no fluid flow into the body and vanishing perturbations at large
distances from the body. Since this equation is linear, superposition of
elementary solutions will allow the build-up of a complex flow which satis-
fies the boundary conditions. The widely used vortex-lattice and line
source solutions for planar and axisymmetric flows represent two common
examples of the superposition of simple solutions to form more complex
flow fields. However, when systems, such a3 the flow fields fer plenar
wings and axisymmetric bodies, are combined, it is not possible to simply
superimpose the results for the separate systems. The interference of the
flow fields requires that adjJustments be made to the elementary source
and/or vortex distributions in order to satisfy the body boundary conditions.
The cross-flow correction discussed herein is an example of this type of
adjustment for two interfering axisymmetric bodies.

This solution is based on a two-dimensional image system which utilizes
the Rankine method (U4) of superposition of an axial source-sink distribu-
tion to form a closed body. In the cross-flow solution, however, the
sources and sinks are displaced from the axes of the bodies in such a
manner as to account for the interference effects and to satisfy the bound-
ary conditions. The derivation of the cross-flow image system (3)

-1-



utilizes the Milne-Thomson circle theorem (5) and is based on the premise
that the boundary condition for two-dimensional interference flow past
two circular cylinders can be satisfied by displacing the sourc.s in each
body towards each other by a specified distance.

This solution differs from that of Reference 2 in that instead of
assuming that the strengths of the sources in the image system are known,
as in the previous work, these values are determined so that when added
to the predetermined axial source-sink distribution, the body boundary
conditions are satisfied.

The new technique was applied to calculate the interference flow
field for two M-11T bombs. Results of the theoretical calculations were
compared with the experimental values as obtained by tests performed in
the low-speed wind tunnel at the contractor facility.

The computer program used to compute the theoretical values is given
as Appendix I.
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SECTION II

THEORETICAL CONSIDERATIONS

The method of solution for analysis of the two-body aerodynamic inter-
ference problem, as developed by Martin in Reference 3, has been investiga-
ted, and a new technique for improving this method has been developed. The
basis of Martin's method was the combination of the single body axisymmetric
solution and the cross-flow image system [3] to approximate the interference
flow field for two similar bodies of revolution in a uniform flow. It was
found, however, that this technique does not satisfy the boundary condi-
tions for the three-dimensional problem [6]. In order to correct the body
boundary conditions, the axisymmetric solution was combined with a cross-
flow solution consisting of a source distribution displaced from the body
center line and a sink distribution of equal magnitude along the body
axis as suggested by the two-dimensional cross-flow solution.

The usual assumptions of small disturbances and inviscid flow are
assumed. Further, it is assumed that the flow is incompressible so that
the familiar Laplace equation is the governing equation and the well-known
elementary solutions, source-sink, doublet, etc., flows areavailable.

Since the body boundary condition for the two-body problem cannot be
satisfied by simply superimposing the solutions for isolated bodies,
Martin [2] developed the cross-flow image system as & possible correction.
In his original work, Martin proposed a solution in terms of a continuous
distributed line source which was displaced according to the two-dimensional
image system. Generally, it is not possible to find a continuous line
source for generating the body, and the solution is approximated by a number
of finite line sources. This approach leads to geometric complexities
wvhen the image system is applied, because the line sources must be at
angles corresponding to the slope of the displacement curve (Figure 1).
For this reason, the line sources were replaced with a number of three-
dimensional point sources and sinks. This also has the advantage of re-
quiring half as many calculations as the solution for the same number of
line sources, because the integrated effect of a line source at a field
point is a function of the distance from each end of the source to the
point, whereas the effect of a point source depends only on the distance
between the points.

Any particular solution of Laplace's equation,

2
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vhich is representative of an actual flow must satisfy the boundary con-
ditions at infinity and at the surfaces of any bodies which are present

in the field. [ physically meaningful boundary condition is that the
perturbation velocity components tend towards zero at large distances from
the disturbances. This is known to be the case for source flow, as will
be evident from the velocity derived from the potential function. The
boundary condition along the surface of an impermeeble body must express
the condition of no fluid flow into the body. This condition is satis-
fied when the component of velocity normal to the body is zero. Equivalent-
ly, the boundary condition is satisfied when the velocity at the fluid-
solid interface is tangent to the body. For an axisymmetric body, the
boundary condition may be expressed mathematically as

a %l (2)
& T U

where dr/dx is the slope of the body in any meridional plane, u,. and u,
are the perturbetion velocity components in the radial and axial directions,
and U, is the magnitude of the free-stream velocity.

