UNCLASSIFIED

AD NUMBER

AD911357

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies only; Test and Evaluation; FEB
1972. Other requests shall be referred to
Air Force Avionics Laboratory, Attn; AAM,
Wright-Patterson AFB, OH 45433.

AUTHORITY

AFAL ltr, 7 Oct 1977

THIS PAGE IS UNCLASSIFIED

AFAL-TR-73-203

Volume 11|

L

AVIONICS PROCESSOR-CONTROLLER
CONFIGURATION STUDY |

APPENDIX B-VOLUME Il

L. J. Koczela
Electronics Group of Rockwell International

Anaheim, California 92803

ANO911357

TECHNICAL REPORT AFAL-73-TR-203 VOL. Il

DISTRIBUTION STATEMENT

Distribution limited to U.S. Government Agencies only;
test and evaluation results reported; February 1972,
Other requests for this document must be referred to

Air Force Avionics Laboratory {AAM), Wright-Patterson
Air Force Base, OH 45433,

\‘0 AIR FORCE AVIONICS LABORATORY
%\?‘ Air Force Systems Command
60 Wright-Patterson Air Farce Base, Ohio 45433

g Rt 6 TRV SRR

NOTICE

cHAR W s

When Government drawings, specifications, or other dats are veed for any purpem
other than in cannection with a definitely related Government precurement speration,
the United States G overnment thersly incurs no respensibifity nar vay abligatien
whatsoever, snd the fact that the government may have formuisted, furaished, or in
any way supplisd the said drawings, specifications, er other dita, ks =6: to be regarded
by implication er otherwino as in axy misnner licensing the heldar o1 sny ather parsan
OF COTpOTation, 0¥ conveying aay rights or permission 16 manufacture, wse, or soll any
patentad inveation that may in sny way be niatad therato.

Copies of this report sheuld not be returned unless return is requisred by security
considerations, contractual ohligations, or netice on 8 specific document.

S T T PRI TR e R

AVIONICS PROCESSOR-CONTROLLER
CONFIGURATION STUDY

APPENDIX B-VOLUME il

L. J. Koczela

DISTRIBUTION STATEMENT

Distribution limited to U.S. Government Agencias only:
test and evaluation results reported; February 1972,
Other requests for this document must be referred to
Air Force Avionics L.aboratory (AAM), Wright-Patterson
Air Force Base, Ot{ 45433,

FOREWORD

This Final Engineering Report was prepared by the
Electronics Group of Rockwell International, Anaheim,
California. The work was accomplished under USAF Project
6090 entitled "Avionics Data Handling Technology”, Task
01 entitled "Avionics Information Processing”™ and con-
tract No. F33615-72-C-1973 entitled "Avionics Processor-
Controller Configuration Study.® The work was administered
under the direction of Mr. J. E. Camp, Air Force Avionics
Laboratory, AFAL/AAM, Wright-Patterson AFB, Ohio.

This report covers work conducted from 1 July 1972
to 30 June 1973 and was submitted by the author 30 April
1973.

This technical report has been reviewed and is
approved for publication.

C
colonel, USAF

Chief

System Avionics Division

] [
- .

e e e T ST o

i

.~

ABSTRACT

This volume presents a detailed description of the Burroughs Multiprocessor.
The descriptive material of the multiprocessor was scattered through several
reports. The purpose of this volume is to extract the appropriate material from these
reports and present the available material, upon which the studv was based, in one
unified report. This report is also being published as Autonetics internal
report C72-812/201.

iii

CONTENTS

1Y 5 7] 5 - Y 1 A 111
1. Burroughs Computer Description. e et e e 1
2. Interpreter Description e e e e et s e e 4

B - Y - |
TogioUnit (1) ¢« ot vt it ettt et i nstnnotnonaceonneees 4
Control Unit (C¥) v v v v it v ittt v vt s e esssassensserannnaas 8
Memory Contro? Unit (NICU) . .o 00 it oo i ettt i it e v s v s mnane e 10
. Nanomemory (N MemOry) ..ot vt v ittt v o oe oo ton e 10
. Microprogram Memory (MPM) et e e e et e e m e H

1)

P o i -'“ +4 e
——— s pume WM PR R O

mmonse

3. Interpreter Operation. . . v o v v v i ot v ittt et v tn s ot v v nnnonas ce. 12

A, General, o v vt v it i i e i i i s e st e et e e 12
B. Condition Operatives . & v o v vt o e ot oo o i ot ottt ae st e s ennenn 14
C. Microinstruction Sequencing . o ¢ ¢ o v o o o v v et ot v v v v v v a0 s R i
D. TogicUnit Operations0 ottt ittt s i a i oot ot o s oo o e 19
1, Adder OperationS. . v v v v v s s ot oo a v o v e enenns cee. 19

2. Shifting. e e e e e 20

i 3. Data Loading. « « v ¢« v v v i vt i i it i e s e e 23
4. External Operations. . ..o v i iii i i v o ceee. 2N

| 4, SBwitch Interlock (SWDH Desceription o o0 v v v v v v i e v en e e . 26

A. SWIModules e
B. Switch Interlock Operationand Timing . .o v o000 oo oo v oo a1
1. Memory Operation, 0o i cn e oo e e e 31
2. DevicelockandUnlock & .00 i i it i ittt ittt s s eanes. 36
3. Device Readand Write 0 it it it ittt ettt e et 37

