UNCLASSIFIED

AD NUMBER

AD912980

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; AUG 1973. Other requests shall be referred to Air Force Armament Laboratory, Attn: DLTI, Eglin AFB, FL 32542.

AUTHORITY

AFATL ltr, 24 Oct 1975

THIS PAGE IS UNCLASSIFIED

AEDC-TR-73-145 AFATL-TR-73-169

anapan

ENERGY BUT

.....

JUN 2 7 1989

SEPARATION CHARACTERISTICS OF SEVERAL MUNITIONS FROM THE F-4C AND F-111E AIRCRAFT AT MACH NUMBERS FROM 0.9 TO 1.6

J. B. Carman

ARO, 1nc.

TECHNICAL REPORTS

PROPERTY OF U.S. AIR FORCE AEDC TECHNICAL LIBRARY

2

August 1973

this desurposition has a second day oublic release. Per TAB 16-4 13716, 1976 Distribution limited to U.S. Government agencies only; this report contains/information on test and evaluation of military hardware August 1973, other requests for this document must be referred to Air Force Armament Laboratory (AFATL/DLJA), Eglin AFB, FL 32542

PROPULSION WIND TUNNEL FACILITY ARNOLD ENGINEERING DEVELOPMENT CENTER AIR FORCE SYSTEMS COMMAND ARNOLD AIR FORCE STATION, TENNESSEE

Property of U. S. Air Force AEDC LIBRARY 540600=74=C=0001

٩.

4

2

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

SEPARATION CHARACTERISTICS OF SEVERAL MUNITIONS FROM THE F-4C AND F-111E AIRCRAFT AT MACH NUMBERS FROM 0.9 to 1.6

J. B. Carman ARO, Inc.

This document has been approved for public release TAB - 16 - 4IB Fet, 1976

Distribution limited to U.S. Government agencies only; this report contains information on test and evaluation of military hardware; August 1973; other requests for this document must be referred to Air Force Armament Laboratory (AFATL/DLJA), Eglin AFB, FL 32542.

FOREWORD

The work reported herein was done by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), and sponsored by the Air Force Armament Laboratory (AFATL/DLJA), Air Force Systems Command (AFSC), under Program Element 64602F, Project 5613.

The test results presented were obtained by ARO, Inc. (a subsidiary of Sverdrup & Parcel and Associates, Inc.), contract operator of the AEDC, AFSC, Arnold Air Force Station, Tennessee. The tests were conducted from September 18 through 29, 1972 and June 12 through 14, 1973, under ARO Project No. PA013. The manuscript was submitted for publication on July 11, 1973.

This technical report has been reviewed and is approved.

L. R. KISSLING Lt Colonel, USAF Chief Air Force Test Director, PWT Directorate of Test FRANK J. PASSARELLO Colonel, USAF Director of Test

ABSTRACT

Wind tunnel tests were conducted using 0.05- and 0.0416-scale models to study the separation characteristics of several munitions from the F-4C and F-111E aircraft, respectively. For the F-4C tests, separation trajectories of the MK-82 GPB, SUU-30H/B, MK-20 "Rockeye," MK-84 GPB, MK-84 LGB, and MK-84 EOGB stores were initiated from a multiple ejection rack (MER) on the right wing outboard and centerline pylons or from the right wing outboard and inboard pylons alone. Data were obtained at Mach numbers from 1.05 to 1.6 at simulated altitudes of 5,000 to 30,000 ft. Other simulated flight variables included dive angle (0 to 60 deg), parent aircraft acceleration (1 to 3g), and store cg position. For the F-111E tests, separation trajectories of the SUU-30H/B store were initiated from a multiple rack (BRU-3A/A) on the numbers 3 and 6 pylons or from pylon numbers 4 and 6 alone. Data were obtained at Mach numbers from 0.9 to 1.3 at simulated altitudes of 5,000 ft. Other simulated flight variables included and 6 alone. Data were obtained at Mach numbers from 0.9 to 1.3 at simulated altitudes of 5,000 ft. Other simulated flight variables included parent-aircraft wing sweep angle (50 and 72.5 deg) and different ejector forces.

This document has been approved for public release its distribution is unlimited. Per TAB16-4 13 Fet. 1976 1

Distribution funited to U.S. Government agencies only; this report contains information on test and evaluation of military hardware; August 1973; other requests for this document must be referred to Air Force Armament Laboratory (AFATL/DLJA), Eglin AFB, FL 32542.

CONTENTS

Page

	ABSTRACT
I.	INTRODUCTION
И.	APPARATUS
	2.1 Test Facility
	2.2 Test Articles
	2.3 Instrumentation
III.	TEST DESCRIPTION
	3.1 Test Conditions
	3.2 Trajectory Data Acquisition
	3.3 Corrections
	3.4 Precision of Data
IV.	RESULTS AND DISCUSSION
	REFERENCES

APPENDIXES

I. ILLUSTRATIONS

Figure

1.	Isometric Drawing of a Typical Store Separation Installation and a Block Diagram of the Computer Control Loop	11
2.	Schematic of the Tunnel Test Section Showing Model Locations	12
3.	Sketch of the Parent-Aircraft Models	14
4.	Details of the 1/20-Scale F-4 Pylon Models	16
5.	Details of the 1/20-Scale F-4 MER Model	18
6.	Details of the 1/24-Scale F-111 TAC Pylon and BRU-3A/A Rack	19
7.	Details of the 1/20-Scale F-4 Fuel Tank Models	20
8.	Details of the 1/20-Scale ALQ-119 Model	22
9.	Details of the 1/20-Scale AGM-65 Model	23
10.	Details of the 1/20-Scale MK-82 GPB Model	24

