
UNCLASSIFIED

AD NUMBER

AD911357

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies only; Test and Evaluation; FEB
1972. Other requests shall be referred to
Air Force Avionics Laboratory, Attn; AAM,
Wright-Patterson AFB, OH 45433.

AUTHORITY

AFAL ltr, 7 Oct 1977

THIS PAGE IS UNCLASSIFIED

AFAL-TR-73-203

Volume III

- AVIONICS PROCESSOR-CONTROLLER
CONFIGURATION STUDY

APPENDIX B-VOLUME III

L. J. Koczela

Electronics Group of Rockwell International

Anaheim, California 92803

TECHNICAL REPORT AFAL-73-TR-203 VOL. III

DISTRIBUTION STATEMENT

Distribution limited to U.S. Government Agencies only;

test and evaluation results reported; February 1972.
Other requests for this document must be referred to

Air Force Avionics Laborotory (AAM), Wright.Patterson

Air Force Base, OH 45433.

,'ON ws AIR FORCE AVIONICS LABORATORY

Air Force Systems Command

Wright-Patterson Air Fcrce Base, Ohio 45433

NOTICE

When Gvevuaueot irawimp specliuations, w ether dmarm - a for say perpe
other than in camaestlem with a jetloltely related Goerinment prebuoaisuemot wafts.
the United StatM GovurNMo therby locuRS NO repsoelety OW zVy ebllsatg
whatsoew, a04d the fast that the PWruaeo MY hew1 fWrmrotu. fnldiOd, Or In
any way applied thado Saw log speslflatleuc, aW et0K d", hb Set to be m Ise
by implicateon or adothiwb aisi soy memnoir kenalag the h*wold matay ether pens.u
or corporatien, or convoybn any rights or perubuleonte sensEch ate, use, or =I any"

patented wwavetiom that may in say way he latend thareto.

Copis o ths rpor shvhl ot e rtured obsretus i reuke bysecrit
COR~ll~~tiNSCGRMM~l GM0tiNSOr iltiS 0 A PKM dONOI

I
I

AVIONICS PROCESSOR-CONTROLLERI' CONFIGURATION STUDY

[APPENDIX B-VOLUME III

SL. J. Koczela

II

DISTRIBUTION STATEMENT

Distribution limited to U.S. Government Agencies onlV.

test and evaluation results reported; February 1972.
Other requests for this document must be referred to
Air Force Avionics Laboratory (AAM), Wright-Patterson

Air Force Base. Ott 45433.

Jr

I

I FOREWORD

This Final Engineering Report was prepared by the
Electronics Group of Rockwell International, Anaheim,
California. The work was accomplished under USAF Project
6090 entitled *Avionics Data Handling Technology", Task
01 entitled "Avionics Information Processing" and con-
tract No. F33615-72-C-1973 entitled "Avionics Processor-
Controller Configuration Study.' The work was administered
under the direction of Mr. J. E. Camp, Air Force Avionics
Laboratory, AFAL/AAM, Wright-Patterson AFB, Ohio.

This report covers work conducted from 1 July 1972
to 30 June 1973 and was submitted by the author 30 April• 1973.

This technical report has been reviewed and is
approved for publication.

C• ERS LINE

eColonel, USAF
Chief
System Avionics Division

I]
I

I

I I

•ii i

j: , .

ABSTRACT

"This volume presents a detailed description of the Burroughs Multiprocessor.
The descriptive material of the multiprocessor was scattered through several
reports. The purpose of this volume is to extract the appropriate material from these
reports and present the available material, upon which the study was based, in one
unified report. This report is also being published as Autonetics internal
report C72-812/201.

i

i[

I

t

Iiii

$1

I

CONTENTS

Page

IAbstract.. iii

1. Burroughs Computer Description1

2. Interpreter Description 4

A. General 4
B. Logic Unit (I ... 4
C. Control Unit (C,) 9
D. Memoiw5 Control Unit (MCU) 10
E. Nanomernory (N Memory) 10
F. Microprogram Memory (M1M 11

3. Interpreter (pteration .. 12

SA . G encral 12
13. Condition Operatives; ... 14
C. Mieroinstruction Sequencing 17
D. I ogie Unit ()perations 19

1. Adder Operations .. 19
2. Shifting. .. 20
3. Data Loading ... 23
4. External (perations 24

S4. witch interlock (SW\I l)cscription 26

A. SWI Modules 2;
It. Switch Interlock Opuration and Ti niing 31

1. Memory Operation 3.1
2. Device Iock and nInock .. :II
3. Device Read and Write 17t

5. Software. T W ... 41

A. Introduction r..........................4
B. Task Op)eration 41

1. Task \Vork Area 41
S2. Microprogram Memory,.. 44

C. Executive Operation IS

References 54

iiv

:

I LLUSTRATIONSI
Figure Page

B-1. Burroughs Multiprocessor 2
B-2. Interpreter Block Diagram. 5
B-3. Interpreter Data and Control Flow 6
1B-4. Timing Analysis Type I Instructions 13
B-5. SWI Interface Diagram 27
B-6. MDC Block I)iagram 28
B-7. 3-Channel Device Control Block Diagram 29
B-8. Typical Stage - Memory Control 30
-B-9. 5-Channel Input Switch Network Block Diagram 32
1B-10. 5-Channel Output Switch Network Address Block Diagram 33

B-11. 5-Channel Output Switch Network (Data) Block Diagra 34
B-12. Software Operation .. 42
13-13. Contents of the Work Area 43
B-14. State Vector 44
13-15. Using the Program .. eference Table 45
13-16. Locator. . .. 46
B-17. Locating a Module Through Storage Hierarchy 47
B-18. Allocator .. 49
13-19. Task Table Entry.. 50
B-20. Locking ... 51
B-21. Resource Table Entry 52
13-22. Interpreter Table Entry 52
B-23. Cyclic Flow of the System 53

TABLES

Table Page

B-1. Detailed Nanobit Assignment 7
B-2. Set and Reset of Conditions 15
1B-3. Microprogram Memory Addressing 19
1B-4. Adder Operations ... 21

SI

i. BURROUGHS COMPUTER DESCRIPTION

This appendix contains, for the most part, material extracted from various
Burroughs reports (Ref B-1 through B-6). These reports provided descriptions of

K various portions of the Burroughs computer. It is the intent of this section to bring
together some of this material into one unified document and also provide a basis for
the Burroughs computer description that served as the basis for the study.

L The Burroughs computer concept has been referred to by various acronyms in
recent reports (Ref B-I through B-5) such as the Interpreter Based System, Multi-
processor, and Aerospace Multiprocessor; in addition, the title of this study uses the
acronym, avionics processor - controller. The term Burroughs multiprocessor or
simply the multiprocessor will be used in place of these acronyms in this report.

A block diagram indicating the general structure of the Burroughs multipro-essor
is given in Figure B-1. The basic modules or building blocks of the multiprocessor
are:

1. Interpreters - Processing Elements consisting of arithmetic logic and
alterable microprogram controls

2. SWI (Switch Interlock Unit) - Interconnection logic to allow interpreters to

communicate with memories and devices

3. Memories - Storage elements for programs and data

4. Devices - interface elements betwteen peripborals and the ISW1

5. PSU (Port Select Unit) - May be used in place of the S\VI for single
interpreter systems

The Burroughs multiprocessor emphasizes two concepts (a) building block
i & structure and (b) variable machine arehitectlire achieved through microprogramming.

The basic building blocks listed above allow multiprocessors with different
numbers of modules to be constructed to meet varying computational requirements.
The multiprocessor designed for the Air Force allowed up to five Interpreters, eight
Memories, and eight Devices.

Variable machine architecture is possible with the Burroughs multiprocessor by
reloading the microprogram memory with routines. For examnple, it is possible to
(a) emulate existing computers, (b) perform higher order language processing, and
(c) process a problem optimized instruction set. Further, these could be performed
in a multiprocessing manner.

The computer can operate as a true multiprocessor since any interpreter may
access any memory or device module and multiple interpreters may be used simul-
taneously to process a computational task. Through the flexibility offered by variable
machine architecture the interpreter can function as a CPU, as an i/O Processor, or
as a device controller.

-i

I
I

L

Ig�;I
4-0I

IL�I

C

*

*

0 IA *

*

G) III�
-

I �I�III * * 0 0 0 0 m

f

I
Al 2

[

!
The Interpreter is a building block that can easily change its performance

characteristics and can function as a CPU or an 1/0 module or as a device controller.
It is a simple computer with primitive registers and combinatorial logic without the
usual hardware control found in conventional computers. Initially the Interpreter is
an uncommitted piece of hardware that is structured by stored logic contained in itsL microprogram memory.

A single Interpreter system can be mechanized using a port selection unit to
- interface the memories and dev'ices.

t3

I.1

L

I
I

I
l
I

I
f3

!.

1l 2. INTERPRETER DESCRIPTION

I
A. GENERAL

The interpreter's functions are to:

1. Contain the microprogram memory.

2. Provide the timing and control for sequencing and controlling according to
the microprogram memory.

3. Control the communication with external devices and memories.

4. Perform the logical and arithmetic operations required.

In order to accomplish these in a flexible manner Burroughs has defined a
modular approach with the Interpreter consisting of submiodules as folloH) s iSve
Figure B-2):

1. Logic Unit - The circuitry associated with the arithmetic, shifting, and
logic functions are contained in the Logic Unit. The data %% ord length is

Sexpandable from S to 64 bits in 8 bit increments.

