
UNCLASSIFIED

AD NUMBER

AD911484

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies only; Test and Evaluation; MAR
1973. Other requests shall be referred to
Air Force Avionics Lab., Attn: AAM,
Wright-Patterson AFB, OH 45433.

AUTHORITY

Air Force Avionics Lab ltr dtd 24 Feb 1978

THIS PAGE IS UNCLASSIFIED

-'*1LAL~wTR-?3-114

I AEROSPACE MULTIPROCESSOR

FINAL REPORT

Robert L. Davis
Sandra Zucker, et al

Burroughs Corporation
Defense, Space and Special Systems Group

Advanced Development Organization
I Paoli, Pennsylvania 19301

I i TECHNICAL REPORT AFAL-TR-73-114

1 June 1973

Distribution limited to U. S. Governrni t agencies only; test

and evaluation results reported March 1973. Other requests
for this document must be referred to Air Force Avionics
Laboratory (AAN), Wright-Patterson Atr Force Base, Ohio .5433. • 1 o c

Air Force Avionics Laboratory

Air Force Systems Command
Wright-Patterson Air Force Ease, Ohio 45433 13 B

NOTICE

When Government drawings. specifications, or other data are used for any purpose

-other than In connection with a definitely related Government procurement operation,

the United States Government thereby incurs no responsibility nor any obligation

whatsoever; and the fact that the government may have formulated, furnished, or In

any way supplied the said drawings, specifications, or other data. is not to he regarded

by Implication or otherwise as in any manner lioensing the holder or any other person

or corporation, or conveying any righta orpermiaslonto manplacture, use, or sell any

patented invention that may In any way be related thereto.

S

..S .•I61 I.....

B y
......

Copies of this report should not be returned unless return Is required by security

considerations,
contractual obligations, or notice on a specific document.

MOW

AEROSPACE MULTIPROCESSOR

FINAL REPORT
- [

I
Robert L. DavisI

Sandra Zucker, et al

L

L

I

[

Disttr'ibution i imit cd to 1'. G, t %(vcitrln.t rc iC:• oi1[it; C t
and eval ition rc'I-Lt. ,VpOtt.'d 111'h)u k tither r, quit 's
for this docl-rtnC t must -bc r f •tcritd to AAi. - ur, Av., i ,.
-a b o ra to r \" (/ tN), l t i L -Pt L- sLL m : 1u n A:i I F 0 [r- ,i. .c , h I r L.r1 .

J
FOREWORD

This Pinal Engineering Report was prepared by the
Burroughs Corporation, Defense, Space and Special Systems
Group, Advanced Development Organization, Paoli, Pennsylvania.
The work was accomplished under USAF Project 6090 entitled
"Avionics Data Handling Technology", Task 01 entitled
"Avionics Information Processing" and Contract No. F33615-
70-C-1773 entitled "Aerospace Multiprocessor." The work
was administored under the direction of Mr. D. Brewer,
Air Force Avionics Laboratory, AFAL/AAM, Wright-Patterson
AFB, Ohio.

This report covers work conducted from June 1970 to
March 1973 and was submitted by the authors March 1973.

The authors, Mr. Robert Davis and Mrs. Sandra Zucker,
are grateful for the help and contributions of many of their
associates in the Advanced Development Organization for the
documentation, wiring, machining, board layout and fabrica-
ticn, and artwork generation necessary to build the multi-
proces3or and for the help of their associates in Acvanced
Development and Technical Publications in the writing,
drafting, typing, and proofreadinq necessary to produce
this report. The authcrs are especially grateful to Messrs.
Peter Molloy and Gilbert Reid for their help in the fabrica- 1
tion and debugging of the multiprocessor; Messrs. Melvin
Brooks and Carl Campbell for their help in writing and de-
bugging the control and derronstration programs; Messrs. Ulbe
Faber and Richard Bradley for the design of the Switch Inter-
lock; and Mr. John T. Lynch, Director cf Advanced Development
and Messrs. Dewey Brewer and kalph 13arrera of the Avionics
Laboratory (AFALiAAM) for their patience and support through-
out this program.

This technical report has been reviewed and is approved I
for publication.

CO~fER S. KLINE
Colonel, USAF

Chief I
System Aviorics Division

-- /.I

;5: •

4 • .

I

i
I

ABSTRACT

The aerospace multiprocessor described is based upon a modular, building block
approach. An exchange concept that is expandable with the number of processors,
memory modules, and device ports, was developed whose path width is a function
of the amount of serialization desired in the transmission of data and address
through the exchange. The processors (called Interpreters) are microprogrammable
utilizing a 2-level microprogram memory structure and were designed for imple-
mentation with large scale integrated circuits. The modularity exhibited in the
Interpreters is in the size of the microprogram memories and in the word length

I ' of the Interpreters from 8 bits through 64 bits in 8-bit increments.

The specific implementation of the exchange for the aerospace multiprocessor is
for five processors, eight memcry modules, and eight device ports with eight
wires each carrying four serial bits of data through the exchauige. The processors
each have word lengths of 32 bits with a 512 word X 15 bit firs'-level micro-

4 program memory and a 256 word X 54 bit second-level microprogram memory.

A simplified control program based upon concepts for a modular executive structure,
and some user type programs were written for demonstration of the aerospace
multiprocessor.

1..

tI

ii

•,• ~~~~~~~~.•--.•.r,.- .• _.,......... :.-.•:•':• -- •.... =__:

SFTABLE OF CONTENTS

Section - A Se
I INTRODUCTION

SII INTERPRETER HARDWARE BUILDING BLOCKS ... 7

Logic Unit (LU) 9
{Control Unit (CU) 11
,:Memory Con•trol Unit (MCU) 13
SNanomemory (N Memory', 13

Microprogram Memory (MPMV) 15
SMicroprogram Memory Considerations 17

Loader (LDR) 21

[III MILTIPROCESSING HARDWARE DENCRIPTION 23

Multiprocessor Interconnection 23LThe Switch Interlock 27

Powgr Distribution 35
Clock and Power Control 36
GMobal and Interrupt C (ondition BP ts 43
MmReal Time Clock and the Horns 45
Intadtetr Number 45

I IV AEROSPACESSTGHRDAESSORMultPACKAGING DESCRIPTION 47

Clechanical Design .C 47
G bircuit Configurations . B. 51

V INTERPRETER OPERATION 61

1 'chnia Dsin..........................4

TABLE OF CONTENTS (Cont'd)

Section

VI SWITCH INTERLOCK (SWI) OPERATION 69

SOverall Switch Interlock Control and Timing 69
Device Operations 72
Memory Operations 78
Interface to SWI 83 I
Device Interface Operation Examples 85

VII INTERPRETER MICROPROGRAMMING 89

TRANSLANG for Mic~roprogramming 92
Literal Assignment Instruction 94
N Instruction 95
Condition 96
External Operations 100
Logical Operations 103
Input Selects 106
Destination Operations 107
Successor 110
Program Structure il.j

Microprogramming Examples 115

VIII MULTIPROCESSING CONTROL PROGRAM AND
DEMONSTRATION PROGRAMS 121

Control Program 121

System Loading 122
Task Execution and Monitoring 125
S to M Loader 127

Demonstration Programs. 131

Memory Dump 134
Program to "S" Loader 134
Plot 134
Mortgage 135
Sort '... 135
Matrix Multiply and Print 138

Confidence Routines 139

vi

I I
TABLE OF CONTENTS (Conttd)

AppendicesPeae

I Historical Review of Microprogramming . . 145

II Final Summary Report - Bipolar LSI 151

ILI Adder Operations 183

LIV TRANSLANG Syntax 187

V TRANSLANG Reserved Words and Terminal
L Characters 191

VI TRANSLANG Error Messages 199

VII Glossary 203

References

Form DD 1473

liialI I

III.

ir, i

Am i,

iivii

A

A I
!I

LIST OF ILLUSTRATIONS I

Figure

1 Basic Aerospace Multiprocessor 2
2 LSI Multi-Interpreter System Block Diagram 3
3 Interpreter Block Diagram a
4 Logic Unit Block Diagram 8
5 Interpreter Functional Units 12
6 Instruction Memory Hierarchy 14
7 One Memory vs. Two Memory Implementation 16
8 Sample Program. Statistics 17
9 Memory Cost vs. Memoty Speed 19

10 Two Memory Cost Savings vs. Cost Factor 20
11 Implementation of Loading Functions Block Diagram 22
12 Functional Multiprocessor Interconnection Scheme 24
13 Physical Multiproces¶ or Interconnection Scheme 26
14 Centralized Multiprocessor System 28
15 Distributed Multiprocessing Interpreter System 28
16 Implementation of the Switch Interlock 29
17 Memory/Device Controls (MDC) Block Diagram 30
18 Device Controls (DC) Block Diagram 32
19 Memory Control No. 0, Block Diagram 33
20 Memory Control No. 1, Block Diagram 34
21 Output Switch utAwurk No. C, Logic Diagranm 37
22 Ohutput Switch Network No. 1, Logic Diagram 38

23 Input Switch Network, Logic Diagram 39
24 Power Distribution System 40
25 Implementation of Multiprocessor Clocks 41
26 Conflict Resolution Logic for Global Condition Bit OCl 42
27 Implementation of Interrupt Controls 44
28 Aerospace Multiprocessor Configuration 48 F
29 Submodule Housing 49
30 Interpreter Module Packaging 50
31 Aerospace Multiprocessor Installation at Wright-Patterson

Air Force Base 52
32 Multiprocessor- Interconnection Scheme 53
33 Microprogram Memory, Nanomrnemory Submuoule Packaging 54
34 Loader, Switch Interlock Submodule Packaging 55
35 Alternative Packaging Approach Utilizing 16-pin Flat Packs 58

viii

I LIST OF ILLUSTRATIONS (Cont'd)

ftFigure Page

36 Alternative Packaging Appr.,ach Utilizing 60-pin
- Flat Packs 59S37 Tim.ing Analysis, Type I I~nstructions 62

38 Instruction Timing 64
37 4 TminrprgrAalyiTp InstructionsSqecn 62

39 Timing Example 66
L 40 Microprogram Instruction Sequencing 680

41 Switch Interlock, Block Diagram 70
42 Timing Diagram for Device Lock to l)eviu e Previously

[Locked to Requesting biterpreter Jr for Device
Unlock to Device Previously I ilc :ked from An-v
Interpreter 74

43 Timing Diagram for Device Lock tu tý locked .i•evce
, Unlock to Device Loc-ked to ".equcsting Interpreter 74

44 Timing Diagram for DeOice Ro-ad -jr Write from Device
Locked to Requesting Interpreter 75

U 45 riming Diagram for Mlemor-y Read or Write 80
46 SWI/Interface Timing Signals 82
47 Memory/Device Interface with SWI, Block Diagram 84
48 Microinstruction Ty.pes 90
"49 Detailed Nanobit Assignments 114
50 Binary Multiply 116
51 Generation of Fibonacci Series 117
52 Microtranslator Outn.tt 118

53 S to IM Loader 119
54 Control Program Flow Diagram 124
55 Multiprocessor System Flow Diagram 126
56 Memory Map 128
57 Load Microprogram Memory from Main Memory

Flow Diagram 129
58 Task Control Flow DiaYcram 130
59 Example of Memory i'Ymp Output 133
60 Example of Plot Routle Output 136
61 Example of Mortgage Table Output 137
62 Example of Sort Routine Output 141
63 Examples of Matrix Print Routine Output 143

1 64 Traditional Digital Computing System Block Diagram 146

ix

A

*i

SECT ION!I

INTRODUCTION

t
SThis final report describes the results of work performed by the Advanced D)evelop-

nment Organization of B•urroughs Defense, Space and Special Systems Group for the
Y Air Force Avionics Laboratory, Wright-Patterson Air Force Base under contract
_ . F33615-70-C-1773. The purpose of this program was to fabricate an aerospace

multiprocessor utilizing lar ge scale integrated circuits with techniques developed
under contract F33615-69-C-1200 by Burroughs for the Avionics Laboratory.

The aerospace multiprocessor is made up of five identical microprogrammable.
LSI processors called Interpreters connected to devices and rmemory modules by
an exchange called a Switch Interlock. Since the intent of the contract was to
produce only those parts of a multiprocessing system (processors and exchange
as shown in Figure 1) not readily available in "miniaturized" form, the system.

r is completed with commercially available memory modules, power supplies, and,,
devices as shown in Figure 2. In this fig.ure, the items delivered are shown within
the dotted line. The Switch Interlock module comprises the "network" shown by the
connected lines on the bottom half of Figure 2. The system charactteristics for the
aerospare multiprocessor are listed in Table I.

The remainder of this report consists of seven sections and seven appendices.
Section II describes the LSI, microprogramnmable processor (called an Interpreter),
consisting of three types of logic parts utilizing discretionary-xwired LSI arrays,
two types of microprogram memories and a loader for loading these two memorie,
Also included is a discussion of the rationale for splitting the microprogram
memory into two parts, based on work done by Mr. Ernest Trimbur.

., --.... ...- - - =. - W- .-• r--V - - . .

I

I I
I
I
I

I
.fl

/ I

- I

I
I
I
I
I

2 1

I -I

I Ig

I......... . . . i;r.... •.•

i !i

Table I. Aerospace Multiprocessor, System Characteristics Summary

5 Interpreters

32-bit word length

2.5 mtiz clock rate

Discretionary Routed TTL, LSI

512 words (expandable to 1024 words) by 15 bits, read/write MPM

256 words by 54 bits, read/write Nanomemory

Volume: 5. 75 in. X 5. 1 in. X 6 in. without connectors.

5.75 in. X 5. 1 in. X 10 in. with connectors

Typ. Power: 42 watts for LSI arrays

4 watts for loader at +5 volts dc
44 watts for MPM and Nanomemory

3 Memory Modules

Datacraft DC-38

3-wire, 31), coincident current core

Read/write, random access

"8K words (expandable to 16K words) by 32 bits per module

350 ns access/900 ns cycle

Volume: 19 in. X 19 in. X 5 1/4 in.

Typ. Power: 6A at 117 Vac

1 Switch Interlock

5 Interpreter ports

Serial data interface of 8 wires of 4 serial bits each

8 serial interfaces for memory modules (32 bits wide)

8 serial interfaces for device ports (32 bits wide)

Volume: 5. 75 in. X 5. 1 in. X 22 in. with connectors

Typ. Power: 72 watts at +5 volts de

4

Section III includes a general discussion of multiprocessor interconnection and a
description of the hardware specifically needed for multiprocessing. This hard-
ware includes the exchange for interconnecting processors to memories and devices,
clock and power control, a "real-time" clock, a time-out counter, and the hard-

- ware necessary for one Interpreter to lock other Interpreters out of selected tables
- in memory. Also included in this section is a description of the system power

distribution.

Section IV describes the packaging of the multiprocessor for its laboratory environ-
ment and briefly discusses the LSI partitioning and possible future implementations.

Section V is a detailed discussion of the Interpreter operation as a single processor,
I. centering primarily on the fetching, execution, and sequencing of microprogram

instructions and the condition testing involved in the microprogram instruction's
successor determination.

Section VI is a detailed discussion of the Switch Interlock operation. The conflict
resolution problem in accessing memories and "locking" to devices is discussed
along with the handshaking between the Interpreters and the Switch Interlock in
performing memory and device operations. Detailed timing diagrams are given
for all Switch Interlock operations.

Section VII describes the microprogramrning of the Interpreter and gives the syntax
and semantics and examples for all Interpreter operations.-- -
Section V III is divided into two parts. The first part describes the simplified control
program used to control the multiprocessor with its associated task tables in
memory and also describes tie method for Loading either tasks or the control
program into the Interpreter's microprogram memories from "S" memory. The
second part of this section describes the six programs written to be executed as
user tasks in the demonstration of the multiprocessor. This section is concluded
with a short discussion of the confidence routines that were used during debugging
of the Interpreters and which could be modified to run under the operating system
for on-line confidence checks of the Interpreters.

i Appendix I is a historical review of microprogramming written by Dr. Earl Reigel.
Appendix II is a copy of the final report from Texas Instruments, Inc. on the
discretionary-wired LSI used in the Interpreters. Appendices III-VI are details1. for the use of TRANSLANG, an assembler for Interpreter microprograms.
Appendix VII is a glossary.

.i5

I

i ..

**W'a PAE LAULNO? FUME

-i "SECTION II

INTERPRETER HARDWARE BUILDING BLOCKS

The Interpreter is composed of four logic packagc types: the Logic Unil (. U),
the Control Unit (CU), the Memory Control Unit (MCU), and the Loader (LDR).
The microprograms which provide the control functions are contained in two
memories: the Microprogram Memory (MPM) and the Nano program Memoryt (Nano or NM). These units and their interconnections are shown in Figure 3.

The unique split memory scheme for microprogram memories allows a signifi-
cant reduction in the number of bits for the microinstruction storage. It should
be noted,however, that a single microprogr:-rm memory scheme (MPM and
Nano combined) could also have been used, potentially increasing the clock rate
of the system. In addition, the cycle rates of the memories could be altered,
to gain speed or reduce cost, without any redesign of the logic packages. In fact,
a variety of memory organizations (single memory and different split memory
configurations) and memory speeds have been implemented in other Interpreter
based systems, thus providing a range of cost/speed trade-offs.

The LU performs the required shifting, arithmetic, and logic functions as well
as providing a set of scratch pad registers and data interfaces to and from the
Switch Interlock (SWD. Of primary importance is the modularity of the LI;,
providing expansion of the word length in 8-bits increments from 8 bits through
64 bits using the same functional unit. The word length of the Interpreters
used in the aerospace multiprocessor is 32-bits.

The CU contains a condition register, logic for testing the conditions, a shift
amount register for controlling shift operations in the LU, and part of the control
register used for storage of some of the control signals to be sent to the LU.

f

7 7

-7. -7.r':~ - --

CARD READER

LOADER SWITCHES

MAIN MEMORY/PERIPHERAL MAIN MEMORY/PERIPHERAL DATA
ADDRESSES n-7 IN GENERAL

n z3 FOR AEROSPACE
MULTIPROCESSOR

Figure 3. Interpreter Block Diagram

TROM SWICH SIINTERLOCK (W

TO U, CU MP, ANDCR NLIT)EMOR

SWITCH
A3 MI

I

The MCU provides addressing logic to the Switch Interlock for data accesses,
controls for the selection of mieroinstructions, literal storage, and counter

operation. This unit is also expandable when larger addressing capability is
required. The Loader (LDR) enables the MPM and Nanomemory to be loaded from
either switches, a card reader, or programmatically from the LU.

LOGIC UNIT (LU)

A functional block diagram of the LU is shown in Figure 4. The design of the
LU is predicated upon implementation with one LSI silicon slice per eight bitb..
The present 8-bit LE is implemented with two LSI slices.

Registers Al, A2, and A3 are funct'onally identical. Each temporarily stores
data and serves as a primary input to the adder. Selection gates permit the
contents of any A register to be used as one of the inputs to the adder. Any of
the A regisiers can be loaded with the output of the barrel switch.

The B register is the input buffer (from the Switch Interlock). It serves as the
- ;econd input to the adder and can also collect certain side effects or arithmetic

operations. The B register may be loaded with any of the following (one per
--- [instruction):

1. The barrel switch output

2. The adder output

3. The data from the Switch Interlock

L 4. The MIR output

5. The carry complements (from the adder) of 4- or 8-hit groups
with selected zeros (for' use in decimal arithmetic or character
processing)

6. The barrel switch output ORed with the adder output

7. The barrel switch output ORed with the data from the
Switch Interlock

8. The MIR output ORed with 1,2,5, or 6 above.

The output of the B register has true/complement selection gates which are
controlled in three separate sections: the most significant bit, the least signifi-
cant bit, and all the remaining central bits. Each of these parts is controlled

independently and may be either all zeros, all ones, the true contents or the
complement (ones complement) of the contents of the respective bits of the
B register. The operation of these selection gates affects only the output of the B
register. The contents remain unchanged.ik

The MIR primarily buffers information being written to main system menmry or to
a peripheral device. It is loaded from the barrel switch output and its output may
be sent to the Switch Interlock, to the B register, or to the data input of the MPM
or Nanomemory for programmatic loading,

The adder in the LU is a modified version of a straightforward carry look-ahead

adder such as that discussed by MacSorley and others. Therefore, the detailsI iof its operation will not be included.

Inputs to the adder are from selection gates which allow various combinations of
the A, B, and Z inputs. The A input is from the A register output selection gates
and the B input from the B register true/complement selection gates. The Zj, . input is an external input to the LU and can be:

1. The 8-bit output of tl½ counter of the MCU into the most
significant 8 bits with all other bits being zeros.

2. The 8-bit output of the literal register of the MCU into the
least significant 8 bits with all other bits being zeros.

3. The 12-bit output or the alternate mict-oprogram count
register (AMPCR) right justified into the middle 16 bits and
the (wired) Interpreter number right justified in the re-
maining four bits of the middle 16 bits. All other bits are !
zeros.

4. All zeros. S

inputs can be added together, or, can hc added together with an additional "one"

added to the least significant bit. Als-o, all binary Boolean operations between
the A and B and between the 13 and Z adder inputs and most of the binary Boolean
operations between the A and Z adder inputs can be done. 3
The barrel switch is a matrix of gates that shifts a parallel input data word any
number of places to the left or right, either end-off or end-around, in one
clock time.

The output of the barrel switch is sent to:

1. The A registers (Al, A2, A3)

2. The B register

10

3. Memory Information Register (MIR)

4. Least significant 16 bits to MCU (registers BR1, BR2, MAR,

SAMPCR, LIT, CTR)

5. Least significant 5 bits to shift amcunt register (SAR) in the CU.

CONTROL UNIT (CU)

One CU is required for each Interpreter. The design of the CU is predicated
Supon implementation with one LSI silicon slice, but is presently constructed

with two LSI slices. Major sections of this unit (Figure 5) are: the shift amount

register (SAR), the condition register, part of the control register (CR), the

MPM content decoding, and part of the clock control.

[The functions of the SAR and its associated logic are;

I. To load shift amounts into the SAR to be used in the shifting

operations. Left end-off shifts require a shift amount equal

to the "word length complement" of the number of positions to

be shifted. ("Word length complement" is definerf as thee alnount
that will restore the bits of a word to their original position after an

end-around shift of N followed by an end-around of the "comple-

ment" of N. For the 32-bit word length in the aerospace multi-

processor, this is the 2's complement.)

2. To generate the required controls for the barrel switch shift
operation indicated by the controls from the Nanomemory.

3. To generate the "word length complement" of the SAR contents
and load this value back into the SAII.

I The condition register section of the CU performs four major functions:

1. Stores 12 resettable condition bits in the condition registers.
The 12 biA, of the condition register are uLsed as error

indicators, interrupts, status indicators, and lockout

indicators.

2. Selects 1 of 16 condition bits (12 from the register and

4 generated during theepresent clock time in the Logic Unit)

I for use in performing conditional operations.

3. Decodcs bits from the Nanomeinory for[resetting, setling,

ft or requesting the setting of certain bits in the condition

register.

4. Resolves prinrity between Interpreters in the setting)f

global condition (GC) bits.

11

0 -

AEL
21.~

a 2T

212

The control register is a register that stores 38 of the 54 control signals from
the Nanomemory that are used in the LU, CU, and MCU for controlling the
execution phase of a microinstruction. Twelve of the 38 outputs from the Nano-
memory are stored in the CU. Four of the other 38 Nanomemory outputs are
controls to the Switch Interlock and are stored there. The other 22 of the 38Nanomernory outputs are stored in a part of the control register physically

I • •located in the Nanomemory.

The MPMV content decoding determines (based upon the first four bits of the MPM)
whether the MPM output is to be used as a Type I instruction (Nanomemory
address) or as a Type II instruction (literal). Several decoding options are
available. The particular option chosen is described in the Interpreter Micro-It programming section of this report.

MEMORY CONTROL UNIT (MCU)

S- One MCU is required for an Interpreter in the aerospace multiprocessor, but a
second MCU could have been added to provide additional memory addressing

--. capability. The design of the MCU is predicated upon implementation with one
LSI silicon slice, but is presently constructed with two LS! slices, This unit has
three major sections (Figure 5):

1. The microprogram address section contains the microprogram
count register (MPCR), the alternate miuroprogram count
register (AMPCR), the incrementer. the microprogram address
control register, and associated control logic. The output
of the incrementer addresses the MPM for the sequencing
of the microinstructiuns. The AMPCR contents are also used[as one of the Z inputs to the adder in the LU.

2. The mrneory/device address section contains the memory
address register (MAR), base registers one and two (BRl, BR2),
the base register output selection gates, and the associated
control logic.

3. The Z register section contains registers which are two of the
Z inputs to the LU adder: a loadable counter (CTR), the literal
register (LIT), selection gates for the input to the merorv

4 address register and the loadable counter and their associated
t control logic.

f ~NAN OMEMORY (N MEMORY)

The Interpreter is controlled by the output of the 54-bit wide Nanomemory which
may be implemented with a read/write memory, a read-only memory, wired
logic, or a combination of the three. The present implementation is a 256-word
by 54-bit read/write semiconductor random access memory using the Fairchild
934 10, a 256-word by 1-bit package.

13

]I II

.i ii n t

!D-GO (L 23 n n32 l0 0091 '9U0I00'

m4 M12 n4 o00.

j__= __=__= =-

S3 STA 012 nG o09100.
_ nc 000.0

S4 rn2 -0i n9 000001;.

~n ni .0--;0, MI1PORMNN

S5II m4 ni n 12 000 l0I0 0 0 -"
m b 3m 10 00000 0 0ý 0! 900•- 1 9 0.

.,1 ni
4

0000 00000, . 00000.0'

-SG :011 10000Il t1W 00

S? In2 nAi

m3 nf;14 $10
"--+-"i.]1•

LOGIC FUNCTIONS

Figure 6. Instruction Memnory Hierarchy

141

Each of the 54 bits represents a unique enable line for the gates and flip-flops
within the LU, the CU, and the MCU. Each Nanomemrory word represents a
microinstruction that is executed by the simultaneous presentation of a specific
enable pattern for the 54 outputs, represented by corresponding ones and zeros
in its word. The definition of these bits is presented in the microprogramming
section.

A unique feature of the Interpreter- Based System with its separate Nanornemory
and Microprogram Memory (Figure 5) is that the explicit enable lines for each
microinstruction need be stored in the Nanomemory only once (regardless of the
number of times that a specific microinstruction is needed in a program). To
accomplish this saving in memory, the Microprogram Memory (MPM) contains
the address in the Nanomemory where the explicit ones and zeros are stored

Lthat are needed to execute that instruction' type rather thar , ,w full micro-
instruction. Thus, several microprogram sequences which use the same micro-
instruction (e. g., transfer A to B) need only store in the Microprogram Memory
the address of the Nanomemory word containing that microinstruction. Figure 6
illustrates this feature.

MICROPROGRAM MEMORY (MPM)

Each Interpreter requires a source of microprogram instructoons to define the
operation of the Interpreter.

Two possible solutions for providing this source of microprogram instructions
are listed below:

1. A semiconductor MPM. This memory can be a read-only
memory (ROM) if the Interpreter is to be dedicated to the
function defined by the ROM. A read-write memory can be
used for experimental purposes or when the function of the
Interpreter might be changed, such as reconfiguration in a
multiple Interpreter system. In this instance, the system
could afford to wait while the MPM was reloaded from
a remote microprogram store acc..d via the Switch
Interlock.

2. A buffer into a slower-speed, wider-word memory.

In presently deliverable large scale integration form of the Interpreter, the MPM
is also implemented with Fairchild 256-wo,.k b- 1-bit bipolar, nondestructive
readout semiconductor memory packages. Bclh the MPM and the Nanomemory
can be loaded from an external loader, sw-.tc.es or programmatically from its own
MIR. The basic MPM is expandable in ,':'•s _ 256 words, and can be expanded

Sup to 1024 words in the present Interpre cra.

15

00

0 CC-
CL 0

It -

¶ ol
L~u (A4 (
M 0 4 -on

0 -rL

Coo

01

Microprogram Memory Considerations

=- The potential advantage of dividing what is considered to be the Microprogram
L memory into two parts is more graphically illustrated by comparing the total

memory requirements of the two approaches shown in Figure 7.

The total number of bits (N) in Figure 7 (a) is given by N = X x C The total
number of bits (N, in Figue 7 (b) is given by (A x_) i- A N A plot of the

-3 total number of bits vs. B and C and a plot of the toial number cf bits vs. A and Bfi I i for both approaches are shown in Figures 7 (c) and (d).

From these figures, it is obvious that as A approaches A 1 , one memory is the
proper approach. Two factors affect the relationship betwe'n A M and AN One

I__.= is that literal values (type It instructions) used for shift amounts, jump addresses
and 8-bit literals, that appear in the Microprogram memory, make no reference
to the Nanomemory. Second, repetitive use of the same nanoinstruction causes
an increase in A without adding words to the Nanomemory. Some -ample pro-
gram statistics are shown in Figure 8. This figure shows, for four sample pro-
grams, the total number of microprogram and nanomemory words, the total num-
ber of bits for both the one and two memory approaches and the percentage and
actual value of the number of bits saved using the two instead of the one memory
approach. In addition, this table shows the comparison among the number of

¶ literals (type 11 instructions), the number of Nanomemory references (type I instruc-
tions), and the number of Nano memory locations in the four sample programs.

It should be remembered that the two memory approach .kould require memories

_ with approximately twice as fast an access time (and hence are more expensive per
bit) because both memories must be accessed sequentially within one clock time,

m Memory cost per bit vs. memory cycle time is shown in Figure 9, where the verti-
cal bars indicate the range on these prices which were gathered during January, 1972.
Although the absolute prices have decreased, the relative pricing should still be
"valid. Several cost factors (C. F. 's) are shown for memory speeds having a 2:1
ratio. The cost factors are simply the ratio of the prIce of the faster memory to that
for the slower memory. The higher cost factor encountered when crossing technology

I iboundaries should be noted,

The solid lines in Figure 10 show the actual cost savings of the two memory approach
Sffor the four sample programs taking into account the difference in memory pricesI for the two approaches.

Also it is important to realize that many applications require a writable Microprogram
memory. This means that the entire memory in the one memory approach must be
read-write, while with the two memory approach, tine could Us read-only
with the Microprogram memory being read-write. (!n fact the Nanomemory could
even be partly read-only and partly read-write.) This is shown by the dashed lines

17

..-------~ ~ - 77 -7

LA 0 N
22 n wn m

0a 4

0)
20

0 ~ - N N (V

00 20e 0

NC

20 U2N

t o 4_ C,

InV) ~
x x

40 0l It It)

N) r)I)- to I

-a.) ' a -

F- v W u
4 0 C a

cI-

C0 Q 0 0

ct ND 000

100 z

I)0 o 0) z w V 0

U7 W

w z r0 z
0

cc 0 01

I0
it --0

0

0

C3 0

0a 0

it1
o~ 00

0 E0 v

C l) 1 0-in ii00

i w Ci

000

00 c00
00

0 C.00
00 4 .w

0 _00

v~~ IIL

z- 0

LaLLi

N /I

Cc

0

40 L
o 0

QJo C! C

,n~
0

19

Wo tt
t~I

0 In

1.17

Lo o

00
o, "NC

zI 0in

C) ms.. C) 0 o

CL4 0~ -

wC.0 044 4 u) LJ W

C) ~ L v) u/C.

200

in Figure 10 for the four sample programs using a "read only factor (ROF)" of 6.
This ROF is an estimate of the ratio of the price of read-write memory to that forg• read-only memory.

In both cases, -the values for a cost factor of 1.0 are the cost savings if memory cost
were constant with respect to memory speed. The abscissa gives the cost factors
required for the two approaches to be equal in cost.

LOADER (LDR)

"One LDR is required for each Interpreter. The LDR provides clock controls for the
Interpreter and the means for loading the Interpreter's MPM and Nanomemory from
one of three sources:

1. Switches on the MPM/Nanomemory light panels.

2. A card reader assigned to loading.

i 3. The least significant 16 bits of the MIR of the same Interpreter.

It is possible to load several Interpreters concurrently from their panel switches or
from their MIR's. Concurrent loading into more than one Interpreter from the card

-- reader assigned to loading is not permitted.

Figure 11 is a diagram of the loading functions in the LSI multiprocessor.

Loading from the MIR is under microprogram control and provides the capability for
programmatic overlay of the MPM and Nanomemory from any S memory module or
any device attached to the Switch Interlock. A more detailed description of pro-
grammatic overlay from S memory is given in Sections VII and VIII.

-I

I

12

(7

Lnn=crI

0 L

iI22

II~IN

I
I.

SECTION III

"MULTIPROCESSING HARDWARE DESCRIPTION

L MULTIPROCESSOR INTERCONNECTION

A major goal in multiprocessor system design is to increase efficiency by the
sharing of available resources in some optimal manner, The primary resource,
main memory, may be more effectively shared when split into several memory
Smodules". A technique for reducing delays in accessing data in main memory
is allowing concurrent access to different memory modules. With this concurrent
access capability present, an attempt is made to assign tasks and data to memory
modules so as to reduce conflicts between processors attempting to access the
same memory module. Nevertheless, since some conflicts are unavoidable, a
second technique (reduction of conflict resolution time) is required. These two

techniques are largely a function of the multiprocessor interconnection scheme
which has been discussed by Curtint and others.3 .4

Figure 12 shows three basic functional interconnection schemes. These are
described in inore detailby Curtin.Z

The disadvantages of the single bus approach (Figure 12) for many processors are:

1. the obvious bottleneck in information transfer between
processors and memory modules due to both bus con-
tention and memory contention

2. the catastrophic failure mode due to a single component
failure in the bus.