Figu	re Page
11.	Details of the 1/20-Scale SUU-30H/B Model
12.	Details of the 1/24-Scale SUU-30H/B Model
13.	Details of the 1/20-Scale MK-20 "Rockeye" Model
14.	Details of the 1/20-Scale MK-84 GPB Model
15.	Details of the 1/20-Scale MK-84 LGB Model
16.	Details of the 1/20-Scale MK-84 EOGB Model
17.	Schematic of the MER and BRU-3A/A Store Stations and Orientations 31
18.	Tunnel Installation Photographs Showing Parent Aircraft, Store, and CTS
19.	Dive Angle Comparison of the MK-82 GPB Launch Trajectories from the MER for Different Mach Numbers
20.	Effects of External Store Configuration on the MK-82 GPB Launch Trajectories from the MER
21.	Dive Angle Comparison of the SUU-30H/B Launch Trajectories from the MER for Different Mach Numbers
22.	Effects of External Store Configuration on the SUU-30H/B Launch Trajectories from the MER, Station 6
23.	Effect of Store cg Location on the SUU-30H/B Launch Trajectories from the MER, Configuration 5-4
24.	Dive Angle Comparison of the MK-20 "Rockeye" Launch Trajectories from the MER for Different Mach Numbers
25.	Effects of External Store Configuration on the MK-20 "Rockeye" Launch Trajectories from the MER, Station 4
26.	Dive Angle Comparison of the MK-84 GPB Launch Trajectories from the Outboard Pylon for Different Mach Numbers
27.	Dive Angle Comparison of the MK-84 LGB Launch Trajectories from the Inboard Pylon for Different Mach Numbers

Figu	re Page					
28.	Dive Angle Comparison of the MK-84 EOGB Launch Trajectories from the Inboard Pylon for Different Mach Numbers					
29.	Variation of the Aerodynamic Coefficients of the MK-84 Stores with Parent Angle of Attack Prior to Launch for Different Mach Numbers 123					
30.	Variation of the Aerodynamic Coefficients of the MK-84 Stores with Parent Angle of Attack Prior to Launch for Different External Store Configurations, $M_{e} = 1.60$					
31.	Variation of the Aerodynamic Coefficients of the MK-84 Stores with Parent Angle of Yaw Prior to Launch for Different External Store Configurations, $M_{\infty} = 1.60$					
32.	Mach Number Comparison of the SUU-30H/B Launch Trajectories from the F-111E for Different Ejector Forces, $\Lambda_{LE} = 50 \text{ deg} \dots \dots \dots \dots \dots 132$					
33.	Mach Number Comparison of the SUU-30H/B Launch Trajectories from the F-111E for Different Ejector Forces, $\Lambda_{LE} = 72.5 \text{ deg} \dots \dots \dots 146$					
II.	TABLES					
	I. Full-Scale Store Parameters Used in Trajectory Calculations 159					
	II. F-4C Load Configurations 160					
	III. F-111E Load Configurations					
NOMENCLATURE						
az	Aircraft acceleration along the Z_F axis, positive direction is down as viewed by the pilot, ft/sec ²					
BL	Aircraft buttock line from plane of symmetry, in., model scale					
Ъ	Store reference dimension, ft, full scale					
CA	Store axial-force coefficient, axial force/q.S					
Cl.	Store rolling-moment coefficient, rolling moment/q_Sb					

 Cl_p Store roll-damping derivative, $dCl/d(pb/2V_m)$

AEDC-TR-73-145

- C_m Store pitching-moment coefficient, referenced to the store cg, pitching moment/q_Sb
- $C_{m_{a}}$ Store pitch-damping derivative, $dC_m/d(qb/2V_{\infty})$
- C_n Store yawing-moment coefficient, referenced to the store cg, yawing moment/q_Sb
- C_{n_r} Store yaw-damping derivative, $dC_n/d(rb/2V_{\infty})$
- FS Aircraft fuselage station, in., model scale
- F_{Z1} Forward ejector force, lb
- F_{Z_2} Aft ejector force, lb
- H Pressure altitude, ft
- I_{xx} Full-scale moment of inertia about the store X_B axis, slug-ft²
- I_{yy} Full-scale moment of inertia about the store Y_B axis, slug-ft²
- I_{zz} Full-scale moment of inertia about the store Z_B axis, slug-ft²
- M. Free-stream Mach number
- m Full-scale store mass, slugs
- p Store angular velocity about the X_B axis, radians/sec
- q Store angular velocity about the Y_B axis, radians/sec
- q., Free-stream dynamic pressure, psf
- r Store angular velocity about the Z_B axis, radians/sec
- S Store reference area, ft^2 , full scale
- t Real trajectory time from initiation of trajectory, sec
- V_m Free-stream velocity, ft/sec
- WL Aircraft waterline from reference horizontal plane, in., model scale

- X Separation distance of the store cg parallel to the flight axis system X_F direction, ft, full scale measured from the prelaunch position
- X_{cg} Full-scale cg location, ft, from nose of store
- X_{L_1} Forward ejector piston location relative to the store cg, positive forward of store cg, ft, full scale
- X_{L_2} Aft ejector piston location relative to the store cg, positive forward of store cg, ft, full scale
- Y Separation distance of the store cg parallel to the flight axis system Y_F direction, ft, full scale measured from the prelaunch position
- Z Separation distance of the store cg parallel to the flight-axis system Z_F direction, ft, full scale measured from the prelaunch position
- **a**_p Parent-aircraft model angle of attack relative to the free-stream velocity vector, deg
- γ Simulated parent-aircraft dive angle; angle between the flight (irection and the earth horizontal, deg, positive for decreasing altitude
- θ Angle between the store longitudinal axis and its projection in the X_F-Y_F plane, positive when store nose is raised as seen by pilot, deg
- Λ_{LE} Wing leading edge sweep angle, deg
- ϕ Angle between the projection of the store lateral axis in the Y_F-Z_F plane and the Y_F axis, positive for clockwise rotation when looking upstream, deg
- ψ Angle between the projection of the store longitudinal axis in the X_F-Y_F plane and the X_F axis, positive when the store nose is to the right as seen by the pilot, deg
- ψ_p Parent-aircraft model angle of yaw relative to the free-stream velocity vector, deg

FLIGHT-AXIS SYSTEM COORDINATES

Directions

- X_F Parallel to the free-stream wind vector, positive direction is forward as seen by the pilot
- ${}^{\mathbf{Y}}_{\mathbf{F}}$ Perpendicular to the $X_{\mathbf{F}}$ and $Z_{\mathbf{F}}$ directions, positive direction is to the right as seen by the pilot

Z_F In the aircraft plane of symmetry, perpendicular to the free-stream wind vector, positive direction is downward

The flight-axis system origin is coincident with the aircraft cg and remains fixed with respect to the parent aircraft during store separation. The X_F , Y_F , and Z_F coordinate axes do not rotate with respect to the initial flight direction and attitude.