L ¢ Y U1 1 O 41

) A. Introduction. . .« v v v v s v v v v e v e . Y|
B, Task Operation. v it it ittt it nenstennrrooenses 41

1. Task Work Area o v v v v v et ettt e s e anesnmoaccrtoassene 41

2. Microprogram Memory. . . . oo v v o v a e
C. ExccutiveOperation , .« . v o v et et tenenvasrssnseessereaes 48

ReferOnCes o v v v v v e v v et ot s s s 1 s e s esasssasssmessossvsasssess 5D

iv

FLLUSTRATIONS

Figure Page
B-1. Burroughs Multiprocessor, . « v vt st v v v v s v nesseceossosas 2
B-2. Interpreter Block Diagram., .. O
B-3. Interpreter Data and Control Flow | | ., ¢ ecveeee. G
OE B-4. Timing Analysis Type I Instructions , _,,,............ ... 13
i B-5. SWI Interface DIagramcovnunnenenensnnnenen. 2T
B-6. MDCBlockDiagram, , .,0t vueeeereoenenceans. 28
B-7. 3-Channel Device Control Block Diagram,0000... 29
{ B-8. I‘yplcal Stage - Memory Control, - 10
b B-9. 5-Channel Input Switch Network Block Dmgram ,,,,,,,,,,,,,,, 32
B-10. 5-Channel Output Switch Network Address Block Diagram, |, |, | ... 33
\1 B-11. 5-Channel Output Switch Network (Data) Block Diagram _ ., 34
I B-12. Software Operation,t iitereinenennenennoo. 42
B-13, Contents of the Work Aren, vt vt e s o s o v eseneennnnens 43
§ B-14, StateVector .,t ittnnenerierinneennrionaneses H
o B-15. Using the Program «oference Table o o v v v v v i e v e e an. s .. 43
P B-16. [OCALOr « v v s v v s s st e e ettt ssocresssssrasessncnsas 36
' B-17. Locating a Module Through Storage Hierarchy. . . -+ - v v oo v v o o0 47
B-18. AlloCator + ¢ o v ¢ v o s e vt s o cassasasnssasssssnassaseoes 49
B-19. Task Table Entry. . . . ¢« vt oo v v e v et e e e e nn e S 1
B-20. lLocking . .« cv oo e et creeseses. Bl
B-21, Resource Table Entry . .0 v v v vt s it v e st et i v o s B2
B-22, Interpreter Table Entry et e e te et 52
B-23. Cyelic Flowof the Svstem . v o o vt ot e v e v e e v e s e s nnsnan .. 53
: TABLES
Table Page
B-1. Detailed Nanobit Assignment -+ -« - v v et e e v it i i i i e c e s T
B-2, Set and Reset of Conditions -« « . . . ces s e 15
B-3. Microprogram Mcemory Addressing -« -0 e e o v e v v v v e v s v v ot « 19
B-4. Adder Operationseoeoeeieeronennnennnnnaecnn 21

e OO SO

g

I. BURROUGHS COMPUTER DESCRIPTION

This appendix contains, for the most part, material extracted from various
Burroughs reports (Ref B-1 through B-6). These reports provided descriptions of
various portions of the Burroughe computer. It is the intent of this section to bring
together some of this material into one unified document and also provide a basis for
the Burroughs computer description that served as the basis for the study.

The Burroughs computer concept has been referred to by various acronyms in
recent reports (Ref B-1 through B-5) such as the Interpreter Based System, Multi-
processor, and Aerospace Multiprocessor; in addition, the title of this study uses the
acronym, avionics processor - controller, The term Burroughs multiprocessor or
simply the multiprocessor will be used in place of these acronyms in this report.

A block diagram indicating the general structure of the Burroughs multipro-essor
is given in Figure B-1. The basic modules or building blocks of the multiprocessor
are:

1. Interpreters - Processing Elements consisting of arithmetic logic and
alterable microprogram controls

2, SWI (Switch Interlock Unit) - Interconnection logic to allow interpreters to
communicate with memories and devices

3. Memories - Storage elements for programs and data
4. Devices ~ interface elements between peripherals and the SW]

5. PSU (Port Select Unit) - May be used in place of the S\WI for single
interpreter systems

The Burroughs multiprocessor emphasizes two concepts (a) bhuilding block
structure and (b) variable machine architectire achieved through microprogramming.

The basic building blocks listed above allow multiprocessors with different
numbers of modules to be constructed to meet varying computational requirements.
The multiprocessor designed for the Air Force allowed up to five Interpreters, eight
Memories, and eight Devices,

Variable machine architecture is possibie with the Burroughs multiprocessor by
reloading the microprogram memory with routines. For exumple, it is possible to
(a) emulate existing computers, (b) perform higher order ianguage processing, and
(c) process a problem optimized instruction set. Further, these could be performed
in a multiprocessing manner,

The computer can operate as a {rue mulliiprocessor since any interpreter may
access any memory or device module and multiple interpreters may be used simul-
taneously to process a computational task. Through the {lexibility offered by variable
machine architecture the interpreter can functiecn as a CPU, as an i/Q Processor, or
as a device controller, |

A BN %

N

[

Jossovoadniy sysnoaang -] 2andi |

Kiowaw e Kioway
I MS
Japud . . J3je4d
-Jaju| -laju|

321A3(

FRILE|

— -

The Interpreter is a building block that can easily change its performance
characteristics and can function as a CPU or an I/0 module or as a device controller.
It is a simple computer with primitive registers and combinatorial logic without the
usual hardware control found in conventional computers. Initially the Interpreter is
an uncommitted piece of hardware that is structured by stored logic contained in its
microprogram memory,

e pesee SR IR

A single Interpreter system can be mechanized using a port selection unit to
interface the memories and devices.

