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ABSTRACT

The modern tactical class of aircralt weapon systems is required to perfo-'m
effectively over a wide range of flight Mach number and altitude, providing large
thrust margin and high maneuvering capability throughout the normai operating
envelope, To achieve this combination of performance and maneuverability, a

sophisticated propulsion system closely integrated with the airframe is required.

Yoo

Operational experience indicates that the vehicle induced flow environment can in-

fluence the performance of these closely integrated propulsion systems with the

effects ranging from minor performance degradation to engine flame-out.

Recent exploratory and developmental research programs have served to im-
prove the basic understanding of the effects of airframe-inlet interaction. These
programs accomplished their major goals in that a large bank of relevant experi-
mental data was generated and a basic understanding of the flow phenomenu was
X obtained. The objective of the program repoited herein was to expand this data bank
by (1) providing a more extensive spatial documentation of the vehicle flow lields,

(2) an increase in the Mach number regime included, and (3) investigations of addi-~
tional geometric variables potentially impacting upon the propulsion system design

process. All major program goals were attained.
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PREFACE

The subjact matter of this report, which represents the second of the two

volumes comprising the document AFFDL-TR-72-11, deals mainly with the resulits

of the wind tunnel investigation at Mach numbers of 2.5 and 3.5, Svch topics as the
model design philosophy, model description, instrumentation, data acquisition, and
reduction have already been presented in Volume I of this document and, consequently,
are not presented here. A table of the contents of Volume I has been included in the
front matter of this report which, together with the table of contents of the present
volume, should provide a clear outline of the program scope as well as a convenient
referral guide,
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SECTION1I
INTRODUCTION

This report is the secord of two volumes presenting the results of an investigation
closely related to a recently completed USAF contract, F33615~68-C~1658, "Investigation

of Airframe ~ Inlet Interactions.' Both programs are part of a large effort within the

USAF and NASA to develop propulsion system design criteria for supersonic air supe-

i I ST,

riority fighter aircraft. In contract 1658, airframe and inlet models were designed and
tested in the NASA Ames Research Center 6' x 6' and 8' x 7' supersonic wind tunnels in
order to define the effect of airframe design features on inlet flow fields and inlet per~

formance for a wide range of supersonic air superiority aircraft designs,

In the investigation outlined in the first volume of this document, much of thz

same hardware employed in contract 1658 was used in the wind tunnel tests in order to

supplement and expand the information generated in this program, The models and
tests were designed to produce an extremely wide rangs of parametric airframe flow
field data within a reasonable tunnel occupancy time. In particular, the versatile
building block model design concept employed in that contract made it possible for both
programs to provide a relativaly large bank of parametric, systems—oriented, experi-

mental data,

The present program had four major objectives, One objective was o gain a
better understanding of the effect of geometry variations cn inlet flow fields, The geo~
metry variations inclnded fuselage nose droop, body camber, canopy shape, aerodynamic
control surfaces, and weapon installations. The second objective was to estahlish the
effects of yawed flight on inlet flow fields. The third major objective was to establish
the important effects of fuselage design on inlet flow fields of higher design Mach number
aircraft such as the advanced manned interceptor., Boundary layer growth character-
istics were to be defined for various fuselage shapes as was the axial progressionof flow
field properties around the entire periphery of these shapes for various Mach numbers

and vehicle attitudes,

The subject of this volume deals with the third major objective mentioned above,
namely, the effects of fuselage design at varicus angles of attack and yvaw, on inlet flow
fields of higher design Mach number aircraft such as the advanced rianned interceptor

type.
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SECTIONII
SUMMARY

The results reported here were obtained from tesis made at Mach mimbers of
2,5 and 3, 5, conducted in the 8' x 7' wind tunnel of the NASA Ames Research Center,
The basic model configuration used for these tests is representative of a typical high
design Mach number aircraft, The model itself was built up from a basic Contract
1658 model, modified by the incorporation of a high fineness ratio nose and canopy,

The design of this high design Mach number fuszlage model also permitted
studying two basic fuselage cross section shapes having two different lower shoulder
radii - one small, the other large, Complete design details, including schematics of
the model, are given in Volume I of this document,

Data production focused primarily on acquiring flow field data'in the region
adjacent to the side of the fuselage at the 30% and 50% ACL longitudinal loeations,
Surface static pressure distributions were also obtained in the various meridional
plane intersections shown in Figure 1, This data was reduced and flow field maps of
local Mach number, total pressure recovery, angles of attack and yaw, and fuselage

static pressure distributions generated,
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SECTION V
DATA ANALYSIS

3.0 GENERAL

This section presents an analysis of the flow fleld data obtained in the 8' x 7°
wind tunnel of the NASA Ames Research Center, The influence of fuselage geometry
and vehicle attitude, relative to free-stream direction, upon the local flow field
properties of Mach number, total pressure recovery, angle of attack, and angle of
yaw are discussed, The results are grouped according to test Mach number, with
the Mach 2, 5 data discussed first, followed by the Mach 3. 5 results,

3.1 Mach Number 2.5

3.1.1 Low Angle of Attack
3.1.1.1 Local Mach Number

3.1,1.1.1 Effect of Vehicle Geometry

At zero angle of attack the local Mach numbers in the regions of the flow field
surveyed do not vary appreciably from the free stream value. This can be seen by
an examination of Figures 2 to 5 where the local Mach numbers are presented for
fuselages 1 and 2 at two axial locations, namely, the 30% and 50% ACL stations,
respectively. Inspection of the inboard and outboard regions (the first and last
columns) of Figures 2 and 3 shows a decrease in local Mach number in the outboard
direction., This is to be expected since the outboard region is not affected as much
as the ioboard region by the flow expansion which takes place zlong the side of the
fuselage downstream of the conical-like nose tip, This effect was seen previously at
the lower Mach number test conditions,

