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1. TURBULENT BOUNDARY LAYER AND NEAR WAKE 

1.1 Introduction 

The major accomplishment of this task, to date, has been the successful 

implimentation of a turbulence modeling theory into the previous laminar 

near wake code.    First    results have been obtained, and will  be presented 

here, corresponding to ABMDA-sponsored wind tunnel   tests conducted at AEDC 

by Gran^  ' on a 6 degree half angle adiabatic cone at Mach 7,5 and free- 

stream Reynolds number = 1.7 x 10 , based on base diameter.    These calcul- 
ations represent the beginning of the portion of the analysis directed 

towards improving and verifying the implimented turbulence modeling theory 

for the wake problem.    This is a crucial  part of the analysis of the tur- 

bulent near wake, since the eventual goal of the present task is to apply 

the modeling to reentry vehicles under conditions in which no detailed 

flowfield and turbulence measurements have been made.    Other planned tests 

of the theory will be subsequently discussed, but first an outline of the 

theory and a discussion of the new results will  follow. 

1.2 Description of Analysis 

The near wake analysis begins with the calculation of the interacting 

boundary layer on the vehicle upstream boundary layer separation.    The ( 

present theory was developed for vehicles with rcunded, as opposed to sharp, 

aft corners, and the test model  was also configured with an aft shoulder I 

radius of 1/6 the base radius.    Starting on the straight portion of the 

cone just upstream of the shoulder junction,  it is possible to generate an 

infinitude of separation solutions where each solution corresponds to a 

different separation point on the shoulder, and hence, to a different 

separation pressure.    The proper or unique separation solution d^ends upon 

the downstream behavior of the flow in the wake region.    In the present 

formulation, a saddle point singularity exists in the wake ne:k downstream 

of the wake stagnation point, and the only acceptable wake solution is the 

solution which passes through the singularity.    Solutions which lie on 

either side of the saddle point are referred to as either sink or source 

solutions and, as will be shown later, are   characterized by non-wake-like 

behaviors.    The wake solution begins at separation, and only a particular 
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separation solution will yield the wake solution which passes through the 

singularity; uniqueness of the separation and near wake flowfleld solution 

Is thereby obtained. 

The wake neck saddle point, discussed above, is the well-known 

Crocco-Lees critical  point and results from an analysis of viscous inter- 

action flows based upon a parabolic description of the flow.    In the pre- 

sent analysis of both the boundary layer and wake, the governing equations 

are written in a coordinate system consisting of streamlines and normals 

to streamlines.    The governing equations contain the ful1  inviscid terms 

and viscous terms associated with the cross-stream diffusion of momentum 

and energy.    They are, therefore, parabolic, but are more than just boundary- 

layer-like in that both the streamwise and cross-stream pressure gradients 

are included.    Thus, the expansion of the boundary layer into the wake and 

the compressions associated with the lip and wake shock waves can be cal- 

culated. 

( 

The mean flow and auxiliary equations are presented in References 2 

and 3 for laminar flow.    They differ from the equations solved here by the 

inclusion of cross-stream turbulent diffusion of momentum and energy, and 

by the addition of two differential equations which describe the turbulence. 

The turbulence modeling will  be discussed subsequently in detail. 

1.3    Turbulence Modeling 

In the present theory, the non-homogeneous turbulence field is charac- 

terized at each point by two independent variables consisting of the tur- 

bulent kinetic energy, e ■ (u'z + v1^ + w'^)/2 and a lateral  scale length 

of the turbulence, l.    To solve for these variables, two partial  differential 

equations ar» written, each which represents a balance between the production, 

dissipation, diffusion, and convection of turbulent energy and its rate-of- 

dissipation.    Because of the closure problems always encountered in the 

Reynolds description of turbulence,  the terms    appearing in the governing 

equations are models of the actual  processes and are, therefore, approximate. 

However, reasonable success has been obtained by a number of investigators 

in the calculation of boundary layers and mixing layers and, consequently 

optimism exists for the near wake problem.    A more rigorous and detailed 

ttrl*'       H«'»" 
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description of the turbulence which considers its true tensorial character, 

wherein correlations between all three components of velocity fluctuation 

as well as orthogonal Integral scale lengths obtained from the various 

spectra are Included, could also be applied In principle. However, this 

approach also suffers from the uncertainties of the closure assumptions, 

and the additional complexity of many more turbulence variables, constants 

to be determined, and equations to solve makes it too unwieldy for the 

near wake problem. The lumped or scalar representation of turbulence by 

two variables is the simplest representation which contains sufficient 

generality to be applicable to the near wake. 