2, INTERPRETER DESCRIPTION

e - & || FEE e

A. GENERAL

2l

The interpreter’'s functions are to:

1. Contain the microprogram memory.

Py

2. Provide the timing and control for sequencing and controlling according to
the microprogram memory.

3. Control the communication with external devices and memories.

[P

4. Perform the logical and arithmetic operations required.

In order to accomplish these in a flexible manner Burroughs has defined a
modular approach with the Interpreter consisting of submodules as follows (See
Figure B-2):

P

1. Logic Unit - The circuitry associated with the arithmetic, shifting, and
logic functions are contained in the Logic Unit. The data word length is
expandable from 8 to 64 bits in 8 bit increments.

2. Control Unit - The Control Unit contrins registers for conditional control
and logic commands.

3. Memary Control Unit - The Memory Control Unit provides registers and
control for memory (interpreter and main memory) addressing,

4. Micrcprogram Memory -~ This unit provides storge for the microprogram
sequences. The unit could be implemented with ROM or RAM devices,

5. Nanomen,ory - The microcontrols for an Interpreter are supplied by the
54 bit wide Nanomemory, Most likely implemertation of this is with the
use of ROM. The particular nanoword is sclected by the MPM word using
the contained memory address.

B. LOGIC UNIT (LU)

Figure B-3 contains a detailed description of the data and control flow in the
intcrpreter and Table B-1 jdentifies the control provided by the 54 bits in the naro-
memory word. Refercuce to Figure B-3 and Table B-~1 will aid in following the
interpreter description given below.

One Logic Unit for each 8 bits of data word is required for each interpreter,
The LU is composed of: the three A registers, a B register, an MIR register, adder,
and barrel switch logic.

= EyE

wedden] yoop] aaoadasur cneyg oansty

i s P,

s
B RN Wil b g
Pl s rnind o g § S
waAQ 100 S ey (02090 Ay
4_ e
PR LE P LTI W] A2t py weoyy
I 1P Q0D
nie +
) 1V udenv-¥1d q i
] : ﬂ m
WL LY ?~
yvrvlneg tui [T TRULIPRTE Y I — X
L wiims 13uwve | Wi wdeny avnzeviue ot »
oo e w3 agiowen ¢ 1) :
g yme 1 S 11T
o Tx_l ¥30QY } ey PN udenv/ uden “ wv
) ey SRRV 10w hots 00w vany 1 _
s dn {NJwWi LINN -
m»u:um aw_ X s TOYINOD AuOn W
w v W)l 8 9Q Fpyry 9
L o Iunue "
H) 1J_ 1V NS 4 j2elg 2
w Pt 2] ﬁ
1 b0y Putunuer)) TR !
ny e e .
AT LINA PRt vvs
90" {NJ) LINN TOYANOD "
- SOA !
I o [41V wlenvuid 4 . et
Mg urduy 2 treaw) | i
1!\.“ ANOWIV
- —ryy g AHOWIN ONYN :m.uwm.u;
-y |-l
Wy rang -4 l...i'q
([] i)
) .
[E YN >

.. t i o E sninnd ol [ae—— o e [, fp— gl i g il g n— — o -~ S e .n

MO [01jue) pue eje(J9jeadiojul °g-g sandig

- Wy
857 puseeg . 021 ¢
iy ptwyeds oy - SN
i My 0w - SEY Tanhasaly

Wt Systang 19 e af) WgiE 1ing Be ¥ Sebvanr)
Prginsig o8 Aibatyy WY G SERIDRIRARE)

Ry

BIMEY @R ing 4 4 Ao Wity @ 0]

Tanti ol)