A direct effect of the differences in the geometry of fuselages 1 and 2 can be
seen in the lower Mach numbers measured in the lower inboard region of Figure 2
as compared to Figure 3. This difference in flow field diffusion is attributed to the
differences in the body cross-section geometry in this region; i. e, , fuselage 1, by
virtue of its greater width in this region, produces relatively more sideward dis-

placement (compression) than does fuselage 2 with its slimmer bottom,
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Figures 2 and 3 also show local Mach numbers in the upper region (first and
second rows of data points) which are less than those in the lower regions. This is

probably due to the canopy-induced compression together with the more pronounced

. compression along the top contour of the fuselage, due to the nose droop, as com~
pared to the bottom contour, Further downstream, however, at the 50% ACL station,

- the Mach numbers in the upper region as shown in Figures 4 and b are somewhat

higher than those below, This reglon is evidently affected by both the flow~expansion

\ along the top and sides of the canopy as well as the local expansion of the flow along
the wing undersurface downstream of its leading edge. It should be noted that, with
_4 the exception of the uppermost row, the local Mach numbers at the 50% ACL station
are in general lower for both fuselages, than at the 30% ACL station, due primarily
to the wing induced compression and a recovery from the over-expansion along the
side of the fuselage. Figures 4 and 5 also show very little effect of the differences
in the shapes of the lower portions of fuselages 1 and 2 on the local Mach numbers
in that region, as compared to the values measured at the 30% ACL station shown in
Figures 3 and 4.

3.1.1,1.2 Effect of Yaw

The effect of yaw (sideslip) at zero angle of attack at Mach 2. 5 is illustrated in
Figures 6 to 9 for fuselage 1 and Figures 10 to 13 for fuselage 2. In general, the
primary effect of yaw, relative to the unyawed case, is to increase slightly the local
Mach numbers on the leeward side and lower those on the windward side, as may bhe
seen by comparing Figures 6 and 7 with Figure 2. Examination of the local Mach
numbers at the 30% and 50% ACL stations for either fuselage indicates more or less
the same fuselage geometry, canopy, and wing induced influences at work as the un-
yawed case at this low angle of attack,

3.1,1,2 Total Pressure Recovery

3.1.1.2,1 Effect of Vehicle Geometry

Figures 14 to 17 show relatively low canopy, fuselage and wing induced losses
as evidenced by the relatively high pressure recoveries measured for both fuselages
at this iow angle of attack condition at the two survey stations. Moreover, little, if
any, effect of fuselage geometry differences on the pressure recovery is discernible
in the lower inboard regions of the flow field, as shown in Figures 14 and 15 for the

i forward flow survey station, The same is true for the aft station, as may he seen
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from Figures 16 and 17, where the pressure recoveries for both fuselages 1 and 2
are generally the same, but lower than the values obtained at the upstream station
shown in Figures 14 and 15, These lower recoveries appear due to canopy and

wing generated shock wave losses which manifest themselves at the aft survey station.

3.1.1.2.2 Effect of Yaw

The offect of yaw on the low angle of attack pressure recovery in the flow
survey regions adjacent to the windward and leeward sides of the fuselage for both
fuselages was found to be small. In general the total pressure recoveries for the
leeward side were only slightly higher than for the unyawed case, as may be seen by
comparing Figure 18 with Figure 16, wheress those on the windward side showed very
little decrease from the unyawed case. Apparently, for this combination of low-drag
nose and canopy shape, the modulation in shock wave strength is negligibly small at
low angle of aitack for the angles of yaw tested (£4°),

3.1,1.3 Jocal Alpha

3,1,1,3.1 Effect of Vehicle Geometry

The local angles of attack measured at the {fore and aft survey stations are
~ shown in Figures 19 and 20 for fuselage 1, and in Figures 21 and 22 for fuselage 2,
For this zero angle of attack condition negative local angles of attack are indicative
of a canopy produced downwash at the 30% ACL station, and a wing induced downwash
at the 50% ACL station. Due to the nose droop the canopy pressure field at this angle
of attack is stronger than that of the lower fuselage, with the result that u downward
pressure gradient is established which gives rise to the downwash patiern observed
at the forward station.

A comparison of Figure 19 and 21 indicates that the canopy pressure fieid is
able to drive somewhat further down into the flow field for fuselage 2 than for fuselage
1 ar evidenced by the slightly larger downwash values for fuselage 2, This is un-
doubtedly due to the greater ability of the smaller corner of fuselage 1 (o segregate,
or isolate, the bottom ard side pressure fields as compared to fuselage 2, a charac-
teristic feature which had been pointed out earlier in Volume I of this report.

At the oft station the wing pressure field comes into play, increasing slightly

the downwash in the upper portions of the survey region. The estimated region of
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influence of the wing pressure fleld are shown in Figure 23 for each of the several
angles of attack at Mach numbers of 2,5 and 3. 6.

3.1,1,3,.2 Effect of Yaw

For the leeward slde at the forward station, the downwash, &4 shown In Figure
25, increased in the upper region and decreased in the lower region relative to the
unyawed case. This indicates a strengthening of the canopy and bottom fuselage pres-
sure field due to the cross flow. On the windward side of the effect of yaw was to in-
crease the pressure field of the fuselage side relative to both the top and bottom con-
tours, as evidenced by the existence of local downwash in the lower region of the survey
plane and upwash in the upper portion, as shown in Figure 24. This effect of yaw
was common to both fuselage shapes,

At the downstream survey station Figure 26 shows that on the windward side
the effect of yaw, and of the wing presence, is to produce a downawash pattern which
increases in the downward direction, On the leeward side the cross flow around the
bottom of the fuselage due to its yawed attitude serves to produce a mild upwash in
the lower inboard corner of the survey region. The wing presence is manifested
here too by the mild level of downwash in the upper portion of the region. The effects
of yaw at this low angle of attack were also found to be generally the same for fuselage
2, The larger corner radius of fuselage 2 served to introduce the bottom pressure
field earlier to the fuselage side flow field with a resulting increase in local angles of
attack in the inboard regions at both 30% and 50% ACL.