In addition to the two turbulence equations which must be solved along 

with the mean flow equations, the mean flow momentum and energy equations 

must be altered to contain turbulent diffusion. In the present theory, 

the Reynolds stress is represented by an eddy viscosity model such that 

uV = e i  9U/3n where n is in a direction normal to the local mean flow 

streamlines. The diffusion flux terms for shear and heat transfer in the 

mean flow momentum and energy equations are written with both the laminar 

and turbulent components as 

TL - p ^=     /M + p e]/2i\   |£ 

qL + ph^=U+M^A\0 

l/2„\    3U 

(1) 

(»r^e) 
The governing equations for e and i are the turbulent kinetic energy 

equation and an equation for the rate-of-dissipation, e . = C. e ^ /i where 

C. is a constant. 

The turbulence modeling equation for the turbulent kinetic energy has 

been used in various modern investigations, beginning with Bradshaw^ ' and 

is reasonably well understood and accepted. Less certainty exists for the 

second turbulence modeling equation, and in fact, three types of equations 

have been proposed, and are: 

1)    Equations for the integral  scale length, it as derived by 

Rotta^ and Ng and Spalding^. 

-   -  '—-~J- 



2) Equations derived for the mean squared vortldty fluctuation, 

to ■ e '  /£, from the work of Saffman^. 

3) Equations for the dissipation rate of turbulent energy, 
3/2 (8^ e^ = CJ e '  /£, from Harlow and Nakayamav ; and Jones and 

(9) Launderv   '. 

Wilcox and Alber ' found the integral scale length and vorticity 

fluctuation equations, and their respective universal constants, to be 

very similar in form and magnitude, respectively. For this reason, a 

comparative study was performed at "RW and reported in the ROPE Final 

Report1   for 1972, just between the vorticity fluctuation and dissipation 

rate equations. It was found, for boundary layer flows, that the best 

agreement with experiment was achieved with the dissipation rate equation, 

and consequently, that is the equation applied here. 

C 

The form of these equations presently solved, written in streamfunction 

coordinates, is presented below: 

Turbulent energy 

(conv.) (prod.) (diss.) (comp.) 

fiU 9e - ,     ( u^\2   (^ (^  ±2    ]    iZ\ + r     e    U    3P ^37- yT (pur)   (^j - P ed ^i + c^;?r ei WK;*S 

(diff.) 

pU 9 
+ hs ^ [(w^V^ff] (2) 

3/2 
Turbulent dissipation rate    (c, = C . e      /i) 

(conv.) (prod.) (diss.) 

rar  ci (pur) r^T [H) -— ^C2 + ^-R77J       (3) 
d 

C(comp.) (diff.) 

.   r    
ed    U    3P j  pU 9     [, s    ~ 2      2a.     8 p      ed I + ^2 Wh7^+h;^ [(p + ^ p      ur   hs       n      J 

i» /•    —* —. r'~vtry^rm'mmi^IF   " * '"y     "'   *  *   * • '-—      ^■nwh ^p nnp w. 
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where the turbulent V';;cosity is 

yT = p e1/2Ji/(l + 16.48/RT) 

and the turbulent Reynolds number is 

RT = p e1/2^/M 

The first term on the right-hand side of each equation is due to the 

production of turbulence by the working of the turbulent stress against 

the mean flow gradient. The second term on the right-hand side is due to 

the dissipation of turbulent energy and contains two parts. The first part 

is the dissipation rate as controlled by the macroscale, while the second 

part dominates at low RT where the turbulence is in the microscale regime. 

As written, the latter term reflects the non-isotropy of the turbulence in 

the low Rj region of the boundary layer at the edge of the sublayer. This 

term has yet to be added to the wake formulation where, because the 

tendancy to isotropy in the microscale is much greater, it must be written 

in a form such as that presented by Finson^ '. 

The third term is due to compressibility and is a consequence of 

density-velocity correlations, and hence does not appear in incompressible 

flow. It was introduced by Wilcox and A.jer who deduced the value of the 

constants c, and c« at about 2.5. These terms are very important during 

the expansion and subsequent recompression through the root of the wake 

snock, and from the results to be shown, it appears that these constants 

must be reevaluated; this will be discussed subsequently. 

The forth term is the diffusion of turbulence by turbulence and, 

therefore, represents the triple correlations appearing in the fundamental 
3/2 

form of the equations. The appearance of the density as pe and p   e . 

