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FOREWORD

This report was prepared by Ordnance Research, Inc., Fort Walton
Beach, Florida 32548, under Contract Number F08635-71-C-0020 with the
Alr Force Armament Laboratory, Eglin Air Force Base, Florida. Mr.
Francis N, McMillan (DLRV) was program manager for the Armament
Laboratory. Mr, Theodore B, Gortemoller was program manager for the
contractor, This study began in September 1970 and wag completed in
February 1973,

This technical report has been reviewed and is approved.

CHARLES K, ARPKE, Lt Coignel, USAF
Chief, Weapons Effects Division
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ABSTRACT

Thirty-three metals and alloys having pyrophoric propertics were

! surveyed for applicabllity as gun-launched kinetic energy penctrators, ;
| incendiaries, and fuel igniters. Using actual samples physical propertics :
were determined, ignition-combustion temperature/burn time profiles were \

* cstablished, and dynamic terminal effects were tested. Six pyrophoric

metals were tested against slmulated characteristic targets, The results
of all testing are tabulated, and recommendations are made for an advanced

. development program,
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SECTION I
INTRODUCTION AND SUMMARY

Pyrophoric materials have many applications as kinctic energy pene-
trators and supplemental penetrators for weapons systems, They offer the
advantages of design simplicity, good penetration, and inherent incendiary
effects. However, the major portion of work in this field has been done with
a cut-and-try approach using a limited number of favored materials rathcer
than through an orderly program of complete analysis and test of the entire
range of pyrophoric metals. The objective of this program (s to develop
quantitative dava descriptive of the terminal effects of gun-launched state-of-
the -art reactive metal penctrators.

) Prototype munitions employing pyrophoric fragments as penetrators are
now being produced. Some of these weapons were submitted for empirical
testing against simulated generic targets. These tests are useful, but because
the competing munitions employ different materials in different configurations,
little will be learned about the basic effects. A comparison of several of the
most promising materials in carefully conirolled tests using various standard
configurations is urgently needed. Heat energy and duration determinations of
pyrophoric penetrators are almost non-existent.

The approach in this program was to survey a wide range of alloys,
fabricate samples, determine physical properties, establish static time/
temperature combustion profiles, and test dynamic terminal cffects of each.
From these tests, six reactive metal compositious were selected for further
testing against simulated fuel-containing targets,

Fragment impact velocities were varied from 1000 to 5000 feet per
second in 500 feet per second increments,

Target materials were aluminum, carbon steel, and titanium, The
target thicknesses selected were representative of components common to
targets, especially aircraft, In addition, tests were conducted to compare the
fire-starting capability of the six materials selected for tinal cvaluation,

The terminal effects data will be valuable in determining the vulnerability
of forcign targets to this fragment/incendiary-type penetrator. These lethality
determinations will establish the potential for further development of munitions
employing pyrophoric penetrators or fragiments.

As a base constituent for alloying, cost-cffective commercially available
mixed rare carths (MRE) alloy (also known as mischmetal) was used,  In
general, MRE conuists of about 50 percent cerium with the balance being a
mixture of other rarc earths of the cerium group of lanthanides, The exact
percentages depend on the source ore and on refining and recovery processes,
The composition of mixed rare carths froin Bastnasite ore sources falls within
the following proportions:

. ) :
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Cerium 48 - 52 9

Lanthanum 23 -279
Neodymium 15-17%
Praseodymium S- 7%
Other Rare Earths 1- 39

Physical properties testing disclosed that the alloys. of MRE containing
4% or more of added metal are brittle, Subsequent terminal effects testing of
gun-launched penetrators against steel and titanium target plates proved these
alloys would brittle-fracture and at higher impact velocities exhibit the same
failure mode against an aluminum target. Generally, peak temperature and
heat output at low velocities are superior when compared with metals such as
. depleted uranium, thorium, titanium, zirconium, or zirconium-tin, which do
not suffer fracture or spall at impact velocities below 3500 feet per second,

Thermal properties esting (static) yielded a wide range of auto-ignition
temperatures, peak temperatures, and burn times, Comparing and matching
these results with the physical test results gives a good basis for decision on
which alloys are useful for gun systems and which are more suitable for
explosive dissemination,

Qualitative data on oxidation and corrosion rates were also obtained.

The results of this program have demonstzated that the mixed rare
earth alloys wlill more consistently initiate self-sustaining fires and perform
well at significantly lower impact velocities than the other pyrophoric metals
tested, as can be seen in Figures 1 through 3. These figures depict the total
thermal energy versus projectile velocity for each of the three target plate
materials and thicknesses, It has also been shown that a careful selection
should be made to tailor the alloy to the delivery system in order to assure
maximum weapon effectiveness,
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SECTION II
TECHNICAL DISCUSSION

Mechanism of Ignition

The secondary incendiary effects of massive pyrophoric metal pene-
trators offer certain advantages in the defeat of aircraft or vehicle targets
and the venting and ignition of drummed POL., Previous developments have
becn based on the use of pyrophoric metal powders as fucls for exothermic
pyrotechnic compositions (powdered fuel with oxidizers) for primary incendiary
effect or the usc of explosively launched fragments either of pyrophoric metal

- per se, or steel fragments augmented by pyrophoric metal as case liners or
explosive additives.,

The critical period of ignition of diesel fuel and, to a lesser extent,
gasoline is the 10-to 100-millisecond period “-'lowing fragment impact,
Hydrostatic shock of the fuel body exposes a rapidly expanding vapor or fuel
droplet cloud., The fuel-air.mixture within the flammable limits forms and
dissipates within a period of 10~ to 200-milliseconds, Subsequent to this time
interval, only pooled fuel is available for ignition requiring a high-temperature
extended-burning ignition source, especially for low volatile fuels, Most
reliable ignition of fuel by this mechanism will therefore cccur when the frag-
mentation and incendiary capabilities are incorporated in a single munition,

The damage or fire-starting potential of an alloy or pure metal as a
pyrophoric kinetic energy penetrator depends upon mechanically induced
pyrophoricity, Friction is the mechanism employed and is in luced by impact
and abrasion with the target metal plate while penctrating and the internal
frictional shear forces between metallic phases during penetrator fajlure., With
the exception of the reported solid solution of thorium in MRE, these rare carth
clements form stable intermetallic compounds which are insoluble in the MRE
solidus, Thus, two phases arc formed. Frictional forces and heating on shear
duce to impact cause internal pyrophoricity, brittle fracture, and ignition of the
spalled metal, Flements or solid solutions do not exhibit this second mode of

\ induced pyrophoricity. Impact and abrasion arce dependent on reaction with the
target and are therefore dependant on target material, Targets of steel and,
to u lesser extent, titanium provide significant impact resistance and abrasion
when penetrated and are therefore excellent targets for this type of penetrator,
Aluminum with low ultimate yicld strength does not provide sufficient impact

1 resistance or abrasion on penetration and therefore does not supply sufficient
heat to initiate the reaction at lower velocities,

Intergranular friction or internally induced pyrophoricity during brittle
fracture of a penctrator is not completely target-dependent and adds signifi-
cantly to the initial cvent with the added bonus of supplying many burning
particles as a residual effect covering several milliseconds. The persistence
of this residual effect is dependent on two conditions: (1) the size of the residual
particles, and (2) the burning rate of the particular alloy, Both of these condi-
tions arc pyrophoric metal or alloy-dependent, All of the MRE alloys and the
MRE in the as-cast condition arc subject to brittle failurce; a number were
shown to break into sufficient large particle sizes to be significant, Of these,
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there are scveral that were determined to have sufficlently long burning times
to be of interest, All react at a temperature of at least 2300°C, which is
sufficient for the incendiary purpose of fuel ignition. Zirconium, depleted
uranium, and titanium are subject to ductile failure and are therefore almost

completely rependent on target/penetrator interaction with accompanying limited
burning persistence.

