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ABSTRACT

Practical bounds on computer capacity and computation time
dictate a need for simplified methods of airborne gunnery ballistics
computation particularly under conditions which involve large ballistic
yaw. The projectile trajectory data needed for on-board solution of
the fire control problem can be obtained in two ways: (1} trajectory
computation on board the aircraft, {2) curve fitting precomputed tra-
jectory data. This report contains a comparison of two approaches
to on-board trajectory computation and polynomial curve fitting of
pPrecomputed trajectory data.

A new, simplified set of approximate, large-yaw, baillistic tra-
jectory equations are derived for airborne gunnery applications in
which corrections for yaw drag and windage jump are included. The
results of computations done with the new set of equations are in ex-
cellent agreement with the results of calculations done with the approx-
imate equations used at Eglin Air Force Base to generate trajectory
tables, Comparisons are made for the 20-mm, M56 round. A reduc-
tion in computer time by a factor of 15 to 20 (depending on firing geom-
etry) over the Eglin set of equations can be expected when the simpli-
fied set of equations is used, The new set of equations i5 almost as
simple as particle trajectory equations and is a candidate set for on-
board calculations.

When the yaw-drag and windage-jump corrections are used with
the Siacci method, a closed-form solution to the ballistic trajectory
equations is obtained. This method is almost as accurate as the simpli-
fied set of equations above, except for time-of-flight calculations., It
is sufficiently accurate for air-to-air applications out to a range of
approximately 3000 ft, If time of flight is not important, as, for ex-
ample, in air-to-ground applications, then this method yields results
of sufficient accuracy out to moderate ranges for most geometries.
Also, this method appears to be 20 to 100 times as fast as point-mass
ittegration and 500 to 1500 times as fast as numerical integration of
the Eglin approximate equations of motion,

A method of polynomial curve fitting of ballistic lead angles for
air-to-ground applications is presented, This method may be useful
in situations where cn-board calculations are not possible.

iii
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SECTION I

INTRODUCTION

1. Onboard Trajectory Computations for Large-Yaw Situations

The use of side-firing or flexible gunnery systems in modern air-
borne applications introduces the problem of large-yaw ballistics, Fixed,
side-firing guns are used in the gunship application and the use of ﬂex1ble
(turreted) systems is anticipated, The problem also occurs to a lesser
extent in modern fixed-gun fighter applications in high angle-of-attack
situations,

The problem of large-yaw ballistics arises in airborne applications
whenever the gun-pointing direction lies significantly away from the direc-
tion of motion of the aircraft. When this occurs, the spin axis of the pro--
jectile, which coincides with the gunbore line, does not coincide with the
direction of motion of the Projectile. The angle between the projectile
velocity vector and spin axis is known as the projectile angle of attack or
the yaw angle. The effect of nonzero yaw upon the pro;ectﬂ.e is to pro-
duce aerodynam1c moments at right angles to the spin axis. The be-
havior of the spinning projectile under the influence of these-moments is
much like that of a gyroscope, or a top, under the mﬂuence of gravity,
The projectile precesses about its velocity vector.

Nonzero yaw also induces aerodynamic forces at right angles to
the velocity vector, namely the lift and Magnus forces, The lift force is
in the plane containing the pro_]ectxle spin axigand velocity vector (the
plane of yaw) and its effect is analogous to, the effect of the lift force on
an airplane. For the case of a spinning projectile, however, the lift
force precesses with the pro;echle abeut the velocity vector. This is
analogous to an airplane in a barrel-foll. The Magnus force is perpen-
dicular to the plane of yaw and behaves in a similar fashion. Under the
influence of these forces (mamly the lift, which is considerably larger
than the Magnus force), the projectile executes a sort of spiraling motion
as it moves downrange, For a dynamically stable projectile, the yaw
angle rapidly dies out ,a-nd the spiraling motion stops. The total effect is
to deflect the tra_]ec}dry away from its original direction by a small
amount, This effect is the swerve, or the windage jump, and, as a rule
of thumb, it amounts to about a rmlhradmn (mr) of deflection per degree
of projectile” initial yaw. For example, for an F-4 in a dogfight, flying
at 800 ft/Sec and with an angle of attack of the gun of 15 deg, the initial
yaw angle of the projectile is abhout 3 deg and the trajectory will he de-
ﬂegted about 3 mr to the right,

The aerodynamic drag is also increased by nonzero yaw. This
increase, referred to as the yaw drag, tends to slow the projectile down
at a faster rate and increases the time of flight, This increase in time
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of flight i8 not considered significant in air-to-ground situations, but may’

be important in air-to-air encounters. In air-to-ground situations, the
shape of the trajectory is not altered to a significant extent and it does not

hurt if the projectile arrives f'a little late.' In air-tc-air situations, the
target is moving at a high rate and small errors in the time of flight may

" result in erroneous kinematic predictions and large miss distances.

The motion of a spinning projectile with large yaw can, of course,
be determined by means of numerical integration of the six-degree-of-
freedom equations provided appropriate aerodynamic data is available,
However, the computation of trajectory tables may require excessive
computer time even at ground-based computer facilities, Onboard solu-
tion of the six-degree-of-freedom equations in real-time fire-control
applications is not considered possible using current technology. It may
be possible with large-scale integrated circuits (LSI), but this problem
has not been investigated to the author's knowledge.

The trajectory table problem for the 20-mm, M56 round was solved
by use of the set of approximate equations which are documented in Ref, 1
and which do not require much computer time, These approximate equa-
tions have been written in FORTRAN as code R370 for the computer at
Eglin Air Force Base by Eglin personnel. The equations are still unsuit-
able for onboard use, however,

This report contains two approaches to the problem of onboard tra-
jectory computation which are reasonably accurate for the 20-mm, M56
round and which do not require excessive computer time, These methods
involve approximate methods for treating windage jump and handling yaw
drag.

In the first method to be described, a yaw drag correction is added
to the point-mass equations, and windage j:mp is accounted for by utiliza-
tion of the results of calculations done with the equations of Ref, 1. The
second method is the Siacci method with a yaw drag correction and with
the same windage jump correction used in the first method.

The methcd of treating windage jump was suggested for use with
the Siacci method in Ref, 2, and an investigation of its utilization is
reported herein and in Ref, 3. A natural extension is to use the same
windage jump equations with point-mass calculations; this was done and
the results are reported herein and in Ref, 4,

The yaw-drag correction is that of Sterne (Refs. 5 and 6). It was
originally applied to the Siacci method and its use has been extended to
the modified point-mass calculations herein and in Ref, 4,

The equations of the first method which are derived herein and in
Ref, 4 are




SR du _ 2 \ -kP
mgp = -pd VKDO(V/Vsd)[l tke ]
i dt  _ 1
1 ..
X dD  _
N -4
: u
dQ _
~ daF - D
N where
V =ul1l-2Dsing +D%
N o

P is the pseudorange, Q is the gravity drop, t is the time, u = dF/dt
is the pseudovelocity, m is the projectile mass, d is the projectile
diameter, p is the air density, V is the projectile velocity, Vsd is the

L, velocity of sound, g is the acceleration due to gravity, KD is the zero-
o
yaw drag, k and k are constants, and 60 is the angle of elevation of P

above the horizontal. These equations are related to a rectangular air-
mass coordinate system £, n, L by the relations

g:Pcose°+CgP

q:Psmeo-Q+CnP
= C_F

£ =G

where C,P, C P, and C_ P are components of swerve (windage jump);

C§' CT\' and C_, are calculated from initial conditions and are constants

4

for any given trajectory,

To an individual familiar with the six-degree-of-freedom equations,
the simplicity of this set of relations is obvious. The advantage of using
P as the independent variable rather than t lies in the fact that fewer
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integration steps are required to integrate out to a given range, so com-
puter time is reduced. One might add that these equations would be part-
icle trajectory {point-mass) equations if the term

[1 +k e'kP]
[+

were deleted. They are applicable with greater accuracy wherever part-
icle equations are useful. The possibility of onboard numerical integra-
tion of particle trajectories has been demonstrated in the F-111D Mk II
avionics and in the Hot Line applications,

In the second method {the modified Siacci method) the equations of
motion as described above are replaced by the following set:

K
S{u/a ) = S(a /a ) + %’.p + T?.'E%_
c \* I )L F
Q- («%) Alu/a,) - Atusa ) - Hu fa) L
. Co [T(u/ao) i T(uo/aO)}

where C is the ballistic coefficient, a, is the ratio of the speed of sound
at altitude to that at sea levzl, ¢ is the relative air density (¢ = p/P,
where Po is the air density at sea level), and c is a constant, S, T, I,
and A are functions tabulated against U, The term kO/ZcC is the yaw

drag correction first derived, presumably, by Sterne, The windage jump
correction employed with the Siacci equations is the same as that de-
scribed above. Siacci ballistic computations are valid for large-yaw,
moderate-range trajectories of the 20-mm, M56 round. Applicable for
both air-to-air and air-to-ground fire control, the Siacci method yields
a substantial reduction in computation time over numerical integration

of the equations of motion. The basic argument for implementation of
the Siacci ballistics equations for onboard fire control computation is
that updating of ballistic lead angles may be performed in a shorter time
interval than can be accomplished by numerical integration, thus, reduc-
ing the error imposed by failure to obtain instantaneous lead information
in a time-dependent environment, In the air-to-air case, reduction in
ballistic computation time affords more time for processing of kinematic
lead data and other necessary functions of the fire control computer.
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Siacci theory is an approximation to the point-mass equations of
motion of a projectile, The basic assumnption is that the velocity of
the projectile in the direction of the initial velocity vector is equal to
the actual projectile velocity at all points along the trajectory. The
error arising from this assumption is small for short-range, relatively
flat trajectories; however, the error increases with range and trajectory
curvature, which limits the effective range of Siacci ballistics., For the
20-mm round, fairly good computational accuracy is maintained for ranges
approaching the effective limits of the gun.