in the derivative is a consequence of the earlier work on the compressible 

boundary layer. Two experimental observations for compressible turbulent 

flat plate flow are that the velocity profile under the Van Driest trans- 
u 

formation u* =/ (p/pe) '2 du,and the integral scale length, £, are (within 
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the accuracy of the measurements)    invarlent with Mach number.    Imposing 

these conditions on the turbulent energy and dissipation rate equations 

in the law-of-the-wall  region suggested that the respective diffusion flux 

terms in the turbulent kinetic energy and dissipation rate equations should 
3/2 

be pM~ and ~J/2~^w  • respectively, to account for compressibility 
p 

effects.    This was confirmed in a calculation of Mach 5 adiabatic boundary 

layer and the results are shown in Figures 1, 2, and 3 where comparisons 

with the incompressible flow (Mach 0) flat plate results are made.    In 

Figure 1,  the agreement between the transformed velocity profiles is 

exce^ent in the law-of-the-wall  and law-of-the-wake regions.    The disagree- 

ment of the sublayer for 10 < y* < 80 may be due to the compressible scaling 

of the turbulent viscosity, Uj* at low RT, and further investigation to 

improve this region is underway.    The proper invariance of the scale length, 

a, with Mach number is demonstrated in Figure 2, and agreement with experi- 

ment is good.    The trend with Mach number and the distributions of turbulent 

energy are also in good agreement with the data of Klebanofr14^ and 

( 

f 

Kistler^15^ in Figure 3. 

These compressibility corrections are assumed to be valid in the near 

wake, as well. However, calculations of the mixing layer have been initiated 

to provide an additional test of these corrections 3ince a wealth of experi- 

menval data is available for this case. 

From the left-hand side, it is seen that these four terms sum to yield 

the change in e and e . along streamlines. The equations contain several 

constants which are intended to be "universal", and are to be determined by 

comparison with experiment. This was done during the earlier boundary layer 

portion of the present task and is reported in the ROPE Final Report for 

1972^ '. To summarize, they are listed below: 

dissipation constant 

diffusion number for e 

diffusion number for ed 

production constant for e . 

2nd dissipation constant for e 

cd ■ 0 .09 

a* ■ 1 .0 

a = .77 

Cl 
= 1 .41 

C2 
■ 1 .89 

-- 
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compressibility constant for e ^ = 2.5 

compressibility constant for c^ Co = 2.5 

Equations 2 and 3 are seen to contain the mean flow variables and 

their cross-stream gradients, while the mean flow equations contain the 

turbulence variables through the flux terms of Equation 1.    Thus,  the mean 

flow and turbulence equations are mutually coupled and must be solved 

simultaneously at each point in the  flowfield. 

1,4    Division of the Wake into Two Regions 

The recirculation region poses special  problems in the near wake analysis 

because of the reverse flow region near the axis.    Here, the parabolic govern- 

ing equations are unstable to a marching calculation, which starts at the 

base and moves against the returning axis flow.    This difficulty is circum- 

vented by the application of an integral method which includes at least the 

entire recirculation region.    Thus, as shown in Figure 4, the wake is 

divided into two regions about a "matching" streamline which lies adjacent 

to the dividing streamline.    The  inner region is solved by an  integral 

method by marching downstream from the base simultaneously with the finite 

difference marching solution for the outer flow.    A rigorous matching of 

essential  flow properties is maintained on the matching streamline between 

the inner and outer regions at each step of the calculation. 

In the integral  analysis,  the governing equations are integrated, 

radially, from th? axis to the matching streamline (r = <5[x]), yielding 

ordinary differential  equations with the axial coordinate as the independ- 

ent variable.    These include the axial momentum, velocity moment of axial 

momentum, continuity,  and energy equations.    Profiles are assumed, and 

profile parameters are introduced such that additional auxiliary equations 

must be solved.    These consist of the shear, heat transfer, and flow angle 

matches between the inner and outer regions, and a centerline energy equa- 

tion.    The integral   region analysis applied nere has been described in 

detail   in References 2 and 3 for laminar flow.    It is modified for turbulent 

flow according to Equation 1, and,  in addition,  the turbulence equations 

(Equations 2 and 3) are subjected to the integral  formulation. 

10 
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The turbulence equations, in integral form, are: 

Turbulent energy 

d(p6 U6 6Xe6 \)/d*  =  ^T6' h   lJ2  '  
6Xp6 Gd6 IT3 

+ ^ P6 u6 <sA e^ IT   dp/dx/CyP) 

(4) 

+ (y + O*MT) &a (se/ar)^ 

+ o*viT   e^ 6a  (3p/9r)6 p^ 
6 

2 
where * = (3u/3r)  , x = 1 + a with a = 0 or 1 for 2-dimensional or axisym- 

metric flow, respectively,  and for n ■ r/6, 

IT   =/    ß-M-n0^ (5) 
1 p6  U6  h 

iT -/  ü i2 

i u_ 

— n    dn 
0 \ *s 

(6) 

'T   '/ 
p       d      a 

Pr   e 
n   dn 

6 "d. 
(7) 

Turbulent dissipation rate 

d(p6   U6   6X  ed6   \^dX  '-  Cl   (ed5  e6)   ^5  5X  %   lJs 

-  C2   (cd6/e6)   6X  P6  ed6   llc 

+ 52 P6 "6 «    e^ IT4 dp/dx/(YP) (8) 