- EX3 £4D 1X3 DN (VS
I s Wy, T PST W

VI AP U EC Ay wel) JssmBes Wt Dade

S S840 [T S s peme s S weap BRI L Ny | l!'!i"U‘ !
ok stamm MXMNAY 1 ‘o . .
LIS m LI T Y him i e
BN e ot mengiul wea wea g, AN a®suse) uy g Aoy e Voo ity gy o T . 1SUMRsNS y iry 3 JOUN 40 A3 B ﬂ
YT 45012393 11 0 B i L I L I A o] X
UL BRI TN ¥] [yt t 1 s 1 Srreves apussw 0Q M
[TR LT e, BT B S B T rw o wH e ¢ 1 - o zimey [0 7]
UM ewsw M Ima e 1 1 1 LR oL e e Tower. 1m0 wery sy E
L R T R A B et R b L L w0
(MM vomm) =9 170 ¢ e 1 1t trwseon) wl awd e 1 1 : e -
WEw e M0 yga 1 1 e 1 saeugduey amM 18 0 e ! w8
GNUPE 0 Td Bt 5 thserEms ey w8 1y ML =
EWRIY 4@ gd 1 8 8 1 iatrana aEm ot RPN o\ wmovee 14 3]
U et B s L I B msm wa o0 . \
T Yo e et ALY tos ooy 1y 4 rTepts 1a; veiso solry Jopry SoEe
U einwom rem » 1 1 e honuz s * 0 o o . .
st et R < IR . um e g 111t
TG R Tem 1 1 v e Rettas B LI CONTIE T - : I Moo
(EGwmsm @M o 1 e 8 i M v e
SRR T et 1 e ¢ e ¥ . e 1 I B R
wee) s - 2 s e 0 N X €Y1t 1 e ¢
Pooy o8 e 1 e
om0 mmwm [w & rn 1] e S] i L ERE
2 o . W0 e
~yy Wy LI 898 it b seivBon y [3F 61w b . ' oy 111 e
[[T~] 1
— . HEH mony iy 3y w1 ot
BAIu 7 gt o LA | I e e 9 -
w4 e W tooe
w—w [F 5] et P D) Tmoites
rswerhme) vo00 . R I T Co T vl inoe s
e Py i b e Ty a1t trh o 00 ¢
JRER Wiy ¥ t e ¢t B Eueddy 800 - LOLSIMG SN A TINE N L 19 WReweTin Y Jeg 1o w41 vt IR L T SV,
AT wesy wn T e » LI e N L LIS __
Busu oy - e o - *0 L T B A ! ° R too
‘e b I L T S T T ¢t ¢ s o umeap \q | 20t eud
s seemey g ve Moy 1 e 1t LA dut-toooe N Loy [Meesine SompuRInG
e VY 5o b o1 [u¥m 0 U 9
MO -y e LI B | .t HAawy] 1 0 1 FIOWINOD DXV
s vy e P ‘e ay o 1 o : Bl tem n pes
MmN qevMm 0t ot ot - . [R TP e 15 vl a—nsas owim |
A Wy L. LI S =9 L I TR R | eaues - 1T S watet e Wy ™ Sl RNy MR RN 0 SRy]
Al wesy wm 1 ot - LB oot o1 o1 e “ N _Hon * e I LA ERTSIGI AN SSEE] AMESY 1T > By WERRSNE) SvReYg |
“ iy BWT » T - - LB HY+HY 8 1 1t & (PRSI ¥R POTUBINTY) pO0aN)
- .- R B B} " mazy 1 0 1 e EY113as 1 o8t
" iTWOX V'E °o ¢ 1 v o138 9 1 RWOGY ONYN L - .mo ¢ o8
iy ovRarry w0 mem E e Temey 1 1 s e tMILEE 1 o8 T T "Tivs
.t Mewh 9 1 & @® INILIS ¢ 8
L2 L .t E) asAM 1 1 8 *IARY T Ji e
oy o - e e | T T Y D1 e 1 e
YrIns 1 e e an] e
BN wesy wiw ¥ WNY @ an 1ndane Joves 119 -—isiak) Jeuvy L] .. s e . . = - - ~ 'L] mﬂ.
L LT
] t wmet S] rer - vrlry wenewes (g« -_ N L.J0.4

o) oy -] aony - 1 -
WoR ML YES

e oi W

208 wagy mhvy N @ s o rassnyuwem i)

juowrudIssy J1qoueN palieldd ‘I-9 °IqelL

P P i P

¥

Registers A1, A2, and A3 are functionally identicai. Each temporarily stores
data and serves as a primary input to tne adder. Selection gates permit the contents
of any A register to be used as one of the inputs to the barrel switch,

The B register is a primary external interface (from the Switch Interlock). It
serves as the second input to the adder and can also collect certain side effects of
arithmetic operations. The B register may be loaded with any of the following (one
per instruction): :

1. The barrel switch output

2. The adder output

3. The data from the Switch Interlock
4. The MIR output

5. The carry complements (from the adder) of 1- or 8-bit groups with selected
zeroes (for use in decimal arithmetic or character processing).

G, The barrel switch output ORed with 2, 3, or 4 above (within the B register)

The output of the B register has true/complement selection gates which are
controlled in three separate sections: the most significant bit, the least significant
bit, and all the remaining central bits. Each of these parts is controlled independently
and may be either all ZEROs, all ONEs, the true contents cr the complement (one's
complement) of the respective bits of the B register.

The MIR huffers information being written to main memory or to a peripheral
device. It is loaded from the barrel switeh output and its output is sent to the Switch
Interlock, or to the B register,

Inputs to the adder are from sclection gates which allow various combinations of
the A, B and Z inputs, The A input is from the A register output selection gates and
the B input from the B register true¢/complement selection gates, The Z input is an
external input to the LU and can be:

1. The 8-bit output of the counter of the MCU into the most significant 8 bits
with all other bits being ZEROs,

2. The 8-bit output of the literal register of the MCU into the least significant
8 bits with all other bits being ZEROs,

3. The 12-bit output of the alternate microprogram count register (AMPCR)
right justified into the middle 16 bits and the (wired) Interpreter number
right justified in the remaining four bits of the middle 16 bits. All other
bits are zeros,

4, All ZEROs,

(""--'N M r-mn"n

——

o —

e e,

2
i

Using various combinations of inputs to the selection gates, any two of the three

inputs can be added together, or can he added together with an additional ONE added to

the least significant hit, Also, all hinary Boolean operations between the A and B and
between the B and Z adder inputs and most of the binary Boolean operations between
the A and Z adder inputs can be done.

