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AFB, Ohio.
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March 1972 and was submitted by the authors Marchk 1972,
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ABSTRACT

The aerospace multiprocessor described is based upon a modular, building block
approach. An exchange concept that is expandable with the number of processors,
memory modules, and device ports, was developed whose path width is a function
of the amount of serialization desired in the transmission of data and address
through the exchange. The processors {called Interpreters) are microprogrammable
utilizing a 2-level microprogram memory structure and were degigned for imple-
mentation with large scale integrated circuits, The modularity exhibited in the
Interpreters is in the size of the microprogram memories and in the word length

of the Interpreters from 8 bits through 64 bits in 8-bit increments,

The specific implementation of the exchange for the aerospace multiprocessor is
for five processors, eight memory modules, and eight device ports with eight
wires each carrying four serial bits of data through the exchange., The processors
each have word lengths of 32 bits with a 512 word X 15 bit firs--level micro-
program memory and a 256 word X 54 bit second-level microprogran: memory,

A simplified control program based upon concepts for a modular executive structure,
and some user type programs were written for demonstration of the aerospace
multiprocessor.
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SECTION 1

|

INTRODUCTION

I

This final report describes the results of work performed by the Advanced Develop-
ment Organization of Burroughs Defense, Space and Special Systems Group for the
Air Force Avionics Laboratory, Wright-Patterson Air Force Base under contract
F33615-70-C-1773. The purpose of this program was to fabricate an aerospace
multiprocessor utilizing large scale integrated circuits with technigues developed
under contract F33615-69-C-1200 by Burroughs for the Avionics Laboratory.

]

H

The aerospace multiprocessor is made up of five identical microprogrammable,
LSI processors called Interpreters connected to devices and memory modules by
an exchange called a Switch Interlock. Since the intent of the contracr was to

- produce only those parts of a multiprocessing svstem {processors and exchange

as shown in Figure 1) not readily available in "miniaturized’” form, the system

is completed with commercially available memory modules, power supplies, and
devices as shown in Figure 2. In this figure, the items delivered are shown within
the dotted line. The Switch Interlock module comiprises the 'network” shown by the
{ connected lines on the bottom half of Figure 2. The system charucteristics for the
aerospanse multiprocessor are listed in Table L

Py e

]

Wa—
.

¢ The remainder of this report consists of seven sections and seven appendices.

} Section Il describes the L.SI, microprogrammable processor (czalled an Interpreter),
’ consisting of three types of logic parts utilizing discretionary-wired L5{ arrays,
two types of microprogram memories and a loader for louding these two memories,
} Also included is a discussion of the rationale for splitting the microprogram

memory into two parts, based on work done by Mr. Ernest Trimbur.

by
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Table I. Aerospace Multiprocessor, System Characteristics Summary

5 Interpreters

32-bit word length

2,5 mHz clock rate

Discretionary Routed TTL, LSI

512 words (expandable to 1024 words) by 15 bits, read/write MPM
256 words by 54 bits, read/write Nanomemory

Volume: 5.75 in, X 5.1 in, X 6 in. without connectors.
5.%5 in. X 5.1 in. X 1€ in. with connectors

Typ. Power: 42 watts for LSI arrays
4 watts for loader at +5 volts dc
44 watts for MPM and Nanomemory

3 Memory Modules

Datacraft DC-38

3-wire, 3D, coincident current core

Read/write, random access

8K words (expandable to 16K words) by 32 bits per module
350 ns access /900 ns cycle

Volume: 19in. X 19 in. X5 1/4in.

Typ. Power: 6A at 117 Vac

1 Switch Interlock

5 Interpreter ports

Serial data interface of 8 wires of 4 serial bits each

8 serial interfaces for memory modules (32 bits wide)

8 serial interfaces for device ports (32 bits wide)

Volume: 5.75 in. X 5.1 in. X 22 in. with connectors

Typ. Power: 72 watts at +5 volts dc
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Section III includes a general discussion of multiprocessor interconnection and a
description of the hardware specifically needed for multiprocessing. This hard-
ware includes the exchange for interconnecting processors to memories and devices,
clock and power control, a ''real-time' clock, a time-out counter, and the hard-
ware necegsary for one Interpreter {o lock other Interpreters out of selected tables
in memory. Also included in this section is a description of the ¢ystem power
distribution.

Section IV describey the packaging of the multiprocessor for its laboratory environ-
ment and briefly discusses the L3I partitioning and posgible future implementations.

Section V is a detailed discussion of the Interpreter operation as a single processor,
centering primarily on the fetching, execution, and sequencing of microprogram
instructions and the condition testing involved in the microprogram instruction's
successor determination.

Section VI is a detailed discussion of the Switch Interlock operation. The conflict
resolution problem in accessing memories and "locking'" to devices is discussed
along with the handshaking between the Interpreters and the Switch Interlock in
performing memoryand device operaticns. Detailed timing diagrams are given
for all Switch Interlock operations.

Section Vil describes the microprogramining of the Interpreter and gives the syntax
and semantics and examples for all Interpreter operations.

Section VIII is divided into two parts. The tirst part describes the simplified control
program used to control the multiprocessor with its associated task tables in
memory and also describes the method for loading either tasks or the control
program into the Interpreter's microprogram memories from "'S" memory. The
second part of this section describes the six programs written to be executed as
user tasks in the demonstration of the multiprocessor, This section is concluded
with a short discussion of the confidence routines that were used during debugging
of the Interpreters and which could be modified to yun under the operating system
for on-line confidence checks of the Interpreters.

Appendix I is a historical review of microprogramming written by Dr. Earl Reigel.
Appendix Il is a copy of the final report from Texas Instruments, Inc. on the
discretionary-wired L.S! used in the Interpreters. Appendices III-VI are details

for the use of TRANSLANG, an assembler for Interpreter microprograms.
Appendix VIl is a glossary.
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SECTION II

INTERPRETER HARDWARE BUILDING BLOCKS

The Interpreter is composed of four logic package types: the Logic Unmt (175,
the Control Unit (CU), the Memory Control Unit /IMCU), and the Loader (LDR).
The microprograms which provide the control functions are contained in two
memories: the Microprogram Memory (MPM) and the Nano program Memory
(Nano or NM). These units and their interconnections are shown in Figure 3.

The unique split memory scheme for microprogram memories allows a signifi-
cant reduction in the number of bits for the microinstruction storage, It should
be noted, however, that a single microprogr-m memory scheme (MPM and

Nano combined) could also have been used, potentially increasing the clock rate
of the system. In addition, the cycle rates of the memories could be altered,

to gain speed or reduce cost, without any redesign of the logic packages. In fact,
a variety of memory organizations (single memory and different split memory
configurations) and memory speeds have been implemented in other Interpreter
based systems, thus providing a range of cost/speed trade-offs.

The LU performs the required shifting, arithmetic, and logic functions as well
as providing a set of scratch pad registers and data interfaces to and {rom the
Switch Interlock (SWI). Of primary importance is the modularity of the LT,
providing expansion of the word length in 8-bits increments from 8 bits through
64 bits using the same functional unit, The word length of the Interpreters
used in the aerospace multiprocessor is 32-bits,

The CU contains a condition register, logic for testing the conditions, a shift
amount register for controlling shift operations in the LU, and part of the control
register used for storage of some of the control signals to be sent to the LU,

.

—
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The MCTU provides addressing logic to the Switch Interlock for data accesses,
controls for the selection of microinstructions, literal storage, and counter
operation, This unit is also expandable when larger addressing capability is
required. The Loader (LDR) enables the MPM and Nanomemory to be loaded from
either switches, a card reader, or programmatically from the LU.

LOGIC UNIT (LU)
A functional block diagram of the LU is shown in [igure 4. The design of the
LU is predicated upon implementation with one LSI silicon slice per eight bits.
The present 8-bit LU is implemented with two LSI slices.
Registers Al, A2, and A3 are functonally identical, FEach temporarily stores
data and serves as a primary input to the adder. Selection gates permit the
contents of any A register to he used as one of the inputs to the adder. Any of
the A regisiers can be loaded with the output of the barrel switeh.
The B register is the input buffer {from the Switch Interlock). It serves as the
rsecond input to the adder and can also collect certain side effects or arithmetic
operations. The B register may be loaded with any of the following (one per
instruction):
1. The barrel switch output
2. The adder output
3. The data from the Switch Interlock
4, The MIR output
5. The carry complements (from the adder) of 4~ or 8-bit groups
with selected zeros (for use in decimal arithmetic or character
processing)

6. The barrel switch output ORed with the adder output

7. The barrel switch output ORed with the data from the
Switch Interlock

8, The MIR output ORed with 1,2,5, or 6 above.

The output of the B register has true/complement selection gates which are
controlled in three separate sections: the most significant bit, the least signifi-
cant bit, and all the remaining central bits. Each of these parts is controlled
independently and may be either ail zeros, all ones, the true contents or the
complement (ones complement) of the contents of the respective bits of the

B register. The operation of these selection gates affects only the output of the B
register. The contents remain unchanged.

s e et i
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The MIR primarily buffers information being written to main system memory or to
a periphersl device. It is lvaded from the bar:rel switch output and its output may
be sent to the Switch Interlock, to the B register, or to the data input of the MPM
or Nanomemeory for programmatic loading,

The adder in the LU is a modified version of a straightforward carry look-ahead
adder such as that discussed by Mau:Sorley1 and others, Therefore, the details
of its operation will not be included,

Inputs to the adder are from selection gates which allow various combinations of
the A, B, and Z inputs. The A input is from the A rcgister output selection gates
and the B input from the B register true/complement selection gates, The Z
input is an external input to the LU and can be:

1.  The 8-bil output of tht counter of the MCU into the most
significant 8 bits with all other bits being zeros,

2. The 8-bit output of the literal register of the MCU into the
least significant 8 bits with all other bits being zeros.

3. The 12-bit output of the alternate microprogram count
register (AMPCR) right justified into the middle 16 bits and
the (wired) Interpreter number right justified in the re-
maining four bits of the middle 16 bits. All other bits are
ZE€r'os.

4, All zeros.
Using various combinations of inputs to the selection gates, any two of the three
inputs can be added together, or can he added together with an additional "one”
added to the least significant bit. Also, all binary Boolean operations between
the A and B and between the B and 7 adder inputs and most ol the binary Boolean

operations between the A and Z adder inputs can be done.

The barrel switch is a matrix of gates that shifts a parallel input data word any
number of places to the left or right, either end-off or end-around, in one
clock time.

The output of the barrel switch is sent to:

1. The A registers (A1, A2, A3)

2, The B register

10
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Memory Information Register {MIR)

Least significant 18 bits to MCU (registers BR1, BR2, MAR,
AMPCR, LIT, CTR)

Least significant 5 bits to shift amcunt register (SAR) in the CU.

CONTROL UNIT (CU)

One CU is required for each Interpreter, The design of the CU is predicated
upon implementation with one LSI silicon slice, but is presently constructed
with two LSI slices, Major sections of this unit (Figure 5) are: 1ne shif! amount
register (SAR), the condition register, part of the control register (CR), the
MPM content decoding, and part of the clock control.

The functions of the SAR and its associated logic are;

1.

il

L2

To lead shift amounts into the SAR to be used in the shifting
operations., Left end-off shifts require a shift amount equal

to the "word leugth complement' of the number of positions to

be shifted. ("Word length complement'' is defined as the ainount
that will restore the bits of a word to their original position after an
end-around shift of N followed by an end-around of the ''comple-
ment" of N, For the 52-bit word length in the aerospace multi-
processor, tiis is the 2's complement, )

To generate the required controls for the barrel switcn shift

operation indicated by the controls from the Nanomemory.

To generate the ''word length complement' of the SAR contents
and load this value back into the SAR,

The condition register section of the CU performs four major functions:

1.

Stores 12 resettable condition bits in the condition registers.
The 12 bi#s of the condition register are used as error
indicators, interrupts, status indicators, and lockout
indicators.

Selects 1 of 16 condition bits (12 from the register and
4 generated during theepresent clock time in the Logic Unit)
for use in performing conditional operations.

Dccodes bits from the Nanomerory for resetling, sellbing,
or requesting the setting of certain bits in the condition
register,

Resolves priority between Interpreters in the setting [
global condition (GC) bits.

11



gi TTWR TRy PEEA W AWM WM B TRWY  Twm gmwm T T T C T} weww womm Beew mwew v v

. S1TU(] 1BUOTIOUN g Jajaaddaju] G aandig |

| SEIAA(Y pug
i nw {LndN! 21 01 0L Ao 10f SRy . _
“ PRI [959g e T N e s e, {LNdN Z} N Ul i
A woid § \* ' 4 i
i ..E—:ao_su.hwﬁ.‘fx !ew (HMS Ut buy huJ (=, a5 ?r ! _._
m woi Sayg joaue) 1UIMOD D) | tRAIARG s /_ﬁ /.\, v _ 1
X o0 arun o) o AOWSNS IO} o ] . I i
108 sjo13U0Y fivubig 1tantiey ! i L . SRIPPY WdN Hi
‘ i _ ! | Ly | o—
_ ! i i i .
_ M _ _ I zi0| gAg é
YaLMgG jaireg Q) . ' E
oWy YHS | A . —— I | ININIEON:
m 1 awos { | ' : 0 ! ; )
3 : T W } i _ | “ _ 1 i
i “ _ _ W ! ! & +|»IL'|J NOILD33S
i : i | H &
| A i 1 ! | b
] | ! : J ; | i !
; ; i b H | yrorr k ﬂ ’ 4
' . vl ﬁn ¥12 _ ﬂ wvN _ ﬁ 3 m 1003 i | i h
: | VONIPLAY A0 avaw [R— : 14
: oL hdn | 1%3 puv | B 1 : ! |
: nu TIH0N ! . I.’ A1 ”ll. J \a/ m Zl ; | o ﬁ ™
h 3 NOILLYH3INID T | = ! : ] HE ] e ﬂ.r i | —
! ] $10U.LNOD Tl[ﬁm\wulill ! 111 | _ 13 _ F zug _ _ 199 ~ & vy wran] |
acig 1YNOILIONGD , . . _
T | | T B |
! _ B | ; M ! f Y
! ¢
' 1 3 [ | -4 S NS S | _ _l_ U: ‘.m"h
. a 4 h!
i o .~ ' ! h P
! oy wisy e i ! R f
i o : | B |
T
! ! 4
P : ¥ILSIDTY | ) -~  H¥s .
: TouLNGD NOILIGNGD HL/HVIWZHE) LYE/UIdNY ; H
* 0y 00T 42017 andup ¥ ssa 1 owen 1) oAy
,ﬂ ﬂ ..\nl/ * § SUOILINAIL{ O ,
! 150l ]
L | roay ! Say usnipuo) r .DU _ 9y ! 4 §
m “ 104LNOD | j 05 NOI {eed £l £ - i3
HoA0] | v {squom-118 9@ !
: @ oS o) » e EJ\W. i an
i T ‘op'EET ) Jp
i 4z 've-g 19252 3 'y [T rsig | 8-y L IR E) z&ﬂﬂﬁﬂd
' oUW
— (S0WOM LIE-¥S) AMCNIWONYN _




'.

i

PR—

gy o

. goremm} [ 4cam st

Prau——

BRI

I et oo

The control register is a register that stores 38 of the 54 control signals from
the Nanomemory that are used in the LU, CU, and MCU for controlling the
execution phase of a microinstruction, Twelve of the 38 outputs from the Nano-
memory are stored in the CU. Four of the other 38 Nanomemory outputs are
controls to the Switch Interlock and are stored there. The other 22 of the 38
Nanomemory outputs are stored in a part of the control register physically
located in the Nanomemory.

The MPM content decoding determines (based upon the first four bits of the MPM)
whether the MPM output is to be used as a Type I instruction (Nanomemory
address) or as a Type II instruction (literal). Several decoding options are
available. The particular option chosen is described in the Interpreter Micro-
programming section of this report.

MEMORY CONTROL UNIT (MCU)

One MCVU is required for an Interpreter in the aerospace multiprocessor, but a
gsecond MCU could have been added to provide additional memory addressing
capability. The design of the MCU is predicated upon implementation with one
LSI silicon slice, but is presently constructed with two LET slices, This unit has
three major sections (Figure 5):

1.  The microprogram address section contains the microprogram
count register (MPCR), the alternate microprogram count
register (AMPCR), the incrementer. the microprogram address
control register, and associated control logic. The output
of the incrementer addresses the MPM for the sequencing
of the microinstructions. The AMPCR contents are also used
as one of the Z inputs to the adder in the LU,

2. The memory/device address section contair s the memory
address register (MAR), base registers one and two (BR1, BR2),
the base register output selection gates, and the associated
control logic.

3. The Z register section contains registers which are two of the
Z inputs to the LU adder: a loadable counter (CTR), the literal
register (LIT), selection gates for the input to the memory
address register and the loadable counter and their associated
control logic.

NANOMEMORY (N MEMORY)

The Interpreter is controlled by the output of the 54-bit wide Nanomemory which
may be implemented with a read/write memory, a read-only memory, wired
logic, or a combination of the three, The present implementation is a 256 -word
by 54-bit read/write semiconductor random access memory using the Fairchild
02410, a 256~word by 1-bit package.
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Each of the 54 bits represents a unique enable line for the gates and flip~flops
within the LU, the CU, and the MCU. Each Nanomemory word represents a
microinstruction that is executed by the simultaneous presentation of a specific
enable pattern for the 54 outputs, represented by corresponding ones and zeros
in its word, The definition of these bits is presented in the microprogramming
section,

A unique feature of the Interpreter-Based System with its separate Nanomemory
and Microprogram Memory (Figure 5)is that the explicit enable lines for each
microinstruction need be stored in the Nanomemory only once (regardless of the
number of times that a specific microinstruction is needed in a program). To
accomplish this saving in memory, the Microprogram Memory (MPM) contains
the address in the Nanomemory where the explicit ones and zeros are stored

that are needed to execute that instruction’ type rather than *he full micro-
instruction. Thus, several microprogram sequences which use the same micro-
instruction (e. g., transfer A to B) need only store in the Microprogram Memory
the address of the Nanomemory word containing that microinstruction. Figure 6
illustrates this feature,

MICROPROGRAM MEMORY (MPM)

Each Interpreter requires a source of microprogram instruciions to define the
operation of the Interpreter.

Two possible solutions for providing this source of microprogram instructions
are listed below:

1. A semiconductor MPM. This memory can be a read-only
memory (FROM) if the Interpreter is to be dedicated to the
function defined by the ROM, A read-write memory can be
used for experimental purposes or when the function of the
Interpreter might be changed, such as reconfiguration in a
multiple Interpreter system. In this instance, the system
could afford to wait while the MPM was reloaded from
a remote microprogram store acceszeq via the Switch
Interlock.

2. A buffer into 2 slower-speed, wider-word memeory.

In presently deliverable large scale integration form of the Interpreter, the MPM
is also implemented with Fairchild 256-wo. .. b» 1-bit bipolar, nondestructive
readout semiconductor memory packages. bc:n the MPM and the Nanomemory

can be loaded from an external loader, switches or programmatically from its own
MIR. The basic MPM is expandable in oluc'ss f 256 words, and can be expanded
up to 1024 words in the present Interpre sra.
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: ) Microprogram Memory Considerations

The potential advantage of dividing what is considered to be the Microprogram
memory into two parts is more graphically illustrated by comparing the total
memory requirements of the two approaches shown in Figure 7.

S reames, Wﬁ o

The total number of bits (N, .) in Figure 7 (a) is given by N_ = x C, The total

A
Y ) number of bits (N,, ) in Figaxze T (b) is given by (A _xB3} + AIXY X Cl\fl. A plot of the
. total number of bits' vs. B and C and a plot of the total number of bits vs. AM and B
i gi for both approaches are shown in Figures 7 {c) and (d).

From these figures, it is obvious that as A_, appreaches A__, one memory is the
proper approach. Two factors affect the r&ationship betwéen A,, and A_,. One
is that literal values {type Il instructions) used for shift zmounts, jump addresses
and 8-bit literals, that appear in the Microprogram memory, make no reference
to the Nanomemory. Second, repetitive use of the same nanoinstruction cayses
an increase in Al without adding words to the Nanomemory, Some =ample pro-
gram statistics are shown in Figure 8. This ligure cshows, for four sample pro-
grams, the total number of microprogram and nanomemory words, the total num-
ber of bits for both the one and two memeory approaches and the percentage and
actual value of the number of bits saved using the two instead of the one memory
approach, In addition, this table shows the comparison among the number of
literals (1ype II instructions), the number of Nanomemory references {type I instruc-
- tions), and the number of Nano memory locations in the four sample programs,

| g

i It should be remembered that the two memory approach weuld require memories
with approximately twice as fast an access time (and hence are more expensive per
’ bit) because both memories must be accessed sequentially within one clock time,

Memory cost per bit vs. memory cycle time is shown in Figure 9, where the verti-
cal bars indicate the range on these prices which were gathered during January, 1972.
Although the absolute prices have decreased, the relative pricing should still be
valid. Several cost factors (C. F.'s) are shown for memory speeds having a 2:1

ratio. The cost factors are simply the ratio of the price of the faster memory to that
for the slower memory. The higher cost factor encountered when crossing technology
boundaries should be noted.

.

o rapisan

‘. The solid lines in Figure 10 show the actual cost savings of the two memory approach
; for the four sample programs taking into account the difference in memory prices
‘ for the two approaches,

Also it is important to realize that many applications require a writable Microprogram
memory. This means that the entire memory in the one memory approach must be
read-write, while with the iwo memory approach, ihe Nanvinewmory could ve read-only
with the Microprogram memory being read-write. (In fact the Nanomemory could

even be partly read-only and partly read-write.) This is shown by the dashed lines

s
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in Figure 10 for the four sample programs using a '"read only factor (ROF)" of 6.
This ROF is an estimate of the ratioc of the price of read-write memory to that for
read-only memory.

In both cases," the values for a cost factor of 1,0 are the cost savings if memory cost
were constant with respect to memory speed. The abscissa gives the cost factors
required for the two approaches to be equal in cost,
LOADER (LDR)
One LDR is required for each Interpreter. 'The LDR provides clock controls for the
Interpreter and the means for loading the Interpreter's MPM and Nanomemory from
one of three sources:

1. Switches on the MPM/Nanomemory light panels,

2. A card reader assigned to loading,

3. The least significant 16 bits of the MIR of the same Interpreter.
It is possible to load several Interpreters concurrently from their panel switches or
from their MIR's, Concurrent loading intc more than one Interpreter from the card
reader assigned to loading is not permitted,
Figurell is a diagram of the loading functions in the L.SI multiprocessor,
Loading from the MIR is under microprogram control and provides the capability for
programmatic overlay of the MPM and Nanomemory from any S memory module or

any device attached to the Switch Interlock., A more detailed description of pro-
grammatic overlay from S memory is given in Sections VII and VIIL.
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SECTION I

MULTIPROCESSING HARDWARE DESCRIPTION

MULTIPROCESSOR INTERCONNECTION

A major goal in multiprocessor system design is to increase efficiency by the
sharing of available resources in some optimal manner, The primary resource,
main memory, may be more effectively shared when split into several memory
"modules'. A technique for reducing delays in accessing data in main memory

is allowing concurrent access to different memory modules, With this concurrent
access capability present, an attempt is made to assign tasks and data to memory
modules so as to reduce conflicts between processors attempting to access the
same memory modula, Nevertheless, since some conflicts are unavoidable, a
second technique (reduction of conflict resolution time) is required, These two
techniques are largely a function of the multiprocessor interconnection scheme
which has been discussed by Curtin? and others.+

Figure 12 shows three basic functional interconnection schemes, These are
described in more detailby Curtin,.?

The disadvan*ages of the single bus approach (Figure 12) for many processors are:
1, the obvious bottleneck in information transfer between
processors and memory modules due to both bus con-

tention and memory contention

2, the catastropvhic failure mode due to a single component
failure in the bus,

A solution to the first problem has been to increase the frequency of operation of
the bus.2:®
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The multiple bus approach is merely an extension of the single bus approach where
all processors contend for use of any available (non-husy) bus, The advantages
are redundancy and allowing an appropriate number of buses (less than the number
of processors) to handle the trafiic between processors and memory modules.

The third approach utilizes a dedicated bus structure {one per processor).
Although this approach required more buses, it requires neither the logic nor,
more importantly, the time for resolving priority between processors requesting
the use of a bus. Proponents of this approach contend that the time penalty for
resolving conflicts for access to a memory module is enough of a price to pay
without having to wait for the availability of a bus.

!

i
!
£
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In a Hughes report,® the authors distinguish the physical differences between two
multiprocessor interconnection schemes, The two approaches (one called multi-
port and the other called matrix switch) are shown in Figure 13.

The Hughes report characterizes the two connection approaches as follows:

"In the multiport approach, the access control logic for each module
is contained within that module, and intercabling is required between

. each processor and memory pair. Thus, the total number of inter-
connecting cables is the product of the number of processors and the
4 number of memories, Each module must be designed to accommodate

the maximum computer configuration,

"In the matrix switch approach, the same interconnection capability
is achieved by placing the access control logic for each module in a
- separate module. The addition of this module to the system is
compensated (for) by reducing the intercahles required to the sum
of the processors and memories rather than the product and by not
- penalizing the other modules with maximum switching logic,

matrix arrangements. The major difference lies in the ability to

grow in wiring complexity., Multiprocessors with multiport arrange-
r ments are generally wired, at production time, to the maximum
purchased configuration, Future subsystem expansion generally
requires depot level rewiring., This problem generally does not
exist with the matrix arrangement, The maximum capacity is wired
in but the switching logic complement reflects the purchased system,
= Subsystem expansion entails purchase of added processor/memory
modules (and necessary cabinetry if required) plus the required
I switch matrix logic cards, "

! "There generaily is no speed differential between multiport and

Apparent from the arguments in this report is the desire to reduce the number of
: wires interconnecting the processors and memory medules. A way to reduce the
‘ wiring (in addition to the use of the matrix switch) is by using serial transmission
of partial words at a frequency several times that of the processors, This tech-
nique has been used by Meng® and Curtin2 The tradeoff here is between the cogt
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of the transmitting and receiving shift registers and the extra logic necessary for
timing and control of the serial transmission versus the cost of wiring and logic
for the extra interconnection nodes for a fully parallel transmission path.

Another factor adversely affecting efficiency in a multiprocessing system is a
variation in the amount of computation versus I/O processing that must be dnne.
In previous multiprocessing systems I/0 functions and data processing functions
have been performed in physically different hardware modules with devices being
attached only to the I/O controllers (Figure 14). {This technique is typical of
Burroughs D825, B 5500, or B6700), In a multi-interpreter system, however,
processing and I/O contrcl functions are all performed by identical Interpreters
whose writable microprogram memory can be reloaded to change their function.
This technique allows a configuration (Figure 15 in which the devices are attached
to the same exchange as the memories and processors,

THE SWITCH INTERLOCK

The Multi-Interpreter interconnection scheme for forming a multiprocessor is
called a "Switch Interlock': a dedicated bus, matrix switch with an optional
amount of serial transmission,

The Switch Interlock is a set of hardware building blocks that connects Inter~
preters to devices and memory modules. Connection between Interpreters and
devices is by reservation with the Interpreter having exclusive use of the (locked)
device until specifically released. Connection with a memory module is for the
duration of a single data word exchange, but is maintained until some other
module is requested or some other Interpreter requests that module.

Consistent with the building block philosophy of Interpreter-based systems, the
Switch Interlock ig partitioned to permit modular expansion for incremental
numbers of Interpreters, memory modules or device ports and modular selection
of the amount of parallelism in the transfer of address and data through the Switch
Interlock from fully parallel to fully serial. Functionally, the Switch Interlock
consists of: parallel-serial conversion registers for each Interpreter, input and
output selection gates, parallel-serial conversion registers for each memory
meodule and each device, and associated control logic. Figure 6 outlines the
implementation of the Switch Interlock and shows the functional logic units that
are repeated for each Interpreter, memory module, and device, The bit expand-
ability of the Switch Interlock is shown by dashed lines between the input/output
switches and the shift registers associated with the memory module, devices,
and Interpreters.