Aý solution to the first problem has been to increase the frequency of operation of
the bus.2,5

23

* I go) Single Bus Interconnection

PROC ' PO E E

Ei I

(b) Multiple Bus Interconnection

(c) Dedicated But Interconnectionj

Figure 12. Functional Multiprocessor Interconnection Sche me

24I

.1"

*lii I
.,1 imi•24

The multiple bus approach is merely an extension of the single bus approach where
all processors contend for use of any available (non-busy) bus. The advantages
are redundancy and allowing an appropriate number of buses (less than the number
of processors) to handle the traffic between processors and memory modules.

The third approach utilizes a dedicated bus structure (one per processor).
Although this approach required more buses, it requires neither the logic nor,
more importantly, the time for resolving priority between processors requesting
the use of a bus. Proponents of this approach contend that the time penalty for
resolving conflicts for access to a memory module is enough of a price to pay
without having to wait for the availability of a bus.

In a Hughes report,4 the authors distinguish the physical differences between two-A multiprocessor interconnection schemes. The two approaches (one called multi-
port and the other called matrix switch) are shown in Figure 13.

I The t1ughes report characterizes the two connection approaches as follows:

"In the multiport approach, the access control logic for each module

is contained within that module, and intercabling is required betweenF each processor and memory pair. Thus, the total number of inter-
connecting cables is the product of the number of processors and the
number of memories. Each module must be designed to accommodate
the maximum computer configuration.

"In the matrix switch approach, the same interconnection capability
is achieved by placing the accass control logic for each module in a
separate module. The addition of this module to the system is
compensated (for) by reducirg the intercahles required to the sum
of the processors and memories rather than the product and by not
penalizing the other modules with maximum switching logic.

""There generally is no speed differential between multiport and

matrix arrangements. The major difference lies in the ability to
grow in wiring complexity. Multiprocessors with multiport arrange-
ments are generally wired, at production time, to the maximumIf purchased configuration. Future subsystem expansion generally
requires depot level rewiring. This problem generally does not

exist with the matrix arrangement. The maximum capacity is wired
in but the switching logic complement reflects the purchased system.
Subsystem expansion entails purchase of added processor/memory
modules (and necessary cabinetry if required) plus the required
switch matrix logic cards. "

Apparent from the arguments in this report is the desire to reduce the number of
"wires interconnecting the processors and memory modules. A way to reduce the
wiring (in addition to the use of the matrix switch) is by using serial transmission
of partial words at a frequency several times that of the processors. This tech-
nique has been used by Meng 5 and Curtin.2 The tradeoff here is between the cost

25

A
It

M~EM i MEM M EM MEM-]
Li

(a) Multiport 4

MATRIX

SWITCH

PROC PROC PROC PROC

(b) matrix Switch

Figure 13. Physical Multiprocessor Interconnection Scheme

I

S261

I of the transmitting and receiving shift registers and the extra logic necessary for
timing and control of the serial transmission versus the cost of wiring and logic
for the extra interconnection nodes for a fully parallel transmission path.

Another factor adversely affecting efficiency in a multiprocessing system Is a
variation in the amount of computation versus I/O processing that must be done.
In previous multiprocessing systems I/O functions and data processing functions
have been performed in physically different hardware modules with devices being
attached only to the I/O controllers (Figure 14). (This technique is typical of
Burroughs D825, B 5500, or B 6700). In a multi-interpreter system, however,U processing and I/O contrcl functions are all performed by identical Interpreters
whose writable microprogram memory can be reloaded to change their function.
This technique allows a configuration (Figure 15) in which the devices are attached
to the same exchange as the memories and processors.

THE SWITCH INTERLOCK

The Multi-Interpreter interconnection scheme for forming a multiprocessor is
called a "Switch Interlock": a dedicated bus, matrix switch with an optional
amount of serial transmission.

The Switch Interlock is a set of hardware building blocks that connects Inter-
preters to devices and memory modules. Connection between Interpreters and
devices is by reservation with the Interpreter having exclusive use of the (locked)
device until specifically released. Connection with a memory module is for the
duration of a single data word exchange, but is maintained until some other
module is requested or some other Interpreter requests that module.

[Consistent with the building block philosophy of Interpreter-based systems, the
Switch Interlock is partitioned to permit modular expansion for incremental
numbers of Interpreters, memory modules or device ports and modular selection
of the amount of parallelism in the transfer of address and data through the Switch
Interlock from fully parallel to fully serial. Functionally, the Switch Interlock
consists of: parallel-serial conversion registers for each Interpreter, input and
output selection gates, parallel-serial conversion registers for each memory
module and each device, and associated control logic. Figure 16 outlines the
implementation of the Switch Interlock and shows the functional logic units that
are repeated for each Interpreter, memory module, and device. The bit expand-
ability of the Switch Interlock is shown by dashed lines between the input/output
switches and the shift registers associated with the memory module, devices,
and Interpreters.

V The Switch Intertlock in the LSI Multiprocessor handles five Interpreters, eight

memories and eight device ports (more than one device could be attached to each

port). The transmission paths through the Switch Interlock break the 32-bit data

word into 8 wires carrying 4 serial bits each, transmitted with a "high speed"

clock having a frequency five times that of an Interpreter clock.

27

-- ; ! • ~PERIPHE•RAL SUB-SYS TEM (Dis~k, TQPOI, PrIinfe)

DISPLAY SUBSYSTEM
SENSOR SUBSYSTEM (Rodor, Navigation I

• •COMMUNICATION SUBSYSTEM

•l i

Figure 14. Centralized Multiprocessor Systemn

M M oe U I .0. 1 0 0 ... 0

* SWITCH INTERLOCK e

Figure 15. Distributed Multiprocessing Interpreter Systemr

28

. .. .REGISTER
M &EMOR~Y

DEVIC INTERPRETER

SI "EMOR OREVICE I
, 1.o ,, o. a.=

SHIFT REGISTER SHIFT REGISTER CONTROL SHIFT REGISTER SHIFT REGISTER

I - --- -- -1

L>"I ': i ' .. -' - "- - --
AOUPU SWTC INU SWITC

•= I Figure 16. Implementation of the Switch I~nterlock

29

-- • 2I

Cl M,

2~ C))b

C>
2

- 0 i0

ýz CD

0 C0

Ci

300

The six basic modules for the Switch Interlock of the LSI Multiprocessor are
described below.

-MemoryDevice Controls (MDC)

The MDC controls the high-speed clock used for the serial transmission of
data (Figure 17) and is an interface between the Interpreter and the controls
described below (MC and DC). There is one MDC per Interpreter. Physically,Sthe MIDC's for two Interpreters are contained in one firmed 5-inch by 5-inch by

1/2-inch plate.

[Device Controls (DC)

The DC resolves conflicts between Interpreters trying to lock to a device and
checks the lock status of any Interpreter attempting a device operation (Figure 18).
Physically, the DC is contained on two identical finned plates, each plate
capable of handling lip to three Interpreters and up to eight devices. System

expansion using this module could be in number of Interpreters or in number of
devices.

S [Memory Controls (MC)

The MC resolves conflicts between Interpreters requesting the use of the same
memory module (Figures 19 and 20). Physically, the MC is contained on two
finned plates. (Tne plate contains the MC for three Interpreters and eight memory
modules and the other plate contains the MC for the other two Interpreters and
eight memory modules, plus the "memory-busy" flip-flops. The global condition
bit priority resolutionand the interrupt Interpreter logic is also physically located on
this second plate although it is functionally independent. System expansion usingf the MC could be in number of Interpreters or in number of memory modules.

Output SwitchNetwork (OSN)

The OSN sends data, address, clock, and control from Interpreters to addressed
d9vices or memory modules Ui. e., the 0SN is a "demultiplexer"). Physically,
the OSN is made of two different types of finned plates handling either three or

i four wires for up to five interpreters and eight devices or memory modules.
One type of plate handles four data-type paths for five Interpreters and eight
devices or memories. The other type of plate handles two data-type paths
and one clock-type path for five Interpreters and eight devices or memories.
Logic diagrams of these types .f OSN's are shown in Figures 21 and 22.

Each column of logic is for one Interpreter with the inputs trom the inter-

preter coming in the top. Each row represents one serial transmission path
and the outputs to eight devices or memories coming from the side and bottom
of the drawing. System expansion using these modules could be in numbe-r of

31

0-J 0 I~

00

0-j

>0 U,

.
-r

UA

000 j

*V I

w 0

0 0

i-0

32)

. •iu I • ,-••-- 4•

I =Ii -'- ---

. MI [--- ... J .t I --

•:'. • -.• --- - - - --- -

I "---- --

I

"i- F

• --. .- 1

J •i i -"

4- I•--4 _ _J . • . ', . ..

i i• I ' FT =-.-J....
I, L i!

J

----------------- _

titi

9 Z

1•n___'
I

-f -•1•.i~
---- _ _ K

WIC

* ! a
•,----4 ... 0

FIR-

d
4

__ ~1---

I

£ Interpreters or in number of devices or memories. The number of replications
of this plate would also change if the amount of serialization of the data path

k were changed.

Input Switch Network (ISN)

[The ISN returns data from addressed devices or memory modules to the Inter-
preters (i. e., the ISN is a "multiplexer"). One finned plate handles five wires
for five Interpreters and up to eight devices or memory modules. A logic dia-

B L gram for the ISN is shown in Figure 23. As with the OSN, each column of logic
is for one Interpreter with the outputs to the Interpreter coming from the top.
Each row also represents one serial transmission path with the inputs from eight
devices or memories coming in the side of the drawing. System expansion using
this module could be in number of Interpreters or in number of devices or mem-
ories. The number of replications of this plate would also change if the amount
of serialization of the data path were changed.I

S [Shift Register (SR)

These units are parallel-to-serial shift registers or serial-to-parallel shift
j registers that use a high frequency clock for serial transmission of groups of

four data and address bits through the ISN's and OSN's. They are physically
located with the Interpreters, device interfaces, and memory module interfaces.

POWER DISTRIBUTION

Figure 24 shows the details of the power distribution system in the aerospaceI multiprocessor. Even though all a-c connections are shown schematically attached
to one line, a load center is mounted inside the cabinet and two phases of a three
phase four wire 120/208 volt 60 Hz input are each connected through the load cen-
ter to four strips of electrical outlets mounted inside the cabinet.

As shown, each Interpreter has its own power supply with a connection to the
Switch Interlock for supplying +5 volts to the MDC for that Interpreter. All +5 volt
distribution is by heavy gauge wire twisted with its return. All sensing and

connections of return to chassis are done at the point of load. The system power
supply provides power to the device and memory interfaces, the real time clock,
power control and clock distribution, the light panel, and the Switch Interlock.
The sensing for the system power supply is on the Switch Interlock.

As can be seen, the multiplicity of reference-to-reference connections via the cold
side of the twisted pairs made proper "treeing6" of the references before connection
to earth impractical. Therefore freely tying reference to chassis was allowed.

.35

In retrospect, the only changes suggested would be providing a better reference- I;
to-reference connection between each Interpreter and the Switch Interlock, and
removing the reference to chassis connections on the +12 volt, -12 volt, and
+20 volt supplies after insuring a suitable reference to chassis connection at]
the loads.

The only grounding problem encountered was on the loader board in the Inter- j
preters. This problem was eliminated by installing a wire ground grid on the
board and by providing extra ground pins from the board to the backplane. Of
interest is that no decoupling capacitors exist in the system. Space for decoupling
capacitors has been provided and should be added if noise problems are encountered;
however no such problems have arisen during the fairly extensive testing before
and after delivery. I
CLOCK AND POWER CONTROL

From the description of the Switch Interlock, it is clear that two clocks having
different frequencies are needed in the aerospace multiprocessor. During the
design of the aerospace multiprocessor the relationship between the maximuln
shift rate through the Switch Interlock and the maximum speed of the Interpreters
was determined to be at least 4:1. Since four bits are transmitted serially on
each path through the Switch Interlock and shifting is to be finished within one I
Interpreter clock time, a ratio of 5:1 was selected. However, from the
implementation as shown in Figure 25, this ratio could be easily changed by
changing the value preset into the counter. The logic appearing in this figure is
all controlled by a central system power supply, which in a failsafe system must
be made redundant.

As shown in the figure, the widtti of the high-speed clock to the MDC's in the
Switch Interlock is controlled by the width of the master clock coming in from
the pulse generator, and the width of the Interpreters' clock is controllable by
varying the resistor value on the single shot. The flip-flop control has been
added to the clock for each Interpreter to insure against performing any spurious
memory or device operations while power is either being applied or being shut off

3
I
I
I
I

4 .6

I.

Jr

z - N " a03 '3 �3 N -a g 0
5� I I g � g g I : ? I U

- - - - 000000

¼2Z 23 a Sti 3*.a�0 03-'���,, 5
00o0���� 3 -- .5! t 5!

9

'1 -

3) 3) u U .? *J *Q .. �

* I I 34 I I 1 34

0

z
(C
o 3 3 - t I--a 3 '3 33 43 -�

* WY I '4 I
3'- 0 1 3-.

3. 333 3, '3

0
z __
In _ - - -
o

o 3.
3z '34¶

(I, Wa

0 3-

S - �0

30 30 0 030 0
* NY.',o .4
0 5 0
3, S

S¶

7 1 ~ -! 5!!!: 1 415;14

* 1S0 0IOLO/

*04 4044/•! Cl

70 *0 ., 0- o/

.4 IM 0I/S

__.... - 0. ,-3/

3104 3'14r3 4, II 3, 3,alrll3 4

kiT t.)39•.[1| SI

In 1M

Ci ,_ N - - - -

- - j

- I- r I : - a - 1 i I I (b rn
-

a C - -

- _ ,_ C- >l•Sso~ li

-- , l l l[--•- --- ------

1SM aMI1

Figure 22* Output Switch Network No. 1, Logic Diagram

C i~j 38

o I

4 ~ ~~~~~ T5 , -. A . I .

4T 15 1 4AEC O KfD AOYLAE "

*R D.F*EN THA THE OTHE 44 '

C 4

II I I T. z
25 IS 4 t~-2S2. II

II TV

I~ In T0/*0-

'0 1 050-/

I" T405-/

I3 .I I T
f 0i f-J/

O3/1-f

'114 O/*0-/

I' IIOM01-;/S
t00/1*00 I/S.

'lit00-0/

DIM 0450 --2/
.5" 00620-/

Fig~~~~~~~re~3 230Ipu/SithNewok0o.1-2gi /Daga

3940z/

I T

EAP- PONI" O
SUPPLY omcwff I_______BOAR

wkqo

__T_ 1-4__ ___ _ _ _ _ _

LG- U~hI
_ _ _ _ _ _ _10

mT 1.
ITS~POEA POWM TfT IO

Cigure 24. Poe itriuonSsm

--- ----- ---- ---
40 --------FaxI

m " "MASTERS• Vec CLOCK

IF r I
C DN C B A CLR1

f LOAD (COUNTER)

TO SECTIONS

FOR OTHER[,INTERPRETERS
CLEAR -1#0 POWER

Sx*#o ON/OFF
PUSH SWITCH

BUTTON , ..--

II I ¢

PROGNMMIN

TERINLSOFI

SHI I E

I
[RELAY)I

TO REMOTE
PROGRAMMING

I ~ ~~TERMINALS OF gSIiS

I i1*THIS SECTION -j
DUPLICATED FOR
ALL OTHER II
INTERPRETERS 46 1 *0 o HIGH SPEED

SYSTEM POWER CLOCK FOR I
CLOCK ON I#O's MDC

Figure 25. Implementation of Multiprocessor Clocks

41

I #Ie POWMER ON

1# 3 POWE.R ON
1#4 POWER ON -
I #20 POWER ONj
1#0 6C O

1#1 SCI 100 SET
GC1 INHIBIT

I # 3GCI

1 #04 SC "1- 1 ISET

1*0 SET GC1 GC1 INHIBIT

REQUEST

S I#2 SET

#1 SET C GCI INHMIT
REQUEST

I# 3 SET
GCI INHIBIT

1,3 SETGCI _ _

REQUEST

1#4SET

1#3 SET GCI

C NII

REQUEST

Figure 26. Conflict Resolution Logic for Global Condition Bit GCI

14

42i

to an Interpreter. This is done by a front panel switch setting the flip-flop (which
will shut clocks off) and turning the solid state relay on, which will then short

across the resistor on the remote programming terminals of the Interpreter's
power supply, turning the power supply off. When the front panel switch is set to
turn power back on, the solid state relay will turn off, opening up the output of
the relay and turning power back on to the Interpreter. However, if clocks were
applied at this time, they would start during the powering up of the Interpreter and
would continue even though no valid information existed in the Interpreter's Micro-
program and Nano memories.

IA To avoid this problem, clocks are not restarted until the Clear pushbutton is
pressed on the front panel, which is done in conjunction with pressing the Load
pushbutton for loading the Microprogram and Nano memories from the loaderA card reader. Since during loading, a pseudo Type 11 instruction is forced by the
loader, rY' clocks will be present to initiate any memory or device operations
until loading is completed and the microprogram just loaded begins execution.

GLOBAL AND INTERRUPT CONDITION BITS

I LThe two global condition bits in each Interpreter are used by programmatic conven-
tion for locking out other Interpreters during a read-modify-write to system tables
resident in S memory. This is done independently for each of the two condition
bits by not allowing an Interpreter to set its cendition bit if any Interpreter's
condition bit is already set or if a higher wired priority Interpreter is requesting
to set its condition bit at the same time. Th!s was initially to he done by chainingIthe priority through the Interpreters so that no external logic would be required.
"However, if an Interpreter's power were turned off, the chain would be broken and
the same global condition bit in two Interpreters could have been set. To avoid this
problem the global conditiou4 bit and the requests to set the global condition bits are
brought from each Interpreter to a centralized location. (The Switch Interlock was
chosen, although this logic is totally independent of the Switch Interlock operation.)
In this centralized location, the power-on signals shov i previously in this section

Sare used to allow only signhls from powered-on Inter eters to participate in the
conflict resolution. This conflict resolution logic is , vered by the system power
supply and in turn sends enables back to the Interprctu-s for setting the global
condition bits. This conflict resolution logic is shown for one of the global condition
hits (GCI) in Figure 26. The same logic is repeated for the othcr global condition

bit (GC2p.

i- The Interrupt Interpreters condition bit, although having no priority logic associ-
ated with it, has the similar problem of having a signal from an Interpreter that
is either powered down or whose power is undergoing a transition, setting the
Interrupt condition bit in other Interpreters in an uncontrolled manner. To avoid
this. the Interrupt signal and its control coming from each Interpreter are gated
against the power-on signal for that Interpreter. These signals are then all ORed
together and sent back to all Interpreters. This logic (shown il, Fig-ire 27) is
also located in the Switch Interlock and is powered by the system power supply.

43

I #I POWER ON

1 #2 POWER ON

1 #3 POWER ON

1# 4POWER ON-

#0 POWER ON - -

1# INTERRUPT

LINTERRUPT CONTROL---- -

F INTERRUPT - - INTERRUPTIll [INTERRUPT CONTROL TO 1 # 0

TO I # 4
X#2 INTERRUPT 2MEW "

LINTERRUPT CONTROL - TO I # 2

TO 10 3

* 3f INTERRUPT -INTERRUPT

[INTERRUPT CONTROL T 1

L#4

R

INTERRUPT

S~~~INTERRUPT CONTROL T

m*1

Figure 27. Implementation of Lnter'upt Controls

4I

44

I

I 'REAL TIME CLOCK AND THE HORNS

One device (device number zero) has been permanently assigned to a device called
a "real time" clock, which is used programrnatically to determine the failure of
a task running on an Interpreter. This use is explained more fully in the Multi-
processing Control Program and Demonstration Programs section of this report.
This device is merely a 32-bit counter that is counted up at a rate of once each
256 Interpreter clocks. It is powered by the system power supply and runs
continuously. This device is read just as any other device attached to the Switch
Interlock and must be locked to in order to be read. Since programmatically this

.: counter is used as an interval timer, a potential problem exists if the interval
to be timed were started just prior to this device overflowing (once every 240
Interpreter clocks). This can be avoided by forcing the programs to test the value
of the counter to insure it will not be reset during the interval of interest.

Also physically located with the real time clock are five, 4-bit counters, one
associated with each Interpreter. These counters, called horns, if not reset,L2U will overflow after every 2 20 Interpreter clocks (approximately every 1 second
for a I MHz Interpreter clock rate). These counters detect an Interpreter
waiting for a response from a memory or device that has failed. An overflowp from one of these counters will force a one clock time STEP and will set a
condition bit in its associated Interpreter which then can be tested by the
Interpreter. To avoid continual setting of this bit, each counter is reset every
time its associated Interpreter does any memory or device operation. These
operations should occur often in any program except perhaps during internal
Interpreter diagnostics. These diagnostics should not require 220 Interpreter
clocks to run but if they did the horn for the Interpreter may be manually

ii turned off.

I:INTERPRETER NUMBER

Each Interpreter is logically identical to all other Interpreters. A multiprocessing
control program, however, must have a means of distinguishing between Inter-
preters. This is accomplished by wiring the most significant four bits of the next

to the most significant 8-bit byte of the Z-input to the adder, to the connector to
which the loader cable is attached. Ground and +5 volts are also wired to this
connector. Within the other side of the connector, which is part of the loader
cable, ground and +5 volts ace jumpered to the 4 bits of Z input to appropriately
indicate the Interpreter number, right justified within the 4-bit field.

4

a..,

SECTION1 IVy .P{ -

AEROSPACE MULTIPROCESSOR PACKAGING DESCRiPTION

S:• MECHANICAL DESIGN

. The aerospace multiprocessor is housed in a cabinet consisting of two bays 21
inches wide by 25 1/2 inches deep by 68 inches high (Wigure 28). The Inter-
preters, and Switch Interlock modules are built up of mechanically similar
subnmodular sections. The S memory module and power supplies are commerically

S~available rack mounted units.

Each of the modules is made up of several finned aluminum castings (Figure 29
"[• ~with massive heat sinks for nmounting of the printed wiring boards and direct heat
U sinking of the LSI packages. Modification of the finned aluminum casting allows

direct heat sinking of conventional dual in-line packages for the MPM and
I! Nanomemories. The 5-inch by 5-inch by 1/2-inch thick submodtule houses two LSI

chips, as many as 98, 16-lead flat packs or as many as 45, 16-pin dual-in-line
packages, depending on its function in the system.

I Each of the Interpreter modules (Figure 30) and the Sic nelc ouei

I: packaged complete with its own backplane and 1/0 connectors to simulate remote
physical distribution of the modules.

S~ To maintain a close physical arrangement with simulated module distribution,
S~all of the Interpreters are mounted on a common mechanical structure which allows

S~the multiprocessor to be mounted as a single unit on a shelf extending at right
angles to the front of the two electronics cabinets, as shown In Figure 1. The
multiprocessor is mounted on a swivel to allow direct access to the wire wrapped

.. backplane during debugging and testing procedures.

447

SYSTEM MEMORY o -

INDICATOR AND
LIGHT CARDS

0 LIGHT PANEL "

SWITCHES 0 (

FANS -- - --

© POWER SUPPLIES _____

. FAN........ IC~i~I

C

r C,

9[r ý j'_
C C 25.5

"Figure 28. Aerospace Multiprocessor Configuration 4

48

Io~
- . .. 045

.004)

,N4

I ~ .00. 8_

. . t 0,, 41

I _
+ .9-

- t

49

LSIj

MEMORY COMPONENTS

5.75"'

IfI

Figure 30. Interpreter Module Packaging

50

-I Figure 31 is a photograph of the system as installed at Wright-Patterson Air Force
Base.

i Figure 32 is a plan view of the Interpreters, Switch Interlock and connectors for
interconnection among the modules.

- CIRCUIT CONFIGURATIONS

The LST multiprocessor system is implemented with the three types of submodules.
The Microprogram and Nano memories in the Interpreter both use Fairchild 93410
ceramic dual-in-line packages, each containing 256 words X 1 bit of memory,
interconnected with a four-layer printed circuit board mounted on the opposite side
from the packages as shown in Figure 33. Since the selection of this package,
Fairchild has introduced the 93415, a 1024 word X 1 bit memory package with
approximately the same power dissipation as the 93410. This more dense memory
package is recommended for future Interpreter systems.

The Loader submodule in the Interpreters and all submodules in the Switch Interlock[use standard 54/7400 series flat packs which are mounted on either two or four
layer printed circuit boards which are then mounted on the two sides of the
aluminum plate submodule as shown in Figure 34. The packing density of the
flat packs is typically between 25-30 per board, since most of these submodules
are pin limited and would have required six to eight layer boards to achieve the
maximum packing density of 49 flat packs per board.

2 The remainder of the Interpreter logic is implemented with Texas Instruments
discretionary wired, transistor-transistor logic (TTL) using their "N" and "S"[£arrays as follows:

C 8-bit Logic Unit (two Type "N" slices)

j Memory Control Unit (two Type "N" slices)

Control Unit (two Type "S" slices)

jj This type of submodule is shown extended above the Interpreter in Figure 30.

A summary of the general characteristics of the individual arrays is given in
Table II. Appendix II is the final report from Texas Instruments Incorporated onS• the LSI arrays.

Texas Instruments informed Burroughs in December 1971 that they were discon-
II tinuing fabrication of LSI Discretionary Routed Arrays (DRA) after the conclusion

of their present commitments. However, several alternative packaging approaches
Sexist which could package the Interprctcr logic a.5 densely as in the LSI/D)RA
approach of Texas Instruments.

15

- T i . .-- _

ImI

CID
4).
--4

.- 4

ýT4

52

-C41

CM C

W I -4-, - I I

I ////

u~~ ~ ~ fý oc JI IIM--

I I
0 53

jLj

4to)

CL

544

-is

(UU

Jil

[0

55d

C.CC

LLI

t, z

x 4.~ -CL

2- AZ e 0I
io0

LL I

o 1

0Q E

(556

Three of the approaches are as follows:

1. A flat pack version of the multiprocessor can be produced with the
same volume, weight and power requirements as the LSI version.

The logic provided by two LSI chips can be duplicated with a maxi-
mum of 98, 16-pin flat packs as shown in Figure 35. With the use
of multilayer boards, the 98 flat packs can be interconnected
on the same 5-inch by 5-inch 1/2-inch thick heat sink as used for
two LSI chips.

[2. By utilizing 60-pin hybrid flat packs as produced by TI, it is
possible to package two 8-bit Logic Units on a single heat sink as
"shown in Figure 36. The Control Unit and Memory Control Unit[can be packaged together on a single heat sink to provide a reduc-
tion of 1/2 the original volume. This technique would use Shottky
low-power TTL.

3. A third approach which would give the same volumetric density
as the present LSI model would be to utilize Hughes LSI which
is produced by a proprietary pad-relocation process. The Hughes
chips could be produced as one for one replacement of the LSI
arrays used in the present processor or as a replacement for
the logic on two LSI arrays that are presently mounted on one
of the submodular housings.

5

I.
f
!

57

___________ ---.-- '. ...

Id

CD

1.

0.

58,5

II
4'

A
A
I
I
F
t I
C Co

1.
N

If -
'-I

C
U
Cu
0
5..£ t�.a.

I
UJ�C'I
044-'

CUI
44
Lu
I.'
5.4
4)Ii 44

4:

(
4)
5..

I
K

I

I

59

SECTION V

{ INTERPRETER OPERATION

I
i

During each clock period, a microinstruction is read from the MPM. The first

Sfour bits of this microitstructioa indicaLe which of two types of instruction it is.
[If it is a Type I instruction, the remaining bits of the MPM word specify a Nano-

memory address to be accessed. The Nanomemory is then initiated and its output,
a set of 54 bits, provides the control functions as indicated in the listing below.

Nano-Bits

1-4 Select a condition.
5 Selects true or complement of condition.
6 Snecifies conditional or unconditional LU operation.
7 Specifies conditional or unconditional external1 operation (memory or device)

3-10 Specifies set/reset of condition.
11-16 Successor controls (wait, skip, step, etc).

17-26 Selects A, B, and Z adder inputs

27 Byte carry control.
28-31 Selects Boolean and basic arithmetic operations.
32-33 Selects shift operation.

34-36 Enables input to A registers.
37-40 Selects input(s) to B register.

S41 Enables input to MIR.
S42 Enables input to AMPCR.

43-48 Enables and selects input to address registers and
counter (MAR, BRI, BR2, CTR).

49-53 Selects input to SAR.
51-54 Selects external operations (read, write, lock, etc.).

MPM load, or Nanomemory load.

61

S.... • .. ~ ~~~~~~~~~.M. . •.t-"d -'•" ,-J.. . ..

1us

ILI
ILI

I *

U Ij
> -0 4c

13 -

t cc

'U;c

. ra -J

0 -Z to~ Z0 LU -,u

""; t- -0i- L
EU 0 :

Co ~ I-
U.

a- 2 hi5 u

9L

* ul--0

.2 In

At z U

62

j•.1
--

If the microinstruction is Type II, the remaining bits of the MPM word are stored
into one or two registers: namely, the SAR, LIT, SAR and LIT, or the AMPCR.
The determination of which registers are to be loaded is specified by the first bits
of the MPM word. The Nanomemory is not accessed during a Type II operation.

Each Type I microinstruction has two parts (or phases). The first fetches the
instruction from the MPM and Nanomemory and the second executes the fetched
instruction. Figure 37 illustrates these two basic phases of each Type I
microinstruction.

The fetch phase involves: MPM accessing, Nanomemory accessing, conditionI: testing, selection of controls for the next instruction (successor) address com-
putation, and, in parallel, loading the control register for the execution of the
microinstruction. A fetch phase occurs for every Type I microinstruction and

Ii requires one clock time. Since it always overlaps the execution phase of a
prior Type I microinstruction (Figure 37), the performance of each micro-
instruction recuires effectively one clock interval.

[The execution phase also requires one clock time and always overlaps the fetch
phase of the next Type I instruction, The control signals for the execution phase

*) are from the output of the control register and have two parts: signals specifying

L. the logic unit operation (adder input selection, adder function, barrel switch
shifting, etc.) and signals specifying the destination register(s) loading (i.e.
clock enables). Both sets of these controls apply continuously from the start
to the end of the phase; however, the destination registers are not changed
until the occurrence of the clock pulse which signals the end of the execution
phase and which simultaneously reloads the control register for the execution
of a new logic unit operation. The completion of the execut'ion phase (i.e. the
destination register(s) loading), may be delayed or suspended for one or more
clock times.

[Suspended execution phase is the name given to an execution phase clock time
whose logic unit operation has been and continues to be performed but whose
destination regiftter loading is postponed for one or more clock periods. ThisI. is accomplished by inhibiting clocks to both the control register and the destina-
tion registers. The register loading part of an execution phase depends on the
subsequent microinstructions which follow the Type I instruction.

-• This siuspended execution phase can occur for three primary reasoi's. The first
and most frequent occurrence is when the next instruction from the MPM is a
Type I1 instruction. This Type II instruction is executed during the same clockI time it is fetched and the execution of ýhe Type I instruction in progress is held
in this suspended execution phase until the next clock interval. This allows the
fctch phase of the next microinstruction (if it is a rype I) to have an exccution
phase to overlap. This provides condition bits (generated dynamically during the
execution phase of a microinstruction) that can be tested during the fetch phase of

W• j the next Type I microinstruction.

63

IiI

II II

A. Typo I followed by Type I for which a logic operation is required:I

1. Type I F E

S2Type l F

B. Type I followed by Type II, followed by Type I for which a logic
operation is required.

1. Type I F SE E i
2. Type i1 1i
3. Typel F

C. Type I followed by Type I for which no logic operation is required,

followed by Type I for which a logic operation is required.

1. Typel F SE E
2. TypelI F
3. Type I F

F Fetch)
E Execution Type I
SE Suspended Execution t

Type I I

Figure 38. Instruction Timing I,

I6

64i

-. - iz-i~~~ -- - ---- -~----_ - -

IThis instruction overlap is more graphically illustrated in Figure 38 where the
horizontal scale is "time". Example A of Figure 38 shows the case of sequential
Type I instructions. Example B of Figure 38 shows the case of a Type I micro-
instruction followed by a Type II, which causes the execution phase of the pre-
ceding microinstruction (a Type 1) to be suspended so that the execution will
overlap the fetch phase of the third instruction (also a Type I). In case the third
instruction had also been a Type II, the execution phase of the first micro-
instruction (the Type I) would have again been suspended. It is important to
realize that since the execution phase of a Type I microinstruction is delayed by
a Type II, the SAR, LIT, or AMPCR registers could be loaded with a value that
would change the result of the operation during "he completion of the execution
of the Type I microinstruction.