An aid to understanding the chief effects of yaw on flow angularity is provided by
recognizing that, to a good approximation, the flow field about a yawed body can gener-
ally be assumed to be the result of superposing a simple cross flow on the basic unyawed
flow field, This fact will be noted again in subsequent sections dealing with the inter-
mediate and high angle of attack results,

3.1,1.4 Local Sigma

3,1.1,4.1 Effect of Vehicle Geometry

At the forward survey station the effects of differences in fuselage geometry on
local sidewash angle (denoted by sigma) were restricted to the inboard region adjacent to
the corners and sides of fuselages 1 and 2, as shown in Figures 28 and 29, respectively.
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It can be seen that only positive sidewash angles were cobfined to this region, and that
all the other values were negative. It should be noted that negative and positive values
of sigma denote components of velocity directed out from, and ioto the body, respect-
ively.

Composition of the survey region is dictated by the axisymmetric shock layer
generated by theryfuselage nose and canopy. The flow re-expansion effects emanating
from the convex surface curvature downstream of the slender nose and canopy wind~
shield penetrate the flow field slowly, thereby delaying complete decay of this compres-
sion field to a point downstream of the forward survey station. Consequently, at the
forward station the influence of re-expansion diminishes with distance from the fuselage
and the local sidewash angularity tends to be more negative outboard, This radial
gradient is stronger in the upper position of the flow fleld due to the proximity of the
canopy. The local angles of sidewash shown in Figures 28 and 29, together with the
local angles of attac™ ‘'wown in Figures 19 and 21 are indlcative of a helical streamline
pattern spiraling dowuward andto the right (looking aft) on the right side of the fuselage.

At the downstream station flow re-expansion i3 more complete and the values of
local sidewash become more positive, tending to align with the fuselage surface in-
board and the free stream outboard, The changes are greatest in the upper part of
the survey region, as may be seen by coraparing Figures 28 and 29 to 30 and 31.

This change can be attributed to the influence of the large reduction in cross-secticnal
area of the canopy and the change in local slope of the upper fuselage which takes
place between the 30% and 50% ACL stations, and to the absence of wing compression
in iphibiting the luward directed flow tendency at this low angle of attack.

In summary, the flow field sidewash characteristics at zero angle of attack in
the region surveyed, are dependent upon local cross section shape as well as body

slope changes in the vicinity of the region in question,

3.1,1,4.2 Effect of Yaw

The windward field local angles of sidewash were generally the same for both
fuselages in the region above the horizontal reference line at both the 30% and 50% ACL
stations, Below the horizontal reference line the fuselage corner shape did affect the
sidewash in the inboard region at both statlons, Thus, fuselage 2, with its larger
corner radius introduced in effect the cross flow asscciated with this yawed condition
into the inboard region, as may be seen by comparing Figures 32 and 33, and 34 to 35,
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On the leeward side the effect of fuselage geometry differences was negligible.
The local sidewash was similar for both fuselages at the fore and aft stations, As
shown in Figure 36 the sidewash decreased from levels equal to almost the free
stream yaw value in the outboard region, to only a fraction of that in the inner region

adjacent to the fuselage.

3.1,2 Intermediate Angle of Attack

3.1.2.1 Local Mach Number

3.1,2,1,1 Effect of Vehicle Geometry
For both fuselages 1 and 2 the effect of increasing the angle of attack from C° to

! 10° was to increase the strength of the compression of the lower fuselage contour re-

‘ lative to the upper; thus, at the forward survey station the local Mach numbers were

lowest in the lower part of the surveyed region and generally highest in the upper
part, This variation of local Mach number was reversed at the aft station by the
lower wing surface flow field which raised the pressure levels, and decreased the
local Mach numbers in all but the lower outboard part of the survey region, These
effects can be seen in Figures 37 and 38 in the case of fuselage 1.

The effects on the flow field of the difference in fuselage geometry were counfined
to the lower inboard region adjacent to the fuselage corner and cousisted of lower local
Mach numbers in the ca..e of fuselage 2 as compared to fuselage 1, As mentioned

earlier, this is apparently due to the larger corner radius of fuselage 2 which intro-

[

duces more of the lower fuselage produced compressicon into the side flow field than
does fuselage 1 with its smaller corner radius and flatter bottom. This effect can be

seen by comparing Figures 38 and 39,

3.1.2,1.2 Effect of Yaw
At the intermediate angle of attack of 10° there was virtually no discernible

effect of yaw angle (£4°) ou the local Mach number distributions on the windward and
leeward side, for both fuselages 1 and 2 at the forward flow survey station. The
composition was rather uniform and averaged about . 08 lower than free stream Mach
number on the windward side and . 05 higher on the leeward at the forward station as
exemplified in Figures 40 and 41. At the aft station, however, the average local

: Mach number on each side was lower than free stream, namely, .34 loweron the wind-
ward and .18 on the leeward, indicating the presence of the wing compression field at

! this station,
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3.1.2.2 Total Pressure Recovery

3.1.2.2,1 Effect of Vehicle Geometry

The increase in angle of attack from zero to the intermediate value of 10° pro~
duced little difference in total pressure recovery at the forward station for both
fuselages, with fuselage 2 displaying slightly higher recoveries in the vicinity of the
fuselage corner at both survey stations,