The Switch Interlock in the LSI Multiprocessor handles five Interpreters, eight
memories and eight device ports (more than one device could be attached to each
port). The transmission paths through the Switch Interlock break the 32-bit data
word into 8 wires carrying 4 serial bits each, transmitted with a "'high speed"
clock having a frequency five times that of an Interpreter clock,
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The six basic modules for the Switch Interlock of the LSI Multiprocessor are
described below,

Memory/Device Controls (MDC)

The MDC conirols the high-speed clock used for the serial transmission of
data (Figure 17) and is an interface between the Interpreter and the controls
described below (MC and DC}. There is one MDC per Interpreter, Physically,
the MDC's for two Interpreters are contained in one finned 5~inch by 5-inch by
1/2~inch plate,

Device Controls (DC)

The DC resolves conflicts between Interpreters trying to lock to a device and
checks the 1ock status of any Interpreter attempting a device operation (Figure 18},
Physically, the DC is contained on two identical finned plates, each plate

capable of handling up to three Interpreters and up to eight devices. System
expansion using this module could be in number of Interpreters or in number of
devices.

Memory Controls (MC)

The MC resolves conflicts between Interpreters requesting the use of the same
memory module (Figures 19 and 20), Physically, the MC is contained on two

finned plates. ne plate contains the MC for three Interpreters and eight memory
modules and the other plate contains the MC for the other two Interpreters and

eight memory modules, plus the "memory-busy' flir-flops. The giobal condition

bit priority resolutionand the interrupt Interpreter logic is also physically located on
this second plate although it is functionally independent. System expansion using

the MC could be in number of Interpreters or in number of memory modules.

Output Switch Network {OSN)

The OSN sends data, address, clock, and control from Interpreters to addressed
devices or memory modules (i. e., the OSK is a ""demultiplexer"). Physically,
the OSN is made of two different types of finned plates handling either three or
four wires for up to five interpreters and eight devices or memory modules.
One type of plate handles four data-type paths for five Interpreters and eight
devices or memories. The other type of plate handles two data~type paths

and one clock-type path for five Interpreters and eight devices or memories.
Logic diagrams of these types of OSN's are shown in Figures 21 and 22.
Each column of logic is for one Interpreter with the inputs trom the inter-
preter coming in the top. Each row represents one serial transmission path
and the outputs to eight devices or memories coniing from the side and bottom
of the drawing, System expansion using these modules could be in number of
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Interpreters or in number of devices or memories, The number of replications
of this plate would also change if the amount of serialization of the data path
were changed,

Input Switch Network (ISN)

The ISN returns data from addressed devices or memory modules to the Inter-
preters {i. e., the ISN is a '"'multiplexer'). One finned plate handles five wires
for five Interpreters and up to eight devices or memory modules. A logic dia-
gram for the ISN is shown in Figure 23. Asg with the OSN, each column of logic
is for one Interpreter with the outputs to the Interpreter coming from the top.
Each row algo represents one serial transmission path with the inputs from eight
devices or memories coming in the side of the drawing. System expansion using
this module could be in number of Interpreters or in number of devices or mem-=
ories. The number of replications of this plate would also change if the amount
of serialization of the data path were changed.

Shift Register (SR)

These units are parallel-to-serial shift registers or serial-to-parallel shift
registers that use a high frequency clock for serial transmission of groups of
four data and address bits through the ISN's and OSN's, They are physically
located with the Interpreters, device interfaces, and memory module interfaces.

POWER DISTRIBUTION

Flgure 24 shows the details of the power distribution system in the aerospace
multiprocessor. Even though all a-c connections are shown schematically attached
to one line, a load center is mounted inside the cabinet and two phases of a three
phase four wire 120/208 volt 60 Hz input are each connected through the load cen-

~ ter to four strips of electrical outlets mounted inside the cabinet,

Ag shown, each Interpreter has its own power supply with a connection to the
Switch Interlock for supplying +5 volts to the MDC for that Interpreter, AL +5 volt
distribution is by heavy gauge wire twisted with its return. All sensing and
connections of return to chassis are done at the point of icad. The system power
supply provides power to the device and memory interfaces, the real time clock,
nower control and clock distribution, the light panel, and the Switch Interlock,

The sensing for the systern power supply is on the Switch Interlock.

As can be seen, the multiplicity of reference-to-reference connections via the cold
side of the twisted pairs made proper "treeingé’' of the references before connection
to earth impractical. Therefore freely tying reference to chassis was allowed.




In retrospect, the only changes suggested would be providing a better reference-
to-reference connection between each Interpreter and the Switch Interlock, and
removing the reference to chassis connections on the +12 volt, -12 volt, and

+20 volt supplies after insuring a suitable reference to chasais connection at

the loads.

The only grounding problem encountered was on the loader board in the Inter-
preters. This problem was eliminated by installing a wire ground grid on the

board and by providing extra ground pins from the board to the backplane. Of
interest is that no decoupling capacitors exist in the system. Space for decoupling
capacitors has been provided and should be added if noise problems are encountered;
however no such problems have arisen during the fairly extensive testing before

and after delivery.

CLOCK AND POWER CONTROL

From the description of the Switch Interlock, it is clear that two clocks having
different frequencies are needed in the aerospace multiprocessor. During the
design of the aeroapace multiprocessor the relationship between the maximuin
shift rate through the Switch Interlock and the maximum speed of the Interpreters
was determined to he at least 4:1, Since four bitg are trangmitted serially on
each path through the Switch Interlock and shifting is to be finished within one
Interpreter clock time, a ratio of 5:1 wag selected, However, from the
implementation as shown in Figure 25, this ratio could be easily changed by
changing the value preset into the counter, The logic appearing in this figure is
all controlled by a central system power supply, which in a failsafe system must
be made redundant,

As shown in the figure, the width of the high-speed clock to the MDC's in the
Switch Interlock is controlled by the width of the master clock coming in from

the pulse generator, and the width of the Interpreters' clock is controllable by
varying the resistor value on the single shot, The flip-flop control has been

added to the clock for each Interpreter to insure against performing any spurious
memory or device operations while power is either being applied or being shut off
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Figure 21, Output Switch Network No, 0, Logic Diagram
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Figure 23, Input Switch Network No. 1, Logic Diagram
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Figure 26, Conflict Resolution Logic for Global Condition Bit GC1
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to an Interpreter. This is done by a front panel switch setting the flip-flop (which
will shut clocks off) and turning the solid state relay on, which will then short
across the resistor on the remote programming terminals of the Interpreter's
power supply, turning the power supply off. When the front panel switch is set to
turn power back on, the solid state relay will turn off, opening up the output of

the relay and turning power back on to the Interpreter. However, if clocks were
applied at this time, they would start during the powering up of the Interpreter and
would continue even though no valid information existed in the Interpreter's Micro-
program and Nano memories,

To avoid this problem, clocks are not restarted until the Clear pushbutton is
pressed on the front panel, which is done in conjunction with pressing the Load
pushbutton for loading the Microprogram and Nano memories from the loader
card reader., Since during loading, a pseudo Type II inatruction is forced by the
loader, r> clocks will be present to initiate any memory or device operations
unti) loading is completed and the microprogram just loaded begins execution.

GLOBAL AND INTERRUPT CONDITION BITS

The two global condition bits in each Interpreter are used by programmatic conven-
tion for locking out other Interpreters during a read-modify-write to system tables
regident in S memory. This is done independently for each of the two condition

bits by not allowing an Interpreter to set its ccendition bit if any Interpreter's
condition bit is already set or if a higher wired priority Interpreter is requesting

to set its conditicn bit at the same time. This was initiaily to he done by chaining
the priority through the Interpreters so that no external logic would be required.
However, if an Interpreter's power were turned off, the chain would be broken and
the same global condition bit in two Interpreters could have been set. To avoid this
problem the global condition bit and the requests to set the global condition bits are
brought from each Interpreter to a centralized location. (The Switch Interlock was
chosen, although this logic is totally independent of the Switch Interlock operation.)
In this centralized location, the power-on signals show i previously in this secticr
are used to allow only signals from powered-on Inter - eoters to participate in the
conflict resolution. This conflict resolution logic is |, wvered by the system power
supply and ia turn sends enables bacik to the Interpretecs for getting the global
condition bits. This conflict resolution logic is shown for one of the zlobal condition
bits (GCID) in Figure 26, The same logic is repeated for the other global cond.tion
bit (GC2),

The Interrupt Interpreters condition bit, although having no priority logic associ-
ated with it, has the similar problem of having a signal from an Interpreter that
is either powered down or whose power is undergoing a transition, setting the
Interrupt condition bit in other Interpreters in an uncontrolled manner. To avoid
this. the Interrupt signal and its control coming from each Interpreter are gated
against the power-on signal for that Interpreter. These signals are then all ORed
together and sent back to all Interpreters. This logic (shown in Figure 27) is
also located in the Switch Interlock and is powered by the system power supply.
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Figure 27, Implementation of Interrupt Controls
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REAL TIME CLOCK AND THE HORNS

One device (device number zero) has been permanently assigned to a device called
a ""real time'' clock, which is used programmatically to determine the failure of
a task running on an Interpreter. This use is explained more fully in the Multi-
processing Control Program and Demonstration Programs section of this report.
This device is merely a 32-bit counter that is counted up at a rate of once each
256 Interpreter clocks. It is powered by the system power supply and runs
continuously. This device ig read just as any other device attached to the Switch
Interlock and must be locked to in order to be read. Since programmatically this
counter is used as an interval timer, a potential problem exists if the interval

to be timed were started just prior to this device overflowing (once every 240
Interpreter clocks). This can be avoided by forcing the programs to test the value
of the counter to insure it will not be reset during the interval of interest,

Alsc physically located with the real time clock are five, 4-bit counters, one
associated with each Interpreter. These counters, called horns, if not reset,
will overflow after every 220 Interpreter clocks (approximately every 1 second
for a 1 MHz Interpreter clock rate), These counters detect an Interpreter
waiting for a response from a memory or device that has failed. An overflow
from one of these counters will force a one clock time STEP and will set a
condition bit in its associated Interpreter which then can be tested by the
Interpreter. To avoid continual setting of this bit, each counter is reset every
time its associated Interpreter does any memory or device operation. These
operations should occur often in any program except perhaps during internal
Interpreter diagnostics. These diagnostics should not require 220 Interpreter
clocks to run but if they did the horn for the Interpreter may be manuvally
turned off.

INTERPRETER NUMBER

Each Interpreter is logically identical to all other Interpreters. A multiprocessing
control program, however, must have a means of distinguishing between Inter-
preters. This is accomplished by wiring the most significant four bits of the next
to the most significant 8-bit byte of the Z -input to the adder, to the connector to
which the loader cable is attached. Ground and +5 volts are also wired to this
connector. Within the other side of the connector, which is part of the loader
cable, ground and +5 volts are jumperedto the 4 bits of Z input to appropriately
indicate the Interpreter number, right justified within the 4-bit field.
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SECTION IV

AEROSPACE MULTIPROCESSOR PACKAGING DESCRiPTION

MECHANICAL DESIGN

The aerospace multiprocessor is housed in a cabinet consisting of two bays 21
inches wide by 25 1/2 inches deep by 68 inches high (Figure 28). The Inter-
preters, and Switch Interlock modules are built up of mechanically similar
submodular sections. The S memory module and power supplies are commerically
available rack mounted units.

Each of the modules is made up of several finned aluminum castings (Figure 29 )
with massive heat sinks for mounting of the printed wiring boards and direct heat
sinking cf the LSI packages., Modification of the finned aluminum casting allows
direct heat sinking of conventional dual in-line packages for the MPM and
Nanomemories, The 5-inch by 5-inch by 1/2-inch thick submodule houses two LSI
chips, as many as 98, 16-lead flat packs or as many as 45, 16-pin dual-in-line
packages, depending on its function in the system.

Each of the Interpreter modules (Figure 3 and the Switch Interlock module is
packaged complete with its own backplane and I/O connectors to simulate remote
physical distribution of the modules.

To maintain a close physical arrangement with simulated module distribution,
all of the Interpreters are mounted on a common mechanical structure which allows
the multiprocessor to be mounted as a single unit on a shelf extending at right
angles to the front of the two electronics cabinets. as shown in Figure 1. The
multiprocessor is mounted on a swivel to allow direct access to the wire wrapped
backplane during debugging and testing procedures.
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Figure 28, Aerospace Multiprocessor Configuration
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Figure 30, Interpreter Module Packaging
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Figure3l ig a photograph of the system as installed at Wright-Patterson Air Force
Base,

Figure 32is a plan view of the Interpreters, Switch Interlock and connectors for
interconnection among the modules.

CIRCUIT CONFIGURATIONS

The LSI multiprocessor system is implemented with the three types of submodules.
The Microprogram and Nano memories in the Interpreter both use Fairchild 93410
cerarnic dual-in-line packages, each containing 256 words X 1 bit of memory,
interconnected with a four-layer printed circuit board mounted on the oppogite side
from the packages as shown in Figure 33. Since the selection of this package,
Fairchild has introduced the 93415, a 1024 word X 1 bit memory package with
approximately the same power dissipation as the 93410. This more dense memory
package is recommended for future Interpreter systems.

The Loader submodule in the Interpreters and all submodules in the Switch Interlock
use standard 54/7400 series flat packs which are mounted on either two or four
layer printed circuit boards which are then mounted on the two sides of the
aluminum plate submodule as shown in Figure 34, The packing density of the

flat packs is typically between 25-30 per board, since most of these submodules
are pin limited and would have required six to eight layer boards to achieve the
maximum packing density of 49 flat packs per board.

The remainder of the Interpreter logic is implemented with Texas Instruments
discretionary wired, transistor-transistor logic (TTL) using their "N' and "S"
arrays as follows:

8~bit Logic Unit {two Type ''N" slices)

Memory Control Unit {two Type "N slices)

Control Unit (two Type "S" slices)
This type of submodule is shown extended above the Interpreter in Figure 30,

A summary of the general characteristics of the individual arrays is given in
Table II. Appendix II is the final report from Texas Instruments Incorporated on

the L.SI arrays.

Texas Instruments informed Burroughs in December 1971 that they were discon-
tinuing fabrication of LSI Discretionary Routed Arrays (DRA) after the conclusion
of their present commitments. However, several alternative packaging approaches

exist which could package the Interpreter logic as densely as in the LSI/DRA ‘
approach of Texas Instruments.
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Three of the approaches are as follows: .

1.

A flat pack version of the multiprocessor can be produced with the
same volume, weight and power requirements as the LSI version.

The logic provided by two LSI chips can be duplicated with a maxi-
mum of 98, 16-pin flat packs as shown in Figure 35. With the use
of multilayer boards, the 98 flat packs can be interconnected

on the same 5-inch by 5-inch 1/2-inch thick heat sink as used for
two LSI chips.

By utilizing 60«pin hybrid flat packs as produced by TI, it is
possible to package two 8-bit Logic Units on a single heat sink as
shown in Figure 36. The Control Unit and Memory Control Unit
can be packaged together on a single heat sink to provide a reduc-
tion of 1/2 the original volume. This technique would use Shottky
low-power TTL.

A third approach which would give the same volumetric density
as the present L.SI model would be to utilize Hughes LSI which

is produced by a proprietary pad-relocation process. The Hughes
chips could be produced as one for one replacement of the LSI
arrays used in the present processor or as a replacement for

the logic on two LSI arrays that are presently mounted on one

of the submodular housings.
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Figure 35, Altevrnative Packaging Approach Utilizing 16-pin

Flat Packs
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SECTIGN V

INTERPRETER OPERATION

During each clock period, a microinstruction is read from the MPM. The first

four bits of this microinstruction indiczte which of two types of instruction it is.

If it is a Type I instruction, the remaining bits of the MPM word specify a Nano-

memory address to be accessed, The Manomemory 1s then initiated and its output,
- a set of 54 bits, provides the control functions as indicated in the listing below,

Nano-Bite

1-4 Select a condition.
4 5 Selects true or complement of condition.
6 Specifies conditional or unconditional LU operation.,
4 7 Specifies conditional or unconditional external
operation (memory or device)
8-10 Specifies set/reset of condition.
. 11-16 Successcr controls (wait, skip, step, etc.),
1 17-26 Seiects A, B, and Z adder inputs
27 Byte carry control.
, 28-31 Sclects Boolean and basic arithmetic operations.
! 32-33 Selects shift operation.
) 34-36 Enables input o A registers.
37-40 Selects input(s) to B register,
€ 41 Enables input to MIR.
? 42 Enables input to AMPCR.
43-48 Enables and selects input to address registers and
counter (MAR, BR1, BR2, CTR).
g 49-59 Selects input to SAR.
' 51-54 Selects external operations (read, write, lock, etc.),

MPM load, or Nanomemory load.
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If the microinstruction is Type II, the remaining bits of the MPM word are stored
into one or two registers: namely, the SAR, LIT, SAR and LIT, or the AMPCR.
The determination of which registers are to be loaded is specified by the first bits
of the MPM word. The Nanomemory is not accessed during a Type Il operation.

Each Type I microinstruction has two parts {(or phases). The first feiches the
instruction from the MPM and Nanomemory and the second executes the fetched
instruction. Figure 37 illustrates thege two basic phases of each Type |
microinstruction.

The fetch phase involves: MPM accessing, Nanomemory accessing, condition
testing, selection of controls for the next instruction (successor) address com-
putation, and, in parallel, loading the control register for the execution of the
microinstruction. A fetch phase occurs for every Type I microinstruction and
requires one clock time. Since it always overlaps the execution phase of a
prior Type I microinstruction (Figure 37}, the performance of each micro-
instruction reouires effectively one clock interval.

The execution phase alsc requires one clock time and always overlaps the feich
phase of the next Type I instruction. The control signals for the execution phase
are from the output of the control register and have two parts: signals specifying
the logic unit operation (adder input selection, adder function, barrel switch
shifting, etc.) and signals specifying the destination register(s) loading (i.e.
clock enables). Both sets of these controls apply continuously from the start

to the end of the phase; however, the destination registers are not changed
until the occurrence of the clock pulse which signals the end of the execution
phase and which simultaneously reloads the control register for the execution
of a new logic unit operation. The completion of the execution phase (i.e. the
destination register(s) loading), may be delayed or suspended for one or more
clock times.

Suspended execution phase is the name given te an execution phase clock time
whose logic unit operation has been and continues to be performed but whose
destination register loading is postponed for one or more clock periods. This
is accomplished by inhibiting clocks to both the control register and the destina-
tion registers, The register loading part of an execution phase depends on the
subsequent microinstructions which follow the Type I instruction,

This suspended execution phase can cccur for three primary reasons. The first
and most frequent occurrence is when the next instruction from the MPM is a
Type I instruction. This Type Il instruclion is executed during the same clock
time it is fetched and the execution of the Type [ instruction in progress is held
in this suspended execution phase until the next clock interval. This allows the
fetch phase of the next micreoinstruction {if it is 2 Type I} to have an exccution
phase to overlap. This provides condition bits {(generated dynamically during the
execution phase of a microinstruction) that can be tested during the fetch phase of
the next Type I microinstruction.
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A, Type | followed by Type 1 for which a logic operation is required:

1. Type | F E
: 2. Typel F
- ‘% B. Type | followed by Type i1, followed by Type I for which a logic
i operation is required.
' 1. Typel F SE E
2. Typell T
3. Typel F

C. Type | followed by Type | for which no logic operation is required,

followed by Type | for which a logic operation is required. 7 q
1. Typel F SE E ‘
2. Typel F }

3. Typel F }

! - x
. F  Fetch 1 1

R .. E  Execution }Typel
i SE Suspended Execution

y. 0 Typell

Figure 38, Instruction T'iming

e g Ve
- -~ .

64 !




.
i
l
§

§ s

#—

This instruction overlap is more graphically illustrated in Figure 38 where the
horizontal scale is 'time". Example A of Figure 38 shows the case of sequential
Type 1 instructions. Example B of Figure 38 shows the case of a Type I micro-
instruction followed by a Type 1I, which causes the execution phase of the pre-
ceding microinstruction (a Type 1) to be suspended so that the execution will
overlap the fetch phase of the third instruction {(also a Type I). In case the third
instruction had also been a Type II, the execution phase of the first micro-
instruction (the Type I) would have again been suspended. It is important to
realize that since the execution phase of a Type I microinstruction is delayed by
a Type II, the SAR, LIT, or AMPCR registers could be loaded with a value that
would change the result of the operation during ‘he completion of the execution
of the Type I microinstruction.

The second reason for the occurrence of a suspended execution phase is due to
the existence of conditional logic unit operations. A Type I microinstruction
which does not contain a conditional logic operation always has a fetch phase

and an execution phase. However, a Type I microinstruction which does con-
tain a conditional logic operation falls into either of two categories: if the
condition is met, both the fetch phase and- execution phase will be performed;

if the condition is not met, only the fetch phase will be done. However, even
when the execution phase of a conditional Type I microinstruction is ignored,

the fetch phase of the next Type I microinstruction must have an execution phase
to overlap in order to have values for dynamic conditions. This is accomplished
by forcing the prior Type I instruction into a suspended execution phase, which
inhibits clocks from the destination registers and control register, which causes
the execution phase of the current microinstruction to be disregarded. This is
shown in example C of Figure 38. Example C shows a suspended execution phase
occurring when the condition tested in the second microinstruction is not met,
resulting in discarding the execution phase of that second instruction. More
detailed examples explaining the above concepts appear in Figure 39, where CR
refers to the command register, the vertical lines indicate the occurrence of a
clock, and an X appears over clocks which are inhibited from occurring.

The other reason for a suspended execution phase is for use during th: loading
of the MPM and Nanomemory.

Since microprogram timing is important in the execution of microprograms
on the Interpreter, the following summary of timing concepts must be kept in
mind by the programmer in the creation of microprograms:

1. A fetch phase of a microinstruction is always executed in

parallel with an execution (or suspended execution) phase of
another microinstruction.
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1. All Type I unconditional instructions
a. Al +B-—+ Al
b. A2 +B - A2
c. A3 +B -» A3

d. Al C - Al;

bt
oy

2. All Type I instructions
where both AQOV and ABT test true

a, Al +B —» Al
b. If AOV then A2 + B— AZ
c. If ABT then A3 + B— A3

d. Al C-#Al;

i

i e’

wigrd

3. All Type 1 instructions where
AOQV tests false; ABT tests true

a. Al +B Al
b, If AOV then A2 + B—e A2
c. If ABT then A3 + B—#A3

d. Al C—-= Al;

- N4

Souerann, i

w!

O lld

4. Type 1 and Type II instructions
Resulting A2 contains least 4 bits
left justified

a. 2-—»SAR; 3—»LIT
b, A2 and LIT C—» A2
c. 4-—SAR; 15—LIT

d., Al C— Al;

.

i

Figure 39, Timing Example
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2. A suspended execution phase occurs primarily due to a successor
that is either a Type Il or a Type I microinstruction which containsg
a conditional logic unit operation that has not been satisfied.

3. A suspended execution phase of a Type I microinstruction which
consists of both a fetch phase and an execution phase) does not
become completed until the occurrence of another Type [ micro-
instruction which also consists of both phases.

4. Any microinstruction which either causes a suspended execution
phase to be initiated or prolongs an existing suspended execution
phase is actually executed in time between the fetch phase and the
execution phase of the affected Type I microinstruction although
it may programmatically follow it.

The sequencing of microinstructions is also importan! in understanding the
Interpreter operation.

The secuencing of Type I microprogram instructions is controlled by the

following procedure: The MPM addresses the nanomemory which provides
information to the condition testing logic indicating which condition is to bhe

tested., The condition testing logic provides a True/False signal to the successor
selection logic which selects between the three True and three False successor
bits (also from the Nanomemory). The three selected bits (True/False) provide
eight possible successor command combinations listed below and also shown

in Figure40. A Type II microinstruction (which does not access the Nanomemory)
has an implicit STEP successor.

Va it Repeat the current instruction
Step Step to the next instruction
Skip Skip the next instruction
Jump Jump to another area of MPM (as specified by AMPCR)
Retn Return from a Micro subroutine
Call Call a Micro subroutine, saving the return address
Save Save the address of the head of a loop
Exec Execute one instruction out of sequence

The particular chosen successor command then provides controls used in the
selection (MPCR/AMPCR) and incrementing logic which generates the next MPM
address. Except for the EXEC command, the MPCR is loaded with this MPM
address.
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‘h SECTION VI

SWITCH INTERLOCK OPERATION

OVERALL SWITCH INTERLOCK CONTROL AND TIMING

Figure 41 is a block diagram of the Switch Interlock (SWI), connecting five Inter-
preters to eight devices and eight memory modules, The transmission paths
through the SWI break the 32-bit data word into 8 wires carrying 4 serial bits each,

Only Interpreters can issue control signals to access memories or devices. A
memory module or device cannot initiate a path through the Switch Interlock, but
it may, however, pvo;lide a signal to the Interpreter to an unused condition bit
via a display register , a device connected to the SWI. Thus, transfer between
devices and memories must be via and under the control of an Interpreter.
Connection with a device-like port is by "reservation" for exclusive use by an
Interpreter and is maintained until released by that Interpreter or in the case of
that Interpreter failing. (A memory could be attached to a device-like port if
locking of an Interpreter to a memory is desired.) Connection with a memory-like
port is for the duration of a single data word exchange. (Note also that a device
could be attached to a memory-like port. To simplify the description however,
these two types of ports will be referred to just as device ports and memory ports
in the following discussion).

r—— fropeens

*No digplay register is being delivered with the aerospace multiprocessor, but
is an eagily designed device that could take a variety of forms. Basically,
setting any bit in the display register would set the condition bit in the Inter-
preter. When this bit is tested true, the display register would be read, relurning
either the entire register, a masked portion of the register, or possibly the
address of the device with the highest priority interrupt, depending upon the design
of the display register device,
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Controls are routed from the Interpreters through the MDC to the MC and the DC
which, in turn, check availability, resolve conflicts, and perform the other functions
that are characteristic of the Switch Interlock. Data and addresses do not pass
through the MDC, but are wired directly to the OSN's.

Events are initiated by the Interpreter for access to memories or devices, The
Interpreter awaits returp signals from the MDC, Upon receipt of these signals,
it proceeds with its program. Lacking such positive return signals, it will either
wait, or retry continuously, depending upon the Interpreter program (and not on
the Switch Interlock). A timeout waiting for a response will be performed by a
counter {called the "HORN"} that will force a STEP in the microprogram after a
preset length of time and will set a condition bit to indicate a failed memory
module or device due to the lack of a response. This counter is reset every time
any memory or device operation isg done.

Among the significant signala which are meaningful responses to an Interpreter
and testable as conditions are the following:

Switch Interlock has
Accepted Information (SAD

Read Complete (RDC)
or Request of Device
Complete (RDC)

Horn Overflow (HOV)

The MAR and MIR of the Interpreter
may be reloaded and a memory or
device has been connected,

Data is available to be gated into the
B register of the Interpreter or the
device written to has accepted its
information.

No memory or device operations have

have been performed for the last 220
Interpreter clock times.

The rationale for this "handshaking' approach is consistent with the overall
Interpreter-based system design which permits the maximum latitude in the
selection of memory and device speeds. Thus the microprogrammer has the
ability (as well as the responsibility) to provide the timing constraints for any
system configuration.

For each Interpreter, the Switch Interlock provides three buffer shift registers.

1. Address data for S memory and devices from the specified
MAR1 or MAR2, (XDA).

2. Output data from the MIR, (XDO),

3. Input data for assembly and subsequent acceptance into the
B register. (XDl). Data in this register may be repeatedly read
non-destructively until the next device or memory operation is
initiated {the last read may be concurrent with the next operation),
provided no intervening instructicn uses a B register input
selection involving the MIR.
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DEVICE OPERATIONS

The philosophy of device operations is based upon an Interpreter using a device
for a "long" period of time without interruption, This is accomplished by "locking'
an Interpreter to a device. (The reader is reminded that a memory could be
attached to a "'device-like" port.)