STORE BODY-AXIS SYSTEM COORDINATES

Directions

- X_B Parallel to the store longitudinal axis, positive direction is upstream in the prelaunch position
- Y_B Perpendicular to the store longitudinal axis, and parallel to the flight-axis system $X_F - Y_F$ plane when the store is at zero roll angle, positive direction is to the right looking upstream when the store is at zero yaw and roll angles
- Z_B Perpendicular to both the X_B and Y_B axes, positive direction is downward as seen by the pilot when the store is at zero pitch and roll angles.

The store body-axis system origin is coincident with the store cg and moves with the store during separation from the parent airplane. The X_B , Y_B , and Z_B coordinate axes rotate with the store in pitch, yaw, and roll so that mass moments of inertia about the three axes are not time-varying quantities.

SECTION I

Wind tunnel store separation data for six munitions launched from the F-4C aircraft and one munition launched from the F-111E aircraft were obtained using a six-degree-of-freedom captive trajectory store separation system (CTS). The tests were conducted in the Aerodynamic Wind Tunnel (4T) of the Propulsion Wind Tunnel Facility (PWT) using 0.05-scale models for the F-4C test phase and 0.0416-scale models for the F-111E test phase. All trajectory data were obtained using simulated full-scale store parameters.

For the F-4C tests, separation trajectories for three stores (MK-82 GPB, SUU-30H/B, and MK-20 "Rockeye") were initiated from a multiple ejection rack (MER) mounted on either the right wing outboard pylon or centerline pylon while separation trajectories for the MK-84 GPB, MK-84 LGB, and MK-84 EOGB stores were initiated from either the inboard or outboard pylons of the right wing. Mach number was varied from 1.05 to 1.6 and simulated flight variables included altitude and store cg position along with parent aircraft angles of attack, dive angle, and acceleration.

For the F-111E tests, separation trajectories of the SUU-30H/B store were initiated from a multiple rack (BRU-3A/A) mounted on the number 3 or 6 pylon and from the numbers 4 and 6 pylons alone. Mach number was varied from 0.9 to 1.3 and simulated flight variables included altitude and ejector forces along with parent-aircraft angles of attack and wing sweep angles.

SECTION II APPARATUS

2.1 TEST FACILITY

The Aerodynamic Wind Tunnel (4T) is a closed-loop, continous flow, variable-density tunnel in which the Mach number can be varied from 0.1 to 1.3, and operated at Mach 1.6 and 2.0 by placing nozzle inserts over the present nozzle configuration. At all Mach numbers, the stagnation pressure can be varied from 300 to 3700 psfa. The test section is 4 ft square and 12.5 ft long with perforated, variable porosity (0.5- to 10-percent open) walls. It is completely enclosed in a plenum chamber from which the air can be evacuted, allowing part of the tunnel airflow to be removed through the perforated walls of the test section.

For store separation testing, two separate and independent support systems are used to support the models. The parent aircraft model is inverted in the test section and supported by an offset sting attached to the main pitch sector. The store model is supported by the CTS which extends down from the tunnel top wall and provides store movement (six degreees of freedom) independent of the parent-aircraft model. An isometric drawing of a typical store separation installation is shown in Fig. 1, Appendix I. Also shown in Fig. 1 is a block diagram of the computer control loop used during captive trajectory testing. The analog system and the digital computer work as an integrated unit and, utilizing required input information, control the store movement during a trajectory. Store positioning is accomplished by use of six individual d-c electric motors. Maximum translational travel of the CTS is ± 15 in. from the tunnel centerline in the lateral and vertical directions and 36 in. in the axial direction. Maximum angular displacements are ± 45 deg in pitch and yaw and ± 360 deg in roll. A more complete description of the test facility can be found in Ref. 1. A schematic showing the test section details and the location of the models in the tunnel is shown in Fig. 2.

2.2 TEST ARTICLES

The basic dimensions of the 0.05-scale F-4C parent model and 0.0416-scale F-111E parent model are presented in Figs. 3a and b, respectively. The parent models are geometrically similar to the full-scale airplanes except that the tail sections are removed to minimize interference with CTS support movement.

Details of the F-4C pylons and MER are shown in Figs. 4 and 5, respectively, and the F-111E TAC pylon and BRU-3A/A rack details are presented in Fig. 6. The MER was aligned with the 30-in. suspension lug positions on the pylons and the BRU-3A/A was mounted as indicated. Fuel tanks for the F-4C are shown in Fig. 7. Details of the store models are given as follows: ALQ-119 (Fig. 8), AGM-65 (Fig. 9), MK-82 GPB (Fig. 10), SUU-30H/B (Figs. 11 and 12), MK-20 Rockeye (Fig. 13), MK-84 GPB (Fig. 14), MK-84 LGB (Fig. 15), and MK-84 EOGB (Fig. 16). The numbering sequence and roll orientation of the stores for the MER and BRU-3A/A stations are shown in Fig. 17. Typical tunnel installation photographs showing parent aircraft, store model, and CTS are shown in Fig. 18.

2.3 INSTRUMENTATION

Internal strain-gage balances of four, five, and six components were used to obtain store aerodynamic force and moment data. Translational and angular positions of the store were obtained from CTS analog inputs, and parent-model angle of attack was determined using the main pitch sector. The pylons, BRU- $3\hat{A}/A$, and MER contained a touch wire system which enabled the store to be accurately positioned for launch. The system was also wired to automatically stop the CTS motion and give visual indication should the store or sting support make contact with any surface other than the touch wire.

SECTION III TEST DESCRIPTION

3.1 TEST CONDITIONS

Separation trajectory data were obtained at the wind tunnel test conditions listed in the table below. Simulated pressure altitude for each wind tunnel test condition is also shown.

<u>M.</u>	p _t ,psf	<u>T_t,°F</u>	q ₀₀,psf	Aircraft	<u>Λ_{LE} H,ft</u>
1.05	1300	100	500	F-4C	5,000
1.15	1230	ł	1	1	10,000
1.25	1180				15,000
1.30	1170				20,000
1.60	1200	*	*	*	♥ 30,000
0.90	1490	100	500	F-111E	50 5,000
0.95	1410	1	1		50, 72.5
1.05	1300			·	*
1.10	1260				72.5 10,000
1.15	1230				50, 72.5 12,000*
1.15	1230				72.5 15,000
1.20	1200				20,000
1.30	1170	*	*	1 4 1	18,000

*BRU-3A/A racks off for this condition

Tunnel conditions were held constant at the desired Mach number and stagnation pressure while data for each trajectory were obtained. The trajectories were terminated when the store or sting contacted the parent-aircraft model or when a CTS limit was reached.

