
UNCLASSIFIED

AD NUMBER:

LIMITATION CHANGES

TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

AD0915548

Approved for public release; distribution is unlimited.

Distribution limited to U.S. Government Agencies only; Test and Evaluation;
1 Dec 1973. Other requests for this document must be referred to the
Defense Communications Agency, Reston, VA 22070

DCEC ltr dtd 9 May 1974

00

iO
iC

a
A
<!

FORTRAN SIMULATION (FORTSIM)

LANGUAGE PROGRAM DESCRIPTION

Prepared for

DEFENSE COMMUNICATIONS AGENCY

r

Report 4195950-3-1

DCA100-73-C-0033

DECEMBER 1973

CSC
COMPUTER SCIENCES CORPORATION

FORTRAN SIMULATION (FORTSIM)

LANGUAGE PROGRAM DESCRIPTION

Prepared for

DEFENSE COMMUNICATIONS AGENCY

Report 4195950-3-1

DCA100-73-C-0033

DECEMBER 1973

DISTRIBUTION LIMITED TO U S. GOVERNMENT
AGENCIES ONLY, TEST AND EVALUATION
DECEMBER 1973. OTHER REQUESTS FOR THIS
DOCUMENT MUST BE REFERRED TO THE
DEFENSE COMMUNICATIONS AGENCY.

Xf j/w*f friniin
/$ 4 0 Co M*A i4i •

frsn* s/a •

COMPUTER SCIENCES CORPORATION

6565 Arlington Boulevard

Falls Church, Virginia 22046

Major Offices and Facilitie- Throughout the World

TABLE OF CONTENTS

Abstract

Section 1 - Introduction.. • •

1.1 General..
1.2 FORTRAN Deficiencies for Simulator Models
1.3 Concept.
1.4 Report Organization.

Section 2 - Data Manipulation.

2.1 Pseudoinstructions for Data Manipulation....
2.2 Examples of Data Manipulation Instructions .
2.3 Other Uses of Data Manipulation Instructions

Section 3 - Testing Data Items.

iv

1-1

1-1
1-1
1-3
1- 5

2- 1

2-1
2-3
2- 3

3- 1

3.1 Test Pseudoinstruction..
3.2 Examples of the Test Instruction

Section 4 - Macro Instructions.

4.1 Macro Type Pseudoinstructions
4.2 INSERT Instruction.... «
4.3 EXECUTE Instruction.

Section 5 - Assembling Definition Tables

5.1 Table Structure.«.
5.2 Mnemonic Reference Tables
5.3 Insert Tables ...
5.4 Macro Tables ... •

Section 6 - Program Restrictions and Guidelines for Use

6.1 Programming Restrictions...
6.2 Guidelines and Examples of Pseudoinstruction Use
6.3 Program Operation and Outputs ..
6.4 Program Execution.«.

References.

ii

LIST OF ILLUSTRATIONS

Figure

1-1 Program Data Flow...
5- 1 Example of Definition Tables .
6- 1 Sample Definition Table Listing.
6-2 Sample Source Code Listing.
6-3 Sample Intermediate Source Code Listing
6-4 Sample Cross Reference Listings.

1-4
5- 4
6- 8
6-9
6-10
6-11

LIST OF TABLES

Table

5- 1 Mnemonic Definition Card Format
6- 1 Option Card Format.

iii

L

ABSTRACT

This report contains a detailed description of the concept and use of the FORTRAN

Simulation (FORTSIM) Language program which extends the FORTRAN language to

accommodate large scale simulation models. It permits greater utilization of available

memory, introduces a Macro facility similar to those available in machine language

compilers, and provides programming ease with the use of indirect addressing and a

method of assuring commonality between programs and subroutines. The program is

executable on the IBM 360/370 and Honeywell 6000 Series computer system.

SECTION 1 - INTRODUCTION

1.1 GENERAL

The FORTRAN Simulation (FORTSIM) Language program enhances and extends

the FORTRAN language for the programming and mrintenance of large simulation

models. It permits greater utilization of available memory by simplifying the bit

manipulation process, it reduces programming time and effort by introducing a Macro

facility similar to those available in many machine language compilers, and it provides

programming ease with the use of indirect addressing and a method assuring common¬

ality between programs and subroutines.

In the evolutionary process of converting large scale communication models from

mi.chine languages to higher order languages, the FORTRAN language was selected over

specialized simulation languages since it provides the required versatility for complex

models and is supported by most computer manufacturers. The deficiencies noted in

Paragraph 1.2 were recognized and, although some specialized instructions are available

which help overcome these deficiencies, they are not universally supported and frequently

differ greatly from one manufacturer to another. The FORTSIM program was therefore

developed to maintain machine independence while providing the required enhancements.

The FORTSIM program is currently used with all of the models which comprise

the Defense Communications System Performance Simulator (Reference 1). Since the

program performs a considerable number of input-output functions in processing source

language statements, it is written in COBOL to take advantage of that language’s efficient

1-0 operations. It is presently executable on the IBM 360/370 and Honeywell 6000 Series

computer systems and may be adapted to any system which provides specialized FORTRAN

instructions for bit manipulation.

1.2 FORTRAN DEFICIENCIES FOR SIMULATOR MODELS

The FORTRAN language can be effective in simulating large networks? however,

there are several problems frequently encountered.

1-1

P ''imm ...

1.2.1 Inefficient Use of Mnmory

When coding in generalized FORTRAN IV to reduce machine dependence, a full

memory word is required for each data item regardless of its actual length. FORTSIM

provides a relatively simple means of using bit manipulation of memory without using

a given manufacturer's specialized instructions in the source coding.

1.2.2 Table Addressing and Model Commonality

Each entity in a network simulation requires a table to maintain the status of its

components (sizes, connectivity, queues, activity pointers, etc). FORTRAN'S storage

addressing technique (subscripted arrays) is not easily adaptable to managing multiple

large tables. In addition, the structure of a given table must be the same in all programs

and subroutines. The modification of one item in one table would require review of all

programs associated with a model for required program changes. Using FORTSIM, data

and table items may be referenced with indirect addressing. Each item is assigned a

mnemonic reference which is further defined in an input file with an actual address and,

if desired, a given bit structure within a memory word. This not only provides pro¬

gramming ease in manipulating network tables but also provides commonality since all

programs and subroutines of a given simulation model w-ould access the same input file.