Targgt Effects

In selecting a representative target, it is important to understand the
mechanigms for initiation of fuel fires and/or explosions due to impact by
Incendiary kinctic encrgy penetrators, Penetration of a projectile into the liquid
gpace of a fuel tank provides energy for the formation of a fuel-air cloud which
can be ignited by the dispersed incendiary particles if certain criteria (which
are digcussed below) exist. if not directly ignited by the initial penetrator, the
leaking fuel can subscquently be tgnited by other projectile impacts nearby,
Projectile impacts into the ullage volume of fucl tanks provide another means of
initiation of a self-sustaining fire of lesser intensity,

Euarly experiments concerning fuel ignition by incendiary penctration
monitored by Fastax camera coverage rusulted in the postulation that the follow -
ing conditions are csscntial to successful ignition of a fuel target, |

. Penetration of the fucl cell by a projectile.
. Emergence of the fuel from the fucl cell,
+ Mixture (however incomplete) of fuel and
afr in combustible proportions.
4, Existence of an adequate igniter In the zone
of combustibility,
5. Propagation of the flame throughout the target.

1
2
3

The mechanism of hydrocarbon ymition and combustion has been analyzed
extensively over the past few years. During the latter part of World War 1,
British scientists studied the processes involved in the release of fuel from air-
craft fuel tanks and in the diffusion and ignition of these fuels,  (n general, it was
found that the relative volatility of a fucl is the most important single tacror in
determination of the ignition and flame propagation qualitics of a fucl spray., The
probability of the incidence of propagated flame in fuel-alr mixtures at tempera-
tures below the flash-point is nil unlegs the fucl ts dispersed in a manner which
favors acroscl formation,

It has been confirmed experimentally that a condition of flammability
cxisly in ot fyel-alr system in equilibrium when the temperature, which controls
the concentration of the fuel-vapor and air mixture, lies between certain limits
known as the upper and lower limits of flammabilivy, With a typical gasoline,
this zone of flammabllity occurs at fuel temperatures of approximately -35 to
-409F at sca level, With kerosene, the flammability zone for the equilibrium

1. G. H. Custard, G. Francis, and W, Schnackenberg, Small Arms Incendiar
Ammunition, A Review of the History and Development, AD 159323, 11, p. 152,
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mixture occurs with fuel temperatures between 100°F to 110°F at sea level,
Within the above flammability zones, a fire or explosion can result from coitact
with an ignition source. The flash point of a given fuel ls defined as the lower
limit of the flammability zone. These considerations apply in this casc to the
flammability temperature limits in closed system such as the ullage volume in
closed fuel cells or tanks,

The lower and upper concentration limits of flammability indicate the
percentage of combustible gas in air, below which and above which flame will
not propagate. When flame is initiated in mixtures having compositions within
these limits, it will propagate and therefore the mixtures are flammable,

It is generally postulated that combustion of hydrocarbons (1) occurs in
the vapor phase, (2) 1s a chain reaction dependent upon the formation of unstable
species such as free radicals, and (3) can occur only within certain well-defined
limits of concentration, To ignite a system of air and liquid hydrocarbon fuel,
therefore, enough energy must be provided to establish the above conditions at
some point in the system, Flame will not be propagated, however, if the encrgy
released following ignition is not great enough to spread the required ignition
conditions te adjacent areas, or if too much energy is lost to the surroundings.

Theoretical consideration of the incendlary burst has been approuched
from several standpoints, Fundamentally, of course, the burst produced by the
incendiary is nothing more than a source of ignition for fuel fircs., In itself it
is incapable of dircctly destroying a target becauge it is unlikely that an incen-
diary burst of sufficient intensity or duration to weaken or kindle aircraft
structures can be produced by small incendiary kinetic energy penetrators. With
reference to the Incendiary burst as a source of ignition for fuel-air mixtures,
the intensity, apatial distribution and duration of the burst determine the prob-
ability of the desired ignition asguming that an ignitable mixture is within the
immediate impact areca,

The position of the burst is determined primarily by the . v ivity of
the alloy and its ability to carry through target arcas of effecti + * h, This
phenomenon has been found Important to the effectiveness of spark-producing
Incendiury compositions, because, as they spread throughout a target area,
many individual {gnition sources tend to produce a very large voluime of effective
burst,

A variety of attempts has been made to determine the minimum ignition
temperatures for different fuels, A standard experimental procedure for such
d trminations involves confinement of the fuel-vapor and air mixture in a suit-
able comtawmer and heating and application of external ignition source at timed
mtervals untll the mixture jgnites.  There exists, however, an ignition lag which
ts dependent upon several variables; thus, the measured flash point is not
indicative of the temperature and thermal flux required for sustained combustion,

The test target configurations used during tinal evaluation were selected
to be representative of a typical target as it would appear to the munition when
delivered from an afveraft in a tactical environment.

With single projectiles, the geometry of the target setup Is important n
providing a means to confine both the incendiary particles and the fuel-air cloud
8
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i the rarget @rea to increase the probability ol achleving conditions suituble
for combustion as in the real case contiguration, With multiple hits in the
arca, target geometry is not as critical a factor but should not be overlooked.
The target geometrics for analysis in the final phase of the present program
have been carefully selected to simulate the actual target configuration and
structural confinement,

Characteristics of Pyrophorics

For practical munitions manufacturs: and storage considerations, the
workability and oxidation resistance of the pyrophoric materials must be of
increasing importance, Being brittle in nature, the mixed rare carths in the
as-cast condition do not lend themselves to cold working, Extrusion at below
the melting point, followed by an optional annealing ¢ycle, increases elongation
to between 25 and 40 percent and allows further cold working., Mixed rare cartb
alloys of 4 percent or greater added metal may be extruded; however, clon-
gation I8 not increased, Titanium, zirconium, and Zircaloy (sometimes referred
to as zirconium-tin) with a maximum tin content of 2,5 percent do not display
this brittleness and have good cold and hot fabricability, Machinability of the
MRE alloys is generally excellent, thus forming these materlals by Incrt atmo-
sphere casting with subsequent machining to finished dimensions is casily
practical,

Oxidation und hydration of cerium and the mixed rare carths is fuirly
rapid and the product is in the form of a loose powdery scale. Many alloying
materials eliminace this tendency as shown in Table 1. This storage stability
of zirconium and Zircaloy is excellent,

Sclection of Materials

Textbook references on rare carths and their alloys are limited in
availability, The most comprehensive texts are published under the auspices
of the Atomic Energy Commission cdited By members of the facility of the
Ames Laboratory, Iowa State University, 3

These texts are excellent sources for binary alloy phase diagrams;
however, little information is given on the metallurgical propevties.  Limited
assumptions may be made on the basis of general alloying theory and a know -
ledge of the effects of differences in atomie radil and clectronegutivitics in

\ solid solution formation, These latter effects can be graphically analyzed by

L means of a Darken and Gurry plot of the element electronegativity and atomic

,' rudiug, Proximity of clements to the rare carth group would be favorable for

* solid solution formation and superior low temperature workability, This latter
characteristic is not necessary in the fabrication of the penctrators for the
present study; however, these alloys should demonstrate increased impact