3.2 TRAJECTORY DATA ACQUISITION

To obtain a trajectory, test conditions were established in the tunnel and the parent model was positioned at the desired angle of attack. The store model was then oriented to a position corresponding to the store carriage location. After the store was set at the desired initial position, operational control of the CTS was switched to the digital computer which controlled the store movement during the trajectory through commands to the CTS analog system (see block diagram, Fig. 1). Data from the wind tunnel, consisting of measured model forces and moments, wind tunnel operating conditions, and CTS rig positions, were input to the digital computer for use in the full-scale trajectory calculations.

The digital computer was programmed to solve the six-degree-of-freedom equations to calculate the angular and linear displacements of the store relative to the parent aircraft pylon (Ref. 2). In general, the program involves using the last two successive measured values of each static aerodynamic coefficient to predict the magnitude of the coefficients over the next time interval of the trajectory. These predicted values are used to calculate the new position and attitude of the store at the end of the time interval. The CTS is then commanded to move the store model to this new position and the aerodynamic loads are measured. If these new measurements agree with the predicted values, the process is continued over another time interval of the same magnitude. If the measured and predicted values do not agree within the desired precision, the calculation is repeated over a time interval one-half the previous value. This process is repeated until a complete trajectory has been obtained.

In applying the wind tunnel data to the calculations of the full-scale store trajectories, the measured forces and moments are reduced to coefficient form and then applied with proper full-scale store dimensions and flight dynamic pressure. Dynamic pressure was calculated using a flight velocity equal to the free-stream velocity component plus the components of store velocity relative to the aircraft, and a density corresponding to the simulated altitude.

The initial portion of each launch trajectory incorporated simulated ejector forces in addition to the measured aerodynamic forces acting on the store. The ejector force was considered to act perpendicularly to the rack mounting surface. The ejector forces and locations along with other full-scale store parameters used in the trajectory calculations are listed in Table I, Appendix II.

3.3 CORRECTIONS

Balance, sting, and support deflections caused by the aerodynamic loads on the store models were accounted for in the data reduction program to calculate the true store-model angles and coordinates. Corrections were also made for model weight tares to calculate the net aerodynamic forces on the store model.

3.4 PRECISION OF DATA

The trajectory data are subject to error from several sources including tunnel conditions, balance measurements, extrapolation tolerances allowed in the predicted coefficients, computer inputs, and CTS positioning control. Maximum error in the CTS position control was ± 0.05 in. for the translational settings and ± 0.15 deg for the angular settings in pitch and yaw. Extrapolation tolerances were ± 0.10 for the aerodynamic coefficients. The estimated uncertainty in setting Mach number was ± 0.005 , and uncertainty in parent-model angle of attack was estimated to be ± 0.1 deg. The maximum uncertainties in the full-scale position data caused by the balance inaccuracies are given below:

Store	t,sec	X,ft	<u>Y,ft</u>	<u>Z,ft</u>	θ ,deg	ψ,deg	ø,deg
MK-82 GPB SUU-30H/B	0.2	±0,1	±0.1	±0.1	±0.8	±0.6	
(5 percent)	0.2	±0. 1	±0.1	±0.1	±1.3	±1.3	
MK-20	0.2	±0.1	±0.1	±0.1	±1.6	±1.5	
MK-84 GPB	0.2	±0.1	±0.1	±0.1	±0.1	±0.1	±0.9
MK-84 LGB	0.2	±0.1	±0.1	±0.1	±0.1	±0. 1	±1.0
MK-84 EOGB SUU-30H/B	0.2	±0.1	±0.1	±0.1	±0.1	±0.1	±0.9
. (4.16 percent	t) 0.2	±0.1	±0.1	±0.1	±0.5	±0.4	

SECTION IV RESULTS AND DISCUSSION

All trajectories obtained were for use in the determination of safe separation envelopes of the respective munitions from the F-4C and F-111E aircraft. No attempt will be made in this report to establish these envelopes or to qualify the store as safe or unsafe for aircraft separation. The trajectory data are presented as obtained from the wind tunnel along with comments regarding the aerodynamics of the store in the aircraft flow field.

Data taken during these tests consisted of ejector-separated trajectories simulating release from multiple carriage racks or from pylons alone. Data showing the linear displacements of stores relative to the carriage position and the angular displacements relative to the flight-axis system are presented as functions of full-scale trajectory time. Positive X, Y, and Z displacements (as seen by the pilot) are forward, to the right and down, respectively. Positive changes in θ , ψ , and ϕ (as seen by the pilot) are nose up, nose to the right, and clockwise, respectively. Table I lists the full-scale store parameters used in trajectory calculations and Tables II and III describe the aircraft load configuration nomenclature.

Launch trajectories for the MK-82 GPB are presented in Figs. 19 and 20 with all separations being initiated from a MER on the right wing outboard pylon of the F-4C. At all Mach numbers for the parent in level flight (Fig. 19), the MK-82 GPB tended to pitch down when released from the bottom and aft shoulder stations (MER positions 1, 2, 3, and 5) but to pitch up when released from the forward shoulder stations (MER positions 4 and 6). Separations from all MER stations almost always resulted in an initial positive yaw of the store. When compared with the level flight case, the trajectories obtained at simulated parent dive angles of 45 and 60 deg generally showed increased pitch down (or decreased pitch up) and increased yaw. For parent accelerations of -2 g, yaw angle was generally reduced and the store separated at a slightly faster rate. Removal of the ALQ-119 ECM pod (configuration 2, Fig. 20) from the right wing inboard pylon generally introduced increased pitch and decreased yaw for the trajectories at MER station 4 (inboard, forward shoulder). For the forward outboard shoulder (MER station 6), little influence on pitch was noted.

Separations of the SUU-30H/B from the F-4C aircraft are presented in Figs. 21, 22, and 23. All trajectories were initiated from a MER on the aircraft centerline pylon. For the parent in level flight (Fig. 21), the SUU-30H/B tended to pitch down when released from MER stations 1, 2, 3, and 5 and pitch up when released from MER stations 4 and 6. Trends in both pitch and yaw were quite similar for parent-aircraft dive angles (45 and 60 deg) and accelerations (-2 g). However, the store did separate at a much faster rate when the parent was accelerating. Placement of the external stores produced enough differences in the aircraft flow field to significantly vary the trajectories (Fig. 22) from MER station 6 as would be expected. Aft movement of the store cg position (Fig. 23) reduced pitchup but increased yaw negatively for the one configuration tested.