1.2.3 Lack ol Programming Aids

While FORTRAN is a powerful language in which a few statements will generate

many machine language instructions, few aids are available tr produce generated

coding such as the Macro facility available in most machine language compilers. It is

frequently feasible to develop subroutines and functions which reduce the amount of

coding required; however, they are expensive in terms of running time due to linkage

requirements. The FORTSIM program permits a sequence of statements to be called

from an input table and inserted into source coding. It allows parameters to be passed

from the calling statement and introduced into the inserted statements.

1-2

1.3 CONCEPT

The FORTSIM program, as illustrated in Figure 1-1, effectively adds an addi¬

tional pass to the FORTRAN compiler in which FORTSIM’s commands or pseudo¬

instructions in the source coding are converted to acceptable FORTRAN instructions.

An additional input to the program is the Definition Table file which contains the

Macro type instructions and which defines mnemonic references in terms of memory

word addresses and the bits of the word to be used. Normal FORTRAN instructions

in the source coding are unaffected by the program.

To facilitate the use of mnemonic references, and to simplify some forms of

source coding, 10 pseudoinstructions were devised which are recognized by the pro¬

gram. Eight of these are used to manipulate or test data items which have been

assigned mnemonic references. These instructions are:

• ADD

• SUBTRACT

• INCREMENT

• DECREMENT

• SET

• CLEAR

• MOVE

» TEST

Two instructions are used for adding statements to the source coding. The

INSERT instruction is used fer nonexecutable coding such as COMMON, DIMENSION,

and FORMAT statements. The EXECUTE instruction is used for executable coding.

Parameters may be passed only by the latter instruction.

1-3

L
C •“

Hi

Sá

L

ao !8Ü
ïïp

8

1-4

lSí4 *#*
4% -•y*1 Í¿®íüí’*' '''Ti

F
ig

u
re

1

-1
.

P
ro

g
ra

m

D

at
a

F
lo

w

..

1.4 REPORT ORGANIZATION

This report contains six sections:

Section 1 - INTRODUCTION, is devoted to a general description of the

program

Section 2 - DATA MANIPULATION, describes the data manipulation

pseudoinstructions and provides examples of their use

Section 3 - TESTING DATA ITEMS, describes the TEST pseudoinstruction

and provides examples of its use

Section 4 - MACRO INSTRUCTIONS, describes the two Macro type

pseudoinstructions and provides examples of their use

Section 5 - ASSEMBLING DEFINITION TABLES, provides guidance in

structuring network tables and assembling FORTSIM input tallies

Section 6 - PROGRAM RESTRICTIONS AND GUIDELINES FOR USE,

provides general guidance in program operation and execution.

SECTION 2 - DATA MANIPULATION

2.1 PSEUDOINSTRUCTIONS FOR DATA MANIPULATION

There arc seven pseudoinstructions for the processing of data items: ADD,

SUBTRACT, INCREMENT, DECREMENT, SET, CLEAR and MOVE. The instruction

contains a command and one or two references. Each reference may be a mnemonic

reference entered in the definition tables, a variable name, or in some eases an integer

constant. The program searches the definition table for each reference, and if no

n.atch is found, treats the item as a program variable or constant.

The program changes the pseudoinstruction card to a comment card and adds the

necessary coding to accomplish the desired result. This coding varies according to

the instruction and the type of reference. If the instruction contains a statement

number, the number is transferred to the first line of generated coding.

If the receiving field of an ADD, INCREMENT, or MOVE instruction is defined

in the tables and a maximum value for the item is specified, coding is added to make

a suitable test for overflow. If the receiving field of a SUBTRACT or DECREMENT

instruction is defined in the tables as less than a full word, coding is added to make

a test for v negative result. Should either of these conditions exist in program execu¬

tion, a PRINT statement is executed that shows which mnemonic reference caused the

condition and an exit is made to statement 9999. A statement with this number should

be included in the source program deck for program wrap-up or error recovery

purposes.

2.1.1 ADD Instruction

This instruction contains two references and is interpreted as add Reference 1 to

Reference 2. Reference 1 may be a table item, a variable, or an integer constant.

Reference 2 may be a table item or a variable. The characters TO must be inserted

between References 1 and 2.

2-1

2.1.2 SUBTRACT Instruction

This instruction contains two references and is interpreted as subtract Reference

1 from Reference 2. Reference 1 may be a table item, a variable, or an integer con¬

stant. Reference 2 may be a table item or a variable. If Reference 2 is a table item

and occupies less than a full memory word, a test is made for a negative result which

could adversely affect adjacent items in that word. This test is not applied if the item

occupies a full word. The characters FROM must be inserted between References 1

and 2.

2.1.3 INC RF. ME NT Instruction

This instruction contains one reference and is used to simplify counting. The

integer value of one is added to the reference which may be a variable or a table item.

2.1.4 DECREMENT Instruction

This instruction contains one reference and is also used in counting. The integer

value of one is subtracted from the reference which may be a variable or table item.

If the reference is a table item and occupies less than a full memory word, a test is

made for a negative result.

2.1.5 SET Instruction

This instruction contains one reference and is used to set a one-bit on-off

indicator. If the reference is a variable or a table item which occupies a full word,

it is set to the integer value of one. If the reference is a table item in a packed word,

the rightmost bit of the field is set to one. If the item occupies more than one bit,

the remaining bits are cleared to zeros.

2.1.6 CLEAR Instruction

This instruction contains one reference and complements the SET instruction.

The reference may be a variable or n table item. If the reference is a variable or a

table item which occupies a full word, it is set to zero. All bits of a packed table item

are cleared, but the remainder of the word is not distuiocd.

2-2

2.1.7 MOVE Instruction

This instruction contains two references and is interpreted as move Reference 1

to Reference 2. Reference 1 may be a table item, a variable, or an integer constant.

Reference 2 may be a table item or a variable. This instruction causes the contents of

Reference 2 to be replaced by those of Reference 1 which remains unchanged, TTie

characters TO must be inserted between References 1 and 2.