2. Lead Computation Modcling

For onboard solution of fire control problems, there are two ways
to obtain projectile trajectory data. Trajectories may be numerically
integrated on board the aircraft as needed or else trajectories or bal-
listic leads may be calculated beforehand at ground computer installa-
tions and provided as an input into the fire-control computer in the form
of tables or curve fits. The method used depends upon the type of fire-
control system, fire-control accuracy requirements, and physical 8ys-
tem limitations such as computer storage size and cycle time,

If approximate trajectory calculations of one type or ancther as
described herein are considered to be sufficiently accurate, onboard cal-
culations are possible as demonstrated in the fire-control system in the
F-111D (Mark Il avaicncs) and the currently experimental Hot Line SyS=
tem. However, required computation time is short. In a system such
as that of the F-111D, digital computation of an entire trajectory is
ideally instantaneous. A practical bound on computation time, however,
may be the reaction time of the pilot or about one-tenth of a second. In
the Hot Line system, calculations are carried out in real time; the avail-
able calculation time is equated to the time of flight., Multiple trajectories
must be integrated at once, however. For a 3-sec time of flight and a
display showing 10 '"tracer bullets,' the available calculation time is
0.3 sec per trajectory, if trajectories are computed serially on a time-
sharing basis.

When onboard calculations are not feasible, methods of curve fit-
ting precomputed trajectory data are appropriate. This investigation is
intended to aid in the design of fire-control systems for flexible air-to-
ground gunnery. Such systems must have high accuracy to be effective,
particularly at relatively high operational altitudes. Also, rapid compu -
tation of lead angles is essential to this high accuracy. The computational
methods should also be applicable to air-to-air situations,

The use of curve-fitted trajectory data is a tradeoff. Computer
time should be minimized, but more core storage capacity may be neces-
sary. The purpose of this investigation is to determine some idea as
to the amount of storage necessary and, in the process, to discover the
best method of handling the trajectory data. The best method should use
the least computer core space while also using minimal computer time.
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There are a number of schemes for handling ballistics data in
the airborne computer and a number of methods for curve fitting it. The
most direct method would be to curve fit the trajectories themselves,
but the quantities actually required in the fire-control problem are the
ballistic leads in one form or another, One such method is contained
herein (Section III} and in Ref, 7.




SECTION II
TRAJECTORY COMPUTATION

1. The Large-Yaw Problem

The yaw angle {angle of attack} of a projectile is the angle between
its longitudinal axis and its direction of motion through the air, When
a projectile leaves the muzzle of a gun, its longitudinal axis orientation
is that of the gun barrel or of the muzzle velocity vector V! whereas

the projectile velocity i;o is the vector sum of the muzzle velocity 7m

and the aircraft velocity V,; i.e.,

A;
Vo = Vm +VA

As can be seen from Fig. 1, the angle between Vo and —V.m, which is the

yaw angle 60, can be large when the angle between VA and Vm is large.

When the yaw angle is small, as it usually is in the fixed gunapplica-
tion of fighter aircraft where Vm and VA are nearly parallel, the motion of
the projectile is adequately represented by the simple equation

av - -
m-oy = -E°V+mg (1)
where V is the projectile velocity, EOV is the drag, m is the projectile

mass, and g is the acceleration due to gravity, Also

_ 2
E = pd VKDO(M) (2)

where ¢ is the air density, d is the projectile velocity, KD is the zero-
o
yaw drag function, and M is the Mach number,

M = V/V_, (3)

where Vsd is the speed of sound.

Eguation {1} accuratcly describes the moticn of a projectile mov-
ing through the air when the yaw is zero. Additional forces such as the




V, = Aircraft velocity (true air speed)

Vm = Frojectile muzzle velocity
Vo = Frojectile velocity in the air mass
60 = Yaw angle {angle of attack)

Figure 1

The Initial Yaw Angle of the Projectile




yaw drag, the lift force, and the Magnus force result from nonzero yaw,
s0 when the yaw is too large, Eq. (1) is no longer a good approximation,

The lift and Magnus forces are at right angles to the projectile
velocity vector and contribute to the swerve {or the windage jump). The
swerve is the deviation of the true trajectory from the one described by

Eq. (1). The yaw-drag force is in the opposite direction to V and tends
to increase the projectile time of flight between gun and target.

The time history of the yawing motion of a projectile is given by
the equation

%?: G (4)

where H is the angular momentum vector of the projectile and G is the

aerodynamic torque. G includes the Magnus moment, the overturning
moment, the damping moment, and the spin deceleration moment. It is
this equation which presents the major difficulty in the numerical inte-
gration of the six-degree-of-freedom equations because of the gyroscopic,
nutational,and precessional motion of the projectile. Accurate descrip-
tion of the nutational moticn requires a very small integration step size,

In order to solve the large-yaw problem, either the full set of six-
degree-of-freedom equations must be utilized, or a suitable approxima-
tion must be found, Such an approximation is described in Ref, 1, where
the nutational motion was eliminated from the equations, A further
simplification is documented here,

2. The Approximate Equations Used in the Eglin Code

A yawed, spinning projectile does not maintain a vertical plane
trajectory as is described by the point-mass equations of motion and the
basic Siacci equations. Due to the angular motion of the projectile, the
aerodynamic forces cause it to swerve,with componeats in and perpen-
dicular to the initial plane of yaw. Examination of calculated values of
the angular windage-jump components from the set of approximate equa-
tions used by Eglin Air Force Base for trajectory tabulation for the 20-
mm, M56 round (Ref. 1) revealed that both angular components become
essentially constant after the yaw is sufficiently damped. Further, both
components are conveniently approximated as being proportional to 60

with almost no dependence upon other initial conditions, This provided a
very simple means of obtaining an accurate representation of fairly com-
plex projectile motion. The results of Ref. 1 are summarized by the
following equations (see the List of Symbols).




8

mP = -EP (5)
md = -EQ+ mg (6)
S, = -ES_+pa?v? [KL cos &' + v Kp sin ¢*} ain 6 (7)
m's'y = - Eéy + patv? [KL sin ¢' - v K. cos ¢'] sin & (8)
dcoss _ palv [, _ma{, L0 ke 2 @)
35 = A= L~ A T P~2Av KH M sin
3,2 5
i - pdV d
¢ = EN— [KM -5 KHKT] (10)

where a dot represents differentiation with respect to time,

E = pd® VK, (M,38) (11)

v = | B -2FQsing_+Q° (12)
and

o = b- b (13)

Terms containing K}y can be deleted from Egs. (9) and (10) since they
are negligible,

Projectile coordinates are shown in ¥igs, 2 and 3. In Fig. 2, the
1, 2, 3 coordinate system is right-handed with the 1 axis along the velo-

city vector V. Thel,2 Plane is a vertical plane containing V (V is not

necessarily horizontal). The precession angie ¢ is a rotation about the
l-axis of 2 into 2' which is in the plane of yaw. The plane of yaw is the

plane containing the shell axis and the velocity vector V. The plane of

yaw rotates about V with precession raie g.
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In Fig. 3, §,7n,L is a right-handed coordinate system. The §,n
plane is vertical and contains Lhe projectile initial velocity vector V
The -axis is horizontal. The pseudorange P is along V and extends
to a point that would be vertically above the projectile 1£ the swerve S5
were zero. The gravity drop Q@ would be the vertical distance from the
tip of P to the projectile ander the same conditions. Thus, P and

would describe the projectile trajectory if the swerve 8 were zero.