The device operations include lock (DL), read (DR}, write (DW), and unlock (DU).
Each device operation uses as a device identification the value of the most gigni-
ficant three bits of BR1 or BR2 as indicated in the operation suffix, e.g., DLi.
This identification is not stored by the Switch Interlock; consequently it must be
maintained until the device operation is completed, or until some other device or
memory action is desired. Any change to the device identification while a device
operation is in progress breaks the selected path to or from the Interpreter., Un-
less the normal completion occurs concurrently, the prior device operation is
terminated. The value in MAR and in the least significant 6 bits of BR1 or BR2
pass through the Switch Interlock to the device as required. A signal indicating
read or write is placed in the most significant bit of the XDA shift register in
place of one of the module address bits which are not needed by the memory
module or device,

The ground-rules for device operations are listed below:

1. An Interpreter must be locked to a device in order to read from
or write to that device.

2. An Interpreter may be locked to several devices at the same
time.

3. A device can only be locked to one Interpreter at a time,

4. When an Interpreter is finished using a device, it should be
unlocked so other Interpreters ceu use it, Devices locked to
to a failed Interpreter are unlocked by turning power off to
the failea Interpreter.

A block diagram of the DC is given in Figure 18 in the Multiprocessor Hardware
Section of this report. One primary purpose of the DC is to resolve conflicts
in device lock (DL) and device unlock (DU) requests that may occur.

The second purpose of the DC is to check to make sure a device is locked to an
Interpreter that is requesting to read from, write to, or unlock from that device,
This is accomplished by the "Lock Check for Device Operation" in the right

of Figure 18.
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If an Interpreter igsues a read or write command in an attempt to control a device,
and it has not previously locked the device, it will not be given access to the de-
vice regardless of its (the Interpreter's) priority status, However, as stated
above, if it had previously locked the device, it has explicit priority to that

same device.

Device Lock and Unlock

Timing diagrams for DL and DU operations are shown in Figures 42 and 43, Inboth
cases, controls from the Interpreter (Nanobiig 51-34) are strobed into the mem/dev
operation register of the MDDC if either the Type [ microinstruction is unconditional
or the selected condition is true, independent of whether the next instruction is
Type 1 or Type II. A Device Operation signal and either a Lock Regquest or an
Unlock Request are derived from the output of this register and are sent from the
MDC to the DC, concurrent with a 3-bit addregs being sent to the DC from the
selected bage register output of the Interpreter.

For the case of either a DL to a device previously locked to the requesting Inter-
preter or a DU to a device previously unlocked from any Interpreter (shown in
Figure 43%), an appropriate status signai is returned from the DC tothe MDC, and
conllict resolution for actually performing the DL cr DU is of no consequence,

In these two cases, the flip-flop in the MDC for synchronizing the SAT signal is
set with the next clock., The actual SAT flip-flop in the Interpreter will then be set
with the second clock and will test true during the fetch phase of the third
instruction following the DL or DT,

However, for the cases " a2 DL to an unlocked device or a DU to a device locked

to the requesting Interpreter (shown in Figured43), conflict resolution is necessary,
The DL request from the highest priority requesting Interpreter is honored over

4 co-ocecurring requegt for the same device from any lowe: priority Interpreter.
Concurrent DI or DU requests for different devices may cause the lower priority
request to incur a one clock delay in achieving the DI, or DU and in return ot 8A],
for each higher priority request, Congequently DI, or DU requests from Inierpreters
other than the highest priority may be arbitra lly delayed. The earliest confirming
SAI regponse oceure 3 inst uctic .~ a‘ter issue of the DL or DU, If SAl is true,

then the DL or DU vas successiul, L1 SAi is talse, then it meuns thai the DL

or DU i3 not vet successful, The design justification for this potential arbitrary
deiay is that DL or DU are infrequent events for which asbitrary delay is of

little consequence,

Device Read u1.1 Write

A timing diagram fer DR or DW is skown in Figure 44, As for DL ana WU, controls
from '.e [aterpreter (Nanobits 51-54) are strobed into the mem,;dev opecation
recater of the MDC {f either the Type T microinstruction is unconditional or the
selected condition is true, independent of whether the next instruction is Type |

or Type 11 Contrels derived from the output of this register will next load th-

ouatput shift reginters of tne Interpreter and wili send a Device Operation signal
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from the MDC to the DC, concurrent with a 3-bit address being sent from the
selected bage register of the Interpreter to check the lock status of that device.
After it is confirmed that the device is locked, the DC returns a signal to the
MDC which will cause a clear pulse to be sent to the device interface logic
through the device OSN and will initiate the getting of SAI and the transmission -
of high speed clocks to the cutput shift register of the Interpreter and through the

RrmMoniaye

OSN's to the device interface. I
i
For both a DR and DW, the device interface counts four clocks coming into it and
then stops accepting high speed clocks. In the case of a read, the device interface }
) usually waits for some kind of Data Available signal from the device (such as §
~ "column strobe' from a card reader) which it will use to load its output shift
registers and to allow four high speed clocks which are still arriving from the -
OSN to clock these output shift registers and to be returned to the MDC and the i

Interpreter with the serial data, The MDC will count four return clocks and

will set a flip-flop in the MDC for synchronizing RDC, This signal is sent from

the MDU to that Interpreter, for setting RDC, which then will test true during {
the following clock time. The value in the selected base register must not be .
changed during a device read, as shown in the timing diagram.

P S,

In the case of a write, the response is very dependent upon the particular device

- being interfaced. For the card reader, the next four high speed clocks are turned
; . around and sent back to the Interpreter (status was chosen to be sent back as

= ) a '"bonus'). In the case of the printer, a signal saying the last character was

] - accepted by the printer is used by the device interface to allow return clocks.

3 ' The four return clocks are counted by the MDC and are used as a meang of saying
by that the device accepted the data sent out by setting .RDC-as for a DR. As in the

: case of a device read, the value in the selected base register must not be changed
during a device write.

U .

Device Use Sequence

’ . The sequence of device cperations necessary for an Interpreter to use a device
b~ is as follows:

‘ 1, A tesi of IF 5Al should be included in some instruction to reset
B ] it, ‘This usually can be in the instruction with the unconditional
] dcvice operation.

NG e

" 4. Device Lock Request: The most significant three bits of the
indicated base register are used as the device identification,
The third following clock time will be the earliest SAI could
N have become true. SAI is then tested,

- | *Devices such as the real time clock (described in the Multiprocessor Hardware
- ‘ section) howaver, do no: require a signal such as Data Available for synchronization
¢ince thev are already synchronized to the Interpreter clock,

v ]
»q
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2.1 If true, then the device lock was successful,

2.2 If falgse, then the device lock was unsuccessful. The
request remains in progress while other instructions
not changing the device identification or issuing other
memory or device operations may be executed. The DL
request is terminated by the first of the following actions:

{a) The Interpreter initiates another memory or device
operation,

(b} The Interpreter changes the device identification in
the selected base register,

(¢) The device becomes available and sets SAL All co-
occurring actions are valid. Should (a) and (c) co-occur
or {b) and {c) co-occur, SAI refers to the DL for the
following two instruction times and should be tested.
In the instructions thereafter, SAI refers to the new
memory or device operation. Should termination by
{b) occur without co-occurrence of {¢), the new device
identification applies to the DL still in progress, and
the path for SAI return is diverted to the newly identi-
fied device (if there is one so identified) without
reigsue of another DL,

3. Once the desired device is locked to the Inteérpreter,—a sequence of
one or more data exchanges may be initiated using a device write
- or device read,

- 4, Device Write: The data in the indicated base register is userd

to specify the device, and the data in the MIR provides the

information to be written to the device. The second instruction

. after the device write, SAI may be tested. If true, the Inter-
preter is locked to the device, the data in the MIR has been ac-
cepted by the XDO register, and so the MIR 1nay subsequently be
changed, If false, the Interpreter was not locked to the requesting
device.

<

‘ L The device provides four high-speed return clocks to generate an
\ ' g RDC when it has completed the requested write, Similar to DL,
the request continues until the first of the corresponding 3 actions.

E>

(a)- The Interpreter initiates another memory or device
operation,

orc b

(b} The Interpreter changes the device identification,

11
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(c} The DW is completed and sets RDC. All co-occurring actions
are valid. Should (a) and {(¢) co-occur or (b) and {c) co~
oceur, SAI refers to the DW for the following instruction
time and should be tested. In the next following instruction
SAI then refars to the new memory or device operation.
Should (b) not co~occur with (¢}, then the DW in progress
is diverted to apply to the new device identification without
reissue of another DL,

5. Device Read: The data in the gpecified base register is used to
specify the device, The second ingtruction after the device read,
SAI may be tested. If true, the Interpreter is locked to the
device; otherwise not.

The device provides four high speed return clocks with the
returning data to generate an RDC after the device read. Thus,
the same instruction that finds RDC true may include BEX.
RDC should be reset by testing prior to use for device read
(usually as part of the prior instruction using BEX).

6. Device Unlock: When use of the device is completed, the lock
should be terminated by issuing a device unlock. An SAI is
returned if the issuing Interpreter was locked to the device.
An attempt to unlock a device that is not locked to the Inter-
preter will not return SAI, SAIl is available for test at earliest
the third instruction after the device unlock.

MEMORY OPERATIONS

Memory modules normally cannot be locked and are assumed to require minimum
access time and a short "hold" time by any single Interpreter. (The reader is
reminded that a device could be attached to a ""memory-like" port.) Conflicts

in access to the same module are resolved in favor of the highest priority
requesting Interpreter. Once access is granted, it continues until that memory
operation is complete. When one access is complete, the highest priority

request is honored from those Interpreters then in contention.

The memory operations include read (MR) and write (MW), Xach memory opera-
tion uses as a memory address the value in MAR1 and MAR2 (BR1 or BR2 con-
catenated with MAR). The most significant 3 bits of the address specifies a
memory module with the rest indicating locations within the module,

The MC, shown in Figures 19 and 20 of the Multiprocessor Hardware section of
this report, provides for resclution of conflicts (this is fixed or wired priority)
among contending Interpreters, Once conflicts have been resolved and acc: s

has been granted to a memory module by an interpreter, the MC "remembers’ this
connection throughout the memory operation, allowing the selected base register
to he changed as opposed to requiring the selected bage register value to be
rmaintained as for device opcrations. This register also allows for future

78

[
beuallidi ¥

- S Rosiaci

+ rbrase

e,
Pr—

i

[,

e, s

kil o



et

S— e et o e e 2t s imanirri SRR, TS

modification to the MC to allow ''remembering’ the connection until that Inter-
preter uses a different memory module., This would allow almost a one clock

time faster access to the memory moduie if the next request iz also to the
remembered memory module, gince no priority resolution need take place.

More specifically, when a memory module would be requested by an Interpreter,
the module name would be cempared with the register which would contain the
number of the last module which that [nterpreter accessed, If it would match,

the priority logic would then be bypassed, thus saving time. If it would not,

it would mean that the merory either had been previously used by another
Interpreter, cor would presently be in contention for by other Interpreters, or would
presenily beinuse by another Interpreter. In this case the requesting Inierpreter
would route its request through the priority logic {a few gate levels of delay).

When access would be granted, the memory module address would then be clocked
into the register in the part of the MC for the requesting Interpreter by the rnext
Interpreter clock and the register for any uther Interpreter containing that address
would be reset to all zeros,

If locking of a memory module is required for purposes of block transfers or

sitnilar reasons, a memory ig designated as a device and is placed under the
control of the DC in which locking is permitted.

Memory Read and Write

A timing diagram for MR and MW is shown in Figure 45, As for device operations,
controls from the Interpreter (Nanobits 51-54) are strobed into the mem/dev
operation register of the MDC if either the Type I microinstruction is unconditional
or the selected condition is true, independent of whether the next instruction is
Type I or Type II. Controls derived from the output of this register will next

load the outprt shift registers of the Interpreter and will send a Memory Request
signal from the MDC to the MC, concurrent with a three bit address being sent
from the selected base register of the Interpreter. This initiates the priority logic
in the MC, When the MC ha3s granted access by that Interpreter to the memory
module it was requesting, a signal is returned from the MC to the MDC that will
cause a clear pulse to be sent to the memory interface logic through the memeory
OSN and will initiate the setting of SAI and the transmission of high speed clocks

to the output shift registers of the Interpreter and through the OSN's to the memory
interface.

In the case of a memory write, the counter in the MDC will count four output high
speed clorks and will then stop them,

In the case of a memory read, output high speed clocks are not counted, Instead,
these higih speed ciocks are continually sent to the memory module interface.
This interface will count four clncks coming into it and will then initiate a
memory read, Upon return of a data available signal frem the memory, the
maemory interface will loaa its output shift registers and then allow four of

the higl. speed clocks that are still coming through the OSN to clock these output
shif. registers and to be returned to the MDC and the Interpreter with the chifted
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out data. The MDC will count four of these memory return clocks and will then
stop the high speed output clocks and set RDC indicating that the data has been
shifted into the Interpreter input shift registers and is ready to be strobed into ‘
the B register. :‘

Memory Use Sequence

The sequence of operations necessary to access S memory is simple in single

Interpreter systems where no conflict in access can exist. In such cases once

the address setup is complete (as is the MIR for write), the memory read (or

write) can be initiated. After a suitable time the data from memory can be

accessed via BEX or BBE. In the presence of conflict potential, the following

control sequence should be used. This sequence is recommended for systems l
without a Switch Interlock as well,

¥

1, Mermn.ory read

R

1.1 A test of RDC should be included in some prior instruction in
order to reset RDC. By convention this should be the previous
memory read (or device read or write), A test of SAI also
should be included in some prior instruction in order to reset

. . SAI if address register changes are required after issuing the

memory read before the RDC is returned, or if confirmation of

- access to the switch interlock is desired,

e

1.2 The address should be in the selected base register and MAR.,

. ) 1.3 The memory read can then be initiated the instruction after
| . the address has the desired value.

1.4 An SAIl is returned when the Switch Interlock has accepted the
x [ address and the memory is connected to the requesting Inter-
' preter through the Switch Interlock.

1.5 A group of intervening instructions can be issued, depending
on the relative speeds of the Interpreter clock and the S memory.
Once SAI is set and tested, these instructions may change the
address registers,

1,6 An RDC (read complete) signal is returned when data is avail-
able for entry into the Interpreter.

1,7 1If no intervening device or memory reads occur and no inter-
vening instructicn used a R register input selection involving
the MIR, BEX may be repeated, each time receiving the data
in XDI non-destructively.
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2. Memory Write

2.1 A test of SAI should be included in some prior instruction
in order to reset SAL

2.2 The data to be written should be in MIR.

2,3 The address should be in the selected bage register
and MAR,.

2.4 The memory write can then be initiated the instruction
after both the address and data have the desired values,

2.5 Return of SAI indicates that the memory is connected and
therefore the addre~s and data have been accepted in the
XDA and XDO buffer registers respectively, and thus the
address registers and MIR may be subsequently changed,

INTERFACE TO SWI

The interface to each memory or device port is functionally identical, For the
aerospace multiprocessor, the interface from the SWI to the memory or device
interface consists of a clear line, a high speed clock line, 8 data lines of 4 serial
bits each and 4 address lines of 4 serial bits each. (The most significant bit of the
BR is replaced by a read/write signal in the serial address sent to the memory

or device port.) The interface from the memory or device interface to the SWI
consists of a return high speed clock line and 8 data lines of 4 serial bits each.

The relative timing of these signals at the interface is shown in Figure 46. The
timing in this figure was measured using one Interpreter and memory module

only at the indicated frequency and should not be interpreted as resulting from any
worst case timing analysis. In Figure 46a, the 330 nanosecond delay from clear
to the high speed clock becomes smaller as the frequency of the high speed clock
is increased. The widths of the clear and the 60 nanosecond deiay from high speed
clock to data are independent of the frequency or width of the high speed clock.

In Figure 46b, the relationship between data and clock should be independent of
the frequency or width of the high speed clock.

A block diagram of a generalized memory or device interface is shown in Figure
47. The bottom half of the figure shows the accumulation of the serial input data

from the SWI, and the top half of the figure shows the transmission of the serial
output data to the SWI along with the return clock.
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DEVICE INTERFACE OPERATION EXAMPLES

Line Printer

The printer is device No. 1 {i.e. the most significant three bits of the selected base
register are 001). It i5 assumed that the appropriate locking to the printer will
have been performed prior to initiating printer operations.

Line Printer Operation

The values of the bits of the MAR accompanying a DW or DR to the printer are
interpreted as follows:

MAR 7 (LSB) unused
MAR 6 { = 0 for forms controls in six LSB's of MIR
= 1 for character in six LSB's of MIR
MAR 5 { = 0 when transferring characters
= 1 when printing or using iorms controls
MAR 0-4 unused

The following sequence will print a full 132 character line followed by a single
space.

Printer/Interpreter Synchronization

To synchrenize the Interpreter with the printer clock, a DR with controls bits 010
in the least significant three bits of the MAR is issued. This operation has no
effect upon the printer, but causes the DDP to return an RDC on the trailing edge
of the next printer clock,

Printer Buffer Loading

133 characters must be transferred intc the print buffer. The last 132 of these
will print from right to left on the line. The first character is totally ignored,
Character transfer is initiated by a DW with control bits 010 in the least signi-
ficant three bits of the MAR. The 6 least significant bits of the MIR which are
present at the end of the Fetch Phase of the instruction containing the DW are
transferred into the printer buffer as a BCL character. After the character has
been accepted by the printer an RDC is returned. In the same clock in which
this RDC is received, a DW containing the next character must be initiated as
described below under "Timing Considerations'. The first DW in the sequence
of 133 should wait for the RDC which is received from the synchronizing DR.

Print Initiation

When the RDC from the 133rd character transfer is received, a DW with control
Lits 100 in the MAR and all zeros in the MiR is issued. This control will cause
the printer to print the buffer.

L eman




Single Space Initiation

When the RDC from the print is received, a DW with control bits 100 in the MAR,

a one in the least significant bit of the MIR and zeros in all other MIR bits is issued,
This will cause a single space. Other spacing can be done instead by placing

other values in the six least significant bits of the MIR, The format of the MIR for
forms control is as follows,

MIR 31 (LSB) PSSL ONE for single space
30 PDSL ONE for double spzce
29 FCIL

Format controls for variable spacing

33 f g«;é (110000 for bottom of form)
f

o6 FOBL {000100 for top of form)

25 unused

24 unused

Delay for Printing/Spacing

A delay of approximately 150 milliseconds must elapse prior to filling the buffer
for the next line, With this delesy a continuous printing speed of 400 lineg per
minute can be maintained.

Status Information

When RDC is returned from either a DW or DR, a BEX instruction will bring status
information into the B register as follows:

B 31 (LSB) PRRL Ready, ZERO when ready

30 PAML Paper Motion, ZERO when paper in
moticn or print cycle in progress

29 PCYL Cycle, ZERO when print cycle in progress

28 EOPL End of Page, ZERO when end of page senced

27 PPEL Parity Error, ZERO for transmission parity
and/or print counter sync error

26 PFCPE Final Character Pulse, ZERO after last
character of line

25 unused

24 unused

If the program does not test for the not ready condition and the step button is
pushed, the program will continue to send and receive information from the
1301 although no actual printing will cccur and data will be lnst. To control
printing, the ready level need only be tested cnce each line prior to filling the
print buffer, since the not ready condition (STOP light on) cannot occur after
. load buffer instruction until the lisie has been printec.
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Timing Considerations

Loading of the printer buffer involves the trausfer of a BCL character from an
Interpreter 10 the printer every 10 microseconds. Because the data transferred
should be present on the printer input lines for at least 9 microseconds prior

to its acceptance by the printer (for reliable settling), only 1 microsecond should
elapse between the termination of transfer of one character and the initiation of
transfer of the next, If less than 9 microseconds are allowed for settling, some
bit positions with value 0 will be read incorrectly as 1, thus causing random
incorrect characters to be printed.

The transfer of data from the printer input lines into the printer buffer occurs
every 10 microseconds on the trailing edge of the printer clock pulse. This
clock pulse also causes the status bit to be sent to the SWI from the printer DDP.
After the last of these data bits has been received by the SWI, the return of an
RDC to the Interpreter is initiated. Because of resynchronization delays in the
SWI, this RDC will not be detected by the Interpreter until 2 1/2 clocks later
on the average. The Interpreter must then issue a new DW containing the next
character to be loaded, This character will begin transferring into the DDP at
the end of the clock in which the DW is initiated. The transfer will take

4 high-speed clocks to complete, at which time the new character will be pre-
sent on the printer input lines, and will begin settling. The entire process
described here should vccur within 1 microsecond in order that 9 microseconds
will be available for settling.

Card Reader

The card reader is device No, 2 (i,e. the most significant three bits of the
selected base register are 010,) To be used the card reader must be locked
to an Interpreter and the base register must select the card reader, Upon
successful completion of DI, an SAT is returned to the Interpreter.

To start up a card reader it must be sent proper bits in a DW or a DR
instruction, The values of the MAR accompanying the DW are inierpreted
as follows:

Least significant bit: 0 Don't return data to S\WI
1 Return data to SW]

The LSB is normally a 1, the 0 value allows skipping cards or testing card
reader mechanical functions without data or RDC returns to the SWI,

Next to L3SR: 0 Return character bits as data
1 Return status bits as data

Third from LSB: 0 Read as BCL
1 Read as Hollerith




A

This Hollerith reading function is not wired on the present card reader DDP for
the 6 high rows (11, 12, 0,1,2, 3); only the .ole pattern for the 6 low rows
(4.5, 6, 7,8, 9) are returned.

Fourth from LSB; 0 Don't operate card reader
’ 1 Operate card reader

The 0 value allows checking of DDP functions without the noise of the card reader.

These control bits apply to the DW which they accompany and to all following DR's
for this card reader until changed by another device write, Upon completion of

a DW, data is returned to the Interpreter via the SWIand an RDC occurs to mark
the end of the data reply for the write. When status is selected as data, the status
returned with the DW (and subsequent DR's, if any) is valid, however the character
returned with the DW is likely to be meaningless, The status bits returned are
these:

LSB: CRL: Ready, ONE for ready
CCL: Present, ONF for duration ot each card
CREL: Error, ONE for reader detected error
CRCL: Start, ONE for START button Not operated
EOF: End of File, ONF for Hopper Not Empty or for EQF

button Not operated (ZERO for Empty Hopper
and EQOF Button operated, )

Not used: Z.ero
Not used: Zerao
MS B: Not used: Zero

Immediately upon receipt of a DW containing bits set to operate it, the card
reader begins to read cards at its maximum rate, Since the DDP for the card
reader has but a 1 column buffer, it is necessary for tlie prograin in the Inter-
preter to send a DR instruction for each column, The synchronization of DR's
and column reads in the DDP is as follows: Case 1. The DR arrives at the DDP
before the column read is ready: The DR waits at the DDP until the column
read is ready; then transmits data and return clocks to the Interpreter. If during
this wait another SWI operation is invoked which returns as RDC before the
column read is ready, the DR in the card reader DDP is lost and a new device
read must be sent to the card reader to capture the data of this column. Upon
sending the data of this column, the state of the DDF is set to show no column
read ready. Case 2: The DR arrives at the DDP after the column read is ready.
The DR immediately returns data and return clocks to the Interpreter and sets
the state of the DDP to show no column read ready, I during the actions of this
DR, another SWI cperation is invoked which returns an RIIC before the DR is
complete, the DR in the card reader DDP is lost, the card column is lost and
the control sequence of the DDP is confused.

PR |

A

-




ey %

‘J

SECTION VII

INTERPRETER MICROPROGRAMMING

Microprogramming is that procecdure the designer uses to specify the action,
function, and state of each of the Interpreter logic elements during every clock
time. (A historical background of microprogramming is given in appendix I).

In this sense, microprogramming replaces the function of hardware sequential
logic used to cause the machine to execute an instruction requiring more than one
clock time. Thus, microprogramming is essentially similar to sequential logic
design, However, no logic (hardware) is added in the sequential logic design, but
rather the existing registers, data paths, and control gates are used in a specific
order to bring about the desired logical result.

The pattern of ones and zeros in the Microprogram Memory (MPAl) and nanomemory
(together with the data) determines the operation of the Interpreter. The micropro-
grammer is concerned with the generation of these patterns to provide the desired
control functions, However, instead of actually writing these patterns, the micropro-
grammer is assisted by a microtranslator (or assembler) that allows him to write
microinstructions muemonically, The microtranslator then scans these instructions
and produces the pattern of ones and zeros to be placed into the MPM and Nano-
memories,

Figure 48 indicates how one can learn to microprogram the machine and the sim-

plicity of the microprogram structure, The high degree of parallelism in the Inter-

preter is also evident from the powertul statements that can be expressed. For

example, the following actions may be expressed and pertormed in one instruction:
test a condition (for either True or False)

set/reset a condition

initiate an external operaticon (e,g,, memory read)

89




m Faan et | oY A sy WOERT T TTwr e ' : - —— = CE— [ ] o o —

gad4 1, uo1IONIISUIOAOIN g} Aandig

11«2y ‘Hys « by
HOdWY ~

Y

HVS ~ %

SUDIIRIGA N0
(ossm0ns dels ‘58008 AJOWBL OURU Ou) 519151804 peyyioads © JO Aug speo — || adAy

150 UORIPUOS 2i0j9q Paoeid BUIIG AG AJ[RLOIIPUOOUN JO UMOYS S8 A||SUONIPUCD JBYLID PAINJEXS #q ABw g pue Y sdna.D,

04
ousN pro ANt
WdW peo AOD o
wu wes AOV =
e neo HYS 0N} PoT iav
20%9 2059 ¥1D  uopeunseg  WHIM/PROY FLy|
dwnf duwnf HYW VS RIS 1001400 ASW
dis dys Z/L88  uonoung seppy 29 weey z/Lx3
anes anus HOdNY weeg 7 UK PeY JUTTRE S vs
dms das wHes g :Asoursyy Z/199 w8 £/2/197 ,
1M Hem 140} 10U0D woes v uel £/2/1D71398 Z/129 -
RGP NSl ND/MNON m PweIx3  T1snipY UOGIPUOD UALY UONIPUD) ) |,
14} () {6} (s2) 1/] €} ()
Ye it oSy T ¥5'15 018 gy HaousN
4 v
(U §G} AJOWOUS DURU JO a5y — { GdA L
LS . P,_.,

B s



ol

RV,

erb—

e,

1

perform an add operation

shift the result of the add

store the results in a number of registers
increment a counter

complement the shift amount

choose the successor microinstruction

It is also possible to perform these operations either conditionally or uncondi-
tionally as suggested in Figure 48, The group A and group B portions (either,
neither, or both) of the microinstruction may be placed hefore the condition test
portion of the instruction. This will resuilt in that portion (A and/or B) being
performed unconditionally.

The following four microinstruction examples illustrate both the parallelism and
the conditional /unconditional properties of the microinstructions.

(1) If NOT LST then Set L.Cl, MR1; Al + B+ 1 C--A2, MIR, CSAR, INC;
Step else jump

(2) Set LC1, MRI; If NOT LST then Al + B+ 1| C—~A2, MIR, CSAR, INC;
Step else Jump

(3) Al + B+ 1C~A2, MIR, CSAR, INC; If NOT LST then Set LC1, MRI1;
Step else jump

(4) Set LCI, MR1; A2+ B + 1 C—=A2, MIR, CSAR, INC; If NOT LST then
Step else Jump

In (1) the LST bit is tested and if not true, the local condition 1 {I.C1) is set,
memory read is initiated (MR?), the function Al + B + 1 is performed in the
adder, the adder output is shifted circular and the result stored in both the
A2 and MIR registers, the content of the shift amount register is complemented
(CSAR), the counter is incremented {INC), and the true successor (STLED) is
selected. If the L.ST bit is true, none of these operations are performed and the
false successor (JUMP) is executed.

In (2) the LC1 is set and the memory read is initiated (MR1) unconditionally
(i.e., without considering the LST bit). The remaining functions are conditicnally
performed as in (1).