2.2 EXAMPLES OF DATA MANIPULATION INSTRUCTIONS

The format of these instructions is essentially free form. To be recognized as a

pseudoinstruction the letter P must appear in column 1. A statement number is

optional and may contain up to five digits. It may follow’ directly after the letter P or

be separated by one or more blanks. The command must be separated from the letter

P or statement number by at least one blank. In addition to the seven listed commands,

the abbreviations SUB, INC, and DEC may be used. The first reference must be sepa¬

rated from the command by at least one blank. When the command is MOVE, ADD or

SUBTRACT, a delimiter word (TO or FROM) and a second reference must also be used,

each separated by at least one blank. Reference names are limited to six characters.

The remainder of the card may be freely used for comments. Some examples are:

P ADD JTFM1 TO ITEM?
P SUb ITEM3 FROM ITFM4
Pino INC ITEM*
P 1350 OEC ITEM?
P SET ITEM«
P CLEAR I TEM’i
P MOVE ITEM10 TO ITEMll THIS PART OF THE CARD MAY BE USED FOR COMMENTS

2.3 OTHER USES OF DATA MANIPULATION INSTRUCTIONS

The use of these instructions is not limited to those items defined in input tables.

Any program item which is defined in no more than six characters (including subscripts)

may be used as a reference. It should be born in mind that the INCREMENT, DECRE¬

MENT, SET, and CLEAR instructions use integer values of 1 and 0. If the reference

is a real number, inefficient coding may be generated. Real number representations

(1.0, 0.0) may be used with the ADD, SUBTRACT, and MOVE instructions with no ioss

of efficiency.

2-3

SECTION 3 - TESTING DATA ITEMS

3.1 TEST PSEUDOINSTRUCTION

There is one pseudoinstruction for the testing of data items: TEST. This

instruction has two forms: simple and complex. In either case, the format of the

basic statement is the same. It contains two references separated by a relational

operator. The references may be variables, table items, or integer constants.

3.1.1 Simple TEST Instructions

The simple TEST instruction duplicates the logical IF statement in that one state¬

ment may be executed based upon the results of the logical comparison. The executable

statement may be a data manipulation type pseudoinstruction or any acceptable FORTRAN

statement.

3.1.2 Complex TEST Instructions

The complex TEST instruction is similar to the IF statements found in COBOL or

PL/I languages in that a series of instructions may be executed if the results of the

logical comparison is a TRUE condition. Optionally, a different series of conditions

may be executed if the comparison results in a FALSE condition. The executable

statements may be acceptable FORTRAN statements or pseudoinstructions (except

another complex TEST instruction).

3.2 EXAMPLES OF THE TEST INSTRUCTION

The format of the TEST instruction is essentially free form. The first part of

the instruction is the same for either the simple or the complex test. To be recognized

as a pseudoinstruction the letter P must appear in column 1. A statement number is

optional and may contain up to five digits. It may follow directly after the letter P or

be separated by one or more blanks. The command, references, and relational operator

must be separated by at least one blank. If the test to be made is the simple form, the

one executable statement must be included in the same card. If this statement is a

pseudoinstruction, it must be of the data manipulation type and completely contained within

that card. The statement is free form and follows the same rules as a normal statement

of this type. If the statement is an acceptable FORTRAN statement, it may be continued

on a normal FORTRAN continuation card. Some examples are:

p TEST ITEMI NE ITEM2

p TEST ITEM3 EU 0
X (ARPAY(J)•J*i•10)

100 FORMAT (2I6*10F6.2)

P20SO TEST ITEM* (¿T 100

60 TO 2050

WRITE (10.100) 1TEM1. ITEM2,

P MOVE 100 TO ITEM*

If the test to be made is the complex form, only the TEST statement may be used on the

first card. All FORTRAN or pseudoinstruction statements which follow- this card are

considered to be part of the test until a card specifying ENDTEST is encountered. This

card is free form but must begin with the letter P in column 1. An example is.

P TEST I TEMI EQ JTEM2
P MOVE ITEM3 TO ITEM*

ALPMA=MRAV0**2
P ENOTEST

If the test is to include different instructions for TRUE and FALSE conditions, the

statements are separated by a card containing ELSE. This card is free form but must

begin with the letter P in column 1. An example is:

P TEST ITEMI LT ITEM2
P MOVE ITEM2 TO ITEM9
P ELSE
P MOVE I TEMI TO ITEM«»
P ENDTEST

3.2.1 Compound Tests

There is no provision for a compound test using AND or OR operators within the

TEST instruction. Compound tests can be made with little loss of program efficiency

by placing data items in temporary variables using the MOVE instruction and executing

FORTRAN logical IF statements.

3.2.2 Other Uses for the Test Instruction

The use of the simple or complex TEST instruction is not limited to those items

defined in input tables. Any program item which is defined in no more than six characters

(including subscripts) may be used as a reference. The complex TEST instruction in

particular may be used to simplify coding.

3-2

*£££- ' ’i k :, ; ■¿L ■ rfriMtWrnlrtTrfWf** '¿w

SECTION 4 - MACRO INSTRUCTIONS

4.1 MACRO TYPE PSEUDOINSTRUCTIONS

There are two Macro type pseudoinstructions: INSERT and EXECUTE. Doth call

coding statements from definition tables and insert them into the source coding.

4.2 INSERT INSTRUCTION

The purpose of the INSERT instruction is to introduce nonexecutable statements

into source coding. It is particularly useful in programs which use COMMON storage

and have many subroutines. It is also useful in introducing identical DATA statements

into several programs where data items must have the same definition, or for intro¬

ducing identical FORMAT statements into programs which read or write the same files.

The INSERT instruction may not have a statement number? however, any statement

numbers included in the statements placed in the definition tables will be transferred

to the source coding.