For a single body at zero angle-of-attack the angular velocity com-
ponent, ug, is identically zero. In the two-body case, ug is not generally
zero, but it does satisfy the tangential flow requirement at all points
on an axisymmeiric body. Therefore, equation (2) is the correct expression
for the body boundary condition for the two-body case as well as for the
isolated body.



SECTION III

SINGLE BODY SOLUTION

Assuming that any axisymmetric body can be represented by sources
distributed along its center line, the total wvelocity potential becomes
the sum of these sources plus a constant and can be expressed as

N m
o i 1
--im + ¢ (3)

¢

J

where py4 is the distance from the ith source to any point j in the flow
tield ang

Differentiating the summation term in equation (3) yields the per-
turbation velocity components which, in cylindrical coordinates r, 8, x,
can be expressed as

N nm
i 9 1
w, =~ Z L (4)
xJ i Ir BxJ piJ
N m
i 9 1
u, =- I = (=) (5)
rJ i L 8rJ pij
N m
o ©

Due to symmetry, ug is zero for the case of a single body at zero
angle-of-attack. As can be seen from Figure 2, piJ is not a function of
8 and is given by

21% (7)

- 2
Pyy = [(xj-xi) +ry

If a new variable Zi» defined such that it is proportional to the
source strength, i.e.,

-6~

¢' is a constant and represents the free-stream velocity potential.
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2y * U (8)

-]

is introduced and equations (4) and (5) are used, the velocity components
can be written in the forms,

N -
_ﬁg_zzﬁ (9)
u_ B8

iJ
T
AN ol

Equations (9) and (10) can be applied at any non-singular point in the
flow field to determine the velocity ratios. Referring to equation (2),
it can be seen that the body boundary condition in terms of the velocity

ratios is specified by

N r
Ez —J—
i 3
er i piJ
dx = N X, =X (11)
i 3
i piJ

By multiplying both sides of equation (11) by the denominator on the
right-hand side of that equation and simplifying the resulting equation,
one may obtain the result,

dr
(xi-xi) EEJ'+ r, drJ
i p 4 = &= (3=1,2,3,...,N) (12)
Piy J
Equation (12) forms a set of n simultaneous linear equations for
determining the required source strengths in terms of the known geometry.
If the coefficients of z, in equation (12) are defined to be cij’ the
equation may be written %n the form

e M =
N

N dr
Sl -
i zy¢4y = de (3=1,2,3,...,N) (13)
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Equation (13) may be written in the equivalent matrix form,
[c}(z) = (dr/ax) (14)
Solving for (Z) by matrix inversion, one obtains the result
(z) = [c]-1(ar/ax) (15)

The array of strengths as calculated by this method satisfies the body
boundary condition at the control points for any isolated axisymmetric
body at zero angle-of-attack.

The predicted pressure distribution for an M-117 bomb 1s compared
with experiment in Figure 3 and shows good agreement.
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SECT1ON IV

SOLUTION FOR TWO SIMILAR BODIES

Consider the case of two identical axisymmetric bodies aligned such
that cne i1s directly above or to the side of the other. According to
Reference 2, the image system for this case is formed by displacing each
source towards its corresponding source in the other body, as in Figure
4. The distances which the sources are displaced are derived from
repeated applications of the Milne-Thomson circle theorem [3] and are
given by

N

=2 1112 29%
§, = 53 (1-[1-(ar, /y )°T%) (16)
where yois the distance between body center lines and r; is the radius of

the body at the ith source. Since the bodies are identical, the sources
at corresponding axial locations in each body are of the same strength.

In the two-dimensional case, the image system consists of the dis-
placed sources with corresponding sinks of equal strength at the center
line. Since the strengths of the image pairs at any cross-section are
the same as that of the original source, from the single body solution,
the sink cancels this source. Hence, the two-dimensional system yields
only the displaced line of sources as discussed above. In the three-
dimensional case, however, this simple system does not produce & satis-
factory result.

In the three-dimensional case, there is a significant component of
flow in the axial direction in addition to the radial flow. It is
reasoned, however, that an equivalent line source can ve assumed at the
body center line which contributes only to the radial flow. This is
purely a fictitious flow but suffices to Justify an equivalent two-
dimensional flow field which would generate the sou-~ce-sink pair described
in the image system above. Note that the source displacement distance,

§, depends only on the geometric relations and is independent of the two-
dimensional source strength.

It follows that an appropriate system for the three-dimensional case
can be generated by retaining the sources along the center line of the
two bodies (isolated solution) and adding an image system consisting of
source-sink pairs in each body which are located according to the two-
dimensional displacement distances.