2. Control Unit - The Control Unit contains registers for conditional control
and logic commands.

3. ,Memorv Control Unit - The Memory Control Unit provides registers and
control for memory (interpreter and main memory) addressing.

4. Micreprogram Memory - This unit provides-storage for the microprogram
sequences. The unit could be implemented with lt :)r HAM devices.

5. Nanomen,ory - The microcontrols for an Interpreter are supplied by the'
54 bit wide Nanomiemory. AMost likely impleraer.tation of this is \% ith the
use of ROM. The particular minoword is selected by the lMPM word using
the contained memory address.

B. LOGIC UNIT (LU)

Figure B-3 contains a detailed description of the data and control floe\ in the
inteipreter and Table 13-1 identifies the control provided by the 5-4 bits in the nar.o-
memory word. Refere,,ce to Figure B-3 and Table B-1 will aid in following tle
interpreter description given below.

One Logic Unit for each 8 bits of data word is required for each interpreter.
The LU is composed of: the three A registers, a B register, an MIIN register, adder,
and barrel switch logic.

44
1° i
I.

A S - -1 ------

IJA
* 1

a
a c

I U -
00

-0

S.... - " I,..- "~~ ~ ~ ~~~~~ U• m, 0•. -•:'--m-

1 5

41: ______________

fr

¶ 4!

I'

j *
� I

p -

A
'� � I

_
-Th

v3 ± �

- �j IJ�i LLIZi
- I -I I I1

j -

�I- 0 j !� C-I ii

-- I
f-I

L L EIO i
-LU _______J :� _____-fL -' U

_____- *-----,-t-�

.�

CI�

1. C
tj� *1

I-

I-

0 II '3

L..i

iI�I III
II 0��

�1 - I H ii i�i I
L11 KI U �! I

*
£

I -

I S

r
6

g� f

.Jill!

-I- - - i ---

"x a

U al i

2- -':-"'-'-'=' "-i -- - i - _ --

-d ! --------------

-~ I N:~[~ -. -------
S1 . a 7 7

- -- B E)
.... ..." i --;I

. .-.- - ~ t.. . ..

II 1....---

""II '---------- j -

r.... .- i,

!hl jI a

II

SI

Registers Al, A2, and A3 are functionally identicai. Each temporarily stores
data and serves as a primary input to tne adder. Selection gates permit the contents
of any A register to be used as one of the inputs to the barrel switch.

The B register is a primary external interface (from the Switch Interlock). It
serves as the second input to the adder and can also collect certain side effects of
arithmetic operations. The B register may be loaded with any of the following (one
per instruction):

1. The barrel switch output

2. The adder output

3. The data from the Swxitch Interlock

4. The MIR output

5. The carry complements (from the adder) of 4- or 8-bit groups with selected
zeroes (for use in decimal arithmetic or character processing).

6. The barrel switch output Ol0d with 2, 3, or 4 above (within the B register)

The output of the B register has true/complement selection gates which are
controlled in three separate sections: the most significant bit, the least significant
bit, and all the remaining cent ral bits. Each of these parts is controlled independently
and may be either all ZEROs, all ONEs, the true contents or the complement (one's
complement) of the respective bits of the B register.

The MIR huffc rs information being written to main memory or to a peripheral
device. It is loaded from the barrel switch output and its output is sent to the Switch
Interlock, or to the 11 register.

Inputs to the adder are from selection gates which allow various combinations of
the A, B and Z inputs. The A input is from the A register output selection gates and
the B input from the B register true/comiplement selection gates. The Z input is an

external input to the LU and can be:

1. The 8-bit output of the counter of the MCUT into the most significant 8 bits
with all other bits being ZEIROs.

2. The 8-bit output of the literal register of the MCU into the least significant
8 bits with all other bits being ZEROs.

3. The 12-bit output of the alternate microprogram count register (AMPCR)
right justified into the middle 16 bits and the (wired) Interpreter number
right justified in the remaining four bits of the middle 1H bits. All other
bits are zeros.

4. All ZEROs.

't |5 ,

,...l~ =... " ": '" • • ' L -- • ••_ • o•,• 7 J. • -- }. . .•. -•2 ' " - . .. • -,•. x -•-

Using various combinations of inputs to the selection gates, any two of the three
inputs can be added together, or can be added together with an additional ONE added to
the least significant bit. Also, all binary Boolean operations between the A and B and
between the B and Z adder inputs and most of the binary Boolean operations between
the A and Z adder inputs can be (lone.

k The barrel switch is a matrix of gates that shifts a parallel input data word any
number of places to the left or right, either end-off or end-around, in one clock time.

[The output of the barrel switch is sent to:

1. The A registers (AI, A2, A3)

2. The B register

3. Memory Information Register (MIR)

4. Least significant 16 bits to MC'l (registers BI3. 11112, MAR, AMtPCHI, IT,

5. Least significant 5 bits to shift amount register (SAIl) in the CU'.

C. CONTROL UNIT (CU)

One CU is required for each Interpreter. Ma or sections of this unit are: thie
shift amount register (SAIH, the condition register, part of the control register (CIH),
the MPM content decoding, and the clock control.

'The functions of the SARl and its a'ssociated logic are;

1. To load shift amounts into the SAR to he used in the shifting operations.

2. To generate the required controls for the barrel s%% itch shift operation
indicate(d by the controls from the Nanomemocy.

3. To generate the "word length complement" of the SAR contents, where the
"complement' is defined as the amount that Nill restore the bits of a Xor(l
to their original position after an end-around shift of N followed by an end-
around of the "complement- of N.

"rhe condition register section of the CU performs four major functions:

1. Stores 12 resettable con(lition bits in the condition registers. The 12 bits
of the condition register are used as error in(dicators, interrupts, status
indicators and lockout indicators.

2. Selects 1 of 16 condition bits (12 from the register and 4 generated (luring
the present clock time in the Logic Unit) for use in performing conditional
operations.

9-

,W---.-T 7

3. Decodes bits from the Nanomemory for resetting, setting, or requesting
the setting of certain bits in the condition register.

L 4. Resolves priority between Interpreters in the setting of global condition (GC)
bits.

,L The control register is a register that stores 38 of the 54 control signals from
the Nanomemory that are used in the LU, CU, and MCU for controlling the execution
phase of a microinstruction. Twelve of the 38 outputs from the Nanomemory are
stored in the CU. Four of the other 38 Nanomemory outputs are controls to the
Switch Interlock and are stored there. The other 22 of the 38 Nancmenmory outputs
are stored in a part of the control register physically located in the Nanomemory.

k The NMPM content decoding determines (based upon the first four bits of the
MPM) whether the MPM output is to be used as a Type I instruction (Nanonlemory

"-f Iaddress) or as a Type II instruction (literal). Several decoding options are available.

I). MEMORY CONTROL UNIT (MCU)

One MCU is required for an Interpreter, but a second MCU n hy be added to
provide additional memory addressing capability. This unit has three major sections:

1 . The microprogram address section contains the microprogram count
register (MPCII), the alternate microprogram count register (AMNIPCH),
the incrementer, the microprogram address control register, and
associated control logic. The output of the incrementer addresses the
MPM for the sequencing of the microinstructions. The ANMP('I1 contents
arc also used as one of the Z inputs to the adder in the lU.

2. The memory/device address section contains the main menwrY addressregister (MAR), base registers one and two (1HI, 1112), the base register
output selection gates, and the associated control logic.

3. The Z register section contains registers which are two of the Z inputs to
the LU adder: a loadable counter (CTH), the literal register (ixT), selec-
tior. gates for the input to the memory address register and the loadable
counter and their associated control logic.

E. NANOMEMOIIY (N MEMA1I1Y)

The Interpreter is controlled by the output of the 54-bit wide Nanomemorv which
may be i- plemented with a read/write memory, a read-only memory, wired logic, or
a combination of the three.

Each of the 54 bits represents a unique enable line for the gates and flip-flops
within the LU, the CU, and the MCU. Each Nanomemory word represents a micro-
instruction that is executed by the simultaneous presentation of a specific enable
pattern for the 54 outputs, represented by corresponding ONEs and ZEROs in its
word. The definition of those bits is presented in the microprogramming section.

10

f

SI
1'A unique feature of the Interpreter Based System with its separate Nanomemory

and Microprogram Memory is that the explicit enable lines for each microinstruction
need be stored in the Nanomemory only once (regardless of the number of times that
a specific microinstruction is needed in a program). To accomplish this saving in
memory, the Microprogram Memory (MPM) contains the address in the Nanomemory
where the explicit ONEs and ZEROs are stored that are needed to execute that instruc-
tion type rather than the full microinstruction. Thus, several microprogram sequences
which use the same microinstruction (e.g., transfer A to B) need only store in the
Microporgram Memory the address of the Nanomemory word containing that
microinstruction.

F. MICROPROGRAM MEMORY (MPM)

Each Interpreter requires a source of microprogram instructions to define the
operation of the Interpreter.

Two possible solutions for providing this source of microprogram instructions
are listed below:

1. A semiconductor MPM. This memory can be a read-only memory (ROM)
if the Interpreter is to be dedicated to the function defined by the ROM. A
read-write memory can be used for experimental purposes or when the
function of the Interpreter might be changed, such as rec.onfiguration in a
multiple Interpreter system. In this instance, the system could afford to
wait while the MPM was reloaded from a remote microprogram store
accessed via the Switch Interlock.

2. A buffer into a slower-speed, wider-word memory.

Loading of the ,MPM and NM can be from an external source if both are read-
write types. This external source can be the AGE or operating memory.