It follows from Fig. 3 that

£ = Pcosg_+5 (],4,)"'/’
o £ -
T] = P Sin G - Q + S /f""/ (15)
(o] T) ’}/,.,-
L =S, P (16)
where S,, " and S are t,he/omponents of § in the L system and
§ L TS AV

6, is the elevatlpn a‘ngle of V or P above the horizontal., If these rela-
tions are- sibstituted for the g n,{ components of Eq. (1) but with § = 0,

B _it-1§ seen that

mk = —EOP {17)
mQ = -Eoé+mg (18)

The only difference between these equations and Egs. (5) and (6) is the
presence of E instead of E _in Egs. (5) and (6). But as can be seen
from Eqs. (2) and (11)

E (M) = EM, 5 =0) (19)

It follows that if the time history of § is known from some unspecified
source, E could be included instead of E0 and the accuracy of Eq. (1)

could be improved. Also, if 8 is determined by some unspecified method,
a complcte solution to the large-yaw problem is available. It turns out
that this is possible as will be shown, It is possible to effectively delete
Eqgs. (7) through (10) from the set and stili retain the accuracy of Egs.

(5) through (13).
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3. The Swerve Approxima.t;gw/

/
The component,s'/f § are related to S and S by the following
equations (Ref/l}v’

e 5, = -{S_ cos S sin ¢ ) sin (20)
T g T TPy 08 9 -0y SN, °

S'ﬂ = (S_cos ¢ - SY sin ¢_) cos @ (21)

S§ = Sx sin ¢_ + SY cos ¢ (22)

where ¢, is the initial precession angle. Investigation of solutions of

the approximate equations, i,e., Eqgs. (5) through (13), shows that the
windage jump components (in milliradians}), namely

X = 103 sx/p (23)

Y = 103 Sy/P (24)

approach constant values as the time increases, and are essentially
independent of all initial conditions except initial yaw 6 . Furthermore,

it is observed that X and Y may be approximated to sufhcxent accuracy
by the relations

X = ad_ (25)
Y = bb (26)
For the 20-mm, M56 round
a = 0.131 mr/deg (27)
b = 0.985 mr/deg (28)

when X and Y are in milliradians (mr) and 60 is in degrees.

14
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It follows that

£ = Pcos 60 + CgP (29)
n = Psing, - Q+C P (30)
t =GP (31)
where
Cg = --10'3 So(a cos 4;0 - b 8in 4;0) sin 90 (32)
Cn = 1073 6 (acos ¢ -bsin cbo) cos (33)
Cg = 1073 § (asing¢ +bcos¢) (34)

Thus, the swerve is given in terms of trajectory initial conditions, the
pseudorange, and values of a and b calculated from a few selected tra-
jectories obtained by means of the approximate equations of Ref, 1.

4. The Yaw-Drag Approximation

Experience has shown that the yaw-dependent drag coefficient may
be written as

2
Kp(M,8) = KDO(M) [1 + KD6Z(M) & ] (35)

There are several ways to cbtain the time history of §, but six-degree-
of-freedom calculations show that it is possible to approximaute 62 by a
relation of the form

2 2, -kP

87 = 60Ke (36)

where K and k are constants and K ~]1, When yaw dependence is in-
cluded in Eq. (1), it is seen that

—

dv -kP| = -
mg = -Eo[l+k°e ]V+mg (37)
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where

_ 2
ko = KDGZ 60 K {38)
Alternately, Egs. (5) and (6) become
ae _ _kp Q
mP = -E_ [1 tk e } (39)
'3 _kP -
mQ = -Eo[l+k°e ]Q+mg (40)

In the present approximation, these last two equations, along with
Eq. (12) for Vv, Eq. (2) for Eo' and the swerve equations of the last

section, replace the entire set of approximate equations represented by
Egs. (5) through (13).

Several methods are available for acquiring values for k and K,
Short of measuring 8 in a spark range, the most accurate method should
be to obtain yaw history data from six-degree-of-freedom calculations,
Presumably, Kand k do not vary ruch from trajectory to trajectory
(i.e., for different conditions of fire) so only a few such six-degree-of-
freedom calculations need be made, Yaw data obtained in this manner

can be plotted on semilog paper (In 62 versus F); the slope of the curve
is k and the F = 0 intercept is Kai.
Short of six-degree-of-freedom calculations, Eqgs. (5) through (13)

can be used, Alternately, the approximate equation for the yaw, Eq. (9),
may be written as

: EdZV md‘2
5§ = - KL i KT sin &
The damping term has been deleted since it is negligible. Now

_d6 dp _ ds . db
=db d@ T UdFr T ' aF

and if sin 6 is approximated by 6, it follows that

2 2
db d md
Ir '-‘-%'[KL'TKT]a




Since, from Eq. (36)
, 5 = SOJE e-kP/z

it follows that

ds k GO\E{ e-kP/Z

& e e k 5
dpF 2 -2
and so
2 2
Ed md

K can be taken equal to one, or the value to be defined below by Eq. (42).

Another approach is to borrow the results of the Siacci theory as
formulated by Sterne, (Refs. 5 and 6) for which the average squared yaw

-G‘Zis given by

— 5 -1/2
2 o 2 -2gcP
67 = so i 60 e {42)

where s, represents the static stability factor which is given by

2. 2
AN
s, = d3 5 (43)
4Bp Vo KM
and
C"
¢ = ¢+ o—5 (44)
o
where

2
p d
i _ Lo md
¢t = 5= [KL+T KH] (45)



and - .

2m D (46)

B is the transverse moment of inertia of the projectile and

Py = 0.076474 Ib/ft’

is the air density at sea level.

5. The Modified Point-Mass Method

With

and by means of
d {Q)._ PQ-BQ
at \ o ¥

it can be shown that the complete set of equations to be solved is

mi = -—deVKD (V/Vsd) [1 + koe'kp]u (47)
o]
1'3 = u (48)
and
d é - B
3(8) w0
where ’

v ={f’2—2f)ésin9°+éz (50)




In many applications it has been found convenient to make the independent
variable F rather thant, This is done as follows

du _ du dF _ du
I 3 A i >

and hence, Eq. (47) becomes

m%% = . deVKDo(V/VSd)[l + koe'kp] (51)
From Eq. (48)
a _ 1
9F ¢ @ (52)

and from Eq. (49)

But
Q _ Q _ do/dt _ dQ
u _1;- dP/dt
and so
.d__Z_ZQ = & (53)
dF u
If we define
_ 4
D = I (54)

it follows that

(55)




Also

and Eq. (50) becomes

2

vV = qu-ZDsineoa-D {56)

The new set of equations to be solved numerically are Egs. (51), (52},
(54), (55), and (56).

6. The Siacci Equations and Correction Terms

6.1 Basic Siacci Equations - The basic Siacci equations are also
approximations to point-mass equations of motion, The method provides
a closed-form solution to projectile ballistics after the tabulation of
numerically integrated functions of the zero-yaw drag coefficient. The
derivation of the equations has been well documented since their con-
ception in the 1880's by F. Siacci of Italy (Refs. 2, 6, and 8). No effort
will be expended here in rederivation.

The tabulated Siacci functions necessary for solution of the Siacci
trajectory equations are obtained by numerical integration of the follow-
ing differential equations.

T = ooy (57)
daT

(58)

1
U G(U)
dI
9T - _[E-— (59)

(60)

ale
g

where G(U) is given by
UKD (U/vsd)
G{U) 2

1

1883 (61)




Uis givenby U = u/ao where u is the velocity along the initial velocity
vector and a, is the ratio of the speed of sound at the firing altitude to
=1116.45 ft/sec is the speed of spund at sea level

that at sea level., V
sd

for the standard atmosphere. K, is the zero-yaw drag coefficient and
Q
g=32.174 ﬂ:/sec2 is the acceleration due to gravity, The functions S,
T, I, and A are tabulated for incremental values of U, The differential
equations are integrated from an arbitrary upper bound of U to an arbi-
trary lower bound. A tabulation of these values from U = 7,000 ft/sec
to U = 500 ft/sec for the 20-mm, M56 round may be found in Ref, 9.
The Siacci tables are independent of altitude, as has been shown in
Refs, 2, 6, and B,

The trajectory equations are given as follows

ol
I

-g'— [S (u/a.o) - S(uo/ao)] (62)
C 2 A | ¢
Ta, (u/ao) - A(uo/ao) - I(uo/ao)—c- P (63)

uS\ [T (u/ao) - T(uo/ao)] (64)

O
n
T

[
|

o

where t is the time of flight of the projectile. P is directed along the
initial velocity vector _i_fo = Vo' 0 points vertically down, and u is defined

as u = dP/dt, The basic Siacci approximation to the point-mass equations
of motion is that

V =

As is evident, this approximation does not hold for extremely large
values of Q. The symbol C is the ballistic coefficient and ¢ is the rel-
ative air density at the firing altitude.

C = —lﬁp-(lb/in.z) (65)

where m is the mass of the round in pounds, and d is the projectile
diameter in feet,




6.2 The Yaw-Drag Correction - Since the Siacci equations were
derived from point-mass equations, the projectile trajectory is assumed
to be in a vertical plane with no effect of yaw on the projectile drag.
These assumptions are reasonably accurate for very small initial yaw
angles, but corrections must be introduced for large-yaw ballistics.