The second reason for the occurrence of a suspended execution phase is due to
the existence of conditional logic unit operations. A Type I microinstruction
which does not contain a conditional logic operation always has a fetch phase
and an execution phase. However, a Type I microinstruction which does con-
tain a conditional logic operation falls into either of two categories: if the
condition is met, both the fetch phase and- execution phase will be performed;
if the condition is not met, only the fetch phase will be done. However, even
when the execution phase of a conditional Type I microinstruction is ignored,
the fetch phase of the next Type I microinstruction must have an execution phase
to overlap in order to have values for dynamic conditions. This is accomplished
by forcing the prior Type I instruction into a suspended execution phase, which
inhibits clocks from the destination registers and control register, which causes
the execution phase of the current microinstruction to be disregarded. This isF shown in example C of Figure 38. Example C shows a suspended execution phase
occurring when the condition tested in the second microinstruction is not met,
resulting in discarding the execution phase of that second instruction. More
detailed examples explaining the above concepts appear in Figure 39, where CR
refers to the command register, the vertical lines indicate the occurrence of a
clock, and an X appears over clocks which are inhibited from occurring.

F The other reason for a suspended execution phase is for use during th2 loading
of the MPM and Nanomemory.

f Since microprogram timing is important in the execution of microprograms
on the Interpreter, the following summary of timing concepts must be kept in
mind by the programmer in the creation of microprograms:

1. A fetch phase of a microinstruction is always executed in
parallel with an execution (or suspended execution) phase of

f another microinstruction.

65

1. All Type I unconditional instructions

a. Al +B- -AI
F i E

b ,CR

b. A2 + B-A2 F E

c. A3 +B--A3
F E

d. AC -- AI; F d, CR E

2. All Type I instructions t
where both AOV and ABT test true

a. A] + B -41Al F E

b. If AOV then A2 + B-- A2 F_ E
ABT Test c CR A5

c. If ABT then A3 + B--' A3 F E

d--CR
_ _ E

d. AI C-A- : FAl

3. All Type I instructions where

AOV tests false; ABT tests true CR Rft ins a

a. A + B -*Al SE E

AOV Test

b. If AOV then A2 + B--A2-F-A2F
AOT Test €,CR A3

c. If ABT then A3 + B---*A3 F _ _

I F E

d. AlF
d-.CR _E

4. Type I and Type II instructions

Resulting A2 contains least 4 bits

left justified 2 S

a. 2 -4- SAR; 3 -0, LIT Typel1 C[RemSb' ,C R R enAtinb

b. A2 and LIT C--4 A2
b F CE_ E A

•1 4 - -S

45--L

c. 4--SAR, 15 -- LIT TypeU I
d. Al C-0- Al; F E

Figure 39. Timing Example

66 1

2. A suspended execution phase occurs primarily due to a successor
that is either a Type II or a Type I microinstruction which contains
a conditional logic unit operation that has not been satisfied.

3. A suspended execution phase of a Type I microinstruction which
consists of both a fetch phase and an execution phase) does notI become completed until the occurrence of another Type I micro-
instruction which also consists of both phases.

4. Any microinstruction which either causes a suspended execution
phase to be initiated or prolongs an existing suspended execution
phase is actually executed in time between the fetch phase and the
execution phase of the affected Type I microinstruction although
it may programmatically follow it.

The sequencing of microinstructions is also importan' in understanding the
Interpreter operation.

The senuenc jog of Type I microprogram instructions is controlled by theS---following procedure: The MPM addresses the nanornemorywhich provides
information to the condition testing logic indicating which condition is to be
tested. The condition testing logic provides a True/False signal to the successor
selection logic which selects between the three True and three False successor

_ L bits (also from the Nanomemory). The three selected bits (True/False) provide
eight possible successor command combinations listed below and also shown
in Figure 40. A Type II microinstruction (which does not access the Nanomemory)
has an implicit STEP successor.

" #Wait Repeat the current instruction

- Step Step to the next instruction

Skip Skip the next instruction

Jump Jump to another area of MPM (as specified by AMPCR)

Retn Return from a Micro subroutine

f Call Call a Micro subroutine, saving the return address

Save Save the address of the head of a loop

Exec Execute one instruction out of sequence

The particular chosen successor command then provides controls used in the
- selection (MPCR/AMPCR) and incrementing logic which generates the next MPM

address. Except for the EXEC command, the MPCR is loaded with this MPM
address.

,ii

-67

15--

tst
_______________________ if

00i

CL 2 x1 .i

1 2

U.. 1 >8 wU

0

00

CL.

"UU

401
ul

Cil I.

685

it

SECTION VI

[SWITCH INTERLOCK OPERATION

[OVERALL SWITCH INTERLOCK CONTROL AND TIMING

Figure 41 is a block diagram of the Switch Interlock (SWI), connecting five Inter-
preters to eight devices and eight memory modules. The transmission paths

L[through the SWI break the 32-bit data word into 8 wires carrying 4 serial bits each.

Only Interpreters can issue control signals to access memories or devices. A
memory module or device cannot initiate a path through the Switch Interlock, but
it may, however, p-ovide a signal to the Interpreter to an unused condition bit
via a display register , a device connected to the SWI. Thus, transfer between
devices and memories must be via and under the control of an Interpreter.
Connection with a device-like port is by "reservation" for exclusive use by an

Interpreter and is maintained until released by that Interpreter or in the case of
that Interpreter failing. (A memory could be attached to a device-like port if
locking of an Interpreter to a memory is desired.) Connection with a memory-like
port is for the duration of a single data word exchange. (Note also that a device
could be attached to a memory-like port. To simplify the description however,
these two types of ports will be referred to just as device ports and memory ports
in the following discussion).

No display register is being delivered with the aerospace multiprocessor, but
is an easily designed device that could take a variety of forms. Basically,
setting any bit in the display register would set the condition bit in the Inter-
preter. When this bit is tested true, the display register would be read, returdning
either the entire register, a masked portion of the register, or possibly the
address of the device with the highest priority interrupt, depending upon the design
of the display register device.

69

LOO 4j

0 ul0

100

-Coi-o .4
00 do oulI

14

bb

Itr

9 -E

700

(j wz"

t Controls are routed from the Interpreters through the MDC to the MC and the DC
which. in turn, check availability, resolve conflicts, and perform the other functions
that are characteristic of the Switch Interlock. Data and addresses do not pass
through the MDC, but are wired directly to the OSN'a.

Events are initiated by the Intexpreter for access to memories or devices. The
Interpreter awaits return signals from the MDC. Upon receipt of these signals,
it proceeds with its program. Lacking such positive return signals, it will either
wait, or retry continuously, depending upon the Interpreter program (and not on
the Switch Interlock). A timeout waiting for a response will be performed by a
counter (called the "HORN") that will force a STEP in the microprogram after a
preset length of time and will set a condition bit to indicate a failed memory
module or device due to the lack of a response. This counter is reset every time
any memory or device operation is done.

Among the significant signals which are meaningful responses to an Interpreter[and testable as conditions are the following:

Switch Interlock has The MAR and MIR of the Interpreter
Accepted Information (SAI) may be reloaded and a memory or

device has been connected.

Read Complete (RDC) Data is available to be gated into the
or Request of Device B register of the Interpreter or the
Complete (RDC) device written to has accepted its

information.

Horn Overflow (HOV) No memory or device operations have
have been performed for the last 220
Interpreter clock times.

The rationale for this "handshaking" approach is consistent with the overall
Interpreter-based system design which permits the maximum latitude in the
selection of memory and device speeds. Thus the microprogrammer has the
ability (as well as the responsibility) to provide the timing constraints for any

. "system configuration.

For each Interpreter, the Switch Interlock provides three buffer shift registers.

1. Address data for S memory and devices from the specified
_• MARl or MAR2. (XDA).

j 2. Output data from the MIR. (XDO).

3. Input data for assembly and subsequent acceptance into the
B register. (XDI). Data in this register may be repeatedly read
non-destructively until the next device or memory operation is
initiated (the last read may be concurrent with the next operation),
provided no intervening instruction uses a B register input
selection involving the MIR.

71

DEVICE OPERATIONS

The philosophy of device operations is based upon an Interpreter using a device
for a "long" period of time without interruption. This is accomplished by "locking"
an Interpreter to a device. (The reader is reminded that a memory could beJ attached to a "device-like" port.)

The device operations include lock (DL), read (DR), write (DW), and unlock (DU).
Each device operation uses as a device identification the value of the most signi-
ficant three bits of BRl or BR2 as indicated in the operation suffix, e. g. , DL1.
"This identification is not stored by the Switch Interlock; consequently it must be
maintained until the device operation is completed, or until some other device or
memory action is desired. Any change to the device identification while a device
operation is in progress breaks the selected path to or from the Interpreter. Un-
less the normal completion occurs concurrently, the prior device operation is
terminated. The value in MAR and in the least significant 6 bits of BR1 or BR2
pass through the Switch Interlock to the device as required. A signal indicating

read or write is placed in the most significant bit of the XDA shift register in
place of one of the module address bits which are not needed by the memory
module or device. I

The ground-rules for device operations are listed below:

1. An Interpreter must be locked to a device in order to read from
or write to that device.

2. An Interpreter may be locked to several devices at the same
time.

3. A device can only be locked to one Interpreter at a time.

4. When an Interpreter is finished using a device, it should be
unlocked so other Interpreters cpn use it. Devices locked to
to a failed Interpreter are unlocked by turning power off to
the failed Interpreter.

A block diagram of the DC is given in Figure 18 in the Multiprocessor Hardware
Section of this report. One primary purpose of the DC is to resolve conflicts
in device lock (DL) and device unlock (DU) requests that may occur.

The second purpose of the DC is to check to make sure a device is locked to an
Interpreter that is requesting to read from, write to, or unlock from that device.
This is accomplished by the "Lock Check for Device Operation" in the right
of Figure 18.

7

' ~72

1i

If an Interpreter issues a read or write command in an attempt to control a device,I ,and it has not previously locked the device, it will not be given access to the de-
vice regardless of its (the Interpreter's) priority status. However, as stated
"above, if it had previously locked the device, it has explicit priority to that
same device.

Device Lock and Unlock

Timing diagrams for DL and DU operations are shown in Figures 42 and 43. In both
cases, controls from the Interpreter (Nanobits 51-54) are strobed into the mem/dev
operation register of the MDC if either the Type I microinstruction is unconditional
or the selected condition is true, independent of whether the next instruction is

f• Type I or Type II. A Device Operation signal and either a Lock Request or an
- Unlock Request are derived from the output of this register and are sent from the

MV[DC to Lhe DC, concurrent with a 3-bit address being sent to the DC from the
selected base register output of the Interpreter.

For the case of either a DL to a device previously locked to the requesting Inter-
preter or a DU to a device previously unlocked from ia' Interpreter (shown in
Figure 42), an appropriate status signa; is returned from the DC to the MDC, and
conflict resolution for actually performing the DL cr DU is of no consequence.
In these two cases, the flip-flop in the MDC for synchronizing the SAI signal is
set with the next clock. The actual SAI flip-flop in the Interpreter will then be set
with the second clock and will test true during the fetch phase of the third
instruction following the DL or Dli.

"However, for the cases a a f)L to an unlocked device or a DU to a dev Lce locked
to the requesting Interpreter (shown in Figure43), conflict resolution is necessary.
"The DL request from the highest priority requesting Interpreter is honored over

I a co-occurring request for the same device from any lower priority Interpreter.
Concurrent 01. or I)U requests for different devices may cause the lower priority
request to incur a one clock delay in achieving the DI, or DU and in return ot SAI,
for each higher priority request, Consequently Ml, or DU requests from Lnizerpreters
other thin the highest prlr-Ity may be arbitra ilY delayed. The earliest confirming
SAI response ot:curs 3 inst. uctio, .-, a'ter issue of the DL or DU. If SAL is true,
then the DL or DU was success'Al. ii SM is talse, then it meQLns that the DL
or I)U is not yet successful. The design justification for this potential arbitrary
delay is that DIL or D)U are infrequent events for which atbitrAry de)ay is of
little consequence.

Dievice Read st Write

A timing diigrarn fer DR or DW is shown in Figure 44. As for DL ano MIU, controls
fronm '.e Intevpreter (Nanobits 51-54) are strobed into the merm/dev operation
rfet ster of the MDC if either the Type ! ,microinstruction is unconditional or the
ArIlected condition is true, independent of whether the next instruction is Type I

0or Typ 1' I ontrots derived trom the output of this register will next load tI'
o,.dput shift regist.ers of tre Interpreter anta will s-end a I)evice Operation signal

73

INT to K

MDC to Lock Req./IioickRe.

DC IPrcograrminer

INT to j ~ ~ d ~ T ~ s oi-

DC to he jodica-,

MDC to _7A
INT

Within A1i T3
PIT (Stayso set untilI tested)

NOTE! Leve1s on diagragn indicate validity

or nonvalidity and not necessarily

Figure 42, Triming Diagram for Device Lock to Device Previou~ly
Locked to Requesting Interpreter or for Device Unlork to

Device Previously Unlocked froim Any Interpreter

lINT to
MDC { .Cnb i ts

M-DC to J Lock Req./Unlo~k Rcg.
DC f - .--- 1--------------- Pgtnec.,s

L fE -s le, t d b s L

FINT to A-un. Add rn'gl.,Lr -'EXi 1'

DJ mUt ll inoicat,, cok.

DC to~

MPCL to .;A I _________

Withiu j s"
INT * ~ - -(tv V. m ii t- v)

I on diaLt.Ial irldlLý;Ite In t r I i-1111.~

vatlinlitv 'nonvolidity Exi~n~ Ftist If

re tcin IY io en I ... x Ii U-rn, I1
110 IA , ii g iC- . j.-Iii- Ii - 0i~~*

Figure 43. rirning D~iagr'am for D~evice Lock to UnrLocked He ,ie
(Unlock to Device Locked to Requesiting Interprete

74I

a-.a >.C1s
!a' -•aa...

-.
I Cso

t,.-
Jdsa-

Cf j

51• •;

,., ,U. .
.

. .,.,
)

L8

553

C -S•

2"
:• • .

""a
La.

• ,, _..._

a"aS

from the MDC to the DC, concurrent with a 3-bit address being sent from the
selected base register of the Interpreter to check the lock status of that device.
After it is confirmed that the device is locked, the DC returns a signal to the

MDC which will cause a clear pulse to be sent to the device interface logic
through the device OSN and will initiate the setting of SAI and the transmission
of high speed clocks to the output shift register of the Interpreter and through the

OSN's to the device interface.

- For both a DR and DW, the device interface counts four clocks coming into it and
then stops accepting high speed clocks. In the case of a read, the device interface
usually waits for some kind of Data Available signal from the device (such as
t "column strobe" from a card reader) which it will use to load its output shift

registers and to allow four high speed clocks which are still arriving from the
OSN to clock these output shift registers and to be returned to the MDC and the
Interpreter with the serial data. The MDC will count four return clocks and
will set a flip-flop in the MDC for synchronizing R0DC. This signal is sent from
the MDC to that Interpreter, for setting RDC, which then will test true during
the following clock time. The value in the selected base register must not be
changed during a device read, as shown in the timing diagram.

In the case of a write, the response is very dependent upon the particular device
being interfaced. For the card reader, the next four high speed clocks are turned
around arAd sent back to the Interpreter (status was chosen to be sent back as
a "bonus"). In the case of the printer, a signal saying the last character was
accepted by the printer is used by the device interface to allow return clocks.
The four return clocks are counted by the MDC and are used as a means of saying
that the device accepted the data sent out by setting RDC as for a DR. As in the

case of a device read, the value in the selected base register must not be changed
during a device write.

Device Use Sequence

The sequence of device cperations necessary for an Interpreter to use a device
is as follows:

I. A test of IF SAI should be included in some instruction to reset
it. This usually can be in the instruction with the unconditional
dcevice operation.

2. Device Lock Request: The most significant three bits of the
indicated base register are used as the device identification.
The third following clock time will be the earliest SAl could
have become true. SAI is then tested.

Devices such as the real time clock (described in the Multiprocessor Hardware
section) however, do not require a signal such as Data Available for synchronization
'ince they are already synchronized to the Interpreter clock.

44
76

2.1 If true, then the device lock was successful.

2.2 If false, then the device lock was unsuccessful. The

request remains in progress while other instructions
not changing the device identification or issuing other
memory or device operations may be executed. Tle DL
request is terminated by the first of the following actions:

_. (a) The Interpreter initiates another memory or deviceI • operation.

(b) The Interpreter changes the device identification in
the selected base register.

(c) The device becomes available and sets SAL. All co-
occurring actions are valid. Should (a) and (c) co-occur
or (b) and (c) co-occur, SAI refers to the DL for the
following two instruction times and should be tested.
In the instructions thereafter, SAI refers to the new
memory or device operation. Should termination by
Nb) occur without co-occurrence of (c), the new device
identification applies to the DL still in progress, and
the path for SAI return is diverted to the newly identi-

,~ fied device (if there is one so identified) without
reissue of another DL.

3. Once the desired device is locked to the Interpireter. a sequence of
one or more data exchanges may be initiated using a device write
or device read.

4. Device Write: The data in the indicated base register is uspd
to specify the device, and the data in the MIR provides the
information to be written to the device. The second instruction
after the device write, SAI may be tested. If true, the Inter-
preter is locked to the device, the data in the MIR has been ac-
cepted by the XDO register, and so the MIR 'nay subsequently be
changed. If false, the Interpreter was not locked to the requesting
device.

j The device provides four high-speed return clocks to generate an
RDC when it has completed the requested write. Similar to DL,
the request continues until the first of the corresponding 3 actions.

I(a). The Interpreter initiates another memory or device
operation.

(b) The Interpreter changes the device identification.

77

.....~-. L -..; :.

ii

(c) The DW is completed and sets RDC. All co-occurring actions
are valid. Should (a) and (c) co-occur or (b) and (c) co-
occur, SAT refers to the DW for the following instruction
time and should be tested, In the next following instruction
SAT then refars to the new memory or device operation.
Should (b) not co-occur with (c), then the DW in progress
is diverted to apply to the new device identification without
reissue of another DL. .

5. Device Read: The data in the specified base register is used to
specify the device. The second instruction after the device read,
SAT may be tested. If true, the Interpreter is locked to the
device; otherwise not.

The device provides four high speed return clocks with the 3
returning data to generate an RDC after the device read. Thus,
the same instruction that finds RDC true may include BEX.
RDC should be reset by testing prior to use for device read
(usually as part of the prior instruction using BEX).

6. Device Unlock: When use of the device is completed, the lock
should be terminated by issuing a device unlock. An SAI is
returned if the issuing Interpreter was locked to the device.
An attempt to unlock a device that is not locked to the Inter-
preter will not return SAT. SAl is available for test at earliest
the third instruction after the device unlock.

MEMORY OPERATIONS

Memory modules normally cannot be locked and are assumed to require minimum
access time and a short "hold" time by any single Interpreter. (The reader is
reminded that a device could be attached to a "memory-like" port.) Conflicts
in access to the same module are resolved in favor of the highest priority
requesting Interpreter. Once access is granted, it continues until that memory
operation is complete. When one access is complete, the highest priority
request is honored from those Interpreters then in contention.

The memory operations include read (MR) and write (MW). Each memory opera-
tion uses as a memory address the value in MARl and MAR2 (BRI or BR2 con-
catenated with MAR). The most significant 3 bits of the address specifies a 4
memory module with the rest indicating locations within the module.

The MC, shown in Figures 19 and 20 of the Multiprocessor Hardware section ,f
this report, provides for resolution of conflicts (this is fixed or wired priority)
among contending Interpreters. Once conflicts have been resolved and acc :i
has been granted to a memory module by an Interpreter, the MC "remembers" this
connection throughout the memory operation, allowing the selected base register
to be changed as opposed to requiring the selected base register value to be

* maintained as for device operations. This register also allows for futurc

sr ~78 4

modification to the MC to allow "remembering" the connection until that Inter-

preter uses a different memory module. This would allow almost a one clock
time faster access to the memory module if the next request is also to the

i £ remembered memory module, since no priority resolution need take place.
More specifically, when a memory module would be requested by an Interpreter,
the module name would be compared with the register which would contain the
number of the last module which that Interpreter accessed, If it would match,
the priority logic would then be bypassed, thus saving time. If it would not,
it would mean that the memory either had been previously used by another

I Interpreter, or would presently be in contention for by other Interpreters, or would
presently bein use by another Interpreter. In this case the requesting InLerpreter
would route its request through the priority logic (a few gate levels of delay).
When access would be granted, the memory module address would then be clocked
into the register in the part of the MC for the requesting Interpreter by the next
Interpreter clock and the register for any other Interpreter containing that address1kwould be reset to all zeros.

If locking of a memory module is required for purposes of block transfers or
similar reasons, a memory is designated as a device and is placed under the
control of the DC in which locking is permitted.

SMemory Read and Write

A timing diagram for MR and MW is shown in Figure 45. As for device operations,
controls from the Interpreter (Nanobits 51-54) are strobed into the mem/dev
operation register of the MDC if either the Type I microinstruction is unconditional
or the selected condition is true, independent of whether the next instruction is
Type I or Type II. Controls derived from the output oE this register will next
load the output shift registers of the Interpreter and will send a Memory Request
signal from the MDC to the MC, concurrent with a three bit address being sent
from the selected base register of the Interpreter. This initiates the priority logic
in the MC. When the MC ha3 gr•ated access by that Interpreter to the memory
module it was requesting, a signal is returned from the MC to the MDC that will
cause a clear pulse to be sent to the memory interface logic through the memory
OSN and will initiate the setting of SAT and the transmission of high speed clocks
to the output shift registers of the Interpreter and through the OSN's to the memory
interface.

In the case of a memory write, the counter in the MDC will count four output high
speed cloaks and will then stop them.

In the case of a memory read, output high speed clocks are not counted. Instead,
these high speed clocks aru continually sent to the memory module interface.
This interface will count four clocks coming into it and will then initiate a
memory read. Upon return of a data available signal from the memory, the
rno.ory interface will loaa its output shift registers and then allow four of
,he .higi: speed clocks that are still coming through the OSN to clock these output

shift registers and tu be returned to the MIDC and the Interpreter with the shifted

79

0 E

41)

430 a...cJ

0 oto

0 x

4) 0

I II

out data. The MDC will count four of these memory return clocks and will then
stop the high speed output clocks and set RDC inmdicating that the data has been
"shifted into the Interpreter input shift registers and is ready to be strobed into
the B register.

Memory Use Sequence

7The sequence of operations necessary to access S memory is simple in single
Interpreter systems where no conflict in access can exist. In such cases once
the address setup is complete (as is the MIR for write), the memory read (or
write) can be initiated. After a suitable time the data from memory can be
accessed via BEX or BBE. In the presence of conflict potential, the followingi

control sequence should be used. This sequence is recommended for systems
without a Switch Interlock as well.

[1. Memory read

1. 1 A test of RDC should be included in some prior instruction in
order to reset RDC. By convention this should be the previous£ •memory read (or device read or write). A test of SAI also
should be included in some prior instruction in order to reset
SAI if address register changes are required after issuing the[memory read before the RDC is returned, or if confirmation of
access to the switch interlock is desired.

1, 2 The address should be in the selected base register and MAR.

1.3 The memory read can then be initiated the instruction afterf the address has the desired value.

1.4 An SAI is returned when the Switch Interlock has accepted the
address and the memory is connected to the requesting Inter-
preter through the Switch Interlock.

1. 5 A group of intervening instructions can be issued, depending
on the relative speeds of the Interpreter clock and the S memory.
"Once SAI is set and tested, these instructions may change the
address registers.

t 1. 6 An RDC (read complete) signal is returned when data is avail-

able for entry into the Interpreter.

1.?7 If no intervening device or memory reads occur and no inter-
vening instruction used a B register input selection involving
the MIR, BEX may be repeated, each time receiving the data
in XDI non-destructively.

81

80ns. .- 230ns- -. 0;
For Ilemn

Itiih Speed
Clock~

For Mem Read or
Dev Read or Write

Data Address Bi 1 i i n~;~~ oplemnent of

)-~" ~ ' \IIR BRMAPO
Data Transitions

(a) Timing of Signals from S\-'V to Interfaee

4 Ons. I

Raetur IfghI

(VA ~ 'a al 11 W I
E a l iest

Hit [It1 L 3

(h Imigo Digalto Tranitfrom ns o ott

Figure 46. SWI/Intert'ace Timing Signals

82

1 t2. Memory Write

2. 1 A test of SAI should be included in some prior instruction
in order to reset SAL.

2. 2 The data to be written should be in MAIR.

2.3 The address should be in the selected base register
and MAR.

2.4 The memory write can then be initiated the instruction

after both the address and data have the desired values.

2. 5 Return of SAI indicates that the memory is connected and
therefore the addre-s and data have been accepted in the
XDA and XDO buffer registers respectively, and thus the

address registers and MIR may be subsequently changed.

[INTERFACE TO SWI

The interface to each memory or device port is functionally identical. For the

aerospace multiprocessor, the interface from the SWI to the memory or device

interface consists of a clear line, a high speed clock line, B data lines of 4 serial

bits each and 4 address lines of 4 serial bits each. (The most significant bit of the

j BR is replaced by a read/write signal in the serial address sent to the memory

or device port.) The interface from the memory or device interface to the SWI

consists of a return high speed clock line and 8 data lines of 4 serial bits each.

I •The relative timing of these signals at the interface is shown in Figure 46. The

timing in this figure was measured using one Interpreter and memory module

only at the indicated frequency and should not be interpreted as resulting from anyI worst case timing analysis. In Figure 46a, the 330 nanosecond delay from clear

to the high speed clock becomes smaller as the frequency of the high speed clock

is increased. The widths of the clear and the 60 nanosecond delay from high speed

I [clock to data are independent of the frequency or width of the high speed clock.

In Figure 46b, the relationship between data and clock should be independent of

the frequency or width of the high speed clock.

A block diagram of a generalized memory or device interface is shown in Figure

47. The bottom half of the figure shows the accumulation of the serial input data

from the SWI, and the top half of the figure shows the transmission of the serial

output data to the SWI along with the return clock.

83

"Data A ail" fromn
Data trom Mem or Device Mem or Dev ice

DEVICE DEPENDENT LOGICj

Clear.

wH. C. CIL

toom SSPrse

OUTTPUT IAA(1. £EU rHS
S~~~~rja1~~La COUN____________SIF EITER InuI

AV--A3-
sV.(1RNIE

Clea
frmSW4

I84

DEVICE INTERFACE OPERATION EXAMPLES

Line Printer

"The printer is device No. 1 (i.e. the most significant three bits of the selected base
register are 001). It is assumed that the appropriate locking to the printer will
have been performed prior to initiating printer operations.

Line Printer Operation

The values of the bits of the MAR accompanying a DW or DR to the printer are
interpreted as follows:

MAR 7 (LSB) unused

0 for forms controls in six LSB's of MIR
MAR 6 1 for character in six LSB's of MIRI

-MAR 5 0 when transferring characters
w1 when printing or using 'orms controls

II

SThe following sequence will print a full 132 character line followed bc a singleHi space.

Print er er Synchronization

i To synchronize the Interpreter with the printer clockb a DR with controls bits 010
in the least significant three bits of the MAR is issued. This operation has no
effect upon the printer, but causes the DDP to returanai RDC on the trailing edge

i [of the next printer clock.

S• • Printer Buffer Loading

133 characters must be transferred into the print buffer. The last 132 of these
will print from right to left on the line. The first character is totally ig'cnored.

,• Character transfer is initiated by a DW with control bits 010 in the least signi-
•iji 1ficant three bits of the MAR. The 6 least significant bits of the MIR which are

i me present at the end of the Fetch Phase of the instruction containing the DW are[, Ig]transferred into the printer buffer as a BCL character. After the character has

been accepted by the printer an RDC is returned. In the same clock in which
this RDC is received, a DW containing the next character must be initiated as
described below under ''Timing Considerations". The first DW in the sequence
of 133 should wait for the RDC which is received from the synchronizing DR.

Print Initiation

'When the RDC from the 133rd character transfer is received, a DW with control
bit., 100 in the MAR and all zeros in the MiR is issued. This control will cause
t~he printer to print the buffer.

85

| ra'=

Single Space Initiation j
"When the RDC from the print is received, a DW with control bits 100 in the MAR,
a one in the least significant bit of the MIR and zeros in all other MIR bits is issued.

This will cause a single space. Other spacing can be done instead by placing
other values in the six least significant bits of the MIR. The format of the MIR for
forms control is as follows. j

MIR 31 (LSB) PSSL ONE for single space
30 PDSL ONE for double space
29 FCIL Format controls for variable spacing 4
23 FC21 (110000 for bottom of form)
27 FC4L (000100 for top of form)
26 FC8L
25 unused
24 unused

Delay for Printing/Spacing

A delay of approximately 150 milliseconds must elapse prior to filling the buffer
for the next line. With this delry a continuous printing speed of 400 lines per
minute can be maintained.

Status Information

kWlhen RDC is returned from either a DW or DR. a BEX instruction will bring status
information into the B register as follows:

B 31 (LSB) PRRL Ready, ZERO when ready
30 PAML Paper Motion, ZERO when paper in

motion or print cycle in progress
29 PCYL Cycle, ZERO when print cycle in progrcss
28 EOPL End of Page, ZERO when end of page sensed
27 PPEL Parity Error, ZERO for transmission parity

and/or print counter sync error
26 PFCP Final Character Pulse, ZERO after last

character of line
25 unused
24 unused

If the program does not test for the not ready condition and the stop hutton is
pushed, the program will continue to send and receive information from the
DIDP although no actual printing will occur and data will be lost. To control

printing, the ready level need only be tested once each line prior to filling the
print buffer, since the not ready condition (STOP light on) cannot occur after

- load buffer instruction until the line has been printed.

86

Timing Considerations

Loading of th,ý printer buffer involves the transfer of a BCL character from an
Interpreter to the printer every 10 microseconds. Because the data transferred
should be present on the printer input lines for at least 9 microseconds prior
to its acceptance by the printer (for reliable settling), only 1 microsecond should
elapse between the termination of transfer of one character and the initiation of
transfer of the next. If less than 9 microseconds are allowed for settling, some
bit positions with value 0 will be read incorrectly as 1, thus causing random
incorrect characters to be printed.

The transfer of data from the printer input lines into the printer buffer occurs
every 10 microseconds on the trailing edge of the printer clock pulse. This
clock pulse also causes the status bit to be sent to the SWI frorrm the printer DDP.I After the last of these data bits has been received by the SWI, the return of an
RDC to the Interpreter is initiated. Because of resynchronization delays in the
SWI, this RDC will not be detected by the Interpreter until 2 1 /2 clocks later

i on the average. The Interpreter must then issue a new DW containing the next
character to be loaded. This character will begin transferring into the DDP at
the end of the clock in which the i)W is initiated. The transfer will take
4 high-speed clocks to cumplete, at which time the new character will be pre-
sent on the printer input lines, and will begin settling. The entire process
described here should occur within 1 microsecond in order that 9 microseconds
will be available For settling.

Card Rteader

The card reader is device No. 2 (i. e. the most significant three bits of the
selected base register are 010.) To be used the card reader must he locked
to an Interpreter and the base register must select the card reader. Upon
successful completion of)L., an SAI is returned to the Interpreter.

$ To start up a card reader it must be sent proper bits in a D\V or a I)Wt
instruction. The values of the MAR accompanying the DW are interpreted
as follows:

Least significant bit: 0 Don't retutrn data to SWI
1 Rteturn data to SWI

I The LSB is normally a 1, the 0 value allows skipping cards or testing card
reader mechanical functions without data or RDC returns to the SW[.

Next to LSB: 0 Return character bits as data
1 Return status bits as data

Third from LSB: 0 Read as 13CL
*I Read as Htollerith

87

This Hollerith reading function is not wired on the present card reader DDP for 3
the 6 high rows (11, 12, 0, 1,2, 3); only the ,ole pattern for the 6 low rows

(4, 5, 6, 7, 8; 9) are returned.

Fourth from LSB: 0 Don't operate card reader A
1 Operate card reader

The 0 value allows checking of DDP functions without the noise of the card reader.

These control bits apply to the DW which they accompany and to all following DR's
for this card reader until changed by another device write, Upon completion of
a DW, data is returned to the InterpriWter via the SWI and an ROC occurs to mark
the end of the data reply for the write. When status is selected as data, the status
returned with the DW (and subsequent 1)R.'s, if any) is valid, however the character .
returned with the DW is likely to be meaningless. The status bits returned are
these:

LSLB: CRL: Ready, ONE for ready
CCL: Present, ONE for duratinn -! eý.ch card
CREL: Error, ONE for reader detected error
CRCL: Start, ONE for START button Not operated
EOF: End of File, ONE for flopper Not Empty or for EOF

button Not operated (ZERO for Empty flopper
and EOF Button operated.)

Not used: Zero
Not used: Zero

MSR3: Not used: Zero

Immediately upon receipt of a MWV containing bits set to operate it, the card
reader begins to read cards at its maximum rate. Since the I)M)P for the card
reader has but a I column buffer, it is necessary for tme program in the Inter-
preter to send a litR instruction for each column. The synchronization of DR's
and column reads in the D)P is as follows: Case 1. The DR arrives at the I)DP
before the column read is ready: The DR waits at the D)1P until the column
read is ready; then transmits data and return clocks to the Interpreter. If during
this wait another SWI operation is invoked which returns as RDC before the
column read is ready, the DR in the card reader I)M)P is lost and a new device
read must be sent to the card reader to capture the data of this colurnn. Upon I
sending the data of this column, the state of the DiDP is set to show no column
read ready. Case 2: The)11 arrives at tihe l)DP after the column read is ready.
The OR immediately returns data and return clocks to the Interpreter and sets
the state of the DDP to show no column read r'eady. If during the actions of this
DR, another SWI operation is invoked which returns an RI." before the l)R is
complete, the DR in the card reader l)I)P is lost, the card column is lost and
the control sequence of the I)M)P is confused.