-]ll-
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The total velocity potential for this two-body system can now be
expressed as before and, for a body formed by N sources, the potential at
a point is

Nm N nm!
& - VI S 1 1, (1 1
by ==l RGrT o) S P [ - e ) an
13 13 13 13 13 13

where m, refers to the single body source strength and mi is the strength
of the added source and sink. pl s Py s p'1 , and p'2 are as

i) i) i) i)
illustrated in Figure I and may be expressed as

oy, 7 [(84-ry sin 0) + (x;x;)? + (r, cos 6)2]% (18)
pa, = gty otn 0% + (xyx)? 4 (ry cos Q% (9)
piij = [(xJ-xi)2 + rJ"’];5 (20)
og,, = Lrgry otn 0%+ (xyox)? + (ry cos 0)2]*% (21)

Using equations (4), (5) and (6) for the velocity components and
equation (8) for z;, one may obtain the velocity ratios

uxi N
L Uy o (g o ) @)
uri N
f= _121 [zibij el (bij - biJ)] (23)
Yg N
_J_ = o l‘_. 1 ] = 1]
T r; et (a55 - ajy)d e
where
) ) 1
1] i)



b,, = 2 (pl & ko) (26)

iJ or p
Iy T2y
=9 (1 L, 1
did = 35 (pl + oy ) (27)
13 1)
The terms a'iJ, b'iJ. and 4',, are formed from equations (25), (26), and

iJ
(27) with the values for Py replaced with the primed quantities (see

Figure 4 and equations (18) to (21)). The unprimed values of z correspond
to the single body source strengtns, and the primed velues represent the
image system.

The source distribution to correct for the interference is developed
by application of the requirement of tangential flow at the body. Using

equations (22) and (23) for the velocity components and equation (2) for
the boundary condition, one may obtain the result

dr N dr ar dr
_J.= ' ' ' _11. ' _J. 1
&, i {zi(aij ax, - byyl ¥ zi[(ai,] &, & bij)-(aij &, 'bij)]} (28)

Equation (28) represents a set of N simultaneous equations for determining

the source distribution required to account for the interference between two
similar bodies. By defining the coefficients of zg and z'i as eiJ and fi
respectively, equation (28) can be written in the equivalent matrix form

J’

(ar/dax) = [e](z) + [£](z') (29)
Solving this equation for (z') one obtains
(z') = [£]-} ((dr/ax) - [e](z)} (30)

The source distribution given by equation (30) will satisfy the body
boundary conditions at N control points and give good sgreement at all
other points arcund the body. It was found that the best location for
the control points lies along the intersection of one body with the plane
which passes through the center lines of both bodies; i.e., from Figure L,
the 90-degree meridional plane. The predicted slopes at other meridional
planes are shown on Figure 5 for the M-11T7 bomb body shape.

The predicted pressure distribution and experimental points are shown
in Figures 6 to 11 for meridional angles between 90° and -90°. These

1L~



distributions were calculated using a 30-point solution for the axisym-
metric body and for the cross-flow correction.
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SECTION V

SOLUTION FOR TWO DISSIMILAR BODIES

The two-body solution of the previous section can be extended to
include the case of dissimilar axially misaligned bodies. Again, and in
the solution for two similar bodies, it will be assumed that the isolated
body solution has an equivalent two-dimensional source distribution which
causes the radial flow outward from the body centerline. Also, it should
be noted that this radial flow occurs both forward and aft of the body
as well as along the body. Thus, in order to generate the cross-flow
image system, it is assumed, conceptually, that the flow field forward
and aft of an isolated body is spread by equivalent sources distributed
along the extension of the body center line. The image system in body
2 at cross-flow station a (see Figure 12) can be generated using the
Milne-Thomson circle theorem for source flow over a cylinder and is illu-~
strated as Figure 13(a) where 62 is given by

Y2 = — (31)

The complete image system at station b can be generated by repeated
application of the Milne-Thomson circle theorem and consists of a line of
sources and sinks within both bodies. The complete development is given
in Reference 3. It has been found, however, that one source-sink for
each body with the source displacement distances given by

(32)

-23-
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¥igure 13. Schematic of Cross-Section for Dissimilar Bodies.
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and

y_ - r22 (33)

yields good results as will be shown later. Also note that equations (32)
and (34) reduce to the truncated series representing equation (16) for §
in tlie solution for two similar bodies where ry =T,

Because of the asymmetry of this case, the strengtk and the dis-
placements of the source-sink pairs are different for the two bodies.
Thus, if there are N image pairs in each body (corresponds to N sources
for the isolated body solution), then there will be a set of 2N simultan-
eous equations to be solved.

The velocity potential function for this case can be expressed as

N N
i&.:_z (._L.)_ T ' (__l__L)
U, " "o "1y ey =1 1 oy Py
iJ iJ iJ
N N ,
- 1z, (p—}—)— L 2y (pl _.p} )+g— (3b)
i=1 i 213 i=1 i 21J 2iJ o

where the subseripts 1 and 2 correspond to bodies 1 and 2, respectively,
as shown on Figure 12. The other terms are consistent with the previous
notation and as defined by Figure 12.