4.2.1 Examples of the INSERT Instruction

The format of the instruction is essentially free form. To be recognized as a

pseudoinstruction, the letter P must appear in column 1. The command INSERT must

be separated from the letter P by at least one blank. The reference name can be up to

31 characters and must be separated from the command by at least one blank. As an

example of use, consider a large program with multiple subroutines which are entered

frequently. To decrease program execution time, it is possible to place all subroutine

arguments in COMMON storage as opposed to passing the arguments with each CALL

statement. To accomplish this, appropriate COMMON statements must be used in the

main program and all subroutines. An example might be:

COMMON /COMI/ ISAY 1 (100.20)* J1« Kl* LI
COMMON /COM2/ IRAY2I10). J2« K2t L2* IHAY3(50t3)t

* J3. K3* L3

4-1

g

To simplify this process using the FORTSIM program, the COMMON statements

would be entered into the definition tables with an appropriate mnemonic reference,

such as:

INSERT C*STAT
COMMON /C0«1/ IRAY1(100.20)t Jl. Kit LI
COMMON /C0h¿/ IRAY2(10 I . J2. K2t L2. I«AY3(50t3)t

X j3t K3t L3
END

The main program and each subroutine would contain a single pseudoinstruction:

p INSERT CMSTâT

the output from the program would then appear as:

C INSERT CMSTAT
COMMON /COMI/ IRAY I(10 0.20)t Jl. Kl. LI
COMMON /COM?/ IHAY2O0). J2. K2. L2. IRAY3(50.3).

X J3. K3. L3

4.3 EXECUTE INSTRUCTION

This instruction relieves the programmer of the tedious task of repetitive coding.

It permits a sequence of statements (defined as a Macro) which have been placed in the

definition table to be introduced into the source coding. Since the use of a given

sequence of statements may not be identical in every application, the instruction

allows up to 16 parameters to be passed from the EXECUTE statement into the coding

of the Macro. This feature allows a generalized Macro to be tailored to a different

precise application at each execution. Another feature of this function is the use of

generated statement numbers. Consider the case where it would be desirable to

branch from one part of the Macro to another line of coding also within the Macro. This

could be accomplished by passing a new statement number into the Macro as a parameter

in the EXECUTE card upon each executio.:? however, the Macro can be written with a

symbolic statement number. The program will then assign a different unused state¬

ment number each time the Macro is executed. A Macro may have up to 30 symbolic

statement numbers.

4-2

4.3.1 Examples of Macros and EXECUTE Instructions

For an example of how to construct and use a Macro, consider the case where a

program has a series of 10 variables which must be tested to determine if the value of

the variables are within prescribed limits after some iteration. If a variable is out of

its range, it is desired to print a message stating the variable is not within its limits

and then branch to some other part of the program which would apply correctional

measures. The coding to accomplish one of these tests might be:

IF (ITEMl.GE.lO.âNO.ITFMl.lE.lOO) GO TO 50
PRINT 40

40 F0P***T OIH VARIABLE ITEMI IS OUT OF RANGE)
GO TO 200?

50 CONTINUE

In this coding the variable ITEMI is tested for a value between 10 and 100. Similar

coding would be required for all ten variables. This repetitive coding could be eliminated

by constructing a Macro such as the following:

MAC^O TEST-VARIABLE
IF (S1S.GE.S2*.AND.*IS.LE.$3*> r’0 TO S*i*
PRINT $•?* „

$*?» FORMAT (31H VARIABLE MS IS OUT OF RANGE
GO TO f*S

$*lt CONTINUE

The first card names the Macro as TEST-VARIABLE. Parameters which are to be

passed from the EXECUTE instruction card are indicated by a dollar sign-number-

dollar sign (1) combination. In this case, the word ITEMI should be the first para¬

meter on the EXECUTE card and it would be inserted in the coding wherever 1 appears.

Symbolic statement numbers are indicated by a dollar sign-asterisk-number-dollar sign

<$*1$) combination. In this example two statement numbers would be inserted into the

generated coding.

The format of the EXECUTE instruction card is similar to the other pseudo¬

instruction cards. The first character must be the letter P in column 1. If a state¬

ment number is used on this card, a CONTINUE statement bearing that number will be

inserted before the first line of generated coding. The reference name for the Macro

may be up to 31 characters in length and may contain special characters except a dollar

sign. It may rot contain imbedded blanks. The parameters to be passed begin with a

dollar sign, are separated by a single dollar sign and end with a dollar sign. As with

other FORTRAN cards, this card ends at column 72, but may be continued with a special

continuation card. This card must have the letter Q in column 1. It is scanned from

columns 2 to 72 for additional parameters. The EXECUTE card required for the

above example would appear as:

f* EXtCUTl TtST-vftrtH-ÍLE *ITEM1110S100$¿S025

In this card the first parameter is the name of the variable to be tested, the second

is the low value, the third is the high value., and the fourth is the statement number to

which a branch is made if the variable is out of range. The generated coding would be:

C EXLCUlf TEST-VABIAHLE <,lTEMmO*100*2802$
IF (ITEMl.0E.10.AND.ITcMl.LE.100) go TO 10C01

p«Mnt inpo2
10002 Fu*- M-T <3lH YABIAHLE ITEM! IS OUT OF haNGE)

GO TO Pn0¿
incoi CONTInjE

The use of a Macro for testing ten variables would require 16 cards (6 in the input

tables and 10 EXECUTE cards) as opposed to 40 cards in straight line coding.

The length of any one parameter may be up to 72 characters and may contain

imbedded blanks. Bear in mind in the construction of Macro statements that when a

parameter is inserted, any coding to the right of the place where the parameter is to be

inserted will be pushed further to the right. The program does not generate continuation

cards, therefore any coding moved beyond column 72 is lost.

The statements used in Macros may fce any acceptable FORTRAN statements or

pseudoinstructions except the complex TEST instruction. A Macro may execute up to

50 other Macros but may not execute itself directly or indirectly. When the input

table of Macros is read into the FORTSIM program, a recursive test is applied to

each Macro. If it is found that a Macro will call itself, a warning message is printed

and a flag is set. After checking all Macros, the program will terminate if this warning

flag is set since a recursive Macro would cause looping within this program.

4-4

L

SECTION 5 - ASSEMBLING DEFINITION TABLES

5.1 TABLE STRUCTURE

There may be up to three types of inputs in the definition tables used by the PORTSIM

program: Macro statements, INSERT statements and mnemonic reference definitions.

The inputs may be in any order and, with the exceptions noted below concerning mnemonic

references, may be intermixed. An example is given in Figure 5-1.

5.2 MNEMONIC REFERENCE TABLES

The format of mnemonic reference input cards is given in Table 5-1. In the

definition tables, these cards must be grouped together and be headed by a card stating

TABLES in columns 1 to 6 and be followed by a card with END in columns 1 to 3. More

than one group may appear in the tables but each group must have the header and end

cards. The names used as references may be any combination of six characters

acceptable to the system, except the words TABLES, END, MACRO and INSERT. The

names may not contain imbedded blanks. The program will accept up to 1024 references.