According to the theory of Sterne, the yaw drag is taken into

account by the approximation that the average squared yaw, ;2" is an
inverse exponential function of P given by

;7__ 52 8o = 1/2 o-20¢cP
T Yo Ts_-1

[+

(66}

as has been previously explained, The correction term for P, according
to Sterne, is given by

P
AP = - K, 25 §% dF (67)
55

where § is the yaw angle and Ky, , is the yaw-drag coefficient. Combin-

§
ing Eqgs. (66) and (67) with ;Z substituted for 6Z yields
k
o -20ckF
AP = - 5 [1 -e ] (68)
where
S, - 1/2 2
ko = so -1 KDGZ 60 (69)

The equation for S(u/ao) may be obtained by adding the correction term,

Eq. (68), to the right-hand side of Eq. (62) and rearranging terms, In

most cases, the yaw damps rapidly enough for e 20cP

for practical ranges. Therefore

to be neglected

Kk
S(u/a_) = S(u_/a ) + %.P + E& (70)




Thus, it is apparent that if the initial conditions u and 60 are known,

along with the atmospheric quantities, ballistic parameters, and P, then
Q and t are solved by examining the tabulated values of T, I, and A,

6.3 Curve Fit of the Siacci Functions - Storage of an extensive
listing of Siacci tables 18 cumbersome and requires a large core-storage
capacity, For this reason, the Siacci functions of the 20-mm, M56 round
were curve fitted as fourth-degree polynomials, The tables were broken
up into sections, and each section was curve fitted at equally spaced
values of the independent variable., Reasonably good curve fit accuracy
was obtained. The tables that were curve fitted are contained in Ref, 10,
The curve fitting was done prior to the generation of the new tables in
Ref. 9, but the two sets of Siacci tables are essentially identical,

The tabulated values of S were curve fitted as a function of U,
while the values of T, I, and A were fitted as functions of S. The in-
dependent variable U extended over the range of 7,000 to 1, 000 ft/sec.
Though some of the trajectories computed for the comparison in Section
V have a terminal velocity slightly below 1,000 ft/sec, extrapolation of
the curve fits does not appear to induce severe error for the ranges
considered, Caution should be exercised for ranges in excess of 5, 000 ft.
For longer ranges and improved accuracy, a more accurate curve fit of
the tabulated values of Ref. 9 would be appropriate. The coefficients of
the curve fits used in this analysis are given in Appendix I,

7. Initial Conditions

A comparison has been made between calculations done with the
simplified methods described herein and those done with the approximate
equations of Ref. 1. Because of the interest in air-to-ground fire-control
problems at the time this work was done, air-to-ground geometry was
adopted for this comparison, The equations for the necessary initial-
condition computations and coordinate transfoimations are given in this
section, The results of these calculations are given in Section IV,

It is assumed that an aircraft flies straight and level at a given
altitude over a sea-level target range and that the aircraft carries a gun
turret armed with an M6]1, 20-mm cannon. The ballistics for this round
are well known (Ref, 11). The turret gimbaling is assumed to be of the
depression, traverse type shown in Fig, 4. The x,y plane is horizontal
and z is vertical, The aircraft flies along the x-axis, and y points out
the left wing. The depression angle E is a positive rotation about the y-
axis and rotates x into x'. The muzzle velocity Vi (i.e., the gun) is in

the x',y plane, and A is the angle between x' and Vm. Initial conditions

for computations are defined by the equations below along with the trans-
formation from the §, n, { system to the x,y,z system,
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Figure 4

Turret Coordinate System
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Components of V, = V, +V__ along x,y, and z are

Vox = VA+VmcosAcosE {71)
VOY = Vm sin A {72)
Voz = - Vm cos A sin E {73}

Also
JV +ZV v cosAcosE-}V; {74)

and
Vm+ VA cos A cos E

50 = arccos$ T’fo {75)

The elevation angle G of V {shown positive in Fig. 5) is defined by the
egquations

voz
sin 90 = (76)
o)
and
Vx
cos 90 = —V-—Z- (77)
o
where
2 2
A% =
xy Vox * Voy (78)

The angle B (in Fig. 5) is defined by
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Geometry cf the £, n,f Coordinate System
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v
cos B = _v'_:’.’i ' (80)

Xy

The £,n,L coordinate system is defined as shown in Fig. 5. The ¢
axis lies along the projection of Vo in the horizontal x,y plane, n is coin-
cident with z, and { completes the right-handed set.

The initial value of the precession angle ¢ can be found by examina-
tion of Figs, 2 and 5, At timet = 0, the 1, 2, 3 coordinate axes of Fig, 2

N lie, respectively, on the VO, z', and { axes of Fig, 5. Then ¢o is8 the
angle between z' and the projection of Vm in the z!', L plane. It follows
that

¢ (cos A cos E cos B + sin A sin B) sin()o + cos A sinE cos 6,
- cos ¢, = - SR
(81
o ‘ . sin ¢ = cos A cos E sin B - sin A cos B (82)
' o sin &
o
. ' ] The coordinates of a point in £.m,f transform into
f
T x = £cosB+{ sinB (83)
y = £sinB -{ cos B (84)
z = n . (85)

in the x,y,z system.,

In the calculations, Eq. (42) was used to define the projectile yaw
history. Values used as ballistic parameters for the 20mm, M56 round
are

0.0023 £t~}

cl

0.000105 ft !

]
1t

KD = 13.2
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m = 0,224156 1b
d = 0.06562 ft )
: and )
Po vm :
R
' where
s, = 3.5655
\1 Also
Vm = 3300 ft/sec
o Values of A and B used are
2

A = 0.00013 Ib-ft
B = 0.00096 Ib-ft?

Also -

N = 12,1349,6 rad/sec

Worst-case calculations were also done. The worst case occurs at
high airspeeds when the gun is positioned so the initial yaw is maximum,
As seen from Fig. 6, maximum yaw is given by

v
sin § = A
o V_
m

when the angle between VA and Vm is

_ o
E' = 6°+90

It is noted that the modified point-mass calculations and the modified
Siacci calculations were done at different times and the coordinate systems
used in the two calculations were different, Only the coordinate system
used for the modified point-mass calculations is reported herein since the
two systems are equivalent and do not affect the results,




Figure 6

Geometry of Maximum Yaw
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SECTION 1II

POLYNOMIAL CURVE FITTING OF BALLISTIC LEADS

The method presented herein for curve fitting trajectory tables has
been used in the past for bombing trajectories (Ref, 12). Extension of
the method to the curve fitting of firing tables is an academic matter,
but must be tested to show that a high degree of accuracy may be ob-
tained over a fairly wide range of coverage for an airborne turreted gun
system. Bombing tables may generally be represented by one dependent
variable, such as the trail or the spherical earth range-to-target, tabu-
lated as a function of altitude, true airspeed, etc. Due to the necessity
for a much greater delivery accuracy for gunfire, it will be necessary to
curve fit at least two dependent variables, i.e., ballistic lead angles
relative to the line of sight (LOS) to the target, For kinematic lead pre-
diction and/or wind corrections, it may also be necessary to curve fit
the time of flight of the projectile, The latter variable, however, will
not be needed for stationary ground targets in still air, and it may be pos-
sible to approximate the time of flight to sufficient accuracy for kine-
matic lead prediction and/or wind corrections by means other thana
polynomial curve fit.

The matrix method presented in the following sections will be
studied from the standpoint of the air-to-ground situation. The target
will be assumed to be stationary at sea level, the aircraft will be assum-
ed to be flying straight and level, and it is assumed crosswind is neg-
ligible.

Four independent variables are used to curve fit the depression
and deflection ballistic lead angles relative to the LOS to the target,
They are relative air density, aircraft velocity, depression angle of the
LOS, and deflection angle of the LLOS. Aircraft altitude is extracted
from the relative air density, Thus, the range to the target may be de-
rived from the altitude and LOS angles. Two curve fits are necessary
to obtain both the depression and deflection ballistic lead angles,

E qually spaced values of the independent variables are used for
programming convenience. However, the derivation of the matrix equa-
tions does not contain this restriction,

The Siacci method (Refs, 2, 6, and 8) was used to generate the
data to be curve fitted. Although this method is not as accurate as the
numerical integration of the projectile equations of motion, it is suffi-
ciently accurate for current exploratory computations and is much more
ecconomical. The samc type of curve fits can be cbtained {or the more
accurate ballistic data when they are needed,




1. Multidimensional Matrix Derivation for Exact Fit to the Data Points

Consider one dependent variable b and four iﬁdependent variables
w, X, y, and z, The values of b are known for I, J, K, and L different
values of w, x, y, and z, respectively. Then, b may be expressed as a
polynomial function of the independent variables and constant coefficients
Aijk!. as shown in Eq. (86).
i-1,7-1,K-1,L-1
b = ) A wixj kzl 86)
= 2 ije ¥ XY (
i,j.k,2

The values of Aijkl

ing to the various combinations of w, %, y, and z, Therefore

must be found by use of the values of b correspond-

I-1,3-1,K-1,L-1

(87)

k_¢
x
s

i_J
pqrs Aijkl Yp q’r z
i.j k2

where
p=201,2, ---, 11
q =0,1, 2, ~--, J-1
r = 0,1, 2, ---, K-1

s = 0,1, 2, ---, L-1

In matrix form, W = (W.