( +   (y.  + aviTJ   6a  (ae'/9r) 'U d'u"S 

+ 1.5 a yTi5 e^ 6a (äp/är^/p^ 

12 
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where eV = , /CH and 

r 

d     'd' "d 

'T ■/ Jrer^* (») ■4     -0   »{
u

5=ds 

1 -' !v^^fe)^--       '"' 
1 2 

e vU(+)fe) "a- 
The integrals are readily evaluated in closed form if profiles of the 

functions pn and yT are assumed where 0 has the units of vortic^ty (1/sec) 

and is related to e and c . by 

( P" " ed/e (12) 

also, 

uj = pe /fcd (13) 

As  in the integral analysis for the mean flow equations described in 

References 3 and 4, power low profiles are assumed of the form 

^•EMl-Ejn0 (14) 
0 

^-=  F *  (1   -  F)  n" (15) 

where a itself is a variable whose value, near the base,  is very large 

(50 to 100), but then decreases away from the base reaching a value of 

2 in the vicinity of the wake stagnation point.    Thus, the growth of the 

mixing layer is characterized by the decrease in a.    The parameters, E 

13 
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and F, appearing in Equations 14 and 15 represent axis values of pfi and 

u,, respectively, in the integral  region.    Equations 4 and 8 are used to 

obtain the values of the turbulence variables e and e. at the matching 

streamline, and additional equations for the axis parameters E and F are 

required.    The differential form of the turbulence equations, evaluated on 

the axis, would suffice for this purpose, but for the present, the axis 

values are simply equated to zero.    This is acceptable in the recirculation 

region where the measurements of Lewis, et ar    ' and Gran ^  ' have shown 

this region to be quiet of turbulence.    However, the axis values can become 

significant downstream of the wake stagnation point due to the effects of 

turbulent diffusion, hence, the axis equations will be added in the very 

near future. 

The integral  region and outer finite differences region are rigorously 

coupled along the matching streamline at each interval of the calculation. 

The gradient terms appearing in Equations 4 and 8, namely,  (ae/3r)r, 
0 

(3ej/ar)., and (ap/ar) , are provided to the inner region from the outer 

flow. The inner region then supplies the outer flow with the four coeffi- 

cients in the following linearization relations fcr iterations between the 

inner and outer regions, 

de, = -Ade + T-^-du (16a) 

and 

dMT, - TT^ de, * T-^dy. (16b) 
To   36,    4»   3uT,   r«i 

♦ I* 

where e, = (3e/3i|»)r and yTi = (3yT/3ij;).. Equations 16 become the inner 

boundary conditions on the outer finite differences region above the 

recirculation region. When de./e. and du-./u-, are sufficiently small the 
oo I o      I o 

solution is said to be converged for that step. 

Details of the finite differencing scheme for the outer region equations 

are presented in References 2 and  3 and will  not be repeated here. 
v 
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1.5   Results 

1.5.1    Mean Flow 

First results have been obtained for a 6 degree half angle adiabatic 

cone at Mach 7.5 at Re n ■ 1.7 x 10 , corresponding to the wind tunnel 

experiment of Granv '. The solution was initiated on the straight portion 

of the cone, just upstream of the junction of the aft shoulder whose radiu: 

is 1/6 the base radius. Gran measured properties of the boundary layer 

here, and least-squares fit the following profile to the data, 

Ul.i.(^)+5.0 + i*s^) 

where U* is defined by the Van Driest velocity transformation discussed 

earlier,  and K = 0.41.    The profile was found to be very weak in the wake 

component with rf = 0.06,  instead of the usual 0.5.    The other parameters 

Care U /U   =  .074 and 6* = 6U /v   = 142 with 6/D = 0.044.    This profile and 
re T   w 

these parameters were used to initiate the present solutions. 

Boundary layer separation profiles were generated on the shoulder for 

separation pressures in the range 0.15 < pcön /p^ c 0.26.    Subsequent wake 

solutions are shown in Figure 5, where the axis pressure and axis velocity 

are plotted as a function of the normalized distance from the base, X/D. 

As the base pressure is decreased, the character of the solutions is 
seen to change between solutions 3 and 4.    For solutions 1, 2„ and 3, the 

pressure continues to rise downstream of X/D = 1      while the axis velocity 

reaches a maximum and decreases to larger negative values.    In fact, solu- 

tions 1 and 2 exhibit no positive velocity on the axis.    However, solution 

3 exhibits closure of the recirculation region, with a wake stagnation 

point at X/D ■ 1.2, followed by a redividing of the flow with a second wake 

stagnation point at X/D * 1.25.    These solutions are referred to as source 

solutions where the inferred source acts on the axis in the direction of the 

base.    Solutions 4 and 5 are sink solutions and are characterized by an 

axial  pressure gradient which approacnes minus infinity, and an axial 

velocity gradient which approaches plus infinity.    These two non-wake-like 

15 
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families of solutions bracket the saddle point singularity in the wake neck. 