In (3), the functions A1 + B+ 1 C-A2, MIR, CSAR, INC are performed uncon-
ditionally but set L.C1 and MR1 are performed conditionally,

In (4) the functions Set LC1, MR1, A1+ B + 1 C - A2, MIR, CSAR, INC are
all performed unconditionally and only the successors Step and Jump depend uvon
the LST test,
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TRANSLANG FOR MICROPROGRAMMING

I

The TRANSlator LANGuage (TRANSLANG) program is an assembler for Interpreter
microprogramns. The complete syntax of TRANSTLANG is given in Appendix IV, It
employs a vocabulary of reserved words and symbols used to develep a micropro-
gram and its corresponding table of nanoinstructions. Reserved words and symbols
are grouped as defined in this report to form microinstructions and programs. The
reserved words are summarized in Appendix V;

e wrirind

| P

™~ Two versions of TRANSLANG exist for the aerospace multiprocessor. One version
is written in Burroughs Compatibie ALGOL which can run on both Burroughs B 5500
and B 6700 syrtems., This TRANSLANG is described in this section and in more
detail in Burronghs Microprogramming Manual for Interpreter Based Systems,
TR70-8, The second version is written in FORTRAN for the CDC 6600, and is de-
scribed in A FORTRAN Microprogram Translator, an Air Force Institute of Tech-~
nology thesis GGC/EE/72-2. The TRANSLANG syntax and semantics for the
FORTRAN version are the same as that described here and in TR70-8 with tne
exceptions listed ir an appendix to the thesis.

[

Each TRANSLANG line corresponds to onec microinstruction which is the set of In-
terpreter functions performed in parallel at each machine clock. The constructs
include iterative mechanisms, 1/0, Boolean, logical and computational operations,
control transfers and assignment functions, iIn order to provide control points for
transfer operations, each instruction may be labeled with a symbolic microaddress.

The INSERT function has been included to allow for the use of a macro library of
previously debugged microprograms,

Conventions in Language Description

Backus-Naur form (BNF) is used as the metalanguage to define the syntax of
) TRANSLANG, The following BNF symbols are used: ]
1. () Lett and right broken brackets are used to bracket the )
names of syntactic categories. ,l
2. = Colon colon equal means "is defined as'' and separates

the name of the syntactic category from its definition,

-

3. | Bar separates alternative definitions of a syntactic

ataonror
s category.

4, { } Left and right braces enclose an English language
description of a syntactic unit,

CRC ROy P = - .
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Any character or symbol in a metalanguage formula which is not a metalanguage
symbol and is not enclosed within matching braces or broken brackets, denotes
itgelf,

Basic Elements

(Letter) ::= AlslcinlElFrlclualildlkliLimin]o
PIQIR|s|T|U|lVIW[X|Y!|Z

(Digit) ::= ol1l2]3f4)5i6j7]8}9

{Hex Digit) ::= (Digity) |A|BIC|D|IE|F

(Symbol) ::= Sslel-del=l it e

(Single Space) ::= { One horizontal blank position }

(Space) ::= (Single Space} | (Space) (Single Space)

(Assignment Op) ::= =: ] =

(Character) ::= {Letter) | (Digit) | (Single Space) | (Symbol}
{(Comment Character) ::= (Character) | .| # &8 {[]1i\{/
(Empty) ::= {’I‘he null string of characters}

Semantics

TRANSILANG uses a character set of 56 characters including {single space), 8 of
which are only used in comments. All letters are upper case.

Spaces - No space may appear between the ietters of a reserved word or within an
{Assignment Op) ; otherwise, they will be interpreted as two or more elements.
Spaces are used as a delimiter to separate reserved words, labels, or integers.
Spaces may appear between any two basic components without affecting their
meaning, where basic components indicate reserved words, symbols, or labels.

Parentheses - The parentheses are treated as spaces. They are used for the con-
venience of the micropregrammer to make code more readable. (E.g. instruction
elements which are irrelevant to the current instruction but are used only to allow
shared use of a nznoinstruction by several microinstructions.)

Parentheses do not imply precedence.
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LITERAL ASSIGNMENT INSTRUCTION

i
-
Blams R aE ki

(Literal Assignment) ::= {Literal) (Assignment Op) AMPCR |
{Literal) {Assignment Op) SAR|
(Literal) {Assignment Op) SAR;
(Literal) (Assignment Op) LIT |
. {Literal) {Assignment Op) LIT;
| (Literal) (Assignment Op) SAR|
{Literal) {Assignment Op) LIT

i

(l.iteral) ::= (Integer) | COMP (Integer) { (Label) | (Label) -1
. (Integer} ::= (Digit) | (Digit) (Integer)
-~ (l.abel) ::= (Letter) | {Label} {(Letter) |{Label) (Digit) §
Semantics

A (Literal Assignment) becomes a type Il microinstruction for an Interpreter.
This microinstruction contains the literal value(s) and specifies the receiving

register(s).
Width, bits
AMPCR Alternate Micro Program Count Hegister 12
SAR Shift Amount Register )
LIT Literal Register 8

The registers may be individually loaded or both the SAR and the LIT may be load-
ed in the same microinstruction.

An (Integer) is non-negative and in the range of the intended receiving register’s),
COMP (Integer) , if the receiving register is LIT or AMPCR, takes the one's ccm-
plement of the (Integer), then takes the numbér of bits indicated by the width of the
receiving register. COMP {Integer), for SAR, creates the appropriate word length
complement. (This is two's complement for the 32-bit wide LSI Interpreter). The
encoded value is used in the SAR field. The sucessor of a (Literai Assignment) is
implicitly STEP.

] Labels used in a program may be chosen freely except for the reserved words of =
TRANSILANG. The reserved words are given in Appendix V. A label must start
| with a letter which can be followed by any combination of letters or digits. No
l' spaces or symbols may appear in a label. A label can be as little as one letter and
! as leng as 15 letters and digits. The same label may not be used to locate more
than one ingtruction in the same program. See the INSERT function subsequently
| described for allowable nesting of labels when subprograms are inserted. The
j normal use of a label with a (Literal Assignment) is as (Label) -1 since control
transfers occur to the indicated location +1 {or +2 if a return is used).
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Examples
5=: SAR % converted for proper logic unit width
COMP 8 =: SAR; 13=: LIT % in one microinstruction
COMP.0 =: LIT % same ag 255=:LIT
START =: AMPCR % JUMPT Lo START +1; RETN to START + 2
LOOP-1=: AMPCR % JUMP to LRQP; RETN to LOOP + 1

N INSTRUCTION
{N Instruction) ::= (Unconditional Part} {Conditional Part)

{Unconditional Part}) ::= (Component List)

(Component List) ::= (Compenent) | (Component List) ; (Component) |
(Empty)
({Component) ::= (Ext Op) | (Logic Op) | {Successor)
{Conditional Part) ::= (If Clause) (Cond Comp List) {Else Clause) | (¥ Clause)|

{When Clause) (Cond Comp List) | (Empty)

(Cond Comp List) ::= THEN({Component List)

Semantics

An (N Instruction) becomes a Type l microinstruction containing an address of a
nano instruction. If an identical nano instruction already exists, the microaddress
will point to the single copy of the nano instruction. H the nano instruction is new,
the address will be to the next unused nano address. The operations indicated

in the <N Instruction > are entered into this nano location.

Restrictions

1. At most one {Ext Op) - either unconditional or conditional.

A

2. At most one {Logic Op) - either unconditional or conditional.

3. At most either one unconditional successor, or one conditional
successor in the (Cond Comp List) and one in an(Else Clause) .

The (Unconditional Part) is always executed. In the (Coaditional Part) if the
condition resulting from the (If Clause) or (When Clause) is irue then the com-
ponents in the (Cond Comp List) are executed, otherwise only the (Else Clause)
is executed. :
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Exarmnples (to be subsequently explained)
Unconditional Part, Component List:
SET GC1
MR2
RESET GC, DR2
A2 AND B0O1 =: Al
Al + BIC R =: A2, BEX, LMAR
JUMP
DL1; 0=: A2; SKIP
Conditional Part:
IF AQV THEN Al +1 =: Al ELSE SKIP
¥ NO’I; ABT THEN SET LC2; SKIP ELSE SAVE
WHEN RDC THEN MR2Z; BEX, INC
N Ingtruction:
WHEN RDC THEN BEX

SET LCI1; IF SAI THEN B ADL LIT = A3, BBE

CONDITION

{If Clause) ::= IF (Conditicn)

{Condition) ::= {Not) {Cond)

{Not} ::= NOT | { Empty)

(Cond) ::= LST | MST | AOV | ABT | cov | sa1| RDC | EX1|
EX2 | HOV | (Cond Adjust Bit)

{When Clause) ::= WHEN { Condition)

/Flse Clause) ::= ELSF (Sucessor)| {Empty)

/Cond Adjust Rity ::= INT | LCL | LC2 | LC3 | GC1| GC2
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Semantics

Each (N Instruction) performs a test on the Boolean value of one {Cond) or its
complement. The Boolean value of the result is {(Condition) . If this value is

true, the {Cond Comp L.ist) is executed and the sucessor from this list is used

to determine the next microinstruction. Otherwise the successor in the (Else Clause)
is used to determine the next microinstruction address. See the subsequent dis~
cussion of successor.

A {When Clause) is a synonym for an (If Clause) with the same {Condition) and an
{Else Clause) of ELSE WAIT, An empty (Else Clause) is equivalent to ELSE STEP.

In the absence of an (If Clause) or (When Clause), an implied (If Clause) of [F NOT
GC1 is inserted. This changes no condition bit, If does cause unconditional
initiation of a (Logic Op) and hence completion of the prior (Logic Op).

With the exception of the two global condition bits, testing a condition bit causes the
bit to be reset. However, all condition bits are set dominant. Therefore in case a
condition bit is being tested at the same time it is being set, the condition bit will
not be reset. The least and r ost significant bits out of the adder, the adder over-
flow, and the adder bit transmit are levels and not condition bits. The conditions
that may be tested (Table III) are the following:

SAT Switch Interlock Accepts Information

Following memory or device operation, indicates that
connection to the addressed memory or device is completed
through the switch intertock and that the MAR and MIR may
be changed.

RDC Read Complete, or Requested Device Completes

Following memory read or device read, indicates that data
will be available for entry to B in the next clock. Following
device write, indicates completion of write.

COV  Counter Overflow
Following or concurrent with increment counter INC, indicates
counter is overflowing or has already overflowed from all ones
(255) to all zeros.

LCI Local Condition 1

Tests and resets local Boolean condition bit LC1,

LC2 Local Conditions 2 and 3
I.C3 ) Same as LC1




Table [iI. Set and Reset of Conditions

BIT SET RESET %
AOV | Dynamic Adder State - (Overflow) #
!
ABT | Dynamic Adder State - {Adder bit transmit) ¥ ;
18T | Dynamnic Adder State - {Least Significant it # +
of Adder Output) 2
MST | Dynamic Adder State - (Most Significant Bit e e .
of Adder Output) i
b
COV | Overflow when Counter is Incremented Reset by loading
counter or by
testing
GC1 | SET (1 providing no other Interpreter has RESET GC
GC1 set, or no higher priority lnterpreter
is concurrently doing SET GC1
GC2 | SET GC2 similar 10 GC1 RESET GC !
INT | Set INT executed in any Interpreter Reset bv
testing
LC1 | SET 1C1 Reset by testing
LC2 | SET 1.C2 Reset by testing
L.C3 | SET LC3 Reset by testing ’
, RDC | By memory at completion of memory or aese: by testing
device read !
SAI By switch interlock when data Reset Ly testing
received from MAR and MR i
\ EX1 | By requests from devices Reset by testing
EXNZ | By requests from devices Reset by lesting i
) 3 C'v'l Horn overflow Reset by testing
] i .
\3 1 4#Recomputed each clock time i
g |
2 "-4_.;{:1
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GC1
GC2

INT

EX1
EX2

HOV

Global Conditions 1 and 2
Tests but does not reset global condition bit GC1, See the
description of the set and reset operation for further ex-

planation of global condition bits.

Inter-Interpreter Interrupt

Tests and resets the local copy of the inter-Interpreter
interrupt.

Extecnal Conditions 1 and 2

Test and reset interrupts (usually the OR of interrupts
from several devices) from external devices ({local copy).
These are presently wired to switches in the aerospace
multiprocegsor,

Horn Overflow

'ndicates that no( Ext Op) has occurred during a2 period of
220 Interpreter clocks, (approximately 1 second for a i MHz
Interpreter clock). This i used for detection of a failed
memory module or devices and will force a STEP in the
microprogram at the same time this condition bit i3 set.

The following four logic unit conditions are dynamic and indicate the rasult output
from the adder using the execution phase commands from the previous instruction
which had logic unit operation, and using the current values of the adder inputs.
These conditions are sustainec until execution of annther instruction involving the
logic unit, and may be tested by that instruction. A type II instruction loading the
LIT or AMPCR may change the value of an adder input selected in the (Z Select)
and hence change the value of any of these conditions.

AOV

LST

MST

ABT

Adder Overflow

State of the carry out of the most significant Lit of the adder.

Least Significant

State of the least significant bit of the adder output.

Most significant

State of the mws t significant bit of the xdder output.

Adder bit transmit

This condition is true (one) if and only if the adder output
is all ones or all zeros depending on the specific operator
performed. (See Appendix IID).




Examples
IF NOT LC1
WHEN SAI

ELSE CALL

EXTERNAL OPERATIONS

(Ext Op) ::= (Mem Dev Op) | (Set Op) |
(Mem Dev Op) , (Set Op}|
(Set Op) , (Mem Dev Op)| (Empty)

(Mem Dev Op) ::= MR1| MR2 | MW1 | Mw2 | pL1 | DL2 | DR1 | DR2 |
DW1 | DW2 | DUt | DUZ | LDM | LDN

(Set Op) ::= SET (Cond Adjust Bit) | RESET G

Semantics

The external operutions are (N Instruction) functions which, if explicity present,
affect the operations external to the Interpreter logic. An (Ext Op) may be
specified as either conditional or unconditional as it appears in at most one of the
{Unconditional Part) or {Conditional Part).

The memory or device operations (Mem Dev Op) are used to transfer data between
the Interpreter and S memory or a peripheral device. Address source registers
for those operations are the combination of either BR1 or BR2 with MAR, indicated
respectively by MAR1 or MAR2. 'The MAR holds the less significant part of the
address. The memory or device operations are described in detail in Section VI.
The explicit memory or device operations follow,

M1 Memeory Read 1
Read data from S memory address specified in MARI1

MR2 Memory Read 2
Read data from S memory address specified in MAR2

MWwW1 Memory Write 1
Write data from MIR to S memory address specified in MAR1

MW2 Memory Write 2
Write data from MIR to S memory address specified in MAR2
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LDM Load a microinstruction from the least significant 16
bits of the MIR into a word in microprogram memory
{(MPM) as specified by AMPCR.

1.DN - Load least significant 16 bits of MIR into the nanoword as
specified by the nanoaddress contained in the microprogram
word being apecified by AMPCR., The s:llable of the nanoword
loaded is specified by the two bits next to the least significant
bit in the MAR.

DL1 Device Lock 1 Regquest
Reserve the device or memory module named in MAR1 for
use by this Interpreter.

D1L.2 Device Lock 2 Request
Reserve the device or memory module named in MARZ2 for
use by this Interpreter.

DR1 Device Read 1
Read data from device named in MARI

DR2 Device Read 2
Read data from device named in MAR2

PW1 Device Write 1
Write data from MIR to the device named in MAR1

[rs—

- DW2 Device Write 2
Write data from MIR to the device named in MARZ

]
’ ; DUl Device Unlock 1
. Release the locked device named in MAR!1

[U———

DU2 Device Unlock 2
Release the locked device named in MAR2

Sty

The set and reset operations are used to set and reset condition bits. The inter-

Interpreter interrupt INT, is used for communication amo=g (to signal} all

Interpreters of the aerospace multiprocessor. The global conditions, GC1 and

l GC2, are used as Boolean semaphores to guarantee mutual exclusion for critical
sections of microprograms and to prevent simultaneous access to shared data.

) The local condition bits are Boolean variables local to each Interpreter. The INT

}- é and local condition bits are reset (within the local Interpreter only) by testing.

The explicit test and reset operations follow. If no(Set Op) is present, none is done,
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SET INT

SET LC1

.

SET LC2

SET LC3

SET GC1

SET GC2

RESET GC

Examples
MR2

SET LC1

Interrupt Interpreters

Causges the interrupt bit to be set in 2l]l Interpreters,

Each Interpreter resets its own bit by testing it. Setting
occurs after festing should hoth occur in the same
nano-instruction.

Set the first local condition bit

Causes the setting of the L.C1 bit in the condition register.
Setting occurs after testing should both occur in the same
nano-instruction. Both get and test of L.C1 occur during the
fetch phase of a microinstruction.

Set the second local condition bit

Same as for LC1 replacing LC1 by L.C2.

Set third local condition bit

Same as for LCI replacing LC1 by LC3.

Set first global condition bit requegt

Requests that the GC1 bit in the requesting Interpreter be
set if a GC1 bit is not already set in another Interpreter or
is not requesting to be set simultaneously by a higher
priority Interpreter. For all Interpreters in a multiprocess-
ing system at most one will have GC1 set. GC1 is set at
the end of the phase after the fetch phase if no conflict
occurs., A request lasts for one clock.

Set second global condition bi. request

Same as for GC1 replacing GC1 by GC2.

Resets the global condition bits

Causes GC1 and GC2 to be resct in the issuing Interpreter.

DR2, RESET GC
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LOGICAL OPERATIONS

{Logic Op) ::= ( Adder Op) ( Inhibit Carry)( Shift Op)( Destination List)

(Adder Op) ::= 0}1]{Monadic) | {(Dyadic) | { Triadic} | {Empty)

]

(Monadic) :: (Not) (A Select)| {Not) (B Select) |

(Not) (Z Select)
(Not) ::= NOT | (Empty)
(Dyadic) ::= (A Select) (Binary Op) (B Select) |

(B Select) (Binary Op) (Z Select) |
(A Select) (AZ Op) (Z Select)

(Binary Op) :i= (AZ Op) | OR | NIM | IMP | NOR

(AZ Op) ::= AND|XOR|EQV|NRI|RIM|NAN{ADD| + | ADL | CAD
{ Triadic) ::= (Try Op) (A Select) , (B Select) , (Z Select)

(Try Op) = TRY1 | TRY2 | TRY3 | TRY4 | TRY5

{Shift Op) ::= R| L | C! (Empty)

(Inhibit Carry) ::=IC| (Empty)

_S_emantics

The logical operations include those operations which occur within and affect the
logic unit of the Interpreter. This group of operations may be specified as un-
conditional if placed before the (If Clause) of a conditional instruction and con-
ditional if placed after the (If Clause).

The logic operations include the selection of adder inputs, tlie adder operation,
the barrel switch operation, the destination specifications for the adder and BSW
cutputs and the controls for the literal, counter, and SAR registers.

Each instruction except the (Literal Assignment) contains an adder operation.
If this is missing, the adder operation is assumed to be A + B (where A and B
are zero). These adder operations may use input from one, two, or three
different registers as specified in the (A Select) (B Select) (Z Select) parts of
the instruction.




&,

Monadic operators are those operators requiring one register input to the adder. g
The value of the selected register or the complement of the value may become the
adder input depending on the {Not} function, g
- The dyadic operators are those adder operators that may occur between two
i : registers. These include arithmetic as well as logical operators. The arithmetic
] r operators may occur with sources selected from any two of the three inputs ~ g
r A, B, and Z.
‘ ADD | + Add the two inputs to the adder. “ ;
. ADE, Add the two inputs to the adder +1
i E — ] - ;
CAD Add the two inputs to the adder in groups 3
of 8 bits. Inhibit carries between 8 bit
bytes. g
_; 1 All logical operators except four may occur between selections from any two
3 { registers (A + B, B+ Z, or A + Z). The four exceptions that may not occur
between an A and Z scleci are OR, NIM, IMP and NOR. 3
: OR Or X OR Y produces X v Y -
NIM Not Imply X NIM Y produces XY i
IMP Imply X IMP Y produces X v Y 1
NOR Nor X NOR Y produces X v Y
All other logical operations may occur between any two of the three registers §
selected. !
AND And X AND Y produces XY 1
XOR Exclusive Or X XOR Y produces XY v XY
EQV Equivalence X EQV Y produces XY v Xy l
g NRI Not Reverse X NRI Y produces X Y -
Imply i
RIM Reverse Imply X RIM Y produces X v Y
NAN Not And X NAN Y produces X Yor X v Y !
. X means (ones) complement of X i
. precedence is complement done before AND done before OR
, ]
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The triadic operators are those operators requiring three inputs to the adder
(i.e., A, B, and Z). These are available in the Interpreter and may be used
with the following notation:

TRYl" A,B,Z produces A BZv A BZ

N

TRY?2 A,B,Z produces AZ v B

TRY3 A,B,Z produces Av Bv Z

<4

R

TRY4 A, B, Z produces AZ v B Z

TRYS A, B, Z produces AZ v BZ v BZ

i
> 1

There are three shift operations, one of which may be selected each time an adder
operator is used. These operations are R, L, or C.

e
. E T

R Right end off shift by amount in SAR
gz L Left end off ghift by the two's complement of amount in SAR
c Circular shift right end around by amount in SAR

wosm

The carry bits may be inhibited, for all operations, between 8-bit bytes. IC
inhibits carries.
Examples

NOT LIT =: A2

Al ADLBR=:B

- A2 + LIT =: SAR

e e e i R

DEC CTR

TRY1 A2, B110,CTR

0 =:A3

sty

1 =:CTR

L Y

A2 + CTRIC R = A2, BEX, CTR, CSAR
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INPUT SELECTS

(A Select) = A1 | A2 A3 ] 0| (Empty)

(B Select) ::= B| B (M) (C) (L)Y | (Empty)

My om (Gating)

(Cy = {Gating)

(L) == (Gating)

(Gating) ::= 0 1iT|F

(Z Select) ::= CTR | LIT | AMPCR | 0 | (Empty)
Semantics

There are three A registers which may be used for data storage within an Inter-
preter. Any one of the A registers may be selected as input to the adder in an
instruction. The B register is the primary interface for external inputs from
main memory or devices. It also serves as input to the adder. The B register
can be partitioned into three parts when it is selected as input to the adder. The
partitions are as follows:

M Mosi significant bit of B (left most bit)
C Central bits of B (all but the end bits)
L Least significant bit of B (right most bit)

When selecting the B register as input to the adder, each of the three parts may be
independently specified as being either 0, 1, T, or I'. A zero gating will cause that
part to be all zeros. A one gating will cause that part to be all ones. A T gating
will produce the true value of B for that part, An F gating will produce the com-
plement value of B for that part. The B register and its gating is specified with-
out embedded spaces. If no gating is specified when selecting B, then it is
assumed that the true value of B is desired (i.e., BTTT).

There are three registers which make up the (Z Select) input to the adder. These
are the counter (CTR), the literal (LIT) and the AMPCR. The counter register
when used as input to the adder, is left justified with zero fill. The literal register,
when used as input to the adder is right justified with zero fill. The AMPCR comes
into the least significant 12 bits of the center 16 bits of the adder. The most
significant 4 bits of the center 16 bits of the adder contain the binary value of the
Interpreter number right justified in the 4-bit field, The rest of the adder i3 zero
filled.
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Examples

Al +B+1ICR
A2 XOR CTR
BOTT AND LIT

DESTINATION OPERATORS

(Destination List) ::= (Asgn) (Dest)|
{Destination List) (Asgn) (Dest) | (Asgn)
(Asgn) = , =l =
(Dest) ::= Arlaz]As|mir | BR1 | BR2 | AMPCR]
£ {Input B) | (Input Ctr) | (Input Mar) | (Input Sar)
é (Input B) ::= B! BEX!|BADI| BCc4 | BCs| BMI| BBE | BBA | BBI |
BAI | BBAI | B4I| B8I
‘ i (Input Ctr) ::= CTR | LCTR | INC
(Input Maxgy ::= MAR | MAR1| MAR2 | LMAR
{Input Sar) \::= SAR | CSAR
Semantics

The destination operators explicitly specify registers in which changes are to
occur at the end of a logic unit operation.

Restrictions:

‘um .»w-‘ Joamimats f et

1. At most one choice from each of ( Input B), (Input Ctr), {Input Mar)
and ( Input Sar) is permitted.

.
’ 2 If (Input Ctr) is LCTR then {Input Mar) may not be MAR, MARI1 or
MARZ.
W
l 3. If {Input Mar) is LMAR then{ Input Ctr) may not be CTR.
‘ The principal data source is the barrel switch output. It is the only source for
loading Al, A2, A3, MIR, BR1 and BR2. It provides one source for loading B,

SR
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CTR, MAR, SAR and AMPCR. These reserved words are also the register
names. The bits used in these transfers are indicated below:

Destination Barrel Switch Output
Register __Source Bits
Al All
A2 All
A3 All
B All
MIR All
BR1 2nd least significant byte
BR2 2nd least significant byte
MAR least significant byte
CTR least significant byte {(ones complement)
SAR least significant 3 bits
AMPCR least significant 12 bits

The B, MAR, CTR, SAR and AMPCR registers may have other inputs as well.

B Register — (B)

B The barrel switch output is placed into B.
BEX Data from the external source is placed into B.
BAD The adder output is placed in the B register (short path
3 to B).
BMI The MIR content is placed in the B register independent
of any concurrent change to the MIR.*
BC4 The duplicated complement of the 4-bit carries with zero
d fill is placed in the B register, **
_ BC8 The duplicated complement of the 8-bit carries with zero
<« fill is placed in the B register.**
) BBE The barrel switch vutput ORed with the data from the

external sourc - is placed in the B register.

* : . : .
When the MIR is one of the inputs to the B register, the input shift register from
the Switch Interlock into the external input to B will be cleared to all zeros.

Aok
Form of BC4, B4l, BC8, and B8I adder outputs for each 8-bit group:
The carries out of bits 2, 3, 4, 6, 7 and 8 are irrelevant.

Bit 1 2 3 45 6 7 8
i Carries
\ QOut U - - - -v- - =
B4I, BC4 ©couuoOOV Vv
7 ; B8I, BC8 0o 0ou U o o o o
108
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BBA The barrel switch output ORed with the adder output is placed
in the B register.
i BBI The barrel switch ocutput ORed with the MIR content is placed
in the B register independent of any concurrent change to the
MIR. ™
. s : . *
é BAI The adder ORed with the MIR is placed in the B register.
- BBAI The BSW ORed :vith the adder ORed with MIR is placed in
: the B register.
% B4l The duplicated complement of the 4-bit carry ORed with
MIR content is placed in the B register.”
g B8I The duplicated complement of the 8-bit carries with zero
g fill ORed with MIR content is placed in the B register.™
g{ Memory Address Register - (MAR)
LMAR The literal register content is placed in MAR.
%: Counter - (CTR)
LCTR The one's complement of the literal register content is
L placed in CTR.
i
L INC Increment Counter by 1.
‘i Shift Amount Register - {SAR)
¥ CSAR Complement (two's complement) prior content of SAR,
g The Alternate Micro Program Count Register { AMPCR) may, during the same

clock, receive input from the MPCR if the microprogram address control register
content was CALL or SAVE. The MPCR source takes precedence over the AMPCR
i specification as a{ Dest ).

Examples
| n
: CTR
: Al, BEX, = MIR, LCTR, CSAR % mixed use of, =, and =:

g,

*When the MIR is one of the inputs to the B register, the input shift register from
the Switch Interlock into the external input to B will be cleared to all zeros.
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SUCCESSOR

{Successor) ::= WAIT [STEP|SKIP|SAVE| CALL|EXEC | JUMP| RETN

Semantics

Each (N instruction) specifies 2 successors explicitlly or impliciily, indicating
the control to be used for the next microinstruction selection. A {Successor)in the
{ Unconditional Part) results in the 2 successors being identical, Otherwise one
or two successors may appear in the { Conditional Part). The eight choices for
each successor are described below and in Table IV,

WAIT
STEP
SKIP
SAVE
CALL

EXEC

JUMP
RETN

Repeat the instruction in the microprogrur count register {(MPCR).
Step to the next instruction in seguence from MPCR.

Skip to the second next instruction in sejuance from MPCR,

Step and save current MPCR address in AMPCR.

Transfer control to AMPCR + | address, save current MPCR
in AMPCR.

Execute instruction in AMPCR + 1, proceed as specified in the
executed instruction.

Transfer control to AMPCR + 1 address,

Transfer control to AMPCR + 2 address.

Any successor not explicitly stated is STEP by default. All successors except
EXEC place the resulting microprogram address in MPCR.

Each (Literal Assignment) instruction has an implicit successcr of STEP.