), etc., where
1p

W, = wl, etc,
1p p

Define the inverse of the independent variable matrices as follows

1

c =wl p=x! E=y!

,F=2z"1

so that

31



/)
O

'y Wip pa  ia

)
e
(=]
w]
'S
1
>

jb

14

o
N
LY
@
by
®
o
n
o

Thus

J—

Z b C D_.E F
pgqrs pa gb rc ~ sd
Prq,r, s

= z Ajie Bia Ojb Skc Sra
1,j,k, 2
The § terms are elements of the identity matrices; hence

_ =1 ¢-1 -1 ,-1
Aabed ~ Z bpqrs wpa Xqb Yec Zsd
p’ q’rls

(88)

(89)

(90)

Equation (90) is the symbolic form of the general coefficient matrix and
may be easily expanded to N-dimensions by inspection. Substitution of
Eq. (90) into Eq. (86) along withspecific values of the independent variables

yields the desired dependent variable,

Normalizing the independent variable matrices will simplify the
matrix algebra and reduce round-off error acquired in matrix inversion.




vk 4

Suppose the independent variables are o (relative air density), V A {air-
craft velocity), AT (LOS deflection to target) and ET {(LOS depression to
target). Ac, AVy, AAL, and AE  are equal intervals between succes-

sive variations in the independent variables. The subscript m indicates
the value of the variable at the mid-point of the region covered by each

variable., The normalized variables used in the curve fit are then de-
fined as follows

- m
= TAe
.. VA - vAm
s ———
AV
(91)
AT - ATm
i
' 2 = ET = ETm
= E
a Tm
The matrices W, X, Y, and Z will be of the form
= -
1 ) . 1
%o Y1 ot 891
2 2 2
W = wq W1 oo e W, {92)
I-1
1*1 I-l . . 3 w
W w1 I-]
b onsteny

The order of matrix (92) is equal tothe number of data points and will de-
pend upon the degree of the polynomial. The polynomial b{w,x,y, z) is
of degree I-1 in w. Hence, 1 data points are required and the order of
W is I. The W matrix is shown in Eqs. (93) through (96) for 1= 2, 3, 4,
and 5,




Forl=2

Forl=3

Forl=4

and for I =5

1 1
W =
-0.5 0.5
1 1 1
W =i 0 1
1 0 1
-

1 1 1
-1.5 -0.5 0.5
2.25 0.25 0.25

-3.375  -0.125  0.125
L

1 1 1 1
-2 -1 0 1

4 1 0 1
-8 -1 0 1
16 1 0 1

34

1.5

3.375

16

(93)

(94)

(95)

(96)



It may also be necessary to normalize the dependent variable to reduce
errors associated with round off, If T is the value of the dependent

variable @ when the independent variables are L ATm' and

ma’
ETm’ and Na is a normalizing constant which may be chosen to reduce
the values of the dependent variables to near unity, the dependent
variable to be curve fitted is taken to be

a-a
b:._N._._’E. - {97)
a

If the values of a are not excessively large or small, No. = 1 will be
adequate,

2. Programming and Storage for the N-Dimensional Arrays

Since both b and A are multidimensional arrays, it is convenient
to store their values in a linear array fashion (our CDC 3200 computer
cannot handle four-dimensional arrays with the currently used FORTRAN
IV system). The following sample program should serve to relax pro-
gramming complexity which occurs when the multidimensional equations
are broken up into two-dimensional matrix algebra.

It is assumed that the variables have been normalized, and the

values of the dependent variable at equal intervals are given. The coef-
ficient matrix can be obtained by use of the following program,

FROGRAM CURVEFIT

4-DIMENSIONAL CURVE FIT
INDEPENDENT VARIABLES X1, X2, X3,X4
DEPENDENT VARIABLE Z

COEFFICIENT MATRIX A

NUMBER OF DATA POINTS FOR EACH VARIABLE

o o o o o 0

RESPECTIVELY, I, J, K, L

DIMENSION Z(625), X1(5,5), X2(5,5), X3(5,5), X4(5,5), A(625)

READ 10,1, J, K, L




10 FORMAT (411}

READ 20’ ((XI(NIM)D lol)o N = I,I)

#

]

READ 20, ((X2(N, M), 1,7, N=1,7)

i

M
M

READ 20, {({X3(N,M), M= 1,K), N=1,K)
M

¢ READ 20, {(X4(N,M), M=1,L), N= 1,L)

20 FORMAT (10F 8.1}
KL = 1#%J¥L*K

A

READ 20, (Z(N), N =1, KL)

SUBROUTINE INVERT (X) INVERTS X. THE X ARRAY STORAGE
IS USED FOR STORAGE OF THE INVERSE

CALL INVERT {X1)

CALL INVERT (X2)

CALL INVERT (X3)

CALL INVERT (X4)

DO 40 I = 1,1

DC 4033 = 1,7

DO 40 KK = 1,K

DO 40 LL = 1,L

N = (I-1)*J*K*L + (JJ-1)*K *L+ (KK-1)*L+LL
A(N) = 0.

DO 30IP = 1,1

DO 30IQ=1,J

DO 30IR = 1,K

DO 30IS=1,L




RS,

L

M= (IP-1) % *K*L + (IQ-1) *K* L + {IR-1}*L+IS
A(N) = A(N} + Z(M) * X)I(IP, I} * X2 (IQ, JJ) *X3(IR, KK)
* X4 (IS,LL)
30 CONTINUE
40 CONTINUE
PUNCH 50, (A(N), N= 1, KL)
50 FORMAT (4E20. 12)
END

It should be noted that the X matrices should be read in by varyicg
columns and then rows, The values of the dependent variable Zijkl
should be read in while varying the parameters in reverse order, i.e. .
£, k, j, and i, The output of matrix A will, therefore, be in the same
order as Z was input. Although the Program was set up for 4-dimen-
sional curve fit with a2 maximum of five data points for each independent
variable, it may be easily expanded to a higher-degree fit by insertion
of the required parameters and an increase in the size of the dimension-
ed arrays.

3. Evaluation of the Accuracy of the Curve Fit for Air-to-Ground Fire
of a 20-mm Gun

To determine the range through which the independent variables
may be varied and to what degree they must be curve fit, it is necessary
to estimate the degree of each variable and test the curve fits at points
between the mesh of data peints, This leads to a trial-and-error se-
quence in which an effort is made to optimize the curve fit for a pre-
specified accuracy. Any desired accuracy may be obtained by decreas-
ing the range of coverage and/or increasing the degree of the curve fit.
The problem then, is one of attampting to minimize the number of curve-
fit coefficients necessary to describe ail of the ballistic lead angles
within the effective coverage of the gun system.

A turreted, 20-mmgun was selected for a quantitative evaluation of
the curve-fit method because of the availability of the ballistic data
necessary for trajectory calculations. The Siacci method was used to
determine the lead angles to be curve fit, rather than numerical integra-
tion of the equations of motion, to reduce the computation time required,
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Coordinate systems are defined as follows: In Figs. 7 and 8, the
X, y, # coordinate system is earth fixed with x and z horizontal and y
vertical. The angle B is rotated clockwise about the y-axis, and is
measured between the x-axis and the ¢ -axis., The £-axis lies along the

Projection of the vector ﬁ’o in the horizontal plane, The n~axis is co-
incident with the y-axis and the { -axis completes a right-hand ¢, 1, sys-
tem. The angle 8, is measured between ﬁ.o and the §-axis. The vectors
th’ v A and Eo are, respectively, the projectile muzzle velacity, the
aircraft velocity, and the projectile initial velocity, where

uo = Vm+VA

In Fig, 7, EG is the depression angle of the gun measured hetween

the x-axis and the projection of Vm on the x,y plane, AG' the deflection

angle of the gun, is the angle between Vm and the x,y plane,

In Fig. 8, A, and EL are the azimuth and elevation angles of the
gun, respectively, Az is measured between the projection of Vm in the
x,z plane and the x-axis, and EL is measured betwgen Vm and the x, 2
plane.