The barrel switch is a matrix of gates that shifts a parallel input data word any
number of places to the left or right, either end-off or end-around, in one clock time.

The output of the barrel switch is sent to:

1.

2'

3.

Ja

The A registers (A1, A2, AJ})
The B register
Memory information Register (MIR)

Least significant 16 bits to MCU (registers BR1, BR2, MAR, AMPCR, LIT,
CTR)

Least significant 5 bits to shift amount register (SAR) in the CU.

C. CONTROL UNIT (CU)

One CU is required for each Interpreter. Major sections of this unit are: the
shift amount register (SAR), the condition register, pirt of the control register (CR),
the MPAMI content decoding, and the cloek control.

The functions of the SAR and its associated logic are;

L,

To Toad shift amounts into the SAR to be used in the shifting operutions.

To generate the required controls for the barrel switeh shift operation
indicated by the controls from the Nanomemory.

To generate the "word length complement' of the SAR contents, where the
"complement” is defined as the amount thit will restore the bits of 4 word
to their original position after an end-around shift of N followed by an end-
around of the "complement” of N.

The condition register section of the CU performs four major functions:

1.

Stores 12 resettable condition bits in the condition registers. The 12 bits
of the condition register are used as error indicators, interrupts, status
indicators and lockout indicators,

Selects 1 of 16 condition bits (12 from the register and 4 generated during
the present clock time in the Logic Unit) for use in performing conditional
operations,

Nty

3. Decodes bits from the Nanomemory for resetting, setting, or requesting
the setting of certain bits in the condition register.

4. Resolves priority between Interpreters in the setting of global condition (GC)
Lits.

The control register is a register that stores 38 of the 54 control signals from
the Nanomemory that are used in the LU, CU, and MCU for controlling the execution
phase of a microinstruction. Twelve of the 38 outputs from the Nanomemory are
stored in the CU. Four of the other 38 Nanomemory ocutputs are controls to the
Switch Interlock and are stored there. The other 22 of the 38 Nancmemory outputs
are stored in a part of the control register physically located in the Nanomemory.

The MPM content decoding determines (based upon the first four bits of the
MPM) whether the MPM output is to be used as a Type I instruction (Nanomemory
address) or as a Type Il instruction (literal). Several decoding options are available,

D. MEMORY CONTROIL UNIT (MCU)

One MCU is required for an Interpreter, but a second MCU may he added to
provide additional memory addressing capability. This unit has threc major scetions:

1. The microprogram address section contains the microprogram count
register (MPCR), the alternate microprogram count register (AMPCR),
the incrementer, the microprogram address control register, and
associjated control logic, The output of the incrementer addresses the
MPM for the sequencing of the microinstructions. The AMPCK contents
are also used as one of the Z inputs to the adder in the LU,

2, The memory/device address section contains the main memory address
register (MAR), base registers one and two (BR1, BR2), the base register
output selection gates, and the associated control logic,

3. The Z register section contains registers which are two of the Z inputs to
the LU adder: a loadable counter (CTR), the literal register (1.IT), selec-
tion gates for the input to the memory address register and the loadable
counter and their associated control logic.

E. NANOMEMORY (N MEMORY)
The Interpreter is controlled by the output of the 54-bit wide Nanomemory which

may be i“:plemented with a read/write memory, a read-only memory, wired logic, or
a combination of the three,

Each of the 54 bits represents a unique enable line for the gates and flip-flops
within the LU, the CU, and the MCU. FEach Nanomemory word represents a micro-
instruction that is executed by the simultaneous presentation of a specific enable
pattern for the 54 outputs, represented by corresponding ONEs and ZEROs in its
word., The deflinition of these bits is presented in the microprogramming section,

-

o — P — oy —ry m m

P —"

A unique feature of the Interpreter Based System with its separate Nanomemory
and Microprogram Memory is that the explicit enable lines for each microinstruction
need be stored in the Nanomemory only once (regardless of the number of times that
a specific microinstruction is needed in a program). To accomplish this saving in
memory, the Microprogram Memory (MPM) contains the address in the Nanomemory
where the explicit ONEs and ZEROs are stored that are needed to execute that instruc-
tion type rather than the full microinstruction. Thus, several microprogram sequences
which use the same microinstruction (e.g., transfer A to B) need only store in the
Microporgram Memory the address of the Nanomemory word containing that
microinstruction,

F. MiICROPROGRAM MEMORY (MPM)

Each Interpreter requires a source of microprogram instructions to define the
operation of the Interpreter.

Two possible solutions for providing this source of microprogram instructions
are listed below:;

1. A semiconductor MPM. This memory can be a read-only memory (ROM)
if the Interpreter is to be dedicated to the function defined by the ROM, A
read-write memory can be used for experimental purposes or when the
function of the Interpreter might be changed, such as reconfiguration in a
multipic Interpreter system. In this instance, the system could afford to
wait while the MPM was reloaded from a remote microprogram store
accessed via the Switch Interlock.