The pressure recoveries at the afi station were generally lower than those of
the low angle of attack case for both fuselages, indicative of the greater wing shock
wave losses attendant upon this higher angle of attack, Moreover, as shown in
Figure 42 the pressure recovery was lowest in the upper inboard region closest to
the wing body intersection. This is probably due to the combined effects of canopy
and wing generated shock waves whose strengths, and associated losses, are greatest
in this region,

3.1,2,2.2 Effect of Yaw

Relative to the unyawed case the effect of yaw (x4°) on loeal total pressure
recovery at this intermediate angle of attack was observed to be small at both survey
stations for both fuselage shapes 1 and 2, as it was for the zero angle of attack case.
Total pressures for both leeward and windward sides were practically the same as for
zero yaw, testifying to the virtual lack of modulation in shock wave strength over the
angle of yaw range tested for this essentially low-drag nose and canopy configuration,
This was also observed inthe zero angle of attack results,

3.1.2,3 Local Alpka

5,%.2,3,1 Effect of Vehicle Geometry

The effect of increasing the angle of attack from 0° to 10° was to strengthen the
fuselage bottam pressure field relative to that of the upper, Consequently, all the
local angles of attack at the forward survey station were positive for both fuselages
as shown in Figures 43 and 44, unlike the zero angle of attack case where negative
local angles of attack were observed over the whole of the side flow field. The effect
of fuselage geometry was confined to the inboard region, where somewhat lower local
values of upwash were observed for fuselage 2 as compared to fuselage 1, This in-
dicates, again, how the rounder corner of fuselage 2 serves to introduce the pressure
field into the cide flow field gradually, thereby reducing the peripheral pressure
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gradient and consequently the upwash in the corner region. At the downstream station
the shielding effect of the wing on reducing the level of downwash, especially in the
upper part of the survey region, is clearly discernible in Figures 45 and 46, Again,
in the region of the lower fuselage corner, the local upwash is slightly higher for
fuselage 1 than for fuselage 2.

3.1.2.3.2 Effect of Yaw

At the forward survey station the effect of yaw was, on the leeward side, to in-
crease the level of upwash in the lower inboard region and to decrease it in the upper
inboard part, On the windward side the opposite occurred, "namely a decrease in the
lower, and an increase in the upper part of the side survey region, This behavior can
perhaps be best explained as resulting from the superposition of a simple cross flow
field, generated by the yaw, on the basic unyawed flow field. Thus on the windward
side the cross flow streamlines divide at the fuselage side, going around the top and
hottom of the fuselage and joining up again at the leeward side of the fuselage. At the
aft station the constraint posed by the presence of the wing modifies this simple picture,
Thus in the vicinity of the wing under surface the upwash is about the same on both
leeward and windward sides, But in the lower region it is seen that the upwash on the
windward side is greatly reduced while on the leeward side it is increased, in keeping
with the cross-flow explanation. The effects are seen in Figures 47 through 50.

3.1.2.4 Local Sigma

3.1.2.4.1 Effect of Vehicle Geometry

At this angle of attack fuselage cross-flow affected local sidewash angles,
Compared to the low angle of attack case, sidewash at the forward survey plane was
more negative except for the upper inboard corner of the survey region where a small
pocket of positive sigma resided. At tl.e downstream station , the wing compression
induced a higher and more negative, level of sidewash,as can be seen from Figures
51 and 52, with a pocket of positive sidewash still evident in the upper inboard
corner which, at this station, could be induced by the wing-body juncture interference

flow,

3.1.2.4,2 Effect of Yaw )

Al the forward survey station the effect of yaw was virtually the same for both
fuselage cross section shapes, On the leeward side the local sidewash angles were
411 negative, diminishing in the direction approaching the side of the fuselage, as may
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be seen from the data shown in Figure 53 for fuselage 1. On the windward side the
pattern of local sidewash was similar to that for the zero yaw case, but increased by
an almost uniform positive increment in sidewash of about 1°, as can be seen by
comparing Figures 51 and 54.

At the downstream survey plane for both fuselage shapes the sidewash angles on
the leeward side became more¢ negative, and on the windward side more positive due
to the vaw which is to be expected. These effects are shown in Figures 55 and 56.

3.1.3 High Angle of Attack
3.1,3.1 Local Mach Number

3.1.3.1.1 Effect of Vehicle Geometry

At the forward station the same fuselage effects observed at the intermediate
angle of attack were present at this higher angle of attack of 20°, Thus, the local
Mach numbers in the vicinity of the lower corner of fuselage 1 were somewhat higher
than for fuselage 2 which, with its larger radius, introduced the pressure field in-
duced by the lower fuselage contour into the inner region of the survey area, The
increased expansion over the upper fuselage contour was evidenced by local Mach
numbers in the upper portion of the surveyed region which were higher than ‘hose of
the preceding intermediate angle of attack case, These effects may be discerned in
Figures 57 and 58. At the aft survey station differences in geometry produced no
appreciable effect. The effect of the wing pressure field was evident in the lower
Mach numbers measured over the major part of the survey region as shown in

Figure 59,

3.1,3,1.2 Effect of Yaw

The excursion to 4° yaw at this high angle of attack produced virtually no change
from the local Mach number distributions of the zero yaw case for hoth fuselage 1
and 2.