First, the azimuth-elevation system (Fig., 8} was used for the gun
Pointing angles, but some difficulty arose in the curve fitting of the
azimuth Jead angle. A fourth-order curve fit in all four variables pro-
duced errors that were generally less than 1 mr, but were as high as 10mr
at some points on the curve fit. The relative air density was varied from
0.98 to 0.86 (approximately 700 to 5000 ft in altitude) while the aircraft
velocity, azimuth LOS angle, and elevation LOS angle, respectively, were
varied; (200 to 500 ft/sec), (0 to 120 deg, and (-45 to -75 deg).

In an effort to decrease the maximum error of the azimuth curve
fit, gun lead angles were changed to the depression-deflection system
(Fig. 7). This angular arrangement proved to be considerably easier to
fit and corresponds to a more natural gimbal system for a turreted air-
to-ground gun. The angular coverage in depression angle EG' and de-

flection angle AG’ are, respectively, -30to -135 deg and -30 to 30 deg.
The aircraft velocity ranged between 200 and 800 ft/sec, and the relative
air density between 0,98 and 0, 86.

Figures 9, 10, 11, and 12 represent plots of the depression and de-
flection lead angles vs target LOS angles as calculated by the Siacci
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method. These plots were used to aid in the first estimate of the degree
of the polynomial required for the two independent variables AT {LOS

deflection to target) and E.. (LLOS depression to target). Figure 9 sug-

gests that AE (depression lead) may be approximated by a fifth-degree
polynomial in ET‘ The accuracy of the curve fit is arbitrary, but

directly affects the number of coefficients required, A convenient tol-
erance of £2 mr was selected, well within the gun pointing accuracy of
current airborne fire-control systems, The original computer code was
set up for computation of the coefficients for a polynomial of no higher
than fourth-degree in any of the independent variables. After several
unsuccessful attempts to obtain fourth-degree curve-fit accuracy with a
42 mr tolerance for AE over the entire range of ET' AT’ ¢, and VA ,

the curve fit was separated into two regions. The variable E, ranged

between 30 and 90 deg in the first region, and between 90 and 135 deg in
the second region. The remaining three variables extended over their
entire range in both regions of the curve fit. After examination of Figs.
10, 11, and 12, and some trial-and-error experimentation, it was found
that a good curve fit could be obtained with variables of the following

degrees: AE {q(2), Vy (2), Ap(3), ET(4)} over two regions, aund
AA{U(Z), VA(Z). AT(3), ET(S)}. The variable AA required only one curve
fit, The number of data points required for each independent variable is
equal to the degree plus one, Therefore, each section of AE required
3X3X4X5 = 180 points, and AA required 3 X 3X 4X 4 = 144 points

for a total of 2 X 180 + 144 = 504 points, This is also the total/number of
coefficients in the polynomial curve fits,

4. Comparison of the Siacci Curve Fit With 20-mm, Large-Yaw Tra-
jectory Tables

This section contains a comparison of the Siacci method of ballistic
computation with the approximate equations of motion of Ref, 1. (Also,
see Section IV of this report,) The approximate equations were used in
the computation of M56, 20-mm trajectory tables compiled by the Air
Force Armament Laboratory (Ref. 13). The purpose of the comparison
is not to show that the Siacci method is a highly accurate means of per-
forming ballistic computations for large-yaw, long-range trajectories,
but rather, to show that the curve fit of the Siacci data could be used for
limited angular coverage and limited range for onboard ballistic lead
computation., A more realistic approach, however, is to curve fit the
lead angles obtained from the approximate equations of motion or any
other method which is better suited to large-yaw ballistic computations.
This is not done here because of the relatively lengthy time required for
ballistic lead computation by methods requiring small step-size, numer-
ical integration,

NI ket

-




i

Selected trajectories in the firing tables {Ref, 13) were used for
comparison with the Siacci curve fit, The three components of range to
the target in the tables were used to resolve the LOS angles. The leads
were then computed by subtracting the gun angles from the 1.OS angles,
Contrary to the firing tables, the depression angle for the curve fit is
considered positive when below the horizontal.

The table in Appendix III contains a complete list of the depression
and deflection lead angles as obtained from both the Siacci curve fit and
the firing tables. Comparison was made between the lead angles for
gun depression angles of 45, 65, 85, and 105 deg. ' Reasonable agree-
ment was obtained for the smaller depression angles, but for 105 deg
there was a large deviation between Siacci calculations and the firing
tables. This may be due to round-off error in the firing tables at near
90 deg depression angles or computational errors in the direction-
cosines for an initial velocity vector depression angle greater than
90 deg. Only data for the smaller depression angles will be considered.
Figures 13 and 14 are plots of the difference between Siacci calculations
and the firing tables. It should be noted that a biased deviation between
the two methods may be essentially eliminated by adjustment of the
ballistic coefficient used in the Siacci calculations, or by adjusting the
first coefficient of the curve fit, By simple inspection of the grapks, it
appears that an average deviation for both the depression and deflection
lead angles is approximately 0,5 deg (+8. 7 mr} with the bias removed.

The results of this section should be compared with those of
Section 1V where Siacci computations are also compared with resuits of
calculations using the approximate equations of motion of Ref, 1. In
both instances, the same set of approximate equations was used, In this
section, the difference between leads calculated by use of the two methods
may be as much as ] deg,whereas the difference indicated in Section IV
is usually less than 1 mr. The suspected reason for this discrepancy will
be discussed in Section 1V,

5. Variables not Included in the 4-D Curve Fit

The four-dimensional curve fit presented here is complete only if
we assume straight-and.level flight, a sea-level target, and wind and
atmospheric deviations from standard are negligible. The flight altitude
and target altitude may be accurately taken into account by increasing
the number of independent variables in the curve fit or by curve fitting
for several target altitudes and interpolating for points between curve
fits, Alternately, consider the following argument, Near sea level, the
air density p is approximately given by

-hy

plz) = p_ e
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where Po is sea-level air density, y ie¢ altitude above sea level, and h is

tive air density between the aircraft and the target is

-hYA
plyy) Po © ~hiy, - yp)
= = e
plyy) ~hyq
e

But, this is the same as

plyy - vp! -hly, - yy)
= e

Po "

Use of
plyy)
¢ P(YT,

in the curve fits should be accurate enough for most purposes since p(y)
does not change much over a few hundred feet. The curve fits given
here are for targets at or near sea level. Curve fits for combat zones
at higher altitudes can easily be obtained,

For most air-to-ground applications, the only parameter needed
in addition to the ones listed above would be the dive angle. As neces-
sary, any other attitude parameters could be treated by means of ap-
propriate coordinate transformations. Effects of wind and atmospheric
deviations can probably be handled by some form of differential cor-
rections to lead angles. In most cases, however, these effects will be
small and, possibly, negligible.
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SECTION 1V
SUMMARY AND CONCLUSIONS

1. Modified Point-Mass Method .

A new, simplified set of approximate, large-yaw, ballistic tra-
jectory equations has been developed which are in excellent agreement
with the set of approximate equations used at Eglin Air Force Base to
generate trajectory tables. When the new, simplified set of equations is
used, a reduction in ccmputer time by a factor (depending on firing
geometry)of 15 to 20 over the old set can be expected., This new set of
equations is almost as simple as the particle trajectory equations used
in the F-111D Mk II avionics system package and is a candidate set for
airborne calculations in some applications,

A comparison has been made between computations done with the
simplified method described herein and those done with the approximate
equations used at Eglin AFB (Ref. 1). The results of these calculations
are summarized in Tables I, I, and III for three aircraft altitudes,

2000 ft, 5000 ft, and 8000 ft, respectively. Calculations were done for
three values of aircraft velocity VA (200 knots, 300 knots, and 400 knots)

and two values of gun traverse angle A (0° and 300). Three values of gun
depression angle E (300, 600, and 900) appear in Tables [ and Il and two
values (60° and 900) appear in Table III, The initial yaw angle 60, the

projectile time of flight, and the range from the gun to the target are
tabulated for each trajectory.

Coordinates § and f represent the projectile impact point on the
ground (at sea level) as calculated with the old approximate method, and
AE and AL represent the amount by which calculations done with the new
simplified method differ fromthose done with the old method (0ld minus sim-
plified), As seenby the pilot (Fig. 15),£ is measured downrange onthe ground

along the projection of Vo (the initial projectile velocity vector) in the

horizontal plane, and { is measured to the right, The radial difference
is the square root of the sum of the squares of A§ and Al. Agreement
between the two methods is excellent. It is doubtful that the old approxi-
mate calculational method compares with actual measured trajectories as
well as these two calculations agree,

Worst-case calculations were also done, The worst case occurs
for high aircraft velocities when the gun is positioned so the initial pro- .
jectile yaw (angle of attack) is maximum, Maximum yaw occurs when

Vo = Vm + VA is perpendicular to VA' e.g., for straight-down fire,

Computations were done for altitudes of 2000 ft, 5000 ft, and 8000 ft with
an airspzed Va of 600 knots (just under Mach 1), atraverse angle A of Odeg,
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and adepression angle of 107, 9 deg. Inthese situations the initial yaw is
17.9deg. The results of these computations are given in Table IV, The
biggest component of the radial diiference is seen to be AL{. The amount
of this difference for all three altitudes is about 3 mr, and this can be
corrected in the simplified theory by adjusting the swerve parameters,

In all instances, the a‘rcraft is assumed to be flying straight and
level, The firing geometry is that of Fig. 15.