{ 1

I

f

3. INTERPRETER OPERATION

L A. GENERAL

A unique feature of the Interpreter Based System is the utilization of stored
logic in M and N memories and uncommitted hardware logic to form firmware control
that is exercised to a more primitive logic level than in conventional microprogrammed
central processors, being read at every clock time and offering more parallelism in
its greater word length. This firmware, in essence, commits the hardware logic of
the system to function in a specific fashion. The highest level of instruction used in
an Interpreter is the S instruction which corresponds to a standard machine instruction
and is stored in Data/Program (S) Memory. In a typical application, a starter set
of microinstructions is accessed which causes the first word of the first S instruction
of the program to be called into the interpreter. An analysis group of microinstruc-
tions causes the op-code of the S instruction to be converted into the address of the
first of a string of mieroninstructions (m-string). That particular m-string provides
all of the control necessary for the execution of the S instruction including the calling

of any additional memory words that might be required to describe the full S instruc-
tion. The r-string terminates by transferring control to the m-string that calls the
next S instruction.

Each microinstruction requires a single clock cycle for its execution. The

16 bit microinstruction either co'tiins literal data (Type II microinstruction) or it
contains the address of a 54 bit word called the nanoinstruction in the Nanomemory
of the Interpreter which when read provides the information to produce a set of 54*1 logical levels (Type I microinstruction). In either case, the 54 logical levels control
the hardware logic in the Interpreter which provide the desired function. The control
signals, or enables, for the hardware logic which are exercised by the nanoinstructions
of the N memory are summarized in Table B-1. Figure 13-3 presents the interpreter
data and control flow.

IDuring each clock period, a 16 bit microinstruction is read from the MPM. The
first four bits of this microinstruction indicate which of two types of instruction it is.
If it is a Type I instruction, the remaining bits of the MPM word specify a Nanomemory

address to be accessed. The Nanomemory is then initiated and its output, a set of
-- 54 bits, provides the control functions as indicated in the listing in Table 11-1.

If the microinstruction is Type 11, the remaining bits of the MPM word are
stored into one or two registers: namely, the SAIA, 1,IT, SAIl and LIT, or the
AMPCR. The determination of which registers are to be loaded is specified by the
first four bits of the MPM word. The Nanomemory is not accessed during a Type i1j operation.

Each Type I microinstruction has two parts (or phases). The first fetches the
instruction from the MPM and Nanomemory and the second executes the fetched
instruction. Figure B-4 illustrates these two basic phases of each Type I
microinstruction.

1SF

I

-0 "passs

cm• 'a 001

j Mam ivite MMUvim~

Lau CA --I maem-r --f -DIST

1MC

Lr'

Figure B-4. Timing Analysis Type I Instructions

The fetch phase involves: MPM accessing, Nanomniemorv accessing, condition
testing, selection of controls for the next instruction (successor) address computation,jand, in parallel, loading the control register for the execution of the microinstruction.
A fetch phase occurs for every Type I microinstruction and requires one clock time.
Since it always overlaps the execution phase of a prior Type I microinstruction, the
performance of each microinstruction requires effectively one clock interval. (Subject
to the conditions listed below.)

The execution phase also requires one clock time and always overlaps the fetch
phase of the next Type I instruction. The control signals for the execution phase are
from the output of the control register and have two parts: signals specifying the
logic unit operation (adder input selection, adder function, barrel sw-itch shifting, etc.
and signals specifying tle destination register(s) loading (i.e. clock enables). Both
sets of these controls apply continuously from the start to the end of the phase; how-
ever, the destination registers are not changed until the occurrence of the clock pulse
which signals the end of the execution phase and which simultaneously reloads the
"control register for the execution of a new logic unit operation. The completion of
the execution phase (i. e., the destination register(s) loading), may be delayed or
suspended for one or more clock times.

Suspended execution phase is the name given to an execution phase clock time
whose logic unit operation has been and continues to be performed but whose destination

(register loading is postponed for one or more clock periods. The register loading part
(of an execution phase depends on the subsequent microinstructions which follow the

Type I instruction.

13

,I

This suspended execution phase can occur for three primary reasons. The first
and most frequent occurrence is when the next instruction from the MPM is a Type II
instruction. This Type II instruction is executed during the same clock time it is
fetched and the execution of the Type I instruction in progress is held in this suspended
execution phase until the next clock interval. This allows the fetch phase of the next
microinstruction (if it is a Type I) to have an execution phase to overlap. Tnis providescondition bits (generated dynamically during the execution phase of a microinstruction)
that can be tested during the fetch phase of the next Type I microinstruction.

The second reason for the occurrence of a suspcraded execution phase is due to

the existence of conditional logic unit operations. A Type I microinstruction which
does not contain a conditional logical operation always has a fetch phase and an execu-
tion phase. However, a Type I microinstruction which does contain a conditional
logical operation falls into either of two categories: if the condition is met, both the
fetch phase and execution phase are required for the execution to be completed; if the
condition is not met, only the fetch phase is required for the completed execution to
occur. However, even though the execution phase of a conditional Type I micro-
instruction is ignored, the fetch phase of the next Type I microinstruction must have
an execution phase to overlap in order to have values for dynamic conditions that may
be Type I and not clocking the execution phase that is to le disregarded into the
control register.

The other reason for a suspended execution phase is for use during the loading
of the MPM and Nanomemory.

(The sequencing of Type I microprogram instructions is controlled by the
following procedure: The MPM addresses the nanomemory which provides information
to the condition testing logic indicating which condition is to be tested. The condition
testing logic provides a True. False signal to the successor selection logic which
selects between the three True and three False successor bits (also from the Nano-
memory). The three selected bits (True/False) provide eight possible successor
command combinations discussed later. A Type II microinstruction has an implicit
STEP successor.

B. CONDITION OPERATIVES

Ii Each N instruction performs a test on the Boolean value of one condition or its
complement. The test of a condition is used to allow conditional microinstruction
successor selection, conditional logic unit operations, and/or conditional external
operations. With the exception of the two global condition bits, testing a condition bit
causes the bit to be reset. The least and most significant bits out of the adder, the
adder overflow, and the adder bit transmit are levels and not condition bits. Thef conditions that may be tested (Table B-2) are the following:

SAI Switch Interlock Accepts Information

Following memory or device operation, indicates that connection to
the addressed memory or device is completed through the switch
interlock.

. 14

-"'

Table B-2. Set and Reset of Conditions

Bit Set Reset

AOV Dynamic Adder State - (Overflow) #

ABT Dynamic Adder State - (Adder bit transmit)

LST Dynamic Adder State - (Least Significant Bit of 4
-' :Ider Outputs)

MST Dynamic Adder State - (Most Significant Bit of
Adder Output)

COV Overflow when Counter is Incremented Reset by
loading

- counter or by
testing

GC1 Set GC1 providing no other Interpreter has GC1 set, RESET GC
or no higher priority Interpreter is concurrently
doing SET CG1

GC2 SET GC2 simijar to GCI RESET GC

INT Set INT executed in any Interpreter Reset by
Stesting*

LCI SET LC1 Reset by
' Itesting

LC2 SET 11C2 Reset by
testing

LC3 SET LC3 Peset by
testing

11DC By memory at completion of memory or device Reset by
rcad testing

SA1 By switch interlock or PSU when data received Reset by
from MAR and MIII testing) EX1 By requests from devic2s Rest by

testing*

EX2 By requests from devices Reset by
testing*

EX3 By requests from devices Reset by
__testing*

#Recomputed each clock time

*In. local Interpreter only

15

RDC Read Complete, or Requested Device Completes

Following memory read or device read by request, indicates that data
will be available for entry to B in the next clock. Following device
write by request, indicates completion.

3 COY Counter Overflow

Following or concurrent with increment counter INC, indicates counter
is overflowing or has already overflowed from all ones (255) to all zeros.

LC1 Local Condition 1

(Tests and resets local Boolean condition bit LCI.

LC2 Local Conditions 2 and 3

LC3 Same as LCl

GC1 Global Conditions 1 and 2

GC2 Tests hut does not reset global condition bit GC1. See the description
of the set and reset operation for further explanation of global condition
bits.

INT Inter-Interpreter Interrupt

Tests and resets the local copy of the inter-Interpreter interrupt.

EXI External Conditions 1, 2 and 3

(EX2 Test and reset interrupts (usually the OR of interrupts from several
EX3 devices) from external devices (local copy).

S 1 The following four logic unit conditions are dynamic and indicate the result
output from the adder in the phase 3 commands from the previous instruction which
had logic unit operation, and using the current values of the adder inputs. These
conditions are sustained until execution of another instruction involving the logic unit,
and may be tested by that instruction. A Type II instruction loading the LIT or
AMPCR may change the value of an adder input selected and hence change the value
of any of these conditions.

AOV Adder Overflow

IResults from an adder operation with carry out of the most significantFa •end of the adder.

LST Least significant

State of the least significant bit of the adder output.

MST Most significant

State of the most significant bit of the adder output.

ABT Adder bit transmit

This condition is true (one) if and only if the adder output is all ones.

* 16

The set and reset operations are used to set and reset condition bits. The inter-
Interpreter interrupt INT, is used for communication (to signal) all Interpreters of a
multiprocessing system. The global conditions, GC1 and GC2, are used as Boolean
semaphores to guarantee mutual exclusion for critical sections of rn-program and to
prevent simultaneous access to shared data. The local condition bits are Boolean
variables local to each Interpreter. The INT and local condition bits are reset (within
the local Interpreter only) by testing. The explicit test and reset operations follow.