I

Im~

St

SECTION VII

-- [INTERPRETER MIC OPIIOGLIUA MMING

M. icroprogramming is that procedure the designer uses to specify the action,
function, and state of each of the Interpretcr logic elements during every clock
time. (A historical background of microprogramming is given in appendix I).I _In this sense, microprogramming replaces the function of hardware sequential
logic used to cause the machine to execute an instruction requiring more than one
"clock time. Thus, microprogramming is essentially similar to sequential logic)l design. However, no logic (hardware) is added in the sequential logic design, but
rather the existing registers, data paths, and control gates are used in a specific
order to bring about the desired logical result.

SThe pattern of ones and zeros in the Microprogram Memory (MPM) and nanornemorv
(together with the data) determines the operation of the Interpreter. The micropro-
grammer is concerned with the generation of these patterns to provide the desiredI •control functions. However, instead of actually writing these patterns, the micropro-
grammer is assisted by a microtranslator (or assembler) that allows him to write
microinstructions mnuemonically. The microtranslator then ,cans these instructions
and produces the pattern of ones and zeros to be placed into the MPM and Nano-
memories.

Figure 48 indicates how one can learn to microprogram the machine and the sim-
plicity of the microprogram structure. The high degree of parallelism in the Inter-
preter is also evident from the powerful statements that can be expressed. For
example, the following actions may be expressed and performed in one instruction:

test a condition (for either True or False)

set/reset a condition

initiate an external operation (e, g. , memory read)

89

-_ a .of. tog

i-ii

.- A

La iu iac---x-

C
-'N

-

> >

- -• ' I g i .2 • - -

"-- 3_

- UZ - < x

-go

,"} I•' 0-

..- :- .

I1I

perform an add operation

shift the result of the add

"store the results in a number of registers

increment a counter

complement the shift amount

choose the successor microinstruction

It is also possible to perform these operations either conditionally or uncondi-
tionally as suggested in Figure 48. The group A and group B portions (either,
neither, or both) of the microinstruction may be placed before the condition test
portion of the instruction. This will result in that portion (A and/or B) being Iperformed unconditionally.

t The following four microinstruction examples illustrate both the parallelism and
the conditional/unconditional properties of the microinstructions.

.. (0) If NOT LST then Set LCI, M,31; Al + B + 1 C-A2, MIR, CSAR, INC;
Step else jump

(2) Set LC1, MR1; If NOT 1ST then Al + B3 + I C-A2, MIR, CSAR. INC;
Step else Jump

(3) Al + B + 1 C-A2, MIR, CSAR, INC; If NOT LST then Set LCl, MR1;
Step else Jump

(4) Set LCI, MRl; A2 + B + 1 C-A2, Mi01, CSAR, INC; If NOT LST then
Step else Jump

In (1) the LST bit is tested and if not true, the local condition 1 ([LCI) is set.
memory read is initiated (MR!), the function Al + B3+ I is pcrfor:ned in the
adder, the adder output is shifted circular and the result stored in both the
A2 and MIR registers, the content of the shift amount r'egistor is complemented
(CSAR), the counter is incremented (INC), and the true successor (ST is
selected. If the LST bit is true, none of these operations are performed and the
false successor (JUMP) is executed.

In (2) the LC1 is set and the memory read is initiated (MR1) unconditionally
(i. e. , without considering the LST bit). The remaining functions are conditiconally
performed as in (1).

In (3), the functions Al + B + 1 C -A2, MIR, CSAR, INC are performed uncon-
- ditionally but set LCI and MR1 are performed conditionally.
,

In (4) the functions Set LCI, MR1, Al + B + 1 C- A2, MIR, CSAR, INC are
all performed unconditionally and only the successors Step and Jump depend upon
the I.ST test.

i k i

91

7r- -QP --- --- , .-- -.

TRANSLANG FOR MICROPROGRAMMING j
The TRANSlator LANGuage (TRANSLANG) program is an assembler for Interpreter
microprograms. The complete syntax oi TRFAN.STANG is given in Appendix IV. It
employs a vocabulary of reserved words and symbols used to develop a micropro-
gram and its corresponding table of nanoinstructions. Reserved words and symbols
are grouped as defined in this report to form microinstructions and programs. The
reserved words are summarized in Appendix V.

Two versions of TRANSLANG exist for the aerospace multiprocessor. One version
is written in Burroughs Compatible ALGOL which can run on both Burroughs B 5500
and B 6700 systems. This TRANSLANG is described in this section and in more

m detail in Burroughs Microprogramming Manual for Interpreter Based Systems,

TR70-8. The second version is written in FORTRAN for the CDC 6600, and is de-
scribed in A FORTRAN Microprogram Translator, an Air Force Institute of Tech-
nology thesis GGC/EE/72-2. The TRANSLANG syntax and semantics for the
FORTRAN version are the same as that described here and in TT70-8 with the
exceptions listed it an appendix to the thesis.

Each TRANSLANG line corresponds to one microinstruction which is the set of In-
terpreter functions performed in parallel at each machine clock. The constructs
include iterative mechanisms, I/O, Boolean, logical and computational operations,
control transfers and assignment functions. in order to provide control points for
transfer operations, each instruction may be labeled with a symbolic microaddress.

The INSERT function has been included to allow for the use of a macro library of
previously debugged microprograms.

Conventions in Language Description

Backus-Naur form (BNF) is used as the metalanguage to define the syntax of
TRANSLANG. The following BNF symbols are used:

1. <) Left and right broken brackets are used to bracket the
names of syntactic categories.

2. ::= Colon colon equal means "is defined as" and separates
the name of the syntactic category from its definition.

3. Bar separates alternative definitions of a syntactic
category.

4. { } Left and right braces enclose an English language
description of a syntactic unit.

92

Any character or symbol in a metalanguage formula which is not a metalanguage
symbol and is not enclosed within matching braces or broken brackets, denotes
itself,

Basic Elements

(Letter) Al BICIDIEIFJGJHI IIJIKILIMINIO

P Q R3 S ITIUIVI Wj XIYIZ

(Digit) 0o112132 41516171819

(Hex Digit) (Digit) I A I1 I CI ED F

(Symbol) ,I;1II- :1--I 1)1

(Single Space) -f One horizontal blank position }

(Space) ::= (Single Space) I(Space) (Single Space)

(Assignment Op) =: I Z

(Character) (Letter) I (Digit) 1 (Single Space) I (Symbol)
ii

(Comment Character) (Character) L . &I $ I[I /

(Empty) :he null string of characters}

Semantics

TRANSLANG uses a character set of 56 characters including single space), 8 of
I which are only used in comments. All letters are upper case.

Spaces - No space may appear between the letters of a reserved word or within an
(Assignment Op) ; otherwise, they will bF, interpreted as two or more elements.
Spaces are used as a delimiter to separate reserved words, labels, or integers.
Spaces may appear between any two basic components without affecting their
meaning, where basic components indicate reserved words, symbols, or labels.

Parentheses - The parentheses are treated as spaces. They are used for the con-
venience of the microprogrammer to make code more readable. (E. g. instruction
elements which are irrelevant to the current instruction but are used only to allow
shared use of a nanoinstruction by several microinstructions.)
Parentheses do not imply precedence.

I

99

-.. . , , , , , , , , r, , , , , , , ' r ---F:i ,

LITERAL ASSIGNMENT INSTRUCTION

(Literal Assignment) ::= (Literal> (Assignment Op) AMPCR I
(Literal) (Assignment Op) SAR I
(Literal) (Assignment Op) SAR;
(Literal) (Assignment Op) LIT
(Literal> (Assignment Op) LIT;

(Literal) (Assignment Op) SARI
(Literal) (Assignment Op) LIT

(Literal) (Integer) I COMP(Integer) (Label) I (Label) -1
(Integer) (Digit) (Digit) (Integer)
(Label) (Letter) (Label) (Letter) 1(Label) (Digit)

Semantics

A (Literal Assignment) becomes a type II microinstruction for an Interpreter.
This microinstruction contains the literal value(s) and specifies the receiving
register(s).

Width, bits

AMPCR Alternate AMicro Program Count Register 12

SAR Shift Amount Register 5

LIT Literal Register 8

The registers may be Lndividually loaded or both the SA[l and the LIT may be load-
ed in the same microinstruction.

An (Integer) is non-negative and in the range of thte intended receiving register's).

COMPP(Integer), if the receiving register is LIT or AMPCR, takes the one's com-

plement of the (Integer) , then takes the number of bits indicated by, the width of the

receiving register. COMP (Integer) , for SAR, creates the appropriate word length

complement. (This is two's complement for the 32-bit wide LSI Interpreter). The

encoded value is used in the SAR field. The sucessor of a (Literal Assignment' is

implicitly STEP.

Labels used in a program may be chosen freely except for the reserved words of

TRANSLANG. The reserved words are given in Appendix V. A label must start

with a letter which can be followed by any combination of letters or digits. No
spaces or symbols may appear in a label. A label can be as little as one letter and

as long as 15 letters and digits. The same label may not be used to locate more

than one instruction in the same program. See the INSERT function subsequently

described for allowable nesting of labels when subprograms are inserted. The

normal use of a label with a (Literal Assignment) is as (Label' -1 since control
transfers occur to the indicated location -r!' (or +2 if a return is used).

94

__:.,-I

I

Examples

5=: SAR 04 converted for proper logic unit width
COMP 8 =: SAR; 13=: LIT % in one microinstruction
COMP.0 -: LIT * same as 255-:LIT
START -: AMPCR 0 JUMP .o START +1; RETN to START + 2
LOOP-l=: AMPCR 04 JUMP to LOOP; RETN to LOOP + I

P N INSTRUCTION

(N Instruction) ::- (Unconditional Party (,Conditional Part)

S<(Unconditional Part) ::= (Component List)

(Component List) ::= (Component) I (Component List) ; (Component) IL• (Empty)

(Component) ::= (Ext Op) I (Logic Op) I (Successor)

(Conditional Part) ::- (If Clause) (Cond Comp List) (Else Clause) I (If Clause)I
(When Clause) (Cond Comp List) I (Empty)

(Cond Comp List) :: THEN (Component List)

Semantics

An (N Instruction) becomes a Type I microinstruction containing an address of a

Snano instruction. If an identical nano instruction already exists, the microaddress
will point to the single copy of the nano instruction. If the nano instruction is new,
the address will be to the next unused nano address. The operations indicated

in the <N Instruction> are entered into this nano location.

Restrictions

1. At most one (Ext Op) - either unconditional or conditional.
II

2. At most one (Logic Op) - either unconditional or conditional.

3. At most either one unconditional successor, or one conditional
Ssuccessor in the(Cond Comp List) and one in an (Else Clause).

The (Unconditional Part) is always executed. In the (Conditionad Part) if the
condition resulting frunt tle (if Clause) oir (When Clause) is true then the com-
ponents in the (Cond Comp List) are executed, otherwise only the (Else Clause)

is executed.

95

Examples (to be subsequently explained)

Unconditional Part, Component List: I
SET GC1

MR2

RESET GC, DR2

A2 AND B001 l Al

Al + 13 IC R =: A2, BEX, LMAR I
JUMP

F-Ll; 0=: A2; SKIP

Conditional Part:

IF AOV THEN Al + I =: Al ELSE SKIP

IF NOT ABT THEN SET LC2; SKIP ELSE SAVE

WHEN RDC THEN MR2; BEX, INC

N Instruction:

WVHEN RDC THEN BEX

SET LCl; IF SAI THEN B ADL LIT = A3, 1313E

CONDITION

(If Clause) :: IF (Condition)

(Condition) :: (Not) (Cond)

(Not) NOT (Empty)

(Cond) :: LST MSTI AOV I ABT I COVY SAI RDC EXI I
EX2 HOV (Cond Adjust Bit) I

•When Clause) ::= WHEN (Condition)

/Else Clause) :: ELSE (Sucessor>l (Empty)

/Cond Adjust Rit) :: INTI LC1 I LC2 I LC3 I GCC I GC2 j

96

Semantics

Each (N Instruction) performs a test on the Boolean value of one (Cond) or its
complement. The Boolean value of the result is (Condition). If this value is
true, the (Cond Comp List) is executed and the sucessor from this list is used
to determine the next microinstruction. Otherwise the successor in the (Else Clause)
is used to determine the next microinstruction address. See the subsequent dis-
cussion of successor.

A (When Clause) is a synonym for an(If Clause) with the same 'Condition) and an
(Else Clause) of ELSE WAIT, An empty(Else Clause) is equivalent to ELSE STEP.

In the absence of an (If Clause) or (When Clause), an implied (If Clause) of IF NOT
GCI is inserted. This changes no condition bit. If does cause unconditional
initiation of a (Logic Op) and hence completion of the prior (Logic Op).

With the exception of the two global condition bits, testing a condition bit causes the
bit to be reset. However, all condition bits are set dominant. Therefore in case a
condition bit is being tested at the same time it is being set, the condition bit will
not be reset. The least and n- ost significant bits out of the adder, the adder over-
flow, and the adder bit transmit are levels and not condition bits. The conditions
that may be tested (Table III) are the following:

U

. SAI Switch Interlock Accepts Information

Following memory or device operation, indicate,' that
connection to the addressed memory or device is completed
through the switch interlock and that the MAR and MIR may
be changed.

RDC Read Complete, or Requested Device Completes

Following memory read or device read, indicates that data
will be available for entry to B, in the next clock. Following
device write, indicates completion of write.

C OV Counter Overflow

Following or concurrent with increment counter INC. indicates
counter is overflowing or has already overflowed from all ones
(255) to all zeros.

LCI Local Condition I

Tests and resets local Boolean condition bit LC1.

LC2 I Local Conditions 2 and 3
LC3 J Same as LC!

97

p. 7 -4f,

Table LI. Set and Reset of Conditions

BIT SET RESET

AOV Dynamic Adder State - (Overflow)

EAT Dynamic Adder State (Adder bit transmit)St t
! LST D~ynamic Adder State (MLast Significant Bit

of Adder Output)

NMST Dynanmic Adder State - Most Significant Bit "
of Adder 0Output)

COV Overflow when Counter is Inrer,-ented iteset by loading
counter or by

: I I |testing

GI I SET GdC providing no other Interpreter has RESET GC-
GC1 set, or no higher priority Intetrpreter
is ý'ot;currently doing SFT G(CI I

UC2 SET GC'2 similar to G(d t-ESET CU

!XT Set INT executed in any Interpreter Reset by
testing

LCI SET LC! Reset by testinZ

LC2 SET 1.C2 Reset by :esting

LC3 SET LC3 Reset by tesuinm

RDC By memory at completion of memory or 1ýese- Ly test ing
device read

SAI By switch interlock when data Reset b-y testin,
received from .IAR and MtR

EI By oequests from devices Reset by test ing

EX2 1By requests f: om devices Reset b,- testigi

S&,. Horn overflow Reset by testing

#Recomputed each clock time

98

i, :

Ni

GCI Global Conditions 1 and 2
GC2 Tests but does not reset global condition bit GC1. See the

description of the set and reset operation for further ex-
planation of global condition bits.

INT Inter- Interpreter Interrupt

L Tebts and resets the local copy of the inter-Interpreter
interrupt.

EXI External Conditions 1 and 2
EX2 Test and reset interrupts (usually the OR of interrupts

from several devices) from external devices (local copy),
These are presently wired to switches in the aerospace
multiprocessor.

HOV Horn Overflow
Indicates that no (Ext Op) has occurred during a perio-%d of

220 Interpreter clocks, {approximately I second for a 1 MHz
Interpreter clock). This i,' used for detection of a failed

t. memory module or devices and will force a STEP in the

microprogram at the same time this condition bit is set.

The following four logic unit conditions are dynamic and indicate the rasult output
from the adder using the execution phase commands from *he previous instruction
which had logic unit operation, and using the current values of the adder inputs.
These conditions are sustained until execution of another instruction involving the
logic unit, and may be tested by that instruction. A type II instruction loading the
LIT or AMPCR may change the value of an adder input selected in the (Z Select)
and hence change the value of any of these conditions.

AOV Adder Overflow

State of the carry out of the most significant Lit of the adder.

LST Least Significant

State of the least significant bit of the adder output.

MST Most significant

State of the mco t significant bit of the adder output.

AMT Adder bit transmit

This condition is true (one) if and only if the adder output
is all ones or all zeros depending on the specific operator
performed. (See Appendix IIi).

99

9 ? - -..

Examples

IF NOT LC1

WHEN SAI.1

ELSE CALL

k EXTERNAL OPERATIONS

- (Ext Op) (Mer Dev Op) i (Set Op) I
(Merm Dev Op) (Set Op)I
(Set Op) , (Merm Dev Op) (Empty)

(Merm Dev Op) ::=MRl I TMR2 I MW1 I MW2 1 OL1 I 1)L2 I DR1 I DR2 1
DWl I DW2 I DU IDUZI LUMI L1)N

Set OF) SET (Cond Adjust Bit) I RESET UC

Semantics

The external operations are (N Instruction) functions which, if explicity present,

affect the operations external to the Interpreter logic. An (Ext Op) may be
specified as either conditional or unconditional as it appears in at most one of the
(Unconditional Part) or (Conditional Part)

The memory or device operations (IViem Dev Op) are used to transfer data between

the Interpreter and S memory or a peripheral device. Address source registers
for those operations are the combination of either IARI or BR2 with MAR, indicated
respectively by MARl or MAR2. The MAR holds the less significant part of the
address. The memory or device operations are described in detail in Section VI.
The explicit memory or device operations follow.

TIMRI Memory Read 1
Read data from S memory address specified in MARl

_iMR2 Memory Read 2
Read data from S memory address specified in MAR2

MWI Memory Write 1
Write data from MIR to S memory address specified in MAR1 I

M\•,W2 Memory Wri t e 2
Write data from MIR to S memory address specified in MAR2

100

41r

-I

LDM Load a microinstruction from the least significant 16
bits of the MIR into a word in microprogram memory
(MPM) as specified by AMPCR.

LDN Load least significant 16 bits of MIR into the nanoword as
specified by the nanoaddress contained in the microprogram
word being specified by AMPCR. The sl,-lable of the nanoword
loaded is specified by the two bits next to the least significant
bit in the MAR.

DL1 Device Lock 1 Request

Reserve the device or memory module named in MARl for
use by this Interpreter.

DL2 Device Lock 2 Request
Reserve the device or memory module named in MAR2 for

Luse by this Interpreter.

DRI1 Device Read 1
lRead data from device named in MARl

DR2 Device Read 2
* Read data from device named in MAR2

DWI Device Write 1
* Write data from MIR to the device named in MARl
V

DW2 Device Write 2
Write data from MIR to the device named in MAR2

DU1 Device Unlock I

Release the locked device named in MARL

- DU2 Device Unlock 2
Release the locked device named in MAR2

F The set and reset operations are used to set and reset condition bits. The inter-
Interpreter interrupt INT, is used for communication amon..g (to signal) all
Interpreters of the aerospace multiprocessor. The global conditions, GCi and
GC2, are used as Boolean semaphores to guarantee mutual exclusion for critical
sections of microprograms and to prevent simultaneous access to shared data.
The local condition bits are Boolean variables local to each Interpreter. The INT
and local condition bits are reset (within the local Interpreter only) by testing.
The explicit test and reset operations follow. If no (Set Op) is present, none is done.

$;

u r.r " '.lr _ . _I.._ _ • . -•- -.-

SET INT Interrupt Interpreters

Causes the interrupt bit to be set in all Interpreters.
Each Interpreter resets its own bit by testing it. Setting I
occurs after testing should both occur in the same
nano- instruction.

SET LCl Set the first local condition bit

Causes the setting of the LC1 bit in the condition register. j
Setting occurs after testing should both occur in the same

nano-instruction. Both set and test of LC1 occur during the
fetch phase of a microinstruction.

SET LC2 Set the second local condition bit

Same as for LCI replacing LCI by LC2.

SET LC3 Set third local condition bit

Same as for LCI replacing LCl by LC3.

SET GC1 Set first global condition bit request

Requests that the GC1 bit in the requesting Interpreter be
set if a GCM bit is not already set in another Interpreter or
is not requesting to be set simultaneously by a higher
priority Interpreter. For all Interpreters in a multiprocess-
ing system at most one will have GC1 set. GC1 is set at
the end of the phase after the fetch phase if no conflict
occurs. A request lasts for one clock.

SET GC2 Set second global condition bi, request

Same as for GC1 replacing GC1 by GC2.

RESET GC Resets the global condition bits

Causes GC1 and GC2 to be reset in the issuing Interpreter. .

Examples

MR2

SET LCI

DR2, RESET GC
#g 1

1021

7 -77 --m-

LOGICAL OPERATIONS

(Logic Op) (Adder Op) (Inhibit Carry)(Shift Op)(Destination List)

(Adder Op) 0 111 (Monadic> I (Dyadic) I (Triadic) I (Empty)

(Monadic) (Not) (A Select) I (Not) (B Select) I
--. (Not) (Z Select)

(Not : NOT 1 (Empty)

(Dyadic) (A Select) (Binary Op) (B Select) I
(1B Select) (Binary Op) (Z Select)
(A Select) (AZ Op) (Z Select)

(Binary Op) (AZ Op> I OR I NIM I IMPI NOR

L(AZ Op) ANDIXORIEQVINRIIRIMINANtADDI +IADLI CAD

(Triadic) (Try Op) (A Select) , (13 Select) , (Z Select)

(Try Op) TRY1 I TRY2 I TRY3 TRY4 I TRY5

(Shift Op) R I L I C (Empty)

-:(Inhibit Carry) ::ICI Empty)

-" Semantics

The logical operations include those operations which occur within and affect the
logic unit of the Interpreter. This group of operations may be specified as un-
conditional if placed before the (If Clause) of a conditional instruction and con-
ditional if placed after the (If Clause) .

The logic operations include the selection of adder inputs, the adder operation,
the barrel switch operation, the destination specifications for the adder and BSW
uutputs and the controls for the literal, counter, and SAR registers.

Each instruction except the (Literal Assignment) contains an adder operation.

If this is missing,. the adder operation is assumed to he A + B (where A and B
are zero). These adder operations may use input from one, two, or three
different registers as specified in the (A Select) (B Select) (Z Select) parts of
the instruction.

103

-7-M,

| I|I

f• • Monadic operators are those operators requiring one register input to the adder.
The value of the selected register or the complement of the value may become the
adder input depending on the (Not) function,

The dyadic operators are those adder operators that may occur between two
registers. These include arithmetic as well as logical operators. The arithmetic
operators may occur with sources selected from any two of the three inputs -
A, B, and Z.

ADD I+ Add the two inputs to the adder. j0
ADL Add the two inputs to the adder + 1

CAD Add the two inputs to the adder in groups
of 8 bits. Inhibit carries between 8 bit

! E bytes.

All logical operators except four may occur between selections from any two
registers (A + B, B + Z, or A + Z). The four exceptions that may not occur
between an A and Z select are OR, NMM, IMP and NOR.

OR Or X OR Y produces X v Y

NIM Not Imply X NIM Y produces XY

IMP Imply X IMP Y produces X v Y

NOR Nor X NOR Y produces X v Y

All other logical operations may occur between any two of the three registers
selected.

AND And X AND Y produces XY

XOR Exclusive Or X XOR Y produces NY v XV

EQV Equivalence X EQV Y produces XY v XY

* NRI Not Reverse X NRI Y produces X Y
Imply

RIM Reverse Imply X RIM Y produces X v V

NAN Not And X NAN Y produces X Y orXv v

N means (ones) complement of X
precedence is complement done before AND done before OR

104

Irt

' I The triadic operators are those operators requiring three inputs to the adder
(i. e., A, B, and Z). These are available in the Interpreter and may be usedt •with the following notation:

TRY1" A, B, Z producesA B Z v A B Z

TRY2 A, B, Z produces A Z v B Z

TRY3 A,B, ZproducesAv BvZ

TRY4 A, B, Z produces AZ v B Z--

TRY5 A,B,Z produces AZ V BZ VA BZ

There are three shift operations, one of which may be selected each time an adder
operator is used. These operations are R, L, or C.

R Right end off shift by amount in SAR

SL Left end off shift by the two's complement of amount in SAR

C Circular shift right end around by amount in SAR

L The carry bits may be inhibited, for all operations, between 8-bit bytes. IC
inhibits carries.

Examples

I NOT LIT =: A2

Al ADL B R =: B
A2 + LIT =: SAR

1 DEC CTR

TRY1 A2, BI10, CTR

0 =:A3

1 =:CTR

A2 + CTR IC R = A2, BEX, CTR, CSAR

SI

" • '• 105

{I

INPUT SELECTS 5
(A Select) :: Al I A21 A31 01 (Empty)

(B Select) :: B B (M) (C) (L) I (Empty)

(M) ::G (ating)

(C) ::= (Gating)

(L) ::= (Gating) I
(Gating) 0 1 1 T I F

(Z Select) CTR LIT I AMPCR 1 0 1 (Empty)

Semantics 5
There are three A registers which may be used for data storage within an Inter-
preter. Any one of the A registers may be selected as input to the adder in an
instruction. The B register is the primary interface for external inputs from
main memory or devices. It also serves as input to the adder. The 13 register
can be partitioned into three parts when it is selected as input to the adder. The
partitions are as follows:

M Most significant bit of B (left most bit) I
C Central bits of R (all out the end bits)

L Least significant bit of B (right most bit)

When selecting the B register as input to the adder, each of the three parts may be
independently specified as being either 0, 1, T, or F. A zero gating will cause that
part to be all zeros. A one gating will cause that part to be all ones. A T gating
will produce the true value of B for that part. An F gating will produce the com-
plement value of B for that part. The B register and its gating is specified with-
out embedded spaces. If no gating is specified when selecting B, then it is
assumed that the true value of B is desired (i. e., BTT).

There are three registers which make up the (Z Select) input to the adder. These
are the counter (CTR), the literal (LIT) and the AMPCR. The counter register
when used as input to the adder, is left justified with zero fill. The literal register,
when used as input to the adder is right justified with zero fill. The AMPCR comes
into the least significant 12 bits of the center 16 bits of the adder. The most
significant 4 bits of the center 16 bits of the adder contain the binary value of the
Interpreter number right justified in the 4-bit field. The rest of the adder is zero
filled.

106
SI

L Examples

Al +1B+1 IC R

A2 XOR CTR

BOTT AND LIT

DESTINATION OPE RATORS

(Destination List> (Asgn) (Dest)
(Destination List> (Asgn' (Dest> I (Asgn>

(Asgn) ::= I 1=:1

(Dest) Al I A2 I A3 I MIR I BRI I BR2 I AMPCRI
(Input B) (KInput Ctr> ((Input Mar) I (Input Sar)

(Input B) BIBEXIBADIBC4IBC81BMIIBBEIBBAIBBII
BAI BI3A I BU4I B81

-- (Input Ctr) CTR LCTR INC

(Input Marz : MAR MAR• MAR2 I LMAR

' (Input Sar) SAR CSAR

{ Semantics

The destination operators explicitly specify registers in which changes are to
occur at the end of a logic unit operation.

Restrictions:

1. At most one choice from each of (Input B), (Input Ctr), (Input Mar)

and (Input Sar) is permitted.

2. If (Input Ctr) is LCTR thcn(Input Mar) may not be MAR, MARI or
MAR2.

3. If (Input Mar) is LMAR then (Input Ctr) may not be CTR.

The principal data source is the barrel switch output. It is the only source for
"loading Al, A2; A3, MIR, BRl and BR2. It provides one source for loading B,

107

- 7

iii

CTR, MAR, SAR and AMPCR. These reserved words are also the register

names. The bits used in these transfers are indicated below:

Destination Barrel Switch OutputS-Register Source Bits

Al All
A• All
A3 All
B All
min All
"BRl 2nd least significant byte
BR2 2nd least significant byte
MAR least significant byte
CTR least significant byte (ones complement)
SAR least significant 5 bits
AMPCR least significant 12 bits

The B, MAR, CTR, SAR and AMPCR registers may have other inputs as well.

B Register - (B)

B The barrel switch output is placed into B.

BEX Data from the external source is placed into B.

BAD The adder output is placed in the B register (short path
to B).

•MI 'The MIR content is placed in the B register independent
of any concurrent change to the MIR.*

BC4 The duplicated complement of the 4-bit carries with zero
fill is placed in the B register.**

BC8 The duplicated complement of the 8-bit carries with zero
fill is placed in the B register. *-*

3BE The barrel switch output ORed with the data from the
external sourc • is placed in the B register.

* When the MIR is one of the inputs to the B register, the input shift register from
the Switch Interlock into the external input to B will be cleared to all zeros.

**
Form of BC44 B41, BC8, and B81 adder outputs for each 8-bit group:
The carries out of bits 2, 3, 4, 6, 7 and 8 are irrelevant.

Bit 1 2 3 4 5 6 7 8
Carries
Out u-- -v- -- -

B41, BC4 a ouiuoo vv

B1, 8CR a o 0 o o a o

108

4

BRA The barrel switch output ORed with the adder output is placed
in the B register.

SBEI The barrel switch output ORed with the MIR content is placed
in the B register independent of any concurrent change to the
MIR. *

BAI The adder ORed with the MIR is placed in the B register.

BBAI The BSW ORed with the adder ORed with MIR is placed in
the B register. *

3B41 The duplicated complement of the 4-bit carry ORed with
MIR content is placed in the B register.*

1B81 The duplicated complement of the 8-bit carries with zero
fill ORed with MIR content is placed in the B register. *

Memory Address Register - (MAR)

LMAR The literal register content is placed in MAR.

Counter - (CTR)

LCTR The one's complement of the literal register content is
placed in CTR.

L INC Increment Counter by 1.

Shift Amount Register - (SAR)

CSAR Complement (two's complement) prior content of SAR.

The Alternate Micro Program Count Register (AMPCR) may, during the same
clock, receive input from the MPCR if the microprogram address control register
content was CALL or SAVE. The MPCR source takes precedence over the AMJPCR
specification as a (Dest.

Examples

= B

CTR

Al, BEX, = MIR, LCTR, CSAR % mixed use of, =, and

When the MIR is one of the inputs to the B register, the input shift register from
the Switch Interlock into the external input to 13 will be cleared to all zeros.

109

SUCCESSOR

(Successor) WAIT ISTEPI SKIP I SAVEICALL I EXECI JUMPI RETN 3
Semantics

Each (N instruction) specifies 2 successors explicitly or implicitly, indicating
the control to be used forthe next microinstruction selection. A (Successor) in the
(Unconditional Part) results in the 2 successors being identical. Otherwise one I
or two successors may appear in the (Conditional Part). The eight choices for
each successor are described below and in Table IV.

WAIT Repeat the instruction in the microprogranm count register (MPCR).

STEP Step to the next instruction in sequence from MPCR.

SKIP Skip to the second next instruction in sequence from MPCR.

SAVE Step and save current MPCR address in AMPCR.

CALL Transfer control to AMPCR + 1 address, save current MPCR
in AMPCR.

EXEC Execute instruction in AMPCR + 1, proceed as specified in the
executed instruction.

JUMP Transfer control to AMPCR + I address.

RETN Transfer control to AMPCR + 2 address.

Any successor not explicitly stated is STEP by default. All successors except
EXEC place the resulting microprogram address in MPCR.

Each (Literal Assignment) instruction has an implicit successor of STEP.

The AMPCR normally contains the address of an alternative instruction (usually I
label-i). The AMPCR load of the current content of the MPCR from a CALL or
SAVE takes precedence over a (Literal Assignment) into AMPCR in the dynanically

next microinstruction. It also takes precedence over an Žxplicit (Dest of ANIPCR
from the (Logic Op) in progress.

1
I
i

A I
,-13

Table IV. Microprogram Memory Addressing

Successor Successor Next Content Next Content
Command M-instruction of MPCR of AMPCR

Address will be will be

WAIT MPCR MPCR *

STEP MPCR+l MPCR+l *

SKIP MPCR+2 MPCR+2

SAVE MPCR+1 MPCR+1 MPCR

[CALL AMPCR+1 AMPCR+I MPCR

EXEC AMPCR+1 MPCR

L- -- JUMP AMPCR+l AMPCR+I -

RETN AMPCR+2 AMPCR+2 _

- -*Not changed by successor specification

Examples

WAIT

JUMP

PROGRAM STRUCTURE

(Program) (<Program Name Line) (Body) (End Line'N

(Program Name Line>::= PROGRAM /Program Name) (Start Address>

(Program Name) (Label)

(Start Address) ADR(Hex Address) I (Empty)

(Hex Address) (Hex Number)

(Hex Number) (Hex Digit) I (Hex Number) (Hex Digit)

(Body) ::= (Statement) I (Comment) I (Body) (Statement\I (Body) (Comment)

(Statement (Label Part) (Line) (% Comnient)

(Comment) COMMENT (Comment Words);

(Label Part) ::-(Label) :I(EEmpty)

(Line) ::= (Label Constant) (Start Address) (Insert) i(Instruction)

(Label Constant) ::=(Label) (Integer)

-- •-..... . -.: --- ,.-r.------- -

-----[-- --.