The coraplete new set of differential equations for trajectory com-~
putation is listed here for convenience as fcllows:

du 2 -kP
- pd VKDO (wvsd) [1 +k e ]

™ e

dt
dF

dD
o = %

aQ
ar = D

i i
-4 I

where

V =z u [-l-ZDsine +DZ
] [s]

Definitions of symbols are in the List of Symbols at the front cof this
report, It is noted that these equations would be particle trajectory
equations if the term

1 -k e KF
o

were deleted,

Integration of these equations yields gravity drop Q, time of flight
t. and projectile velocity V versus pseudorange P, FProjectile position
in air mass coordinates is given by

R=P+Q +§
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where § is the swerve. It is verified herein that § can be approximated
adequately by the relation

S = CP

-t
where Cis given in terms of initial conditions and two parameters a and

b. Components of Rin the air mass system are

g = Fcos 9°+ CgP
n= Psineo+CﬂP-Q
= C P
A+
where
C, = -10'36(acos¢ - bsing )sine
£ o o o 0
_ .3 .
Cn = 10 Bo(a cos ¢_ - b sin ¢°)cos Bo
_ -3 .
CQ = 10 ﬁo(a s1n¢0+bcos ¢°)

The g-axis lies along the horizontal projection of P, n i8 vertical positive

up, and { completes a right-handed coordinate system. Angles 90, 60,

and ¢_ are respectively the elevation angle of F above the horizontal,

the initial yaw angle, and the initial precession angle,

The swerve approximation is based upon the observation that wind-
age jump parameters X and Y (Refs, ), 2, and 11) calculated by use of the
Eglincode R370 are approximately constant after the projectile has traveled
about 1000 ft,and are related to the yaw by approximately X = a&o and
Y = bd .

o

Values of k and ko in the differential equation for u can be obtained

in several different ways as is discussed in the main body of this report.
The method used for the calculations recorded in this section is borrowed
from the old theory of Sterne (Refs, 5 and 6), The equations are as follows:




.. AZNZ
- 2..2
4Bpd Vo KM
s - 1/2 2
k= =T Ep_.2b,
o 6
2
v p d 2
- ) md
BT A,
< p 4
| —
c 5m ED
C"
c = c¢'+ PR
o
‘ k = 2g¢
Trajectory initial conditions are calculated from the following
relations which are derived in Section II,
v =V, +V__cosAcosE
ox A m
v = V_ sin A
oy m
] A% = -V__cos AsinkE
" oz m
2 2
Vo = \/VA + ZVAVm cos Acos E + Vm
V. +V, cos Acos E
m A
’ 6 = arccos
o Vv
o
2 . 2
V. o= JV + Vv
Xy ox oy
> F

P
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R oz
sin 90 = 5
o
Yy
cos BO = 5
. )
vo
sinB = ‘v—z-
xy
Vox
cos B =
Xy
{(cos A cos E cos B + sin A sinB)sin®_ + cos A sin E cos 6
COS ¢ = = . O [}
o sin O
o
sin ¢ = cos A cos E l'sinB - sin A cos B
(o) sin 80

In addition u = Vo' t=0, D=0, and Q= 0 when F = 0,
The relation between £, n,{ coordinates and x,y, z coordinates is
x=§cosB+sinB
y=£sinB -{ cos B
z =1

The x,y,z system is right handed, with x along the flight path and z vertical.

2. Modified Siacci Method

The modified Siacci method is applicable to both air-to-air and air-
to-ground airborne fire-control computation, The basic difference be-
tween the two modes of operation is the kinematic lead prediction require-
ment for a moving target, occurring chiefly in the air-to-air encounter.
Accurate kinematic prediction requires an accurate estimate of projectile
time of flight as well as an almost instantaneous solution to the fire-con-
trol problem. The Siacci solutions provide a decided advantage in com-
putation time over numerical integration of even the simplest forms of the
equations of motion. It does not, however, yield equivalent accuracy in
the time-of-flight calculation. For the 20-mm, M56 round, the Siacci




error in time of flight is less than 0.01 sec for trajectory ranges up

to 3,000 ft, but increases to values greater thau 0. 05 sec for ranges
beyond 5,000 ft, The time of flight is influenced by variations in air
density, thus increasing the error resulting from the Siacci method for
relatively high altitude, air-to-ground fire due to failure to account for
variations from the firing altitude air density. This effect is not of
consequence when altitude variations are not excessive {air-to-air), and
the time of flight is not usually needed to a high degree of accuracy for
air-to-ground fire control. Corrections for the air-density variation
have been derived (Ref. 2) but will not be considered here,

For the purpose of comparison, air-to-ground trajectories for a
turreted gun were computed by the modified Siacci method and the ap-
proximate equaticns of motion. Air-to-ground trajectories were selected
over air-to-air because of the larger projectile yaw angles which are a
major shortcoming of the basic Siacci theory., The intention is to dem-
onstrate that the modified Siacci equations are capable of accurate large-
yaw ballistic calculations for moderate ranges. Calculations were made
for a set of initial conditions similar to those used for the modified point-
mass equations computations, and the results are to be found in Tables V,
VI, and VI, As before, altitudes of 2000 ft, 5000 ft, and 8000 ft, and
aircraft speeds of 200 knots, 300 knots, and 400 knots are used. Gun
depression angles are 30 deg, 60 deg, and 90 deg and traverse angles
are 0 deg and 30 deg., The gun-pointing error is seen to be less than
1 mr for all ranges below 5000 ft, no greater than 2 mr for ranges up
to 8000 ft, and as high as 5.1 mr for ranges slightly above 9000 it, The
largest errors occur at the higher altitudes and longer ranges due, in
part, to the variation in air density and the breakdown of the approxima-
tion V = u (Section II), However, the modified Siacci method yields a
highly accurate representation of the approximate-equation solution for
yaw angles as high as 11. 56 deg and some ranges greater than 8000 ft,
The results of worst-case calculations are shown in Table VII. The
results are about the same as those for the worst-case, modified point-
mass calculations of Table IV, and the reason is the same; the windage
jump approximaticn can be improved for these conditions.

As a last, but important, word on comparison of the modified
Siacci method with more accurate forms of ballistic equations, three
FORTRAN ballistics computer codes were compared for relative speed
of computation, The modified Siacci code was compared with modified
point-mass integration and the approximate equations of motion. Though
no attempt was made to optimize the coding of the three programs, it
is believed that ratios of the computation times should be fairly repre-
sentative of what would be experienced in an airborne fire-control com-
putation , The relative times vary from one trajectory to another as
functions of range and step size of the numerical integration; but, for
the trajectories considered, the Siacci method appears to be 20 to 100
times as fast as the modified point-mass integration, and 500 to 1500
times as fast as numerical integration of the approximate equations of
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motion, Representative calculation times obtained by use of the CDC
3200 computer are 0, 01 sec for the Siacci method, 0.5 sec for point-
mass integration, and 10 sec for the approximate equations of motion.

If the modified Siacci approach is to be used in airborne calcula-
tions, the same equation set as that listed above for the modified point-
mass equations may be used, except the set of differential equations is
deleted and replaced with the Siacci equations as follows:

S(u/a ) = S(uo/ao)+-%-P+ E’E?C'
a = (=S [awa) - aw sa) -1 ) P
- o'—-':; u/ag) - Alu/a ) - Hu /a ) =
t = S [T(u/a ) - T(u_/a )]
U"ao (o] [+] o

The functions S5, T, A, and I are precomputed at a ground-based facility
and are made available onboard in tabular form (Refs. 2 and 9} or as
curve fits (Appendix I).

3. Polynomial Curve Fitting of Ballistic Lead Angles

Polynomial curve fitting of ballistic leads by exact fit to the data
points appears to have promise in some instances for turreted gun
systems that have large fields-of-coverage and require fast computation
speed, The reduction of the amcunt of data that must be stored if curve
fitting is used in place of tables, and the computation time reduction if
it is used in place of numerical integration, are obvious advantages,
The curve fits of ballistic leads obtained in this study by means of the
Siacci method indicate the ease of accurate curve fitting., The curve-~
fit coefficients are listed in Tables XVIII, XIX, and XX of Appendix IV,
Extension of the method to the curve fitting of ballistic leads obtained
by more exact and complex forms of trajectory computation should pre-
sent no problem.