2. The Rare Earths, od. by F. H. Spedding and A, H, Daance, John Wiley and
Song, New York (1961)

3. Rarc Earth Alloys, Karl A, Gschneldner, Jr., D. Van Nostrand Co.,
Princeton, N. J. (1901)
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TABLE 1. COMPARATIVE OXIDATION RESISTANCE
OF PYROIHORIC METALS

<
N

Uncontrolled Storage A lloy No, Composition
Stability
12 98% MRE +2% Vanadium
No appreciable surface 19 95% MRE + 5% Magnesium
discoloratioff 22 Zirconlum
27 Titanium
31 79, MRE + 3%, Alumiman
+3% Magnesium + 15% Lead
4 14 90% MRE + 10% Bismuth
- 23 68% MRE + 32% “Zinc
Minor surface discoloration 28 96% MRE + 49 Iron
29 967, MRE + 4% Aluminwrn
30 929 MRE + 8% Mongenese
32 91% MRE + 99 Magresium
4 90% MRE + 10% Copper
7 Thorium
Major surface discoloration 8 Uranium
13 87% MRE + 139 Zinc
16 507 MRE + 50% Lead
Methecnalloy Proprictary
3 94% MRE + 6% Nicke!
5 93% MRE &« 7% Cobalt
Minor surface scale 15 94% MRE + 27, Cobalt
‘ + Nickel + 2% Iron
| 26 98, 5% MRE + 4,59, Zinc
' 1 Mixed Rare Farths
i Major surface gcale 2 Cetium 90 - 959 enriched MRE
‘, 6 83% MRE + 157 Thorium
9 94% MRE + 6 Calctnm
10 967, MRE + 4 Indium
11 94% MRE + 3% Cobalt
+ 3% Iron
Major surfuce powdering 17 95% MRE + 5% Manganesc
(oxidation) 18 97% MRE + 3% Tin
20 98% MRE + 2Y% Lead
24 8%¢, MRE + 157 Lead
2% 98% MRE + 29 Cobalt
10




toughness and resistance to spall, This consideration was initially considered
critical for penetration and residual mass; however, the kinetics of pene-
tration or the extreme stress rate on penetration does not produce the expected
or theorctical brittle fracture failurc mode at the target surface. This result
is apparent in the data given in the sequel,  Of the readily available elements,

it would be expected that only calcium, indium, magnesium, hafnium, cadmium,
sodium, and thorium will show significant solubility. The phase diagrams of
the systems, however, shcw less thun the expected solid solubility,

Another parameter affecting low -temperature workability and resistance
o impact is the crystal structure of the clemental metal. Lanthanum, praseo-
dymium, and neodymium have the hexagonal, lanthanum type of structure. ‘The
room temperature structure for cerium is the face~centered cubic, copper
type. ‘The cold workability (or as first presumed, the penctration capability)
of the latter type of structure is greater because of the increased degrees of
freedom in slippage between crystal planes, The cubic structure does not

show anisotropic behavior. Cerium-enriched mixed rare earths (90 to 95%)
were therefore evaluated.

The selection of the MRE alloys was made on the basis of an analysis
of the phase diagrams published in the referenced literaturc, Several criteria
were chosen for the selection of alloys, all based on a combined analysis of
the phose diagrams of both cerium and lanthanum inasmuch as the phase dia-
grams of elements and mixed rarc carths arc not available, Alloying elements
such as tantalum and other refractory metals that markedly increased the
liquidus or melt temperature at low percentage concentrations were not
considered; cost of high temperature casting and loss of volatile rare earths
are complications, Expensive alloying clements or source materials, with the
exception of thorium, werc eliminated from consideration. Many ulloys were
chosen to correspond to a cutectic composition; these melting point minima
glve 4 constant temperature phase transition between liquidus and solidus. The
casting is thus more homogencous than for compositions that exhibit a wide
liquidus -solidus temperature range. The rare earth alloy phase diugrams
were also surveyed for the characteristic of decreasing solubility of the solid
intermetallic phase in the solidus with decreasing temperature, Heat-treatable
ferrous alloys show this characteristic and it was postulated that heat treat-
ment of certain rare carth alloys was possible; however, no hardness increase
for any alloy was effected by these attempts,

11
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SECTION Il
PHYSICAL AND THERMOCHEMICAL

There were six distinct test item configurations for the program, The
first three for the determination of physical properties were the standard
ASTM tensile test specimen (as shown in Figure 4), the Charpy impact unnotched
test specimen (Figure 5), and a Rockwell hardness test specimen, Thesc tests
furnished the basic physical properties of all pyrophoric alloys and elemcents
considered which are tabulated in Table II,

The static time-temperature profiles (Tabie Il and Figure 6) were
obtained using an optical pyrometer and a small electric furnace (Figurc 7).
The test specimens used were 0, 25 inch by 0,25 inch right circular cylinders
of the cunfiguration specified for the dynamic tests, They were placed in a
small ¢ruclble in the furnace, a quartz glass face was installed in place of the
furnace door and power applied to the furnace at a predetermined rate. The
temperature of the specimen was monitored by the optical pyrometer as it
was heated to the autoignition temperature {indicated by an increasing slope in
the temperature-time trace), At this time, the furnace was turned off and
the burn temperature and burn time of the specimen monitored. For this
experiment, gurn time was defined as time from autoignition until the specimen
cooled to 400°C. In some cases, autoignition could not be achieved in the oven
at a maximum temperature of 8009C, and other means were adopted in an effort
to obtain higher temperature autoignition data. This procedure was to leave
the round in the oven with the pyrometer in place as previously described; the
round was then heated with an external propane burner source and the maximum
temperature achieved was read on the pyrometer and recorded.

The terminal effects of the pyrophoric penetrators were measured by a
test setup that included gun, target array, pyrometer heads, osctlloscope with
camera, velocity screens and clectromic timer, camera, and flash X-ray, as
shown in Figures 8 through 11,
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TABLE III. RESULTS OF STATIC TESTS

Mass* Autoignition Peak Time of
No. Composition (grains) Temperature Temgcrature Burn**
; oC C (min )
F 1. Mixed Rare Earths 20.4 443 805 13
20.2 475 825 13
2, 90% - 95% Cerium 21,2 490 710 22
; 21,4 492 655 21
: 3.  94% MRE 24,1 418 720 20
: + 6%, Nickel 18,8 418 675 20
- 4. 90% MRE 20,1 483 807 11
+10% Copper 20. 4 467 825 10
5. 93% MRE 19.0 393 760 10
‘ + 7% Cobalt 19.5 405 790 9
: 6. 85% MRE 20, 4 520 802 17
: +15% Thorium 20,5 521 817 18
: 7. Thortum 37.3 wor .-
8. Uranjum 50.3 "k --- --
9. 94% MRE 18.8 540 840 16
+ 6% Calcium 21,5 552 853 10
10.  96% MRE 21,6 660 . 1000 29
+ 4% Indium 16,2 652 880 35
11, 94% MRE 19.5 418 723 13
+ 3%, Cobalt 20.6 443 71% 16
+ 3% Iron
12, 98% MRE 21.9 523 810 21
+ 2% Vanadium 18,6 540 802 21
13. 87% MRE 20.5 422 713 .-
+13%, Zinc 20.5 418 680 11
14. 90% MRE 20,4 58Quwu~ 690 2HNwmx
+10% Bismuth 20.7 S8 635 J3awwn
15, 949 MRE 20,7 445 805 8
+ 2%, Cobalt 21.8 460 848 10
+ 29, Nickel
+ 2Y% Iron
17