5.3 INSERT TABLES

Each group of cards to be inserted into a program must be headed by a card

specifying INSERT in columns 1 to 6 and containing an identifying name of up to 31

characters. The name must be separated from the word INSERT by at least one blank,

and may be any combination of acceptable characters without imbedded blanks. The

cards to be inserted into the program may contain any acceptable FORTRAN coding and

will be inserted exactly as entered without changes. A statement number appearing on

an INSERT pseudoinstruction is ignored. The FORTSIM program will accept a maximum

of 100 groups of cards and a total of 300 cards.

5. 4 MACRO TABLES

Each group of cards comprising a Macro must be headed by a card specifying

MACRO in columns 1 to 5 and containing an identifying name of up to 31 characters.

The name must be separated from the word MACRO by at least one blank, and may

he any combination of acceptable characters except a dollar sign. It may not contain

imbedded blanks. The types of instructions which may be used and the construction of

Macros is detailed in Paragraph 4.3. The PORTSIM program will accept a maximum

of 100 groups of cards and a total of 700 cards.

5-0

Table 5-1. Mnemonic Definition Card Format

CARD
COLUMN

1-fi

7-8

9-3(>

37-43

44-45

4(i

47-48

DESCRIPTION

Reference Name

Blank

Reference Address

Blank

Number of Bits

Blank

Starting Bit

49

50-59

(¡0-80

Blank

Maximum value

Blank

EXPLANATION

Mnemonic reference of one to six characters,
left justified.

Address definition of the reference. Must be
acceptable to compiler in terms of array names,
subscripting, etc.

Contains the number of bits to be used by a data item,
right justified. May be a value from 1 to 31 for IBM
360/370 or 1 to 35 for Honeywell 6050. If data item
occupies a full word, Geld should be blank.

Contains the number of the starting bit (left-most bit
used) of a data item. The bits in a computer word
are numbered from left to right starting with 0. May
be a value from 0 to 31 for IBM 360/370 or 0 to 35 for
Honeywell 6050. If data item occupies a full word,
field should be blank.

Optional 10-digit entry which may specify a maximum
value that a field may contain. Can be used to prevent,
one field from overflowing into an adjacent field.
Right-justified.

5-3

L

TO OUI?)
TO OH (3)
TO OH (4»)

(desfil.oh)

MACHO INFO-DESCHIHTOR
^ MOVE TIME TO OH(l)
P MOVE
p MOVE t¿%
P MOVE 43»

CALL •'HITE
MACHO TMHOT-LTC
p TEST FEL64
P SET FtTI
P e*EC info-deschiptor
MACHO LChAN Cnr4AOr'*LNX*00»LlNFî>Z« IChANNO-I > «llNHCM

MAC“0 TCHANI
C«HAOO*LNKAUO*TRIBSZ*<C"ANNO-n*2

INSERT SIMCOM
_ . kiAHD A y I 1 1 A

6T FFTT 60 TO Sit

»6SN0DN0SLTCN04

LCMAN

TCHANI

SIMCOM

INSEHT SIZES
DATA LI

XF NUCO1- /

NnSZ/6/.THlöSZ/»/.LlNRCM/2/tTPIHCM/l/»FSTLTC/29/.RTSIZE/2/fSIZES

rüûOO/.nhSIZE/3a/.vnTSZ/a/»maxalT/1S/

INSERT COMMUN
COMMON /VARS/ VNTADOtTI 'E*Zt*Ot?)t

XXPHf s*.THBFLGtDELAY *NOALT»NODUPS*HCB*NOETfl*NOOEStCARP»
(M^.-Lf n.mS0N0.ms6TP.mSGpu»mSpSEC*«ICNT•

XBUi.SwT.ALLALT .maxalt. ALTCTH

tables »
Líes STOHAV (LNKA')O)
LTCA STOf'AY (LNK ado >
L T bN STOPAYILNF ADO)
lTTN ST04 AY(LNX ADO >
L Tut STOHAYILN/AíjO*!)
LlCH STORAY (LNhAuDM >
L TL TC SÎOHAY(LNaADO*1)
LTSC STOHAY(LNKA0J«!»
LTLO STOHAY(LNKAOO*1 I
LTSjP STOHAY (LNKAOO*?)
LTOIP STQRAYtLNKAoD*2»
LTnC STohay(LNHAU0*2)
LTrF STOHAY(LNKA0D«2I
LNON STOHAY (LNKAOOOl
LNAA stohay(LnkauO»31
l'OMI STOHAY(LN*AUO*J>
LNOLO STOHAY(LNHAUD*A»
mi>C vNT nooh A Y (nodno • 12 t
NSOL NOOPAY(NODnO*131
NSNT NOOHAV (NOONOtUT
MPOHL NODHAY(NOONO«l*)
NSNL NODRAY(NOONO*IS)
MPT'JC NOOPAY (NJDNO* IS)
NSNLT NOOH*Y tNOONO*16>
mplTCQ NOORAY(NODNO*16)
NSNO NOORAY(NOONO*16)
Mr-LTCX NODRAY (NOONO* 17)

17 01
06 18
Ob 26
01 31
17 01
08 16
02 26
03 28
01 31
17 05
01 22
08 23
01 31
OS 10
01 IS
16 16
16 16

65535
65535

65535

08 07
IT 15
08 08
16)6 32767

03 08
20 11
01 31
20 11

ENU

COMMON
Commun
COMMUN
COMMON

Figure 5-1. Example of Definition Tables

SECTION (i - PROGRAM RESTRICTIONS AND
GUIDELINES FOR USE

(i. 1 PROGRAMMING RESTRICTIONS

In addition to the requirement for a statement numbered 9999 in the source deck

as stated in Paragraph 2.1, the program may generate, just prior to the END card in

the source deck, FORMAT statements which are numbered 9990 to 9994; therefore,

these statement numbers must be reserved. The generated coding may use the integer

variables ITMP1 and ITMP2; therefore, these variables should not be used in the source

coding, as their contents may be altered by a pseudoinstruction. The program

ma use the variables MSK1 to MSK999, NM1 to NM999, and NMA1 to NMA999. When

used, DATA statements are generated and inserted into the program. The program or

subroutine END statement must begin in column 7.