SET INT Interrupt Interpreters
Causes the interrupt bit to be set in all Interpreters. Each
Interpreter resets its own bit by testing It. Setting occurs aftera testing should both occur in the same N-instruction.

SET LC1 Set the first local condition bit

Causes the setting of the LCl bit in the condition regiFter, setting
occurs after testing should both occur in the same N-instruction,
both set and test of LCI occur in Phase 1.

SSET LC2 Set the second local cond~tion bit

Same as for LC1 replacing I,C1 by LC2.

SET LC3 Set third local condition bit

Same as for LCI replacing LC1 by LC3.

SET GCl Set first global condition bit request

Requests that the GC1 bit in the requesting Interpreter be set if a
GCI bit is not already set in another Interpreter or is not being
set simultaneously by a higher priority Interpreter. For all
Interpreters in a multiprocessing system at most one will have GCI
set. GC1 is set at the end of the phase after Phase 1 if no conflict
occurs. A request lasts for one clock.

SET GC2 Set second global condition bit request

[Same as for GC1 replacing GCI by GC2.

RESET GC Resets the global condition bits

[Causes GC1 and GC2 to be reset in 0-" issuing Interpreter.

C. MICROINSTRUCTION SEQUENCING

Each N instruction performs a test on the Boolean vuue of one condition on its
complement. If the result is true the successor for this condition is used to determine
the next N-instruction. Otherwise the successor for '112 aot condition is used to
determine the next M-instruction address.

iI 1

Successor: The successor commands are as follows:

1. Step to the Next Instruction in Sequence (STEP):

The next instruction address is the content of the MPCR plus one. The
MPCR content will be replaced by the next instruction address.

2. Skip the Next Instruction (SKIP):

This operation permits one instruction conditional branches without an
explicit address specification. The next instruction address is the content
of the MPCR plus two. The MPCR content will be replaced by the next
instruction address.

3. Repeat the Instruction (WVAIT):

This operation permits the repeated execution until the value of the
condition changes. The next instruction address is the content of the
TMPCH. The MPCR content w-'Ll be unchanged.

-4. Save Loop Address (SAVE):

This operation is usually performed just before entering the first iteration
of a loop. It causes the address of the current instruction to be saved in
the AMPCR so that jumps can be made later to the current instruction
address plus one. The AMPCR is replaced by the contents of the MP1CR.
The next MPM instruction address is the content of the MPCR plus one.
The MPCR will be replaced by the next instruction address.

5. Execute an Instruction Out of Sequence (EXEC):

This operation permits the instruction named in AMPCR plus one to be
executed without changes to either the MPCR or AMPCR. As an example,
this operation can be used for address table lookup if the named instruction
is an AMPCR literal. The AMPCR may change as indicated by the executed
instruction.

6. Call a Procedure (CALL):

This operation causes a jump to the routine specified in AMPCR plus one
with the current position saved for later return. The AMPCR content will
be replaced by the MPCR content. The MPCII content will be replaced by
the next instruction address (AMPCR plus one).

7. Jump (JUMP):

This operation permits traasfer of control to the instruction named in the
SAMPCR plus one. This address may be a computed address loaded from the
BSIW\ output or an address constant from a microinstruction. This may be
used to go to the head of a loop or to the return position for a procedure call.
The next instruction address is the content of the AMPCR plus one. The
MPCR content will be replaced by the next instruction address.

1

", : :: - = : -- o•- •-• - • := - - _ •=_:• -- .18. ..:

8. Return {RETN):

Th~is operation provides for an alternative jump address by making the next
instruction address be the content of the AMPCR plus two. The MPCR
content will be replaced by the next instruction address.

The particular chosen successor command then provides controls used in the
selection (MPCR/AAMPCIi) and incrementing logic which generates the next MPAM
address. Except for thec EXEC command, the MPCII is loaded with this MPMI address.Ii Table B-3 summarizes the MPM addressing.

{Table B-3. Microprogram Memory Addressing

Successor Next Content Next Content
Successor M-lnstruction of M13CR of AMPCR
Command Address Will Be Will lie

WAIT AlPCR IM PC~l{STEP N1PCR -I 'MlCR'
SKIP AIPCR-2 IM PCR- 2

SAVE MNPCIIli1 NI PCTI -1 AlPCR
CALL ArMPCR.-l ANIPCIIU1 MPCR

IEXFC AAMPCR 1 'NPCR * I
JUMP AMPFCH I A -dPCI -1

RETN AINI 11CI '2 AMPCR i2

*Not changed by successor specification

D. LOGIC UNIT OPERATIONS

f 1. Adder Operations

Inputs to the adder are from selection gates which allow various combinations of
the A, 13, and Z inputs. The A input is from the A register output selection gates andf. the 11 input from the B register true/complement selection ga tes. The Z input is anexternal input to the LU and can txe:

1. T1he 8-bit output of the counter of the MICU into the most significant 8 bitts
with all other bits being ZE110s.

2. The 8-bit output of the literal register of the MCU into the least significant
8 bits with all other bits being ZEII0s.

19

I

3. The 12-bit output of the alternate microprogram count register (AMPCR)
right justified into the middle 16 bits and the (wired) Interpreter number
right justified in the remaining four bits of the middle 16 bits. All other
bits are zeros.

4. All ZEROs.

Using various combinations of inputs to the selection gates, any two of the three
inputs can be added together, or can be added together with an additional ONE added

. to the least significant bit. Also, all binary Boolean operations between the A and B
and between the B and Z adder inputs and most of the binary Boolean operations
between the A and Z adder inputs can be done.

Table B-4 summarizes the adder arithmetic and logical operations that may be
specified using TRANSLANG b hich is a microtranslator that produces micro and nano

I, instruction from symbolic instructions. The following notes apply to this table:

1. A Register Selcction A Al A2 A3
AO All ZEROS

S2. B Register Selection: B Any B Register Select option
F3 ONES complement (by TRANSLANG)

(° of the specified B Register Select
option

0 All ZEROS
I ALL ONES

3. Z Register Selection Z CTR I LIT I AMPCR
0 Ali ZEROS

4. Inhibit 8 Bit Carry: 0 All carry into bytes
1 Inhibit carry into bytes

5. Adder Operation As specified in Microprogramming
chart, Table B-1

2. Shifting

There are four operations causing shifting, one of which is ielected each time
an adder operator is used.

1 Right end-off shift by amount in SAR, filled with left zeros.

L Left end-off by word length complement of amount in SAR, filled with
right zeros.

C Circular right end-around shift by amount in SAR.

No shift

J 20

.

I C72-812/201

Table B-4. Adder Operations

I Arithmetic Operations

Register Select ABT Is
Adder Result B2 3 True If

Operation Form A IZ C8 ADDOP 5 Result is All

ADD B A B 0 0 2 Ones
SAADD Z R - S A 0 Z 0 1 Ones
B ADD Z 0 B Z 0 9 Ones

A ADL B A B 0 0 3 Zeros
A ADI, Z R.S.1 A 0 Z 0 0 Zeros
BADL Z 0 B Z 0 8 Zeros

A CAD B i --S A B 0 1 2 Ones
CAI) Z Without A 0 Z 1 1 Ones

B CAI) Z Carry 0 B Z 1 9 Ones

fDEC A A 1 0 0 2 Ones
)DEC B H - 1 Invalid

DEC Z 0 1 Z 0 9 Ones

0 0 0 0 0 2 Never1 _

1 0 0 0 0 3 Never

MONADIC Logical Operations

Register Select A BT Is

Adder Result 1 2 3 True If
Operation Form A 1IB Z A)IX)P5 Result is All

A A 0 0 2 Ones
B R 0 B 0 2 Ones
Z 0 0 Z I Ones

\N()'T A A 0 0 15 Zeros
NOT 11 R 0 B 0 10 Zeros
NOT Z 0 0 Z 12 Zeros

I-DYADIC Logical Operations

I Register Select

Adder Result 1 2 A3 5 AT is True
Operation Form A B Z ADDOP If Result is All

A AND B A B 0 7 Ones
A AND Z RAS A 1 Z 13 Zeros
B AND Z 0 B Z I Ones

A NI\I B A B 0 7 Ones
A NIM Z R,S- INVALID
B NIM Z 0 Z 13 Zeros

1 [21

.I,•. •• ,- ., v 'w :• ' • • • - ' • .-, , • , -

C72-812/201

_ _ _ _ _Table B-4. (Cont)

DYADIC Logical Operations (Cont)
Register Select

Adder Result 1 2 ABT is True
Operation Form A B Z ADDOP If Result is All

ANEI B A B 0 10 Zeros
ANRI Z RAS A 0 Z 5 Ones
B NRI Z 0 B Z 4 Ones

A NOR B A B 0 10 Zeros
A NOR Z HAS INVALID
B NOR Z 0 B Z 13 Zeros
A XOR B A B 0 6 Ones
Z XOR Z (RAS)V(RAS) A 0 Z 4 Ones
B XOR Z 0 B Z 14 Zeros
A EQVB B A 0 Ones
A EQV Z (RAS)V(RAS) A 0 Z 14 Zeros
B EQV Z 0 B Z 14 Zeros

A NAN B A I- 0 15 Zeros
A NAN Z RvS A I Z 5 Ones
B NAN Z 0 B Z 12 Zeros

A IMP B A 13 0 15 Zeros
A IMP Z RvS IN VA LI)
B IMP Z 0 B Z 5 Ones

A OR B A B 0 11 Ones
A OR Z RvS INVALID
B OR Z 0 B Z 5 Ones

A RIM B A T3 0 11 Ones
A RIM Z RvS A 0 Z 12 Zeros
B RIM Z 0 B Z 12 Zeros

d TRIADIC Logical Operations
Addler ABT is True

Operation A I))OP5 Result If Result is All

TRY1 A, B, Z 4 TI(A XOR Z) Ones
TRY2 A, B, Z 5 X Z BZ Ones
TRY3 A, B, Z 12 A B Zeros
TRY4 A, B, Z 13 A ZIZ Zeros
TRY5 A, B, Z 14 (A B) EQV Z Zeros

22

I

i IiI I

- 3. Data Loading

The principal data source is the barrel switch output. It is the only source forloading Al, A2, A3, MIRI, BR1 and BR2. It provides one source for loading B, CTR,
MAR, SAR and AMPCR. These reserved words are also the register names. The

I bits used in these transfers are indicated below.