(Insert) ::= INSERT (Label) (Start Address)

<(% Comment) ::= % (Comment Words) I (Empty> j
(Comment Words) ::= (Comment Character)

(Comment Words) (Comment Character)

(Instruction) ::= (Label Part) (Literal Assignment) I
(Label Part) (N Instruction)

<ýEnd Line) ::= END

Semantics

A file containing a source program must have a (Label) or 6 or less alphanumeric
characters. Each record on this file contains 72 data characters (plus eight for
sequence numbers, which is optional for the microtranslator). One(Statement) of

source programn is written per record.

The first record is the _(Program Name Line) . It contains the program intc rnal
name and possible a starting address for a microprogram. The program internal 2
name should be the same as the file name. Only the file name has any external
significance. An empty (Start Address) means start with zero for the first
microinstruction of the program. A non-empty start address becomes a hexidecimral
absolute microprogram address. The body of a program contains one or more
statements. Following the body is the (End Line) containing END. Each successive
statement containing an (Instruction) normally becomes the next microaddress.
Addresses strictly increase through a program. If a(Start Address) is greater
than the next address in the program sequence, microinstructions composed of all
zeros are used to fill in the locations between the addresses in the output file. A
(Start Address) less than the next address in the program sequence causes an error.

A label is defined for use in two ways. A (Label Constant) permits a (LabelN to be
declared to be an (Integer) . Subsequent use of that label is replaced by the Integer.
Use of a (Label Constant) prior to declaration is an error. A label is also defined
upon occurrence in a (Label Part) in which case it serves as a symbolic reference
to a particular line.

An(Insert) is used to allow a user access to his files outside the program file.
"When the 'Insert) is recognized, the microtranslator extracts from the users files
the source program whose (File Name) is given and inserts it at the (Start Address)
in the (Insert) if present, otherwise in sequence. A (Start Address) occurring
within the body of the inserted program will act as though it were in the main pro-

* gram file. A (Start Address) in the (Program Name Line) of the inserted program I
is ignored. The inserted program takes the multifile ID name from the program
being translated. For example:

(IAn•" ,r',/;AFOrQcEX may be irnerted ."+oA a - Tprogram named DECVA!) ýAF'OARCE. There

may be seven levels of nesting. A label may be redefined in an inserted sub-

program. An inserted program may reference a label in the program which requested

112

"wool 4

it provided the label has not (yet) been defined locally. The most local current
definition of a label is used. If labels are not defined during a subprogram the1= translator assumes they are at a more global level. Labels referenced but never
defined result in a warniing list of undeclared labels. Caution: Forward jumps
within a subprogram to a label that already exists globally will use the global label
value. Upon completion of an(Tnsert) of a subprogram, labels defined in that
inserted subprogram disappear. A subsequent backward jump or use of a label
constant will use the global value, even though the same label was defined in the
subprogram.

Each instruction results in a microprogram word. Any instruction may be
labeled as a symbolic reference for control transfer. Although transfer to a
(Literal Assignment) is permitted it should be used with caution.

Comments - In order to include explanatory material at various points in a program,
two conventions exist as defined.

1. COMMENT { any sequence of comment characters except , ;
The comment statement acts the same as a ";" and may appear
anyv•ire a ";" may occur if within a line of program. As multi-
line documentation the ";" terminator indicates that the micro-
translator should resume processing code. Always follow a
comment statement with a "'"

2. % tany sequence of comment characters until end of line}

All conm.ment characters after the % in a line of program are
ignored by the microtranslator.

Comments are for documentation purposes only. They appear only in the source
file, are significant only in listings and dc not affect the machine language
generated.

Example

PROGRAM READIT

Devict *3

SANDY: Device LIT; COMP 13 SAR 7o LIT - 3 and SAR r 19

LIT L r HB1

DL1; Al + 13001 = Al

INSE RiT TESTLK

113

W r -- r,--- --- . --.=..-• -- rI

i � w�:
�j•E2E�E �

A

Fl F'
H B Li H

4

A.

C
Ut

02
02

-. .- �-. .-- . - - - -. ii . 4-.,
*

. C.0

i C

I z
0

(1)

-4'

0
* £4

- Ut

F'

'4 ri I
/ I

4
114

'-V.'-

II I
COMMENT The routine TESTLJK tests to see if device is

locked to Interpreter.!1 ~I
SANDY - 1 AMPCR

JUMP;

!!E END;

MIC ROPROCRAMMING EXAMPLES

The Interpreter microprogramming reference card (Figure 49) specifies the use
of each of the MPM and Nano bits and defines the meaning of the mnemonics found
in the microprogram examples.

Three simple examples demonstrating the microprogramming of the Interpeter
are shown: in Figure 50 - Binary Multiply, Figure 51 - Fibonacci Series
Generation and Figure 53 - "S" Memory to Micromemory and Nanomemory
Loader (S to M Loader). The comments serve to explain the function of each
microinstruction step. Figure 52 shows the microtranslator output (1 and 0
patterns for MPM and Nano) for the Binary Multiply example. The S to WM Loader
is described in more detail in the next section.

1

I

i

i 115

* Assumptions

(1) Sign-magnitude number representation

(2) Multiplier in A3; multiplicand in B

(3) Double length product required with resulting
most significant part, with sign, in B and least

- • significant part in A3

1. A3 XOR B-o;if LC1

S2. B0TT- A2; if MST then Set LC1

Comment: Step I resets LC1. Steps 1 and conditional part of 2 1
check signs: if different, LC1 is set.

3. B000-1.B, LCTR

Comment: Steps 2 and 3 transfer multiplicand 40 sign) to A2
and clear B.

4. "N"-. LIT, 1- SAR

Comment: Steps 3 and 4 load The counter with the number
(N = magnitude length) to be used in terminating the multiply
loop and load the shift amount register with 1.

5. A3 R--A3: Save

Comment: Begins test at least bit of multiplier and sets up loop.

6. LOOP: If not LST then BOTTC-B skip else step I
7. A2 + BOTTC--'B

8. A3 OR BTOOR--.A3, INC; if not COV then jump else step

Comment: 6 through 8 - inner loop of multiply (average 2.5
clocks/bit).

9. If not LC1 then BUTT -- B; skip else step

10. 81TT-0B

Comment: If LC1 = 0, the signs were the same, hence force sign bit
of result in B to be a 0.

11. END I

Figure 50. Binary Mlultiply i

1164

Assumptions:

Al contains startng address for storing of saries

A2 contains ttw number representing the lengt
of the series to be computed

1. Al --. &.MARI

Comment: Load starting address of seies Into address register

2. BO- - B, MIR

3. Boo _a AS; MW1

Comment: Load initial element of seres (0) into A3 amid MlIR end write it
into sotaing address. Load second element of series (1) Into B.

4. A2 --- MCTRAVE

Comment; Load counter with leng of series; th counter will be incremented
for each generation of an element of the series; COV will signify

-completion. The SAVE sets up the loop.

5. LOOP: If SAl then Al + l--Al. MARI, INC, Step ese Wait

Comment: Set up the next address and increment counter

6. A3 +B-.MIR
Comment: Generate new element in wrin esend place in MIR

mI

7. 8 -A3; SMI. MWl; If NOT COV ten Jump else Step

Comment. Write new element into next address

Transfer i - 1 elem enent to AS

Transfer i element to B
Test counter overflow for completion (go to LOOP, if not done)

8. END

Figurne 51. Generation of Fibonacci Series

1

-- -. . -

000 PROGRAM BIMULT;
100 A3 XOR 8--: ;IF LC1;
200 BOTT A2; IF MST THEN SET LC!;
300 Bo00 = B, LCTR;
400 N =: LIT; 1 - : SAR;
500 A3 R = : A3;SAVE;
600 LOOP: IF NOT LST THEN OTT C=: B; SKIP ELSE STEP;
700 A2 + BOTT C -; B;
800 A3 OR BTOO R = : A3. INC; IF NOT COV THEN JUMP ELSE STEP;
900 IF NOT LC1 THEN BOTT B; SKIP ELSE STEP;

1000 BITT :B;
1100 END

0 NANO ADDRESS= 0 0000 00000000000
3 5 13 16 1? 18 19 21 23 29 30

1 NANO ADDRESS= 1 000 00000000001
2 5 7 8 9 10 13 16 21 23 30 35

2 NANO ADDRESS= 2 0000 00000000010
13 16 30 39 48

3 SAR= 1 LIT= 0 01 0000100000000

4 NANO ADDRESS= 3 0000 00000000011
12 15 17 18 30 33 36

"5 NANO ADDRESS= 4 0000 00000000100

2 4 6 12 13 16 21 23 30 32 33 39
6 NANO ADDRESS= 5 0000 00000000101

13 16 17 21 23 30 ?2 33 39

7 NANO ADDRESS= 6 0000 0000000{1110
"1 11 16 17 18 19 28 30 31 33 36 47

8 NANO ADDRESS= 7 0000 00000000111
3 6 12 13 16 21 23 30 39

9 K;ANO ADDRESS= 8 0000 00000001000
13 16 19 20 21 23 30 39

Figure 52. Microtranslator Output

n 118

PROGRAM STOMLD
OFFSET * 20 S OFFSET BETWEEN PRIME AND ALTERNATE COPY

% LOAD MPM FRUM "S" - AVIONICS SYSTEM
% -------- A3: 4-15: LAST AMPCR; 16-31: MEN ADDR; 32: HALF WD
% -------- A2: 1-1b: START ADRI Z3-32: PRES AMPCR VALUE
% LOAD Ae AND A3 FROM OVERLAY TABLE (LIT VALUE) ASM-O
! -------- BR2:COUE AREA SRI! PWA OF TASK AS--O

STGM: B L= A3%% ASM-2
COMP I=SAR A ASM-3
% ---- A3 NOW LOADED -0- ASM-4
A3 L =: A29 % CLEAR A2 12 LST (AMPCR) ASH-5
17 =z SAR, OVER-I=LIT ASH-6
AZ ADD LIT = A2,AMPCR % ASM-TA

SMLOOP: A3 R =t BR2, MAR, 8 % LOAD AMPCR ASH-8
I z; SAR; 3 =: LIT 9b 3 =! CTR FOR NANO ASM-9
MR2;LCTR; IF RDC % READ NEXT MEN HALF-wD ASM--0
IF RDC THEN Bill =1* BEX; SKIP ELSE WAIT A ASM-i 1
BMFAIL -1 =: AMPCR % ASH-12
IF ABT THEN A3 =; ELSE JUMP % TEST FOR HALF WORD ASH-13
IF NOT LST THEN d R =: 8 ELSE SKIP % ASH--1410 = SAR % ASM--15

B 2 MIRLCTR % ASM--16
LDM; EXEC % LOAD MICRO ASM-17
B R =: B % ASH-18
11 =: SAR. 31 =t LIT % ASH-19
B AND LIT .3 B % TEST FOR FOLLOWING NANO ASM-2O
BFFF =2 A ASM-2I
LDNANO -1 =I AMPCR %. ASM-Z2
IF NOT ABT THEN B EQV LIT B ELSE JUMP A ASM-23
16=LIT % % ASM-?4STEP A% TEST FOR "DONE" ASM-25
a % ASM-26

0 =: AMPCR % JUMP TO "I1" IF DONE ASM-28
IF NOT AST THEN A3 + 8001 =: A3 ELSE JUMP A ASM-29
SMLOOP -1 =w AMPCR % ASH-30
AZ + 8001 =: A?. AMPCR; JUmP A ASM-31

LONANO: AZ z; AMPCR % ASM-J-
A3 * BOO1 =: A3 % ASM-33
A3 R w: S. BSQ, MAk A ASM-34
I =: SAR % ASM-35
4P2; IF RDC A ASM-36

IF ROC THEN 3111 =:v BEXt SKIP ELSE WAIT A ASM-37
BMFAIL -l =I AMPCR % ASM-38
IF ABT THEN A3 =; ELSE JUMP % ASM-39
IF NOT LST THEN 6 R =: B ELSE SKIP % ASM--40
16 =: SAR % ASM-41
CTR R MAR A ASM-42
COMP 9 =S SAR A ASM-43
SBa =MIR, INC % ASM-44
LONI EXEC A LOAU NANO ASM-45
LONANO -1 =: AMPCR % ASM--.6
IF NOT COV THEN JUMP % ASM-47
SMLOOP - I =m AMPCR % ASM--8B
A3 ADD 8001=A3 A A ASM-490
A2 ADO B)01 = A2tAMPCRIJUMPA ASM-49A

BHFAIL: A2 M=B. A SHIFT OFF MAR PART ASM-50
16=SAR;OFFSET=L!T * AND HALF WORD COUNT ASM-5I
STOM-l=AMPCR A ASM-52
B ADD LIT = BI JUMP% AS-SM3
OVER:

Figure 53. S to M Loader

119

A

rd

t.w SECTION VIII

MULTIPROCESSING CONTROL PROGRAM[•AND DEMONSTRATION PROGRAMS

-- •CONTROL PROGRAM

j The control program for Multi-Interpreter-Systems is a simple yet comprehensive
* operating system which is characterized by the following capabilities:

1. Multiprocessing

2. Error recovery

In previous multiprocessing systems, I/O functions and data processing functions
have been performed in physically different hardware modules, I/O modules for
the former and processor modules for the latter. In the Multi-Interpreter System,
however, I/O control and processing functions are all performed by identical
Interpreters, and any Interpreter can perform any function simply by a reloading
of its microprogram memory. Thus input/output operations become tasks which
are indistinguishable to the control program from data processing tasks except
that they may require the possession of an I/O device before they can begin to
run. Whenever an Interpreter is available it looks through the scheduling cards
and runs a task, which may be an I/O task, a processing task, or a task which
combines both processing and I/O functions.

The control program includes an automatic error detection and recovery capability.
All data is stored redundantly to ensure no loss of data should a failure occur.
The control program maintains this redundancy, and does so in such a way thateach task may be restarted should a failure occur while it is running.

121

iI

The plans for the development of a full scale operating system for the Aerospace
Multiprocessor are described in U, S. A. F. Avionics Laboratory Technical Report
AFAL-TR-72-144 (April, 1972), Aerospace Multiprocessor Executive by Sandra
Zucker. A building block technique was developed for this software architecture in
order to accommodate the requirements for changing computer activities as well
as changing hardware modules. The system software was divided into functional
modules that could be linked into a system after each module had been independently
validated. Descriptions of the executive modules defining scheduling, resource
allocation, error recovery and detection, reconfiguration, and file handling areincluded in the report.

The control program delivered with the aerospace multiprocessor is a quick,
efficient, and easy to debug, method of demonstrating the multiprocessor. It is
not a fully automatic operating system with complex functions such as the one
described in the report referenced above.

System Loading

Initially, the tasks in the system are allocated fixed program areas in F; memory
which are loaded from cards by the Program to "S" loader. (A description of I
the program to "S" loader is given later in this section.) All input to
the system is loaded redundantly for error recovery purposes. The programs
include a method for detection and recovery from memory and Interpreter failures.

The location in S memory of the microcode for each of the demonstration tasks
written for the aerospace multiprocessor and the location of the alternate copy of)
the microcode for these tasks is shown below. .

Location of Alternate Location in
Program Microcode Microcode System Table i

Plot 0300 3300 (00)02

Program to S load 0EIN) 3E00 (00)03

Mortgage 2000 5100 (00)04 1
Sort 0600 3600 (00)05

Matrix multiply 2500 5500 (00)08

Matrix print 2800 5800 (00)OA

Memory dump 1000 4000 (00)0C

Control program 0800 3O1 -- -

122

A system task table is developed in segment 00 (segment is 256 words) which
contains an entry for each task available to the system. This entry contains the
time by which a running task must be completed before the system decides there
is an error. An alternate copy of the system table is developed in segment 30
for error recovery purposes. This alternate copy is updated as the primary copy

of the system table is changed.

After the tasks are loaded into S memory, each Interpreter's microprogram and
nanomemories are then loaded with the control program microcode (See Figure 54,8 a block diagram of the control program). The control program in an Interpreter
initially tries to lock to the card reader, If it does not succeed, some other
Interpreter is using the card reader, and it waits until it can lock. Once locked
to the card reader, the control program reads the cards which initiate a task

L and places their contents (eight 4-bit hexidecimal characters) into selected words
c" S memory as defined by the card format. Each input card contains the hexi-
decimal characters to be placed in S memory and some contain the address where

1. these characters are to be stored. A card that does not include an address ("0"
card) assumes that its hexidecimal input will be stored in the next consecutive
address in S memory following the previous input card.

Card Format: LXXX AAAA XXXX lJHHH HHHH
OXXX 0000 XXXX HHHH H-IHHH

The "L" card indicates that AAAA contains the hexidecimal address in S memory
where the hexidecimal characters HHHH HHHH will be stored. The X characters
indicate letters and numbers that are ignored. These may contain anything but an "N".

The "0" card indicates that HHHH HHHH will be stored in the next address in S
memory following the previously stored word.

One input card is a control card, specified by an address of 0001, which gives
the task number (which is the location in the system table of the task control word)
of the selected task as well as the starting address in S memory for the micro-
code for that task.

The format for the control cards for the demonstration programs written for the
aerospace multiprocessor are given below, where T indicates the task number
"(location of the task entry in the system table) and SS indicates the segment number
for the location of the microcode in S memory for that task.

-- 2i

I 123

BLOCK DIAGRAM I
CONTROL PROGRAM

READ DATA AND
PARAMETER CARD;
IF TASK NUMBER EVEN,
RELEASE CARD READER

• LzGET TIME]

=°jl

FiguLOCK SYSTEM 4
STABLE

STASK NO TIME + RUN UNLOCK

E SELECTED TIME --- N SYSTEM

Sy RUNNING)TASK TIMVE TABLE i

TABLD
TASK

•~~ ~ TM Figure YES CotoMrgrFo IagRam CODE

¶

Program LOOO 0001 1:2= TOO SS00

Plot LO00 0001 XXXX 2000 0300

Program to S LOO0 0001 XXXX 3000 OEOO

Mortgage LOOO 0001 XXXX 4000 2000

Sort LO0O 0001 XXXX 5000 0600

Matrix multipl3 L000 0001 XXXX 8000 2500

Matrix print LOO0 0001 XXXX AOOO 2800

[Memory dump LO00 0001 XXXX COO0 1000

All other input cards are parameter cards for the task and are loaded into a
portion of the work area for that task.

An "N" card is the last card that indicates the end of the selection of a single task.
j The "N" card must contain a single N.

Upon detection of an "N" card the control program stops reading cards and uses
location 01 of the system table to get the task number of the selected task. An
even task number will cause the card reader to be unlocked, freeing it so that
other Interpreters may use it. An odd numbered task requires the card reader
in order to read its own data (e. g., sort cards for the sort task), after which the
card reader will be unlocked. This contention between Interpreters for use of the
card reader and running of tasks is shown in block diagram for the multiprocessor
system in Figure 55,

I a

Task Execution and Monitoring

The task number is used to select the task control word from the task table. The
task table is locked before a task control word may be examined or changed, by
using the global condition bit in the hardware. A task control word of zero defines-. a task available for running. A non zero task control word implies that another
Interpreter is performing the task, or that the task is hung up on another Interpreter.

j To check for a task or Interpreter failure, the real time clock is read to obtain
the current time. The current time is checked against the time in the task control
word which is the upper bound time for the running of the task. If the time in the
task control word is less than the time on the real time clock, the task is con-
sidered hung and the Interpreter will treat this task as a task available for running.

125

ill I
STARTUP

"PROGRAM TO S LOADER"
INTO AN INTERPRETER
USE TO LOAD MICROPROGRAMS
INTO "S" (MAIN) MEMORY

LOAD CONTROL PROGRAM
INTO ALL INTERPRETERS
(1ST ONE READY WILL LOCK
TO THE CARD READER)

INTERPRETER LOCKED TO CARD READER
READS PARAMETER AND DATA CARDS
IN4 DUPLICATE INTO "S" (MAIN) MEMORY.
REST TRY TO GET CARD READER.

AT N CARD,INTERPRETER PER- SINGLE AT COMPLETION OF
FORMS TASK INDICATED IN PARA- INTER-P._ TASK;CONTROL PROGRAM
METER CARD. RELEASES CARD IS LOADED INTO
READER WHEN FINISHED WITH IT. INTERPRETER

II IISYSTEM

NEXT INTERPRETER RUNN'ING CONTROL
PRIOGRAM LOCES TO CARD READER|l I

Figure 55. Multiprocessor System Flow Diagram

I126

126 1

,1

When a task is still running, and the tirnc on the real time clock is less than the
time in the task control word, the global condition bit is reset. Then a new reading
is made of the real time clock value. The task control word is again tested after
locking the table. This process continues until either the time for running the
task elapses or the task is completed by the Interpreter running it,

When a task is available for running, a maximum run time value is added to the
time read from the real time clock and the sum is placed into the task control word.
The global condition bit is reset (unlocking the table) and the microprogram for the
task is read from S memory into the Interpreter's microprogram memory. The
task is then executed. A task which uses the card reader (an odd numbered task)
must release the card reader as soon as it has completed getting its data.

When a task has been successfully completed by an Interpreter, it resets its task
control word to zero and loads the control program from S memory to micro-
program memory. To determine the next task, the control program again reads

the cards from the card reader.

All information is stored redundantly in S memory. (See memory map in Figure 56.)
When a memory faillure isdetected by anInterpreter, whith will affect the rurning of a
task, the Interpreter will reload its own microprogram memory with the alternate S
memory program. This program is identical t'theprlimne microprogram except that it
uses the alternate work area and data space as input instead of the prime areas.

SThe detection of a memory failure during the loading of the prime area of a task
or the control microprogram will cause the loading of the alternate area of the
required program instead. All cards read using the control program will be stored
redundantly in S Memory.

j ~S to NI Loader

All tasks as well as the control program contain a subroutine (S to 1M loader)
which can load microprogram code from S (main) memory to microprogram
inmemory and to nanomemory. This subroutine (see Figure 57) is bypassed when
Ia ask is initiated. When the task is completed or an Error is detected, an address

is placed in the B register and control is transferred to the S to M loader which loads
code into that part of microprogram memory and nanomrnemory that is not occupied
by the S to M loader. When it detects the end code (ONE in the most significant
bit of the microinstruction and ZERO in rest of it) it stops reading and jumps to
the start of the task just read.

When a task ends, it puts the address of the control program into the B register
so that the next task may be selected and executed. If a task has an error, it putsII
the address of its own alternate copy into the B register for restart Lf a task is
too large to completely fit into microprogram memory and nanomemnry, at the

I conplpetion of the first or intermediate part of the Lask, the address of the next
part of the task is put into the B register. The task then passes control to the
S to .M loader subroutine for loading the next task or next part of the same task
to he executed. This procedure is shown in Figure 53. The microcode for the

to M loader is shown in Figure 53 of Section VII of this report.

127

o0 54
14 0

0 "a~

1ý S4 .4 ;,

0 0~

*d 1d 0

m x

F~l C.d

c<P 0 ýoQ
S0 0 0 1

Q) 4

E 0 0 0
U UV

0 0

m4 C'] *. ,

_ '0*

_ 14

14 14

L-o'- o a 4
0~~~ ~~ CU t~t ~0i~ [4 0 4'C3 1~ -

,4 '0 0 4m 4, 4, ~. 4. .

CNI 0
(dE -,U

128ý

-TART ADDRESSADDRESS

1ST AVAILABLE ADDRESS IN
MPM -MICROADDRESS

STAR{T ADDRESS + Er~roll READ ADDRESS - GET
3 000- START jNEXT MEMORY HALF WORD

ADDRESS

LOA HALF WORD INT
INCREMNTADONESS

131T,; OF ItA LF NO BITS OF HALF NO

MCOWORD 'OD-1
(NANGON

IN YEENT YESE

BY~~~ HA.-ESR

3CTR NANO

/ Y E S
HAFWR-.NN T - CTR <

TAL (NANOPATCh l

FigureREA 57.ES LodMcorGra eoy rTMinMmr
Flw Figrr

NETHL R

INCRMEN A~ 1298

COMPLEE YESLOAD CONTROL

IiI NO

1.30LOAD ALTERNATE
COPY OF PROGRAM

S~Figure 58. Task Control Flow Diagram

L.1.30

!

- DEMONSTRATION PROGRAMS

All the demonstration programs are microprogrammed and are loaded from S
memory into microprogram and nanomemory in order to be executed. They are
like a single large instruction on a conventional machine. Therefore no inter-
pretation of S memory instructions is necessary in this demonstration.

The demonstration programs were written to be indicative of a specific type of

application as indicated below.

SProblem Type Application

Plot Graphic DisplayI Table Lookup

Mortgage Table Building
Simple Arithmetic

Sort Data Manipulation[Data Processing

Matrix Arithmetic Operations
(Many Multiplies)

Dump Debugging Aid

Program to Loading S Memory
"S" loader

All the demonstration tasks which use Cata and parameters contain a work area
segment. This work area allows for the storing of parameters. temporary work
space, buffers and pointers to data or program areas used by the task. Thus,
the work area for the matrix routine contains pointers to the three matrix areas
as well as the parameters i, j, and k. Changing any of these parameters or
pointers will change what is executed by the task. The locations of the parameters
within the work area for all demonstration programs are shown in Table V.

Memory Dump

The Memory Dump routine prints all the contents of S memory without changing
or disturbing any of the memory locations. Each 32-bit word in S memory is
printed in a format of eight 4-bit hexidecimal characters. The words are grouped
into an address followed by eight words of memory and then printed as a line.
If a line is identical to the previous eight words printed then it is omitted. The
rmemory dump is a debugging aid used to detect changes in memory. An example
of the output from a memory dump appears in Figure 59.

131

Q D 0 00 0 N' U n w c
w-4' 01) 0 co 0 0 oo rcioo0-D CD 0D 0Q 0 0 00 0o o 0

0)0L 0 C) 00CDo

00 0'a M Z n c'J 0) 0 0 0 00 O o o00 CD C 00 C 0 0 0 0 00 00 00

000 00 0 0 C 0 0DC 0 00 0000

000 0 Co 0) 0 0 0 00
0 0 0 0 0 0 Q.0 Q. 0 0)

OLC 00 cc -. Oo o

L, -W0 00 0 0 17 - u DC) .0 0oo - o-4 Cl 00 - 000 0 CD CN 0 NN0o~ o
ou 000 0'00 N 0q N 0 "0 CD 0CD "0 0

000 0D 0 0 0 0 0 o o
Cd 000 000 0 0 0 0 00 00 00$. 00 = S 0 0 00000 cc----~

0 CD

10 LM
l -4 0 C C~

m u 'E 0 w D

Cd

v .4 " 0 0 0 -

bU o 0 0 N N o 0. 00 0

0 CuW

CdC

It It

ac

F,-

- 132

a a,- c-- m- -- -- ,cr- c --- -- c--__ c, a. U _ _ G- a- _-ft i _ a V- c V c cc _1_ k, c -

CC C CC N C - 0-~t CC UN C CC C'4 C CC C cC C C- 4C= -C . tC i c Cc o -! C~ CC= CC C CF

or NC C C CC C Nw C, 000C CaCCCNCC C - ~-Co e C CCCC c cCCoraI~tk
CCC . ~ CU PC C0 MC -C CC cc NCC CC C CCCCNCCCC C .C ~ C C C N C C 0

CCCCC NCCCC C~aN' aC4CC 4ItCC CCCC~ tCCCN CCCC~ CC~c CJC ~ - C C
CCCCCC CCCLNC CcCCCC C kCCCC CC.CU CCIIr CC CCCmC cNC L C C C C N rI C CC-.C CC .. ~ CC CCC CC CCC . CC CNC if CCC NC CCC~.C C CC *CC .- CC.1~~~~~~~~~~~~~~~~r mC.~C4tC~C4CCCCCNC4O4-CC'CCC--ICCCC

CC C C C O C C C C r C C' C C, C C, C, cCC C CC C C 4 c C C0'0 N a C N C C - C '

cC ,C e Cn c .. c; CT a4'I N C C CLr C C C N C C C '-.T C U C C C CC u C C

CCCCCCCCCCaCCCICCCCCCCCCiCCC CC CCOUCO

"Cc-,

CC CC M I'C CCC CC wC N Nr if CaC LCC CC 4C C CaC C C C C C :

.4UZCC
CCC -

Cr C CU, C N C C C -c L C 3 CC C ct cif N cC C C C C 4C 4 C CC I- c C Cý C C af LCCCw ,
c c C C Cc C Cr~ o C fC C Cc c C4 C C C Nc 4ý c C C C~ Cc Cc c c U C CaCCCCCCCCC-C C C c m a C

CLCCCCCCC CcCC C Q C C C C C CN C C C C C N C CN N N O C C C ccI~ .6ýcc~ C
L"0

c c c a ' . 4 C C ~ C a4 C W C N C C I 4 C 4 C 4 C C C U U c' C 4 t . t C

cC CCMNcc CCCC C , cC .CM!C &' c C CCC C C C C C t C C C C C C C C

CCCCCC-& -L.LCNCC CCCCO .C CC*&tC*C CC-..CC C~- CC LF C C Ct..C C C 'M 1, 14 a
CcC~-. C~c CCC CCC CCC CCC CC CCC C;C C4C CCC CCC C'0 CC C 'CCN cC ,

CCC CC CC CC, %C CC CC CCC CN CC NCC C C~fC .. C CC CC CC'Q1334C

Program to "S" Loader 3
The Program to "S" loader reads cards from the card reader in a format generated
by the Translator and places them into S memory. An L card precedes the pro-
gram cards for each microprogram to be loaded to indicate where in S memory I
each of the microprograms will be loaded, and an R card is used to indicate the
end of the Program to "S" Loading function.

L Card L000 AAAA
R000 0000

where AAAA = starting address in S memory for the microprogram

Each microinstruction is stored into 16 bits of memory. If a microinstruction
points to a nanoinstruction which is used for the first time, it will be stored I
following the micro in the next 64 bits of memory. All the micro's and nano's
are packed in S memory into 32-bit words. Nanos that are used repeatedly
need be stored in S memory only once.

Microinstruction format

1- 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0. ... - - - - - - - - -
-1 1 SAR - SAR I
-0 1 SAR - SAR LIT

0 0 1 - - - AMPCR
o0 0 0 1 - - LIT
o- 0 0 0 0 - - - NANOADDRESS
0 0 0 0 1 - - NANO ADDRESS

All instructions except a type I instruction ignore bit 5. Type I instructions use
bit 5 to determine whether a nano must be loaded (bit 5 = 0) in the nano table or
if it has been used already by a previously defined microinstruction (bit 5 = 1).
A - indicates the bit can be either a 1 or 0 since it is ignored by the loader.

Plot

The plot routine plots the sine curve using (*) and cosine curve using (0) on the
printer. The y axis is horizontal (since the size is fixed) and the x axis is vertical.
Each line is printed with the angle in degrees defining the line on the left and the
symbol of the sine and cosine plots (* and 6) in its proper position along the y I
axis. The user can specify the starting angle (in degrees), the ending angle, and
a delta (increment in degrees between points to be plotted). i

This is a pseudo-instruction which is used to indicate the end of a program.

134

Starting angle LOOO 0114 0000 0000 AAAA
Ending angle LOO 0115 0000 0000 AAAASDelta LOGO 0116 0000 0000 ODDD

AAAA z angle in hexidecimal
(002D = 450)

DDD = increment in angle for each print line inI hexidecinal (WOOF = 15o)

An example of the plot output appears in Figure 60•

Mortgage

The mortgage program produces a mortgage table which gives a list of the monthlyI payments of a mortgage and the results of each payment. This includes the pay
period number, the amount of interest paid this payment, the amount of this

[payment used for amortization, the remaining principal, the accumulated interest,
and the number of years of payment. The user must supply the principal, the
monthly payments and yearly rate as input. These parameters are entered into
the task work area via the control program.

L Principal LOO 2014 0000 PPPP PPPP

Rate LOGO 2015 0000 0000 RRRR
Payment LOGO 2016 0000 0NiMM MMMMVI

PPPPPPPP principal in 4-bit decimal digits[(02250000 = $22,500.00)

RRRR ý yearly irate in 4-bit decimal digits
S [(0850 = 8. 50i)

MMMMMMM = monthly payments in 4-bit decimal
digits (0025000 = $250. 00)

An example of the mortgage output appears in Figure 61.

I Sort

The Sort routine reads a deck of cards and sorts them according to the starting
character and length of a key defined by the user in the work area. The sort may
be either an ascending or descending sort depending on a parameter. The same
deck of cards may be sorted using different keys and in different directions with-

5 135

I
'3

*6

.3 1
'3
'I
* I
'3
* I

H
-3
'3

0- 3
it PG

'-"3 * *
.3 0 * U
.4 *cr.4 C C.