3.1,3,2 Total Pressure Recovery

3.1,3.2.1 Effect of Vehicle Geometry
At this high angle of attack the recovery levels still remained quite high even in
the aft flow field, where it averaged about , 91 for both fuselages, Fuselage effects

were confined to the innermost region of the survey plane where, for fuselage 1, as
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seen in Figure 60, the local total pressure recoveries were as low as 0, 30, indicative
of a local separation due probably to the stronger cross flow around the relatively
sharper corner of fuselage 1. The fuselage 2 flow field did not display such losses as
may be seen from Figure 61,

3.1.3.2.2 Effect of Yaw

The effect of +4° yaw at this high angle of attack condition on local pressure
recovery was very small, for both fuselage shapes at both survey stations, as it was
for the intermediate angle of attack condition,

3.1.3.3 Local Alpha

3.1.3.3.1 Effect of Vehicle Geometry

At the 30% ACL survey station the same effect of vehicle geometry observed for
the intermediate angle of attack case was evident, namely, higher flow angularity in
the region of the lower fuselage corner for fuselage 1 as compared to fuselage 2. This
can be seen from the data presented in Figures 62 and 63. At the downstream station
the average level of upwash was significantly reduced due to the shielding effect of the
wing, for both fuselages, as shown in Figures 64 and 65. This behavior was already
noted in the intermediate angle of attack results, The negative values of downowash in
the inboard region adjacent to the fuselage are indicative of a local vortex type flow
condition caused by flow separation due to the interaction of the wing leading shock
wave and the fuselage side boundary layer. This condition also manifested itself in
the high angle of attack test results at Mach 3, 5 described in a following section, as
well as the lower Mach number tests reported on in the first volume of this report.

:‘ 3.1.3.3.2 Effect of Yaw

‘ At the forward survey plane the effect of yaw at this high angle of attack, relative
' to the unyawed case, was to increase the upwash slightly in the lower leeward region
and decrease it on the windward side, which was observed in the intermediate angle

of attack case. The same behavior was noted at the aft station although over a larger
region. This effect of yawonlocal angle of attack is exemplified in Figure 66 to 69

for fuselage 1, This effect of yaw was found to be practically independent of fuselage

geometry,
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3.1,3,4 local Sigma

3.1,3,4.1 Effect of Vehicle Geometry
The same general effects which became evident at the intermediate angle of

attack were manifested and more pronounced at this high angle of attack condition,

Thus, the local sidewash angles were all negative (outward directed) except for the .
upper corner of the inboard region where there was a pocket of positive sidewash, As

mentioned earlier in connection with the intermediate angle of attack case, positive N
angrles in this region are probably due to the wing-body juncture interference flow

effects at the aft station and, due to the lateral flow displacement effect of the canopy

at the forward station. Again, the effect of differences in fuselage cross section geo~

metry was negligible, These effects are illustrated for fuselage 1 in Figures 70 and 71,

3,1.3.4,2 Effect of Yaw

At both fore and aft stations the chief effect of 4° yaw was to induce a small in-
crement in sidewash that was positive on the windward side, and negative on the leeward
side, as may be seen from Figures 72 to 74 which present data taken at the aft survey

station for fuselage 2.

3.2 Mach Number 3,5

3.2.1 Low Angle of Attack
3.2.1.1 Local Mach Number

3.2,1.1.1 Effect of Vehicle Geometry

Local Mach sumber distributions at the forward 30% ACL station are shown in
Figures 75 and 77 for fuselages 1 and 2 respectively. The change in Mach aumber from
2,5 to 3, 5 results in a thinner fuselage nose and canopy shock layer. The flow re-
expansion fan associated with the higher Mach number is also shallower and a larger
Mach number gradient exists, from body to shock, than is tiie case at Mach 2.5, The
local Mach numbers differed from the free stream Mach number by a greater amount
than was observed for the Mach 2, 5 case, in keeping with the increased shock wave

strength accompanying the higher free stream Mach number,

At the 50% ACL station, for botk fuselages, the local Mach numbers in the upper
half of the fiow field were generally lower than those at the upstream station, while
those in the lower half underwent a mild increase from their upstream values. This
effect can bz seen by comparing Figure 75 with 76, and 77 with 78. This behavior is
attributed to the shallower shock and Mach wave angles connected with this higher free
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stream Mach number which reduces the lateral extent of the downstream zone of in-
fluence of flow disturbances, Accordingly, the reduction in local Mach number in the
upper half of the surveyed region can be attributed to the wing-induced compression
field which, at this station, extends down to only about half the depth of the survey
region. The increase in local Mach numbers in the lower part of the flow field was
probably the manifestationofthe expansion taking place along the top and sides of the
canopy, downstream of the canopy maximum width, and along the lower fuselage
contour at this low angle of attack.

At both survey stations the local Mach numbers in the lowest row of the region
were highest for fuselage 1, indicating that its flat hbottom together with its smaller
shoulder radius were better able to isolate the flow expansion field induced by the lower
fuselage contour for this combination of low angle of attack and nose droop. This con~
clusion is borne out by the surface static pressure distributions measured along the
lower meridional contour of both fuselages shown in Figure 79, Clearly, as observed
earlier in connection with the Mach 2, 5 data the larger shoulder radius of fuselage 2
serves to introduce the lower fuselage field into the side flow field, and vice versa,

reducing thereby gradients or differences in flow properties in its vicinity.

3,2.1.1,2 Effect of Yaw

The effect of yaw at this Mach numher and low angle of attack was to generally
increase slightly the local Mach number con the leeward side and decrease those on the
windward, relative to the unyawed cuse, as may be seen from Figures 80 and 81, The
same small effects due to differences in fuselage geometry observed for the unyawed

case were also present,

3.2,1.2 Total Pressure Recovery

3.2.1.2.1 Effect of Vehicle Geometry
Figures 82 and 83 show average local pressure recovery values of about .90 for
both fuselages 1 and 2, which are naturally lower than those of the Mach 2,5 case, The
figures show relatively high local values generally with the exception of the lower in-
board regions for both fuselage side flow fields. Figures 84 and 85 show downstream
station average total pressure recoveries of .78 and .72 for fuselages 1 and 2 respect-
ively. These lower values reflect the additional wing and canopy losses which mani-
fest themselves at this station, It was difficult to discern any significant effects of

fuselage geometry at both survey stations.
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3.2,1,.2,.2 Effect of Yaw

The effect of yaw at this low angle of attack on local total pressure recovery
was found to be small for both the leeward and windward sides of both fuselages. As
was found to be the case at Mach 2, 5, there was little modulation of losses with yaw
at this higher Mach number, Figures 86 and 87 illustrate the effects of yaw for the
leeward and windward sides, respectively, of fuselage 1 at the aft survey station.