TABLE III. RESULTS OF STATIC TESTS (CONTINUED)

Mass* Autoignition Peak Time of
No. Composition (grains) Temperature Temperature Burn**
°c °c (Min )
16. 50% MRE 29.5 - --- --
+50% Lead
17. 95% MRE 17,3 530 800 17
+ 5% Manganese 17,3 525 776 18
18, 97% MRE 19,6 593 778 28
+ 3% Tin 20,1 605 855 26
19, 95% MRE 18,7 478 732 .-
+15% Magnesium 19,1 478 770 22
20. 98% MRE 19,7 565 795 24
+ 2% Lead 20,1 550 728 21
21. 50% MREL Combusts spontaneously
+50% Thorium
22, Zirconlum 20,2 e .- -
23, 68% MRE 21.4 i -e- .-
+32% Zinc
24, 85% MRE 18.9 572 783 26
+15% Lead 19.8 575 787 25
25. 98% MRE 20.1 440 820 11
+ 2% Cobalt 19.6 430 930 i1
26,  95.5% MRE 19.3 445 790 13
+ 4,5% Zinc 19.9 440 795 11
27, Titanlum 14,1 e “-- -
28, 96% MRE 20.0 510 792 18
+ 4% Iron 19.7 500 910 16
29, 96% MRE 19,2 485 770 16
+ 4% Aluminum 17. 4 480 815 19
30. 92% MRE 18.8 510 800 17
+ 8% Manganese 19.3 510 820 17
31, 79% MRE 19,6 500 780 19

+15% Lead
+ 3% Magnesium
+ 3% Aluminum




TABLE IIl. RESULTS OF STATIC TESTS (CONCLUDED)

Mags* Autoigrition Peak Time of
No. Composition (grains) Temperature Temperature Burn**
oc oC (min )
32. 91% MRE 17.3 480 1070 12
+ 9% Magnesium 17.2 490 815 14
Methonalloy 20.8 452 803 13
* 0.25 inch diameter by 0,25 inch long cylinder - mass varies with sample
denpity.
**  Defined as time from autoignition until specimen cools to 400°C,
ok

Autoignition was not achieved, Sample was heated to a maximum
of 1120°C,

*¥W* - Autoignition temperature and burn time approximate.

Data not obtained.
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Test Specimen
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Figure 7. Thermal Test Sctup (Static)
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SECTION IV
APPARATUS AND INSTRUMENTATION

The projectile gun was a barrelled Mauser bolt action chambercd for
Caliber .30-'06 (Figure 12), The barrcl was reamed to a smooth bore 0, 308
inch dlameter to accept a nylon-saboted projectile (Figure 13), Hercules
Unique powder was found to be optimum for firing the 25-grain round (projectile
plus sabot) over the desired velocity range.

The target array for the initial terminal effects testing consisted of the
target plate holding assembly and the target plate. The holding assembly was
constructed of two-inch galvanized pipe set in concrete, with a box framework
of one-«inch steol angle welded in place at the top. The target plates of steel,
aluminum, or titanium were clamped to the front of the frame for cach test,

The radiation pyrometers used in this program to measure heat flux on
lmpact and penctration Incorporated a silicon radiation detector AC-coupled to
an amplificr powered by a 15-volt supply. This system was callbratod with
the use of a quarts lodide source ( ¢ =0, 3) capable of temperatures up to 30009C,
This source and the pyrometers were placed the same distance apart us the
Instrument and the pyrophoric event would be during test, and the source was
adjusted to a specific temperature, The voltage output of the pyrometer was then
read and noted, This was done in incremoents of 100YC In the range between
1500°C and 2800°C, In this manner, source tumperature detocted as radiant
power or intensity versus voltage output of the pyromoter was tabulated, and the
results were graphed for calibration In terms of watt-seconds at the plance of
projoctile flight,

The pyrometers were connected to the vervtical Inputs of a dual-trace
osctlloscope with Polaroid oscilloscope camera readout, The signal for trig-
gering the sweep before the beglnning of the event was the break circutt that
also suppled the stop signal to the velocity counter/timer.  The sweep spoed
and vertical sensitivity were set so as Lo keep the entire event within the range
of the display, yot cover as much of the digplay as possible in order to obtain
the best data precision,  The resulting voltage versus time trace (Figure 14) was
clinnged 1o thermal radiant power versus time table and numerically integrated
to obtain total thermal encrgy output of the event, Over one thousand test firings
were made during this program, The results from a portion of these tests were
not reported bucause of data lost due to instrumentation instability,

A tmer with break civeults (Flgure 8) was used to determine the average
velocity of the fragiment over the twelve -foot range from the muzzle of the gun
Lo impuct, The unit has u resolution of ten weee and was used exclusively in
the u sec range for maximum accurncy, The break element for start time was
a nichrome wire placed one inch from the muzzle of the gun, The break
clement for stop time was printed clreuit paper placed 9, 6025 (oot downrange
fromi the wire, Circutt clements were broken by the test projectile causing
dischinrge of the respective cireudt capacitors and the start and stop triggecing
of the electronte timer,  Measurements taken by this method yield average
velocity accuracy within 2 percent, Test velocities were reported to the
nearest hundred feet per second,
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Open-shutter color photography was accomplished using a Polaroid
camcra placed on a tripod near the inside wall of the darkened target building.
A small hole was drilled in the wall of the bullding and a cable release passed
through from the camera to the outside. This arrangement permitted opening
the shutter just before triggering the event and closing it immediately after-
ward. The resulting photographs were an excellent recording of the orientation
and spatial distribution of the burning particles during the event,

The flash X-ray used in this program incorporated two p''lsers, two
tube heads, and two trigger amplifiers, The tube heads were pluced approx-
imately cight inches from the event position with both facing perpendicular to
the flight path of the fragment, One head was two inches in front of the target
plate; the second was four inches behind the target plate, The pulsers and the
triggor amplifiers were in the control and firing area, The X-ray was triggered
bir a pulse from a break circuit incorporating a printed circuit paper oreak
eloment, This element was placed In front of the targoet plate, triggering the
primary amplifier just before fragment impact. The delayed trigger amplifier
was presat to trigger after impact, so as to picture the fragment breakup and
target spall, One sheet of 8 inch by 10 inch film was used for cach shot and
placed so that both the images were on the one sheet, By measuring the fragment
digplacement as pictured and using the preset delay time, an average residual or
behind-the-plate velocity could be computed, The residual velocity values
reported take into acconnt pulser head vievzing parallax,

Instrumentation for the ignition and flammability tosts was tindted to
velocity measurement and hlﬂh speed motion picture coverage. Velocity
moasurement was accomplished by the breakwire/printed eircuit paper method

used in the terminal effecte testing, Motion picture photography with a
capability of 4000 frames/second was provided by a Hycam camera callbrated
with a timing mark generator. From this motion picture coverage, additional
data were obtalned on pyrophoric persistence and fuel ignition delay after
penacration,
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SECTION V
EXPERIMENTAL RESULTS