The singular solution of the saddle point is characterized by a single wake 

stagnation point and finite gradients of pressure and velocity. In the 

present case: the singular solution is bracketed by the separation solutions 

with separation pressures of Pse /P^ *  -leSQ (sink) and P^/P« = .^SS (source). 
This must be refined considerably for the analysis which carries the solution 

through the critical point. However, the present bracketing solutions are 

sufficiently close so that some comparisons with experiment can be made to 

ascertain whether further changes in the turbulence modeling are necessary. 

The closest bracketing solutions are replotted in Figure 6, together 

with axis pressure data from Gran^ '. The solution is seen to lie below the 

measured value of p.  /p = 0.24. Also, the calculated pressure rise base <■ 
appears too steep to permit a smooth extrapolation into the data downstream 

of X/D = 2. Experience with laminar flow solutions suggests that the 

initial boundary layer profiles should be checked, since tne base pressure 

has been found sensitive to the thickness and momentum deficite. Another 
important factor is the turbulence modeling and the resulting turbulent 

diffusivity approaching the wake neck. Turbulent shear acts to accelerate 

the flow through the strong adverse pressure gradient approaching the wake 

neck. Consequently, a modeling which produces excessive turbulence in the 

wake neck could cause an excessively large pressure gradient in this region. 

The turbulence approaching the wake neck will be examined later. 

The streamline and shock wave patterns in the near wake are shown in 

Figure 7. The edge-of-boundary layer streamline is seen to have turned 
only slightly at the downstream extent of the calculation. Streamlines A 

through E are labeled for later reference. The curvatjre of the streamlines 

changes through the lip shock wave. The dividing streamline (DSL) is seen 

to intercept the axis at X/D %  1.2. The asterisk denotes the matching 
streamline bei • which the integral analysis applies. The row of dots refers 

to the radial location where the turbulent viscosity is 50 percent of the 

local laminar viscosity. Upstream and above this locus, the flow is 

essentially laminar. The local maximum of the Pitot pressure delineates the 

wake shock. The lip shock is shown by the locus of minimum pressure along 
streamlines on the upstream side, and the locus of local maximum in Pitot 

pressure on the downstream side. 
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The shock wave development is also easily seen in the pressure profile 

plot of Figure 8.    The profile at X/D = 0 corresponds to separation with its 

origin on the shoulder.    All  the profiles are characterized by a strong 

decrease in pressure due to the expansion with a subsequent rise through the 

lip shock.    The slight increase below the lip shock at X/D = 0.8 is due to 

early compressions which lead to the formation of the waKe --hock.    A rather 

strong wake shock has developed at X/D = 1.2. 

Velocity profiles are shown in Figure 9, and are relatively unperturbed 

by the shock waves.    The growth of the mixing layer is evident as the profile 

broadens from X/D = 0 to X/D = 0.8.    Since most of the flow is laminar, 

these results appear very similar to past laminar results. 

1.5.2    Turbulent Properties 

In the presentation of the turbulence equations, turbulence production 

was seen to depend on the square of the cross-stream velocity gradient.    In 

Figure 9, the largest velocity gradients are present in the mixing layer 

and near axis wake just downstream of the wake stagnation point; consequently, 

these are the primary regions of turbulence production.    However,  in the 

results to be presented, the compressibility term containing the streamwise 

pressure gradient will dominate much of the growth and decay of turbulence 

in the near wake.    The compressibility term behaves like a dissipation term 

in a favorable pressure gradient, 3p/3s < 0, and a production term in an 

unfavorable pressure gradient, 9p/3s > 0.    With all  other factors aside,  it 

forces the turbulence to behave like a thermodynamic state property with a 

reversible character.    In a balance just between the compressibility term 

and the convection term    in Equations ? and 3,  the following simple rela- 

tions emerge, 

e   ^ p (18) 

CZ/Y 
ed ^ P (19) 

( 
These relations account for most of the turbulence decay during the expan- 

sion into the wake, and to the increase in turbulence across the lip and 
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wake shock waves and in the region of rising axial pressure in the vicinity 

of the wake stagnation point. The effect may be seen in the profile plot 

of the turbulent kinetic energy, e/ir/2, presented in Figure 10. The ordinate 

is the streamfunction, and the correspondence to the physical plane can be 

obtained from Figure 7. Curve 1 refers to the boundary layer on the cone 

upstream of the shoulder junction, while curve 2  refers to conditions at 

separation. The large decrease in energy between curves 1 and 2 is associated 

with the expansion. The outer regions of the boundary layer show less of 

a decrease because the flow here is subject to a smaller pressure drop due 

to the angle of propagation of expansion waves through the boundary 

layer. Curves 3 and 4 reflect the growth of the turbulent eneroy in the 

mixing layer in an essentially constant pressure region where the compress- 

ibility term is not important. Between curves 4 and 5, the flow undergoes 

a strong compression with a subsequent rapid rise in turbulent energy, 

largely due to the compressibility effect of Equation 18. The strong effect 

of compressibility on these results thus emerges, and the question arises 
as to their adherence to experimental data. 