3.2.1,3 Local Alpha

3.2,1.3.1 Effect of Vehicle Geometry

Relative to the Mach 2.5 low angle of attack case, the distribution of downwash
at the forward 30% ACL station was similar at Mach 3.5 with somewhat larger values
of downwash, however, as shown in Figures 88 and 89, respnctively. Thus, the down-
wash increased in the downward direction along the fuselage side indicating the influence
of the stronger canopy pressure field relative to that of the tuselage bottom. At the
downstream station the downwash was more uniform due to the wing pressure field
coming into play here. This can be seen from Figures 90 and 91 wherein data for both
fuselages is presented, Effects of differences in fuselage geometry appeared to be con-
fined to the innermost part of the region with fuselage 2 producing somewhat larger local

downwash angles there at the upstream station.

3.2,1.3,2 Effect of Yaw

The effects of yaw were generally the same as those observed at Mach 2. 5.
Thus, at the forward station the effect of yaw on the leeward side was to reduce the
downwash in the lower inboard region and increase it in the upper inboard part. On
the windward side the effect of yaw was opposite to that of the leeward side.

At the downstream station on the windward side, the effect of yaw was to increuase
the level of downwash in the whole region. This is due again to the shielding or restrain-
ing effect of the wing on both the basic flow and the superposed simple cross flow due to
yaw. On the leeward sico, the dowr.wash was reduced over most of the region, due to
the cross [low associated with the vawed attitude. These effects were common to both

fuselages and are illustrated by the data | es 2nted in Figures 92 to 95.

3.2.1.4 Local Sigma

3.2.1,4,1 Effect of Vehicle Geometr)

At the forward survey statior the effects of fuselage geometry differences were
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confined to the inboard region adjacent to the corners and sides of the fuselage as may
be seen in Figures 96 and 87, At this Mach number all the local sidewash angles were
negative (outwardly directed), unlike the Mach 2,5 case where the sidewash in the lower
part of the survey region was positive. This Mach number dependent effect stems from
an initially larger pressure rise across the nose and canopy shock waves at Mach 3. 5,
followed by a delayed re-expansion in the shock layer, due to a shallower expansion
fan, Consequently, the relatively higher static pressures residing in the inboard por-
tion of the flow field induce an outward directed sidewash vector rather than the in-
ward directed vector previously seen at Mach 2. 5.

At the 50% ACL station the sidewash angles were sigunificantly less negative than
the upstream values, reflecting again the presence of the same sidewash influencing
factors found at Mach 2, 5, namely a2 more complete re-expansion of the flow and an
isolation of the canopy influence due to the presence of the wing, The local sidewash
distribution is shown in Figures 98 and 99 for fuselages 1 and 2 respectively.

3.2.1.4.2 Effect of Yaw

On the windward side, local sidewash angles were generally less negative than
for the unyawed case. Fuselage 2 by virtue of its larger corner radius, introduced
the cross flow into the lower region resulting in more positive sidewash angles there

at both stations, as can be seen by comparing Figure 100 to 101, and 102 to 103,

On the leeward side the effect of yaw was to make the local sidewash more
negative (directed outwardly) with little effect of fuselage geometry differences at both
survey stations, Figure 104 exemplifies the leeward side situation at the rear survey

station of fuselage 1. Qualitatively, this is the same behavior evidenced at Mach 2, 5.

3.2.2 Intermediate Angle of Attack
3.2.2,1 Local Mach Number

3.2.2.1.1 Effect of Vehicle Geometry

At the foreward survey plane increasing the angle of attack to 10° strengthened
the pressure [ield of the lower fuselage to that of the upper, resulting in generally
lower local Mach numbers in the lower part of the survey region relative to the upper
for both fuselages. At the downstream station the wing surface pressure field reversed
this variation of local Mach numbe;r producing generally lower local Mach numbers in
the upper region relative to the lower region, These effects are evident in Figures
195 and 106,
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Effects of differences in fuselage geometry were rather localized as they were

at Mach 2,5, with fuselage 2, by virtue of its larger radius shoulder, introducing the
lower surface pressure field into the lower inner part of the survey region with attend-
antly lower local Mach numbers there. This effect is exemplified by comparing Figures
107 and 106,

3,2.2,1,2 Effect of Yaw

The effect of yaw was to increase and lower the local Mach numbers on the lee~
ward and windward sides, respectively, relative to the unyawed case, for both fuselages,
as may be seen by comparing Figures 108 and 109 to 106,

3.2,2,2 Total Pressure Recovery

3.2,2,2.1 Effect of Vehicle Geometry

Increasing the angle of attack to 10° resulted in a general lowering of local pres-
sure recoveries for both fuselages with no discerunible effect of fuselage geometry, At
the aft station recoveries were lower, especially in the inboard upper region, thau those
upstream, reflecting the presence of some local cross flow separation upstream
and/or effect of the strengthened wing shock wave at this angle of attack, The data for
fuselage 2 shown in Figures 110 and 111 demonstrate these effects which were typical

of both fuselages.