5

AEDC-TR-73-145

Trajectories for the MK-20 Rockeye, shown in Figs. 24 and 25, were also initiated from an MER on the centerline pylon of the F-4C. Trends in the MK-20 data for level flight, dive angle, parent acceleration, and movement of the external stores were quite similar to those of the SUU-30H/B.

Separations of the MK-84 GPB from the right wing outboard pylon of the F-4C are presented in Fig. 26. The store pitched down and yawed positively at all test conditions and removal of the ALQ-119 ECM pod (configuration 11) from the right wing inboard pylon had little effect on the trajectories. However, the accelerated flight case did produce a much faster store separation from the parent.

Shown in Fig. 27 are the MK-84 LGB launch trajectories from the right wing inboard pylon of the F-4C. For both level and diving flight, pitch of the store changed from up to down as Mach number increased from 1.05 to 1.6. Yaw behavior was substantially influenced by both changes in Mach number and arrangement of the fuel tanks (configuration 14). Separations of the MK-84 EOGB (Fig. 28) generally indicated only small pitch excursions and the yawing characteristics were quite similar to those of the MK-84 LGB.

The aerodynamic characteristics of the MK-84 stores in the carriage position are presented in Figs. 29 and 30 with varying parent angle of attack and in Fig. 31 with varying parent angle of yaw. These data were obtained with the CTS by adjusting the store to the correct attitude and position for each parent aircraft attitude. For all three munitions, the trends in the data with angle of attack were not greatly affected by a change in Mach number (Fig. 29), although the levels of the data did change considerably in some cases. Generally, only the lateral coefficient variations with angle of attack were greatly affected by the arrangement of the fuel tanks (Fig. 30), which substantiated the trajectory data of Figs. 27 and 28. The variation of the lateral coefficients with angle of yaw were similarly affected (Fig. 31).

Launch trajectories of the SUU-30H/B from the F-111E aircraft are presented in Figs. 32 and 33. The separations were initiated from a BRU-3A/A rack on the number 3 or number 6 pylons or from the number 4 and number 6 pylons alone. Ejectors are identified on the figures as 1, 2, or 3, corresponding to the ejector forces listed in Table I. With Λ_{LE} at 50 deg (Fig. 32), the SUU-30H/B tended to pitch down when launched from the bottom and aft shoulder rack positions as well as the pylons alone and to pitch up when launched from the forward shoulder positions for simulated ejector forces of 900 and 500 lb on the forward and aft feet, respectively (ejector 1). Using an ejector force of 1300 lb on the aft foot (ejector 2), decreased pitch down, whereas an ejector force of 1300 lb on the forward foot (ejector 3) decreased pitch up as would be expected. Yaw of the store was almost always nose away from the aircraft centerline. Separation characteristics of the munition for $\Lambda_{LE} = 72.5$ deg (Fig. 33) were quite similar to those for $\Lambda_{LE} = 50$ deg.

REFERENCES

•

-.

- 1. <u>Test Facilities Handbook</u> (Ninth Edition). "Propulsion Wind Tunnel Facility, Vol. 4." Arnold Engineering Development Center, July 1971.
- 2. Christopher, J. P. and Carleton, W. E. "Captive-Trajectory Store-Separation System of the AEDC-PWT 4-Foot Transonic Tunnel." AEDC-TR-68-200 (AD839743), September 1968.

APPENDIXES I. ILLUSTRATIONS II. TABLES

.

9

Fig. 1 Isometric Drawing of a Typical Store Separation Installation and a Block Diagram of the Computer Control Loop

TYPICAL PERFORATED WALL CROSS SECTION

.

b. F-111E Aircraft Fig. 2 Concluded

a. F-4C (1/20 Scale) Fig. 3 Sketch of the Parent-Aircraft Models

ALL DIMENSIONS IN INCHES

b. F-111E (1/24 Scale) Fig. 3 Concluded

b. Inboard Pylon

c. Centerline Pylon Fig. 4 Details of the 1/20-Scale F-4 Pylon Models

Fig. 4 Concluded

.

Fig. 5 Details of the 1/20-Scale F-4 MER Model

18

AEDC-T R-73-145

.

ALL DIMENSIONS IN INCHES

Fig. 6 Details of the 1/24-Scale F-111 TAC Pylon and BRU-3A/A Rack

a. 370 gal Fig. 7 Details of the 1/20-Scale F-4 Fuel Tank Models

1000

1.750 2000 2250

0724

0812

0 890

0 958

1016

4250

4 500

4750

5 000

6 000

1286

1294

1298

1 300

.

Fig. 8 Details of the 1/20-Scale ALQ-119 Model

23

DIMENSIONS IN INCHES

Fig. 9 Details of the 1/20-Scale AGM-65 Model

Fig. 10 Details of the 1/20-Scale MK-82 GPB Model

.

Fig. 11 Details of the 1/20-Scale SUU-30H/B Model

3.833

- 2.218

Xcg

Fig. 12 Details of the 1/24-Scale SUU-30H/B Model

Fig. 13 Details of the 1/20-Scale MK-20 "Rockeye" Model

Fig. 14 Details of the 1/20-Scale MK-84 GPB Model

Fig. 15 Details of the 1/20-Scale MK-84 LGB Model

SIDE VIEW

FIN DETAILS

Fig. 16 Details of the 1/20-Scale MK-84 EOGB Model

.

30

- -

NOTE: The square indicates the orientation of the suspension lugs

.

.