Performing the appropriate differentiations on equation (34) in
order to obtain the velocity components and using equation (2) for the
boundary condition generates the set of 2N simultaneous equations which
can be written in matrix form as equation (30). The z' values in this
case are N values of z'; and N values of z's corresponding to the image
source~-sink pairs in bodies 1 and 2, respectively.

The N control points on body 1 were taken along the top of the body
at the intersection of the meridional plane passing through both body

center lines. The other N control points were taken at the corresponding
lower surface of body 2.

26
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The predicted pressure distribution and experimental results for
body 1 with body 1 displaced two diameters downstream from body 2 are
shown on Figure 1.
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O Experimental
— Theoretical

o Experimental
— Theoretical

O Experimental
— Theoretical

Figure 14. Comparison of Theoretical and Experimental Pressure
Distribution for the Sclution for Dissimilar Bodies,

x = 2.0 Dia. and y = 1.042 Dia.
0 0
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SECTION VI

CONCLUSIONS

This method led to good agremeent between the experimental and
theoretical pressure distributions. Also, the slope of the body stream-
line calculated using this method and the slope of the actual body were
in good egreement. Thus, this method can be considered a valid solution

for the mutual aerodynamic interference problem for two axisymmetric
bodies at zero angle-of-attack.

-29-
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APPENDIX I
FORTRAN COMPUTER PROGRAM FOR
2-BODY INTERFERENCE

g8 is the FORTRAN computer program used to

calculate the flow field for two parallel bodies in close proximity co
each other by the source-sink image pairs approach. The program was
vwritten for the IBM 360 system and compiled on the FORTRAN G Compiler.
All calculations were performed in single precision arithmetic.

The program which follow

N Rt 0



e Nl

OO0

400

18

17

260

156

155

150

110

TWO SIMILAR BODIES

DIMENSICN RAD(31)4X(31),SLOPE(31)yXA(30),XB(30),DRDXA(30),

-ZA(30) ,LCRCXB(30),DELA(30),DELB(30)
DIMENSION RA(30), RB(30), ZB(30)

COVMOMN /TWC/ XA 4XByRADRDXA,CRDXB,CELA,DELR,7A
EQUIVALENCE (RA(L)RB(L1),RAD(1)), (ZA(1),42B(1))

N§=30

DX=0.20

X0=0.,0

CALL GEOM(RACyXyDXyNSySLOPE)
CONT INUE

IF( X0 «NE. 0.0 ) GO TC 18

SINGLE EBCDY SOURCE STRENGTHS

Y0=1C000.0
GO TO 17

TWO-BODY SOLUTION

CCNTINUE

YO0=1.042

DC 2CO I=14NS

XA{I)=X{1)+X0

XB(I)=x(I)

DROXA(I)=SLCPE(T)
DRCXBU1)==SLOPEL(T)

CONTINUE

IF(Y0.6E410000.0) GO TC 16

DC 150 I=14NS

M=XA{I)/DX

N=(XB(I)=-XC)/DX

IF(M.GT.NS) GO TO 156
DELA(I)=RA(I)**2/(YO~(RB(M)*%2)/Y0)
CONT INUE

TF(XA(LI)GE.XB(NS)) DELA(TI)=RA(I)*%2/Y0
[F(N.Lc.0) GC TCO 155
DELB(I)=RB(I)*«*2/(YO-(RA{N)*%2)/Y0)
CONT INUE

[F(XB(I).LT.X0) DELB(I)=RB(])*%2/Y0
CONTINUE

WRITE(6411C) XO,YO

FORMAT(IH1,' TwWO-BODY SOLUTICON*/* X0 =
-FL10.5/7% I DELACT) DELB(I)*//)

2304

*9oF10e5,"

e e om——

Y0 =

14



WRITE(6,111)(1,0ELA(TI),CELB(I)yI=1,yNS)
111 FORMAT(1Xe1242F12.57)
16 CALL CROSSZ2(NS,X0,Y0)
IF(Y0.GE.10000.0) GO TC 18
IF( X0 «NE.O.O0 ) GO TO 300
X0=2.0
GO TO 4CO
300 sSvQpP
END
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[aXaEaNa]

301

11
12

10

SUBROUT INE CROSSZ2(NS,X0,YO0)