I B
B

V U
.4 *

C, I
.3 *

I U U
B I

F.-. I

I, I B
3 S S

3. 3 4a� a
* 3

'I
LC 3 P p
2 3 *

If-. * I
C 3 S
t� 3 S C
It *3 *

P 43 * OJ

- a
3. I -)

3 S :1
- IflI U P Q
4, .3
II .3 * -
* 3

.3 * Z
*flJ 3 -

I iS p -

3 * 0
I-' 3

3-. 3 *
C 3
-, * Q..
a. * S
3AJ 3

2 8 N

g
L 3

� *
2 3(\ 3
C .3

3 * 11)
1. 3 S P L.
2 3

If .3

*

-TI P

�iji�I $ * I! *

- 3as
C -3
r 3 U U

* 5
- 3

U U * * *4 I
1.. '3 * B

5W *6
.3

{'& 1 e&c4ae4NcffiNe�c4NofftNcE44r�.cc.c.,Ncr�4Ncpcor�.c
cC3 �

3. I IX3VrtR3\.R&kftaftftNrrr�-,-¶rrr 1
136 4

I vCINCTPAtu 4 ;-%.0,00 PAIF 7.00t DAYMUrTC et 7174,0
0ca nnfT pjRFIoyv AUCQTT7A;TTnN POTWCTOAL £CCIiMltATrflTflTF9tWST YFA0

2 t 143.47 7 31.33 c 24,5;3q.67 4 7AA,67
3 4 142.32 ? 32.6R c p4,I~o5.qq *430,A.4
4 141:97 734,n3 9; ?4.071.06 S 71,96

1 t 4 3,6P 735.3R v 23.03scAR K 711.' 1S
7 4 136.44 236.12S 2I.q99.71 C A37

A 4 135.50239.50c212.1 4 .1.)
a 4 134 11 ?4 24,9 ? 72.013 V 1..2

' 132.7"1 t 747.79 9 74Alq31 t ,9,l
1 9 131.11 c 743.69 ;1 '.71)q .34 c 1.52n .14

!2 9 2;ý,4q c 249.11 4 .iS.2sI ,60.3 1

17 I 1IP74.16S.3 4lj55 .15.77 ' ?
1 al 1721.7 -K 25.370ý t 20.644.44 V 7.3l0-447

P 0.003,20 I .767

20 4 11A.P9 v 256.71 4 ?0.'37.KA 4 ?.#637.Sfl P
21 75 P1O4 IQ,2 jQ-79~1 ;1754,In

I~~~;q C 1.0 t 270 1C 19 %Q.0 4 .69F.01L~~~~ 23ý * 1.0 t 221 19 Qqi41 1 24130
24 P 127 ?A 227? 19,095.6 P ,996

25n 1.753 76F4.29 * 1P.o31,47 1.P0',&?1
26 C 10Q~.71> ?6%.78 1 A.4 C 3. 31 S.64 1

f ;77 C 10'.669 ?N27.3 4ý 19.70417 4 1.4P21,3P
L. 2,-t 10A.13 268.A7 ~ .jS.o?9.49 .794

20 t 104.S7 4 7.3C 17.1q9,02 4I,340
10 c 10-1.00 4 272.00a I 7.2.7.02 a .7371,M? 3
31 IA1:1,4 ? 73.58 C 17.P13.44 s I.13.3644 I

wI,.9q.R4 ' 775.16 I 1.014A.?4 4k I. Q3A,2 PA[1 QA 74 !76,76 16.:A1 3.;? 4 n36? SP I
04 6.64 T. 17~64 1 -.A3l JA 4.133,1A 3

IS 951.0? 279.94' 6 1n.J 4?AI
36 q 1.40 P-?01.60t. 1.? ;4.I .R3
37 * 1.76 * 243.74 ýk J5r 3.1 4 q 4 4,411.14 4

90.12 4; 7I44,80 4)5.53.44 4.ý41.46 4
4q -A4 14.Qf1F.Q1 45 4.-601.Ql 4L

40 c 4.I- 14.AA.74 t 4.67P,74 4

47 9,P1.4%A K 4.9473,86 4

81A l.76 4 293.24 1~.004,.nq9 4.979,00
40 R 96 m* 294)494 4 1340919 * 5.009 ,; 4

46 c 76.63A 4 29R, A7 * 1.1 3 4 f,14.1 3 4
47 It 74.00 c In. 0I.A40)aA'
48 c 71.16 3n1.R4 4 .3'I
4Q ' 71.41 t 303.50) 1P. M04. 60 4 ,36(

f~:6-1,6 9 ,1!3S 1.'03.75; 75 995367 8 3 -, 171 7 6 ACc; .1-

66.1 7,s-t,77 4 .93?

*A 6P0
4

6 1; n6;.7 4
&n (, c C1.3 10.14.79, c 674.;

67 q 370.10 t 33.90 9 1; 1 3',78 4 R.,390 ,74

6A1 51 3 47 V.*c 34 I7 % 4..pDt1 4 .; 6,9.16
24.7 32-4.741 * a4.s] n.71 9 .,5

616r.281 C 340719 7C 1 A.69Q 4 Q3. 7?,o

74 c 210q K 3.10 c t,- 374.9 AP R.1 1 -,1. 3 P 7 7 F

7 * 4n.05 33646 4i 6..69.41 s Q. 7.

6A0 159 s 359.03 4 5..1953.9 C .44,1 7

'I 9 11.49 c -161.11 * 2,1 ,27 4 .902
71 q 31n. ?P 343.70 4 1.7, 7 46 6,61,0 7
I;- ?q .6 ??6.3 14.As 4.,70A.71 % A.620a. 7-1-
7-2 6 7;,7 c 36143 9 * 34 ,3 11:1 4 q c464 Q4, 7

7A 44 4 .30 1 31;.70f t -4. 7,-7 4 4 .697,7 7
77 1.14 * J07,fl7 5' ?;.00 * 6.A;QS.1 7

7A - :7 490g ~7 Figure A61., Exml ofMrgg7TbeOtu

an 36.po .A71n7 4 A.A7137

out reading the deck in each time. The results ct each sort will be printed giving
the original position of the card in the deck.

-Read new set of cards LOO0 020A 0000 0000 0000 i
Use -old set of cards LOOO 020A 0000 0000 0001

' Pointer to sort cards LOOO 020C 0000 0000 OOYY

Number of characters in key L000 0214 0000 00-00 OOKK

Starting character in key LOOC 0215 0000 0000 QOSS

Direction of sort descending LOOG 0217 0000 0000 0000

Direction of sort ascending LOW0 0217 0000 0000 0001

YY = segment number for storage of cards to be sorted

KK : number of characters in sort key in hexidecimal (up to 64)

SS = location of starting key in card character of sort

The last card of a deck of cards to be sorted must contain an illegal character (?I)
An example of the card input to the sort and the several outputs of the sort, using
different keys and different sort directions, appear in Figure 62.

Matrix Multiply and Print

The Matrix Multiply program allows for the construction of a matrix which is the
product of two given matrices. Each matrix element is an integer (positive or
negative). The dimensions of the matrices may vary and will be defined by
parameters stored in the work area. Pointers to the input matrices and to the
storage area for the output matrix will also be stored in the work area.

The Matrix Multiply program has been written so that more than one Interpreter
may work on the same matrix at the same time, each performing its own unique I
set of row calculations. Each of these processes must have its own work area
indicating a starting row position and an entry for the number of processors that
are performing the multiply.

The matrix print routine must start when the matrix multiply has been completed.
This routine will print the input matrices and the resultant matrix on the printer.

he user of the matrix multiply and matrix print procedures must specify param-

eter5 of both of these routines. These parameters determine the dimensions and
locations of the matrices to be multiplied:

A .XBjR = Cik

138

-• •~ ~ ~-•." - .~ vd...i-

•4

Pointer to matrix A LOO0 WWOC 0000 0000 OOYY
B LO00 WWOD 0000 0000 OOYY
C LOOO WWOE 0000 0000 OOYY

a L 00 WW17 0000 0000 OODD
,L000 WW16 0000 0000 OODD

k L000 WW18 0000 0000 OODD
WW = segment number for work area storage of matrix

multiply (24) and matrix print (2$) in hexidecimal

I YY = segment number for location of matrices in hexidecimal

DD = dimension of matrices in hexidecirmal

Maximum size of matrix is 256 (size of segment).

li Therefore the maximum dimension size is limited by the following formulas:

i x jk< 256fj xik <_256
irxk <ý256

- [Since no more then 16 numbers can fit across the page for the matrix print,*- t the number of elements in a row should be no more than 16.

i and j <16

Two examples of the mat rix print output appear in Figure 63.

CONFIDENCE ROUTINES

Four confidence routines, AERO1/KDK, AERO2/KDK, AERO3/KDK, and

AERO4/KDK test internal Interpreter functions. These routines must be loaded
directly into the microprogram memory and are not run under the control pro-[gram. The following assumptions are made in the confidence routines:

A RIM B works

I No errors in MPM or Nanomemory that do not appear in instruction 1
which is a dummy instruction used to set as many nano bits as possible.

J ~A+0 and O-+1B Work.

AEROl/KDK exercises the source-destination functions of the Interpreter, the
successor controls, and the condition tests LST, MST, ABT, and AOV. The tests
are designed to test from the simple to more complex. The detection of an error
in the initial tests will cause a wait-wait at the nearest point to the error. Upon
completion of testing of the successor controls all errors will exit to a standard-
error routine.

139

k

AERO2/KDK exercises the SARI CTR, and shifting functions. This test may also be
considered as a test of the barrel switch. This test assumes that the first test5
(AE ROl /KDK) runs successfully.

AERO3 '/KDK exercises the adder and carry logic of the Interpreter. This section
of the code is divided into two parts. Part 1 exercises both A+B and A-'-1+l logic.
Part 2 exercises the logic type instructions (NOR, NRI, NAN, XOR, NIM, IMP,
EQV, AND, RIM, OR, A4-0, 0+8).j

A subsection of Part 2 exercises four instructions (OAD, AAD, A-B and A-B-I) that
exist in the instruction set on other versions of the Interpretýer. This section of code
exercises no new functions on the LSI Interpreters. 0

Corresponding to each section (or subsection) there is a subroutine which performs
the final comparison of results. The error indication and reporting for each sectionis done by calling a standard error routine from the corresponding subroutine.

AERO4/KDK exercises those remaining areas of the Interpreter not tested in the
previous tests. Th1is test exercises: LCI, LC2, LC3, INT, GC1, 0C2, AOV, IC,
CSAR, and B Register inputs: BAD, BBA, 1381, BC4, B8G.

rQvin S'JPVFY' 1,C''AII ':0 CO--QbtF. 1 S;YqTVM SI 1LiLfT)I0
ACM COMM "&V p1 J h2-,1P 4.t T.'TIA Pi.-'IO.Jy P:.TC '
rOop- SlJUDvFVy-S *3K I ý,r i- yV1 -j : f0 ~ S,1iýVF y ANl 41VYT CrAt T I" sli lly , M'TN6 h~l,, I -

ACM COMM i It~ý- /u20ý AtLOCATIOPj COMPýITIPLI pFS~l;()t- rý
eOPk'FLL TdIA HOLT 4 C I1It1 :o., i>IwC' IN C(PlFqYS1rM;
ACM COMM TLiojS, T I.,ULI I X0~1; .ýC&m,' IT'- iIlNIP'L, L
TRU SYSTEMS HavZ'JtI -t I .jt1 PqfiTO~r. T an , A

1
TI it ~' 0V(V'

ACM COMM tAd ~'- I - ý7 Vi-'f 'I lP O'F SY%,Tt - I-."
s~loS FJCC DF NN I i, , &j I, "IU TriMAS IVN6: I TSCA causv aOL;~ d-vE.NTJU-l
re"*' SURVEYS OiF'-NING P J ?0O:OY VI I-TUAL P*'m0- Y
A(. COMM fif-ks'v I S J -. O,ý NIP, -1;1T Itoo ~z at-4 C(1Oý'u I T Tr, C'; ICAT IN
AC'1 COMM MFMNSTI-f I 'a1:SHA.-'-"- 71 :U2 iPOt ICY fl.-Iv r ;`I)](PI-N oi'-iU 1>? H. Ž
rfl&In SUPVEYS COF .IhrLr-ICP(P1: 00, 'STI- A i-rAI'L'ICr
uj T M4FMO [) pj Si[I11 j -i t. :l' , ful F111- 114 r),s Ik TI-ý PI -,A-Jj y .vL.I
t-OPIc SIJQVEVS' iOFFVANll L J h'JO, CJ.),PTE.dlS AM;l ~P I(.CY
TRF TRANS V I L.4UwNl :,.i' " ,rdU4 Lt: 0FVL 51(uA,waC1 YS'TFM!
AF~nS SJCC PLEIN.O~JcP L Yu3 uS CI;T1KTII)kAUIIT 1 Iý" S,-Jf 4IPe- sýCN4EO'LtI.;C
AFTOS FJCC LAUPSkIN 4 , o'4 6 0 9 DYNA4MIC Pa(IIECTIOrS'!'F<-
oRIMCETON LAMPSýO". - 7 1:03 P,-¼)I(GTION
TEFr COMPUTER~ AAATF J:fl-,i~-'r H £- IZ Ii twIM trnPEFMuuFlb' ý,L-fFý
ACM COMM [JIJriSTnA t , o'-I: U9 SOLUTIO'* IN1 CUN CoN~etŽ.LT -OCUNrT.iJL
ACM COMM DIj.4SI.JA P 6A;OS5 SIwiJICTUnE THE ;LTMOWMI(SVsTFM-
ACM COMM Co4AHAMA P 11 4`31:05 P.4IITECIION INFOR-IATI~iij PiHoCESSINKD
As qyMP POULt P:WAIiE v hYTLO 1 MACHINE INOEPENOFNI SoFTMAq&
ACM COMM .4ANIWLL:KIJFHNI-It bi5;05 DYNiAMIC ST~A6WA ALL OCAITON wrSIFr^s
Comn SURVEYS iPiSPr 5 69:03 tLECT40NIC ComtMPI1-S. NISTONE[CAL 'SljiVFy V
COMo SURVEYS I4OSIN k F b6)03 SUPFRVISOPY ANO MONITnk SYSTEMS
ACM COMM SUTtEkLANO i E h$i:06 FUTUP6iS MAWKET IN COMDUTEw TIME
rOut REVI~wS TPImhLF 'i JR "8:O(S TIME SHAPINr. i4IMLIII(;P512HY
ACM COMM WAITE % m 70207 MONILF P170(RQAMMING; SVS;TEM:STAGE ?
nATiMATION COPRAT') F J biý:OS PL/1 AS T001 FOi. SYSTFW' PPOcWAMMIAIG
vFFr INTNATL CPIEECH1ý A 70c.06 IMPLEmENTATIOIN (IF 0.EFQuTIKNG SY`STtEMS
FAoIS 0.1CC CRITCHLOW A 3 653;09) CENE4eI1 liED(MLiLTIPRUiPAQMMIN(, SYSTFMS

.c C
1

c umM nFýjithji-,t P -I MAORn' Wf 'sA iCETUOCNýFt l"fl'lA"

FCIA COMM WTLKl-S PA V hýM: 0 COM'PIJTi99S THEN A110 NOW

(a) Card Input Sequence

Figure 62. Example of Sort Routine Output

S.. 140

1eOk JEFF CO"PtiTii "A461 .flljMNi;`a A,4: I1 or'1~oPyf~.f' tfl.:n STrOAW'
212 ACN- COW4 r-.fW~jS1HsILnoqp-4 71:Oe P)LICY 9'11y6` SC.4VO'UlLE FOP TES
313 CO"" Su)ýVErSCFIA:F'PN 71tA" SYST'-t¶ (FADLOCKS

31 1 up, ry. --CW-NTO F j 69:09 -L/1 4s TOOLJ FnW 91,Y7SCM . l,0u1
S 3? fIF 1.TIATj_ CR1½FCtH '4 A 70:6 l"tnEroo O)F 0Pl-L4T~n,-, SYSTEM*S

65 33 'IFP' 11; cC CwITC-LON 64 A40 j:'F~lH "'i T4.01 ~ cnj SYif.';
e &c" cG-s- IIAL8y i-:l)Vrs~c s":'S v.-1T')0L 6-rO-i-w S-a'C11 (9 N l~ y,

J&4 AC, CO.... k;F''l, N" I'' I.- *Z; (IS SF1 .I WIDL P.OXuAN I-AVlý

110 COMP Slw-ftrlS I ';lItW,& P J 70:414 VI-'1'l&L t"f' 4piy

I11 ACMA bFp "-'- I ý j ".: Os Po)siTllo "AP"" CO-OUVINC, CnMMIJNICATNJ5
12 1" 1 -'r's ý)Fvz.¾ IS ".:flh F'.119r -F'INsi 1 j' 94410SYTQ
13 e21 Ac" (CuP.' IJ1465145 Fl a I'l: t9 SOLIj' IV, 1' T" C & Cý,J2EUT fl-)(CO"7"Os~j
14 U AC'. C'lI'KI165-4A t5 66:05 Sl-411Xluw- 1t-41~L t~O4"j;STM

1c3 AC" C0441 1,"4'.'A-'Q '4 hA:.0 S Psr'.criO1, 1jFoi9'rrn0Pocss's
16 8 ACM COMM1 MA91'4tN A N 64:.0 7 0941kOF s.14PALC

177 IS %7YSTtms '4AVtc'E4 w sk.:0J Av'j1qjt.(, 16ýA11(JCK ITTS1v SYST,&w
19 (0"? So-vETYS .-OFf-&r. L J 84: (if C0:1AuOT'LS Al,;r ,114vCy

19 5 CQ'-
7

ELL 1-4FS I'M 'il' C 711:06 9PA;1uL- 1N C
t
a-PtlnF' SYSIF-iS

26 6 Ac" Comm 10.55,J E 1 jo: VI t:Antt~ltCFý v117 FXTVY.-qyLyG_ A.21 16f, -F TkANS, A1~jN~AO h2:04 Y3S 14.i %lAt, M4'
22 18 &EIF5 Ipsvcc LAMP',11N1 H - 04 YAC"1C!sSPJTIs
23 19 Pk I -Cc fuIN LA0t<'Oh -i W ?1:.03 PO-OTCCTIONr

24 Col" SU-'Vt YS MACi)WpALL H 70?4 CO"ýPuT* o9 AY-,TEI SI'14W AlI01,

25 COMP SJass ys Mc. 19JEV 4 j . .:O SP,'VET AN4ALYCA f Al- T 'ff: QfF?6 a ACM Comm N-IFLSiN N, 0 Tote ALLOCATION, C'V-*PI3lTfý Or'90*jR(FS27 2' Os SYMP 8IM F -lAITF w AN1: In 4~~~Fi''~f''
2- 251 ACM C'1 4AIFL±.S4AF4 *,40 .ý1 SCUr AtLOCAYIO., ýYRT-1M
29 17 A1`105SJ5CC <LE11.R0CJK L 70:0 CN140"TIESA1,r,~MX1L\

3 `1et CU"P SU'VE:VS '-'(SINs ; F h'4: 0) - l4 2 10olfi-fy A',f' kQfl'3 low Sy%;T- ý31et COW> slji;v:"YS (;9*'I ,5 F q 0jt' 3 z½4 -- Yis~~:

(b) Sort by Author (ascending)

(A ~COUNT 20110 ahAXXXAXZXAXXAAAA
354c iSý' ACM- cO~ LA ~V ~ l rl-ua.'rs T'.i., ANn 'In.

33 ?,o cO
m
l, CtV1tli T[6-1AýL G 46 olA: ri"E S11NIA -!9L119,0'IY

32 e'. ACM* ct0.. StT---L ANn I f T~'- r~ 1..1,1 Cw.V-.iTt IM-F
31 26 COMo Sk-Vi Y' 0"''1' s NM'3 Ll'I tCJ:11jAlS9YI ~30 z1 COMPS-s V 'Ihis - F "'- U 3 ~ <' *-;2-y 41"1- VT
29 if IFL% I 4C -'L I0-S, L. TV:-us C 1%11V f-J4 Tj-' S,44' -,c'I.rL
PA 2", AC" C'ýNv' .'

5
LKI-I8 6,4 -. ''. jIT -1 ALLr'CA!11N' ý,RT '-

24 ~ TCO -t1YS 411 '0 70Q 1) C,.". iTc ,T;-' a zU~ I

23 oL1'Cf T)., -. r I-n.4 C1 1:1',

2? 16 ['4F 1,4 -1c * L"UftE)A'' 11 00- 1~ IIt 011 TC1,trT,-I ,

20 ., ACt. LOWM' Iww.tS t- 1 70 "'!l r''.""1'a ., ýIT'- t A t INLA 'd.,o
19CC"NFLL TnLS -11- 1C(7 ý -IuP tA-O ,C. [1',k4.fl4;.yT

2Ž e ACM CO-MM GN"qA.A 4 4:05s Pq011C11,sN 19F G~i'?O

13 e1 '-cm Comm IIJv51Iw& F- . "r D0) SOId [ONs I., Co-. Ui.9?ý'T -""0 C'NlOq
12 j4 v- ME MI.) L)F"NNI (4 8i @:t. F')TUqE 10.,p$ I710TME 5.1419, 55T-S
I'I) I'I, ACM .COMM OFNNIS ,J N eA.0 PflSIT10Oi PAl-F6.C"'T.t C-4'uNICATsS

J 101 ccA S~p
4

VFVS 'OF Nl,. I 4 4, 70:09n VIQTO.AL 'FW"flvs9 9i AFIPS P4CC OUNrqINC P .J "A.09 T-QA5-INsO:JV7' CAIKSLS At,') rCA 4 rN7[39
A 3.4 ACM COP"4 ni, I wNjIh.R :' r.3 ,)oK IC t.-'1.4, SF1 T P AtL D.J'f.PfA" -Il t.4 [fI.n
7 2 ACM CO'w OALFY l-'~'1)C.1u J (-A -oSI Vý7'ýTvAL tI4M0-! 5.-tQT~r, I' "'uITCIC
5ý j3 AFIPS I'4CC CMITC-LOW A .3 43:00 _ ~RE'iAlfri} MLT[P400.VAMLI-.; SYST&"S;

s3.ý JEFF ININATL C"Ft C'4 ' A 70 :06 I '4PLiFNA J)0T7l'. OF nPFPhT['-., ?YSf-M
431 O)ATAMATION CO'.'IAIOV) J ', 6:0 ()1, -L/I AS, TO-)(t C-A 'ISýTFM 4lm ~ u[

3 13 COýP SOMji4YS COFiMAN:FLPH1Cr 11:06 579J(m !OEAnLOC'.S

I 0) IEEE Cool T-11UTE ýA.'E J:C'lks.FJ 69:11: I I OoT [IN OF L-A C rAC q,) 75-4~~

(0) Sort by Author (desceuoong)

3 Figure 62. Example of Sort Routine Output

141

;,j>t
4

g-.. ~ - - - --- !M

C %IUN T POS11IHON X AAXXAX XX X N XA XXXXXX XO.

1? ACM COMM 1ýFkNcTF1N:SH-APPF 71.02 POLICY DRIVEN SC"Ff)ILER FOQ TS.S
2 2 ACM COMM DALLY MZODENNIS J 1,R:05 VERTuAL MFHOPY SHARINO, IN MULTics
3 34 ACM ('OMýv DO7NNING0 P j 6A:0'; WORIC1NO SET MODEL PPOGRAM BEHAVIOR
4 11 ACM COM'M DFNNIJS J 8 69-05 POSITION PAPER COMPUTING COMMU'NICATNSI
5 ?~1 ACM C OM- DIJKSTý,& E w 6,3.09 SOLUTION IN CON COIPRENT RPOG CONTROL
f6 i2 ACMA COMM r0tJIKSTPA r. W 68.05 ST~uCTRE THE MULTIPP0OORFAMMIN~j SYSTEM
7 23 !kCM COMM GQAHAM P M 61A: 05 PqO)TFCTTON INFOlPMATION, PPOCE5STNG

86 ACM COMM HiEkMAN' 66 N O6N:07 WPr.VFNT1ON OF SY5TEM fOFAF)L-CK
96 ACM- COMM IRONS In 7 70:01 EAPF141ENCE wITHq FXTENSIBLE LANGL AGE

10 4 ACM COMM4 NIFLSvN N R. 7 0:08 ALLn(ATION ComPuTFR PFSOURCFS
11 Ž`3 ACm COmMv RANflFLL:HIJLHNF' &M:ON OYNAMIC STORAP-F AL.LOCATION SYSTEMS;

12 ?H ACM COMM SlrifmkLAND I F 08:06 FUJTURES MAPw.FT IN CDMPJTIER 1 1MF
13 30 ACM COMM wAITL " m 1n:07 MOHILE PR0(,WAMMTNr SY-TEM:STA6 1 I2
14 35 ACM COMM WILKES M VM:"0 1 COMAPI)11S THF N AND NOW

1533 AFIPS FJCC CPITCHLOW A J 63:09 6vNýAL/F.H MIILTIPHOGCPAM,4IN(, SV5TLMS
16 9 AFIPS FJCC DýNNIN0SR P j 6P:09 THPASHINU:1TS CAuJSES ANT) PPEVF.NTION
17 113 AF S ~JCC LAMPSON 4 W 69 :09 DYNAMIC PW)TECTION STIPIICTIJPES
JA 17 AFIPS SJCC PI. F INFOCK L 70:05 CONTINIJIM TUHF SHMPIN(, SCHEDULINGC
19 114 C0M.0 .qEvIE-*S r"lML jp hA: 5 TIMV~A[Sdlu-iAM
20 13 COMP- Ni IQ VF Y; C'OFI MAN :Ft PH I CK 71 :06 SYSTt M OF AI)L OrcW
21 10 Co~lO SLVEv Y Mz(VNINCD P J 70:G'4 V14IUAL YMFMOPY
22 15 COMP StlVFYI MHffImAN L. J 6'4:of, COMPIITEPS ZNt) PPIVACY
?. 3 1 COWP ' IPW Yc t,.C-)0uIu(AL.L m H 70:09 C(1MPU7F.q SY1;Tm Slm)LATIOA I
24 3 rflMP YSOMVFYG iC 101Y 69: -16 SURVEY AN4LYTIr.At TTMF SlIMING MODELS
2S .17 COMO-)y1 VuIýV",y. .. ON 4 V 69: 03 Y'F,'JRV IqDýIY A..u, mOfý4TOP 5YSTIFMý
26 1!6 Cflp 1' SiuVý Y" woI 1 .6:3 ECf NC COmPU~TwwS :HISTowICAL S)JQJEY

27 5S CQI~"F LL T1, (Ao T R C. 71: 06 DiEAOLOCK IN COMýPLITEM SYSTEMS
214 31 t)M!.ld-1TI(N CO1.'-i,,T0I: j 691: (') 1, P1/IA TOOL PO;' ;YTIm PRWP~,A~MINC .
29 7 1 'ý 'Y' '"I P vw%1 u)1I 0 j :, 7 AVo)IOINO7 OF AfDOO.K MuJLTI TA9KI,%, SYSTFM
30 ?0 IFF'w OlmdPITL oo~J:f)1JHEr H 6;9: 1 I P111(PF.VF0PuMAfrC9 ORUm STOQAGE
,31 13? Iv` I NI16 o 4I C : 70: 0h- IMIIm 10'i NIT I I 0') OF OPFPAT I NC SYSTEmS
3? 16 t,]P T~'uSl 'I I "'ujý P :Fb.A-?f)c :()4 OME-F ýVFL 'ýOP~r SYSTI'M
33 14 ,1) T uwH-of ! 1 14 1,5 j i 6: 06 (, u7)7uF T;PNOS IN TIMCO SHAPIN(G ,YSTEmS
,14 >4 OSr 'YM.N' P10(IA0:'j ý4I Tý (14 610 "ACM! NV 1NKFP91-FuirFT S;OFTw&Pf-
35 1'4 P0 I1 Nfl 'ON1 LAMPSO1. 41 ., 71 : 1) 0

14(Tý CTIoN1-

(d) Sort by Journal (ascending)

Figure 6~2. Exaniples Of Sort tiou~tine Output (cont'd)

MATPIE A wATPIX A PPOTIIICT
MATRIX A

6 -? -3 -7 -

-~ 6 11 -A -in -6
11 4 -11 9; -4 -4

-1 -11 ? in 2 13
1 -11 14 -'A -11

mATRIv R
11 2 -3 ' 10 -
JA -11 -10 -17 1 -A

7 -?1 -7 ?1 PO 16 -2
-1 -C; 9 IQ 13 -A -I

-14 -16 17 -24 -20 1 C; -1?
-19 A 15 -1 3 -18 -13 V?

47 656 -20 ?1 -77 19 20 49;7

l1p -187 -911 610 26 IA'. -130 29

-500r 101 393 -4F11 38? -?24 -61 -7c;
SS 26 - 165 664 461% 295 -6F6 -I sr

Figure 63. Examples of Matrix Print Routine Output

142

'*'..-~~ ME -'~

Z3 CC a C. C 3o 1 , Cm

Oa~N C~N4 cr4 intt d~f a tr 4 t-tO Cc .1t- ec M a lrý

*3 *I I II I

Ir If Im &.1'- -I 1 I N N- ccNC- L C I -a'rtrrr C- c 4 -lmrZý,
I 3- 17 a(a,- (a m.IN IV 4E

r 3 - 1 4 (

I rc f I f, I

,C L P-a M - CC M W Lr . 4 a m k. r 0

A A..

ji C'lrcCrr-rtt41 mlC~' ~ cr~i~ V4&ht ~ - ~ c c
3- I I-- I I -It- I- I -I NC c'c~w c~- .

C N-- I 'I t Ife& ;-. 7 1

I i I III I, Im r

a M NC C4 N CC C MCO NN g~ X4~3 aC C ~ ~~ 4I 0

a ~ ~ ~ ~ ~ ~ ~ , e,~C~ -c t - - n M. CII 0J-. . Lr4-m0 -rCa.Nrr m

Ir ftII ~ ~ . I & e 44 . .

S

!II I

tII

APPENDIX I

HISTORICAL REVIEW OF MICROPROGRAMMING

tI I

L Digital computing systems have traditionally been described as being composed

of the five basic units: input, output, memory, arithmetic /logic, and control
"(Figure 64t. Machine instructions and data are communicated among these units

ii as indicated by the heavy lines in the figure are generally well known and
understood. The control signals (as indicated by light lines in the figure), are
generally less well known and understood except by the system designer. These
control signals generated in the controi unit determine the information flow and

timing of the system.

Microprogramming is a term associated with the orderly and systematic approach

to the design of the control unit. The functions of the control unit include:

1. Fetching the next machine instruction to be executed from
- I memory

2. Decoding the machine instruction and providing each microstep
F control

3. Controlling the gating of data paths to perform the specified
operation

4. Changing the machine state to allow fetching of the next
instruction.

The conventional control unit is designed using flip-flops (e.g. , registers and
counters) and gating in a relatively irregular ad hoc manner. By contrast the
control unit of a microprogrammable computer is implemented using well
structured memory elements, thus providing a means for well organized and

flexible control.

145" -- ' I

Microprogramming is therefore a technique for implementing the control function
of a digital computing system as sequences of control signals that are organized
on a word basis and stored in a memory unit.

It should be noted that if this memory is alterable, then microprogramming
allows the modification of the system architecture as observed at the machine
language level. Thus, the same hardware may be made to appear as a variety of
system structures; thereby achieving optimum processing capability for each
task to be performed. The ability to alter the microprogram memory is called
dynamic microprogramming as compared to static microprogramming which
uses read only memories.

As can be seen in the following brief histcoical review, the concept of micro-
programming was not widely accepted except academically during the 1950's.
The primary reason for this was its high cost of implementation, especially thecost of control memories. From the mid-1 960's to the present there has been

a definite trend toward microprogrammable processors and more recently to
dynamic microprogramming, This effort has been inspired by rapid advances
in technology, especially control memories. I

CONTROL

ARIgTHMETIC

LOOICa

* HEAVY LINES INDICATE INSTRUCTIONSB DATA PATHS

* LIGHT LINES INDICATE CONTROL PATHSI

Figure 64. Traditional Digital Computing System Block Diagram

1461

*1
t

BRIEF HISTORICAL REVIEW OF MICROPROGRAMMING

1951 WilkesI objective was "to provide a systematic
approach and an orderly approach to designing

the control section of any computing system. "
He likened the execution of the individual steps
within a machine instruction to the execution of
the individual instructions in a program; hence
the term microprogramming. This view is

:0 lhardware design oriented.

Lincoln Lab (see Van der Poel with differentI--emphasis used the term microprogramming to
describe a system in which the individual bits
in an instruction directly control certain gates
in the processor. The objective here was to

L provide the programmer with a larger instruc-
tion repertoire. This view is software design
oriented.

E 1956/7 Glantz3 and Mercer4 pointed out that through

S--- r microprogram modifications the processor
instruction set may be varied.

5 6 7
1958-1960 Blankenbaker , Dinneen , and Kampe described

simple computers based on Wilkes model.

1961-1964 Great international interest was shown from
Ij U. S., U. K., Italy, Japan, Russia, Australia

and France.

SDat matio8-12

Feb. 1964 In Datarnation five articles appeared on
microprogramming with emphasis on how it
might extend the computing capacity of small
machines.

1964 IBM System 360 (Stevens 1) demonstrated that
through microprogramming, computers of dif-
ferent power with compatible instruction sets
could be provided (used read only storage).

mimr1 4

1965 Melbourne and lugmire described micropro-
gramming support for compiling and inter-
preting higher level programming languages.