(1) 
The data of Granv  does show a sharp decrease in turbulent energy 

in the expansive portion of the boundary layer remnant. Beginning with 

e/Uy2 x 4 x 10",( in the outer part of the boundary layer upstream of the 

shoulder junction, the measurements indicate a decrease to e/U2/2 ^ 

1.5 x 10  at X/D > 0.5. The present theoretical results show a decrease 

to less than e/U^/2 ^ 1 . x 10"5 for this same region with a correspond- 

ing pressure drop of 5 percent of the cone pressure. Consequently, it 

appears that the value of the constant, 5i " 2.5, originally deduced bv 

Wilccx and Alberv   is too large and from calculations based on Equation 

18, it is suggested that a value closer to unity would be more appropriate. 

Bradshaw^ ' also recognized that the Wilcox-Alber value for ^ was too 

large and suggested it be reduced to a number close to one. 

Profiles of turbulent viscosity, normalized by the freestream laminar 

viscosity, are presented in Figure 11 with streamfunction as the ordinate. 

For the outermost streamlines, the expansion is seen to reduce the viscosity 

while retaining the idenity of the initial maximum in the boundary layer. 

Increases in the viscosity are noted as the streamlines pass through the 

lip and wake shock waves (curves 4 and 5 at m/27T p U D2 > 5 x 10"4) and 
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are due to the ccmpressibility effect. The increase in viscosity on the 

innermost streamlines is due to turbulence production associated with the 

cross-stream velocity gradients in the mixing layer (curves 3 and 4), while 

the large increase between curves 4 and 5 is primarily the result of the 

compressibility term, i.e., to 9p/3s > 0. In addition to the turbulent 

energy, compressibility is seen to dominate the behavior of the turbulent 

viscosity in much of the near wake flow, as well. Excluding all other 

effects except compressibility, the turbulent vscosity is approximately 

related to the pressure by 

1/2        r        
2 |0+25l-C2) 

MT = pe      ^ = c
d pe /c^ x pY (20) 

If vj is to decrease during the expansion,  then  it follows that 

ZCi - C2 > -1-    Furthermore,  if from the earlier discussion, ^ = 1, then 

^2 < 3.    A lower bound on ^ can be found from consideration of the scale 
length, I. 

The data of Gran shows an increase in an integral scale length of the 

turbulence in the boundary layer remnant above the lip shock.    Gran's scale 

length was derived from the autocorrelation function, and is not quantatively 

the same as the transverse scale length, «,, used in the present theory. 

However,  the qualitative behavior should be approximately the same,  i.e., a 

growth in the expansive portions of the flow is expected.    In the expansion 

region along streamlines,  the compressibility effect alone yields the 

following dependence upon pressure, 

3 

l-  Cd e      /ed"P (21) 

In the present results, ^ = ^2 = 2-5» and thus' the exponent is positive 

yielding a dependence on pressure which is opposite to that expected. To 

obtain a negative exponent, it is clear that Kz > \ Cj. For ^ = 1, the 

bounds on C2 are thus established as 1.5 < ^2 < 3, and the presently 
assumed value of 2.5 thus lies within this range. 

The effect of reducing the constant Ci from 2.5 to 1.0 will reduce 

the decay of turbulence in the remnant and the subsequent growth in the 
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vicinity of the wake stagnation point. Because of the non-linear dependence 

on e and l of the production and dissipation terms, it is difficult to know 

what the net effect on the solution will be. Clearly, the present calcula- 

tions must be redone with a new value for tll  and in addition, the low tur- 

bulence Reynolds number dissipation term of FinsonV ^ model must be 

added. 

1.6 Summary and Future Effort 

The major problems encountered in the modification of the laminar near 

wake code to turbulent flow have been resolved, and a demonstration has 

been made to the ability of the code to generate solutions which bracket 

the wake neck singularity. The results have shown, for the various regions 

of the near base flow, the relative importance of the various terms in the 

turbulence modeling theory. Compressibility effects were found to be very 

strong, and comparisons with experiment indicated they were over-emphasized 

due to the use of an excessively large value for one of the compressibility 

constants; a more appropriate value was suggested from the data. Because 

the compressibility effect was so dominate in the present results, the Gran 

case must be recalculated with the new constant. The impact of this change 

on the mean flow is of particular interest, especially in the comparison of 

base pressure and axis pressure distribution with experiment. 