DIMENSICN 2C0(60,60), E(60), DELA(30),DELB(30), X(30),
R(30),XA(30)y, XB(30),DRDXA(30),DRDXB(30),2ZA(30)
2UX(30),UR(30C),8C(30),CP(30)
DIMENSION PC(30,30), RA(30)y RB(30),28(30),2ZAP(30),2BP(30)
DINMENSICN LT(30)
COMMCN /TWG/ XAyXByRA,CRDXA,DRDXB,DELA,DELB+ZA
EQUIVALENCE (PC(1,y1)4,2C0(141)),
(KACL)yRBOL) )9 (ZA(L)oZBLL)Y ),
(LAP(L) E(L))y (Z2BP(1)ycl31))
SIND(PPP)= SIN(PPP/5T.29578)
CCSDIPPP)= COS(PPP/5T.29578)

EVALUATICN ALONG BOCY A

DO 301 J=14NS
X(J)=XAJ)
R{JI=RA(I)
E(J)=DRDXA(J)
CONTINUE

DO 100 J=14NS
DO P00 I=14NS

PAL= SQRT((X(J)-XA(T))**24R(J)*%2)
AX=(X{3)=XA{T]))/PAL*%]
AR=R(J)/PAL1*%3

I[F(Y0O.LT.1C000.0) GO TC 10
PCLJeI)=AR-AX*DRDXA(J)
GC TO 100

PA2= SQRT((X(J)-XA([))*424+(DELA(I)=-R(J))**2)
PBl= SQRTU(X(J)=XBLI))**2+(R(J)=YOQ)**2)
PB2= SOQRT((X(J)=-XB(I))**2+(R(J)+DELB(1)-Y0)%*2)

BX=(X{J)=XA([))/PA2**3-{X(J)=XA(I))/PAL**]
CX=(X(J)-XB(1))/PB1*%*3
DX=(X(J)=XB(I1))/PB2%*3~(X{J)=XB(I))/PB1l%*3
BR=(R(J)I-DELA(I))/PA2**3-R(J)/PAL*%*3

CR={ (J)=YC)/PBl**3
DR=(R{J)+DELBLT)-YO)/PB2*%*3-(R(J)-Y0)/PBL**3

AA=AR=-AX%DRCXA{J)
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OO0

100

15

14

302

CA=CR-CX*DRCXA(J)

2CO(J,1)=BR-BX*DRDXA(J)
LCO(Jy I+NS)=DR-DX*DRDXA(J)
eECd) = £(J)-ZA(T)*AA-ZB([)*CA

CONTINUE

[F(Y0O.LT.10000.0) GO TO 14
CALL SIMQ (PC,DRDXAyNS,KS)
D0 15 I=1,NS
ZA(1)=DRDXA(I)

RETURN

CONT INUE

EVALUATICN ALONG BODY B8

RC 302 J=1,NS
X(J)=XB5(J)
R(J}=YU-RBI(J)
E(J+NS)=DRCXB(J)
CONTINUE

DG 200 J=1,NS
DO 2CO0 I=1,NS

PAl= SQRTUIX(J)-XA(TI))**24R(J)*%2)

PA2= SORT({X(J)=XA(I))*%24(DELACL)=R(J))**2)
PBl= SORTU(X(JI-XBIT))#42+(R(J)=-YO)*%2)

PB2= SURT((X(J)=-XB(I))*¥24(R(J)+DELB(I)-YO)*%2)

AX=(X{J)=-XA(I))/PAL*%3
BX=(X(J)=XA(1))/PA2*%3-(X(J)=-XA{1))/PAL**3
CX=(X(J)-XB(I))/PB]*%3
DX=(X(J)=XB(I))/PB2*¥%3-(X(J)=-XBLI))/PBl**3

AR=R (J) /PAL*%3
RR=(R(J)-CELA(]1))/PA2*%*3-R(J)/PAL%*%3

CR={RIJ)I=YO0)/PBL1*#*3
DR=(R(J)I+DELB(I)-YO)/PB2**3-(R(J)=YO)/PBL1**3

AB=AR-AX*CRCXB(J)
CR=CR-CX*DROXB(J)

ICO(J+NS, 1) =BR-BX*DROXB(J)

-35-



LCCUJU#NS, I+NS5)=DR-DX*DRCXB(J)