0.2 GUIDELINES AND EXAMPLES OF PSEUDOINSTRUCTION USE

The following paragraphs provide examples of establishing input definition tables

and use of pseudoinstructions in program source coding.

G. 2.1 Using Bit Manipulation and Indirect Addressing

Indirect addressing can simplify program coding while bit manipulation can

materially reduce the memory requirement for program execution.

As an example of how these functions may be used, consider the following pro¬

cessing which might occur in a hypothetical program. It is desired to develop a matrix

containing sel3-ted data concerning subscribers to the Defense Communications System.

The data will be extracted from a data base. The matrix will contain a four-character

tributary name, an integer value indicating type of service (l=AUTOVON, 2=AUTOD!N,

S^th AUTOVON and AUTODIN), an integer alue from 1 to 8 indicating AUTODIN

tributary line and equipment speed, and an integer value from 1 to 2000 indicating the

number of AUTOVON access lines-

6-1

1 r

L

In standard FORTRAN coding, the program might use for the matrix an array

named ISUBS dimensioned at 3000 by 4. As each subscriber is identified in the data

base, a pointer named NUMSUB will be incremented and used as the first subscript

for the array. In filling the matrix, each of the four secondary levels of the array

would be identified in the coding as follows:

Subscriber Name _ ISUBS (NUMSUB, 1)

Type of Service = ISUBS (NUMSUB, 2)

AUTODIN Speed = ISUBS (NUMSUB, 3)

AUTOVON Lines = ISUBS (NUMSUB, 4)

(i. 2.1.1 Example of Indirect Addressing

Instead of referring to each of the four secondary levels in the manner previously

illustrated, coding may be simplified by using mnemonic references and pseudoinstructions.

The direct address shown requires 15 characters to write in the coding, and further, the

address is not synonymous with the data it contains. If the data items were identified

with the following mnemonic references:

Subscriber Name = SNAME

Type of Service = SERV

AUTODIN Speed = DINSPD

AUTOVON Lines = VONLIN

the entries in the definition table would appear as:

tables
SMA^E ISUBS(NUMSUB*1>
SOV ISUBS <NUMSUB«2>
DINSPO ISUPS(NJMSUrt«3)
VCMLIN ISUfcSINUMSUH«*)
END

Filling the matrix with the data items is now simplified. If, for example, it was

determined that a particular subscriber was served by both AUTODIN and ALTON ON,

this would be coded in FORTRAN as:

ISuBStNUMyjb.2) * 3

6-2

Using a pseudoinstruction, the same operation is accomplished with:

P MOVE 3 TO SERV

(». 2.1.2 Example of Bit Manipulation

In the foregoing examples, four words (16 bytes) of IBM 360 370 memory would

be required for each subscriber entry. By examining the maximum values of each of

the data items, it can be seen that no more than 50 bits would ever be used.

BITS 0-7 BITS 8-15 BITS 16-23 BITS 24-31

SNAME (32 BITS)

SERV (2 BITS)

DINSPD (4 BITS)

VONLIN (12 BITS)

WORD 1

WORD 2

WORD 3

WORD 4

1 1 n

• *

i : ! i
i X í i -- *.

With the use of bit manipulation, the same amount of data could be stored in two

words (8 bytes) will 14 bits left over for expansion.

To accomplish the bit packing, the only program source coding change required

would be to redimension the array ISUBS to 3000 by 2. The input tables to the PORTS1M

program would be changed to reflect the new address and bit structure, rhe input tabic

would appear as follows:

T í'l-LES

Sf,4'*r isuesiNUMsiM.n
S'f-V ISUHS (NUMbUrt.?) 0¿ 30
DlfJSPD I SOPS I MUMSUd * ¿) 26
V (iNL IN I SUPS (NUMSOH .2) ‘2 **
L\0

The pseudoinstructions in the source coding would remain the same in all cases.

6-3

(5.2.2 Other Considerations

Bit packing may only he used with integer values (including characters). Real

number values require a full word for floating point representation. Indirect addressing

may be used with real numbers.

While bit packing reduces the amount of memory required, it may increase pro¬

gram execution time due to the additional extract and shift instructions required. The

amount of additional execution time may be reduced by proper placing of the data items

within the packed word. An item aligned at bit 31 requires only an extract instruction",

therefore, the items most frequently referenced should be aligned at that point. Also,

the time required to shift an item is determined by the number of bits it must be shifted.

A shift of two bits takes less time than a shift of 16 bits. When two or more items are

accessed with the same frequency, the smaller items should be aligned to ihe right of

the word.

Bit 0 in a computer word is normally the sign bit and indicates whether the re¬

maining bits represent a positive or negative number. The use of this bit in a packed

word can cause problems depending upon a computer system's compiler and arithmetic

hardware. It is advisable to avoid the use of this bit if the data item will be acted upon

by arithmetic instructions (ADD, SUBTRACT, INCREMENT, DECREMENT).

In processing pseudoinstructions other than INSERT or EXECUTE, the program

searches the definition tables for a match with the references in the instruction. If no

match is found, the program assumes the reference to be a variable or constant and

generates instructions accordingly. In a large program, misspelled references or

references omitted from the definition tables may be overlooked. It is recommended

that the XREF option in the IBM 360/370 be included when executing the FORTRAN

compiler and the variable listing be examined to determine if any items which should

be treated as mnemonic references are being treated as variables. This process may

be further simplified by choosing mnemonic references which would be unacceptable

to the compiler as a variable. This could be accomplished by using references in

which the first character is not alphabetic or one which contains a special character.

6-4

(i. 3 PROGRAM OPERATION AND OUTPUTS

The f.rst step of the FORTSIM program is to read and verify the Definition Table

file. A listing of the file including a card sequence number is produced. An example

of this listing is given in Figure 6-1. If an error is detected, such as a recursive

Macro or an invalid bit structure in a packed mnemonic reference, an appropriate diag¬

nostic message is printed and the program is terminated upon completion of that step.

The second step of the program reads the Source Coding file. As each card is read,

it is listed along with its sequence number. An example is given in Figure 6-2. If an

error is encountered, such as an undefined pseudoinstruction or an undefined Macro

name, an appropriate diagnostic message is printed. An output file is also created in

which pseudoinstructions have been converted to acceptable FORTRAN instructions.