The AMPCR normally contains the address of an alternative instruction (usually
label-1). The AMPCR load of the current content of the MPCR from a CALL or
SAVE takes precedence over a {(Literal Assignment) inlo AMPCR in the dynamically
next microinstruction. Italsotakesprecedenceoveranaxplicit (Dest) of AMPCR
from the (Logic Op) in progress.,

ey
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Table IV, Microprogram Memory Addressing

Successor Successor Next Content Next Content
Command M-~instruction of MPCR of AMPCR
Address wiil be will be
WAIT MPCR MPCR *
STEP MPCR+1 MPCR+1 *
SKIP MPCR+2 MPCR+2 *
SAVE MPCR+1 MPCR+1 MPCR
% CALL AMPCR+1 AMPCR+1 MPCR
EXEC AMPCR+1 MPCR *
L JUMP AMPCR#1 AMPCR+1 *
% RETN AMPCR+2 AMPCR+2 *
*Not changed by successor specification
. Examples
WAIT
JUMP
PROGRAM STRUCTURE
{Program) ::= (Program Name Line) (Body) (End Line)
{Program Name Line)::= PROGRAM /Program Name) (Start Address)
, (Program Name) ::= (Label)
i (Start Address) ::= ADR (Hex Address) | (Empty)
(Hex Address) ::= {Hex Number)
) {Hex Number) ::= (Hex Digit) | (Hex Number) (Hex Digit})
{Body) ::= (Statement)| (Comment) | (Body), (Statement)| ( Body) (Comment)
i {Statement) ::= (Label Part) (Line) (% Comnieat)
: (_Commént) 1= COMMENT {Comment Words) ;
§ {(Label Part) ::={Label) :|{(Ewnply)
(Line) ::= (Label Constant) | {Start Address) | (Insert) | (Instruction)
(Label Constant) ::= {(Label) =* {Integer)
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{Insert) ::= INSERT (Label) (Start Address)

{7 Comment) ::= % {Comment Words) | {(Empty)
{Comment Words) ::= {Comment Character) |
‘ {Comment Words) {Comment Character)

(Instruction) ::= (Label Part) (Literal Assignment) |
{Label Part) (N Instruction}

{End Line) ::= END P

i

Semantics

A file containing a source program must have a {Label) or 6 or less alphanumeric
characters. Each record on this file contains 72 datus characters {plus eight for
sequence numbers, which is optional for the microtranslator). One( Statement) of
source prograrn is written per record.

beneARiH o e -

The first record is the (Program Name Line) . It contains the program intr rnal
name and possible a starting address for a microprogram. The program internal
name should be the same as the file name. Only the file name has any external

significance. An empty {(Start Address) means start with zero for the first %

P e

microinstruction of the program, A non-empty start address becomes a hexidecimal

absolute microprogram address. The body of a program contains one or more

statements. Following the body is the (End Line) containing END. Each successive

statement containing an { Instruction) normally becomes the next microaddress,

Addresses strictly increase through a program. If a(Start Address) is greater ;
than the next address in the program sequence, microinstructions composed of all

zeros are used to fill in the locations between the addresses in the output file. A

{Start Address) less than the next aldress in the program sequence causes an error.

i
¥
i

A label is defined for use in twoc ways. A (Label Constant) permits a (Label) to be
declared to be an{Integer) . Subsequent use of that label is replacad by the Integer.
Use of a (Label Constant) prior to declaration is an error, A label is also defined
upon occurrence in a (Label Part) in which case it serves as a symbolic reference
to a particular line.

[——

An(Insert) is used to allow a user access to his files outside the program file.
When the {Insert) is recognized, the microtranslator extracts from the users files
the source program whose (File Name) is given and inserts it at the (Start Address)
in the ¢(Insert) if present, otherwise in sequence. A (Start Address) occurring
within the body of the inserted program will act as though it were in the main pro-

] gram file. A {Start Address) in the (Program Name Line} of the ins=rted program
is ignored. The inserted program takes the multifile ID name from the program
being translated. For example:

BUDARD/AFCROE may be inserted into 2 program named DECVAD/AFQORCE, There

mayv be seven levels of nesting. A label may be redefined in an inserted sub-
program. An inserted program may reference a label in the program which requested

oy po— . P . -
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it provided the 1abel has not (yet) been defined locally. The most local current
definition of a label is used. If labels a2re not defined during a subprogram the
translator agsumes they are at a more global level. Labels referenced but never
defined result in a warning list of undeclared labels. Caution: Forward jumps
within a subprogram to a label that already exists globally will use the glcbal label
value. Upon completion of an{Insert) of a subprogram, labels defined in that
inserted subprogram disappear. A subsequent backward jump or use of a label
constant will use the global value, even though the same label was defined in the
subprogram. :

Each instruction results in a microprogram word. Any instruction may be
labeled as a symbolic reference for control transfer. Although transfer to a
(Literal Assgignment) is permitted it should be used with caution.

Comments - In order to include explanatory material at various points in a program,
two conventions exist as defined.
1. COMMENT { any sequence of comment characters except ;" }r;
- P

The comment statement acts the same as a '';" and may appear

anywktre a ';" may occur if within a line of program. As multi-

line documentation the ;" terminator indicates that the miecro-

translator should resume processing code. Always follow a

comment statement with a ";".

N
2, % {any sequence of comment characters until end of line }

All comment characters after the % in a line of program are
ignored by the microtranslator.

Comments are for documentation purposes only. They appear only in the source
file, are significant only in listings and dc¢ not affect the machine language
generated.

F.xample
PROGRAM READIT
Device *3
SANDY: Device = L1T; COMP 13 = SAR % LIT = 3 and SAR = 19

LIT L = BR1
" DL1; Al + 13001 = Al
INSERT TESTLK
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COMMENT The routine TESTLK tests to see if device is
locked to Interpreter.

SANDY - 1 = AMPCR
JUMP;
END;

MICROPROCRAMMING EXAMPLES

The Interpreter microprogramming reference card (Figure 49) specifies the use
of each of the MPM and Nano bits and defines the meaning of the mnemonics found
in the microprogram examples.

Three simple examples demonstrating the microprogramming of the Interpeter
are shown: in Figure 50 - Binary Multiply, Figure 51 - Fibonacci Series
Generation and Figure 53 -~ "'S" Memory to Micromemory and Nanomemary
Loader (S to M Loader)., The comments serve to explain the function of each
microinstruction step. Figure 52 shows the microtranslator output (1 and G
patterns for MPM and Nano) for the Binary Multiply example. Tne 5 to M Loader
is desceribed in more detail in the next section.
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Assumptions

(1) Sign-magnitude number representation
(2) Muttiplier in A3; multiplicand in 8
{3} Double length product required with resulting

most significant part, with sign, in B and least
significant part in A3

—d 2, BoTT—* A2; if MST then Set LC1

Comment: Step 1resets LC1. Steps 1 and conditional part of 2
check signs; if different, LC1 is set.

3. Bgoo—+B. LCTR

Comment: Steps 2 and 3 transfer muitiplicand (0 sign} to A2
and clear B,

4, “N'-=LIT; 1= S5AR
Comment: Steps 3 and 4 load the counter with the number

{N = magnitude length) to be used in terminating the muitiply ;
loop and load the shift amount register with 1, E

i
1
i
i

1. A3 XOR B~ ;if LC1 g
i
i
1
i

5. A3 R—A3: Save

Comment: Begins test at least bit of muitiplier and sets up loop.

6. LOOP: If not LST then BoyTC =B skip else step

7. A2 + Bgr7C—*B

8. A3 OR BrggR—=A3, INC; if not COV then jump else step

Comment: 6 through 8 - inner loop of multiply (average 2.5
clocks/bit},

9, If not LC1 then BgyT —* B, skip else step

10. ByrT—=8

Comment: If LC1 = 0, the signs were the same, hence force sign bit
of result in B to be a 0.

|
|
|
{
i
i
]
|
{

Figure 50. Binary Multiply
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Assumptions:
A1 contains starting address for storing of series

A2 contains the numbar representing the length
of the series to be computed

A1 —« MARY
Comment: Load starting address of series into addrexs register

Bogp — B, MIR

Boot —= A3; MW1

Commant: Load initial element of series (0) into A3 and MIR and writs it
into starting address. Load second element of series (1) into B.

A2 —+ CTR;SAVE

Comment: Load counter with fength of series; the counter will be incremented
for each ganeration of an element of the series; COV will signify
complstion. The SAVE sets up the loop.

LOOP: if SAL then A1 + 11—« Al, MARY, INC, Step alse Wait
Comment: Set up the next address and increment counter

A3 + B—»MIR
Comment: Generatse new elament in series and place in MIR

B —s A3 BMI, MW1; if NOT COV then Jump else Step
Comment: Write new element into next address
Transfer i — 1 alement to A3
Yransfer i element to B
Test counter overflow for completion (go to LOOP, if not done}

END

Figure 51. Generation of Fibonacci Series
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1000
1100
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PROGRAM BIMULT;

A3 XOR B=: ;IF LC1;

BotT =: AZ; IF MST THEN SET LC1;

Bgop = : B.LCTR;

N=:LIT:1=:8AR;

A3 R = : A3;SAVE:

LOOP: IF NOT LST THEN Bgyy C =: B, SKIP ELSE STEP;
A2+BgrtrC =:8B;

A3ORBTpo R = : A3, INC: IF NOT COV THEN JUMP ELSE STEP;
IFNOT LCT1 THEN BpTT = : B; SKIP ELSE STEP;

81TT=:B;

END

NANO ADDRESS= 0 0000 00000000000
5 13 16 17 18 19 - 21 23 29 30
NANO ADDRESS= 1 0000 00000000007

5 7 & 9 1 13 16 21 23 30 35
NANO ADDRESS= 2 0000 00000000010
16 30 39 48
SAR= 1 LIT=0 01 0000100000000
NANO ADDRESS= 3 0000 00000000011
15 17 18 30 33 36
NANO ADDRESS= 4 0000 00000000100
4 6 12 13 16 =21 23 30 32 33 39
NANO ADDRESS= & 0000 00000000101
16 17 21 23 30 22 33 39
NANO ADDRESS= 6 0000 000000001175
11 16 17 18 19 28 30 31 33 36 47
NANO ADDRESS= 7 0000 00000000111
6 12 13 16 21 23 30 39
NANO ADDRESS= 8 0000 00000001000

1 19 20 21 23 30 39

Figure 52. Microtranslator Output
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PROGRAM STOMLD

OFFSET & 20 % OFFSET BETWEEN PRIME AND AL TERNATE COPY

% LOAD MPM FROM 5% = AVIONICS SYSTEM

% owesea A3 4-151 LAST AMPCRS 16=312 MEM ADDR} 32: HALF WD

§ ==c—e- A2: l=ib: START ADR} 23=32: PRES AMPCH VALUE
% =~=—==w= | DAD AZ AND A3 FROM OVERLAY TABLE (LIT VALUE}
% ~=ww—e BR2:CODE AREA BR1: PWA OF TASK
STGM: B L= A3%%
COMP 1=SAR %
% =—~~—= A3 NOW LOADED -#~
A3 L =3 A2y %
17 =3 SAR 3 OVER-I=LIT %
AZ ADD LIT = A2,AMPCR %
SMLOOP: A3 R =: 8R2, MAR, B % LOAD AMPCR
i =3 SAR} 3 =: LIT % 3 =2 CTR FOR NANO
MRZ3LCTRS IF ROC % READ NEXT MEM HALF-wD
IF RDC THEN Bl1ll =:s BEX} SKIP ELSE WAIT %
BMFAIL ~1 =: AMPCR %
IF ABT THEN A3 =: ELSE JUMP % TEST FOR HALF WORD
IF NOT LST THEN 8 R =: B ELSE SKIP %
16 =t SAR &
B = MIRSJLCTR &
LDMS EXEC % LOAD MICRO
BR=:8B%
11 =: SAR, 31 =: LIT %
B AND LIT =: 8 %
BFFF =3 %
LONANQ =1 =: AMPCR %,
If NOT ABY THEN B tQV LIT = B ELSE JUMP %

CLEAR A2 12 LST (AMPCR)

TEST FOR FOLLOWING NANO

16=LIT % %

STEP ® % TEST FOR “DONE®

8 %

0 =: AMPCR % JuMP TQ %w)u LF DONE

IF NOT ABT THEN A3 + B00)1l =:! A3 ELSE JUMP %
SMLOOP ~1 =: AMPCR %
A2 + BOD1 =: AZ, AMPCR} JUMP R
LOUNANO: A2 =3 AMPCR %

A3 + BOOl =: A3 %
A3 R =: B, BR2y MAR %

=: SAR %
MR23 IF RDC %
IF RDC THEN 8111 =:y BEXe SKIP ELSE WAIT %
BMFAIL -1 =: AMPCR %
IF ABT THEN A3 =3 ELSE JUMP %
IF NOT LST THEN 8 R =¢ B ELSE SKIP %
16 =! SAR ®»
CTR R =: MAR %
COMP 9 =3 SAR %

= MIRs INC %
LONS EXEC % LOAU NANO
LONANO -1 =: AMPCR %
IF NOT COV THEN JUMP %
SMLOOP = 1 =3 AMPCR %
A3 ADD 8001=a3 % %
A2 ADD BI01 = A2+AMPCRIJUMPR

BMFAIL: A2 k=Bs % SHIFT OFF MAR PART

16=SARJOFFSET=L1!T % AND HALF WORO COUNT
STOM=]1=AMPCR %

8 ADD LIT = B3 JUMPY

OVER:

Figure 53, S to M Loader

ASM~0
ASM~0
ASM=2
ASM=-3
ASM=G
ASM~S
ASM~-6
ASM=TA
ASM-B
ASM=G
ASM-10
ASM=1.
ASM~12
ASM=13
ASM=14
ASM-15
ASM=16
ASM=17
ASM=18
ASM—-19
ASM=20
ASM=2]
ASM=-22
ASM=23
ASM=Z4
ASM-25
ASM~2¢&
ASM=28
ASM=-29
ASM=30
ASM=-31
ASM=3¢
ASM=33
ASM=13¢6
ASM=135
ASM=36
ASM=37
ASM=38
ASM-39
ASM=4]
ASM=4 ]
ASM=4?2
ASM=43
ASM=4 4
ASM—45S
ASM—46
ASM=4a7
ASM=-48
ASM=49e
ASM=49A
ASM=S0
ASM-51]
ASM=52
ASM-53

ﬁ
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SECTION VIl

MULTIPROCESSING CONTROL PROGRAM
AND DEMONSTRATION PROGRAMS

el
ERE

4

§ CONTROL PROGRAM

The control program for Multi-Interpreter-Systems is a simple yet comprehensive
operating system which is characterized by the following capabilities:

1.  Multiprocessing
2. Error recovery

In previous multiprocessing systems, I/O functions and data processing functions
have been performed in physically different hardware modules, I/O modules for
the former and processor modules for the latter. In the Multi-Interpreter System,
however, I/0O control and processing functions are all performed by identical
Interpreters, and any Interpreter can perform any function simply by a reloading
of its microprogram memory. Thus input/output operations become tasks which
are indistinguishable to the control program from data processing tasks except
that they may require the possession of an [/O device before they can begin to
run. Whenever an Interpreter is available it looks through the scheduling cards
and runs a task, which may be an I/O task, a processing task, or a task which

i combines both processing and I/O functions.

g g

The control program includes an automatic error detection and recovery capability,

o l All data is stored redundantly to ensure no loss of data should a failure occur.
The control program maintains this redundancy, and does so in such a way that \
each task may be restarted should a failure occur while it is running. )

121




The plans for the development of a full scale operating system for the Aerospace
Multiprocessor are described in U.S. A. ¥. Avionics Laboratory Technical Report
AFAL-TR-72-144 (April, 1972), Aerospace Multiprocessor Executive by Sandra
Zucker. A building block technique was developed for this software architecture in
order to accommodate the requirements for changing computer activities as well

ag changing hardwar e modules, The system software was divided into functional
modules that could be linked into a system after each medule had been independently
validated. Descriptions of the executive modules defining scheduling, resource
allocation, error recovery and detection, reconfiguration, and file handling are
included in the report.

The control program delivered with the aerospace multiprocessor is a quick,
efficient, and easy to debug, method of demonstrating the multiprocessor. It is
not a fully automatic operating system with complex functions such as the one
described in the report referenced above.

System Loading

Initially, the tasks inthe system are allocated fixed program areas in 8 memory
which are loaded from cards by the Program to ''S" loader. (A description of

the program to '"'S'" loader is given later in this section.) All input to

the system is loaded redundantly for error recovery purposes. The programs
include a method for detection and recovery from memory and Interpreter failures.

The location in S memory of the microcode for each of the demonstration tasks
written for the aerospace multiprocessor and the location of the alternate copy of
the microcode for these tasks is shown below.

Location of Alternate Location in
Program Microcode Microcode System Table
Plot 0300 3300 (00)02
Program to S load 0EQN 3E00 (00)03
Mortgage 2000 5100 {00)04
Sort 0600 3600 (00)05
Matrix multiply 2500 5500 (00)08
Matrix print 2800 5800 (00j0A
Memory dump 1000 4000 (00)0C
Control program 01800 3B00 S
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A system task table is developed in segment 00 (segment is 256 words) which
containg an entry for each task available to the system. This entry contains the
time by which a running task must be completed before the system decides there
is an error. An alternate copy of the system table is developed in segment 30
for error recovery purposes. This alternate copy is updated as the primary copy
of the system table is changed.

After the tasks are loaded into S memory, each Interpreter’s microprogram and
nanomemories are then loaded with the control program microcode (See Figure 54,
a block diagram of the control program}. The control program in an Interpreter
initially tries to lock to the card reader. If it does not succeed, some other
Interpreter is using the card reader, and it waits until it can lock. Once Incked
to the card reader, the control program reads the cards which initiate a task

and places their contents (eight 4-bit hexidecimal characters) into selected words
cf S memory as defined by the card format. Each input card contains the hexi-
decimal characters to be placed in S memory and some contain the address where
these characters are to be stored. A card that does not include an address (''0"
card) assumes that its hexidecimal input will be stored in the next consecutive
address in S memory following the previous input card.

Card Format: LXXX AAAA XXX HHHH HHHH
OXXX 0000 XXXX HHHH HHHH

E The '"L'" card indicates that AAAA contains the hexidecimal address in S memory
! where the hexidecimal characters HHHH HHHH will be stored. The X characters
‘ ] indicate letters and numbers that are ignored. These may contain anything but an "N''.

The '"0' card indicates that HHHH HHHH will be stored in the next address in S
; memory following the previously stored word.

One input card is a control card, specified by an address of 0001, which gives

the task number (which is the location in the system table of the task control word)
§ of the selected task as well as the starting address in S memory for the micro-
code for that task.

i The format for the control cards for the demonstration programs written for the
aerospace multiprocessor are given below, where T indicates the task number
{location of the task entry in the system table) and SS indicates the segment number
. for the location of the microcode in S memory for that task.




BLOCK DIAGRAM
CONTROL PROGRAM

¥

READ DATA AND
PARAMETER CARD;

IF TASK NUMBER EVEN,
RELEASE CARD READER

P — GET TIME

!

LOCK SYSTEM
TABLE

TASK TIME + RUN UNLOCK
SELECTED TIME —  |—| SYSTEM
RUNNING TASK TIME TABLE

\ LOAD TASK

TIME > TASK \ YES MICROCODE

TIME |
NO l
RUN
UNLOCK TASK
SYSTEM
TABLE

Figure 54, Control Program Flow Diagram
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Program L0000’ 0001 XXX TO0O 5500

Plot Lo00 0001 XXX 2000 03 0¢
Program o 8 L0000 0001 XXXX 3000 0EQ00
Mortgage LO00 0001 XXXX 4000 2000
Sort Lo00o ooo1 XRXX 5000 0600
Matrix multiply L000 0001 XXXX 8000 2500
Matrix print L0900 0001 XXXX AQ000 2800
Memory dump Looo 0001 XXXX co00 1000

A1l other input cards are parameter cards for the tagk and are loaded into a
portion of the work area for that task.

An ""N" card is the last card that indicates the end of the selection of a single task.
The "N' card must contain a single N.

Upon detection of an "N'" card the control program stops reading cards and uses
location 01 of the system table to get the task number of the selected task. An
even task number will cause the card reader to be unlocked, freeing it so that
other Interpreters may use it. An odd numbered task requires the card reader

in order to read its own data (e. g., sort cards for the sort task), after which the
card reader will be unlocked. This contention between Interpreters for use of the
card reader and running of tasks is shown in block diagram for the multiprocessor
system in Figure 59,

Task Execution and Monito:-inﬁ_

The task number is used to select the task control word from the task table. The
task table is locked before a task control word may be examined or changed, by
using the global condition bit in the hardware, A task control word of zero defines
a task available for running. A non zero task control word implies that another

P ]

Interpreter is performing the task, or that the task is hung up on another Interpreter.

To check for a task or Interpreter failure, the real time clock is read to obtain

the current time. The current time is checked against the time in the task control
word which is the upper bound time for the running of the task. If the time in the
task control word is less than the time on the real time clock, the task is con-
sidered hung and the Interpreter will treat this task as a task available for running.
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STARTUP

1

"PROGRAM TO S LOADER"
INTO AN INTERPRETER

USE TO L.OAD MICROPROGRAMS
INTO "S'" (MAIN) MEMORY

LOAD CONTROJ. PROGRAM
INTO ALL INTERPRETERS
(1ST ONE READY WILL LOCK
TO THE CARD READER)

l

INTERPRETER LOCKED TO CARD READER
READS PARAMETER AND DATA CARDS

™ INDUPLICATE INTO "S" (MAIN) MEMORY. |
REST TRY TO GET CARD READER.
AT N CARD,INTERPRETER PER- SINGLE

FORMS TASK INDICATED IN PARA- \INTERP,
METER CARD. RELEASES CARD
READER WHEN FINISHED WITH IT.

SYSTEM

NEXT INTERPRETER RUNNING CONTROL
PROGRAM LOCKS TO CARD READER

AT COMPLETION OF
TASK;CONTROL PROGRAM
IS LOADED INTO
INTERPRETER

Figure 55. DMultiprocessor System Flow Diagram
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When a task is still running, and the time on the real time clock is less than the
timne in the task control word, the global condition bit is reset. Then a new reading
is ma-e of the real time clock value. The task control word is again tested after
locking the table. This process continues until either the time for running the

task elapses or the task is completed by the Interpreter running it.

When a task is available for running, a maximum run time value is added to the
time read from the real time clock and the sum is placed into the task control word.
The global condition bit is reset (unlocking the table} and the microprogram for the
task is read from S memory intc the Interpreter's microprogram memory. The
task is then executed. A task which uses the card reader {(an odd numbered task)
must release the card reader as soon as it has completed getting its data.

When a task has been successfully completed by an Interpreter, it resets its task
control word to zero and loads the control program from S memory to micro-
program memory. To determine the next task, the control program again reads
the cards from the card reader.

All information is stored redundantly in S memory. {See memory map in Figure 5§))
When a memory failure isdetected by aninterpreter, whizh will affect the runningofa
task, the Interpreter will reload its own microprogram memory with the alternate §
memory program. This program is identieal t2the prime microprogram except that it
uses the alternate work area and data space as input instead of the prime areas.

The detection of a memory failure during the loading of the prime area of a task
or the control microprogram will cause the loading of the alternate area of the
required program instead. All cards read using tne control program will be stored
redundaantly in S Memory.

S to M Loader

All tasks as well as the control program contain a subroutine (S to M loader)
which can load microprogram code from S (main} memoery to muicroprogram

memory and to nanomemory. This subroutine {see Figure 57) is bypassed when
a *ask is initiated. When the task is completed or an error is detected, an address

is placed in the B register and control is transierred to the S to M loader which loads
code into that part of microprogram memory and nanomemory that is not occupied
by the S to M loader. When it detects the end code (ONE in the most significant

bit of the microinstruction and ZERO in rest of it) it stops reading and jumps to

the start of the task just read.

When a task ends, it puts the address of the control program into the 13 register
so that the next task may be selected and executed. If a task has an error, it puts
the address of its own alternate copy into the B register for restart. {f a task is
too large to completely fit into microprogram memory and nanomemury, at the
con.pietion of the first or intermediate part of the 1ask, the address ol the next
part of the task is put into the B register. The task then passes control to the

S to M loader subroutine for loading the next task or next part of the same task

to he executed. This procedure is shown in Figure 33, The microcode for the

S to M loader is shown in Figure 53 of Sectiorn VII of this report.
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ADDRESS

|

L START ADDRESS —

1ST AVAILABLE ADDRESS IN
MPM -+~ MICROADDRESS

|
|

|

START ADDRESS + |Errox
3000 — START — —
ADDRESS

READ ADDRESS - GET
NEXT MEMORY HALF WORD

Figure 57,

l READ OK

{(NCREMENT ADDRESS
BY HALF WORD

T

LOAD HALF WORD INTO
MICROADDRESS

FIRST 5\
BITS OF HALF | NO

FIRST 2
BITS OF HALF | NO

WORD = 27

\ (NANg_?L /

T ves

3— CTRJ

-
s i
*\ ADD.IESS IN

MICRO WORD
—= NANO

RN

READ ADDRESS GET

WORD = 10
END ?

YES

EXIT
TO
LOADED
MICROCODE

NEXT HALF WORD

INCREMENT ADURESS
BY HALF WORD

:

CTR -~ NANO
PART

'

HALF WORD = NANO -
TABLE (NANO PART)

1— | / YES
e - CTR <0 )————

[\

Load Microprogram Memory irom Main Memory
Flow Diagram
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DEMONSTRATION PROGRAMS

All the demonstration programs are microprogrammed and are loaded from S
memory into microprogram and nanomemory in order to be executed. They are
like a single large instruction on a conventional machine. Therefore no inter-
pretation of S memory instructions is necessary in this demonstration.

The demonstration programs were written to be indicative of a specific type of
application as indicated below.

Problem Type Application
Plot Graphic Display

Table Lookup

Mortgage Table Building
Simple Arithmetic

Sort Data Manipulation
Data Processing

Matrix Arithmetic Operaticns
(Many Multiplies)

Dump Debugging Aid
Program to Loading S Memory
"S" loader

All the demonstration tasks which use cata and parameters contain a work area
segment. This work area allows fcr the storing of parameters. temporary work
space, buffers and pointers to data or program areas used by the task. Thus,

the work area for the matrix routine contains pointers to the three matrix areas
as well as the parameters i, j, and k. Changing any of these parameters or
pointers will change what is executed by the task. The locations of the parameters
within the work area for all demonstration programs are shown in Table V.

Memory Dump

S e S S B LR

The Memory Dump routine prints all the contents of S memory without changing
or disturbing any of the memory locations. Each 32-bit word in S memory is
printed in a format of eight 4-bit hexidecimal characters. The words are grouped
into an address followed by eight words of memory and then printed as a line.

If a line is identical to the previous eight words printed then it is omitted. The
memory dump is a debugging aid used to detect changes in memory. An example
of the output from a memory dump appears in Figure 59.
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Program to "$" Loader

The Program to ''S" loader reads cards from the card reader in a format generated
by the Translator and places them inte S memory. An L card precedes the pro-
gram cards for each microprogram to be loaded to indicate where in S memory
each of the microprograms will be loaded, and an R card is used to indicate the

end of the Program to "'S" Loading function.

L Card 1.000 AAAA
ROOOC 0900

.

where AAAA = starting address in S memory for the microprogram

Each microinstruction is stored into 16 bits of memory., If a micreoinstruction
points to a nancinstruction which is used for the first time, it will be stored
following the micro in the next 64 bits of memory, All the micro's and nano's
are packed in S memory into 32-bit words, Nanos that are used repeatedly
need be stored in S memory only once.

Microinstruction format

1 213 4]51}{6 7 8 9 10 11 12 13 14 15 16
10 f- - l-1- 4 . . . - - - - - %
1_1 ]| SAR | - SAR
0 1 | SAR | - SAR LIT

]
0 0 1 - 1-1]-/] AMPCR ]
00 o0 1 - - - LIT
¢ o0 _o0_ 0o ]- - - NANO ADDRESS ;
o o o0 o |1 |- - = NANO ADDRESS |

All instructions except a type 1 instruction ignore bit 5. Type 1 instructions use
bit 5 to determine whether a nano must be loaded (bit 5 = 0) in the nano table or
if it has been used already by a previously defined microinstruction (bit 5 = 1).
A - indicates the bit can be either a 1 or 0 since it is ignored by the loader.