E(J#NS) = E(J+NS)-ZA(1)*xAB-2B(]1)*CB
C
200 CONTINUE
NSZ2=2%NS
C

CALL SIMQ (ZCOsEsNS24KS)
1F(QS.tQT.1.0) GC TO 2200
GC TC 300
2200 WRITE(6,400)
400 FORMATU(1HL,*SOLUTION FOR SOURCE STPENGHTS IS SINGULAR®,/)
RETURN
300 WRITE(64500)
500 FORMAT(1HL /791Xy "NON-DIMENSTIONAL SOURCE STRENGHTS',// +4X,
=Tty TXy22(1)%/7)
WRITE(6+501) (I,E(I)yI=1,NS2)
501 FORMAT(1X,14,E16.8)
C ZAP(I) ARE THE NON-DIMENSIONAL STRENGTHS OF THE SOURCE-SINK
C PAIRS IN BOCY A THAT ARE SOLVED FOR IN SUBROUTINE SIMQ.
C IBP(I) ARE THE NON-DIMENS IONAL STRENGTHS OF THE SOURCE-SINK
C PAIRS IN BUOY B THAT ARE SCLVED FOR IN SUBROUTINE SIMQ.
C
¢
c

EVALUATE CP AND BC ALONG BOOY A

DC 303 J=14NS

Ux(J)=0.0
UR{J)=0.0
BC(J)=0.0
CP(JI=0.0
XtJy=xa(J)
R{J)=RA(J)
303 CONTINUE
C
DO 4400 J=1,NS
DO 405 I=1,4NS
PAL= SQRTU(X(J)-XA(I))**2+4R(J)*%2)
PA2= SQRT((X(J)=XA(I))*%2+(DELAC(I)-R(J))*%x2)
PBL= SQURTU(X(J)-XBII))*%2+(R(J)=YO)**2)
PB2= SQRTU(X(J)-XB(I))*%x2+(R{J)+DELB(I)=-YO)*%2)
c
AX=(X(J)=XA(I))/PAL**3
BX=(X(J)=XA(T))/PA2*%3=(X(J)=XA(]))/PALl%%3
CX=(X{J)=XB(]))/PB1%%3
DX=(X(J)=XB(I))/PB2*%3-(X(J)~-XB(I[))/PBLl%*%3
&

AR=R(J)/PA1%*%3
BR=(R{J)I-DELA(T))/PA2%%3-R(J)/PAL*%x]3
CR=(R{J)-Y0)/PBL1*%3
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DR=(R{IJI+CELB(I)-YO)/PB2%*%3-(R(J)-YO)/PB1*%*3

C

C

C
UX(JI=UXCI)+ZA(T)*AX+ZAP( 1) *BX+ZB(1)*CX+ZBP(1)*DX
UR(JIZUR(JDI+ZA(T)I*AR+ZAPIT)*BR+ZB(1)*CR+ZBP(])*0R

405 CPNTINUE

C
BCiJI=UR(J)/{L.0+UX(J))
CP(J)==2.,0%UX(J)-UX(J)*%2-UR(J)*%2

c

4400 CONTINUE
WRITE(6460C) XO0,Y0
600 FORMAT(1H1,* BODY A X0 = *4F10.55* YO = *,F10.5/

=8 0 XA RA ORDXA 8C
-uUx UR ce LA ZAP*//)
2 WRITE(64700) (14XA(TI) RA(TI)sDRDXALT)4BCIT)UX(I)oUR(I)

= 9 CPUI)y ZA(L)y ZAP(I)y I=1,4NS )
700 FORMAT(1X,1249F13.5/)

EVALUATE CP AND BC ALONG BODY B

(e N aNel

DO 304 J=1,NS
Ux{J)=0.0
UR(J)=0.0
BC(J)=0.0
CP(J)=0.0
X(J)=XB(J)
R(J)I=YU=-RB(J)
304 CONTINUE

DO 5500 J=1,4NS

DO 505 I=1,4NS

PAl= SQRTU(X(J)I=-XA(I))*%24R(J)*%2)

PA2= SQRTU(X(J)=XA(]))**2+(DELA(I)=R(J))*%2)
PBl= SQRT((X(J)-XB(I))*#2+(R(J)=YO)*%x2)

PB2= SQRTU(X(J)=-XB(I))**2+(R(J)+DELB(I)-YQ)%*2)

AX=(X(J)=XA(I))/PALl*%x3
BX=(X(J)=XA(I))/PA2*%3-(X(J)=-XA(]))/PAL*%3
CX=(X(J)=XB(1))/PBL1**3
DX=(X(J)=XB(T))/PB2*%3-(X(J)-XB(I))/PBL%**3

AR=R(J)/PAL*%3
BR=(R(J)I=DELA(T))/PA2**3-R(J)/PAL1%*%x3
CR=(R{J)-YC)/PBl**3
DR=(R(J)I+DELB(I)-YO0)/PB2%**3-(R{J)-Y0)/PBL#%3
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UXEJII=UX(JII+ZACT ) *AX+ZAP( T )*BX+ZB (1) *CX+ZBP () *DX
UR(J)I=UR(J)+ZA(]1)*AR+ZAP(I)*BR+ZB(1)*CR+ZBP(I)*DR