TYPE		ROLL
RACK	STATION	ORIENTATION, deg
MER	1	0
	2	0
	3	45
	4	45
	5	- 4 5
÷.	6	- 4 5
BRU-3A/A	1	о
	2	0
	3	43
	. 4	43
	5	- 4 3
ł	6	-43

Fig. 17 Schematic of the MER and BRU-3A/A Store Stations and Orientations

a. F-4C Fig. 18 Tunnel Installation Photographs Showing Parent Aircraft, Store, and CTS

 Λ_{LE} = 50 deg

 Λ_{LE} = 72.5 deg

b. F-111E Fig. 18 Concluded

d. Configuration 1-2, M_∞ = 1.05 Fig. 19 Continued

SYMBOL

M

«p

f. Configuration 1.2, M. = 1.25 Fig. 19 Continued

h. Configuration 1-3, M_{*} = 1.15 Fig. 19 Continued

M

j. Configuration 1-4, M_m = 1.05 Fig. 19 Continued

•

p. Configuration 1-6, M_ = 1.05 Fig. 19 Continued

•

~

.

r. Configuration 1-6, M₂ = 1.25 Fig. 19 Continued

t. Configuration 1-7, M₂ = 1.15 Fig. 19 Continued

ı.

e. M_m = 1.05, MER Station 4 Fig. 20 Effects of External Store Configuration on the MK-82 GPB Launch Trajectories from the MER

c. M_a = 1.25, MER Station 4 Fig. 20 Continued

 \checkmark

SYMBOL

M.

e. M_ = 1.15, MER Station 6 Fig. 20 Continued

,

a. Configuration 5-2, M_m = 1.15 Fig. 21 Dive Angle Comparison of the SUU-30H/B Launch Trajectories from the MER for Different Mach Numbers

SYMBOL

M

e. Configuration 5-4, M₂ = 1.15 Fig. 21 Continued

i. Configuration 5-6, M_ = 1.15 Fig. 21 Continued

a. M_m = 1.15 Fig. 22 Effects of External Store Configuration on the SUU-30H/B Launch Trajectories from the MER, Station 6

b. M_m = 1.30 Fig. 22 Concluded

Fig. 23 Effect of Store cg Location on the SUU-30H/B Launch Trajectories from the MER, Configuration 5-4

•

c. Configuration 8-1, M_m = 1.30 Fig. 24 Continued

.

.

SYMBOL

M.

.

o. Configuration 8-6, M_ = 1.05 Fig. 24 Continued

r. Configuration 8-7, M_ = 1.05 Fig. 24 Concluded

a. M_w = 1.05 Fig. 25 Effects of External Store Configuration on the MK-20 "Rockeye" Launch Trajectories from the MER, Station 4

b. M_m = 1.15 Fig. 25 Continued

c. M. = 1.30 Fig. 25 Concluded

.

.

•

e. Configuration 11, M_ = 1.25 Fig. 26 Continued

f. Configuration 11, M. = 1.60 Fig. 26 Concluded

a. Configuration 12, M_w = 1.05 Fig. 27 Dive Angle Comparison of the MK-84 LGB Launch Trajectories from the Inboard Pylon for Different Mach Numbers

I

.

f. Configuration 13, M_e = 1.60 Fig. 27 Continued

j. Configuration 14, M_ = 1.60 Fig. 27 Concluded

$$\frac{\text{SYMBOL}}{\text{O}} \quad \frac{\text{M}_{\text{b}}}{1.05} \quad \frac{\text{M}_{\text{p}}}{0} \quad \frac{\gamma}{0} \quad \frac{\text{A}_{\text{z}}}{0} \\ \text{\Delta} \quad 1.05 \quad -0.4 \quad 60 \quad 0$$

a. Configuration 15, M_ = 1.05 Fig. 28 Dive Angle Comparison of the MK-84 EOGB Launch Trajectories from the Inboard Pylon for Different Mach Numbers

۰.

f. Configuration 16, $M_{\infty} = 1.60$ Fig. 28 Continued

Mao

SYM

-

c. MK-84 EOGB, Configuration 16 Fig. 29 Concluded

Fig. 30 Variation of the Aerodynamic Coefficients of the MK-84 Stores with Parent Angle of Attack Prior to Launch for Different External Store Configurations, M_e = 1.60

c. MK-84 EOGB Fig. 30 Concluded

a. MK-84 GPB Fig. 31 Variation of the Aerodynamic Coefficients of the MK-84 Stores with Parent Angle of Yaw Prior to Launch for Different External Store Configurations, M_w = 1.60

•

b. MK-84 LGB Fig. 31 Continued

•

c. MK-84 EOGB Fig. 31 Concluded

.

•

b. Configuration 34 Fig. 32 Continued

c. Configuration 31 Fig. 32 Continued
INB'D	STMBOL	M.	ap	^LE	EJECTOR	CONFIG
22	•	0.95	1.5	50	1	29
~	O	0.95	1.5	50	2	29
$\delta $	Ċ	1.05	1.2	50	2	29

d. Configuration 29 Fig. 32 Continued

INB'D	SYMBOL	Μ.,	œp	ALE.	EJECTOR	CONFIG
27	•	0.95	1.5	50	1	28
	C	0.95	1.5	50	3	28
∇	۵	1.05	1.2	50	3	28

f. Configuration 28 Fig. 32 Continued

g. Configuration 32 Fig. 32 Continued

h. Configuration 25 Fig. 32 Continued

i. Configuration 24 Fig. 32 Continued

j. Configuration 23 Fig. 32 Continued

SYMBOL	M_	αp	ALE.	EJECTOR	CONFIG
Δ	0.90	1.6	50	1	21
∢	1.20	1.4	50	1	21
+	1.30	1.4	50	1	21

Fig. 32 Continued

SYMBOL	M_	α _ρ	ALE.	EJECTOR	CONFIG
Δ	0.90	1.6	50	2	22
	1.05	1.2	50	2	22
٥	1.15	1.3	50	2	22

INB'D	SYMBOL	H_	αp	ALE	EJECTOR	CONFIG
57	Ο	0.95	2.7	72.5	2	33
5	Ū	1.05	2.1	72.5	2	33
22	٥	1.15	1.5	72.5	2	33
		1.05	2.1	72.5	1	33

Fig. 33 Mach Number Comparison of the SUU-30H/B Launch Trajectories from the F-111E for Different Ejector Forces, $\Lambda_{LE} = 72.5$ deg

OUTB'D	SYMBOL	M.	αp	ALE	EJECTOR	CONFIG
22	O	0.95	2.7	72.5	2	34
	Ċ	1.05	2.1	72.5	2	34
22	٥	1.15	1.5	72.5	2	34

OUTB'D	SYMBOL	ML.	œ,	1E	EJECTOR	CONFIG
22	Ø	0.95	2.7	72.5	1	31
000	⊳	1.10	1.4	72.5	1	31
$\delta \overline{\bullet}$	٥	1.15	1.5	72.5	1	31