147I

S1965 McGee and Petersen pointed out the advantage
of using an elementary microprogrammed com-
puter as a peripheral controller; i. e., as an
interface between computers and peripheral
devices.

1965-1966 Green , and Tucker described emulation of
one machine on another through microprogram-
ming.

SOpler18
1967 Opler coined the term "firmware" for micro-

programs designed to support software and
suggests the increased usage of microprogram-
ming and describes its advantages./ 19

1967 Hawryszkiewycz discussed microprogram
support through special instructions for problem

1 oriented languages.

1967 Rose20 described a microprogrammed graphical
interface computer.

1968/ Lawson21 discussed program language oriented
/ instruction streams./

1911 9 Wilkes22 and Rosin23 provided surveys of the
/ microprogramming advances./

There were also announcements of many new
microprogrammed cTrputers (e. g., Standard
Computer - Rakoczi .

1970 Husson25 provided the first textbook on micro-
programming.

1971 Tucker and Flynn26 pointed out advantage- of
adapting the machine to the task through
mnicroprogramming.

July 1971 The IEEE Transactions on Computers offered
a special issue on microprogramming.

July 1972 Clapp 27 and Jones, et. al. 28 provide annotated
microprogramming bibliographies.

148

II

p ti-"

1. Wilkes, M. V. "The Best Way to design an Automatic Calculation Machine"
Manchester University Computer Inaugural Conference Proceeding (1951),

_ jp. 16.

2. Van Der Poel, W. L. "Micro-Programming and Trickology" John Wiley

and Sons, Inc. (1962), Digital Information Processors.

3. Glantz, H. T. "A Note on Microprogramming" Journal ACM 3, Vol. No. 2,
(1956), p. 77.

4. Mercer, R.J. "Micro-Programming" Journal ACM 4, Vol. No. 2 (1957),
p. 157.

5. Blankenbaker, J. V. "Logically Microprogrammed Computers" IRE Prof.
Group on Elec, Corn. (December 1358), Vol. EC-7, No. 2, pp. 103-109.

6. Dineen, G. P,, Lebow, I. L., et al. "The Logical Ded gn of CG24" Proc.
BE.J.C.C. (December 1958), pp. 91-94.

7. Kampe, T. W. "The Design of a General-Purpose Microprogram-Controlled
Computer with Elementary Structure" IRE Trans. (June 1960), Vol. EC-9,
No. 2, pp, 208-213.

[8. Beck, L., Keeler, F. "The C-8401 Data Processor" (February 1264).
Datamation, pp. 33-35.

1 9. Boutwell, Jr., 0. "The PB 440 Computer" (February 1964), Datamation,
pp. 30-32,

1 10. Amdahl, L. D. "Microprogramming and Stored Logic" (February 1964),
Datamation, pp. 24-26.

11. Hill, R.H. "Stored Logic Programming and Applications" (February 1964),

Datamation, pp. 36-39.

12. McGee, W. C. "The TRW-133 Computer" (February 1964). Datamation,
pp. 27-29.

13. Stevens, W. Y. "The Structure of SYSTEM/360 Part II - System
Implementation" IBM Systems Journal, Vol. 3, No. 2 (1964) pp. 136-143.

14. Melbourne, A. j., Pugmire, J. M., et al. "A Small Computer for the
Direct Processing of Fortran Statements" Computer Journ. (England)I (April 1965), Vol. 8, No. 1, pp. 24-27.

1 149

15. McGee, W. C. and Peterson, H.E. "Microprogram Control for the
Experimental Sciences" Proc. AFIPS (1965), FJCC Vol. 27, pp. 77-91.

16. Green, J. "Microprogramming Emulators and Programming Languages"
Comm. of ACM (March 1966), Vol. 9, No- 3, pp. 230-232.

17. Tucker, S.G. "Emulation of Large Systems" Communications of the
ACM (December 1965), Vol. 8, No. 12, pp. 753-761.

18. Opler, A. "Fourth-Generation Software, the Realignment" Datarnation
(January, 1967), Vol. 13, 'No. 1, pp. 22-24.

19. Hawryszkiewycz, I. T. "Microprogrammed Control in Problem-Oriented
Languages" IEEE Transactions on Electronic Computers (October 1967),
Vol. EC-16, No. 5, pp. 652-658.

20. Rose, G.A. "Intergraphic, a Microprogrammed Graphical-Interface
Computer" IEEE Transactions (December 1967), Vol. EC-16, No. 6,
pp. 776-784.

21, Lawson, H. W. "Programming Language-Oriented Instruction Streams"
IEEE Transactions (1968), C-17, p. 476.

22. Wilkes, M. V. "The Growth of Interest in Microprogramming - A
Literature Survey" Comp. Surveys, Vol. 1, No. 3 (September 1969),
pp. 139-145. -

23. Rosin, R. F. "Contemporary Concepts of Microprogramming and Emulation"
Comp. Surveys, Vol. 1, No. 4 (December 1969), pp. 197-212.

24. Rakoczi, L. L. "The Computer-Within-a-Computer: A Fourth Generation
Concept" Computer Group News, Vol. 2, No. 8, (March 1969), pp. 14-20.

25. Husson, S. "Microprogramming: Principles and Practices" Prentice
Hall, Englewood Cliffs, N.J. (1970).

26. Tucker, A. 13. and Flynn, M. J. "Dynamic Microprogramming: Processor I
Organization and Programming" CACM (April 1971), Vol. 14, No. 4,
pp. 240-250. I

27. Clapp, J. A. "Annotated Microprograming Bibliography" SIGMICRO
Newsietter, Vol. 3, Issue 2, (July 1972), pp. 3-38.

28. Jones, L. H., Carvin, K. et al. "An Annotated Bibliography on Micro-
programming" SIGMICRO Newsletter, Vol. 3, Issue 2, (July, 1972),
pp. 39-55. j

150

I APPENDIX II

FINAL SUMMARY REPORT

I BIPOLAR LSI

- •FOR

BURROUGHS INTERPRETER

[S....MAY 1972

|[CONTRACT NO. 82329

S[PREPARED BY

S[TEXAS INSTRUMENTS INCORPORATED

P. 0. BOX 1443

HOUSTON, TEXAS 77001

FOR

BURROUGHS CORPORATION

DEFENSE, SPACE & SPECIAL SYSTEMS GROUP

PAOLI, PLNNSYLI'ANIA 19301

1

; .: 1 5 1

TABLE OF CONTENTS

SECTION PAGE

I LARGE SCALE INTEGRATION I

Ii LOGIC DRAWINGS 5

III GENERAL CIRCUIT CHARACTERISTICS 6

IV LOGIC SLICES 7]
A) TYPE "N" 7

1. DATA

Z. FIRST LEVEL METAL MASK 8

B) TYPE 'IS" 9

1. DATA

2. FIRST LEVEL METAL MASK 10"

V LOGIC CELL DATA 11

A) NAND GATE 11

B) EXCLUSIVE OR GATE 12

C) AND - NOR - INVERT GATE 13

D) J - K MASTER-SLAVE FLIP-FLOP 14

VI LOGIC CELL PHOTOGRAPHS 16

A) DUAL 3-INPUT NAND GATE 16

B) 7-INPUT NAND GATE 16

C) EXCLUSIVE OR GATE 17

D) AND - NOR - INVERT GATE 17

E) J - K MASTER-SLAVE FLIP-FLOP 18 j
, VII PACKAGE DATA 19

H i) cont'd...

152
,• 152

| J

TABLE OF CONTENTS

(cont'd)

SECTION PAGE

VInI ARRAY SUMMARY DATA 20

A) DRA-3013 20

SB) DRA-3014 21

C) DRA-3015 22

SD) DRA-3016 23

E) DRA-3017 24

F) DRA-3018 25

XI RETURNED MATERIAL REPORT 26

X RELIABILITY 28

--5t

I
m15

"LARGE SCALE INTEGRATION

Via Discretionary Routed Arrays

Texas Instruments is using monolithic discre-

tionary routing technology to produce Large Scalec---am Low Integrated (LSI) arrays. Large bipolar wafers are

11TWINCO-,M produced containing an intermix of the gates and

flip-flops required to perform logic functions.

More than 16,000 separate components are
diffused into a single 1 1/2-inch-diameter tilicon

-I=W"= slice. These components are then connected with

1 C -T I 2i first level metallization into a minimum of 1410
equivalent gates. (See Figure 1.) The slice is then

probed to determine the individual characteristics

of each device on the slice.

Customer logic requirements are fed into
computer-controlled equipment, which has been

developed to goerate unique interconnection
masks for each wafer at low cost.

_ _ _ _ _ Custom interconnections are then produced

using probe test data and a computer to develop
u the discretionary routing masks. Using these auto-

Figure 1. Multilevel process mated techniques, custom arrays can be developed j
Sfrom wafer to array test, to fit most logic specifications. Multilevel metal

all computerized, interconnect technology now makes possible the

production of very complex arrays in a short time.

1!

•.154 $

j CUSTOM LSI ARRAYS

tI Custom LSI Arrays are produced by discretionarily interconnecting various circuits or cell types
on the face of an LSI wafer, similar to the interconnection of individual integrated circuits on a PC

--- board. These are TTL logic circuit types and are similar to TI standard series SN5400 integrated cir-
cuits. The same general logic rules (loading, fan-in, fan-out, logic states, speeds, etc.) that apply to
series SN5400, apply to the LSI circuits. Therefore, to design a system with LSI, or to reimplement
an existing one, is a relatively easy, straightforward process.

LSI INTERFACE

There are three basic interface methods that can be achieved with the LSI technology:

1) The first method is to implement a functional bipolar logic requirement with the
I= standard wafers currently in assignment inventory, shown on page . These types

are currently in production and stocked, waiting fer assignment to a logic require-
ment. The addition of multilevel metallization converts these slices into functional
arrays.

Partitioning the arrays for the number of circuits and types available on the wafer
and limiting the number of input-outputs, not to exceed 126, is all that is required.
Presently, the time from logic diagram input to completed array is in the range of
30 to 90 days, depending on complexity.

2) The second interface method is implemented by creating a custom wafer using stan-
dard circuits from our circuits library. This often reduces the total number of arrays
needed in a system, thus reducing the system cost. The highest single cost in the
design of IC's is the set of diffusion masks used to create the individual circuits.
This high cost has already been absorbed in the design of standard circuits. Step-
ping and repeating these standard circuits around on a wafer to form a custom dis-
tribution or quantity of given circuit types is a relatively low-cost operation. Thus,
a custom wafer containing a unique distribution of circuits for a specific application
provides the interface.

TI is continuously expanding the present circuits library with new, more complex
circuits. Most of these will be similar, if not identical, to the circuits presently
available as standard Series 5400. Thus, implementing LSI arrays remains simple.

i
::t" ,•155

3) The third interface method with LSI is a total custom appoach. A few tOmsand
arrays of a single type may justify the expense of a custom circuit as well as that of
a unique wafer. General-purpose logic arrays will provide 200- to 800-gate complex-j
ity while customized circuits and wafers can provide arrays of 600 to over 2000-gate
complexity on a single monolithic substrate.

f ARRAY TESTING

The final phase of creating an LSI array is the testing of interconnections and the verification
that the array will perform in accordance With the logic diagram. Because testing an input logic
array with all possible combinations of inputs that can occur is impractical, TI has developed a
"$single-fault modeling" approach. Testing for a single type of fault at each node within the logic
network is both practical and effective. This approach assumes that a set of inputs can be defined
that not only will exercise each circuit output but also will test for the output being stuck-at-one
or stuck-at-zero.

The number of tests required for a 200- to 400-gate array is in the thousands. But this is a
reasonable number to generate and test with computer programs and computer-controlled test equip- -

ment. The equipment is capable of applying 5,000 tests per second to a 156-pin LSI package,

This approach to tests does not require knowledge of the functional capability of a logic array.
Therefore, a logic diagram can be provided, the multilevel interconnection accomplished, and the
completed array tested without the operator knowing what the array does functionally. This gives .F ~ the customer confidence thait his circuit innovations are protected. in addition, it assu res that this
informa~tion is treated on a proprietary basiia.

AR RAY PACKAGE(

A general-purpose package has been developed for housing whole wafers of monolithic semi-
conductor components. The package serves as a suitable container, protects the wafer from handling
and environments, provides for adequate heat transfer, and is capable of mounting and interconnec-
tion into customers' equipment-IS A 2 1/a-incii square, alumina-ceramic substrate with thick-film

metallization leads is the package developed through extensive research. It provides 39 leads on
50-mil centers on all 4 sides of the package so that conventional solder or ref low solder techniques

can be used.

156

Normally the wafer is mounted with a special high-temperature epoxy adhesive, providing

typically a 3 C/W gradient between the LSI wafer and the ceramic header. The wafer is connected

to the gold-plated lead frame with gold wires, using conventional thermocompression techniques.
This results in a high-reliability all gold system. The standard package has an epoxy-sealed ceramic

lid, but a hermetically sealed package with Kovar-type lid can be provided.

1I

Ii

S~157

LOGIC DRAWINGS

1. LOGIC UNIT I
REV. B - 12-14-70
SK-0982-0109
DRA-3013

Z. LOGIC UNIT 2
REV. F - 3-4-71t~i SK-0982-0110
DRA-3014

3. CONTROL UNIT 1
REV. D - 4-16-71
SK-0982-0113
DRA-3015

4. CONTROL UNIT 2
REV. B - 4-26-71
SK-0982-0114
DRA-3016

5. MEMORY CONTROL, UNIT 1
REV. D - 4-16-71
SK-098Z-0111
DRA-3017

6l. MEMORY CONTROL UNIT Z
REV. C - 4-27-71
SK-0982-0112
DRA-3018

AA -5/8/72

158

• ,_- ..-. _•:~~~~~4--- .-. - ,• _-,.,

BIPOLAR LSI

GENERAL CIRCUIT CHARACTERISTICS

tabsolute maximum ratings over operating case temperature range (unless otherwise noted)

Su.pply Voltage VCC Short Duration (30 seconds) (see note 1) 7 V
Input Voltage V, (see notes 1 and 2) 5.5 V

Operating Case Temperature Range -55°C to 125°C
Storage Temperature Range. --65°C to 1500C

"L NOTES: 1. Voltages are with respect to network ground terminal.

2. Input signals must be jero or positive with resp•ct to network ground terminal,

recommended operating conditions

{•MIN TVP MAX UNIT

Supply Voltage VCC 4.5 s s. v

1. electrical characteristics over operating temperature range (unless otherwise noted)

PARAMETER TEST CONDITIONS T MIN TYP* MAX UNIT

V lH High level input voltage VGC - 4.5 V 2 V

VIL Low level input voltage VCC - 4,5 V 0.8 V

VOH High level output voltage VCC -4.5 V, tIlod ,
4 0 0

/M A 2.4 3,5 V

VOL Low level output voltage VCc - 4.5 V, Isink - 8 rrlA 0.22 0.4 V

N High level input curent VCC - 5.5 V. VIH I 2 4 V, 40 MA

one normalized load VCc= 5.5V VIH - 5-5 V 1 mA

Lovj level input current
1
lL one normalized load VCC - 5.5 V, VIL - 0.4 V -1.6 mA

Sfort-circuit output current
. (output in logic one st•te) Vcc - 5 -18 -57 *j

Ali typreal values Ere at VCC ' 5 V. TA - 25%C

Not more than one output should be Shorted Et a time.

fan-out

All LSI gates and flip-flops are rated for a normalized fan-out of 10. This fan-out should not

N include more than 5 externai (outside of package) 0 state loads.

1
I 159

•-•=~~~~~~~~~~~............ • ..-..................- •. . _ : • -*---• : -L: *---: •.-. -.. _ . ..; - - .-...... :..--.,•,

7.j

LOGIC SLICE - TYPE 'W'

IF I

I II
TILT

RECOMMENDED*I
CIRCUIT TYPE TOTAL NO. MAXIMUM USE

J.K FLIP-FLOP 100 301
AND.NOR-INVERT CATE 02 25

EXCLUSIVE OR GATE 60 is
&-INPUT GATE 232 701
7-INFUT GATE 56 17

RECOMMENDED DESIGN WITH UP TO 30% OF EACH SINGLECIRCUIT TYPE.I

S 160

II

IT

I III if. II I

It9
T i I I

WI

"--- 1
LOGIC SLICE - TYPE. -St

EDP

LI

-M M
.~ ~ _ .L .L3m

9 KIN

RECOMMENDED

CIRCUIT TYPE TOTAL NO. MAXIMUM USE

J.K FLIP-FLOP 58 26

iI

AND-NOR-INVERT GATE 46 21
EXCLUSIVEOR GATE 18 10

3=INPUTIGATE 96 60 E

7-INPUT GATE 30 19

1621

,. i

ZL

:-' 5c y

- : - -

!le

NAND GATE

LOGIC

SCHEMATIC

- j

INPUTS

0.---

COMPONENT VALUES SHOWN ARE NOMINAL.

CHARACTERISTICS (Vcc = 5 V. TA - 25°C, N = 10)

PARAMETER MIN TYP MAX UNIT I
AV PROPAGATION DELAY 9 19 ns

POWER DISSIPATION 10 mW

FAN-IN (NORMALIZED) - I
FAN-OUT INORMALIZED) 10

NOTE: FOR MORE GATE INFORMATION SEE SN5400 DATA SHEET. i

164ii •°I
-- -- *- - - * -

EXCLUSIVE OR -GATE

LOGIC ,_s_,_jINPUTS OUTPUTS

A 8 C F1 F2

F1 000 1 0
100 0 1.,
0 010 0 1
0110 0 1

I 1 0 0 1

•C 10 10 1 00 1

I 1 0 0

SCHEMATIC

n~L ;.. th L.1 Intl1

ni ,,

•Pt

I.

m • CHARACTER ISTICS (VCC = 5 V, TA = 25°C, N = 10)

PARAMETER MIN ryP MAX UNIT
SAV P'ROPAATOANb DELAY - I

al

,"POWER DISSIPATION 26 mW
S~FAN-IN (NOR;*lAL;ZEDI

SFAN-OUT INORMALIZEDI 10 -
j .,

4 165

AND-NOR-INVERT GATE
4 " = •• LOGIC

a _|F ,

33
Si 3 F2

2

2

SCHEMATIC
-0-1,1 IS A.A M A

4 I

3S

WA Fi

I I -- -

1

I i AV PROPAGATION DELAY
S6F1 10 20

F2 19 39 m

POWER DISSIPATION 40 niW
FAN-IN (NORMALIZED) 1

FAN-OUT (NORMALIZED) 10

1661

J-K MASTER-SLAVE FLIP-FLOP

LOGIC

SPRESE TRUTH TABLE

j cl tn ti,+.I

Cl ~~ . 0C -11

0 10 c"
SK 6_1--0, 0 01 0

Kj1 0 1

POSITIVE LOGIC: NOTES: 1.J-J1 ,J2'4

LOW INPUT TO PRESET SETS O TO LOGICAL1 2.IK K K2 K3

LOW INPUT TO CLEAR SETS 0 TO LOGICAL 0 3. tl SIT TIME BEFORE CLOCK PULSE.

PRESET AND CLEAR ARE INDEPENDENT OF CLOCK 4. •a BIT TIME AFTER CLOCK PULSE.

DESCRIPTION

"THESE J-K FLIP-FLOPS ARE BASED ON THE MASTER-SLAVE

PRINCIPLE AND EACH HAS AND GATE INPUTS FOR ENTRY

INTO THE MASTER SECTION WHICH ARE CONTROLLED BY

THE CLOCK PULSE. THE CLOCK PULSE ALSO REGULATES

THE STATE OF THE COUPLING TRANSISTORS WHICH CON.

NECT THE MASTER AND SLAVE SECTIONS. THE SEQUENCE

OF OPERATION IS AS FOLLOWS: HIGH 2 3

1. ISOLATE SLAVE FROM MASTER
2. ENTER INFORMATION FROM AND GATE INPUTS LOW 3

TO MASTER

3. DISABLE AND GATE INPUTS CLOCK WAVEFORM

4. TRANSFER INFORMATION FROM MASTER TO SLAVE.

'a 167

J-K MASTER-SLAVE FLIP-FLOP (CONTINUED)

SCHEMATIC

i it

' I
oI

a~~ ki UI

NIMES: C0WoftMVA.L~f&Sm•mAf -... ,,m,.. c.• i

CHARACTERISTICS (Vcc = 5 V, TA 25°C, N 10)

PARAMETER MIN Tyr MAX UNIT

MAX CLOCK FREQUENCY is 20 M)

POWER DISSIPATION 40 MIN

FAN-IN (NORMALIZED)

J&K 1•I

PRESET. CLEAR G CLOCK C -

FAN-OUT 10 0 -

NOTE: FOR MORE FLIP-FLOP INFORMATION REFER TO $45472 DATA SHEET. i

168

lt I
-- I

na

nI

S ~DUAL 3-INPUT NAND GATE

I:

,.

111

a.-..
.. 1

I
I

'4

EXCLUSIVE OR GATE

I

I
3
I
I
I
I

AND - NOR - INVERT GATE 1
S

I
I

-II
I

S _ 3J - K MASTER-SLAVE FLIP- FLOP

t 171

"PACKAGE DATA

PIN LAYOUT

t11 I1 1 0 2 797

lie1 = I 1," 11

.41119 I II0ii

16

S• I 1• • 40
156 NOTCH

S12 8 14 26 31 38 39

- GROUND

PACKAGE DIAGRAM

117 79

1ie a.... 78u I I'

I I I

I II

I 4

NOTCH 39 190

TOP VIEW BOTTOM VIEW 4
LEADS .RE GOLD PLATED F-IS DIMENSIONS NOMINAL WEIGHT - 22 GRAMS

ALLOY ON 50 MIL CENTERS (IN INCHES)

TEX AS INSI RUMENTS RESERVES THE RIGHT TO MAKE

!ý,•iAtIG(ES AT ANY TIME IN ORDEP TO IMPROVE DESIGN

AW, TO ,'-UPP.Y 'HE BEST PRODUCT POSSIBLE,

172

DRA-3013 SUMMARY

Gate Total Gate Pins Pins Percent
Function Total No. Coplexiy lexit Used Available Used

FF 8 6 48 40 88 45

ANI 30 7 210 265 480 55

EXOR 18 3 54 64 90 71

3G 93 1 93 257 372 69

7G 15 1 15 82 120 68

"TOTALS: 164 420 708 1150 61

I.
POWER DISSIPATION - 3.14 WATTS

TOTAL PINS - 801, including 93 1/0 PINS

INPUT CONNECTOR PINS 67

OUTPUT CONNECTOR PINS - Z6

AA- 518/72

173

DRA-3014 SUMMARY I
Gate Total Gate Pins Pins Percent

Function Total No. Complexity Complexity Used Available Used

FF 32 6 19Z 128 352 36 I
ANI 26 7 182 247 416 59

EXOR 16 3 48 64 80 80

3G 113 1 113 344 452 76

7G 17 1 17 103 136 75

TOTALS: 204 55Z 886 1436 61

POWER DISSIPATION - 4. 10 WATTS

TOTAL PINS - 967, including 81 1/0 PINS

INPUT CONNECTOR PINS - 47

OUTPUT CONNECTOR PINS - 34 4
I
I

AA- 518/72 1
.17

,174

DRA-3015* SUMMARY

|llI
Cate Total Gate Pins Pins Percentt F~unction Total No. Comp~lexity Cojylx! Used Available used

"F 22 6 132 109 2.4.2 45

ANI 21 7 147 128 336 38

EXOR 9 3 27 30 45 66

3G 83 1 83 224 332 67

p TOTALS: 135 389 491 955 51

POWER DISSIPATION " 2. 82 WATTS

TOTAL PINS - 559, including 71 I/O PINS

INPUT CONNECTOR PINS - 36

OUTPUT CONNECTOR PINS - 35

*NOTE - -LEVEL METAL SYSTEM

I~I

AA-5/8/72

175

i -__

DRA-3016* SUMMARY

TGate Total Gate Pins Pins Percent

Function Total No. Complexity Complexit' Used Available Used

FF 14 6 84 62 154 40

AM 25 7 175 157 400 39

EXOR 10 3 30 37 50 74

3G 68 1 68 145 27Z 53 j
7G 17 1 17 85 136 62

TOTALS: 134 374 486 1012 48

POWER DISSIPATION -2. 71 WATTS

TOTAL PINS - 541, including 55 I/O PINS

INPUT CONNECTOR PINS - 40

OUTPUT CONNECTOR PINS - 15

*NOTE - 2-LEVEL METAL SYSTEM

n 1

n5/8/72

176

DRA-3017 SUMMARY

Gate Total Gate Pins Pins Percent
Function Total No. Comnplexity Comnplexity, Used Available Used

FF 38 6 228 179 418 42

ANI 23 7 161 142 368 38

IEXOR 11 3 33 44 55 80

3G 71 1 71 199 284 70

7G 4 1 4 22 32 68

TOTALS: 147 497 586 1157 50

L- POWER DISSIPATION - 3.52 WATTS

TOTAL PINS - 652, including 77 I/O PINS

INPUT CONNECTOR PINS - 42

OUTPUT CONNECTOR PINS - 35

AA -5/8/74

-077

DRA-3018 SUMMARY

Gate Total Gate Pins Pins Percent
Function Total No. Complexi.ty Complexity Used Available Used

FF 36 6 216 168 396 42

ANI 31 7 217 338 496 68

EXOR 9 3 27 38 45 84

3G 86 1 86 216 344 6Z.

7G 16 1 16 87 128 67

TOTALS: 178 562 847 1409 60

POWER DISSIPATION - 3.97 WATTS I
TOTAL PINS - 925, including 89 1/0 PINS

INPUT CONNECTOR PINS - 55

OUTPUT CONNECTOR PINS - 34

I

AA- 5/8/72 I

178

"RETURNED MATERIAL REPORT

- I. DRA- 3013 :

A) SERIAL NO. 34533

1. BAD VIASI |2. NOT REPAIRED

B) SERIAL NO. 34540

II •1. FIRST TO SECOND METAL SHORT
2. REPAIRED AND RETURNED

"•I C) SERIAL NO. 35022

"1. UNKNOWN SHORTS
2. SHORTS BAKED OUT AND NOT RETURNED

D) SERIAL NO. 31306

1. FIRST TO SECOND METAL SHORT
2. REPAIRED AND RETURNED

fl. DRA-3014:

A) SERIAL NO. 35021

1. FIRST TO SECOND METAL SHORT[•2. REPAIRED AND RETURNED

B) SERIAL NO. 34007

- 11. BAD VIAS
2. NOT REPAIRED

- C) SERIAL NO. 35208

1. BAD THIRD METAL AND/OR OXIDE STEPS1 i2. NOT REPAIRED

"D) SERIAL NO. 35808

1 1. NO DEFECTS FOUND
2. POSSIBLE ARRAY TO P. C. BOARD CONNECTION
3. POSSIBLE A.C. SPEED PROBLEM
4. NOT RETURNED

3 179 cont'd

RETUJRNED MATERIAL REPORT

Page Two

DRA-3014 - cont'd

E) SERIAL NO. 34904

1. SECOND TO THIRD METAL SHORT
Z. REPAIRED AND RETURNED

ITT. DRA-3015:

A) SERIAL NO. 33307

1. UNKNOWN SHORTS
Z. SHORTS BAKED OUT AND RETURNED

IV. DRA-3016: j
A) SERIAL NO. 33311

1. FIRST TO SECOND METAL SHORT I
Z. REPAIRED AND RETURNEDm 1

V. DRA-3018:

A) SERIAL NO. 34011

1. SECOND TO THIRD METAL SHORT
2. REPAIRED AND RETURNED

fI -- I--

m . 180

RELIABILITY

I THE MOST REGENT RELIABILITY STUDY WAS PERFORMED BY
NEATIONALUMNT INCORPORATED UNDER CONTRACT TO
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, GEORGE

C. MARSHALL SPACE FLIGHT CENTER, MARSHALL SPACE FLIGHT

CENTER. ALABAMA 35812.

ii RESULTS OF THIS STUDY ARE CONTAINED IN REPORT NUMBER

3. t 0-71-Z7 (FINAL REPORT - PHASE 1) "DEVELOPMENT OF QUALITY
- STANDARDS FOR BIPOLAR LSI DEVICES". APRIL 1971. CONTRACT

m iiNUMBER IS NAS8-21319, CONTROL NUMBER DCN 1-8-60-001 521IF1

• AND SI (I F) AND S2 (IIF).

I18

II

II
'II

18

APPENDIX Ill

ADDER OPERATIONS

SL The following tables summarize the adder arithmetic and logical operations that
may be specified using TRANSLANG. The execution phase controls and the value[determination for the ABT dynamic condition are indicated.

Notes:

I. A Register Selection: A Al I A2 I A3
A0 All ZEROS

2. B Register Selection: 13 Any B Register Select option
T3 B ONES complement (by TRANSLANG)

of the specified B Register Select
option

0 All ZEROS
1 All ONES

S3. Z Register Selection: Z CTR I LIT JAMPCR
0 All ZEROS

4. Inhibit 8 Bit Carry: 0 Allow carry into by-tes

1 Inhibit carry into bytes

5, Adder Operation As specified in Microprogramming
Section

183

*1

ARITHMETIC OPERATIONS ABT IS I
ADDER 'RESULT REGISTER SELECT TRUE IF

OPERATION FORM A 1B 2Z 3 C8 4 ADDOF RESULT IS ALL

A ADD B A B 0 0 2 ONES

A ADD Z R + S A -0 7 0 1 ONES j
B ADD Z 0 B Z 0 9 ONES

A ADLB A 1 0 0 3 ZEROS

A ADL Z R+S+I A 0 Z 0 0 ZEROS

BADLZ 0 B Z 0 8 ZEROS I

A CAD B R + S A B 0 1 2 ONES

ACADZ WITH- A 0 Z 1 1 ONES .