&
5065 CONTINUE
c
BC(JI=UR(J)I/(1.0+UX(J))
CP(J)==2.C*UX(J)=UX(J)**2-UR(J)**2
c

5500 CCNTINUE
WRITE{6,8CC) X0,Y0
800 +URMATI(1H1,"' BODY B X0 = *,F10.5,' VYO = *',F10.5/
= 1 X8 RB DRD X8 8C
~uUX UR cp 8 gpPr//)
WRITE(69700) T XBII)oRB(I),DRDXB(I)BCLI) UX{{)yUR(T)
T CP(I)v lB([)v lBP(l)' [31’NS )

EVALUATION OF UX, UR, UT, CPy, AND B8C AROUND BUDY A

OO0

T=90.0

24 OC 20 J=1,NS
Ux(J4)=0.00
UR(J)=0.00
Ur(J}=0.00
8C(4)1=0.00
cP(J1=0.00
X(J)=XA(J)
R(J)=RA(J)

20 CONTINUE

DO 21 J=14NS
DO 22 I=1,4NS

PXA= X(J)=-XAlI)
Pxg= X{(J)-x8(I)
PZ= COSD(T)*R(J)

O

SQWRT( PXA**2+PZ*%2+( SINDI(T)*R(J) ) *%2
SQRT( PXA*#24P2%*2+( SINDIT)*R{J)-DELA(I) )#%2
SCRT( PXB*x#2+4P2%#2+(~SIND(T)*R(J) +YQ ) *%2
SCGRT( PXB*%Z+PZ#%2+(~SIND(T)*R(J)-DELB(I)+YQ)*%*2

PAl
PAZ
PB1
PB2

LI N T I 1)

- -

AX=PXA/PAL%%3
HX=PXA/PA2%%3 -~ AX
CX=PXB/PBL#%3
DX=PXB/PB2%%3 - CX
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[N e}

AR= R{J)/PAL%*%3

BR= (ROJ)-SIND(T)*DELA(1))/PA2%%3 -~ AR
CR= ~(SIND(T)*YO-R(J))/PBL1*%*3
DR==(SIND(T)*{YO-DELB(I))-R(J))/PB2%%3 ~ CR
AT = 0.0

BT = =COSD(T)* DELAL(I) /PA2%%3 - AT

CT = -COSO(T)* YO /PBl*%3

DT = -CCSC(T)*(YO-DELB(I))/PB2%%3 - (T

UX({J)I=UX(J) + ZA(I)*AX + ZAP(I)*BX + ZB(I)*CX + ZBP(I)*DX
UR(J)I=UR(J) + ZA(I)*AR + ZAP(I)*BR ZB(I)*CR + ZBP(1)#*DR
22 UT(J)=UT(J) + ZA(I)*AT + ZAP(I1)#*BT + ZB(1)*CT + 28P(1)*DT

*

BC(J)I=UR(J)/(1.0+UX(J))
21 CP(J)==2,0%UX{J)=UX(J)*¥2-UR(J)*¥2-UT(J)**2

THETA=T
WRITE(6425) X0y YOy THETA
25 FORMAT(1H1,' BODY A X0 =%,F5.3," YO ='yFB8.5y"
- THETA =',F6.2/
=v 1 XA RA DRDXA BC
-UX UR ce ZA ZAP
-ut'//)

WRITE(69333)(1+XAL1)sRALT)oDROXAL(I)BC(I) UX(T)URLI)
- 9 CP(I)y ZA(I)y ZAP(1), UT(I)y I=14NS )
333 FORMAT(1Xy12,10F13.5/)
IF(T.LE.-90.0) GO TO 23
T =7 - 30.0
GO TO 24
23 CONTINUE
RETURN
END