149

e. Configuration 29 Fig. 33 Continued

f. Configuration 30 Fig. 33 Continued

INB'D	SYMBOL	ML.	æp	1.E	EJECTOR	CONFIG
22	•	0.95	2.7	72.5	1	28
	O	0.95	2.7	72.5	3	28
∇	٥	1.15	1.5	72.5	3	28

g. Configuration 28 Fig. 33 Continued

INB'D	SYMBOL	M_	œ٩	مرد ا	EJECTOR	CONFIG
7	Ð	0.95	2.7	72.5	1	25
\sim	•	1.05	2.1	72.5	1	25
$\nabla \mathbf{A}$	♦	1.15	1.5	72.5	1	25
v	•	1.15	1.5	72.5	2	25

Fig. 33 Continued

j. Configuration 24 Fig. 33 Continued

INB'D	SYMBOL	Η.,	«p	ALE E	JECTOR	CONFIG
$\overline{\mathbf{A}}$	C	0.95	2.7	72.5	1	23
	•	1.05	2.1	72.5	1	23
∇	٥	1.15	1.5	72.5	1	23
•	•	1.15	1.5	72.5	3	23

k. Configuration 23 Fig. 33 Continued

I. Configuration 21 Fig. 33 Continued

•

SYMBOL	н.	œp	ALE	EJECTOR	CONFIG
٩	1.15	2.1	72.5	2	22
	1.30	2.2	72.5	2	22

m. Configuration 22 Fig. 33 Concluded

Parameter	MK 82 GPB	SUU 30 H/B (1/20 Scale)	мк-20	MK·84 GPB	MK-84 LGB	MK-84 EOGB	SUU-30 11/B (1/24 Scale)
Mass, m, slugs	15.7	25.5	15,1	61,2	64.0	70. 3	23.3
Center of gravity location, X _{cg} , ft	3, 196	3.224 Fwd cg 3.393 Aft cg	3.725	5.000	8.216	6, 604	3,267
Center-of-gravity location, Ycg, ft	o	0	0	. 0	0	0	O
Center-of-gravity location, Z _{cg} , ft	0	0	0	o	D	0	o
Moment of inertia, Ixx, slug-ft ²	1.300	5.700	2.100	24.800	24.000	25,000	5.700
Moment of inertia, I _{yy} , slug-ft ²	37.50	60,35	49.80	360.00	416.000	524,000	57.00
Moment of inertia, I_{zz} , slug-ft ²	37.50	60.77	49.80	360.00	416.000	524,000	57.00
Product of inertia, I _{xz} , slug-ft ²	0	0	υ	o	0	0	0
Store reference width, b, ft	0,895	1,343	1.106	1.500	1.500	1.500	1.343
Store reference area, S, ft ²	0.629	1,416	0,961	1.767	1.767	1.767	1,416
Location of forward ejector force, X_{L_1} , ft	- 0. 255	-0.380 Fwd cg -0.213 Aft cg	0.107	0.666	0_ 595	0, 813	0.417
Location of aft ejector force, $X_{1,2}$, ft			-	-1.000	-0.071	-0.853	-0.750
Forward cjector force, lb	1100	1100	1100	1500	1500	1500	1) 900 2) 0 3) 1300
Aft ojector force, Ib		-		1500	1500	1500	1) 500 2) 1300 3) 0
Pitch-damping derivative, C _{mq} , per radian	- 54	-54	- 48	-120	-275	-110	-54
Yaw-damping derivative, C _{nr} , per radian	- 54	-54	- 48	- 120	· 275	-110	- 54
Roll-damping derivative, C_{ℓ_p} , per radian	- 2	- 2	-1	-10	-20	-10	- 2
Fjector stroke length, ft	0.241	0.241	0.241	0.343	0.343	0.343	0.250

TABLE I FULL-SCALE STORE PARAMETERS USED IN TRAJECTORY CALCULATIONS

							•
Config.	Lef: Wing Outboard Pylon	Left Wing Inspard Pyler	Forward Left Missile Wel. Pylo.	Forward Left Contenante Missile Well Pylor Pylor Pylor		Right Wing Inboard Pylon	Right Wing Outboard Pylon
1-2	Empty#	Empty	C.ten**	d00- gal Fuel	Clean	ALQ 119	MK-82 GPB
		┥┦── ━	'i			+	
1-2		1					МК-82 СРВ ССО ССО
							MK-82 GPB
					L I		. Qve
1-4							MK-82 GPB ОТ ОТ
	;		╞╸╶╾╺╁╾╾┈			┾╴╾┤╾╼╼	<u> </u>
 1-5							МК-82 GPB б⊽
l	<u> </u>				<u> </u>	<u></u>	•7
1-6		·					MK-82 GPB ●7
<u> </u>		<u> </u>	·		┟┟	.	
1-7							MX-82 GPB ♥ ♥
	<u> </u>	<u> </u>	·			<u> </u>	MK-92 CBB
1-10	₩ }		1				3 20
1					, 1	! ↓	6 0
2-5						Empty	МК-82 GPB ●♥
	1						▽ .
							MK-82 GPB _
2-7	' <u>↓</u>	'		·↓			~
	· · · · · · · · · · · · · · · · · · ·	······	├	CTITI GOTT/T		+	
3-7	gal	AGM 85		300-30H/B ⊽e		. AGM 65	gal
3-7	Fuel Tank	el AGN 55 ak .	1 ↓		↓	NOW 00	F le! Tank

TABLE II F-4C LOAD CONFIGURATIONS

Empty cenotes no store on pylor
Clean denotes pylon removed

•

. .

•

.