Destination Barrel Switch OutputLRegister Source Bits

Al All
A2 All
A3 All

S13 All
I. MIR All
13111 2nd least significant byte
B112 2nd least significant byte

MAR least significant byte
SCTR least significant byte (ones complement)
SAIR least significant bits
AMPCR least significant 12 bits

The B, MAIR, CTR, SAR and AMPCI registers 'nay have other inputs as well:

B Register - (B)

* IB13W Thle barrel switch output is placedi into 13

HEX I)ata from the external source is placed into 11

BAT) Tie adder output (unshifted) is place(d in tile 13 register

_BC4 The duplicated complement of the 4-hit carries with zero fill is placed
. in the B register

IBC• The duplicated complement of the 8-bit carries with zero fill is placed
-[in the 13 register

i MI The MIIII content is placed in the 13 register independent of anyf _aconcurrent change to the MilI

1B1E The barrel switch output (Oied with the data from the external source
" " is placed in the B register

IBBA The barrel switch output OledIdwith the adder output is placed in the
1B register.

BBI The barrel switch output Oiled with the MIR content is placed in the
1B register independent of any concurrent change to the MN11.

f [23'-i
I

BAI The adder output ORed with the MIR content

" IBBAT The barrel switch output ORed with the added output ORed with

the MIR content

SIB41 The complement of the 4 bit carries ORed with MIR

181 The complement of the 8 bit carries ORed with MIRI

j Memory Address Register - (MAR)

LMAR The literal register content is placed in MAR

I Counter - (CTR)

[LCTR The ones complement of the literal register content is placed in CTI

INC Increment Counter by 1

[Shift Amount Register - (SAR)

CSAR Complement prior content of SAR

1Tile Alternative Micro Program Count Register AMPCR may (luring the same
clock receive input from the MPICR if the MPAI) CTLS register content was CALL or
SAVE. The MPCR source takes precedence over the AMPCR specification as a
destination.

The destination operators explicitly specify registers in which changes are to
occur at the end of a logic unit operation.

4. External Operations

I The external operations arc functions which if explicitly present affect the
operations external to the Interpreter logic. An external operation may be specified
as either conditional or unconditional.

The memory or device operations are used to transfer data between the
Interpreter and main S-memory or a peripheral device. Address source registers
for those operations are the concatenation of either BRi or BR2 with MAR, indicated
respectively by MARI or MAR2. The MAR part is less significant. The explicit
memory or device operations follow, If none is specified,then any memory or device
operation in progress is continued and no new operation is initiated. Address or 1ill1
change may terminate the operation.

MIll1 Memory Read 1

My Read data from S-memory address specified in MARI

MR2 Memory Read 2

Read data from S-memory address specified in MAR2

f24

MWl Memory Write 1

Write data from MII to S-memory address specified in MARl

MW2 Memory Write 2

{Write data from MIR to S-memory address specified in MAR2

ASH Status Request for highest priority locked device*

SASE Status Request for highest priority unlocked device*

DL1 Device Lock 1 Request*

Reserve the device or memory module named in MARl for use by
this Interpre t er

DL2 Device Lock 2 Request*

Reserve the device or memory module named in MAR2 for use by
this Interpreter

SDRI Device Read 1

Read data from device name in MARl

DR2 Device Read 2

Read data from device named in MAR2

DWI Device Write 1

Write data from M111 to the device name in MARI

DW2 Device Write 2

Write data from MI1 to the de-*ice name in MAR2

DUI Device Unlock 1

Release the locked device named in MARl

DU2 Device Unlock 2

Release the locked device named in MAR2

{

I -

*Systems with switch interlock use DL1 and DL2; systems with port select unit use
ASR and ASE.

' (25

I. C72-812/201

4. SWITCH INTERLOCK (SWI) DESCRIPTION

A. SWI Modules

3 The Switch Interlock functions are to:

1. Provide the interconnection of the interpreters with the memories and
3 devices.

2. Provide the priority for the interpreters in the selection of devices and
memories.

Connection between Interpreters and devices is by reservation with the
Interpreter having exclusive use of the (locked) device until specifically released.
Connection with a memory module is for the duration of a single data word exchange,
but is maintained until some other module is requested or some other Interpreter
requests that module.

In any such system it is desirable to keep the wires and logic in the crosspoints
to a minimum, while still maintaining a specified transfer rate. One way of achieving
"this is by serial transmission of several partial words in parallel through the cross-

f poiRs. The Switch Interlock for the Burroughs Multiprocessor handles tip to five
Iuccroreters, eight memories and eight devices. The transmission paths through the
Sv itch Interlock break the 32-bit data word into 4 - 8 bit bytes.

Te'lc SWI is mechanized with five modules; a block diagram indicating the structure
of the S\ýI is given in Figure B-5. This diagram also shows the internal and external
interf:;ce of the SWI. The five modules are:

1. Memory Device Control (MDC) - This unit, shown in Figure B-6 decodes the
nanonimemory bits and generates the signals for controlling the other SWVI
modules. The MDC also contains the counter and logic to indicate to its
interpreter, data acceptance and transfer completion. There is one MDC per
interpreter.

S2. Device Control (DC) - The DC resolves conflicts between Interpreters trying
to lock to a device and checks the lock status of any Interpreter attempting a
a device operation. The DC is shown in Figure B-7, it receives requests for
"device operations and lock/unlock requests through the MDC. It responds by
sending status signals to the MDC and control signals to the Input and Output
Switch Network modules. The DC module as mechanized in the Burroughs
multiprocessor provides device control for up to three interpreters. A
system with five interpreters will use two I)C modules.

3. Memory Control (MC) - The MC resolves conflicts between Interpreters
requesting the use of the same memory module and maintains an established

connection after completion of the operation until some other Interpreter

requcsts that memory module. Figure B-S contains a divgram indicating a
typical Interpreter stage in the memory control module. This stage receives
requests from the MDC and a 3 bit memory module address from the
interpreter. The lower section of Figure B-8 shows the memory request

f26

C72 -812/201

< IIL
*A u J

UJ

SSMWJGC -

ino vilvG

)11Z) 'Su PO3N

MID 'S 51-15 779 A

Oc5-

10 21 IFA
Ds-V Iý5-,

*d. L :==wS -L-

U~L w__ _ _ __ _ __ cc

T 9nIMUOd JLAS NV

2~ z

00
w-rtiHOa~ g

c33)A3
+

d
V1

f 28

>

1 C72-812/201

%J

'I>
I%
[%

%-

A.LrM~d0
113NDI susVI4 Zi

x . 0

ADMA

or MIM '
x~m 3LVH29

IIK

C 72-812/201

IL
0L

<> LQ

LU

[~ INDC-
n

NS

SR~RTAGES
AG

BUSY___SET___ LMEMRY

HIGHER LTO CECI F~~IgueB Typical Stg eir o Trol

.iBI

C72-8.2/201

and memory busy bus that connects to the priority logic for memory request
control. The Burroughs mechanization of the MC ases two modules MCO and
MCI. MCO contains three stages as shown in Figure B-S to provide memory
control for three interpreters. MC1 contains two stages and the memory
busy flip-flops.

4. Input Switch Network (ISN) - The ISN returns data from addresscd devices or
memory modules to the requesting interpreter (i.e., the ISN is a "Multiplexer").
As seen in Figure B-9 the ISN module provides selection for live interpre-
ters to up to eight memories or eight devices. The ISN provides a path for
10 bits per interpreter. This path is used to provide eight data bits and a
return clock, one bit is unused. The ISN module mechanized by Burroughs
actually consists of twvo submodules, each submodule provides for -4 data bits
and 1 clock bit from up to eight memories or devices to up to five
interpreters. The ISN is therefore modular in terms of 4 bit bytes. The ISN

Sis under the control of the MC or DC module.

5. Output Switch Network (OSN) - The OSN sends data, address, clock, and
control from Interpreters to addressed devices or memory modules (i.e.,
the OSN is a "demultiplexer"). This unit is actually mechanized as two
different modules. Figure B-10 shows the OSN for address output. This
unit handles 4-address and 2-clock bits for five interpreters to up to eight
memories on devices. The address OSN is actually mechanized from two
identical submodules that provide two address bits and one clock bit eoch.
In the Burroug's multiprocessor, the address OSN uses four address and one
clock bit leaving one clock bit unused.

The data output OSN is shown in Figure B-11. This unit provides eight bits

Soutput to up to eight memories or devices from five interpreters.