OO0

aNeXel

SUBROUTINE GEOM(RAD,XyDXyNSySLOPE)
GEOMETRY FOR M117 BOMB

REAL L1l,L2,L34L%,4L5
INTEGER FINS
DIMENSION RAD(31),X{31),SLOPE(31])
Ll=1.32288
L2=2.54375
L3=4,35C000
L4=4.94000

L5=6.30

RADT=0.262
TANLI=0.7559289
TAN2=0.1316500
NSPL1=NS+1

X(1)=DX

FINS=2

FINS=1 CORRESPONDS TO SIMULATED FIN BCOY
FINS=2 CORRESPONDS TO STRAIGHT TAPER TAIL B8ODY

DO 9 I=2,NSP1
X{I)=X{I~1)+DX

NOSc SECTION

[FIX{I-1).6GT.L1l) GO TO 1

RAD(I-1)= SCRT(4.0-(X(I-1)-1.32)%%2)-1,500
SLOPE(I-1)==(X(I=-1)=1432)/ SQRT(4.-(X(I=-1)-1.32)%%2)
GO TN 9

MID-SECTION

TF(X(I-1).GT.L2) GO TO 2
RAD(T-1)=0.50
SLOPE(I-1)=0C.0

GO 10 9

STRAIGHT REGION OF TAIL

[F(X(I-1).GT.L3) GO 7O 3
RAD(I-1)=0,5-(X{I-1)~L2)*TAN2
SLOPE(I-1)=-0.13165

GO 710 9

3 G0 TQ (447)4FINS

STMULATEC FIN BODY
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v THEX{I-1)GT.L4) GO TO 5
RAD(I-1)=RACT+{X{I-1)~L3)%(C.240/(L4-L3))
SLOPE(I-1)=C.240/(L4-L3)

60 10 9

IF(X(I-1).GT.L5) GO TQ 6

RAD([-1)=0.502

SLOPE(I-1)=0.0

GO0 10 9

6 RAD(I-1)=0.0

Go 10 9

S 4

STRAIGHT TAPER TAIL

7 IF(X({I-1).GT.L5) GO TO 8
RAD(I-1)=0.5-TANZ2*{X(I-1)~-L2)
SLOPE(I-1)=-0.13165
60 10 9 %

8 RAD(I-1)=0.0
SLOPE(I-1)=0.0

9 CONTINUE

GO TO (10412),FINS
10 WRITE(6,11)

11 FORMAT(1H1,'GEOMETRY FCR SIMULATED FIN BOOY*//* 1 xtn
-RAC(I) SLOPE(I)*'/)
GO TO l4

12 WRITE(6,13)

13 FORMAT(1H!,'GEOMETRY FOR STRAIGHT TAPER TAIL*//* 1 X{t1)
-RAD(T) SLOPE(I)*/)

14 WRITE(6415) (I9X{1),RAD(I),SLOPE(I)yI=1,NS)

15 FORMAT(I5,3F10.5)

RETURN
END

T
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OO0

SUBROUTINE SIMQ(A,ByNyKS)
DCUBLE PRECISION SIMQ

DIMENSION AlLl),B(1)
DIMENSICON A(1),B(1)
FORWARD SOLUTION

TOL=0.0

KS = 0
JJ==N

DO 65 J=14N
JY=J+1
JJ=JdJ¥N+]
BIGA=0
[T=4J-J

NO 30 I=J,yN

SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN

[J=1T+]

[F( ABS(BICA)- ABS(A(IJ))) 20,430,30
20 BIGA=A(I1J)

IMAX=1]
30 CONTINUE

TEST FOR PEIVOT LESS THAN TOLERANCE (SINGULAR MATRIX)

IF( ABS(BIGA)-TOL) 35,35,40
35 KS = 1
RETURN

INTERCHANGE RCWS IF NECESSARY

40 I1l=J+N%(J-2)
[T=IMAX-J
DO 50 NK=J,N
I1=[1+N
[2=11+1IT
SAVE=A(I1)
A(lIl)=A(12)
AlL12)=SAVE

DIVIDE EQUATICN BY LEADING COEFFICIENT

50 A(IL)=A(I1)/BIGA
SAVE=B(IMAX)

=42~



c

(aNaXe)

BIMAX)=8(J)
B(J)=SAVE/BIGA

ELIMINATE NEXT VARIABLE

IF(J-N)55,70,55
55 IQS=N*(J-1)

DO 65 IX=JY,4N

IXJ=1QS+IX

IT=J-1X

DO 60 JX=JY,yN

IXJX=N*(JIX=1)+IX

JIX=IXIX+1T
60 ALIXJIX)=ALIXJIX)=(ACIXJ)*A(JIIX))
65 B(IX)=B(IX)=(B(J)*A{IXJ))

BACK SOLUTION

70 NY=N-1
IT=N*N
DO 80 J=1,4NY
[A=IT-J
IB=N-J
IC=N
DO 80 NK=1,J
B(IB)=B(IB)-A(IA)*B(IC)
[A=] A-N

80 IC=IC-1
RETURN
END
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13 ABSTRACT

The mutual aerodynamic interference problem for two axisymmetric bodies has been
analyzed using the image system technique. In order to facilitate this analysis,
it has been assumed that small perturbation solutions are valid. It is further
assumed that the external stores are slender bodies and that the mutual inter-
ference can be analyzed by first assuming a cross-flow solution. The image
system in the cross-flow plane consists of source-sink pairs appropriately located
by using the Milne-Thomson circle theorem. The actual three-dimensional source-
sink pairs are displaced from the body axis according to the cross-flow image
system. Their strengths are then determined by the Rankine method. Good agree-
ment has been found between the theoretical and experimental results.
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