Plot

The plot routine plots the sine curve using (*) and cosine curve using (@) on the 1
printer. The y axis is horizontal (since the size is fixed) and the x axis is vertical.

Each line is printed with the angle in degrees defining the line on the left and the ‘
symbol of the sine and cosine plots (* and @ ) in its proper position along the y

axis. The user can specify the starting angle (in degrees), the ending angle, and

a delta {increment in degrees beiween points to be plotted). l

This is a pseudo-instruction which is used to indicate the end of a program,
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Starting angle 1000 0114 0000 0000 AAAA
Ending angle Lo0o 0115 0000 0000 AAAA
Delta Looo 0116 0000 0000 0DDD
AAAA = angle in hexidecimal
(602D = 459)
DDD = increment in angle for each print line in

hexidecimal (000F = 15%)

An example of the plot output appears in Figure 60.

Mortgage

The mortgage program produces a mortgage table which gives a list of the monthly
payments of a mortgage and the results of each payment. This includes the pay
period number, the amount of interest paid this payment, the amount of this

T payment used for amortization, the remaining principal, the accumulated interest,
£ and the number of years of payment. The user must supply the principal, the
monthly payments and yearly rate as input, These parameters are entered into
: the task work area via the control program.
- Principal 1.000 2014 oooo PPPPF PPPP
Rate L.000 2015 C0Qo 0000 RRRR
Payment L.oc0 2016 - 0000 IMMM MMMM
PPPPPPPP = principal in 4-bit decimal digits
(02250000 = $22, 500, 00)
RRRR = yearly rate in 4-bit decimal digits
(0850 = 8. 50%)
B MMMMMMM = monthly payments in 4-bit decimal
digits (0025000 = $250. 0Q)
An example of the mortgage output appears in Figure 61,
| Sort
- The Sort routine reads a deck of cards and sorts them according to the starting \
! character and length of a key defined by the user in the work area., The sort may )

be either an ascending or descending sort depending on a parameter., The same '
deck of cards may be sorted using different keys and in different directions with-
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HMOARTGAGE

PRINCIPAI = €  25,600.00 RATF 7.00
PEDIND TNTERFST AMGRTIZATION
1 < 145,00 € ?230.00
2 % 143,.A7 L3 231,33
3 x 162,32 = 232,68
“ b 160,97 % 234,03
5 .® 133,62 * 235,38
A € 138,25 € 236,75
k4 < 134,88 e 238,12
a A 135,54 € 239.50
A < 134,11 € 240,89
10 A 132,71 € 262,29
i < 131.31 € 243,69
12 L] 129,R9 € 245.11
13 L A G . 266,53
14 € 127,04 s 247,96
18 € 175,460 < 249,40
16 Tos 124,16 « 250,84
17 L 172,70 « 252,30
iR e s 121,24 L 2€3,76
1e € 119,77 € 255,73
20 - 11R.79 < 256,71
21 * 11680 L3 25R, 70
23 < 115,30 L] 259,70
23 < 113.79 < 261,21
24 L 1172.28 . ?R2,72
25 € 10,75 € 264,25
26 ® 100,72 < 265,78
27 LY 107 .88 < FRT 2
Fal - 104,13 * 26R,RT
29 3 104,57 L 270,43
10 L3 103,00 = 272,00
N L3 101,42 € 273,58
I? € 53,R4 L PT8.14
k] < QR, 74 [ 216,76H
RS € 96,64 « 278,36
s = 85.02 - PT9,98
& * Y, L L3 ?R]1,60
37 « 91.76 - 2R3,24%
an x 9N, 12 - 284 ,RR
39 [ ARLGT7 € 286,%3
40 < R6. A = 288,19
41 < AS.14 < 289,86
4? « /1,45 « 291,55
43 < a1,76 < 293,74
b e an,ne L3 294,94
4 « 78.135 © 206,85
4k < ThLAY 3 298,37
%4 L] 74,90 < 00,10
48 € Ti.16 € 311.R4
49 < Tl.41 € 303,50
<0 < (G, 65 < »05,5
<) < AT.88 € 307,12
52 = LLTS < 108,90
€1 < 64,90 « MN0,T70
Sé - 67.50 [ IiP.E0
[ < &0, 569 < 314,31
L1 . sa.av © 114,13
sT * 57.03 * ANT.97
R < 55,19 L3 319,81
<9 . 53.33 = I?1.67
& - S1.47 * 323.51
61 - 49,59 L3 325,41
&2 < 47,71 « 127,26
61 i 45,81 L) 329,19
64 < 47,90 < 331,10
L « 41,98 < 133,02
(1) - «0,0% . 334,95
&7 < < 336,90
(L . « 33a,Rs
o < « 340 ,A2
70 L3 € 2,79
7" L] e 346,78
12 < < V46,78
kR € € 42,79
74 < A I50,R2
75 < < 357,.R5
T L3 < I54,.90
77 L3 « 354,96
TR L3 L3 159,0%
73 € £ I61.11
an t ® 363,70
ar € * WS
k] © 3 167,41
Lk} < < 369,56
Ag L3 € IT1.70
ps « 1ol4 « 197,07
Figure 51,

PRYMENTC

POINGTOAL

AR AADAAALANPAAAARAAARAAAARD DA ARAL ANARARAAARIAAADNAADAAAPAARAAAAAAAARAARAAAARAALPHAADSARAAAAD

P44170.00
244530 ,87
P44205,99
244071.96
23.836,58
23+599.83
?Y.3al,71
23,122,721
22.AB1,37
PPer39,.01
22,393.34
P2e150,73
2lean3, 70
EART. LI 7
2las06,3%
71a185.50
P0.003,70
208468 44
?04394,21
20,137,540
19,a79,%0
19,419,650
19.3%R,29
19,085,467
1R .R3) .47
19.5A5, A4
18,204,737
18,020.45
17.759,.07
17.4R7.02
1721354
1A.93IR PR
1A AR ,57
154203, 14
160103, 1R
15,921,5R
16,638,
15+283.44
16,046,917
14+ATH TG
144387, RA
16,087,731
13.004,n9
13.,809,1%
131.217,.=0
1?7.014,171
12.414.07
17,212,196
12,808 ,60
11,703,725
11.796,.11
}1.0R7,29
10,774,681
10.ake, 01
10,149,72
9,833,559
Gy t5.,A7
9,195.4a1
AgrTa, 14
A.e50.41
2,235,20
7.097,01
T.chR, 72
7,237,462
L1 LY
faEhI RS
6,732,758
5:293,90
5.€%3,00
S.210,29
#yf65,51
4.51R,71
b4 VA9, 98
3.219,1°
Yearh, 2?7
11,37
?.1846.41
72395,38
248,27
1e71,07
1L306,TE
o3R,33
SRR, T7
197,07
«00

-t

AARBADLASANAAADAAAAAAAARAAAAAAAAARAAARAAARAAAAANDAARARARAAAARAAAARAAAAAAPRARNALDALAPADAARANAAANA

275,90
ACCUMUILATEDN TMTFEFST

165,00

286,67

436,59

871,9%

T11.69

Ra,R%

5a%, P1
1+122.21
Ve 256,32
1«3R9, 07
1520,
1s650,73
1=7TTR.T9
1.905,74
Pe07],34
24154,50
3.PTR, 20
390,44
?+519.71
PekhIT, SN
3eT54,10
2eRET,. 6D
2,9A3,39
1,095,647
Y P0R, L7
3e315,64
427,37
1529, 45
AehI4, 0P
2.737,.87
F4RIR, L4
1938, 78
4y NI6B2
49,133,165
bLa2PR )R
44321.58
45417, 3%
405N, 46
4,591,393
Lo57R, T4
G 7R3, AR
4 857,33
44929,00
Se 009,15
K.NART, S0
Selha13
Se239,07
8,212,119
SR, AN
Ba457, 25
Cu8PL, 13
5,587,273
=,651.8%
S.716,.013
€.7%6,72
SeR33,59
SeRIN K2
C.945,1)
Se999,16
AeNSA AT
aofnn, on
Aela?,.a)
193,72
442372
Ae270 A0
£eF19, 85
feIGT,75
A998
R.LPR DR
& LRN, DO
SYTLNA ]
£e518,71
6,44, 94
£e569,17
ARSI, PT7
Aehl 14,37
L 830,41
AehaS M
kRO, D7
AdhTY 1T
AeBAD, TA
688,37
A9, 7T
fe&DT DT
Aek9R, P

Example of Mortgage Table Qutput
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out reading the deck in each time. The results of each sort will be printed giving
the omgmal position of the card in the deck.

R,ead new set of cards ~ Looo 020A 0000 0000 0000
Use 61d gset of cards L000 020A 0000 0000 0001
* Pointer to sort cards Lo00  020C 0000 0000 00YY

Number of characters in key L000 0214 0000 0Go0 00KK
Starting character in key Looo 0215 0000 0000 0055

Direction of sort descending 1.000 0217 6000 0600 0000

Direction of sort ascending Looo 0217 0000 0000 0001
YY = gsegment number for storage of cards to be sorted
KK = number of characters in sort key in hexidecimal (up to 64)
S8 =  location of starting key in card character of sort

The last card of a deck of cards to be sorted must contain an illegal character {?).
An example of the card input to the gort and the several outputs of the sort, using
different keys and different sort directions, appear in Figure g32.

Matrix Multiply and Print

The Matrix Multiply program allows for the construction of a matrix which is the
product of two given matrices, Each matrix element is an integer (positive or
negative). The dimensions of the matrices may vary and will be defined by
parameters stored in the work area. Pointers to the input matrices and to the
storage area for the ouiput matrix will also be stored in the work area.

The Matrix Multiply program has been written so that more than one Interpreter
may work on the same matrix at the same time, each perferming its own unique
set of row calculations. Each of these processes must have its own work area
indicating a starting row position and an entry for the number of processors that
are performing the multiply.

The matrix print routine must start when the matrix multiply has been completed.
This routine will print the input matrices and the resultant matrix on the printer.

The user of the matrix multiply and matrix print procedures must specify param-
elers of both of these routines. These parameiers determine the dimensions and
locations of the matrices to be multiplied:

x =
Ay By Cig
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Pointer to matrix A 1L.000 WWOC 0000 8000 0oYY
B L000 WWOD 0000 0000 00YY

C Loog WWOE 0000 0000 00YY

i L6000 WW17 0000 0000 00DD

X} LO0C WW16 0000 0000 00DD

k Looo Wwi1ig 0000 0000 00DD

:

segment number for work area storage of matrix
multiply {24) and matrix print (2B) in hexidecimal

1t

YY = segment number for location of matrices in hexidecimal

DD

dimension of matrices in hexidecimal

Maximum size of matrix is 256 (size of segment),
Therefore the maximum dimension size is limited by the following formulas:

ixj< 258
jxk <256
ixk< 256

Since no more then 16 numbers can fit across the page for the matrix print,
the number of elements in a row should be no more than 16,

iand j <16

Two examples of the mat rix print output appear in Figure 63.

CONFIDENCE ROUTINES

Four confidence routines, AERO1/KDK, AER02/KDK, AERO3/KDK, and
AERO4/KDK test internal Interpreter functions. These routines must be loaded
directly into the microprogram memory and are not run under the control pro-
gram. The following assumptions are made in the confidence routines:

A RIM B works

No errors in MPM or Nanomemory that do not appear in instruction 1
which is a durnmy instruction used to set as many nano bits as possible.

A+0 and 0+B Work,

AERO! /KDK exercises the source-destination functions of the Interpreter, the
successor controls, and the condition tests LST, MST, ABT, and AOV. The tests
are designed to test from the simple to more complex, The detection of an error
in the initial tests will cause a wait-wait at the nearest point to the error. Upon
completion of testing of the successor controls all errors will exit to a standard-
error routine,

139




FREY. "

AEROZ2/KDK exercises the SAR, CTR, and shifting functions. This test may also be
considered as a test of the barrel switch, This test agsumes that the first test
(AERO1 /KDK) runs successfully,

AERO3/KDK exercises the adder and carry logic of the Interpreter. This section
of the code is divided into two parts. Part 1 exercises both A+B and A+B+l logic.

Part 2 exercises the logic type instructions {NOR, NRI, NAN, XOR, NIM, IMP,
EQV, AND, RIM, OR, A+0, 0+B).

A subsection of Part 2 exercises four instructions (OAD, AAD, A-B and A-B-1) that
exist in the instruction set on other versions of the Interprezer. Thls section of code
4 exercises no new functions on the LSI Interpreters, i .
Corresponding to each section (or subsection) there is a subroutine which performs
the final comparison of results. The error indication and reporting for each section
is done by calling a standard error routine from the corresponding subroutine.

AERO4/KDK exercises those remaining areas cf the Interpreter not tested in the 1
previous tests. This test exercises: LCI, LC2, LC3, INT, GC1, GC2, AOV, IC,
CSAR, and B Register inputs: BAD, BRA, BBI, BC4, BCS.

AR

~AOMD SHRVFYS L YR IETEYER T B f1r:049 CosPyTEh SYSTEY STaUpLaTine
A COMM gl ey = lbe il hAThS VEWTHAL MEmORY QWA= TG Fip s TICS
COME SURYFY.S Bk (rrny 3 oM LT SURVEY ANALYTICAL TIVE sm<INO MOorl S

A F . ACM COmMw LGielshn o W fuigr AMLOCATION COMPUTFY @isnu-CE s

5 | COPMELL THES w7 » ¢ 71:iin B ANLNCE I COMPOTFH SYSTrMg

) ] ACH COMM 1209 v 7 7301 FASFO TR NCE wETe S TENCIRLS Al 1afF
TRM SYSTEMS HAV St ) . EEEY AVGTOTRG DEANL OCS a0 TITASK NG SYSTES
ACW COmM HAHE R A L N Al 7 b Ve T TN OF SYSTS A Or a0 K
AF 1S FJCC DENMEING = ) hatuy TrikAS4INGIITS CAUSES aAnig 2=rFveErTIG L

3 ~ro SURVEYS  DEMNING # 70:09 vIrTUAL MEM(ODY
aL  COMm BENMNYTS e sy FOSTT IO PACER COMPUTING COsmnir FCITNS

S ACHM COMM BERNS TR [N SHARCF Tizue FOLTCY ORIVEN SCHEDULFR FOY T5S

¢ rOME SURVEYS  COFFAAhIrLenICK Fli0A SYSTE A hEanenCes

¢ ulT MFMD STENINY ENEN B U FUTIF  TRFRDS TN TEME Smadfan SYRTEwS
~OMD SURVEYS HOFFwvan | J hils CHPUTERS AN PRIVACY

3 TRF TRANS KTLBURNIE Jaaris Y41 Ouir LEVEL ST AGF SYSTER

it aF 1S SJCC RLEINROCK L ToIus CorTinyus TIme Swavirn SCHEL TG

’ AF TS FJCft LAMPSOIN K w A0 GYNAMEC PROTECTIO SISUCTilnE =

oRTWCETON LAMPSOR ~ & 71:03 PrUTECTION
T1EFe COMPUTER 28ATE JsiDiUrier H [ R RN WP TIMIZTNG PERFORMONCE Mwtim =[O0 AGE
ACM COMM DIJKSTra &« ] SOLUTION IN CUN CURNENT »wudty CUNTHOL
ACM COMM DIJUKST~A F @ 64:05 STwRUCTURE THE MULTIRPWOONAMMIANDG SYNTEM
ACM COMM GHRAHAM £ v 64305 PROTECTION EINFORYMATION PROCESSING
nS QYMP POOLE F:wAlTE =« 69810 MACHINE INODERENDFNT SNFTwAwE
ACM COMM HANDE LL PRIUEHNFY 61308 DYMAMEC STOWAGE ALLOCATION SYSTFMS
rOoMp SURVEYS  ROSIN S 69103 FLECTRONIC COMPUTFRSIHISTONICAL SliRwVEY f
rOMo SURVEYS HOSIN R F 64203 SUPFRVISORY AN MONITNR SYSTEMS i
ACM COMM SUTrERLAND | F 68:06 FUTURES MARKET IN COMDUTER TIMe :
rOvo REVIEWS  TRIMKLE 5 R ABI0S TIME SHARING RIRLTOGRAPHY
ACM COMM WAITE w M r0:07 MOKILE PROGRIAMMING SYSTEMISTAGE 2
HnATAMATION coR¥aTn F h3:0S PLAL AS Toor FOR SYSTFM PROGRAMMING l
TFFe INTNAT{ CREFCH « A 70:06 IMPLEMENTATION OF ORFQaTING SYSTeE Mg
AF IS FUCC CRITCHLOW A J 63:09 CGENERAL IZFD MULTIPROGRAMMING SYSTEMS
AN COMM NERMNIMNG P ARINDG WOLK Trli; SET MANEL 2LNANAM QA TN \
ACM COwMM WILKES Moy AR2Q] COMPUYTERS THEN AN NNy ‘

(a) Card Input Sequence

Figure 62, Example of Sort Routine Qutput
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CouyY

BPOSITION
1 Pt
2 ie
3 13
- 31
s 32
] 3R
7 4
& B
9 3
10 19
1t 11
12 14
13 21
14 F<4
18 23
16 "
17 7
18 15
19 E
20 6
21 1s
22 18
23 19
24 1
25 3
26 o
27 2a
28 25
29 17
an 27

31 P3N
37 F4
33 2%
34 30
35 39

POSLTION
s 315
34 an
33 29
32 en
31 Fd-]
30 27
29 17
28 29
27 é4
2h o
25 3
24 i
23 1=
22 14
21 in
20 L}
i9 k1
18 15
17 7
16 M
15 24
16 e
13 ¢l
12 ]
11 il
10 1o
9 9
] kD)
7 2
6 33
S 32
“ 3t
3 13
2 12
i N

B b o e

TEFF COMPiTF v
&Ct COian
COMT SU2VEYS
saTexa¥Yion
IFFF 1L THATL
AFI9S  ucg
fCsE Cloam

A0 (hena

AF [2G §OCC
CORP SURVE ¥S
&M COps

AT g

QLW (ghset

AC= Cihypt

ace LM

A COm

Tum SYsTems
COs2 SOy YS
COMNELL THES
aCe Compa

T-E THANS
aFIPS FuCC
PRINCE FuN
CORD QyavE YS
COMP Supdug vg
ACYM COuxg

05 SYMP

agm CoMmw

AF PSS S4CC
COMP SV Ys
COMP Sijwve ¢S
ACS COtew
COMF wiviEaSs
ACH Cla

agy {lam

ACM (oMM
alw oM
COMP Yoy jrws
Yol 3 QYL
CiME Saxyr ¥YS
COMP Suryers
AF VY SaCC
ACH» Cutw

LS SYMm

AC= it
CUMZ Stimwe 76
T Sy e 7N
= lnCE TN

4k 1PS Nl
vt Thays
ACM COMN
COxNELL Trty
CUMB SuRVE TS
{re SYSTEMS
ACH COm

ACS ClOma

AGE I RITEY

w0 COMM
MTTME MO

aCm COmMv
COMR SPYWVE YS
aFIPs Fucc
ACM O

ACM ((rans
AF1PS FUCC
TEEE InThnATL
VATAMATION
COMP SUHVEYS
AC™ COMey
[ELE CumbuTiw

Figure 62,

5027
XA RARA R AR AN A FAN S A X ALY T )
BmSTr JID NEY w A9t 11 GET i 71w PELRFARARCE Pt STORAGF
rERISTF TN SHA-RF 7l:42 FOLICY auiyF, SCMFOULER Fop TSS
CNFF VAP IELPHECK T1san SYSTHM DEADLOCKS
Cornaln £ AITOS BLLY AN TONY FOR LYSTEM PEAGTAMMING
CREFCH 3 & n:as IMPLEMENTATION OF OPFUATING SYGTEMS
CRITOLy a g LR CRMFUAL IRy i TIRQOGw e nd, SYSTH g
VIALEY RInFnnie L XTE VEPTRL #Eafipy Smzisn TN s fI0S
UFanthG & ) Llah 510 a4 Ll SF T MODFL PWOLWAN 3ERav [OR
OEsHiaG 8y TrmASaINGI T TS CAUSES &MO BLF yFnTION
IWhninG Py VI iHAL Mk ey
LENNLS o POSITION BAPHK COMPUTING CoMmNICATNG
DENRES S o FolTUsr  Tub3ils 1N VI SuMARING GraTEwE,
UIKSTHE £ oo 3 HHOTIG ) Ta Ok CR@F R GuaG ComTry,
SIS I-a £ 4 ARIOYS STAUCTURE  THE &gl TIPLOMBAYMING SYSTEM
(orsdit O /105 PHGTe CTION P GRMAT[0ON PROCESSE NG
HAMENERY A N RUTQOT B YRR TIDN OF SYSRTEW DEADLACH
HAVENDER J W haso? AvDToInG DEALLOCK »ULTITESx NG SYSTOM
AOFE=BMN L KR 08 ClmbgTe by Al PRIVACY .
LT L 71:06 BFANL UL Tl (O#PUTE S SYSTFas
£50NS B Y 76301 EAPEHIENCE Tk FXTFRSGIRLE La~itacE
KILHURNIEDwANDS L84 04 OnE LEVEL STRWAGE YRTEW
LAMESOk B g AR OTG DYSNARLC CunTFITINy SIPUCTURFS
LAMHSON H ¥ Ti:03 PROTECTION
MACOAL L 2 7025 COMeyTER SYySTEr S ATION
MORINMEY |} ESELN SUMYEY ANALYTICAL Tiwf Snplsn wadsp e
RIFLSEN N w 70:0% ALLOCATIUN CNaPUTFw DX Snuacers
POty RiwdlTE W Az 10 ABCHINE  [MOFBF LR AT GOF Twiwf
HARDFL LSRG IEHNE W PLERILY DYRAMTIC “TORAGE ALLACATION CYSTrug
SLEINROCK 70205 CONTINUNa TIRE SHaw ]t S0ke UL N0
HOSIn L F w403 SUHRENYISOSY Al BORTT0R SygTE ua
il S LR L= CTwenIC COMOHTF LS IS TORT 04 & -y
SEITHE RLANSY §OF ARIDA FuTink s wagri T % COMPTE~ Tl=+
TRI¥MLE O Uk 6E 0% TIME SrasIes mlfg jonUapmy
walir wow T0:07 Mum JUE Sonneaus It SrSTR MG TaWw 2
wildra oy LR COsoyTe «S T, AND 0w

(b} Sort by Author (ascending)
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ToIMelE & Ju
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#OSEN 5

witsfy < F
~Lt iRen(x
ARV LR tef
FOOLE »IwAITE w
wirl st Now
UL IR
La(nfedtaly
LAMeSer ~
LAY - g
LEEILIVELG L P S Y
IwinS » ¥
LT o~ O
HROFFwAN L g
Have NOEY
HASE MAN
GHARAM O
DIUXSTwa
DIJRSIHA
DENNTES
NENNTS
DFEYNIING R
=}
Q

R

M o

LS
zx

LN 1

DENNING
NENNING
NALFY R
CHITCRLOW &
CreCH R A
COmATO F
COFF#ANIFLPHICK

H
W
J
J
N
o

wis J

HERMNSTE IN G SHADRF
BRATE Jifihui e m

AR2CL
ey
ARG
LIS
LR ]
hETUS
TOIUS
LR Y
LEES IV

TRTym

0306
AGOS
71: 06
Pyl
AqQ: 1l

{c) Sort by Author (descevaing)
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7
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SORT
KEXXXXXA XX AN EREXN XXX XXX X
ACM €OMm HERNSTE IN: SHARPE 71302 RPOLICY DRIVEN SCHEOGUWLER FORQ 78S
ACM COMM DALEY WIDENNIS U 6R105 VERTUAL MFMORY SHARING IN MULTICS
ACM (M DENNTNG P g 6R105 WORKING SET MODFL PROGRAM BEHAVIOR
ACM COMM DERNIS U 8 €3:05 POSITION PAPER COMPUTING COMHUNICATNS
ACM CMm DIRSTHE E W AS109 SOLUTION In CON CURRENMT RPO6G CONTROL
ACM COMM OTUKSTRA § W (8309 STRUCTURE THE MULTIPRPOGRAMMING SYSTEM
ACM CMM GRAMAM P L) EOTECTION INFORMATION PROCESSING
4Cm COMM HMARERMAN & N AYINT BREVFNTION OF SYSTEM DFEADLOCK
ACY COMM IRONS £ T 70:01 EXPFRIENCE wIThm FXTSNSIBLE LANGUAGE
ACM COMM NIFLSEN N R 76:08 ALLNCATION COMPUTFR RFSOURCES
ACM COvm RANDFLL tKUEHNF ARIOM OYNAMIC STORAGE A{LOCATION SYSTEMS
ACM COMM SUTHERLAND T F ARIN6 FUTURES MARKFT IN COMPUTER 1 IMF
ACM CHMM walTt w ™ 0507 MORILE PROGWAMMING SYSTFMISTAGE 2
ACM COMM wiLKRES M v ARINY COMPRITERS THEM AND NOW
afFIPS FUCT CRITCHLOw A J 6309 GENERAL]ZED MULT [PUNGRAMMING SYSTEMS
AFIPS FiCE DENNENG B &R0 THRASHINGEITS CansEs AND PREVENTION
AF 105 FJCC LAMPSON Y W 6©9:09 NYNAMIC PRATFCTION STPUCTURES
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COMY wEVIE RS TWwisMsie 6 R hE0S TIMF SRANING 1AL JOGRAPHY
COME SGIRVEYS  COFFMANIEL PHICK TYiuh SYSTrM DEANLOCKS
COMP SURVEYS  DFMniRG P U 70364 VIRTYAL mMEMmORY
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COWNELL THES =0l T R Tiia6 NEANLOCK [N COMPUTER SYSTEMS
DATAATEON CARATY F ) R HURS Pl /71 Ay TOOL FOie SYSTEM PROGRAMMING
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(d) Sert by Journal (ascending)
Figure 62, Lxamples of Sort Routine Cutput (cont'd)
MATRTX & ® MATRIX R = PROADUCT
MATRIX A
[ -1? -13 -7 =15 -3
=15 6 17 -A ~-1n -6
11 4 =11 5 -4 -4
~1 -1 l’ 10 2 13
1 -11 14 - =11 1
MATRIX B :
" 0 b -3 16 10 -9
1R =11 -10 -17 3 - H
7 =21 -7 2 20 14 . -pP?
-1 -5 9 19 13 -R A =15
-16 =16 17 =24 -20 1 ) -12
-16 R 15 -1 23 -1AR =13 12
PRODUCT
a7 A56 -20 23 -T2 19 20 487
312 ~187 -R17 A10 26 1864 =130 29
231 194 196 =157 -1 -87 112 76
-500 101 393 kL3 382 =224 -3 =75
55 26 =169 664 h68 295 -6 ~-150

Figure 63, Examples ot Matrix Print Routine Output
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APPENDIX I

HISTORICAL REVIEW OF MICROPROGRAMMING

Ryl

f oen)

Digital computing systems have traditionally been described as being composed
of the five basic units: input, output, memory, arithmetic/logic, and control
{Figure 64}. Machine instructions and data are communicated among these units
as indicated by the heavy lines in the figure are generally well known and
understood, The control signals (as indicated by light lines in the figure), are
generaily less well known and understood except by the system designer. These
control signals generated in the controi unit determine the information flow and
timing of the system.

nat

Microprogramming is a term associated with the orderly and systematic approach
to the design of the control unit, The functions of the control unit include:

1, Fetching the next machine instruction to be executed from
memory

2, Decoding the machine instruction and providing each microstep
control

3. Controlling the gating of data paths to perform the specified
operation

——ntpy

) 4, Changing the machine state to allow fetching of the next
i instruction.

The conventional control unit is designed using flip-flops (e.g., registers and
counters) and gating in a relatively irregular ad hoc manner. By contrastthe
control unit of a microprogrammable computer is implemented using well
structured memory elements, thus providing a means for well organized and
flexible control.

i
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Microprogramming is therefore a technique for implementing the control function
of a digital computing system as sequences of control signals that are organized
on a word basis and stored in a memory unit.

it should be noted that if this memory is alterable, then microprogramming
allows the modification of the system architecture as ocbserved at the machine
language level. Thus, the same hardware may be made to appear as a variety of
system structures; thereby achieving optimum processing capability for each
task to be performed. The ability to alter the microprogram memory is called
dynamic microprogramming as compared to static microprogramming which
uses read only memories,

As can be seen in the following brief historical review, the concept of micro~
programming was not widely accepted except academically during the 1950's.
The primary reason for this was its high cost of implementation, especially the
cost cf control memories. Fromthe mid-1960's to the present there has been
a definite trend toward microprogrammable processors and more recently to
dynamic microprogramming, This effort has been inspired by rapid advances
in technology, especially control memories.