Physical properties tests using standard ASTM metal testing techniques
and equipment were accomplished on twenty-seven MRE (mixed rare earths)
alloys and five pure metals. The results are presemved in Table II. The
properties reported include hardness, yield strength, ultimate strength,
modulus of elasticity, elongation, reduction of area, and impact toughness.
Pure cerlum and MRE in the as-cast condition brittle-fracture in tension with
their elongation and reduction of area at ultimate yleld being small values.
Alloying of the MRE enhances this brittleness to the point that all tensile
failures are in the brittle mode, usually at the shoulder, with no elongation
or necking of the tenslle specimen, Hardness of the mixed rare carths is 5
and that of 90-95% cerium is 3 on the Rockwell B scale; alloying genecrally
results in a harder material, Three exceptions are the alloy of MRE + 4%
iron, MRE + 2% cobalt, and the magnesium alloys tested. The impact tough-
ness of pure cerium is 4.5 on the Charpy unnotched test, a low value, while
the MRE value Is 19,0, Further alloying of the MRE caused a decrease In
impact resistance, The ultimate strength of all the MRE olloys is low
compared to common structural metals,

Figure 6 is representative of the time=temperature profiles for all
materials tested; Table III {8 a summary of the autoignition temperatures,
peak temperatures, and burn time, For these tests, the time of burn was
defined as the time from autoignition until the specimen cooled to 400°C, In
some cases, autoignition could not be achieved with the furnace and other means
were uged to elevate the specimen temperature to a2 maximum of 1120°C, In
no case was sustained burning of the specimen achieved by this method, The
spucimens that could not be ignited were the pure metals zirconium, thortum,
titanium, uranjum, and zlrconilurn-tin and the alloys MRE +50% lead and MRE
+32% zinc, Alloy 14 (90% MRE + 10% hismuth) did not show o rapid risc in
temperature after ignition, and therefore autolgnition temperature was not
readily discernible, The temperature listed in the table for this alloy s
approximate, as are the burn times,

A survey of the termlinal effects of thirty<two metals and alloys against
14-gauge (0.074-inch) steel sheet was conducted and is summarized in Table IV,
The velocity regime for this survey ranged from 1500 feet per second to 3000
feet per sccond, The test velocities recorded were rounded to the nearest
100 feet per second. Three general conclusions can be drawn from the results
of this survey. First, the ballistic limit is approximately 1900 feet per scecond
velocity with a 20.5-grain pyrophoric penetrator aganinst this target, Sccond,
the variation of apparent peuk tempuerature over all shots (except the titanium
projectile) was very small (2400°C to 2700°C), with the majority falling in the
2500°C o 2600°C range. Third, despite this very small peak temperature
spread, the total thermal energy range was considerable, This was due to the
length of the event duration which Is in proportion to the total thermal encrgy
output.

Upon completion of these screening tests, five of the thirty-two
pyrophoric compositions were selected for detailed testing and analysis.  The
compositions elected were chosen with the concurrence of the sponsor. Prime
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considerations for selecting the five candidate matcrials for further testing
were:

1. Storability (stability in air)
2. Ignition pulse duration
3. Large residual mass

In addition, limited testing was conducted with a 20-grain (0. 180 by
0. 180 right circular cylinder) depleted uranium penetrator.

Stability in air was considered a basic criterion to allow for ease of
fabrication and storage of any possible munition incorporating these metals. A
qualitative survey of the oxidation rates was conducted (Table I). All of the.
pure metals except cerium and the mixed rare earths were relatively stable in
air with zirconium-and titanium exhibiting no noticeable oxidations and with
uranium and thorium showing a tightly adhering protective oxide. For the
purposes of this program, only those materials showing stability in air were
considered for further testing. It should be noted, however, that some other-
wisc promising materials have been discarded by this procedure.

Due to the uniformity of densities throughout the various alloys, pene-
trability is largely a function of projectile velocity and therefore was not a
great factor in selection.

Large residual mass was considered a necessity for secondary pene-
tration to any flammables such as fuel, hydraulic fluid, etc. Also, the time
length of the pyrophoric event after impact was added as a necessary require-
ment due to the delays encountered before a flammable fuel/air ratio is formed.
Machinability of the materiais was considered also but was not a prime factor,
as only alloys 16 and 23 presented any great problem and were immediately
discarded as being too brittle to be of any practical use. Using these factors
alloys 14 (90% MRE + 10% bismuth), 19 (95% MRE + 5% magnesium), and 29
(96% MRE + 4% aluminum) were chosen for final testing plus zirconium and
zirconium-tin as required by contract amendment.

Final terminal effects testing was conducted on these materials using
target plates of steel, aluminum, and titanium, and at velocities ranging from
1500 feet per second to 5000 feet per second (Tables V through X). As an
overall conclusion, it can be seen that the mixed rare earth alloys yield greater
thermal output at lower impact velocities than zirconium and zirconium-tin.

At velocities above 3000 to 3500 feet per second (depending on the composi-
tion), the mixed rare earth alloys begin to break up into numerous particles
wliite zirconium and zirconium-tin are good penetrators but have just begun
to yicld pyrophoric action. This result could have been expected from the
physical properties data, which showed that the MRE alloys are extremely
brittle while zirconium is more ductile. This brittleness leads to brittle
failurc and breakup at low impact velocities and some resulting intergranular
friction which results in good pyrophoric output. Zirconium, on the other
hand, dcforms at low impact velocities and therefore has only attrition action
at the target/projectile interface. At the higher impact velocities, the MRE
brittleness causcs excessive fragmenting and a subscquent loss in residual ™
mass, while zirconium begins to break up rather than simoly being deformed.
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Figures 15 through 32 are least square exponential fit graphs of the
data of Tables V. through XVI. The relationship between the pyroplioric thermal
encrgy in front of and behind the plate is plotted as a function of projectile
velocity. In all cases there is a velocity above which the thermal effects
behind the plate equal and exceed the front-of-the-plate effects. A considerable
variation between materials is apparent.

Incendiary testing of the chosen alloys was conducted on a simulated
truck fuel tank (Figure 33) and a simulated aircraft wing fuel tank (Figure 34 and
35). The flammable liquids used were Mogas and kerosene (flash pcint
approximately 1350C) and the impact plates were 0.030-inch aluminum and
0.074-inch mild steel. The initial impact velocity used against the wing tanks
was 3000 feet per second for a series of three shots. The initial velocity

_ against the truck tank was in the 1800 feet per second range, which was close

to ballistic limit. If a fire was initiated, the next series of three test shots
would be 500 feet per second lower. The highest velocityused for this testing
was 3500 feet per second, while the lowest was in the 1000 feet per second ‘
range. Results of this testing are given in Tables XVII through XX.

The MRE alloys are better fire starters than the zirconium or zirconium-
tin fragments. This probably due to better fragment break-up and longer
particle burning time of the MRE. Zirconium and its alloys do not break up
well against medium or soft targets at the lower velocities (3000 feet per second
or lower). Another factor is the lack of persistence of the burning zirconium
particles at the lower velocities.