B. SWITCH INTERLOCK OPERATION AND TIMING

Controls from the Interpreter (Nanobits 51-54) are strobed into the mem 'dev
operation register of the MDC if either the Type I microinstruction is unconditional or
the selected condition is true. Controls derived from the output of this register wNill
next load the output shift registers of the interpreter and generate one of three types of
signals, depending upor. the operation to be performed. Each of these tvoes of signals
will be explained.

j 1. Memory Operation

a. General

The first type of signal from the MDC is a "memory operation request" signal to
the MC. This initiates the comparison and priority logic in the MC. When the MC has
granted access by that interpreter to the memory module it was requesting, a compare
signal is returned from the MC to the MDC. This will send a clear pulse to the memory
interface logic through the memory OSN and will initiate the setting of SAI and the trans-
mission of high speed clocks to the output shift registers of the interpreter and through
the OSN's to the memory interface.

31

4

I C72-812/201

1!< 2
x i-.

LL

x i-i

c.-

I3

I C72-812/201

II o
IxI

U 4:

cc,

LU

4: -,

X LU L

U4U

- ~-3

Lu.

Ix

r 33

I C72-812/201

t.t

a-D-

bC

CIO

uj-

34

j C72-812/201

In the case oe a memory write, the input/output counter in the MDC will countf four output high speed clocks and will then stop them.

In the case of a memory read, output high speed clocks are not counted. Instead,
these high speed clocks are continually sent to the memory module interface. This
interface will count four clocks coming in to it and will then initiate a memory read.
Upon return of a completion signal from the memory, the memory interface will load
its output shift registers and then allow four of the high speed clocks that are still
coming through the OSN to clock these output shift registers and to be returned to the
MDC and the interpreter with the shifted out data. The MI)C counts four of these
memory return clocks and will then stop the high speed output clocks and set RDC
indicating that the data has been shifted into the interpreter input shift registers and is
ready to be strobed into the B register.

b. Memory Groups and Interpreter Access Priority

The switch interlock module for memory connection contains a group of 8 ports
for connecting memory modules to interpreters. Each port prox ides MH and *MV.
Concurrent access to all memories in a group by different Interpreters is permitted.

(Interpreters have fixed priority for access to all rnodules of a group.

(Conflicts in access to the same module are resolved in favor of the Interpreter
that last accessed the module, otheri\isc the highest priority requesting Interpreter.
Once access is granted it continues until that memory operationl is complete. When
one access is complete, the highest priority request is honored from those Inter-
preters then in contention. The Interpreter completing access is not able to compicte
again for one clock. Thus the two highest priority Interpreters art assured of access.
Lower priority Interpreters may have their access rate significantly curtailed.

'FThe switch interlock "remcmbers" the prior connection of ceach memory module
to some Interpreter. If the next request is also from the retlef)Vercd(I nte1rj)reter,
the new connection is made wvith less delay, since no priority resolution need take place.

c. Memory Use Sequence

The sequence of operations necessarY to access S- memor is simple in single
I Interpreter systems where no conflict in access can exist. In such c'ases Monce tile

address setup is complete (as is the Milt for \Nrite). the memory i'ead (or \kritc can be
initiated. After a suitable time the data from memory can he aL'cessed \ ia BIE',X or 1B11E.
In tile presence of conflict potential, the follov.ing control sequence ,;hould be used.
This sequence is recommended for sytems without a sw\itch interloeci as ý\ell.

1. The S-memory address should be in tile selected base register and MAR.

2. Memory Read
• 2. 1 A test of RDC should be included in some prior instruction. ly convention

this should be the previous memory read (or device read or x\rite by request).
A test of SAI slhuld be included if address register changes are required
before tile RDC is returned, or if confirmation of access to tile switch inter-
lock is desired.

" f [35

C72-812/201

2.2 The memory read can occur the instruction after the address is3 (unconditionally) loaded into MARI or MAR2.

2.3 A SAI is returned when the switch interlock has accepted the address and the
memory is connected to the requesting Interpreter through the switch

j interlock.

2.4 A group of intervening instructions can be issued, depending on the relative
speeds of the Interpreter clock and the S-memory. Once SAt is set and
tested, these instructions may change the 4address registers or even include
device read or write operation on demand.

2.5 A RDC (read complete) signal is returned when data will become available
for entry into the Interpreter the following clock.

2.0 If no intervening device or meniory reads occur, 13EX may be repeated
each timc receiving the data in XI)I non-destructively.

:3. Memory Write

3.1 The data to be written should be in MIR.

:3. 2 The address should be in the selected base register and MAlH.

3.3 The memory read can occur the instruction after both the address and data
* have the desired values.

3.4 Return of SAI indicates that the memory is connected and therefore the
address and data have been accepted In the XDA and XID) buffer registers
respectively, and thus the address registers and MIIA may be subsequently
changed.

S3.5 It is possible that the memory is still in its memory cycle, but if so, no
other access will be granted to that memory module.

2. Device Lock and Unlock

The second type of signal emanating from the MIC is a device lock or device
unlock request sent to the D)C. After the l)C has accomplished this, a signal is returned
to the MI)C in order to set SAI and the operation is complete.

The switch interlock module for device connectibn contains a group of eight ports
for connecting devices to up to five interperters. Dl,, D)R, D\V, and D)U are provided
for each port. Priority order for resolving concurrent requests by Interpreters for
DL or DU is fixed within each group.

Conflicts in DL and DU requests may occur. The DI. request from the highest
priority requesting Interpreter is honored over a co-occurring request for the same
device from any lower priority Interpreter. Concurrent DL requests for different
devices in the same group cause the lower priority request to incur a one clock delay
in achieving the DL or DU, and in return of SAl for each higher priority request. Con-
sequently DL or DU requests from Interpreters other than the highest priority may be

36

I C72-812/201

arbitrarily delayed. The earliest confirming SAI response occurs two instructions
after issue of the DL or DU. If SAI is true, then the DL or DU was successful. If3 SAI is false, then it means that the DL or DU is not yet successful. The design justi-
fication for this potential arbitrary delay is that DL or DU are infrequent events for
which arbitrary delay is of little consequence.

I Provision for conscious control of this timing is provided (and recommended) by
use of Global Conditional Bit 2 to protect DL and DU attempts by more than one Inter-
preter at a time.

L 3. Device Read and Write

t a. General

The third type of signal from the MI)C occurs for device reads or writes and is
sent to the DC to check the lock status of the device being addressed by the 13BR1/BR2
of the interpreter' before proceeding. After it is confirmed that the device is locked,
the DC returns a locked signal to the MDIC. This will have the same effect as when a
memory module is obtained, i.e., a clear pulse is sent to the device interface logic
through the device OSN and initiates the setting of SAI and transmission of high speed
clocks to the output shift register of the interpreter and through the ()SN's to the device

interface.

meowever, the distinction made between memory reads and memory writes is not
made for devices. Both eases act like a memory read; i.e. , for a device write the
AMDC does not stop the outgoing high speed clock after four clocks and indeed does not

. even count them. In both cases the device interface counts four clocks coming in to it
and then stops accepting high speed clocks. In the case of a read, the device interface
waits for some kind of "data available" signal from the device ý%hich it Wvill use to load
its output shift registers and to allow four high speed clocks which are still arriving
from the OSN to clock these output shift registers and to be returned to the MDC and
the interpreter with the data. The MI)C, as for memory reads, counts return clocks
and will set RDC.

In the ease of a write, the response is very dependent upon the particular device
being interfaced. In the case of a card reader, Burroughs sent back the next four high
speed clocks to the Interpreter, In the case of a printer, Burroughs used a signal
saying the last character was accepted by the printer to cause the device interface to
allow retu:'n clocks. The four return clocks are counted by the MDC and used as a

Smeans of saying that the device accepted the data sent out.

b. Duration of Device Operations

1 The duration of a DL request depends on :ts success. If successful the lock occurs
concurrent with the following instruction, at the end of which SAI is set true. Thus SAI
is available for test in the second following instruction. If false at this time, the DL
request continues while other work may be in progress so long as neither the device
identification changes nor another memory or device operation is Initiated. When the
previously Issued DL is successful, SAI will be returned.

37

IC7 201
Device reads or writes are only completed with devices locked to the Interpreter

issuing the DR or I)W. Depending on the device address, a DR or)\W may be on3 demand or by request.

1. On Demand. DR and D\V provide immediate data exchange. The duration of
DR or DW on demand is one instruction after issue. Confirmation of com-
pletion may be checked by SAl being true the second instruction after issue.
If SAT is false, the device was not locked to the requesting Interpreter.

2. By Request. DR and DIW provide data exchange when the device is ready.
The duration of DR or D\W by request is determined by the device and is
signalled to the requesting Interpreter by the return of 1I)C - "Request of
device complete." As with DR and D\V on demand, SAI is returned by the
second instructioa after issue, and indicates that the device is locked to the

-" requesting Interpreter.

The duration of DU is one instruction after issue, unless conflicts from D)1 or DU
requests by other Interpreters occur as indicated above. SAI will he returned only if
the device had been locked to the requesting interpreter. SAI is available for test in
the second instruction after issue if no conflicts arise. Any, conflict \with other M). or
I)U in the samne group can cause delay.

c. Device Use Sequence

The sequence of device operations necessary for an Interpreter to use a device
is as follows:

1. A test of "IF SAT" should be included in some instruction to reset it. This
usually can be in the instruction with the unconditional device operation.

2. Device Lock Request: The data in the indicated base regisler (and possibly
MAR) is used as the device identification. On the second followving
instruction, SAT may be tested.

2.1 If true, then the device lock xwas successful.

2.2 If false, then the device lock \\as unsuccessful. The request remains in
progress w\hile other instructions not chaning the device identification or
issuing other memory or device operation may be executed. The DL requestSis terminated by the first of the following actions:

(a) The Interpreter initiates another memory or device operation,

(b) The Interpreter changes the device identification.