A key question in the present analysis is whether all of the important 

effects which contribute to the growth and decay of turbulence in the near 

wake have been recognized, and if so, whether they have been properly 

characterized in the model ii.g. Because of the complex nature of turbulent 

flows, the answer will not come forth from analyses which start from first 

principles. Instead, the approach must involve hypothesis, experiment, and 

comparison. Fortunately, in the present problem, a number of experiments 

have been, and are being, performed with whicn the present theory can be 

applied and the results compared. In addition to the wind tunnel experiment 

of Gran  , there are 1) the low Mach number high Reynolds number experiments 

of Demetriades at Phi 1 co-Ford,. 2) the shock tube experiments of Holden at 

Calspan, 3) possible Ludweig tube experiments at Avco Rad, 4) ballistic 

range experiments at General Motors/Delco Division, and 5) the ballistic 
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range experiments at TRW by Fox*. These experiments span a wide range of 

conditions, and should In conjunction with the theoretical analysis lead 

to improvements in the modeling, as well as to an understanding of whether 

proper accounting has been made of the important effects. The latter should 

be established prior to application of the turbulent near wake code to 

the full reentry case. 

♦These experiments have been presented at the ABMDA-sponsored Wake Velocity 
Workshop held at General Motors/Delco Division in June 1973. 
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2. NEAR WAKE STABILITY STUDIES 

2.1 Introduction 

Observations of the wake velocity and turbulence spectral properties 

in the wake of hypersonic slender bodies have disclosed some dramatic 

changes after boundiry layer transition, with evidence that two types of 

wake behavior occur. One is characterized by the generation of high ampli- 

tude fluctuations of relatively low frequency in the near wake, even in the 

presence of background residual turbulence from the boundary layer. This 

is accompanied by a rapid wake growth and followed by a broadening of the 

turbulence spectrum, evidence that the wake is dynamically unstable and 

undergoes a "transition" in the same way as does a laminar wake. A second 

type of behavior is observed which suggests that the wake, under other con- 

ditions, does r.ot undergo these transitional processes. Both types of 

behavior can be observed within the range of conditions corresponding to 

the entry trajectory of a single vehicle, with a sudden change from the 

first type of behavior to the second with decending altitude. 

The explanation of these phenomena appears to lie with the understand- 

ing of the stability properties of the near wake of slender hypersonic 

vehicles. In the ROPE Project Final Technical Report, November 1972,"' a 

description of the results of a stability study of the wake of the RMV-340 

at 39 km altitude was presented. The results, when compared with the full 

scale electrostatic probe measurements of Chang/ ' displayed remarkable 

agreement. The measurements correspond to an altitude at which boundary 

layer transition has just taken place at the rear of the body. The experi- 

mental observations include the detection of a predominant low frequency 

(300 Hz) fluctuation, a rapid increase in fluctuation amplitude in the near 

wake, followed by a decay in amplitude accompanied by a broadening of the 

turbulence spectrum. These observations are consistant with the existence 

of what would be termed, if the boundary layer were laminar, wake transition. 

Calculations of the amplification rates of linear disturbances were performed 

for corresponding conditions, and these yielded a sharply peaked amplifica- 

tion rate spectrum in the near wake, consistent in both frequency and axial 

location with the measurements. Subsequent calculations corresponding to 
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31 km altitude also yield agreement with the observations. However, in 

both cases, the calculated amplification rate of linear disturbances was 

quite small (with a characteristic length of ^ 5 body diameters). For 

such small amplification rates to lead to transition within the near wake, 

sizable fluctuation amplitudes are required initially (with their origin 

within the body boundary layer or the shear layer bounding the base recir- 

culation region). Amplification rates further downstream (after the boundary 

layer edge has crossed the wake shock) are predicted to be considerably 

smaller than in the near wake, so it is tempting to speculate that if a 

transitional process has not proceeded to the point that fluctuation ampli- 

tudes become large within the near wake, it will be delayed until far 

downstream. 

Based on the small amplification rates predicted by these calculations, 

one would have to conclude that the major effects controlling transition in 

the near wake are those which determine the amplitude of fluctuations enter- 

ing this region. There is, however, a possible source of fluctuations which 

has been neglected in the previous calculations and which should be examined 

before accepting such a conclusion. This is described in the following 

section. 

2.2 Boundary Conditions for Fluctuation Equations 

The partial differential equations, describing linear fluctuations in 

flow variables, are obtained from the conservation equations by expressing 

the variables in the form u = ü+  u', where prime denotes a perturbation. 