No fires were started with kerosene as the flammable liquid. This is
probably due to the high flash point (136°F). As is shown in the tabulation below,
this flash point does conform very closely with diesel fuel and JP-3 but is not
at all similar to JP-4. :

Fuel ‘Flash Point (°F)
Test Kerosene 135 through 137
Diesel 100 through 130
JpP-3 95 through 145
jp-4 : -10 through 30
Mogas -36 through -45

A few test shots were conducted to simulate a multiple plate target. In
thesc tests two 0.074-inch thictk: mild steel plates were placed 6 inches apart
and the vrojectile fired through rhe plate at a sclected test velocity. The
restdual porticles were recovered in stacked Celotex® ceiling tiles. The
resulis of these tests are presented in Table XXI.
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TABLE X1, ALLOY 14 (MRE + 10% BISMUTH)

Aluminum Target Plate

j Test Data’
I Velocity ' Thermal Encrgy
(fps) (watt-sec /mAy)

! Initial -—~Residual . . Froat . Back
2550 880 3,200 1, 700
2600 1150 2, 800 1,100 .
2720 - 1, 800 1,800
2960 1300 2,500 1, 800
3030 1330 1,700 14, 400
3470 1530 2,000 2,600
3610 1510 4,508 25,900
3980 . 3,000 23, 500
4180 - 2, 100 43, 100
5010 - 3, 100 46, 500
5050 - 3, 600 $7, 800

Smoothed Data

1000 - 1, 900 100
2000 - 2,200 700
3000 - 2,500 3, 600
4000 - 2, 800 17, 800
5000 . 3, 100 88, 300
6000 - 3, 600 436, 900

Titanium Target Plate

Test Data
1990 880 20, 100 14,400
2760 - 7, 400 4,000
2910 1060 8, 600 6, 000
4010 - 3, 800 44,100
4040 1550 13, 600 37,200
4910 - 4, 000 77,400
5030 - I, 900 52,500

- Data not obtained.
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TABLE XI, ALLOY 14 (MRE + 10% BISMUTH) (CONCLUDED)

. Titanium Target Plate
; Smoothed Data

Velocity Thermal Energy
(fps) (watt-sec /m2)

Initial Residual Front Back
1000 - 29,100 2,500
. 2000 - 16, 600 5,600
3000 - 9,500 72,600
4000 - 5, 400 28,600
5000 - 3,100 64, 700
_”.1 6000 - 1,800 146, 500

Steel Target Plate

Test Data

1580 - 5, 200 .

1700 - 7, 800 &4

2060 650 5,500 6, 100

2580 6, 700 3,200

2640 . 4,900 4,300 |
2950 1050 3, 800 8,800 t
4200 1643 7,800 12,000

Smoothed Data ’

1000 - 5, 400 2,000
2000 - 5,700 3, 400
3000 - 5, 900 5, 800
4000 - 6, 100 9, 800
5000 - 6, 400 16,500
6000 - 6, 600 27,900

- Data not ohtained
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Figure 16. Thermal Energy Versus Projectile Velocity for MRE +
10 % Bismuth against Titanium Target Plate
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TABLE XII. ALLOY 19 (MRE +5% MAGNESIUM)

Alvminum Target Plate

Test Data
Velocity Thermal Enirgy
(tps) (watt-sec/m<)

Inicial Residual Front Back

2330 - 6,300 5,500
2530 1025 12,500 7,800
2910 1177 19,900 6, 100
3060 1295 4, 500 3,000
3620 1668 6,900 11,600
3740 X 5,000 6,000

Smoothed Data
1000 - 17,000 4,200
2000 11,600 5, 100
3000 - 8,000 6, 100
4000 - 5,500 7,400
5000 - 3,700 8, 800
6000 - 2,600 10, 600
Titanium Target Plate
Test Duta
1820 880 7, 100 4, 400
2970 1030 6,300 7,300
4040 1550 7,700 21,300
Smoothed Data

1000 - 6, 600 2,200
2000 . 6, 800 4,500
3000 - 7,000 9,200
4000 - 7,300 18, 600
5000 - 7,500 37,700
6000 - 7,800 76,500

- Data not obtained
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TABLE XII. ALLOY 19 (MRE +5% MAGNESIUM) (CONCLUDED)
Steel Target Plate
Tast Data
| Y e(lfg:)l + T h(ewrartxzf alecE/::'ig)r i .
j Initial Reaidual Front Back #
1720 - .6, 700 5,000 :
‘ 2040 430 6, 300 1,400 o
2060 - 6, 400 1,830 i
2290 - 7,000 600
- 2550 - 5, 500 3, 100
2700 - 6, 100 1,000 A
3090 920 6,800 7,800 3
4240 '1380 7,000 5,500 ‘
Smoothed Data
1000 - 6, 200 1,130
E _ 2000 “ 6,300 1, 800
- 3000 - 6, 500 3,000
i 4000 . 6, 600 4, 600
5000 - 6,800 7,400
' 6000 - 7,000 11, 800 _ |

- Data not obtalnad,
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TABLE XIII. ALLOY 29 (MRE + 4§ ALUMINUM)

Aluminum Target Plate

Test Data:
Velocity Thermal Enengy
(fps)- (watt-gec /m)
Initial 2 RESIDUEL - Front Back
2030 900 2, 100 2,400
4110 1900 4, 300 34, 100 '
B Smoothed Data

1000 - 1, 508 600
2000 - 2, o0 2,300
3000 - 2,500 8,300
4000 - 4,100 29,600
5000 - 5, 800 106, 100
6000 - 8, 300 380, 200

Titanium Target Plate

Test Data
1920 650 11,300 4,300
3130 1160 6,300 2, 600
4250 1810 13,200 19,000

Smoothed Data

1000 - 8, 600 1,600
2000 - 9,200 3,000
3000 - 9,700 5, 600
4000 - 10, 300 10, 300
5000 - 11,000 19, 500
6000 - 11, 600 36, 400

- Data not obtained.
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TABLE XIII.  ALLOY 29 (MRE + 4% ALUMINUM) (CONCLUDED)

Steel Target Plate

Test Data
Veloncity Thermal Enargy
(fps) (watt-sec/m#)
Initial Residual Front Back
1450 - 6,900 .
1600 - 7,000 *
2270 - 7,800 4,000
2760 . 5, 400 3, 600
3050 - 38,700 39, 100
3090 819 - -
3120 - 23, 800 31, 300
Smmoothed Data
1000 - 4,000 100
2000 - 8, 400 1,300
3000 - 17,700 20,000
4000 - 37,500 314,000
5000 - - 79, 400 4,9 x 100
6000 - 160, 000 7.8 x 107

*Did not penetrate.
- Data not obtained.
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TABLE X1V. ZIRCONIUM

Aluminum Target Plate

Test Data
Velocity Thermal Engrgy
(fps) (watt~sec/m*)
Initial Residual Front Back
2900 1400 1,000 900
3400 1500 300 700
4100 1700 1,000 ' 900
4500 1800 2,100 18,400
5000 1800 3,500 17,000

Smoothed Data

1000 - 100 0
2000 - 200 100
3000 - 500 500
4000 - 1, 200 2,900
5000 - 2, 800 16, 400
6000 - 6, 400 91,900

Titanium Turget Plate

Test Data
2000 700 1, 300 900
2900 1100 fr, 800 2,400
4100 1700 3,200 11,100

Smoothed Ditta

1000 - 1,400 300
2000 - 2, 100 300
3000 - 3, 100 3,000
4000 - 4, 600 10,000
5000 - 6, 800 33,300
6000 - 10, 100 111,200

- Data not obtained.
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TABLE XIV. ZIRCONIUM (CONCLUDED)

Steel Target Plate
Test Data
Velocity Thermal Energy
(fps) (watt-sec/m®)