2. A buffer into a slower-speed, wider-word memory,

Loading of the MPM and NM can be from an external source if both are read-
write types. This external source can be the AGE or operating memory.

11

R A TR R R T T R N —

('-o-"x

o B S

gy 'M M
A

3. INTERPRETER OPERATION

A. GENERAL

A unique feature of the Interpreter Based System is the utilization of stored
logic in M and N memories and uncommitted hardware logic to form firmware control
that is exercised to a more priniitive logic level than in conventional microprogrammed
central processors, being read at every clock time and offering more parallelism in
its greater word length, This firmware, in essence, commits the hardware logic of
the system to function in a specific fashion. The highest level of instruction used in
an Interpreter is the $ instruction which corresponds to a standard machine instruction
and is stored in Data/Program (S) Memory. In a typical application, a starter set
of microinstructions is accessed which causes the first word of the first S instruction
of the program to be called into the interpreter. An analysis group of microinstruc-
tions causes the op~-code of the S instruction to be cenverted into the address of the
first of a string of microninstructions {m-string). That particular m-string provides
all of the control necessary for the execution of the 8 instruction including the calling
of any additional memory words that might be required to describe the full § instruc-
tion. The m-string terminates by transferring control to the m-string that calls the
next S instruction.

Each microinstruction requires a single clock cycle for its execution. The
16 bit microinstruction either contiins literal data (Type Il microinstruction) or it
contains the address of a 54 bit word called the nanoinstruction in the Nanomemory
of the Interpreter which when read provides the information to produce a set of 54
logical levels (Type I microinstruction). In either case, the 54 logical levels control
the hardware logic in the Interpreter which provide the desired function. The control
signals, or enables, for the hardware logic which are c¢xercised by the nanoinstructions
of the N memory are summarized in Table B-1, Figure B-3 presents the interpreter
data and control flow.

During each clock period, a 16 bit microinstruction is read from the MPM, The
first four bits of this microinstruction indicate which oi two types of instruction it is.
If it is a Type I instruction, the remaining bits of the MPM word specify a Nanomemory
address to be accessed. The Nanomemory is then initiated and its output, a set of
54 bits, provides the control functions as indicated in the listing in Table B-1,

If the microinstruction is Type 1i, the remaining bits of the MPM word are
stored into one or iwo registers: namely, the SAK, LIT, SAR and LIT, or the
AMPCR,. The determination of which registers are to be loaded is specified by the
first four bits of the MPM word. The Nanomemory is not accessed during a Type 1l
operation.

Each Type I microinstruction has two parts (or phases). The first fetches the
instruction from the MPM and Nanomemory and the second executes the fetched
instruction. Figure B-4 illustrates these two basic phases of each Type |
microinstruction,

12

”

P
T

P

———

AN 1 WETOM foas 3 gxsc
CLOCK [V - CLOOK s
Lm
rerustion }— M — ¥ sy
' A
s
oRY
cR Alf ~—ADDELA B ~—DEFT —
| Dvamis
(Condrtinm
(AQV ABTASET LST)
e a——— i — S - e —— — —— v — o — o —— . ——— e T e — o —— — e S mtat (e
PRASE t (FETCN PHASE 3 S REC)
COND
N B Y
T AND
[t S
nstrestion DETY
2 <n ASS — ADDER -—B0 —— DEST —of
Ovepmie
Onmnivussy

Figure B~4, Timing Analysis Type 1 Instructions

The fetch phase involves: MPM accessing, Nanomemory accessing, condition
testing, selection of controls for the next instruction (successor) address computation,
and, in parallel, loading the control register for the execution of the microinstruction.
A fetch phase occurs for every Type I microinstruction and requires one clock time.
Since it always overlaps the execution phase of a prior Type I microinstruction, the
performance of each microinstruction requires effectively one clock interval. (Subject
to the conditions listed below.)

The execution phase also requires one ciock time and always overlaps the fetch
phase of the next Type 1 instruction. The control signals for the execution phase are
from the output of the control register and have two parts: signals specifying the
logic unit operation (adder input selection, adder function, barrel switch shifting, etc.)
and signals specifying the destination register(s) loading (i. e. clock enables). Both
sets of these controls apply continuously from the start to the end of the phase; how-
ever, the destination registers are not changed until the occurrence of the clock pulse
which signals the end of the execution phase and which simultaneously reloads the
control register for the execution of a new logic unit operation, The completion of
the execution phase (i.e., the destination register(s) loading), may be delayed or
suspended for one or more clock times,

Suspended execution phise is the name given to an execution phase clock time
whose logic unit operation has been and continues to be performed but whose destination
register loading is postponed for one or more clock periods. The register loading part
of an execution phase depends on the subsequent microinstructions which follow the
Type I instruction.

13

F
- X

P

I

| I8

ey

This suspended execution phase can occur for three primary reasons, The first
and most frequent occurrence is when the next instruction from the MPM is a Type 1
instruction. This Type Il instruction is executed during the same clock time it is
fetched and the execution of the Type I instruction in progress is held in this suspended
execution phase until the next clock interval. This allows the fetch phase of the next
microinstruction (if it is a Type I) to have an execution phase to overlap., Tnis provides
condition bits (generated dynamically during the execution phase of a microinstruction)
that can be tested during the fetch phase of the next Type I microinstruction.