This file becomes the input to the FORTRAN compiler and would normally be written

as a temporary data set. In the IBM 360/370 version of the program, a System Return

Code of 8 is issued by the program when serious errors are encountered so that the

execution of the compiler may be inhibited. If warning messages are printed, a Return

Code of 4 is issued. Warning messages are printed if the program does not encounter

an END card in the Source Coding file, if a parameter in an EXECUTE card exceeds

72 characters, or if a blank card is generated as the result of a Macro execution.

Similar provisions are made in the Honeywell 6000 version of the program.

<¡.3.1 Program Options

The first option suppresses the listing of the input tables and source code deck

normally provided by the program and may be used when only the listing provided by

the compiler is desired. When this option is exercised and an error is detected in the

Definition Table or Source Code files, the option is cancelled and a listing begins at that

point. The Option card specifies NO LIST.

The second option lists an intermediate source coding in which Macro instructions

have hoch expanded, and INSERT statements have been added. This listing contains

sequence numbers. The Option card specifies INTERMEDIATE. An example is given

in Figure 6-3.

6-5

The third option edits all comment cards out of the source coding output file which

is normally passed to the compiler. This option is available to reduce the bulk of the

compiler listing and reduce running time. The Option card specifies EDIT.

The fourth option is a listing of table references, variables, and constants which

have been used in pseudoinstructions. The names used are cross-referenced to the

sequence numbers appearing on the intermediate source code listing. This option

automatically generates the intermediate listing. At the end of the main program and

each subroutine, two additional sections are printed, one with variables and constants

cross-referenced, the other with only table references. These sections are illustrated

in Figure 6-4. This option assists in detecting misspelled references. The Option

card specifies XREF. The Option card format is given in Table 6-1.

6.4 PROGRAM EXECUTION

Examples of program execution are provided in Reference 2. The FORTSIM
• •

program must read the Source Code and Definition Table files twice, once to obtain

a list of statement numbers used in the source coding (and thereby know which may
4«

be used for generated statement numbers), and once for processing. These files
M*

must therefore reside on permanent or temporary data sets for proper program
i**

operation. They may not be entered into the program as "instream data. ’’

4#

AÉ

f

L

i.

i

Table 6-1. Option Card Format

L

u

L

CARD
COLUMN

1-12

13-80

DESCRIPTION

Option Selection

Blank

EXPLANATION

Contains XREF, NO LIST, EDIT, or INTERMEDIATE

6-7

définition tablé listing
SEOIIÎNCE

lN<;fBTCoÍMON /»ATS/ STOBAYÍBOOOO) »NOOPAVOl *3A)

,N<ÎCBTCOmmSÎN/VABS/ vNTAOO.TIME,MSAnn.HlAOO,LTCAOD.NODNO.LTCNO.rSTLTC.

MACPO
P
P
P
P

MACPO
P
P
P
MACPO

! OP t Al
INFO-OFSCPIPTOP

TO OPd)
TO OP(?)
TO PIPO)
TO DP(*>

(OFSFIL.OP)

MOVE TIME
MOVF »I*
movf %?%
move «n
CAIL MPI TE
TMBOT-LTC
TEST FELPA OT
SET FETI
E*FC INFO-OFSCPIPTOP

SE U TC
ltcado*fstltc*ltcno

EETT GO TO SIS

S6SN00N0SLTCN0S

TABLES
ltltc stopav (lnbaoo*h
tpofi stopat clnkaod*#»»
TPINO cT0PAV(INKA00*5)
TPIO STOPAV U MKAOOO»
MSI » STOPAV «MSADO*?)
MSLN STOBAV(MSAOn*l)
FV«L STOPAV(VNT AOO)
f VLK STOPAV(VNTAOO*1)
MPIOF nODPAY(NOONO.S)
MPIOS NOOPAV(NOON0.6)
mpnltc NOOP A V(NOONO *17)
K'SOIT NOOPAV<NOON0.9)
FFTT NOOPAV IFiOONO» 1*>)
FttPA NOOPAV«NOONO*LTCAOOI
FFTI nOOPAY(NOONO, LTCADD)

02 26
01 16
17 15
16 16
17 1S
09 23

01 31

20 09
20 11
01 31

F NO

65535

65535

SIMCOM

COMMON
COMMON

SETLTC

1
2
3
4
5
6
7
B
9

10
11
12
13
14
15
16
17
IB
19
20
21
22
23
24
25
26
27
2B
29
30
31
32
33
34

Figure 6-1. Sample Definition Table Listing

6-8

SOURCE DECK LISTING SEOUíNEE

*•

i
l
1

1

1

P
P
P
P
P
P
c
P

P
P
P
P
P
P

P
P

SUBROUTINE NKTMIN
IMPI KIT INTEGER (•-?)
INSERT SIMOOM
INSERT COMMON
TEST mPNLTC EO
MOVE l.TLTC TO
EXECUTE ^ETITC
TEST EETÎ Nf
CHANNEL IS THPOTTLEO.
Tp^t TROEI EQ
SET TPOEI
C*IL HOL ESI
VNTAOOaHlADP

1
LTCNO

GO TO 8560

1
PUT

GO TO 8560
IN INPUT QUEUE UNLESS

RETURN

ALREADY THERE

LNf ADD
MPI OS
VNTADO

MPIOE
HI ADO

PH560
P

MOVE
TEST
MOVE
El SE
MOVE
MOVE
VNTAOD=HlADD
ENDTEST
MOVE
PE TURN
MOVE
MOVE
CAI L
DEC

VNTAOO

TRINO
MSI R

SNDTMG
TRIO

TO
EQ
TO

TO
TO

EVLK
0
MPI OS

VNTADO
EVBL

TO MPIOE

TO
TO

MS»OD
TRINO

OEC USOIT
NOW ADJUST LTC IE
|pc;T MPNI TC
SUB msln
EXECUTE THPOT-LTC

8570 RETURN
END

NECESSARY
EO 1
EPOM EELBA
SB570S

SET MSG TRANSMITT

RETURN

1
?
3
4
5
6
7
B
9

10
11
1?
13
1*
15
1*
17
18
19
?0
?1
?2
?3
?4
?5
?b
?7
?B
?9
30
31
3?
33
34

l
1

Figure 6-2. Sample Source Code Listing

6-9

L

INTEPMtDIATF SOURCE FILE LISTING SEOIIFNCE

SUPPOIITINF NKTMIN
IMPLICIT INTtiGFP (A-Z)
INSERT
COMMON
INSFPT

COMMO»)
X OP(A)

TFST

SIMOOM
/PAYS/ STORAV(R0000)«NODRAY(31»3«)

COMMON
/VAPS/ VNTAODtTIME.MSAOO.H1ADO.LTCAOO.NOONO.LTCNO.FSTLTC.