3.2,2,2.2 Effect of Yaw

Yaw had little discernible effect on local recoveries, as was the case for low angie
of attack and at Mach 2,5. There was a slight decrease in recovery on the windward side
with an accompanying small general improvement on the leeward side.

3.2.2,3 local Alpha

3.2.2,3.1 Effect of Vehicle Geometry

Increasing the angle of attack to 10° at this Mach number strengthened the lower
fuselage pressure field relative to that of the upper fuselage and canopy with the result
that all the local angles of attack at the forward survey station were positive, as shown
in Figures 112 and 113, Effects of geometry differences between fuselages 1 and 2
appeared to be negligible. The distribution of local angles of attack was comparatively

uniform in magunitude,
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At the downstream station the local angles of attack decreased especially in the
vicinity below the wing where its pressure field was greatest. This was also cbserved
at Mach 2.5, The sharper, less rounded corner of fuselage 1 resulted in slightly
larger upwash angles in the region of its corner as compared with fuselage 2, as may
be seen from Figures 114 and 115,

3.2,2,3,2 Effect of Yaw

The main effect of yaw on local upwash relative to the unyawed case, was to de-
crease that in the lower inboard region of the windward side and increase that on the
leeward side, at both survey stations independent of fuselage geometry, This canbe

seen in the data presented for fuselage 1 in Figures 116 and 117,

3.2,2,4 Local Sigma

3.2.2.4.1 Effect of Vehicle Geometry

Fuselage geometry effects were nil at this angle of attack as compared to the
zero degree case, The general sidewash at both fore and aft survey regions was
negative, with that at the rear station more negutive in its inboard region than at the
upstream location as may be seen in Figures 118 and 119, This effect of angle of

attack is essentially the same as that observed in the Mach 2, 5 case,

3.2.2,4.2 Effect of Yaw

As expected, the effect of yaw relative to the unvawed case was to make the
sidewash more negutive on the leeward and less negative on the windward sides for both
fuselages at both survey stations, as may be seen from the data of Figures 120 and 121
for fuselage 1, and Figures 122 and 123 for fuselage 2. The locul sidewash was found
to be less negative in the region of the lower fuselage corner for fuselage 2, which,
with its well rounded lower shoulder, does not tend to isolute the lower fuselage in-
duced pressure field as much as did fuseluge 1, a characteristic which has heen noted

earlier in ithis report,
3.2.3 High Angle of Attack

3.2.3.1 Local Mach Number

3.2,3.1.1 Effect of Vehicle Geometry
At this high angle of attack increasing the angie of attack from 107 to 20° produced

a general lowering of the local Mach numbers at both survey stations, The local Mach
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numbers in the lower inboard region were lower for fuselage 2 than for fuselage 1
at both survey stations,

At the downstream station, the wing compression field manifests itself by the
general reduction in local Mach numbers as compared to the upstream values. Figures
124 to 126 illustrate these effects,

3.2.3.1.2 Effect of Yaw

At the aft station the effect of yaw was confined mainly to the inboard part of the
survey plane and consisted chiefly of a slight increase of local Mach number on the
leeward side, and a comparable small reduction on the windward side, as may be seeun
in Figures 127 and 128,

3.2.3,2 Total Pressure Recovery

3.2,3.2,1 Effect of Vehicle Geomsetry

Increasing the angle of attack to 20° did not have any significant impact on the
general level of total pressure recovery relative to the intermediate angle of attack
case, Figures 129 and 130 show local recoveries in the region adjacent to the side cf
fuselage 1 that are lower than those for fuselage 2, pointing to the likelihood of a
stronger cross flow, and attendant separation losses, for the former as compared to

the latter fuselage shape.

3.2.83.2.2 Effect of Yaw

For 4° of yaw there was little effect on recovery. Those on the windward side
reduced slightly relative to the leeward side by virtue of the slight change in the shock
wave losses accompanying the yawed attitude,

3.2.3.3 Local Alpha

3.2.3.3.1 Effect of Vehicle Geometry

At the forward survey station the effects of geometry differences were localized
to the lower part of the surveyed region with fuselage 1 again evidencing slightly higher
local angies of attack than {uselage 2 as it did at Mach 2.5, In the upper parts of the
flow field region the distribution was comparatively uniform, as may be seen from
Figures 131 and 132,
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At the 50% ACL station, there was a decrease In the level of upwash relative to
the upstream station with the largest incremental changes occurring in the upper part
of the survey region for both fuselages as shown in Figures 133 and 134, This wing
induced effect was observed at the intermediate angle of attack case, and at Mach 2.5

as well,

3.2.3.3.2 Effect of Yaw

The effect of yaw at the forward survey atation was to increase the upwash
slightly in the lower inboard region of the leeward side and to reduce it on the wind-
ward side, independent of fuselage geometry differences. The same effect was noted
at the aft station, with a somewhat larger area of the survey region affected, however,
These effects of yaw, whick were also observed at the Mach 2. 5 high angle of attack
case, may be seen in the data presented for fuselage 1 in Figures 135 to 138,

3.2.3.4 Local Sigma

3.2.3.4.1 Effect of Vehicle Geometry

Relative to the 10° angle of attack case increasing the angle of attack to 20° made
the general level of sidewash angles more negative (outwardly directed) at both survey
stations for both fuselage shapes, Compared to the high angle of attack data at Mach
2. 5, there was no significant effect due to Mach number alone at the aft survey station,
vhereas at the forward station the level of sidewash became generally more negative
by about one or two degrees. The sidewash at the aft station was more negative than
at the upstream station, especially in the vicinity of the fuselage side, Fuselage
geomefry differences produced little effect on the local sidewash angles. These effects
are illustrated for fuselage 1 in Figure 139 and 140,