Initial ... Residual Front Back
2000 600 300 200
2100 - 2,100 800
2200 - 3,200 3,000
_‘{ 2200 - 2,500 3,300
2300 - 1,400 700
{ 2400 - 7,200 2,800
2500 - 1, 800 600
2500 - 3,300 1,700
2900 1000 3,000 2,000
| 3900 - 16, 600 16,500
4100 1600 15,400 16,000
4500 - 16,400 17,300
4800 - 11,100 20, 600
5000 - 34, 100 39, 600

Smoothed Data

1000 - 600 200
2000 - 1, 600 800
3000 - 4,200 3,000
4000 - 11,100 10, 900
5000 - 29, 200 39, 400
6000 - 77,300 143, 000

- Data not obtained.
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Figure 26, Thermal Energy Versus Projectile Velocity for
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TABLE XV. ZIRCONIUM-TIN

Aluminum Target Plate

Test Data
Velocity Thermal Energy
(fps) (watt~-sec /m?2)
Initial Residual Front Back
3000 1300 700 1,000
3500 1500 700 700
4000 1800 900 14, 700
4600 1800 14,300 31, 700
5000 2000 1,900 5, 400

Smoothed Datu

1000 - 100 100
2000 - 200 200
3000 - 600 L, 000
4000 - 1, 600 4, 500
5000 - 4, 300 19,400
6000 - 11, 600 84, 200

Titanium Target Plate

Test Data
2000 700 1, 400 400
2800 900 1, 300 900
4200 1700 4, 000 12,900

Smoothed Data

1000 - 700 100
2000 - 1, 200 300
3000 - 1,900 1, 700
4000 - 3, 200 &, 500
5000 - 5, 401) +3, 000
6000 - 9, 000 214, 400

- Ixita not obtained.
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TABLE XV, ZIRCONIUM-TIN (CONCLUDED)

Steel Target Plate

Test Data
Velocity Thermal Emirgy
(fps) (watt-sec/m*)
Initial Residual Front Back
| 2000 600 1,000 200
| 3000 1000 2, 500 1,500
| 3000 - 4, 200 4,100
g 3000 - 2,000 2,800
E - 3500 - 12, 200 20, 900
: 3600 - 6, 800 5,500
4000 1500 2, 500 5, 100
4000 - 3,700 4,200
4700 - 23, 200 37,900
5000 - 24, 600 41,400

Smoothed Data

1000 - 400 100
2000 - 1,100 400 Q
3000 - 2,900 2,100 J
4000 - 7, 500 10, 100 '
5000 - 19, 800 48,200 2
6000 - 52,000 229,800

- Data not obtained.
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TABLE XVI. DEPLETED URANIUM

Aluminum Target Plate

Test Data
Velocity Thermal Engrgy
(fps) (watt=sec/m*)
Initial Residual Front Back
1500 700 800 0
2900 1600 1, 100 100
4700 2100 1, 600 5,100
Smoothed Data
1000 - 700 0
2000 - %00 0
3000 - 1,100 100
4000 - 1,400 1,000
5000 - 1,700 13,400
6000 - 2,100 18,200
Titanium Target Plate
Test Data
1500 500 600 1,000
2900 1300 1,500 600
4800 2300 5,200 14,300
Smoothed Data
1000 - 400 300
2000 - 800 800
3000 - 1, 600 1,900
4000 - 3,000 4,400
5000 - 5, 800 10, 400
6000 - 11,200 24,200

- Data not obtaincd.




TABLE XVI. DEPLETED URANIUM (CONCLUDED)

Steel Target Plate

Test Data
Velocity Thermal Ensrgy
(fps) (watt-sec/m*)
Initial Residual Front Back
1400 500 700 200
3000 1300 1,400 7,000
4900 2200 4, 800 11, 400

Smoothed Data

1000 - 500 200
2000 . 900 700
3000 - 1,600 2,200
4000 - 2,700 6,900
5000 - 4, 800 21,500
6000 - 8, 400 67,000

~ Data not obtained,
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Figure 34. Simulated Aircraft Wing Tank
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Figure 35. Simulated Wing Tank on Stand
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TABLE XVIIL. RESULTS OF INCENDIARY TLESTING
(SIMULATED TRUCK TANK WITH MOGAS)

90% MRE + 10% Bismuth Penetrators

Velocit Results Velocit Results
(Ips) (Ips)

1800 Fire 2000 Fire
1800 Fire 2500 Fire

95% MRE + 5% Magnesium Penetrators

Velocitz Results Velocit Resuits
5 °
; 16 No Penetration 2700 Fire
_,_; 2100 Fire

96% MRE -+ 4% Aluminum Penetrators

Velocity Results Velocity Results
(fgs) (fgs)
200 Fire 240 Fire

Zirconium Yenetrators

Velocity Results Velocity Results
(fps fps

1908 ) No Fire 25 B ) Fire

2500 No Fire 3000 _ Fire

Zirconium-Tin Penetrators

Velocity Results Velocit _I_R_g_s.ults
(fps) (fps)

2000 No Fire 2608 Firc

2500 No Firc 3000 No Firce

2500 No Fire 3100 Fire

2600 Fire

Depleted Uranium

Velocity _l'&,_s_ql_t_s_ Velocltz Results
fps (fps)
27(08b) No Fire 4008 Fire

3300 No Fire 4000 Fire




TABLE XVIII, RESULTS OF INCENDIARY TESTING
(SIMULATED WING TANK WITH KEROSENE)

90% MRE + 10% Bismuth Penetrators

[}
{

Velocit Results Velocit Results
8 ps
3100 No Fire 3700 No Fire
3200 No Fige 3700 No Fire
3200 No Pire 3800 No Fire
9520 MRE + 5% Magnesium Penetrators
Velocit Results Velocit Results Velocity Results
] ps (Tpa) (ips)
- 2700 No Fire 8100 No Firg 3700 Nb Fire
2700 No Fire 3100 No Fire 3700 No Fire
1 2700 No Fire 3200 No Fire 3800 No Pite
k 96% MRE + 4% Aluminum Peretrators
1 Velocity Results Velogt?/ Res(lts. Velocity Results
- (f%s) (fp5) N (fps)
1 210 No Fire 2600 No Fire 3600 No Fire
1 2300 No Fire 2700 No Fire 3700 No Fire
} 2500 No Fire 3200 No Fire 3700 No Fite

2500 No Fire 3200 No Fire

Zirconium Penetratorg

Velocity Results Velocit Repuy. !S.Bf, Velocity Results
(Tps)

(fps) (ps)
3100 No Fire 3500 No Fite 5100 No Fire
3100 No Fire 3600 No Fire 5200 No Fire
3100 No Fire 3600 No Pire

Z irconium - Tin Penetrators

Velocity Results Velosity Regulte Velocity Results
(fps) (fps) (fps)

3000 No Fire 3500 No Fire 5000 No Fire

3000 No Fire 3600 No Fire 5000 No Fire

3100 No Fire 3700 No Fire
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TABLE XIX, RESULTS OF INCENDIARY TESTING
(SIMULATED TRUCK TANK WITH KEROSENE)

r 90% MRE + 10% Bismuth Penetrators .
| {

Velocit Results
; {Tps) —_—
i : 2900 No Fire
3000 No Fire
3400 No Fire
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TABLE XX. RESULTS OF INCENDIARY TESTING
(SIMULATED WING TANK WITH MOGAS)

Zirconium. Penetrators

Velocit Results Velocit Results

5 - "'(m?TY -
3500 Fire 3000 No Fire
3500 No Fire 3000 No Fire
3400 No Fire 3000 No Fire