FO

C
P

MPNi. rc
•GO TO 8S60

MOVF LTLTO
FxFOtlTF SFTLTC
LTCADO*FSTLTC»LTCNO
TFST FETl NE

•GO TO 8S60
CHANNEL I* TMPOTTLEO.

1

TO LTCNO

SIMCOM

COMMON
COMMON

setltc

p
p
p

10001
p
p

1000?
p

PP560
P

P
P
c
p

TEST TPOFf EO
•RETURN

SET TPOEt
CALL HOLES1
VNTAOO«MlADO
MO'/F LNKAOO
TEST MPIQS
“OVE VNT ADD
GO TO 1000?
CONTINUE
MOVE MPIOF
move hi add
VNTAPD*H1ADD
CONTINUE
MOVE VNT ADO
PE TURN
MOVE TRINO TO
MOVE MSl.P TO
CALL SNDTMG
DEC TRIO
OEC NSOIT
NOW ADJUST LTC IF

PUT
1

IN INPUT QUEUE UNLESS ALREADY THERE

TO
NE
TO

TO
TO

EVLK
0
MPIQS

VNTADD
EVRL

GO TO 10001

TO MPIOE

MSADO
TRINO

SET MSG TRANSMITT

mpnltc

GT

TEST
•RETURN

P SUM
C EXECUTE
P TEST
P SET
C EXEC
P MOVE
P MOVE
P MOVE
P MOVE

CALL WRITE (DFSFIL.OR)
«570 RETURN

END

NECESSARY
EO 1

MSLN
THPOT-LTC

FEI RA
EFT I

INFO-DESCRIPTOR

FROM FELBA
$8570«

FETT GO TO 8570

TIME
6
NODNO
LTCNO

TO
TO
TO
TO

S6SN00N0SL TCNOS
DRU)
DR <?)
ORO)
DRIA)

1
?
3
A
5
6
7
8
N

10
11
1?
13
1A
15
18
17
18
19
?0
?1
??
?3
?A
?5
?6
?7
?8
?9
30
31
3?
33
3A
35
78
37
38
39
AO
A1
A?
A3
AA
A5
A8
A7
A8
A9
50
51

Figure 6-3. Sample Intermediate Source Code Listing

6-10

■1 U| ».. w ..* , iiJP ip l^«i I .il.WJN|||| 1
m

CPOSS-»EFE»ENCE listing of table peffpences

FVRL 27
FVLK 2’
FELBA «.I
FFT I 13 <*3
FFTT <*?
LTLTC 10
MPIOF 2* 30
MPIO«; ?2 23
MPKi TC »* 3B
Mc.l.N 40
MSI P 33
(■SOIT 3*
TW1M0 3? 33
TPIO 3S
TPOFI 14 IB

L*

CPOSS-PEFEBENCF. LISTING OF VARIABLES AND CONSTANTS

0P<1> 45
OP«?) 44
OP(3) 47
0P<4) 4P
HI ADD 27
LNKAOD 21
I TCNO 10
ms»OD 3?
NODNO 47
TIMF 45
VNTAOO 23
0 2?
1 «
6 44

48

?6 30

13 14 38

! i
i i

j
Figure 6-4. Sample Cross Reference Listings

I
1
*

ippp ■■

REFERENCES

1. Description of the Simulation Models of the Defense Communications System

Performance Simulator, Defense Communications Agency System Engineering

Facility Technical Note No. 6-73, March 1973.

2. Cataloged Procedures, CSC Report R4195950-2-2, November 1973.

R-l

Unclassified

DOCUMENT CONTHOL DATA • R S
i Sacunty clMtãihcaiion ol fill«, body ol obtlrorl and indaaind annulation mc.f hr «r

.D
tmrrd wh0n th* overmll rrpml ■% < f«>i

1 OMIUIN»TINC ACTIVITY (Cotporato author)

Computer Sciences Corporation
6565 Arlington Blvd.

^4». MC PORT SC CUT 1 r V Cl â ÍÍ.IA IC A 1 IOf

Unclassified
ib GROUn

j Ht PORT TlTLt

FORTRAN SIMULATION (FORTSIM) LANGUAGE

__—-----—-
,< • ot »c »IP i iwr NOTC» r>p» ol repart and Inrlurirr data«)

_Program Description
jT,,^r7r^inTr,»77/Pi7iiirMÎÎi!»», H««»#)

Richard D. Crumm

« RF OR T D A TC

December 1973
im. TOTAL NO O * PAG«S

35
76 NO OF REES

2
«« r ON I N AC T on GPAN T NO

DCA100-73-C-0033
h PROJE C T NO

d

•A. ORIGINATOR’S RCPOKT NUMfli POP

R4195950-3-1

%b. OTHER REPORT NOIS1 (Any othmt number* th*t y*v be n\aifined

thi* report)

i

Distribution limited”to U.S. Government agencies only, Test and Evaluation December 1973.
Other requests for this document must be referred to the Defense Communications Agency.

hv ,11 p p i t mi- N Tan. notes

NONE

I II- SPONSORING MILIl ARY AC Tl VI TV

Defense Communications Agency
: Code R940

Washington. D.C. 20305-

This report contains a detailed description of the concept and use of the FORTRAN

Simulation (FORTSIM) Language program which extends FORTRAN language to

accommodate large scale simulation models. It permits greater utilization of

available memory, introduces a Macro facility similar to those available in

machine language compilers, and provides programming ease with the use of

indirect addressing and a method of assuring commonality between programs and

subroutines. The program is executable on the IBM 360/370 and Honeywell 6000

Series computer system.

DD ;r.,i473 Unclassified _
Sarunty Tïâ s«iftt alion

...i,.jin..

Security CUtiificetion