CONTROL

A
ARITHMETIC

a
LOGIC

INPUT H MEMORY b OUTPUT

o HEAVY LINES INDICATE INSTRUCTION & DATA FATHS

L LIGHT LINES INDICATE CONTROL PATHS

Figure 64. Traditional Digital Computing System Block Diagram
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BRIEF HISTORICAL REVIEW OF MICROPROGRAMMING

1951

1956/7

1958-1960

1961-1964

Feb. 1964

1964

1965

Wilkeﬂ1 objective was '"to provide a systematic
approach and an orderly approach to designing
the control section of any computing system, "
He likened the execution of the individual steps
within a machine instruction to the execution of
the individual instructions in a program; hence
the term microprogramming. This view is
hardware design oriented,

Lincoln Lab (see Van der Poelz) with different
emphasis used the term microprogramming to
describe a system in which the individual bits
in an instruction directly control certain gates
in the processor. The objective here was to
provide the programmer with a larger instruc-
tion repertoire. This view is software design
oriented,

Glantz3 and Mercer4 pointed out that through
microprogram modifications the processor
inst ruction set may be varied.

Blankenbakers, Dinneens, and Kampe7 described
simple computers based on Wilkes model.

Great international interest was shown from
U,S., U.K,, Italy, Japan, Russia, Australia
and France.

In Datamationa_12 five articles appeared on
microprogramming with emphasis on how it
might extend the computing capacity of small
machines,

IBM System 360 (Stevensla) demonstrated that
through microprogramming, computers of 4if-
ferent power with conipatible instruction sets
could be provided (vsed read only storage).

1 . .
Melbourne and Pugmire 4 described micropro-
gramming support for compiling and inter-
preting higher level programming languages.




1965 McGee and Petersen® pointed out the advantage
of using an elementary microprogrammed com-
puter as a peripheral controller; i.e., as an
interface between computers and peripheral -
devices,

1965-1966 Greenm, and 'Iucker17 described emulation of
one machine on another through microprogram-
ming,

1967 Oplerw coined the term ''firmware" for micro-
4 programs designed to support software and

! ’ suggests the increased usage of microprogram-
i - / ming and describes its advantages,

F _' 1967 Hawryszl-;iewycz19 discussed microprogram
- ' support through special instructions for problem
/ oriented languages. ¢

2
1967 / Rose 0 described a microprogrammed graphical
/ interface computer.,

1968/ Lawson21 discussed program language oriented
/ instruction streams.

' 2
19,[‘{9 Wilkes” 2 and Rosin23 provided surveys of the
/ microprogramming advances,

. / There were also announcements of many new
. ; microprogrammed c&fnputers (e. g., Standard
Computer - Rakoczi™ ).

, » 1970 Hu:-.;son25 provided the first textbook on micro-
. programming,

; 1971 Tucker and Flyn.n26 pointed out advantages of
) adapting the machine to the task through
= microprogramming.

July 1971 The IEEE Transactions on Computers offered
a special issue on microprogramming,

E 7 ‘ :
1 July 1972 Clapp2 and Jones, et. al. 28 provide annotated
microprogramming bibliographies.
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Figurs 1. Multilevel process
from wafer to array test,
all computerized.
4

LARGE SCALE INTEGRATION

Via Discretionary Routed Arrays

Texas instruments is using monolithic discre-
tionary routing technology to produce Large Scale
Integrated (LS!} arrays. Large bipolar wafers are
produced containing an intermix of the gates and
flip-flops required to perform logic functions.

More than 16,000 separate components are
diffused into a single 1 1/2-inch-diameter silicon
slice. These components are then connected with
first level metallization into a minimum of 1410
equivalent gates. {See Figure 1.) The slice is then
probed to determine the individual characteristics
of each device on the slice.

Customer logic requirements are fed into
computer-controlied equipment, which has been
developed to generate unique interconnection
masks for each wafer at low cost.

Custom interconnections are then produced
using probe test data and a computer to develop
the discretionary routing masks. Using these auto-
mated techniques, custom arrays can be developed
to fit most logic specifications. Multilevel metal
interconnect technology now makes possible the
production of very complex arrays in a short time.
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CUSTOM LSt ARRAYS

Custom LSI Arrays are produced by discretionarily interconnecting various circuits or cell types
on the face of an LS| wafer, similar to the interconnection of individual integrated circuits on a PC
board. These are TTL logic circuit types and are similar to T} standard series SN5400 integrated cir-
cuits. The same general logic rules {loading, fan-in, fan-out, logic states, speeds, etc.) that apply to
series SN5400, apply to the LSI circuits. Therefore, to design a system with LS, or to reimplement
an existing one, is a relatively easy, straightforward process.

ot Y M . 7

LSt INTERFACE

|
R

There are three basic interface methods that can be achieved with the LS| technology:

ra

1} The first method is to implement a functional bipolar logit requirement with the
standard wafers currently in assignment inventory, shown on page . These types
are currently in production and stocked, waiting for assignment 10 a logic require-
ment. The addition of multilevel metallization converts these slices into functional
arrays.

Py [ 45

;{'; it

Partitioning the arrays for the number of circuits and types available an the wafer
and limiting the number of input-outputs, not to exceed 126, is all that is required.
Presently, the time from logic diagram input to completed array is in the range of
30 to 90 days, depending on complexity.

. 2} The second interface method is implemented by creating a custom wafer using stan-
- dard circuits from our circuits library. This often reduces the total number of arrays
needed in a system, thus reducing the system cost. The highest single cost in the
design of IC's is the set of diffusion masks used to create the individual circuits.
This high cost has already been absorbed in the design of standard circuits. Step-
ping and repeating these standard circuits around on a wafer to form a custom dis-

tribution or quantity of given circuit types is a relatively low-cost operation. Thus,
‘ a custom wafer cantaining a unique distribution of circuits for a specific application
i provides the interface.

; Tl is continucusly expanding the present circuits library with new, rmore complex
circuits. Most of these will be similar, if not identical, to the circuits presently
‘ available as standard Series 5400. Thus, implementing LS} arrays remains simple.
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3} The third interface method with LS is a total custom approach. A few thousand
arrays of a single type may justify the expense of 2 custom circuit as well as that of
a unique wafer. General-purpose logic arrays will provide 200- to 800-gate complex-
ity while customized circuits and wafers can provide arrays of 500- to over 2000-gate
complexity on a single monolithic substrate.

ARRAY TESTING

The final phase of creating an LS array is the testing of interconnections and the verification
. that the array will perform in accordance with the logic diagram. Because testing an input logic
~= array with all possible combinations of inputs that can occur is impractical, Tl has develcoed a
- “single-fault modeling” approach. Testing for a single type of fault at each node within the logic
network is both practical and effective. This approach assumes that a set of inputs can be defined
that not only will exercise each circuit output but also will test for the output being stuck-at-one
or stuck-at-2ero.

[r ¥R

T

The number of tests required for 2 200- to 400-gate array is in the thousands. But thisisa
~ reasonable number to generate and test with computer programs and computer-controlied test equip-
ment. The equipment is capable of applying 5,000 tests per second to a 156-pin LS| package.

e -

This approach to tests does not require knowledge of the functional capability of a logic array.
Therefore, a logic diagram can be provided, the multilevel interconnection accomplished, and the
completed array tested without the operator knowing what the array does functionally. This gives
the customer confidence that his circuit innovations are protected. In addition, it assures that this
information is treated on a preprietary basis.

ARRAY PACKAGE

A general-purpose package has been developed for housing whole wafers of monolithic semi-
conductor components. The package serves as a suitable container, protects the wafer from handling
and environments, provides for adequate heat transfer, and is capable of mounting and interconnec-
tion into customers’ equipment. A 2 1/8-inch square, alumina-ceramic substrate with thick-film
metallization leads is the package developed through extensive research. It provides 39 leads on
50-mil centers on all 4 sides of the package so that conventional solder or refiow soider techniques

can be used.

1 3
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Normally the wafer is mounted with a special high-temperature epoxy adhesive, providing
typically a 3° C/W gradient between the LS| wafer and the ceramic header. The wafer is connected
ta the gold-plated lead frame with gold wires, using conventional thermocompression techniques.
This resuits in a high-reliability all gold system. The standard package has an epoxy-sealed ceramic
lid, but a hermetically sealed package with Kovar-type lid can be provided.
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LOGIC DRAWINGS

LOGIC UNIT 1
REV, B - 12-14-70
SK-0982-0109
DRA-3013

L.OGIC UNIT 2
REV., F - 3-4-71
SK-0982-0110
DRA-3014

CONTROL UNIT 1
REV. D - 4-16-71
SK-0982-0113
DRA-3015

CONTROL UNIT 2
REV, B - 4-26-71
SK-0982-0114
DRA-3016

MEMORY CONTROL, UNIT 1
REV, D - 4-16-71
SK-0982-0111

DRA-3017

MEMORY CONTROL UNIT 2
REV, C - 4-27-11

SK-0982-0112
DRA-3018
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BIPOLAR LSI

GENERAL CIRCUIT CHARACTERISTICS

ahsolute maximum ratings over oparating case temperatura range (unless otherwise noted)

i
!
{

Supply Voltage Vo Short Duration (30 seconds) (seenote1) . . . . . .. .. . 7V
Input Voltage Vy (seenotes1and2) . . . . . . . . . .. ... .., ... 55V
- OperatingCase Temperature Range . . . . . . .. ... ... .. .=b5Cto 125°C
3 ' Storage TemperatureRange. . . .". . . . . . .. . . ... .. .—65Cto150°C

B s 2

A : NOTES: 1. Voitages are with respect to network ground terminasl,
- N 2. input signals must be 2ero or positive with respect ta network ground terminst,

.3
o

recommended operating conditions

MIN TYP MAX UNIT

e

Supply\loltagevcc e e e e v T e e e e e 45 5 55 v

electricai characteristics over operating temparature range (unless otherwise noted)

[t

; PARAMETER TEST CONDITIONS MIN TYP* MAX UNIT

i V\;q High level input valtage Vo =45V 2 v

Vi, Low level input voitage Vec =45V 0.8 v

2 Von High level output voltage Vec =45V, Yigag * 400 A 24 35 Y

VoL Low level output voltage Vep =45V, lLink = 8 p‘lA 0.22 0.4 v

High level input cusrent Vee =55V, Vig=24V, 40 uA

! |

‘, ' ™ one normatized load Veg =58V, V=568V ! mA

Loavy levet input current
t Vee =55V, Vi =04V ~-1.6 mA
i ane normatized load ce I

Short-circuit output current
'OS" Vcc =55V -18 ~57 mA
{output in i0gic one state) ’

i\ : . . . - - - °
Al typical values are at Vcc 5V, TA 25°C

"* Not more than one oulput should be shorted nt 8 time.

fan-out

All LS| gates and flip-flops are rated for a normalized fan-out of 10. This fan-out should not
include more than 5 externai {outside of packagej { state ioads.
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LOGIC SLICE — TYPE “N“
—& —
—
— ———
‘-} :
—
1 ¥
} Y 1
= T I T I I T TITTY
T T ITOT
SRR NUNE S EEE NS 1#
IS ANRENRERE RGNS N
T name 1
EEENSENIREREAR RO NNR SN
|ENEERERRAENNANANE NS . N
ISREESESUNGONNENEN SME]
Z
I OTIOTINT
T 1
I 1
dyiply CK KoKy
~ "
RECOMMENDED*
CIRCUIT TYPE TOTAL NO. MAXIMUM USE
&K FLIP-FLOP 100 30
AMD-NOR-INVERT GATE 82 25
EXCLUSIVE OR GATE 60 18
JINPUT GATE 232 70
: 7-INFUT GATE 56 7
* RECOMMENDED DESIGN WITH UP TO 30% OF EACH SINGLECIRCUIT TYPE.
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LOGIC SLICE — TYPE “ S

uje

gl
TN
-

-~ T
IRRNAEARS RN EAN]
AN SSUNENSRANSARENESNANS!
IBEERANREEEEEERASUEREEER]
ISENEEBEREEREABEN
I 11111 i1l 1 | ENN AN N
Ll ENBNSREDRE S I il L
IRENERUR IRANERINEREERANE
EOERENSBEERRRANNEANERS
ARMBNAE NSRS AL SN
T 1
]
L]
1
RECOMMENDED
CIRCUIT TYPE TOTAL NO. MAXIMUM USE
&K FLIP-FLOP 58 26
AND-NOR-INVERT GATE 46 21
EXCLUSIVE OR GATE 18 10
" 3INPUT GATE 96 60
7ANPUT GATE 30 19
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NAND GAYTE

LOGIC

B

{]
1

SCHEMATIC

COMPONENT VALUES SHOWN ARE NOMINAL.

CHARACTERISTICS (Ve =5V, Ty = 25°C, N = 10)

PARAMETER MIN TYP MAX UNIT
AV PROPAGATION DELAY ] 19 ns
POWER DISSIPATION 10 mw
FAN-IN (NORMALIZED) 1 -
FAN-QUY (NORMALIZED) 10 -

NOTE: FOR MORE GATE INFORMATION SEE SN5400 DATA SHEET.
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EXCLUSIVE OR GATE
LOGIC

F1

F2

SCHEMATIC

prvo.

vencgau,

INPUTS QUTPUTS
ABC F1 F2
000 1 o
100 0 1.
o1 0 L] 1
110 L 1
001 1 0
to01 ] 1
011 Q 1
T 1t o [

ﬁ
!

CHARACTERISTICS (Ve =5 V, T4 = 25°C, N = 10)

PARAMETER

MIN TYP

MAX

UNIT

AV PROPAGATION DELAY
3]
£2

POWER DISSIPATION

FAN-IN (NOPWAL.ZED)
ALSB
Cc

FAN-QUT (NORMALIZED)

9
18

10

19
k]

ns
ng
mw
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AND-NOR-INVERT GATE

D ~ LOGIC
—
_—
—

bl eues

—p F1

[

Eigigili

':}_,,, |

—

L[ L

pl
[ O—

L s

SCHEMATIC

P—-E

L X 3%

o5
[}
21
>
;’l iy
Fz
1 as & ourrut
1 .2
3
NeuTsS
i 4 a1 '/ :
*-—-k 012
d ' 1
E B
2 pv‘v‘r @ 4
B NUTS T ha
-]
1 NPUTS

CHARACTERISTICS (Vo =5V, Ty = 25°C, N = 10)

PARAMETER MIN TYP MAX UNIT
AV PROPAGATION DELAY

F1 10 20 ns

F2 19 39 ns
POWER DISSIPATION 40 mW
FAN-IN (NORMALIZED) 1 -
FAN-OUT (NORMALIZED) 10 -
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LOGIC
—{Ti PRESET
—% Y} o}
CLOCK
K1 A
a— 1 K S p—_pp
el K CLEAR
POSITIVE LOGIC: NOTES:
) LOW INPUY TO PRESET SETS O TO LOGICAL 1
%}z’ LOW INPUT TO CLEAR SETS O TO LOGICAL O
4 PRESET AND CLEAR ARE INDEPENDENT OF CLOCK
d
B
&
DESCRIPTION

b

THESE +K FLIP-FLOPS ARE BASED ON THE MASTER-SLAVE
PRINCIPLE AND EACH HAS AND GATE INPUTS FOR ENTRY
INTO THE MASTER SECTION WHICH ARE CONTROLLED BY
THE CLOCK PULSE. THE CLOCK PULSE ALSO REGULATES
THE STATE OF THE COUPLING TRANSISTORS WHICH CON-
NECT THE MASTER AND SLAVE SECTIONS. THE SEQUENCE
OF OPERATION IS AS FOLLOWS: :

S G -
e

1. ISOLATE SLAVE FROM MASTER
2. ENTER INFORMATION FROM AND GATE INPUTS
TO MASTER
; 3. DISABLE AND GATE INPUTS
¢ 4. TRANSFER INFORMATION FROM MASTER TO SLAVE.

ey

i
!

1 167

J-K MASTER-SLAVE FLIP.-FLOP

TRUTH TABLE
n th+ 1
Q

mlatololo
wijoj-jo}r

Q,
0
1

B,

Li=N 0283
2. X=K1*K2*°X3
3, 1, » BIT TIME BEFORE CLOCK PULSE.

4.1, + 1 = BIT TIME AFTER CLOCK PULSE.

HIGH

LOwW

CLOCK WAVEFORM

P
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4K MASTER-SLAVE FLIP-FLOP (CONTINUED)
SCHEMATIC

N,

L 3]

CLEARD) . d

S
4kn 4k  Skid

AN
v

X3

C

L

250

NOTEER: COMPONENT VALUES SHOVWN ART NOMINAL .

CHARACTERISTICS (Voo =5V, T4 =25°C, N =10}

PARAMETER MIN TYP MAX UNIT

MMz
mwW

MAX CLOCK FREQUENCY 15
POWER DISSIPATION

i
{
i
]
o a2 :
i
{
i

J& K 1 -
PRESET,CLEAR & CLOCK 2
FAN-QUT 10

NOTE: FOR MORE FLIP-FLOP INFORMATION REFER TO $NS472 DATA SHEET.
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DUAL 3-INPUT NAND GATE

i

o

o ——— s

. - ! T-INPUT NAND GATE
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PACKAGE DATA
PIN LAYOUT

PACKAGE DIAGRAM

L

A TOP VIEW BOTTOM VIEW
LEADS ~RE GOLD PLATED F-15 DIMENSIONS NOMINAL WEIGHT — 22 GRAMS
ALLOY ON 50 MiL CENTERS {IN INCHES)

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE
CHANGES AT ANY TIME IN ORDER TO IMPROVE DESIGN
L% T SUPPLY THE BEST PRODUCT POSSIBLE.
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DRA-3013 SUMMARY

g
i
l

Gate Total Gate Pins Pins Percent
Function Total No, Complexity Complexity Used Available Used

| )

3 ;gi FF 8 6 48 40 88 45
11
ANI 30 7 210 265 480 55
gé EXOR 18 3 54 64 90 71
; 3G 93 1 93 257 372 69
i ,
b G 15 1 15 82 120 68
3 i .
: 2 TOTALS: 164 420 708 1150 61

| POWER DISSIPATION - 3.14 WATTS
.y TOTAL PINS - 801, including 93 I/O PINS

INPUT CONNECTOR PINS - 67

O
——r—

OUTPUT CONNECTOR PINS - 26

J—

o oo

AA - 5/8/72
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DRA-3014 SUMMARY

Gate Total Gate Pins Pins Percent
Function Total Ne, Complexity Complexity Used Available Used

FF 32 6 192 128 352 36

ANI 26 7 182 247 416 59

. EXOR 16 3 48 64 80 80
3G 113 1 113 344 452 76

7G 17 1 17 103 136 75

TOTALS: 204 552 886 1436 61

POWER DISSIPATION - 4,10 WATTS
TOTAL PINS - 967, including 81 1/O PINS

INPUT CONNECTOR PINS - 47

OUTPUT CONNECTOR PINS - 34

AA - 5/8/12

. - —; o " o

174




DRA-3015% SUMMARY

Cate Total Ga.te Pins Pins Percent

Function Total No. Complexity Complexity Used Available Used
’ % FF 22 6 132 109 242 45
ANI 21 1 147 128 336 38
.
. % EXOR 9 3 27 30 45 66
™
S on 3G 83 1 83 224 332 67
4
% TOTALS: 135 389 - 491 955 51
11

: | POWER DISSIPATION - 2,82 WATTS
TOTAL PINS - 559, including 71 I/O PINS
INPUT CONNECTOR PINS - 36

OUTPUT CONNECTOR PINS - 35

{3 .

*NOTE - 2-LEVEL METAL SYSTEM

oty

]

| AA - 5/8/72
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DRA-3016* SUMMARY

Gate Total Gate Pins Pins Percent

Function Total No, Complexity Complexity Used Available Used
| FF 14 6 | 84 £2 1 54A 40
g ANI 25 7 175 T 157 400 39
| EXOR 1o 3 30 37 50 74
3G 68 1 68 145 272 53
76 a1 1 a1 .85 136 62
TOTALS: 134 374 486 1012 48

i 3 POWER DISSIPATION - 2,71 WATTS
-' TOTAL PINS - 541, including 55 1/O PINS
INPUT CONNECTOR PINS - 40

OUTPUT CONNECTOR PINS - 15

*NGTE - 2-LEVEL METAL SYSTEM

AA - 5/8/72
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DRA-3017 SUMMARY

d
§
Gate Total Gate Pins Pins Percent
Function  Total No. Comnplexity Complexity Used Available Jsed
FF 38 6 228 179 418 42
ANI 23 7 161 142 368 38
EXOR 11 3 33 44 55 80
% 3G 71 1 71 199 284 70
] 7G 4 1 4 22 32 68
# '
g
o TOTALS: 147 497 586 1157 50
;
I
L POWER DISSIPATION - 3.52 WATTS
TOTAL PINS - 652, including 77 I/O PINS
INPUT CONNECTOR PINS - 42
OUTPUT CONNECTOR PINS - 35
AA - 5/8/12
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DRA-3018 SUMMARY

Gate Taotal Gate Pins Pins Percent
Function Total No. Complexity Complexity Used Available _ Used

FF 36 6 216 168 396 42
ANI 31 7 217 338 496 68
h EXOR 9 3 27 38 45 84 -
3G 86 1 86 216 344 62
G 16 1 6 - 87 128 &7
| TOTALS: 178 562 847 1409 60

PO“IER DISSIPATION - 3.97 WATTS

TOTAL PINS - 925, including 89 I/O PINS
INPUT CONNECTOR PINS - 55

OUTPUT CONNECTOR PINS - 34

AA - 5/8/72
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RETURNED MATERIAL REPORT

DRA-3013:

A) SERIAL NO. 34533
1. BADVIAS
2. NOT REPAIRED
B) SERIAL NOQ. 34540
1. FIRST TO SECOND METAL SHORT
2. REPAIRED AND RETURNED
C) SERIAL NO. 35022
1. UNKNOWN SHORTS
2. SHORTS BAKED OUT AND NOT RETURNED
D) SERIAL NO. 31306

1. FIRST TO SECOND METAL SHORT
2. REPAIRED AND RETURNED

DRA-3014;

A) SERIAL NO. 35021
1. FIRST TO SECOND METAL SHORT
2. REPAIRED AND RETURNED
B) SERIAL NO, 34007
1. BAD VIAS
2. NOT REPAIRED
C) SERIAL NO. 35208
1. BAD THIRD METAL AND/OR OXIDE STEPS
2. NOT REPAIRED
D) SERIAL NO, 35808

1. NO DEFECTS FOUND

2. POSSIBLE ARRAY TO P.C. BOARD CONNECTION
3. POSSIBLE A.C. SPEED PROBLEM

4, NOT RETURNED

179 cont'd ...



RETURNED MATERIAL REPORT

Page Two

DRA-3014 - cont'd

E) SERIAL NO. 34904
1. SECOND TO THIRD METAL SHORT

2, REPAIRED AND RETURNED
DRA-3015:

A) SERIAL NO, 33307
1. TUNKNOWN SHORTS

2. SHORTS BAKED OUT AND RETURNED
DRA-3016:

A) SERIAL NO, 33311

1. FIRST TO SECOND METAL SHORT
2. REPAIRED AND RETURNED

DRA-3018:

A) SERIAL NO. 34011

1, SECOND TO THIRD METAL SHORT
2. REPAIRED AND RETURNED

r—




RELIABILITY

THE MOST RECENT RELIABILITY STUDY WAS PERFORMED BY
TEXAS INSTRUMENTS INCORPORATED UNDER CONTRACT TO
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, GEORGE

C. MARSHALL SPACE FLIGHT CENTER, MARSHALL SPACE FLIGHT
CENTER. ALABAMA 35812,

RESULTS OF THIS STUDY ARE CONTAINED IN REPORT NUMBER
03-71-27 (FINAL REPORT - PHASE L) "DEVELOPMENT OF QUALITY
STANDARDS FOR BIPOLAR LSI DEVICES", APRIL 1971. CONTRACT
NUMBER IS NAS8-21319, CONTROL NUMBER DCN 1-8-60-00152(IF)
AND S1{1F)} AND SZ{lF}).
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APPENDIX 111

. ADDER OPERATIONS

The following tables summarize the adder arithmetic and logical operations that
may be specified using TRANSLANG. The execution phase controls and the value
determination for the ABT dynamic condition are indicated.

Notes: e

1. A Register Selection: A A1 A2} a3
- AgQ All ZEROS

2. B Repgister Selection: Any B Register Select option

ONES complement (by TRANSLANG)

of the specified B Register Select

option

0 All ZEROS

1 All ONES

ool 0|

3. Z Register Selection: 4 CTR | LIT |AMPCR
0 All ZEROS
4. Inhibit 8 Bit Carry: 0 Allow carry into bytes
1 Inhibit carry into bytes
5. Adder Operation Ae specified in Microprogramming
) Section

183




ARITHMETIC OPERATIONS

_ ABT IS
ADDER RESULT | ZREGliTER SE}‘ECT ; TRUE IF
OPERATION FORM A' B° z° Ic8 ADDOP RESULT 15 ALL
. A ADD B A B 0 0 3 ONES
© A ADD Z R+S A .0 z 0 1 ONES
: B ADD Z 0 B Z 0 ) ONES
A ADL B A 0 3 ZEROS ﬂ
A ADL Z R+S+1 A O z ZEROS
B ADL Z 0 B Z 8 ZEROS »
A CADB R+S A B O 1 2 ONES
WITH- .
z ONES
A CAD Z our A O 1 1
B CAD Z CARRY 0 B Z 1 ) ONES
0 0 0 0 0 2 NEVER
1 0 0 0 0 3 NEVER
3
i
i
MONADIC LOGICAL OPERATIONS
REGISTER SELE ABT IS
ADDER RESULT . 2 - T i TRUE IF i
OPERATION FORM A B® z° ADDOP® RESULT IS ALL
A A 0 0 2 ONES ]
R 0 B 0 2 ONES
z 0 0 z 1 ONES }
NOT A A 0 0 15 ZEROS
NOT B R 0 B 0 10 ZEROS ‘
NOT Z2 0 1} z 12 ZLER0L !