The conservation equations for the unperturbed variables are then subtracted 

and higher order perturbation terms neglected to obtain the linear fluctu- 

ation equations. These are reduced to ordinary differential equations by 

assuming a dependence on the independent variables of the form 

u = Re | U(r) exp (ie) > where e = kx - wt + n*        (22) 

Here, u is real since we are interested in solutions periodic in time (no 

temporal amplification), and k is complex. The spatial amplification rate 

is k,, and ^ is the azimuthal angle. 

30 



» 

In the near wake of a typical hypersonic slender body, the streamline 

originating at the edge of the body boundary layer does not cross the wake 

shock until X/D ^ 6. Between the wake stagnation point and a station far 

downstream of X/D = 6, then, the assumption that the wake is bounded by a 

semi-infinite uniform flow (as is done in boundary layer and far wake flows) 

is not valid. Boundary conditions are instead imposed at the wake shock by 

applying the condition that fluctuations cannot propagate outwards across 

the shock. Fluctuations just downstream of the shock are then associated 

with motion of the shock, and the flow just upstream of the shock is undis- 

turbed. The boundary conditions are applied as follows: 

Let r = r (x) + Ae16 be the shock location where r (x) is the undis- 
o o 

turbed shock location. The coefficient A is the (complex) amplitude of 

the perturbed shock. It follows that 

3r 
at iwAe (23) 

|I=^o+ ik Ae
ie 

3x  dx 
(24) 

ar  . A ie 
3^ = in Ae 

(25) 

3r i . G  an k. 
ax     ' H  r 

m-'-mf 
unit vector \ (26) 

normal to shock j 

( 

v(^-n) 
ar   n 
at 

m2->m2] 
(normal  velocity\ 

of shock        j 
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If the velocity ahead of the shock is 1^1 + v^. the normal (incoming) 

velocity with respect to the shock is 

'In [-v+(-^!f)3] (28) 

and the corresponding Mach number is 

.Uln 
'In (29) 

This Mach number is used to determine properties downstream of the shock 

including a fluctuating component (since M, has a fluctuating component). 

The fluctuations in M, are due to the changing orientation of the normal in J    a 
vector 

dr 
o 

ST 1 + J 

m + 1 

- k i 
dr 

c Hk r 

(?) + 1 

37?" iAe 
!•) 

(30) 

and due to the radial velocity of the shock (the term |T- j, or -iu)Aeie j) 

When there are radial gradients in the mean properties upstream of the 

shock, there is yet another source of fluctuations, since, then, u,, v,, 

and a-j  have fluctuating components in the shock-fixed coordinates (even 

though there are no fluctuating components in space-fixed coordinates). 

This is easily seen by expanding these non-fluctuating quantities  in a 

series about the mean shock location, for instance 

ul + 
(% 

ro) + (31) 

Evaluating the expression at the instantaneous shock location gives the 

fluctuating component due to the motion of the shock through the gradient 

32 

' r 
MM 



ui = V (IF) Aeie + - •• (32) 

There is, of course, a similar contribution obtained when the values at 

the downstream side of the shock (u2 + u^s for instance) are converted 

from the shock-fixed frame of reference to a space-fixed frame of reference. 

"2 ■ "2S -   (§)2 ^ (33) 

These mean-flow-gradient effects were not previously included in 

determining the fluctuation boundary conditions.    Linear stability cal- 

culations incorporating these changes are in progress. 

For conditions corresponding to the RMV-340 vehicle at 31  km altitude, 

results  thus far indicate amplification rates which are substantially larger 

than those obtained from the earlier calculations.    Figure 12 shows the 

axial  variation of the amplification rate obtained for linear disturbance 

frequencies of both 105 Hz and 210 Hz for the first spiral mode (n =  1). 

It is interesting to note an important qualitative difference from previous 

calculations;  the amplification rate at low frequencies appears to be weakly 

dependent on frequency up to a cut-off frequency at which the amplification 

rate very rapidly drops through zero.    Higher frequencies are then damped. 

Preliminary results place the cut-off frequency in the range 210 ^ 320 Hz. 

Once the body boundary layer edge has passed through the wake shock, 

the shock-dri-en amplification of low frequency disturbances ceases 
(X/D > 5.5 in Figure 12}. 

Calculations are continuing in order to obtain better resolution near 

the cut-off frequency and examine the effect of shock-driven amplification 

in the other azimuthal modes. The preliminary results, obtained thus far, 

are not inconsistent with the ideas previously presented, i.e., that there 

is a mechanism of amplification of disturbances which is unique to the near 

wake, and if this mechanism does not result in transition, a much more 

weakly amplifying (or perhaps damping) far wake can delay transition until 
far downstream. 
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Figure 12.    Amplification Rate of Linear Disturbances in the Near Wake of 
RMV-340 at 31  Km Altitude.    Disturbance Frequency f = 105 Hz 
and 210 Hz (Results not Distinguishable on This Figure) 
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