The second reason for the occurrence of a suspciided execution nhase is due to
the existence of conditional logic unit operations. A Type I microinstruction which
does not contain a conditional logical operation aiways has a fetch phase and an execu-
tion phase. However, a Type I microinstruction which does contain a conditional
logical operation falls into either of two categories: if the condition is met, both the
fetch phase and execution phase are required for the execution to be completed; if the
condition is not met, only the fetch phase is required for the completed execution to
occur. However, even though the execution phase of a conditional Tvpe I micro-
instruction is ignored, the fetch phase of the next Type I microinsiruction must hive
an execution phase to overlap in order to have values for dynamic conditions that may
be Type I and not clocking the execution phase that is to be disregarded into the
control register,

The other reason for a suspended execution phase is for use during the loading
of the MPM and Nanomemory.

The sequencing of Type I microprogram instructions is controlled by the
following procedure: The MFPM addresses the nanomemory which provides information
to the condition testing logic indicating which condition is to be tested. The condition
testing logic provides a True. I'alse signal to the successor selection logic which
seleets between the three True and three False successor bits (also from the Nano-
memory). The three selected bits (True/False) provide ¢ight possible successor
command combinations discussed later. A Type II microinstruction has an implicit
STEP successor,

B. CONDITION OPERATIVES

Each N instruction performs a test on the Boolean value of one condition or its
complement. The test of a condition is used to allow conditional microinstruction
successor selection, conditional logic unit operations, and/or conditional external
operations. With the exception of the two global condition bits, testing a condition bit
causes the bit to be reset. The least and most significant bits out of the adder, the
adder overflow, and the adder bit transmit are levels and not condition bits. The
conditions that may be tested (Table B-2) are the following:

SAI Switch Interlock Accepis Information

Following memory or device operation, indicates that connection to
the addressed memory or device is completed through the switch
interlock,

14

Table B-2. Set and Reset of Conditions

Bit Set Reset

AOV | Dynamic Adder State - (Overflow) #

ABT | Dynamic Adder State - (Adder bit transmit)

LST | Dynamic Adder State - (Least Significant Bit of

J.dder Outputs)
MST | Dynamic Adder State - (Most Significant Bit of #
Adder Qutput)

COV | Overflow when Counter is Incremented Reset by
loading
counter or by
testing

GC1 | Set GC1 providing no other Interpreter has GC1 set, RESET GC

or no higher priority Interpreter is concurrently
doing SET CGl1
GC2 | SET GC2 simiiar to GC1 RESET GC
INT Set INT executed in any Interpreter Reset by
2 testing*

I.C1 | SET LCt Reset by
testing

LC2 | SET L2 Reset by
testing

L.C3 | SET LC3 Reset by
testing

RDC |} By memory at completion of memory or device Resel by

read testing

SAl By switeh interlock or PSU when data received Reset by

from MAR and MIR testing

EX1 | By requests from devices Rest by
testing*

EX2 By requests from devices Reset by
testing*

EX3 | By requests from devices Reset by
testing*

#Recomputed cach clock time

*In local Interpreter only

RDC Read Cocmplete, or Requested Device Completes

Following memory read or device read by request, indicates that data
will be available for entry to B in the next clock. Following device
write by request, indicates completion.

COV Counter Overflow

Following or concurrent with increment counter INC, indicates counter
is overflowing or has already overflowed from all ones (255) to all zeros.

W SRR Vi
\
PR Rt R Al

L.C1 Local Condition 1
Tests and resets local Boolean condition bit L.C1.

LC2 Local Conditions 2 and 3
LC3 Same as LC1
GC1 Global Conditions 1 and 2

GC2 Tests but does not reset global condition bit GC1. Sec the description
of the set and reset operation for further explanation of global condition
bits,

g

{ INT Inter-Interpreter Interrupt

< Tests and resets the local copy of the inter-Interpreter interrupt.

{ EX1 External Conditions 1, 2 and 3

{ EX2 Test and reset interrupts (usually the OR of interrupts from several

EX3 devices) from external devices (local copy).

oo The foliowing four logic unit conditions are dynamic and indicate the result
output from the adder in the phase 3 commands from the previous instruction which
had logic unit operation, and using the current values of the adder inputs. These
conditions are sustained until execution of another instruction involving the logic unit,
and may be tested by that instruction. A Type Il instruction loading the LIT or
AMPCR may change the value of an adder input selected and hence change the value
of any of these conditions.

AOV Adder Overflow

Results from an adder operation with carry out of the most significant
end of the adder.

i LST Least gignificant

State of the least significant bit of the adder output.

MST Most significant

P]

State of the most significant bit of the adder output.

,* 5 ABT Adder bit transmit
This condition is true (one) if and only if the adder output is al! ones.

i 16

Ja

—

The set and reset operations are used to set and reset condition bits, The inter-
Interpreter interrupt INT, is used for communication (to signal) all Interpreters of a
multiprocessing system. The giobal conditions, GC1 and GC2, are used as Boolean
semaphores to guarantee mutual exclusion for critical sections of m-program and to
prevent simultaneous access to shared data. The local condition bits are Boolean
variables local to each Interpreter. The INT and local condition bits are reset (within
the local Interpreter oniy} by testing. The explicit test and reset operations follow,

SET INT Interrupt Interpreters

Causes the interrupt bit to be set in all Interpreters. Each
Interpreter resets its own bit by testing it. Setting occurs after
testing should both occur in the same N-instruciion.