-3 184
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DYADIC 1LLOGICAL OPERATIONS
REGISTER SELECT

BT TR FYY aa.emg

ADDER RESULT i 5 3 5 ABT IS TRUE
OPERATION FORM A- B° Zz° ADDOP IF RESULT IS ALL
A AND B A B 0 7 ONES
A AND Z RAS A 1 z 13 ZEROS
B AND Z ) B z 4 ONES
A NIM B A B 0 7 ONES
ANIMZ RAS INVALID

B NIM Z o B Z 13 ZEROS
A NRI B A B 0 10 ZEROS
A NRI Z RANS A 0 Z ONES
B NRI Z 0 B z 4 ONES
A NOR B A B 0 10 ZEROS
A NOR Z RNAS INVALID

B NOR Z 0 B Z 13 ZEROS
A XOR B A B 0 8 ONES
A XOR 2 (RASIVERAS) A 0 z 4 ONES
B XOR Z 0 B Z 14 ZEROS
A EQV B A B 0 6 ONES
AEQV 2 (RASIV(RAS) A 0 z 14 ZEROS
B EQV Z 0 B Z 14 ZEROS
A NAN B A B 15 ZEROS
A NAN Z RvS A 1 z 5 ONES
B NAN Z 0 B z 12 ZEROS
AIMP B A B 0 15 ZEROS
AIMP Z RVS INVALID

BIMP Z 0 B z 5 ONES




3N

DVADIC LOGICAL QPERATIONS (Cont'd) g
REGISTER SELECT
ADDER RESULT ! . 3 5 ABT IS TRUE g
OPERATION _ FORM A B Z° ADDOP IF RESULT IS ALL
A OR B A B 0 11 ONES g
i AORZ RVS INVALID
‘ BOR Z 0 B VA 5 ONES g
- A RIM B A B 0 11 ONES
A RIM Z RVS A 0 z 12 ZEROS g
B RIM 2 0 B z 12 ZEROS
TRIADIC LOGICAL OPERATIONS g
ADDER ABT IS TRUE ?
OPERATION ADDOP?Y RESULT IF RESULT IS ALL :
TRY1 A,B,Z 4 B (A XOR Z) ONES g
TRY2 A,B,Z 5 AAZIVIBAZ) ONES
TRY3 A,B,Z 12 AvBvVv?Z ZEROS
. TRY4 A.B,Z 13 (ApZ)y(BAZ) ZEROS §
. TRY5 A,B,Z 14 (A vB) EQV Z ZEROS §
' ¥
3
B

i 186
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APPENDIX IV

TRANSLANG SYNTAX R
Reference
Page
<Program:> ::= <Program Name Line>< Body><End Line> 111

<Program Name Line> ;:= PROGRAM <Program Name:>-<Start Address - 111

éi <Program Name> ::= <Label> 111
“ <l.abel> ::= <Letter> | <Label> <Letter> | <Label><Digit> 94
j <Letter> ::= A|BlICIDIE|FlGIHIIKILIM|NIO|P|Q|RISITIUI VW] 03
X|Y|Z
<Digit> ::= 0f1{2(3[4]5/817|819 93
‘ <Start Address> ::= ADR «<llex Address™ | vFmpty 111
) <Hex Address> ::= <Hex Number~ 111
; <Hex Number~ ::= <Hex Digit> | <Hex Number~<Hex Digit 111
! <Hex Digit~ 1= <Digit~ | A | B|C|D|E|F 93
] <Empty~ = {T'ne null string of characters} 93
i <t .dy> ::= <Comment> |<Statement>| <Body> <Statement: | 111
<Body»<Comment~

i <Comment> ::= COMMENT <Comment Words™> ; 111

<Statement> ::= <Label Part> <Line> <% Comment> 111
|
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<Label Part> ::= <Label> :| <Empty>

<Line> ::= <Label Constant> | <Start Address> | <Insert>|<Instruction>
<Label Constant> ::= <Label> * <Integer>

<Insert> ::= INSERT <Label> <Start Address:

<% Comment> ::= % <Comment Words> | <Empty>

<Comment Words> ::= <Comment Character> |
<Comment Words:> <Comment Character>

<Comment Character> ::= <Character> |- |#|&|$]{|3IV}/
<Character> ::= <Letter>|<Digit> | <Single Space: | <Symbol>
<Single Space>» := {One horizontal blank position}
csymbols 1=, |5 [ +[ = 5] =1% [ |)|*

<Instructiom~ ::= <Label Part- <Literal Assignment> |
<Label Part> <N Instruction>

<Literal Assignment> ::= <Literal~ <Assignment Op> AMPCR |
< Literal> <Assignment Op> SAR |
< Literal><Assignment Op> SAR;
<Literal><Assignment Op> LIT|
<Literal><Assignment Op> LIT ;
<Literal- <Assignment Op> SAR/|
<Literal><Assignment Op~ LIT

<Literal> ::= < Integer>| COMP <Integer> | <Label>| <Label> -1

<Integer> ::= <Digit> | «Digit> <Integer>

<Assignment Op> = =:| =

<N Instructions> ::= <Unconditional Part> <Conditional Part>

<Unconditional Part: ::= <Component List~

<Component List> ::= <Component> | «Component List> ; <Component:
<Empty>

<Compcnent: ::= <Ext Op> | <Logic Op> | <Successor>

<Ext Op> ::= <Mem Dev Op> | <Set Op> | < Mem Dev Op> , <Set Op> |
<Set Op> , <Mem Dev Op> | <Empty>

188
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93

23
893
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93
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Reference

Page
(Mem Dev Op) ::= MR1l MR2IMW1|MW2{DL1|DL2 |DU1} DU2|DR1| DR2|
_ DW1l bw2l LDMI LDN 100
<Set Op> ::= SET «Cond Adjust Bit> | RESET GC 100
<Cond Adjust Bit> 1= INT] LC1| LC2| LC3 | GC1 | GC2 96

<l.ogic Op> ::= <Adder Op> <Inhibit Carry> <Shift Op> <«<Destination List> 103

- i3

i <Adder Op> = 0] 1} <Monadic> | «Dyadic.. | <Triadic> | <Empty:- 103
%
N <Monadic> ::= <Not> <A Select> | <Not» <B Select> | «Not: <Z Select> 103
' <Not> ::= NOT!| <Empty> 96
. <A Select> ::= 0| Al| A2 | A3 | <Empty: 106
i <B Select> := 0|1} B|B «<M> <C>» <L> <Empty> 1086
i <M> = <Gating> 106
3
. <C>» = <Gating> 106
<L> 1= <Gating> 106
" <Gating> = 0| T!F|1 106
'!: <Z Select> ::= CTR | LIT | AMPCR | < Empty~ 196
<Dyadic> ::= <Not> <A Select> <Binary Op> «<Not> <B Select~ |
<Not>~ <B Select> <Binary Op> <Not> <Z Select™ |
<Not~ <A Select> <Az Op> <Not> <Z Select> 103
| <Binary Op> ::= NOR | OR | NIM | IMP | <Az Op=> 103
’ <Az Op> ::= ANDXKCOR|EQV|NRI|RIM|NAN|ADD|+|ADL|CAD 103
< Triadic> ::= <Try Op><A Select>~ , «<B Select~ , <Z Select> 103
<Try Op> ::= TRY1 | TRY2 | TRY3 | TRY4 | TRYS 103
<Inhibit Carries> ::= IC | <Empty> 103
i

<Shift Op> ::= R! L. | C| <Empty> 103




<Destination List> ::= <Asgn> <Dest> |
<Destination List> <Asgn> <Dest> | <Asgn>

<Asgn> =, | =1 |=

<Dest> ::= A1|A2|A3]| MIR | BR1|BR2| AMPCR| <input B>
<Input Ctr> | «<Input Mar> | <Input Sar>

<Input B> ::= B|BEX|BAD|BC4|BCs | BMI|BBE |BBA| BBI |BAT]
BBAI| B41| B81

<Input Ctr> ::= CTR| “CTR|INC
<Input Mar> ::= MAR| MAR1| MAR2 |LMAR
<Input Sar> ::= SAR |CSAR

<Successor> 1= WAIT|STEP|SKIP|{SAVE |CALL|EXEC|JUMP|{RETN

<«Conditional Part> ::= <If Clause> <Cond Comp List <Else Clausex|
<If Clause>|<When Clause> <Cond Comp List: |
<Empty>

<If Clause> ::= [F «Condition>

<Condition: ::= <Not» <Cond:-

<Cond> 1= LST|{MST]|AQV]ABT|COV|SAT|RDC|EXI|EX2|HOV|
~Cond Adjust Bit>

<Cond Comp List> ::= THEN <{Component List>
<Else Clause > ::= ELSE <Successor~> | < Empty:

<When Clause> ::= WHEN <Condition:

<End Line>» ::= END

Reference
Page
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APPENDIX V

TRANSLANG RESERVED WORDS AND TERMINAL CHARACTERS

RESERVED WORDS
The following words are reserved in TRANSLANG and may not be used as labels.

Reference Page

A Zero (0) as A Select. Use <Empty >. 106
A0 Zero (0) as A Select, Use <Empty >. 106
Al Al Register A Select or destination operator, 106
A2 A2 Register A Select or destination operator. 106
A3 A3 Register A Select or destination operator. 106
ABT Adder Bit Transmit dynamic conditicn from

phase 3 of prior microinstruction doing Adder

Op. 98, 99
ADD Addition logic operator: X ADD Y = X+Y 104
ADL Add + 1 logic operator: X ADL Y =X +Y +1 104
ADR Starting address for microsequence. 111
AMPCR Alternate Microprogram Count Register

Z Select into middle bytes of adder or des-

tination operator from barrel switch 12 LS
bits. 94, 106

AND And logical operator: X AND Y = XY 104
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AOV

B4l

B8I

BAD
BAI

BEA

BBAI

BBE

BBI

BC4

BC38

BEX
BMI

BR1

BR2

BSW

CAD

Adder overflow, dynamic condition of previous
microinstruction using adder, true if addition

. results in overflow.

B Register Input Select same as BTTT; or to
B from barrel switch; destination operator.

To B from adder 'not 4 bit carry” OR MIR;
destination operator’

To B from adder ''not 8 bit carry' OR MIR;
destination operator.

To B from adder; destination operator.

To B from adder OR MIR; destination
operator.

To B from adder OR barrel switch; destination
operator,

To B from adder OR BSW OR MIR; destination
operator.

To B from external bus OR barrel switch;
destination operator,

To B from prior MIR contents OR barret
switch; destination operator.

To B from adder ''not 4 bit carry’' replicated
and shifted; destination operator.

To B from adder "not 8 bit carry' replicated
and shifted; destination operator.

To B from external bus; destination operator.

To B from prior MIR contents; destination
operator.

To Base Register 1 from barrel switch 2nd LS
byte; destination operator.

To Base Register 2 from barrel switch 2nd LS
byte; destination operator,

To B from barrel switch; destination operator

Circular shift right the entire adder output.
Operation takes place in barrel switch,

Character add by carry inhibit between & bit
characters (bytes). (Canuse IC.) X CAD Y =
X+Y IC

192
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109
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CALL

COMMENT

COMP

CcOov
CSAR
CTR

DL1
DL2
DR1
DR2
bu1l
DU2
DW1
DW?2
ELSE
END
EQV

EXEC

EX1

EX2

}:\
GC

Call a procedure: Use AMPCR + 1 as address,

and new MPCR; old MPCR to AMPCR. Successor.

" Allows for the inclusion of documentation on a

a listing.
Complement as appropriate for literal part of
literal assignment.

Counter overf{low condition bit, reset dominant.
Complement SAR, destination operator.

To counter from ones complement of barrel
switceh LS byte, destination operator. Input
Select: into MS byte.

Device lock using BR1/MAR for device ident.
Device lock using BRZ/MAR for device ident.
Device read using BR1/MAR for device ident.
Device read using BR2/MAR for device ident,
Device unlock using BR1/MAR for device ident.
Device unlock using BR2/MAR for device ident.
Device write using BR1/MAR for device ident.
Device write using BR2; MAR for device ident.
Sequential operator prefix to false successor.
Bracket word to end a program,

Equivalence logical operator: X EQV Y =
XYvVvZXY

Executes out of sequence: Use AMPCR + 1 as
address. Successor.

External condition bit 1 externally set, reset
by test,

External condition oit 2 externally set, reset
by test.

False gating of B as part of ¥ Select.

Global conditions used with RESET to reset
both GC1 and GC2, Synonym is GC2 or
GC1 with RESET.
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111,

84
98
109

106
101
101
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96,

112

104

110

98
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GC1

GC2

HY
Ir
IMP
INC

INSERT

INT

JUMP

LC1

LC2

LC3

LCTR

LDM

LDN
LIT

Global condition bit i: may be set by SET GC1
if presently reset in all Interpreters. Tested
without resetting.

Global condition bit 2: may be set by SET GC1
if presently reset in all Interpreters. Tested
without resetting.

Inhibit carry between bytes,
Starts the conditional part of an instruction.
Imply logical operator: XIMPY =X vY

Increment counter destination operator; set
COV when overflowing from all ones to all
Zeros. |

Take a copy of the selected program from the
library file and insert it in the program.

Used as SET INT, interrupts all Interpreters.
Interrupt Interpreters condition bit: set by any
Interpreter; own is reset by testing.

Jump to address in AMPCR + 1 and put that
address in MPCR, Successor.

Left shift end off the entire adder output, right
fill with zeros. Operation takes place in
barrel switch.

Local condition bit 1: may be set, or tested
which resets.

Local condition bit 2: may be set, or tested
which resets.

Local condition bit 3: may be set, or tested
which resets

Ones complement of the literal regisicr con-
tents will be placed in the counter. Destination
operator.

L.oad microprogram memory,

Load nanomemory.

Literal register: may be loaded by a literal
assignmoent. May be source for Z LS byte,

the MAR and/or CTR,

Reference Page
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98
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Reference Page
LMAR Literal register contents will be placed in 109
MAR. Destination operator.
LST " Least significant bit of adder output, dynamic
condition from phase 3 of previous micro-
instruction doing adder op. 98
MAR Memory address regist er destination operator:
from barrel switch LS byte. 109
] MAR1 Memory address 1 destination operator: same
i as BR!l, MAR. 100
3
! MAR2 Memory address 2 destination operator: same
, as BRZ, MAR 100
% MIR Memory information register destination opera-
) tor from barrel switch. 107, 108
i MR1 Read from memory address BR1/MAR mem
" dev op. 100
MR2 Read from memory address BR2/MAR mem
i dev op. 100
* MST Most significant bit of adder output, dynamic
condition from phase 3 of previous microinstruction
; doing adder op. 98
’ MW1 Wriie the content of MIR to memory address
BR1/MAR mem dev op. 100
' MW2 Write the content of MIR to memory address
BR2/MAR mem dev op. 100
o NAN Not And logical operator: X NANY =X v ¥ 104
AR
NIM No: Imply logical operator: X NIM Y = XY 104
é; NOR Nor lagical operator: X NORY = XY 104
= NOT Complement micnadic or condition operator
Not X =X 96, 103
;;’ NRI Not Reverse Imply logical operator:
: X NRI Y=X vY 104
; OR COR logical operator: XORY =X v Y 104
H
' PROGRAM - Bracket word beginning a program. 111
' R Right shifi end off the cntirc adder cutput, left
f’ fill with zeros. Operation takes place in
barrel switch. 105
195
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Reference Page i
Read complete bit: set when external data is 97 1
. ready for input to B, reset by testing.
RESET " Reset the Global condition bits. RESET GC. 102
RETN Return: use AMPCR + 2 as address and as 3
new content for MPCR, Successor. 110
RIM Reverse imply logical operator: X RIMY =X v ¥ 104 g
j SAI Switch Interlock accepts information bit. Set
~ when switch interlock accepts information,
reset by testing. 97 ;
SAR Shift Amount Register destination operator
from LS bits of barrel switch or from literal .
assignment, 94 3
SAVE Save the MPCR in AMPCR: use MPCR + 1 as micro-
address and as next MPCR. Successor. 110 ;
SET Set the conditional bit specified: either LCI, ]
LC2, LC3, INT, GC1 or GC2, 102
SKIP Skip the next instruction; use MPCR + 2 as ;
microaddress and as next MFCR. Successor. 110 :
‘ STEP Step to next instruction: use MPCR + 1 as micrc-
3 address and as next MPCR. Successor, 94,110 i
T True gating for B register. 106
THEN Starts the true alternative of conditional i
instruction, a5
TRY1 Triadic Operator: TRY1 A, B, Z=BAZvBX2zZ 103105
TRY?2 Triadic Operator: TRY2 A, B, Z=AZv B Z 103, 105 i ;
TRY3 Triadic Operatcr: TRY3 A, B, Z=AvBv Z 103, 105 ‘
TRY4 Triadic Operator: TRY4 A, B, Z, =A Zv B Z 103, 105 ;
TRYS Triadic Operator: TRYS A, B, Z, =ZA v ZB 103, 105
vABZ !
WAIT Wait for condition microaddress is MPCR; MPCR
and AMPCR unchanged. Successor, 110
WHEN Starts a conditional instruction, has an implicit ,
ELSE WAIT. 96
XOR Exclusive Or logical operator: X XOR Y =
X ‘L_’ 'v':‘.'; 4 104 ‘
196 !
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TERMINAL CHARACTERS
Reference Page
§ , Assignment operator for destination operators, 107
¥ H Delimiter. Use is mandatory after a comment statement
and between components in a statement, 94, 113
i : Terminator of label part of instruction or insert, 111
1 =: Assignment operator for literal assignments or
3 _ destination list, 107
; + Add operator. 103
- Part of assignment in literal assignment statement. 94
* Label constant separator for defines, 112
{ Prefix delimiter for redundant part of instruction, 93
} Suffix delimiter for redundant part of instruction. 83
i % Line terminator and in-line comment prefix, i13
= Assignment operator for literal assignment or destina-
tion list. 107
i
%
i
; 137
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APPENDIX VI
TRANSLANG ERROR MESSAGES

b
lz

The first section of the Microiranslator parses the input file, a line at a time, and
produces a listing of the file, N-instructions, and error messages. The error
messages indicate that errors were made in the syntax or semantics of an instruc-
tion. They will be printed out in the following format giving the error number and
the line nuniber of the instruction as follows:

e R apsing

Y

*OSERROR NUMBER NNN IN LINE LI L¥%kk

where WNN is the error number and LLL is the sequence number of the instruction
in the input file,

SR W

b

Error Number Definition

1 Label too large (more than 15 characters)

'§ 2 CTR and MAR Conflict {(one receives BSW putput; the other
literal)

i 3 Duplicate MAR {2 MAR destinations)

4 Duplicate B destination
i 5 Missing comma
- 6 Missing semicolon




Error Number

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34

35

36

Definition

Incorrect destination designator
Symbol undefined

Duplicate logical operator

Logic operator error

Colon equal comma or colon missing or misplaced
Duplicate Z select

Duplicate A select

Duplicate B select

B Gating error

Duplicate counter operations

More than one set operation

Reset error

Memory device error

Duplicate shift operation

Duplicate test condition

Duplicate successors

Successor error

Successor after ELSE error
Duplicate label

Literal used not in a literal assignment instruction
(misspelled reserved word)

Condition error

Misplaced THEN

Misplaced ELSE

Misplaced integer

Integer too large

Too many quoted characters

Wrong register for receiving a literal

Undefined input mistaken for label, or misspelled
reserved word

Address wanted for insert program less than current
address, or misspelled reserved word

Reset not followed by proper identifier

200
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Error Number Definition

37 Set not followed by proper identifier

38 Undeclared label

39 Wrong type: minus sign used in a type
ore instruction

40 Stack operation removed, AMPCR goes
directly to adder,

41 NOT error — "NOT" misused

61 Named insert program not on library

62 No END on file

63 Address error ~ present address > insert
address

If a nanotable name is requested which has never been saved before, NO SUCH
NANOTABLE is printed and a new name requested.

If a new nanotable is given a name already in use, DUPLICATE NANOTABLE
NAME ERROR is printed and a new name is requested.

If labels have been used in a program without being declared, the following print-
out occurs upon conclusion of the listings.

LLAST ADR LABELS NOT FOUND

2 STR
3B SERROR
4 Y10

The address is the hexidecimal microprogram address of the last instruction
using the label in a program.
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APPENDIX VII

GLOSSARY

A Registers (A1, A2, A3): Each of the three A registers i
functionally identical. The A registers are used for
temporary data storage within the Logic Unit or the
Enterpreter and serve as a primary input to the adder.

Adder: The adder in the Logic Unit of the Interpreter, is a
modified version of a straightforward carry lookahead
adder. It is also used for e xecuting logic operations.

Alternate Microprogram Count Register (AMPCR)  The
AMPCR is a 12-hit register in the Memory Controf Unit
of the Interpreter. which contains the jump or retum
address for program jumps and subroutin. returns
within a microprogram.

B Register: The B register is the pnmary input snterfuce
between the Logic Unit of the Interpreter and the
Data/Program Memory or Devices (via the Switch Inter-
lock). It also serves as the secondary input to the
adder.

Bamel Switch: The barrel switch is a matrin of gates in the
Logic Unit of the Interpreter, used to shift a parallel
data word any number of places to the right or left in
a single clock time.

Base Register 1 znd 2 (BR1, BR2): The Base Registers are
two 8 bit registers in the Memory Control Unit of the
Interpreter, which usually contains the base address of
a 256-word block of Data/Program Memory.

Building Block: The primary functional units of the Inter-
preter Based System: Interpreter. Data/Program
Memory and the Switch Interlock.
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Condition Register (COND): The COND is a 12-bit register
in the Control Unit of the Interpreter and is used to
store various condition bits for use during program
enecution.

Central Processor Univ (CPU):  The primary arithmetic
and contral unit in & conventional computer system.

Condition Select: The condition select is a matriy of gates
in the Control Unit of the Interpreter that compares
the results of a computetion or logical operaticn in the
Logic Linit with a preselected result. The result of the
comparison may be used to determing the sequence of
execution of microprogram instructions.

Control Register (CR): The CR is a 3B-bit register ol the
Interpreier which is used to store contiol signals from
the Nanomemory that are not used in phase one of 4
clock cycle.

Control Unit {(CU): The CU. one of the tive major tunc-
tional unity of the Interpreter, iy used for condition
testing and the storage and distribution of crable
signals received from the Nanomemory .

Counter (CTR): The CTR is an B-bit counter in the Z
register section of the Memory Control Unit of the
Interpreter, used for loop control and other counting
functions.

Data/Program Memaory. The Data/Program Memory, also

called § Memory. provides storage for data and pro-
gram (cither microprogram or conventional program in
an ion application) an
main memory modules of a conventional computer

system.




Device: As used in the comtext of Inberpreter-Based Sys
tem, Devices include all the ¢ ional puier
system peripheral cquipments such as disk files, mag-
netic tape units, high speed line prictees, card readers,
ate. and various senscrs usually fowmnd in special data
processing applications. The functiorn of Devices is to
provide the unique inputfoutput medium for esch
system application.

Device Controller: A functional unit designed to interface
and control a specific peripheral desdce (such as a disk
{ile, magnetic tape unit, line prunter, etc.) to the
Input/Qutput module of 2 conwentional computer
system.

Device Dependent Port (DDP): The DDP pemmits any
device to be interfaced with a Port Select Usit (PSU)
by providing the specific device eleckrical interface such
as logic level conversion, linc driversrecciver capability,
and timing and synchronization when required (as in
the case of disk files, magnetic tape anits, ete.)

Dual-In-Line (DIL.): Describes the pin conngction arrange-
ment of one type of standard intcgrased circuit package.

End-Around Shift: A right shift operakion in which the bit
or bits which would be shifted owt of the register arc
reinserted in the more significant cratl.

End-Off Shift: A shift operation in estdher the lefl or right
direction, in which the bit or bits shifted out of the
regisier are lost. Vacated bit posimions may be auto-
matically filled with zeros,

Firmware: In the [nterpreter-Based Sysz.om, firmware is the
combination of storcd logic in the M and N memorics
of the Interpreter.

Inciementer (INCR): The INCR 15 in thac Memory Control
Unit of the Interpreter and ncrements by zero, one, or
two, the addiess of the next mirtuinstruction to be
executed by the Interpreter.

Input/Output Module (1/0): The 1/O is the interface and
control unit between the CPU amd penpheral input/
outpul devices in A conventional awnputer system.

Interpreter: The Interprefer is the baac building block of
the Interpreter-Based System. Func:tionally, it is charac-
terized by the combination of macroprogram instruc-
tions stored in its M memory and hardware logw
enabled by a multiplicity of cnabhe signals stured in ity
N memory

Interpreter-Based System: A computr opamzation and
<2y, i configuranons

implementation concept tiad prov:
of basic building blocks, the themsghiput wnd Mevibility
for a varicty of data procewing reguirements.
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Large Scale Integration (LS1): The implementation of more
than 130 bipolar logical gates in a single integrated vir-
cult chip.

Least Significant Bit (LSB): For 3 number or value re-
piesented in binary notation, lhu"‘)it position which
represents the least significant gortion of the number.

Litesal Register (LIT): An B-bit register in the Z register
section of the Memory Control Unit of the {nterpreter.
which is used for temporary storage of literals from
microinstructions.

Logic Unit (LU): The LU, one of the five major functional
units of the Interpreter, perform - all of the anthmetic,
Boolean logic, and shifting operations of the Interpreter.

Medium Scale Integration (MS1): The implementation of 20
to 100 bipolar togical gates in a single integrated vircuit
chip.

Memary Address Regis(ct (MAR): The MAR s an 8hut
register in the Memory Control Unit of the Interpreter,
which contains the least sigmificant 8 bus of a memory
or device address.

Memory Contral Unit (MCU): The MCU, one of the five
major functional units of the Interpreter, vontrols the
sequence of evecution of mwroinstructions. the ad-
dressing of Data/Program Memory, and the slecton of
Devices.

Memory Information Register (MIR): The MIR is a reenster
in the Logic Umit of the Interpreter which serves ay the
output interface register between the Interpreter and the
Switch Interlock.

Microinstruction:- A single tnstruction stored 1n M emory
of the Intetpieter, sequences of which charactenize the
Interpreter for 3 given microprogrum, A mictomnstrus-
tion may contain an N memory address or a literal.

Mictoprogram Address Control Register (MPAD CNTLY: The
MEAD CNTL, a register in tiw Memary Control Unit of
the Interpreter, controls the loading of the MPCR, the
AMPCR, and vontrols the value of the inctemuent,

Microprogram  Addreys Secion (MPAD): The MPAD s 2
collection of registers and coatrols in the Memary Con-
trol Unit of the Interpreter. which addroswses the M
memary for the sequencing of nwrainstructions,

Miceoprogran: Connt Rezister (MPCRY The MPCR, locatad
in the

P2-hat remster that tsadlly vontan the sddsess, i M

Memory Contol Unat of the Latersreeer, o a

memory. of the  iwromstructwen currently  beins
exceuted by the Interpreter.
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Microprogram Memory (M Memory): The M memory. one of
the five major functional units of the Interpreter, stores
microinstructions which characterize the Interpreter for
a given application, and may be implemented as 2 read/
write semiconductor memory.

Microprogtam Memory Buffer (MPB): The MPB buffers
blocks of wicroinstructions read from a microprogram
source in order to maintain the clock period of the
Interpieter,

Most Significant Bit (MSB): For a number or value repre-
sented in binary notation, that bit position which
represents the most significant portion of the number, or
the sign of the number.

Multiprocessor: A netwotk ol computers capable of simul-
tancously ¢xecuting two or more programs or se-
quences of instructions by means of multiprogramming,
parallel processing. or both.

Nanoinstruction: A angle instruction stored in N memory
of the Interpreter. the contents of which constitute 56
unique sipnals for controlling the hardware logic of the
Interpreter.

Nanomemory (N Memory): The N mumory, one of the five
major functional units of the Interpreter, stores 56
specific enable signads for the hardware logic within the
Logic Unit, Control Unit. and Memory Control Unit.

Random-Access-Memory (RAM): A memory in which the
time to aceess data iy independent of its lovation in the
memory, or of the data most recently acvessed in the
memory., By convention, a read/write memory.

Port Select Unit (FSU) The PSU provides control and the
electrical interface between g single Interpreter and
Devices and Data/Program Memory. The PSU is used in
licu of the Switch Interlovk in system configurations
that require only one Interpreter.
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Random-Access-Memory (RAMY: A memory in which the
time to access data is independent uf its location in the
memoty, or of the data most recently accessed in the
memory.

Read-Only Memory (ROM): A memory that stores data
not alterable by program instruction.

Remote/Card: A program subroutine esecuted on 2 Bur-
roughs B 5500 which permits a user to create card
ninages of TRANSLANG instructions on a disk file,
using a remote terminal of the B 5500.

Shift Amount Regisier (SAR) The SAR is a 6-bit register
in the Contro} Unit of the Interpreter and is used to
store the number of positions a word or literal is to be
shifted by the barrel switch.

Small Scale Integration (SSI) The implementation of § to
20 logical gates in a single integrated circuit chip.

Switch Interfock (SWI): The SWI provides the interconnec-
tion between Interpreters, Data/Program Memory, and
Devices of an Interpreter-Based System. Uts funciion is
to permit any one of & multiplicity of Interpreters to
access all modules of an arrav of Data/Program
Memory and/or alt Devices.

Transistor-Transistor-Logic (TTL): A family of transistor
circuits used to implement digital logic networks. and
characterized by its high speed. large capacitance drive
capability and ¢xcellent notse immunity.

TRANSLANG: A computer program designed to convart
Fnglish language statements defining the action of the
Interpreter for cach machine clock ovele. into binary
patterns for the M and N memories,

Z Register Section: A collection of registers and selection
wates i the Memory Control Uit of the Interpreter.
which mclude the CTR. LIT, and Input Sclection gates
used to control the execution sequence of micro-
instructions.
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