[c) The device becomes available and sets SAI. All co-occurring actions
are valid. Should (a) and (c) co-occur, SAI refers to the MLin the
following instruction and should be tested. Then in the next instruction
thereafter SAT refers to the new memory or device operation. Should
termination by (b) occur without co-occurrence of (c), the new device
"identification applies to the DL still in progress, and the path for SAT
return is diverted to the newly identified device (if there is one so
identified) without reissue of another DL.

38

"i C72-812/201

3. Once the desired device is locked to the Interpreter. - sequence of one or
more data exchanges may be initiated using the following. Assume for sim-
plicity that adequate bandwidth connection is provided so that data transfer is
completed in one clock. Otherwise add an appropriate number of clock times
to the discussion.

4. Device Write: The data in the indicated base register (and possibly MAR) is
used to specify the device, and the data in the MIR provides the information
to be written to the device. The second instruction after the device write,
SAI may be tested. If true, the Interpreter is locked to the device, and data
in the MIR h'js been accepted by the XDO register, and so the MIM may sub-
sequently be changed. If false, the Interpreter was not locked to the
requesting device.

4.1 On Demand: The device is immediately ready to accept input data from the
Interpreter. Consequently the SAI need not be checked, and the MIR or device
identification could even be changed in the instruction after the DXV.

4.2 By Request: The device provides an RI)C when it has completed the requested
write. The SAI also indicates that the MIIR data has been accepted in the switch
interlock. Similar to DL, the request continues until the first of the corres-ponding three actions.

(a) The Interpreter initiates another memory or device operation.

(b) The Interpreter changes the device identification.

(c) The DW is completed and sets RI)C. All co-occurring actions are
valid. Should (a) and (c) co-occur, SAI refers to the DW in the follow-
ing instruction and should be tested. In the next following instruction
SAI then refers to the new memory or device operation. Should (b) not
co-occur with (c), then the DW in progress is diverted to apply to the
new device identification without reissue of another I)L.

4.3 Separate device identifications are required if the same device is to be read
both on demand and by request (some distinguishing bit).

5. Device Read: The data in the specified base register and MAR is used to
specify the device. The second instruction after the device read, SAI may be
tested. If true, the Interpreter is locked to the device; otherwise not.

5.1 On Demand: The device output register is assumed immediately able to be
read on demand (possibly some part of the resulting data indicates validity).
The data requested is available for Interpreter access the clock after Phase 1.
Thus BEX or BBE may be included in the same instruction as the device read.
The SAI need not be checked, and the device identification may be changed in
the instruction after the DR (so long as the address is still not required for a
prior memory operation or device read by request).

39

1| C72-812/201

$5.2 By Request: The device provides a RDC after the device read request when

it has sent the desired data from Its output register. Thus the same instruc-
tion that finds RDC true may include BEX. RDC should be reset by testing
prior to use for device read by request (usually as part of the prior instruction
using BEXI.

1 5.3 Separate device identifications are required if the same device is to be read
both on demand and by request.II6. Device Unlock: When use of the device is completed the lock should be
terminated by issuing a device unlock. An SAT is returned if the issuing
Interpreter was locked to the device. An attempt to unlock a device that is
not locked to the Interpreter will not return SAL. SAT is available for test at
earliest the second instruction afte-r the device unlock.

i

4ii

11140

5. SOFTWARE

A. INTRODUCTION

The basic philosophy behind the multiprocessor executive (Ref B-6) is that it
operates independent of any particular interpreter. The executive is structured such
that no interpreter operates as a hardcore or has control of the system. In effect the
executive functions "float" among all interpreters resulting in a distributed executive.

Figure B-12 presents a grossly simplified diagram of the operation of the
system. The hardware portion of the system is depicted as Interpreters and Main
Memory. In part'cular the microprogram memory of each interpreter is shown.
The distribution of software elements among the microprogram memory and main
memory is shown in this figure. Each microprogram memory contains a portion that
is permanent, namely the locator and allocator functions. In a.idition a microprogram
and various executive modules are contained in the microprogram memory that may
vary depending on the needs of each task.

Tasks constitute particular jobs or functions desired to be performed on the
computer system. Each task has its own work area in main memory and contains a
microprogram, S program, and data area in main memory. The microprogram is
loaded into an interpreter's microprogram memory when the task is selected for
execution. A number of executive modules are also stored in main memory. A
task may select and execute these executive modules by loading them into micro-
program meov)ry. One of the executive modules is the scheduler. This module is

L run after a task is ended and uses the executive tables to define the next task to be
run. Each interpreter uses the same executive functions and performs its own
scheduling and other executive functions.

B. TASK OPERATION

1. Task Work Area

Once a task is selected by an interpreter for execution, its work area, located
in main memory (pointed to by the task table in the executive table), defines where
and how to run the task. A task is initiated or continued via its work area
(Figure B-13).

The Work area contains a state vector which defines the state (all the registers)
of the 'S' machine (Figure B-14). The state vector also defines where and which
microcode must be in microprogram memory for the task to run. In addition to the
pointer to the microprogram location in main memory, the state vector contains the
address of where to start the microprogram.

A program reference table is also part of the task work area. This table contains
pointers to the 'S' programs and data areas needed for the task. The table also contains
other information such as whether the IS' programs are in main memory or in mass
memory. The use of this table as part of the task work area is shown in Figure B-15.
The task table is part of the executive table that the scheduler uses and will be explained
later.

41

-A

II
ki i£l -ti -

cdcr

II
u

LO -J < H

Iv 0

-<--

ujC

420

I
I

STATE VECTOR

{ SOURCE TABLE
(POINTERS TO EXECUTIVE MODULES)

PROGRAM REFERENCE TABLE
(POINTERS TO PROGRAM ANDI; DATA SEGMENTS

TASK RESOURCE TABLE
(POINTERS TO ASSIGNED RESOURCES)

USER
WORK SPACE

I

I

I

* Figure B-13. Contents of the Work Area

j t) 43

POINTER TO USER WORK SPACE POINTER TO LAST USED WORD INAREA
.•LiLOCATION OF POINTER TO MICIROIPROGRAMj ADDRESS TO START MICROPROGRAM

TASK TABLE ENTRY 1N0. | ASSOCIATED TASKS WHOSE RR BITS MUST BE SET

'S" MACHINE REIGISTERS IDEFINED BY MICROPROGRAM)

(PCR. BASE REGISTERS, ACCUMULATORS, INDEX REGISTERS, ETC.A

TASK TABLE ENTRY READY-TO-"UN BITS AND RESOURCES

(
GLOBAL LUC

Figure B-14. State Vector

A source table is also contained in the task work area. This table contains
pointers to the executive modules Lhat are needed to run this task. The source table
also contains information such as whether the executive module is in microprogram
memory or in main mamor- as shown below:

I I Location in Location in Microprogram
ILUC Size Parts List Memory or Location of Allocator

A task resource table in the work area defines which resources have been
assigned to a task and which resources are unavailable. The user work space inthe
task work area is used to maintain a local operating environment for a module so
that the modules may be written in reentrant code.

1 2. Microprogram Memory

The microprogram memory of an interpreter contains three separate areas
(variable bounds): the locator/allocator, the microprogram, and the executive modules.

The locator/allocator is permanent microcode that is invariant of the task being
run. In running a task various executive modules may be called upon to execute certain
functions such as 1/O from a peripheral, subroutines, etc. These modules are executed
from microprogram memory. The task calls the locator to execute an executive
module (Figure B-16). The locator saves the return address in the task and restores It
after the module is executed. The locator uses the index supplied by the task to select
the proper entry in the source table of the task's work area to locate the module,
Figure B-17 depicts how a module is located. If the source table indicates the module

44

I

ru

.j.

be 0 U

LU It 3

I.-x
0 0L

ca

4&

419 E I.- L

00
29-

00

cc 1

c45

0 L

LOCATOR

SAVE
RETURN

ADDRESS

LOC 2

GEI POINTER

IMO OJLE NLIME a
FROM
CE TABLE

raOU"

USE
MICROPROGRAM NOT PRESENT

MEMORY ADORESS ALLOCATOR
TO SELECT
NEXT CODE

P-ESENT IN PRESENT
MICROPROG30AM

MEMORY

UPDATE
LANT USED

GLOBAL COUNTER

LUC - I - LUC

i--'[

E1XECUTE

F ~SELECTED
WOOULE

RESTORE
RE TURNd

ADDRESS

RETURN
TO

CALLER'

Figure B-16. Locator

46

i

3 YA A$KT OCTn AMOCUL

LL TO LOCATOR)

MICROPROGRAM §KO

DRECTLY)

I-
MNXTREA SmR[7"1 $

VI^ CALL TO ALLOCATOR)

PARTS LIST POINTER MOULt

A"A

SFigure B-17. Locating a Module Through Storage Hierarchy

S~47

f AN E OY

is in microprogram memory, it will contain a pointer to the module. If it is not in
microprogram memory, it will point to the allocator. The allocator then uses the
entry in the source table to point to a Parts List Table (this is a master table with
one per system) which will contain a pointer to the module in main memory.

If the module were not in main memory, the 'Parts List would point to a file
directory that would point to a location on some peripheral. The allocator function is
used to find space and copy an executive module into the microprogram memory to
execute it (Figure B-18). The allocator function may also have to deallocate some
modules from the microprogram memory if enough free space is not available therein.
Modules are deallocated (overlayed) based upon their relative use by the task being
executed.