3.2,3.4.2 Effect of Yaw

Yaw resulted in the expected positive increment in sidewash on the windward
side and a negative one on the leeward side, The influence of fuselage geometry
difference was very small and confined to the vicinity of the lower fuselage corner,
Figures 141 and 142 present data for the leeward and windward sides, respectively,
of fuselage 1 at the 50% ACL station,
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SECTION IV
CONCLUSIONS

A general summary of the major conclusions which can be drawn from the data
obtained in the Mach 2.5 and 3.5 tests with the high design Mach number fuselage

configuration is presented in this section. The summary is arranged into four groups

corresponding to the following basic flow field parameters: local Mach number, tctal
pressure recovery, angle of attack (alpha), and sidewash angle (sigma), The depend-

_ ency of these parameters upon angle of attack and yaw, free stream Mach number,
and fuselage geometry is briefly assessed. The local Mach number and total pressure
reccvery data readily permit quantitative performance evaluations of rather generalized
vehicle/inlet systems to be made. On the other hand, without rather well defined
specific inlet designs, only qualitative assessments such as development risk can be

made of the impact of local flow angularity and sidewash,

Local Mach Number
The flow field Mach number level and composition was dictated primarily by free

stream Mach number and vehicle angle of attack, The axisymmetric flow fields
generated by the fuselage nose and canopy established a radial Mach number profile
thal became more distinet with increasing free stream Mach number. An excursion

to positive vehicle angle of attack superimposed a peripheral Mach number gradient

in the inboard region of the forward flow field resulting from increased lower fuselage
) compression and upper fuselage/canopy expansion, The increase in wing compression
with angle of attack produced a general reduction in locai Mach number throughout the
aft flow field,

As compared to the effects of free stream Mach number and angle of attack, the
. cffects of the fuselage geometry differences proved for the most part to be rather small
and were coufined to the region of the iower fuselage corner. Lxcursions in angle of
yaw preduced secondary changes in the average levels of local Mach number. With
increase of free stream Mach number there was a relative decrease in the average
level of local Mach nunber in both the fore and afi survey regions of the flow field.
Consideration of this parameter is required primarily for inlet sizing at the design

Mach number and for evaluating performance at off design point conditions.
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Local Total Pressure Recovery

At low angle of attack local total pressure recovery was seusitive to free stream
Mach number but independent of vehicle geometry and yaw angle. The increase in shock
losses with increasing Mach number resulted in generally lower recovery at Mach 3. 5.

At intermediate angle of attack the forward survey region experienced a reduc-
tion in recovery level due to the strengthened lower fuselage shock and canopy shock,
Recovery at the aft survey station was reduced further by the stronger wing leading
edge shock. In general the recovery remained independent of fuselage corner geo-
metry and vehicle yaw angle.

The predominant parameter at high angle of attack was lower fuselage corner
radius. While the cross flow around the large corner radius remained attached that
around the small corner radius tended to separate resulting in reduced recovery
levels, particularly in the inboard region of the flow field,

The intermediate and high angles of attack, at both Mach numbers, produced
sufficiently low recoveries at the aft station in the region close to the sides of both
fuselages, and close to the wing lower surfaces, to require that inlets situated at
that longitudinal location be separated, or split away, from those surfaces, At the
forward station the usual splitter plate arrangement would probably suffice for a
side mounted inlet installation.

Local Alpha

Local alpha proved to be most sensitive to vehicle angle of attack, at the for-
ward survey station, and wing compression, at the aft survey station. Fuselage
corner geometry introduced secoud order eifects, while free stream Mach number
exerted essentially no influence over the composition of the flow field.

At the forward station the larger fuselage corner radius tended to promote
downwash at low vehicle angles of attack while innibiting uswash at intermediate
and high vehicle angles of attack, At the aft station the wing dictated flow field
angularity, The wing also dampened non uniformities introduced by yaw on both the

leeward and windward sides.

Consequently, for maneuvering flight at these Mach numbers the utilization of

wing shielding is an important consideration in the selection of inlet placement,
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Local Sigma
1ocal sigma proved most sensitive to vehicle angle of attack and fuselage

corner radius, and vehicle cross-sectionsal area progression. At low angle of attack
the axisymmetric fuselage nose and canopy generated flow fields established a basic~
ally negative sidewash condition at the forward survey station except near the lower
fuselage corner where the fuselage of larger corner radius induced a locally positive
sidewash. At the aft station this negative composition essentially disappeared as the
diminishing fuselage cross-section produced a nearly complete re-expansion of the
flow, At intermediate angle of attack the increase in both fuselage cross flow and
wing compression established a more negative level of sidewash. This trend con-
tinued into the high angle of attack range. Therefore, although fuselage corner
radius and free stream Mach number had some influence on local sidewash character-
isties their effects were small compared to those of angle of attack, yaw and wing
compression at the Mach numbers tested. Consequently, local sidewash angles merit
careful attention when designing for maneuvering flight capability.

Performance Evaluation

The flow field data presented here can be applied directly to specific induction
system designs by considering the candidate inlet to be submerged within the flow field.
Use of the data in this maoner will permit both quantitative and qualitative assessmeuts

of the impact of the local approach flow upon the inlet design,

For the pre-preliminary design phase screening of inlet locations and aircraft
general arrangement a broader overlook is more appropriate. To this end, therefore,
the parameters of total pressure recovery, angularity, and sidewash have been
statistically averaged, as was done for the test results presented in Volume I, for
each of the two fuselages for M_ = 2,5 and 3. 5 and angles of attack and yaw applic-
able to cruise/acceleration and maneuvering flight conditions. Plots of these para-
meters are preseonted in Figures 143 through 150, They can be used individually to
evaluate a particular flight condition or cross plotted to evaluate a postulated flight

trajectory.
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