B CAD Z CARRY 0 B Z 1 9 ONES

0 0 0 0 0 2 NEVER

1 0 0 0 0 3 NEVER

MONADIC LOGICAL OPERATIONS

REGISTER SELECT ABT IS
ADDER RESULT 1 2 3 5 TRUE IF

OPERATION FORM A B Z ADDOP RESULT IS ALL

-A A 0 0 2 ONES

B R 0 B 0 2 ONES

Z 0 0 Z I ONES I

NOT A A 0 0 15 ZEROS

NOTB R 0 B 0 10 Z EROS

\ot Z 0 0 Z 12 zE E'-OS U

184

- - -Se S---M• '-

|I

DYADIC LOGICAL OPERATIONS

m m •REGISTER SELECT

ADDER RESULT 1 2 E3 T ABT IS TRUE
OPERATION FORM A B Z ADDOP IF RESULT IS ALL

A AND B A B 0 7 ONES

A AND Z RAS A 1 Z 13 ZEROS

B AND Z 0 B Z 4 ONES

A ANIM B A B 0) 7 ONES

A NIM Z RAS INVALID

SB NINM Z 0 B Z 13 ZEROS

I ANRI B A o 10 ZEROS

A NRI Z AS A 0 Z 5 ONES

B -N-• I Z 0 B Z 4 ONES

ANORB A B 0 10 ZEROS

SA NOR Z RAS INVALID

3 BNOR Z 0 B Z 13 ZEROS

A XOR B A B 0 6 ONES

A XOR Z (RAS)v.(RAS) A 0 Z 4 ONES

1 XOR Z 0 B Z 14 ZEROS

" EQV B A o 6 ONES

AEQV Z (RAS)v(RAS) A 0 Z 14 ZEROS

I B EQV Z 0 B Z 14 ZEROS

A NAN B A B 0 15 ZEROS

Ai A NAN Z RvS A 1 z 5 ONES

B NAN Z 0 B3 Z 12 ZEROS

A IMP B A B 0 15 ZEROS

A 1%P Z R'vs I NVA LID

"I1IrlP Z 0 B Z 5 ONES

, •185

DYADIC LOGICAL OPERATIONS (Cont'd)

REGISTER SELECT

ADDER RESULT 1 2 3 5 ABT IS TRUE

OPERATION FORM A B Z ADDOP IF RESULT is ALL

A OR B A B 0 11 ONES

A OR Z RVS INVALID

B OR Z 0 B Z 5 ONES

A RIM B A B 0 11 ONES

A RIM Z RvS A 0 Z 12 ZEROS

B RIM Z 0 B Z 12 ZEROS

TRIADIC LOGICAL OPERATIONS

ADDER ABT IS TRUE

OPERATION A DDOP 5 RESULT IF RESULT IS ALL

TRY1 A,B,Z 4 B (A XOR•Z) ONES

TRY2 A, B, Z 5 (A A Z) v (B A Z) ONES

TRY3 A,B,Z 12 AvBvZ ZEROS

TRY4 A.B,Z 13 (AA Z)V(B AZ) ZEROS

TRY5 A,B,Z 14 (A v B) EQV Z ZEROS

_• 186

APPENDIEX IV

TRANSLANG SYNTAX

Reference
Page

<Program> <Program Name Line>< Body-, <End Line> ll1

<Program Name Line> ::= PROGRAM <Program Name:--*<Start Address Ill

<Program Name> ::= <Label> 11

<Label>- <Letter-. I <Label>czLetter> I <,Label><)igit 94

<Letter> AIBICIDIEIFIGlHI IJIKILIMINIOIPIQIRtSITiUI VIWI ,3
XIYjz

<Digit> : 011121314!516!718!9 93

<Start Address> ::= ADR <Hex Address-- I t'Empty- 111

<Hex Address-- ::= -Hex Number- il1

<Hex Number- ::z Hex Digit- I <Hex Number'-.<lex Digit- 111

<Hex nigita,:: <Digit,- I A I B C('I D I LEI F 93

<Empty-> ::= {The null string of characters} 93

<1 dy> <Comment-> <Statement> ,<Body- .Statement- ill
<Body> ¢.Comment--

i<Com-nent> : COMMENT <Comment Words>; ill

<Statement> ::= <Label Part> <Line> <% Comment> 1ii
t

187

Wr -

S~I

Reference

<Label Part> : = <Label> l<Empty il

<Line> ::= <Label Constant> <Start Address> <Insert> <Instruction> il1 5
<Label Constant> ::= <Label> * <Integer> i1l

<Insert> ::= INSERT <Label> <Start Address> 112

<% Comment> ::= % <Comment Words> I <Empty> 112

<Comment Words> ::ý <Comment Character> I
<Comment Words:> <Comment Character> 112

<Comment Character> ::= <Character> I" IM&I$l [I) I11/ 93]

<Character> ::= <Letter> I <Digit> I <Single Space> <Symbol> 93

<Single Space> ::= {One horizontal blank position } 93

<Symbol> -. , + I - I : I = /oI%) 1* 93PV

<Instructiorrm ::< Label Part> <Literal Assignment> I
<Label Part> <N Instruction> 112

<Literal Assignment> ::= -,Literal-.<Assignment Op> AMPCR .1
< Literalb <Assignment Op.> SAR
,Literal><Assignment Op> SAR;
<Literal><Assignment Op> LITi
<Literal><Assignment Op> L1I
<Literal <Assignment Op-, SARI
<LiteralW<Assignment Op'- LIT 94

<Literal- ::= <Integer> I COMP <Integer> I <Label,. I <Label>, -1 9 4

<Integer> ::-<Digit> I <Digit> <Integer>- 94 1
<Assignment Op> :: =: I " 93

<N Instruction> ::= <Unconditional Part- <Conditional Part> 95

<Unconditional Part> :z <Component List- 95 1
<Component List> ::= <Component> I <Component List> ; <Component> j 95

<Empty>

<Component- ::= <Ext Op> I <Logic Op> I <Successor> 95

<Ext Op> <Mem Dev Op> I <Set Op> I <Mem Dev Op> <Set Op> 100 q
<Set Op> , <Mem Dev Op> I <Empty>

I•8 I
18

Reference
Page

-I-- !(Mere DevOp) ::=MRIIMR2IMWJIMW2jDL1[DL2IDUlI DU2IDahl DR2j

SDWI IDW21 LDMI LDN 100

<Set Op> ::= SET <Cond Adjust Bit> I RESET GC 100

<Cond Adjust Bit> T:= INTI LC1 I LC2I LC3S GC1 GC2 96

t"<Logic Op> <Adder Op> <Inhibit Carry> <Shift Op> <Destination List> 103

<Adder Op> 0 I 1 j <Monadic> I <Dyadic,-. I <Triadic> I <Empty> 103

<Monadic> <Not> <A Select> I <Not-> <B Select> <Not> <Z Select> 103

UN <Not>-:: NOT. I <ýEMPtYN 96

<A Select>-- 0 1 Al A2 A3 I <Empty> 106

L<B Select> 0 1i B J 111 <M> <C> <L> <Empty> 106

<M-:> <Gating> 106

<C> - <Gating> 106

<L>-: <Gating> 106

<Gating> ::= I TI F II 106

<Z Select> ::= CTR I LIT I AMPCR * <l'nipty>, 106

,<Dyadic> ::= <Not>- <A Select- <Binary Op> <No"- <B Select- I
<Not> <f3 Select-, <Binary Op>. <Not> <Z Select'-
<Not- <A Select> <Az Op> <Not>, <Z Select> 103

<Binary Op> -:= NOR I OR . NIM I IMP I <Az Op> 103

<Az Op> ::= ANDXCRIEQVI NRIIRIMINAN IADDI tIADLICAD 103

<Triadic> <Try Op><A Select- , <B Select- , <Z Select'- 103

<Try Op> TRYI I TRY2 I TRY3 TRY4 I TRY5 103

<Inhibit Carries> ::= IC I <Empty> 103

<Shift Op> ::= RI L I C I <Empty> 103

1 189

w-i

Reference
Page

<Destination List> <Asgn> <Dest>
<Destination List> <Asgn> <Dest> <Asgn> 107

<Asgn> : = 107

<Dest> Al I A2 A31 MIR JBI I BR21 AMPCR <Input B> I
<Input Ctr> I <Input Mar> I <Input Sar> 107

<Input BR> -- B I BEXI BAD IBC4 I BC8 I BMI I 3BBE 3BAI BBI I AII

BBAI B41 I BBI 107

<Input Ctr> CTRI LCTRI INC 107

<,Input Mar> MARI MARlI MAR2 I LMAR 107

<Input Sar> SA R I -JAR 107

<Successor> = WAITI STEPI SKIPI SAVE ICALL IEXECi JUMP IRETN 110

I Conditional Part- :.= <if Clause> <Cond Comp L.ist.- <Else Clauseý I
<If Clause>I<When Clause> <Cond Comp List-..
<Empty- 95

<If Clause> ::7 IF <Condition> 9 F)

<Conditiun- ::' <Not-- .Cond-- 96

<Cond> ::= ILSTI ISTIAOVIABTICOVIYSAIIRUCIl [EX1 i 'X2iIIOV% I
ii Cond Adjust Bit> 96

<Cond Comp List> ::= THEN <Component Ilist> 95

<Else Clause > ELSE <SuccessorN ~Empty- 36

<When Clause> = WHEN <Condition- 96

<End Line>:- END 112

190

i! APPENDIX V

TIRANSLANG RESERVED WORDS AND TERMINAL CHARACTERS

RESERVED WORDS

• The following words are reserved in TRANSLANG and may not be used as labels.

Reference Paje

SA Zero (0) as A Select. Use <]Empty>. 106

AO Zero (0) as A Select. Use <Empty>. 106

Al Al Register A Select or destination operator. 106

A2 A2 Register A Select or destination operator. 106

SA3 A3 Register A Select or destination operator. 106

ABT Adder Bit Transmit dynamic condition from
." phase 3 of prior microinstr'uction doing Adder

Op. 98, 99

ADD Addition logic operator: X ADD Y = X+Y 104

ADL Add + 1 logic operator: X ADL Y = X + Y + 1 104

ADR Starting address for microsequence.11

{(AMPCR Alternate Microprogram Count Register
Z Select into middle bytes of adder or des-
tination operator from barrel switch 12 LS

Sbits. 94, 106
AND And logical operator:. X AND Y XY 104

.1191

t 9

S~ Reference Page

AOV Adder overflow, dynamic condition of previous
microinstruction using adder, true if addition
results in overflow. 98, 99

B B Register Input Select same as BTTT; or to 3
B from barrel switch; destination operator. 106, 108

B41 To B from adder "not 4 bit carry" OR MIR;
destination operator' 109 I

"BBI To B from adder "not 8 bit carry" OR MIR;
destination operator. 109 3

BAD To B from adder; destination operator. 108

BAI To 13 from adder OR MIR; destination
operator. 109 I

EBA To B from adder OR barrel switch; destination
operator. 109 3

BBAI To B from adder OR BSW OR MIR; destination
operator. 109

BEE To B from external bus OR barrel switch; 3
destination operator. 108

BBI To B from prior MIR contents OR barrel
switch: destination operator. 109

BC4 To B from adder "not 4 bit carry" replicated
and shifted; destination operator. 108 I

BC1 To B from adder "not 8 bit carry" replicated
and shifted; destination operator. 108

BEX To B from external bus; destination operator. 108 1
BMI To B from prior MIR contents; destination

operator. 108

BRI To Base Register 1 from barrel switch 2rid LS

byte; destination operator. 107

BR2 To Base Register 2 from barrel switch 2nd LS I
byte; destination operator. 107

BSW To B from barrel switch; destination operator 107

C Circular shift right the entire adder output.

Operation takes place in barrel switch. 105

CAD Character add by carry inhibit between 6 bit I
characters (bytes). (Can use IC.) X CAD Y =

X +Y IC 104

192
• l

-.- ... = _, . . •-- . ., .: •' - ,, . - _ '. -= - - - - - - " " -

Reference Page
CALL Call a procedure: Use AMPCR + 1 as address,

and new MPCR; old MPCR to AMPCR. Successor. 110

COMMENT Allows for the inclusion of documentation on a
a listing. 111, 113

COMP Complement as appropriate for literal part of
literal assignment. 94

COV Counter overflow condition bit, reset dominant. 98

CSAR Complement SAR, destination operator. 109

CTR To counter from ones complement of barrel
switch LS byte, destination operator. Input
Select: into MS byte. 106

DL1 Device lock using BR1/MAR for device ident. 101

DL2 Device lock using BR2/ MAR for device ident. 101

DR1 Device read using BRi/MAR for device ident. 101

DR2 Device read using 13R2/MvLAR for device ident. 101

DUI Device unlock using BRI/MAR for device ident. 101

DI72 Device unlock using BR2/MAR for device ident. 101

3 DW1 Device write using BR1/MAR for device ident. 101

DW2 Device write using BR2 /MAR for device ident. 101

ELSE Sequential operator prefix to false successor. 96, 97i
END Bracket word to end a program. 112

EQV Equivalence logical operator: X EQV Y =

XY vXY 104

EXEC Executes out of sequence: Use AMPCR + 1 as
address. Successor. 110

EX1 External condition bit 1 externally set, reset
by test. 98, 99

EX2 External condition bit 2 externally set, reset
by test. 98, 99

I
F False gating of B as part of Y Select. i06e GC Global conditions used with RESET to reset

both GC1 and GC2. Synonym is GC2 or
GC1 with RESET. 98

193
!

Reference Page

GC 1 Global condition bit 1: may be set by SET GC 1
if presently reset in all Interpreters. Tested
without resetting. 98

GC2 Global condition bit 2: may be set by SET GCI
if presently reset in all Interpreters. Tested
without resetting. 98

IC Inhibit carry between bytes. 103

IF Starts the conditional part of an instruction. 96

IMP Imply logical operator: X IMP Y X v Y 104

INC Increment counter destination operator; set
COV when overflowing from all ones to all
zeros. 109

INSERT Take a copy of the selected program from the
library file and insert it in the program. 94, 112

INT Used as SET INT, interrupts all Interpreters.
Interrupt Interpreters condition bit: set by any
Interpreter; own is reset by testing, 101

JUMP Jump to address in AMPCR + 1 and put that
address in MPCR. Successor, 110

L Left shift end off the entire adder output, right
fill with zeros. Operation takes place in
barrel switch. 105

LC1 Local condition bit 1: may be set, or tested
which resets. 97

LC2 Local condition bit 2: may be set, or tested
which resets. 97

fC3 Local condition bit 3: may be set, or tested
which resets 97

LCTR Ones complenment of tWe literal regist,'L- zJ,-
tents will be placed in the counter. Destination
operator. 109

LDM Load microprogram memory. 101

LDN Load nanomemory. 101

LIT Literal register: may be loaded by a literal
assignrment. May be source for Z LS byte,
the MAR and/or CTR. 94, 106

.1

S.... •194

7. Reference Page

j LMAR Literal register contents will be placed in 109
MAR. Destination operator.

LST Least significant bit of adder output, dynamic
condition from phase 3 of previous mniero-
instruction doing adder op. 98

MAR Memory address register destination operator:
from barrel switch LS byte. 109

MARl Memory address I destination operator: same
as BRI, MAR. 100

MAR2 Memory address 2 destination operator: sarne
as BR2, MAR 100

I• MIR Memory information register destination opera-
tor from barrel switch. 107, 108

MR1 Read from rmemory address BRI/MAR mere
dev op. 100

MR2 Read from memory address BR2/MAR mere
dev op. 100

MST Most significant bit of adder output, dynamic
condition from phase 3 of previous microinstruction
doing adder op. 98

MW1 Write the content of MIR to memory address
BR 1/MAR rnem dev op. 100

MW2 Write the content of MIR to memory address
BR2/MAR mem dev op. 100

NAN Not And logical operator: X NAN Y - Xv Y 104

NIM No: Imply logical operator: X NIM Y = XY 104

NOR Nor 1,.kical operator: X NOR Y 7 XY 104

NOT Complement monadic or condition operator
Not X=X 96, 103

NRI Not Reverse Imply logical operator:
X NRI Y =X vY 104

m . OR OR logical operator: X OR Y = X v Y 104

PROGRAM Bracket word beginning a program. 111

jR Right shift end off the cntire adder output, left
fill with zeros. Operation takes place in
barrel switch. 105

195

Reference Page 1
Read complete bit: set when external data is 97
ready for input to B, reset by testing.

RESET Reset the Global condition bits. RESET GC. 102

RETN Return: use AMPCR + 2 as address and as 3
new content for MPCR. Successor. 110

RIM Reverse imply logical operator: X RIM Y = X v 1 104

SAI Switch Interlock accepts information bit. Set
when switch interlock accepts information,
reset by testing. 97 3

SAR Shift Amount Register destination operator
from i•S bits of barrel switch or from literal
assignment. 94 1

SAVE Save the MECR in AMPCR: use MPCR + 1 as micro-
address and as next MPCR. Successor. 110

SET Set the conditional bit specified: either LCI,
LC2, LC3, INT, GCl or GC2. 102

SKIP Skip the next instruction; use MPCR + 2 as
microaddress and as next MPCR. Successor. 110

STEP Step to next instruction: use MPCR + 1 as micro-
address and as next MPCR. Successor. 94, 110

T True gating for B register. 106

THEN Starts the true alternative of conditional
instruction. 95 I

TRY1 Triadic Operator: TRY1 A, B, Z = 1i A 'Z A Z 103, 105

TRY2 Triadic Operator: TRY2 A, H, Z = A Z v B Z 103, 105

TRY3 Triadic Operator: TRY3 A. B, Z = A v B vZ 103, 105

TRY4 Triadic Operator: TRY4 A. 3,. Z. = A v 8 2 103, 105

TRY4 Triadic Operator: TRY4 A, B, Z, = Z A Z 2 B 103, 105
il vA B 7.1

WAIT Wait for condition microaddress is MPCR; MPCR
and AMPCR unchanged. Successor. 110

WHEN Starts a conditional instruction, has an implicit I
ELSE WAIT. 96

XOR Exclusive Or logical operator: X -XOR Y
X Y v x Y 104

196

-'t-.

II

TERMINAL CHARACTERS
RfrnePg

Reference Page

IN, Assignment operator for destination operators. 107

Delimiter. Use is mandatory after a comment statement
and between components in a statement. 94, 113

: Terminator of label part of instruction or insert. IIl

ff: Assignment operator for literal assignments or
destination list. 107

+ Add operator. 103

- Part of assignment in literal assignment statement. 94

* Label constant separator for defines. 112

Prefix delimiter for redundant part of instruction. 93

-) Suffix delimiter for redundant part of instruction. 93

Line terminator and in-line comment prefix. 113

* Assignment operator for literal assignment or destina-
tion list. 107

U7

: _- * •:2

APPFNDIX VI
S~TRANSLANG ERROR MESSAGES

• The first section of the Microtranslator parses the input file, a line at a time, and
' • produces a listingof the file, N-Lnstructions, and error messages. The error

Smessages indicate that errors were made in the syntax or semnantics of an instruc-
: tion. They will be printed out in the following format giving the error number and

":'• the line number of the instruction as follows:

--- :***`,1ERROR NUMBER NNN 1N LINE LLL****

S~where N-'NN is the error number and LLL is the sequence number of the instruction .in the input file.

SError Number Definition

I Label too large (more than 15 characters)
S2 CTR and MAR Conflict (one receives BSW output; the other

literal)

3 Duplicate MAR (2 MAR destinations)
4 Duplicate B destination

XT W

Th 5is ecino h Micrtaslator poarethinuflalnetatmad

prdue aMitn o h iesNingstrucicoonsaneromsag.Therr

I message indicat tha eror weemd.ntesna rsmniso nisrc

Error Number Definition

7 Incorrect destination designator

8 Symbol undefined

9 Duplicate logical operator

10 Logic operator error

11 Colon equal comma or colon missing or misplaced i
12 Duplicate Z~ select

13 Duplicate A select

14 Duplicate B select

15 B Gating errorI

1i Duplicate counter operations

17 More than one set operation

18 Reset error I
19 Memory device error

20 Duplicate shift operation

21 Duplicate test condition

22 Duplicate successors

23 Successor error

24 Successor after ELSE error

25 Duplicate label

26 Literal used not in a literal assignment instruction
(misspelled reserved word) I

27 Condition error

28 Misplaced THEN I
29 Misplaced ELSE

30 Misplaced integer

31 Integer too large

32 Too many quoted characters

33 Wrong register for receiving a literal
34 Undefined input mistaken for label, or misspelled i

reserved word

35 Address wanted for insert program 1r than eurrent
address, or misspelled reserved word

36 Reset not followed by proper identifier

"200
- ~ -~-- -- -. - - - -

'isv
Error Number Definition

37 Set not followed by proper identifier

38 Undeclared label

39 Wrong type: minus sign used in a type

one instruction

40 Stack operation removed, AMPCR goes
directly to adder.

41 NOT error - "NOT" misused

f61 Named insert program not on library

62 No END on file
&63 Address error - present address >insert

address

If a nanotable name is requested which has never been saved before, NO SUCH
NANOTABLE is printed and a new name requested.

If a new nanotable is given a name already in use, DUPLICATE NANOTABLE
NAME ERROR is printed and a new name is requested.

If labels have been used in a program without being declared, the following print-
cut occurs upon conclusion of the listings.

LAST ADR LABELS NOT FOUND

2 STfR

3B SERROR
4 In0

The address is the hexidecimal microprogram address of the last instruction
"using the label in a program.

20I

I

:I 201

VAGz 3LAW410Y imE

- - - -- Q

"APPENDLX VII

GLOSSARY

A Registers (Al, A2, A3): Each of the three A registers is Condition Register (COND): The COND is a 12-bit register
- unctionally identical. The A registers are used for in the Control Unit of the Interpreter and is used to
temporary data storage within the Logic Unit of the store variouý condition bits for use during program
Interpreter and serve as a primary input to the adder. C'ecution.

Adder: The adder in the Logic Unit of the Interpreter, is a Central Processor Unit (CPU): The primary arithmetic
modified version of a straightforward carry lookahead and control unit in a conventional computer system.
adder. It is also used for executing logic operations, Condition Select: The condition select is a mais of gates

in the Contiol Unit of the Interpreter that compares

Alternate Microprogram Count Register (AMPl'CR) Ihe the results of a computation or logical operaticn in the
AMPCR is a 12-hit register in the Memory Control Unit Logic Unit with a preselected re-,ult- The result of the

3! of the Interpreter. which contains the jump or retuin comparison may be used to determine the sequence of

address for programn jumps and subroutir;ý returns execution of microprogram instructions.
within a microprogram. Control Register (CR): The CR is a 38-bit register of the

B Register: The B register is the primary input interface Interpreter which is used to store control signils from
= between the Logic Unit of the Interpreter and the the Nanomemory that are not used in phase one of i

Data/Program Memory or Devices (via the Switch Inter- clock cycle.
lock). It also serves as the secondary input to the Control Unit (CU); The CU. one of the five major func-

= • | adder.adder. tional units of tire Interpreter, is used for condition

Barrel Switch: The barrel switch is a matrix of gates in the testing and the storage and distribution of enable

Logic Unit of the Interpreter, used to shift a parallel signals received from the Nanomemori5.

data word any number of places to the right or left in- • ! a ingl clck tme.Counter ((.TR)" T'he CUR is ;in 8-bit counter in tile Z
a single clock tite. register section of the Memory Control Unit of the

Base Register I and 2 (BRI. BR2): The Base Registers are Interpreter, used for loop control and other counting
two 8 bit registers in the Memory Control Unit of the functions.
Interpreter, which usually contains the base address ofa 25-odboko at/rga eoy Data]Pro~rram Memor Iy. The lDataiPrograii Memory,. also•
aoocalled S Memory. provides storage for data and pro-

gratis (either microprogram or conventional program in

Building Block: The primary functional units of the Inter- an emulation application) and functionAi to the
prefer Based System: Interpreter. Data!Progratn main ncnmory modules of a convenli-mal computer

Memory and the Switch Interlock. system.

t1 203

-.-. r Th:"' - -

Device: As used in the context of lnieipreter-Rased Sys- Large Scale Integnrtion (LSI): The implementation of more
tens. Devices include adl dhe conwantionall computer than 100 bipolar logical gates in a single; intoEgt~ed ,.ir-
system peripherial equipments such as disk rites. miag- cult chip.
netic tape units. high speed line priarters, card readers. Least Significant Bit (LSB): For a number or satinue c
etc. arnd various sensvors usually fameid in special data presented in binary notation. lhai'.ýit paositioo sihidl
pi~ocessing applicationau The functicM of Devices is to rerset th les infcn portion of the number.
provide the unique input/output mediumn for eactih
system application. Literal Register (LIT). An 8-bit register in the Z register

section of the Memory Controt Unit of the Interpreter.
= Device Conterollet: A functional unit dies~gred to intgrface which in used for temporary storage of litenals from

and control a specific peripheral deuicie (such as a disk microinstructions.
file. magnetic tape unit. line prifacte. etc.) to the
Input/Output modute of a conwemtional computer Logic Unit (LU): The LU. one of ltre five major functional
system. units of the Interpreter. perforn- 111 erf the arithmetic,

Device Dependent Port (DDP): The DDP permits any Boolean log-ic, and shifting operations of the Interpreter.5

device to be interfaced with a Port Select Unit (PSU) Medium Scale Integration (MSI): The. irnplemestation of 20)
by providing the specific device electrical interface such to 100 bipolar loigicat gates ini a ringle integrated circuit
as logic level conversion, line driver! receiver capability, chip.
and liming and synchronization wtwn required (as in
the case of disk riles, magnetic tape atiits, etc.) Memory Address Register (MIAR): The MAR I% an &-i

register in the Memory Control unit or the Interpreter,

Dual-In-Line (DII,): Desi;aibes; the pin. conne:ction arrange- which contains the leist signiticarri t bits of a mermory
ment of one type of standard integrated circuit package. or device address.

Esnd-Arousnd Shift: A right shift operaxion in which the bit Memory Control Unit 4NICU)z The t.t6Ct, one of the fiive
or bits which would be shifted cnti' of the register arc major functional units Of the Interpreter. ;eontrols thsc
reinserted in the more significant end- sequence of execution of rnicroirr'truclsovs. the ad-

dressing of Di~talPro ranr %lerrrory. and thc setertior or

End-Off Shift: A shift operation in ektilocr the left or right Devices.

direct' on, in whlich then bit or bi"r shifted out of the Memory Infonmation Register OUiR): The MIR is aree~nstcr
register are lost. Vacated bit positemns may be auto- is the Logic Unit of the Interpreter rvhich siervs as the

matically filled with zeros. output insterface register betsween the Interpreter and the
Flurmware: In the Interpreter-Based Syseizrm, firmesire is the Su itch Interlock.

combination of stored logic in the M. and N memroiries

of the Interpreter. ?dicroinstrurtion: A single instruction' stored in Nis it-,moer

gncretnenter (INCIR): The [NCRIs i in tbe Memory Control of the Interpieter. ve.Iuenccv of sihich charac;terire the

Unit of the Interpreter and rtcesnsby zero, one. or Intetrpreter for a given microprogr-rcn. A rniictoinitruC-

two, the address of the test niknToinstruction to be lion nay 711rtain in N irrernory addiess or a literal.

executed by the Interpreter.

InputiOutput Module (110): The I/0 4s the interface and Nlicroprogtani 3Xddrevs,%Control Register (NIPAD CNTL): The

-ontrol uniti between the CPU mind peripheral input/ %IPA[) CNT I, s r isier in Ctc Wnriory Control Utit ot

output devices in a conventiosal cnissaPUter system. the Interpretrr, controls the lotori;rt of the NICR. the

Interpreter: The Interpreter is the ba-.ic building block ofAPR n01toteI~h!O h nrI:t

Use Interpreter-Based Sysiemt. Fsrm.i:.onally. it is charac. Mlicroprosgram Addirsms Section (NWlAD): The NtIPAI is .1

terized by the combin-ation of sinmcroprograns instauc- cottectivt (if citesand controlts in the Memorry Con,
lions stored in its M Memory ind hardvrare logic itol Unit of tliv Inierpicrlr Msutch addr,,iscs the MI
enabled by a multiplicity of cnahk sign.&t stored in its meiriorý ~ lOt tiesqinc5ing o. mrorcrinstradions.

N nmeniory Iirpraror nil Itc-ister 011'CUI: Thc MI'Ct, rt

Inlerprtet .B-,er Systonr: A 0orn in r'I oreaftsirat on arid in the Me'mory CorItril U;1 it of tic I:rrr
-~~~~ a~~~mplenirietin n 2imncepl ttil.t por: s.in con Iyrkiou rat,-lwo huiil sa!a tr d~,. n'

-~~~~ - ~~~of bsvit bailvlcnut blIusek 0w thf rustr plut ýrd flesihitty sic ntc ory t. of Iti:J~c ivi iisre 1.~ rre ~b
for a variety of data prsrcc:s,ig reqwwoicritcs. eeue yteItirtr

204

Microprogrmi Memory (M Memory); The Md memory. one of Randorn-Access-Mnnsory (RAM); A memory in which the
the five major functional units of the Interpreter, stores time to access data is independent of its location in the

nsicrojnstructions whsich characterize the Interpreter for memory, or of the data most recently accessed in thea given application, and may be implemented as a reaid/ menmory.I w r te s m ic o d u ct r m e ory.R e a d .O n ly M e m o ry (R O M): A m e m o ry th a t sto re s d a ta
Microprogram Memory Bulfcr (MPB): The MPH buffers not alterable by program instruction.

blocks of in icroinstructbions read from a microprogram Remote/Card: A pirogram subroutine executed on a Otur-
source in order to maintain the clock period of the roughN B 5500 which permits a user to create card
Intcrpeecter. irrages of TRANSLAN(; instructions on a disk file.

Most Signsificant Bit (M$B): For a number or value repre- using arencroe terminal of the B) 5500.
Nented in binary notation, that bit position which Shift Amount Register (SAR) The SAR is a 6-hit registerIrepresents [lie most significant portion of the number, or in thc Control Unit of the Interpreter and is used to
the sign of thre number. store the number of positions a word or literal i., to be

RMultiproeies~so: A netwotk of computers capable of simul' shifted by the barrel switch.

taneously csccuting two or more programs or w.- Small Scale Integration (SSI) Ttre implementation of 5 to
rcrcsof instructions by mean, of multiprogramming, 20 logical gates in a single integrated circuit ciiP.

paralelprocs.,ng. r bth.Switch tnterlock (SWI): The SWI provides the inteirconnec-

Nanoinatrucliosr: A ringle instruction stored in N iniemory tion between Interpreters, DataProygram Memory. and
of the Interpreter. the contents of whicht constitute 56 Devices of an Interpreter-Based System- Its function is
unique Nigisats for controlling the hardware logic oif the to permit arty oneq of a multipiliity of Interpreters ro
Interpreter, access alt modules of an arrav of Data/Prograni

Nanomernory (N k.4emory): The N memuory. one: of the five Memory and/or all Devices.

* nmajor functional units of the Interpreter, stores 56
specific eniable signal,, for lire hardware logic within the Transistot-Transistor-Lojoc (ilL): A family of transistor

Logic Unit, Control Unit, and Memory Control Unit, circuits used to implement digital logic networks, anti
characterized by its high speed. large capacitance dri-ve
capability arid es.ccllent noise immnunity.jRaisdom-Access- Memory (RAM): A mnemory in which the TRANSLANG: A computer program designed to c:ons'2rt

timte to access data is independenit of its location in the lnglish language statemnents defining thc action ot the

iretnory, Or of the' atJ n mot rEUCCntl' accessed in the Interpreter for each machin cluck cyclc. into binar%
memory. Bly convention, a read/%write mreroory. Patterns for the Mt andi IN memories.

Port Select Unit (PSU) The PSII pro% idosý control and rthe Z Register Section: A~ co'llection of registers and selection
electrical interface between d single Interpreter and gate% in the %lenoiry Control U'nit of the Interpreter.
lDcvices and Data/Program Menrory. The PSIT is used in wxhich include the CTR. LIT. and Input Selection Lares
lieu of the Switch Interlocic in systemn configurtat ions used to control the execution sequcnsec of micro-
that require only one Interpreter. instructions.

Ji

IT

205

1

REFERENCES

I

1. 0.bL. MacSorley, "High Speed Arithmetic in Binary Computers" Proceedings 3
of the IRE (January 1963) pp. 67-91,

2. W. A. Curtin, "Multiple Computer Systems" Advances in Computers,
Vol. 4 (1963) Ed: F. L. Alt and M. Rubinoff, New York Academic Press,

3. R. C. Larkin, "A Minicomputer Multiprocessing System" Proceedings of 3
Computer Designers Conference; Anaheim, California (January 1971)
pp. 231-235.

4. Hughes Aircraft Co., "Seek Flex Preliminary Design Study, Volume 1:
System Design and Rationale" Ground System Group Report FR71-16-430
(July 23, 1971). j

5. J. D. Meng, "A Serial Input/Output Scheme for Small Computers" Computer
Design Vol. 9, No. 3 (March 1970) pp. 71-75. 1

6. R. G. Buus, "Electrical Interference" Physical Design of Electronic Systems
Vol. I, pp. 416-434, Prentice hall, 1970. 1

I
I
I
i

206

I ' 1

UNCLASSIFIED

. DOCUINT CONTROL DATA - R & D
(Secu-ity0 €ls itfles•sOn *I tie, body at abstract sad laxind anasohamon suet be eftered whe, the Oenai eporl Is esafled')

I. ORIGIN ATING ACTIVITY (C4eFmwte sudc) l REPORT SECURITV CLASSIFICATION

j Advanced Development Organization UNCLASSIFIED
Burroughs Corporation .

S= Defense. Spjace and Special Syvstems Group
S. RiPOMT TITL-Ei

AEROSPACE MULTIPROCESSOR FINAL REPORT

A C.OESCRIPTIV 14 NOTES.9 (1),0e of rspat And La'chlvs dates)

Final Retport Covers Period June 1970 through May 1, 1973
I.AU THOR($)? Avsaw n 1ame a nid htial, lost ases)

Robert L. Davis
Sandra Zucker

05 REPORT OAT& 7a. TOTAL NO. OF PAGES 7b. NO. OPr REPS

June 1973 208 6
80. CON TRACT OR GRANT Ndo. 9s. ORIOSINATOR'S REPORT NUSS'ERIS

F33615-70-C-1773
6. PROJECT 10o. 6090 64161

-- Task 01 ah. OTmE REPoRT mo() (Any oewr. eert .satiny' be seis.d

AFAL-TR-73- 114

lb. DISTRIGUTION STATEMENT Distribution limited to U. S. Government agencies only; test and
evaluation results reported March 1973. Other requests for this document must be
S 64ierred4toAir Force Avionics Laboratory (AAM), Wright-Patterson Air Force Base,

11. SPPVLEMIENTARY NOTES MORINO I LITAfY A.CTIVIY

Submitted by the author to Air Force 1AIrForce Lvanics Uaboratory (AFSC)

Avionics Laboratory in March 1973 Info. Mgt. Branch, Sys. Avionics Div.

Wright-Patterson AFB, Ohio
13. ADSTRACT

The aerospace multiprocessor described is based upon a modular, building block

approach. An exchange concept that is expandable with the number of processors,

memory modules, and device ports, was developed whose path width is a function of

the amount of serialization desired in the transmission of data and address through

the exchange. The processors (called Interpreters) are microprogrammable

utilizing a 2-level microprogram memory structure and were designed for imple-

mentation with large scale integrated circuits. The mcdularity exhibited in the

Interpreters is in the size of the microprogram memories and in the word length of

the Interpreters from 8 bits through 64 bits in 8-bit increments.

* : " The specific implementation of the exchange for the aero.space multiprocessor is

for five processors, eight memory modules, and eight device ports with eight wires

each carrying four serial bits of data through the exchange. The processors each
L have word lengths of 32 bits with a 512 word X 15 bits first-level microprogram

memory and a 256 word X 54 bit second-level microprogram memory.

A simplified control program based upon concepts for a modular executive

structure, and some user type programs were written for demonstration of the

4 $i aerospace multiprocessor.

DD .'...1473 = A..N.. ... ,. =., UNCLASSIFIED
""scurity Classiflcstioa

S.. - -x - -A -- t . - -.. .

S......UNCLASSIFIED .

#00 .tale J6 LOAK B 1.IUK C

JOL9 W'~ ROL WT *L WT____________"_______"_______-°-°'_______ - - - p

Aerospace Multiprocessor 3
Interpreter
Microprogramming
Multiprocessor
Switching Interlock

UCAII

•i• .I

a; II

_ _ _ _ _ _ -
l-i UNLSSFE

m ent
as~t~