C. EXECUTIVE OPERATION

There are a number of modules that perform executive functions. Two modules
that perform tasks basic to operation of the computer system are the scheduler and
end task modules. The scheduler module scans the task table to determine which
task is to be executed next. The task table (Figure B-19) contains bits defining if a
task is presently being run, if it is ready to run, its S machine 11). its work arta
pointer, etc.

Each interpreter is assigned a global bit. Only one interpreter can have its
associated global bit set at any one time. Simultaneous requests to set a global bit
are resolved in favor of the highest priority interpreter. An interpreter must set
its global bit before changing any bit of a task in the task table, (this is shown in

1 Figure B-20). This prevents conflicts between interpreters in simultaneously
attempting to make changes in the executive tables.

1. Anoticr executive table is the resource table (Figure 13-21). This table defines
if a resource is being used and contains a link to a resource waiting list.

An additional executive table, the interpreter table (Figure B-22), containst nformation defining the status of each interpreter in the system. The inteicpreter
table defines if an interpreter is busy, what task is being run 0'- , a time check on
the interpreter for failure detection Ian interpreter has to repo. in to the table
within a specified time interval after starting a task), and a comr:;,nication area for
sending messages between interpreters.

¶ The end task module unschedules h task. This module updates system tables,
releases resources, and checks the interpreter tables to check cn the operation of the
other interpreters.1

SThe use of the end task and scheduler modules in the cyclic flow of execution of
tasks is shown in Figure B-23. The scheduler moduieo selects a task to run and
allocates resources as needed. Execution is then turned over to the task which will
select and run any executive modules needed. Tim task must also report in periodically
to its interpreter table. When the task is to be ended the end cr suspend taskl module
performs the functIors illustrated whereupon it then cails upon the scheduler module to
initiate the process over again.

48

'====-

A AL LOCIA TO0R

GET LOC Cl.
POINT[ER 17
PARTS LIST

GE T
ICROIROGRAM

MEMORY ,

SPACIf /

L LIST

L__ USECOUN~t

SLiSET LIS?

INOjMODULE fPRG OUN

MAI N,1 . MEMORY PARTSL

L YLOCK USECOLN UL

PARTS -IATRTSEC IPRSLS

L Fiur l- IS . Aloao

ROM

K" £E

ENTRY READY-TO TASK I'D A WORK
INACTIVE READY-TS PRIORITY TIMING. SIATISTICS ARI"A

IT RUN ITS "S" MACHINE IV POINT[R
AND LINK

1 3 4 S

*1WR RESOUR(•E LIST

ALTRNAE.9 CORRESPONDING,
ATRAE NUMBER 01 TYPE 11) STATT RR BIT TYPE

AREA
POINTER

Figure B-19. Task Table Entry.

I50

[.

[
Ii

I
(

• L0
l 4 III

BI

GLBLN

ISET

BI O
ye

BI

YE5S

SENTRY TASK TYPE WAITING HIGHEST
INATI1VE TYPE ID SIATE TASK PRIORITY LINK USt PRIORITY

BIT LINK WAITING

i.
Figure B1-21. Resource Table Entry

Ii ENTRY INTERPRETER RUN 1ASK START WAIT TIMF (MMUNI(ATIONINACTIVE WAT OMUIATO
IT DOWN DIAGNOSTICS NUMBER TIME TIME NEXT AREA
BIT REPORT DUE

Ii

fFigure B-22. Interpreter Table Entry

I f 52

seI.
I>

050

a 22

'I,

i3--
K&

SID.hel

REFERENCES

I B-I. Davis, R. L., C. M. Campbell, S. Zucker; Aerospace Multiprocessor Interim
Report, Burroughs Corporation, Feb 1972

B-2. Wehr, K. C., Technical Summary of the Interpreter-Based System, Burroughs
Corporation, Jan 1971

3 B-3. Davis, R. L., and S. Zucker; Structure of a Multiprocessor Using
Microprogrammable Building Blocks, NAECON '71 Record, pp 186-200.

B-4. Davis, JR. L., and S. Zucker, C. M. Campbell, A. Building Block Approach to
Multiprocessing, 1972 Spring Joint Computer Conference, pp 685-703.

B-5. Reigel, E. W., U. Faber, D. A. Fisher, The Interpreter - A Microprogrammable
Building Block System, 1972 SJCC, pp 705-723.

B-6. Zucker, S., Aerospace Multiprocessor Executive, Burroughs Corp, Paoli, Pa.,
Technical Report AFAL-TR-72-144, April 1972.

5
{

I
I:
F

I [5

I

I
DISTRIBUTION LIST

3 Contract F33615-72-C-1973

Address No. of Copies

WPAFB ACTIVITIES

[AFAL/TSR
WPAFB OH 45433

AFAL/AAM (Mr. J. Camp) 18
I WPAFB OH 45433

AFIT (Library) 2
WPAFB OH 45433

ASD/YHEV (Mr. Jim Hutson) 2
WPAFB OH 45433

2750ABW/SSL 1
WPAFB OH 45433

OTHER ACTIVITIES

HQ USAF/SAMID 1
Wash DC 20330

AU
Library
Maxwell AFB AL 36112

Director 1
Naval Research Lab
Wash DC 20390

Commanding Officer 1
Naval Avionics Facility
21st and Arlington Ave
Indianapolis IN 46218

US Army Electronics R&D Lab 1
Attn: Dr. H. Jacobs
Ft Monmouth NJ 07703

f Director, NSA
R-13
Ft George Meade MD 20755

S.

DDC 2
Cameron Station
Alexandria VA 22314

INDUSTRY

Control Data Corp 1
4130 Linden Ave
Dayton OH 45432

Hughes Aircraft Co 1
Aerospace Group
Culver City CA 90230

Honeywell
Military Products Group2314 Standly Ave
Dayton OH 45404

IBM Corp
33 West First St
Dayton OH 45402

RCA
Aerospace Systems Division
Box 588
Burlington MA 01801

McDonnell Douglas Corp
333 West First St
Dayton OH 45402

Raytheon
333 West First St
Dayton, Ohio 45402

Westinghouse Electric Corp
Aerospace Division
Friendship International Airport
Box 746
Baltimore MD 21203

Litton Systems, Inc.
Guidance & COntrol System Division
5500
Canoga Ave
Woodland Hills CA 91364

Texas Instruments, Inc.
Equipment Group
Suite 205
3300 South Dixie Drive
Dayton OH 45439

(w

General Electric Co
Aerospace & Defense Sales & Service
3430
South Dixie
Dayton OH 45439

* Univac 1
Defence Systems Division
333 West First St
Dayton OH 45402

Burroughs Corp
Federal & Special Systems Group
Attn: D.F. Sullivan
Paoli PA 19301

IIBoeing Computing Systems
Attn: J.F. Cramer
8R-39 Mail Stop
Box 3707
Seattle WA 98124

Singer-Kearfott Division
Attn: M.G. Page
33 West First St

Dayton OH 45402

The Garrett Corp 1
333 West First St
Dayton OH 45402

Grumman Aircraft
333 West First St
Dayton OH 45402

Northrop Corp
379 West First St
Dayton OH 45402

Department of Transportation
Transportation Systems Center
Attn: Mr. G. Y. Wangj Cambridge, llass.

National Aeronautics and Space Administration
Langley Research Center
Attn: Mr. L. Spencer
Hampton, Virginia 23365

If

A4

DOCUMENT CONTROL DATA - R & D
ISwrcity classificatioat OI ttle. _bdy at abstract and indexing annotation must be entered when the overall report is dC14a8ilied)

' ORIGINATING ACTIVITY (Corprat.e aut•or) .2,. REPORT SECURITY CLASSIFICATION

Autonetics Division of Rockwell International UNCLASSIFIEDI 3370 E. Mraloma Ave, Anaheim, Ca. 92803 2b. GROUP

3. REPORT TITLEr

Avionics Processor Controller STudy, Volume 3, Multiprocessor
-- Description

4. DESCRIPTIVE NOTES •fp& of roeplr and inclusive dates)

Final Report Jily_ 1972 - June 1973
I. AUT14OR(S 1 (IF *,,l mieddl Initial. lMet 1 , Om1)

SL. J. Koczela

-REPORT DATE 7. TOTAL NO. OF PAGES ib. NO. OF R[ES

SJune 30, 1973 591 6
I S". CONTRACT OR GRANT NO. Ga. ORIGINATOR'S REPORT NUMBER|SI

F33615-72-C-1973
,..,PROJECTNo. C72-8121201, Vol 3

"9b. OTHER REPORT NOIS) (Any other number that may be aseinredthis owporl)

AFAL-TR-73-203, Vol. 3
d.

10. DISTRIPUTION STATEMENT

Distribution limited to U.S. Government Agencies only; test and evaluation
results reported; February 1972. Other requests for this document must be

a orce Avionics Laboratory (AAM), Wright-Patterson Air Force
I. SUPPLEMENTARY NOTES I1. SPONSORING MILITARY ACTIVITY

AFAL/AAM
WPAFB, Ohio 45433

I3. ABSTRACT

This volume presents a detailed description of the Burroughs Multi-
processor. The descriptive material of the multiprocessor was scattered
through several reports. The purpose of this volume is to extract the
appropriate material from these reports and present the available
material, upon which the study was based, in one unified report.

I
C

DD kOV.61473 uNG LASSXTUDj• [Security Chassification

KEY WORDS LINK A LINK 6 L#NK C

ROLE WT ROLE w T ROLE WT

Multiprocessing
Computer Archituecture
Computer Organization
Microprogramming

i

.3

I!

- - -