Coni.g.	Left Wing Outboard Pylon	Left Wing Inboard Pylor.	Forward Lef Missile Well Pylor	t Centerline Pylon	Forward Right Missile Well Pylon	Right Wing Inboard Pylon	Right Wing Outboarc Pylon	
4-7	370- gal Fuel Tank	Empty	Clean	SUU-30H/B	Clean	ALQ :19	370- gal Fjel Tank	
5-2		AGM 63		SUU-30H/B	ALQ 119	AGM 65		
5-3				SUU-30H/B				
5-4				SUU-30H/B				
5-5			1	SUU-30H/B 07				
5-6				SUU-30H/B				
5-7			•	SUU-30H/B Ve V				
6-7			ALQ 119	SUU-30H/B	Clean	•		
7-6		Empty	Clean	MK-20 ●7 ▼	i 🕇	ALQ 119		
8-i		AGM 65		MК-20	ALQ 119	AGM 65		
8-2				MK-20				
8-3				MK-20 570 670	V			

TABLE II (Continued)

Config.	Lef: Wirg Outboard Pylon	Left Wing Inboard Pylon	Forward L Missile W Pylon	eft ell Centerline Pylon	Forward R.gat Miss.lc Well Pylon	Right Wing Irboard Pylon	R.g.:t Wing Outboard Pylon	
8-4	370- gal Fuc- Tank	AG M 85	Clenn	МК-20 СС С7	ALQ 119	AGM 85	370- gəl Fr.cl Tank	
8-5				МК-20 б7 €7				
d-6		i		МК-2С Ф7 ▼				
8-7			•	MK-20 ▼ ▼	¦ ▼			
я- e		V	ALQ 113	МК-2С Ф7 ▽	Clean	•	•	
10	MK-24 GPB (Dummy)	Empty	Clean	600- gal Fuel Tank		ALÇ 119	MK-84 GPB (Launch)	
11	V	↓				Empty		
12	370- gal Fuel Tank	MK-84 LGB (Dummy)		Clear.	ALQ 119	 	370- gal Fuel Tank	
13	•				Clean			
14	AGM 63	•		600- gai Fuel Tan<	ALQ 119		AGM 85	
15	370- gal Fuel Tark	MK-84 EOGB (Dummy)		Clean	•	MK-84 EOGB (Lainen)	370- gal Fuel Tans	
16	↓				Clean	i		
17	AGM 65		↓ ↓	€00- gal Fuel Tank	ALQ 119		AGM 65	

1

TABLE II (Concluded)

•

	Left Wing		Right Wing					
Config.	Pylon 3	Pylon 4		Config.	Pyl	on 5	Pylon 6	
22	Empty	SUU-30H/B (Launch)		21	SUU- (Dur	30H/B nmy)	SUU-30H/B (Launch)	
. 24	SUU-30H/B ♥ ♥	Cle	an	23	Clo	ean	SUU-30H/B ▼ ▼	
32	SUU-30H/B VO V			25			SUU-30H/B Vo Vo	
30	SUU-30H/B OV OV			28			SUU-30H/B CT CT	
31	SUU-30H/B CC C			29			SUU-30H/B CCO CCO	
34	SUU-30H/B		7	33			SUU-30H/B	

TABLE III F-111E LOAD CONFIGURATIONS*

-

* Note: pylons 1, 2, 7, and 8 are clean for all configurations

.

.

UNCLASSIFIED

Security Classification									
DOCUMENT CONTROL DATA - R & D									
1 ORIGINATING ACTIVITY (Corporate author)									
Arnold Engineering Development Cente	r UNCLASSIFIED								
Arnold Air Force Station, Tennessee	37389 26. GROUP								
· ·	N/A								
SEDADATION CHADACTEDISTICS OF SEVERA									
AIRCRAFT AT MACH NUMBERS FROM 0.9 TO 1.6									
4 OESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report - September 18, 1972 to June 14, 1973									
J. B. Carman, ARO, IThis document has been approved for public release 79916 its distribution is unlimited.									
6 REPORT DATE	7#. TOTAL NO. OF PAGES 78. NO OF REFS								
August 1973	173 2								
88. CONTRACT OR GRANT NO	94. ORIGINATOR'S REPORT NJMBER(5)	_							
6. PROJECT NO 5613	AEDC-TR-73-145 AFATL-TR-73-169								
• Program Element 64602F	90. OTHER REPORT NO(5) (Any other numbers that may be seeigned this report)								
d.	ARO-PWT-TR-73-99								
10 DISTRIBUTION STATEMENT DISTRIBUTION limite	d to U.S. Government agencie	s only;							
this report contains information on	test and evaluation of milit	ary hard-							
ware; August 1973; other requests fo	r this document must be refe	erred to							
Air Force Armament Laboratory (AFATL	(DLJA), Eglin AFB, FL 32542.								
	Air Force Armament Laborato	rv							
	(DLIA) Eglin AFR FL 32542								
Available in DDC	,								
13. ABSTRACT Wind tunnel tests were condu	cted using 0.05- and 0.0416-	scale							
models to study the separation chara	cteristics of several muniti	ons from							
the F-4C and F-111E aircraft, respec	tively. For the F-4C tests,	separa-							
tion trajectories of the MK-82 GPB,	SUU-30H/B, MK-20 "Rockeye,"	MK-84							
UPB, MK-84 LGB, and MK-84 EOGB store	s were initiated from a mult	tiple							
from the right wing outboard and inh	g outboard and centerline py	tons or							
obtained at Mach numbers from 1.05 f	0 1.6 at simulated altitudes	of							
5,000 to 30,000 ft. Other simulated	flight variables included of	live							
angle (0 to 60 deg), parent aircraft	acceleration (1 to 3 g), an	nd store							
cg position. For the F-111E tests,	separation trajectories of t	the							
SUU-30H/B store were initiated from	a multiple rack (BRU-3A/A) o	on the							
numbers 3 and 6 pylons or from pylon	numbers 4 and 6 alone. Dat	a were							
5 000 to 20 000 ft Othor circlated	obtained at Mach numbers from 0.9 to 1.3 at simulated altitudes of								
aircraft wing sween angle (50 and 72	.5 deg) and different ejecto	r T							
forces.		-							
Distribution limited to ILS Gove	rnment agencies only: this m	eport							
contains information on test and	evaluation of military hardu	epor t							
August 1973; other requests for t	his document must be referre	ed to							
Air Force Armament Laboratory (AF	ATL/DLJA), Eglin AFB, FL 325	642.							

J

DD FORM 1473

-

.

UNCLASSIFIED

Security Classification

14 KEY WORDS		LINK A		LINKB		LINK C	
		WT	ROLE	WΤ	ROLE	₩Т	
F-4C aircraft							
F-111E aircraft							
ammunition							
external stores							
MK-82 GPB							
SILL-30H/B							
MK-84 GPB							
MK-84 LGB							
MK-84 EOGB							
bomb trajectories							
transonic flow							
aerodynamic characteristics							
wind tunnel tests							
•							
					i		
			1				
AFRC Arabid AFB Toma							

UNCLASSIFIED