The accuracy of the curve fits obtained in this study was tested by
computation of the lead angles at all points midway between all data
points of the grid used to generate the coefficient, Comparison of the
leads derived from Siacci calculations with the curve fit gives apo in-
dication of the curve-fit accuracy obtained. The complete results of
this comparison are listed in Tables X1V, XV, and XXI of Appendix II,
A summary of the error analysis is given in Table IX below,
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Table IX

Accuracy of Curve Fits as Compared with Siacci Calculations

Lead Depression Maximum Average
Angle Angle Interval Error {mr) Error {mr)
30° = B = 90° 1.50 0.61
AE
90° = E; = 135° 1.28 0.41
AA 30°<Ep =135° 0. 89 0.35
0.86=< o0 = 0,98 200 ft/sec =< VA =< 800 ft/sec

130° < Ap = 30°

The accuracy could be increased or relaxed to any desired level
which would show a corresponding increase or reduction of the number
of coefficients required for the curve fit, With the accuracy obtained
in this example, 360 coefficients are required for AE and 144 coeffi-
cients are required for AA. Thuas, a total of 504 coefficients would
have tc be stored in the onboard computer of the fire-control system.
In the case of tabular trajectory-table storage, maay times this amount
of data would need to be stored to obtain egquivalent accuracy.

4. Seusitivity of Ballistics Calculations

In Section IlI, a comparison was made between the results of cal-
culations performed using the Siacci method and computations made by
use of the approximate equations of Ref. 1, A similar comparison was
made in this section, and the results of Section III were poor relative to
these. The reason for this discrepancy is thought to be due to the fact
thatthis laboratory did not use the same numerical values for certain bal-
listic parameters (such as the projectile mass) as did Eglin, since the
approximate calculations of Section Il were performed at Eglin Air Force
Base, whereas those of this section were done at this laboratory. This
indicates that the results of ballistics calculations are sensitive to small
errors in ballistics parameters, and one might expect differences of
the order of one degree between calculations made by different labora-
tories. Note should be taken of the implications of this statement with
regard to fire-control system design,
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APPENDIX 1
CURVE-FIT COEFFICIENTS FOR THE SIACCI FUNCTIONS

The Siacci functions (S, T, I, and A) were curve fitted as fourth-
degree polynomials over segments of the data listed in Ref. 10. The
tabulated values of S were curve fitted as a function of U, while the

values of T, I, and A were fitted as functions of S as indicated be-
low.

- Z 3 4

S = a°+alx+azx +a3X +a.4X

- 2 3 4

[T,I, or A] = b, +b, Y +b5,¥" +b,Y" + b,Y

The functional forms of the independent variables X and Y are given

by
Umax -U
X = 4
Uma.x - Umin
L ‘ and
' S - smax
Y =453
max min

! The terms U , U _.,8
max’' min' max

bounds of the curve fit intervals as shown in the tables, The values of
a; and b, are also given in Tables X through XIII for specified intervals

of Uand S,

S .
, and min represent the upper and lower
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APPENDIX U1

ACCURACY OF THE BALLISTIC LEAD POLYNOMIAL
CURVE FITS

The following tables are the results of a comparison of the poly-
nomial curve fits of the depression and deflection ballistic lead angles
with the values derived by Siacci calculations, The comparison is made
at the mid-point between all data points of the grid used to generate the

; coefficients, The average error should, in reality, be less than the
. . average error shown here because the carve fit is, in general, more
accurate near the data points., The error columne in the tahles are the
Siacci values minus the curve-fit values in milliradians.
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APPENDIX 111

COMPARISON OF THE SIACCI CALCULATIONS WITH THE
EGLIN 20-mm FIRING TABLES

Selected values of the independent variables were used to com-
pare the curve fit of the Siacci calculations and the Eglin firing tables
for the MS6, 20-mmm round. From the table, an evaluation of the ac-
curacy of the Siacci calculations was made,
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AFPENDIX IV

BALLISTIC LEAD POLYNOMIAL CURVE-FIT COEFFICIENTS

The following tables contain the coefficients obtained from the
direct polynomial curve fit of the ballistic lead angles derived from
Siacci calculations for a turreted, air-to-ground, M6l gun. The target
is assumed to be at sea level and the aircraft is flying straight and
level, Effects due to aircraft attitude variation and wind velocity are
not included. The four independent variables coverthe following ranges:

200 ft/sec = VA = 800 ft/sec -30 deg = AT = 30 deg

0.86 =0 = 0.98 30 deg = Ep, = 135 deg

Tables XVIII and XIX list the depressionleads for line-of-sight de-
pression angles from 30 deg to 90 deg and 90 deg to 135 deg, res-
pectively., Table XX contains the deflection leads for all values of the
independent variables within the ranges specified above. The coef-
ficients Aijkﬁ are defined by the following polynomial.

_ 0.0 0_1
Lead Angle = Allll +A1“Zw Xy z

0.0 11

+A1122wxyz+...

| K-1 _L-1 M-l N-}
tAgLMNY X Yz

where w, x, y, and z are defined by Eq. (91) in Section L, The values
of the subscripts (K,L, M, N) are equal to the number of data points for
each independent variable used in the curve fit,

The coefficients are presented in standard FORTRAN "E' format.
As an example, 5.01326E - 04 is equivalent to 5,01326 X 10'4.
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Table XVIII

Depression Lead Coefficients for Depression Angles
Between 30 deg and 90 deg
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=7.,8831t=06
2.0830E=02

2. 4860E~0T7

(a)j=1
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“le7781E=n2

-B.8609E~03
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6. H630F=04

-’.33’28.07

s
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=5+1010E=-03
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P2+2659E=03

“] JREREFany
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~4.5327€ 00

S.1910E=02
=44.1871F=01}
“9.4147€=03

1.1750E=03

8,8681E~05

6. 7529 =03

~1.5817E=04

~13749F-n3

~3,6737E~05
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Table XVIII {continued)
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i,
=1.399TuoE~32
1,6427€=-pn2
~2 HGIPE~U2
=3.,7644E~03
-5.9ﬂ06f-03
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~a.(Y64E=04
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Table XVII {concluded} .
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Table XIX

Depression Lead Coefficients for Depression Angles
Between 90 deg and 135 deg
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Table XIX {continued)
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Table XIX(concluded)
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Table XX

Deflection Lead Coefficients
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“H 4850F=0%
1.0932E=02
=2 MhYULE=NH

=2 1609E=03

i=1
i=2
i=3
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-‘06341[':-“2

2:4711E=02

“2.39A9E-02

1+6340E=02

247947 =04

1+0158E=02

1+65R6E=06

1.0662€=03

«3,3991€=03

=2 ,4RN4E=07

=4eT020E=04

Table XX {continued)

2

1.1543€ 00

2«RAG9F =07

=2:9855E=02

=9,6353F~05

Bebl11E~0Y

19192k ~06

=2.4102E-03

4,6571F=05

*5.,1T04F=03

Be11HTF =07

14K52KW0E=03

3
1e0742E=07

©3,014RE=D?
Bel2640F~03
«55373E=03
“5.8091E=04
«9,3709E=04
259276 =04
1+4989¢€~013
2.8n64t=n4
®l.,0901E=03
1.0221E-04

iy o0849E=04

(b) j =2

. mwcr. e, AT e
ARV il e ST -l e

4
4.4299E-03

-84 1856E=02
~1.1396t-03
SeB6T4L=03
1 ehBROEE=1G
=5, T4lte03
44 THOSE~0S
-) el =03
=1.0206E=04
6.897226=013
=2, HNBGE=0G

Qe 7372E=04

y i =1
i=2
i =3
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1
=1.3805E=02

'7.9l956-02,
-1.196nt=-013
3, 6638E-03
Do 090E" S
4,2095L-03
re ltidat=u?
1+7608E~04
=3, BabhiF=pYH
=1.,A315%kL=-03
- danhbbr=N{

0ealUNF=(YH

Table XX (concluded)

2

 §
3

4

“Ba3T27E=04  1.2719E=03  602651F=04 |

lo7003€‘02

2.5074€=03

=3,9977€=03

=~3e.4113F=0S

6,38y8E=06

‘3."“‘ 3E-05

~3:9T05FE=04
1.657)&-&5
3.4524F-0g
le7!19F=n8%

3e1245FE=04

=2.183hE~02
?.9%63E-03
=)e2238E=03
=1e7RANDKBE=NS
=2,41R%E=0]
*neh9S1E=n5
24 7I99€E-04
He FOERF =S
1:9185E=03
14371k =0b

=2.5297E=04

(c)j=3
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-4 ,6020F =03
-G, 0335 =04
1 7201E=03
3o hGRE=NS |
“2,R192F 08
Je 28 IBF =05
1eh422F =S |
=3.0613F=05 )
1, 17SAE=04
«?. 1 168F =08

=5, 1228805 |
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