Zircomium-Tin Penetrators

- Velocity Results Velocity Results
fps fps
35‘98 ) No Fire 31%8 ) No Fire
3470 No Fire 3060 No Fire
3410 No Fire 3030 No Fire
90% MRE + 10% Bismuth Penetrators 4
Velocity Results Velogit Results Velocit Results
(fps) (ps) Tp&)
3700 No Fire 2500 Fire 1600 No Fire
3500 Fire 2300 Fire 1500
2300 Fire 1400 Fire
3000 Fire 2100 Fire 900 No Fire
2800 No Fire 2000 Fire 900 No Fire
2700 Fire 2000 Fire 800 No Fire .
I
95% MRE + 5% Magnesium Penetrators I
B
Velocity Results Velocit Results Velogit Results j
gps) (Ips) ps 1
3100 No Fire 2600 No Fire 2100 No Fire ]
3000 Fire 2500 No Fire 2000 No Firc ‘
3600 No Flire 2300 Fire 1800 No Fire

969, MRL -+ 47 Aluminum Penetrators

‘ Velocity Results Velocity Results ,

; (Tps) (tps) : 1

: 3100 Fire 2600 No Fire 1

‘ 3000 No Fire 2600 No Fire N
)

2900 Fire 2500 No Fire \{




TABLE XXI. RESULTS OF FIRINGS AGAINST TWO IN-LINE
STEEL TARGET PLATES

Zirconium Commercial

Velocit First Target Second Target Recovery Pack J
)
1500 Penetrated Slight dent (impression) - 1
1600 Penetrated Sligiit dent -
1800 Penetrated Deep dent -
3500 Penetrated Penetrated Fifth layer
Zirconium-Tin ]

Velocit
(fps)

First Targgt

Recovery Pack

Second Ta rget

1500 Penetrated Slight dent -
1600 Penetrated Slight dent .
1700 Penetrated Good dent : 1
2100 Penetrated Penctrated First Luyor I
3400 Penetrated Penetrated Fifth layer !
96% MRE + 4% Aluminum !
Velocit First Target Second Target Recovery Pack %
ps g
2300 Penetrated Many small impressions - '
2500 Penetrated Many small impression:
3600 Penetrated Many small impressions
tatrly deep
3800 Penetrated Many small impressions -

Veloclt
(Ips)

90% MRE i 10

alinost pen~trated

Vo Bismuth

First Ta_r_E t

§_c_mnd r‘arg_e_t Re -overy gk

2600 Penet ated Fused o second plate
3600 Penetrate:’ Many small frags fuscd -

to second target

(almost penetrat.d)

9% MRE ' 5 Augmesium ‘
Veloclt First Targos Sceond Targpet Recovery  wck
ps

2900 Penetrated Slight break
3600 Penetrated Many small frags fused

to plate (almost
renetrated)

- Did not penetrate recovery pick,
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SECTION VI
CONCLUGIONS AND RECOMMENDATIONS 5

1, A comprehensive program of the research and production of 27 rare
earth alloys was accomplished, Physical and thermochemical data were taken
on alloys and are reported.

2, A comparison cf the terminal effects of all pyrophoric metal penetrators,
without bias to preferred or proprietary metals, was made against common
structural materials: aluminum, titanium, and steel sheet.

- 3. A basis for the: selection of a pyrophoric metal penetrator material as a
function of projectile velocity and target material has been cstablished,

4, The penetrator lower velocity limit for the sustained ignition of volatile
fuels was determined for five selected materials against simulated fuel tank
bladders.

On the basis of the above considerations, it is recommended that
additional effort be directed to the following:

1. Thermal effects data on the gun-launched firings of penetrators of
larger caliber.

2. Studies on the scaling effect of large caliber pyrophoric penetrators on
the sustained ignition of low volatile motor and jet fuels,

3. Design effects of the penetrator configuration (blunt nose, cookie cutter,
etc,) on the ballistic limit and subsequent break up and heat pulse duration. J
J
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APPENDIX A

DYNAMIC TEMPERATURE AND HEAT MEASUREMENT

Pyrometers have the capability to measure rapidly changing temperatures
as observed when a pyrophoric material impacts with high impulse.

‘ Detectcrs with time constants as low as 10 usec are available for use in
measuring rapidly varying temperatures as low as 100°C. Time distributions
of temperature can be: obtained through the use of an oscillograph fitted with a
camera. The photographs give a permanent calibrated record of the time-
temperature profile,

Radiation pyrometers and optical pyrometers are the most widely used
classes of pyrometers for measuring transient temperatures.

Optical pyrometers usually employ a sensitive semiconductor or photo-
multiplier as the detector. The detector is normally filtered with a narrow
bandpass to be centered at 650 mu or 467 mx . Radiation pyronieters also
function in the same manner but usually employ detectors more sensitive to
longer infrared wavelengths and use wider bandpasses about the filter center-
point. Temperatures obtained with these types of optical and radiation pyro-
meters are referred to as "Brightness" temperature and represent the temper-
ature at which a blackbody must be to emit the samec amount of radjation as the
target being measured.

Once the "Brightness" temperature of a target is determined it is known
from the Planck formula that such a temperature is the lowest possible temper-
ature of the target, integrated over the field of view of the pyrometer. If the
emissivity, or a reasonable estimate of the emissivity is known, the "Brightness”
temp - rature can be adjusted to approach the "true" temperature value by the
following variation of the Planck formula.

Tbr

T
tr = k »
Tbr (E—) Ine +1

0

where k = Boltzmann's constant = 1, 3805 x 10—23 joules/deg K and h = Planck

constant = 6, 6252 x 10734 joule sec.

€ = Emissivity =1
A = Wavclength
¢, = Speed of Light = 2.9979 x 108 m/sec
Tb r = Brightness Temperature
Ttr = True Temperature
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It can be observed from this formula that as the emissivity (§)
approaches unity Ttr approaches Tbr and that at &£ = 1 the value for Ttr
is at a minimum.

It becomes apparent that the "True Temperature" of a target
cannot be determined pyrometrically unless an accurate value for its
emissivity is known.

In the case of impact flashes from pyrophoric materials it would
be far beyond the scope of this program to attempt to define the emittance
values for the combustion products of the pyrophoric materials being
studied.

It is meamngful however, to use these "Brightness' temperature
to represent the minimum temperature as integrated over the field of view
of the pyrometer.

Additionally, radlatlon pyrometers such as those used in this ‘study
may function as radlometers to measure radiated power as well as tempera-
ture since such pyrometers are actually radiation sensors. To be utilized
as radiometer the pyrometer must of course be calibrated against a suitable
radiation standard in much the same manner as it is calibrated against a
temperature standard when used to measure temperatures.

The radiation standard utilized to calibrate the pyrometers in this
study was an AFATL l?lackbody traceable to the Bureau of Standards.

‘ Thereby the pyrometers were able to sense both temperature and
radiated power of impact events as a function of time. These events were
recorded on films of oscilloscope traces as previously described in the body
of the report (Figure 14). The traces therefore are histories of the tempera-
ture and radiated power, both as a funct1on of time as observed by the field
of view of the pyrometers.

?

The peak of the trace represents the maximum temperature of the event

and the "Brightness Temperature'.

The area under the curve traced is 2 measurement of the time integral

of radiated power (watt-sec per meter )* and thereby a measurement of the
mechanical equivalent of heat of the event.

* The field of view of the pyrometers-used in this study at the plane of the
penetrator trajectory was 0.0165 square meter.
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