SET LC1 Set the first local condition bit
Causes the setting of the LC1 bit in the conditicn regirter, sctting
occurs after testing should both ocecur in the sam. N-inctruction,
both set and test of LC1 occur in Phase 1.

SET 1.C2 Set the second local condition bit

Same as for LC1 replacing 1.C1 by LC2.

SET LC3 Set third local condition bit
Same as for LC1 replacing 1.C1 by LC3.

SET GC1 set first global condition bit request

Requests that the GC1 bit in the requesting Interpreter be set if a
GC1 bit is not already set in another Interpreter cr is not being
set simultaneously by a higher priority Interpreter. For all
Interpreters in a multiprocessing system at most one will have GC1
set, GC1 is set at the end of the phase after Phase 1 if no conflict
occurs. A request lasts for one clock.

SET GC2 Set second global condition bit request

Same as for GC1 replacing GC1 by GC2,

RESET GC Resets the global condition bits
Causes GC1 and GC2 to be reset in the 1s=uing Interpreter.

C. MICROINSTRUCTION SEQUENCING

Each N instruction performs a test on the Beolean vulue of one condition on its
complement. I the result is true the successor for this condition is used to determine
the next N-instruction, Otherwise the successor for ‘he not condition is used to
determine the next M-instruction address.

Ry i ¢ ",

e

r——

——

T a-—-"

Successor: The successor commands are as follows:

1'

2,

6.

Step to the Next Instruction in Sequence (STEP):

The next instruction address is the content of the MPCR plus one. The
MPCR content will be replaced by the next instruction address,

Skip the Next Instruction (SKIP):

This operation permits one instruction conditional branches without an
explicit address specification. The next instruction address is the content
of the MPCR plus two. The MPCR content will be replaced by the next
instruction address.

Repeat the Instruction (WAIT):

This operation permits the repeated execution until the value of the
condition changes. The next instruction address is the content of the
MPCR. The MPCR content w*ll be unchanged.

Save l.oop Address (SAVE):

This operation is usually performed just before entering the first iteration
of a loop. It causes the address of the current instruction to be saved in
the AMPCR so that jumps can be made later to the current instruction
address plus one. The AMPCR is repnlaced by the contents of the MPCR,
The next MPM instruction address is the content of the MPCR plus one.
The MPCR will be replaced by the next instruction address,

Execute an Instruction Qut of Sequence (VXXEC):

This operition permits the instruction named in AMPCR plus one to be
executed without changes to either the MPCR or AMPCR. As an example,
this operation can be used for address table lookup if the named instruction
is an AMPCR literal. The AMPCR may change as indicated by the executed
instruction.

Call a Procedure (CALL):

This operation causes a jump to the routine specified in AMPCR plus one
with the current position saved for later return, The AMPCR content will
be replaced by the MPCR content, The MPCR content will be replaced by
the next instruction address (AMPCR plus one).

Jump (JUMP):

This operation permits traasfer of control to the instruction named in the
AMPCR plusone. This address may be a computed address loaded from the
BSW output or an address constant from a microinstruction. This may be
used to go to the head of aloop or to the return position for a procedure call,
The next instruction address is the content of the AMPCR plus one. The
MPCR content will be replaced by the next instruction address,

—h,

8. Return (RETN):

This operatior provides for an alternative jump address by making the next

instruction address be the content of the AMPCR plus two,

content will be replaced by the next instruction address.

The MPCR

The particular chosen successor command then provides controls used in the
selection (MPCR/AMPCHR) and incrementing logic which generates the next MPM
address. Except for tlie EXEC command, the MPCR is loaded with this MPM address.
Table B-3 summarizes the MPM addressing,

Table B-3.

Microprogram Memory Addressing

Successor Next Content Next Content
Successor M-Instruction of MPCR of AMPCR
Command Address Will Be Will Be
WAIT MPCR MPCR .
STEP MPCR-1 MPCR -1 *
SKIP MPCR-2 MPCR -2 »
SAVE MPCR+1 MPCR-1 MPCR
CALL AMPCR-1 AMPCR:1 MPCR
EXEC AMPCR-1 MPCR * *
JUMP AMPCR-1 AXPCR-1 *
RETN AMPCR-2 AMPCR:2 *

*Not changed by successor specification

D. LOGIC UNIT OPERATIONS

1. Adder Operations

Inputs to the adder are from selection gates which allow various combinations of
the A, B, and Z inputs, The A input is from the A register output selection gates and
the B input from the B register true/complement selection gates. The Z input is an
external input to the LU and can be:;

1. The 8-bit output of the counter of the MCU into the most significant 8 bits

with all other bits being ZERQs,

2. The 8-bit output of the literal register of the MCU into the least significant
8 bits with all other bits being ZEROs,

b e S R

i, p—— s

oy e | s——y

3. The 12-Dbit output of the alternate microprogram count register (AMPCR)
right justified into the middle 16 bits and the (wired) Interpreter number
right justified in the remaining four bits of the middle 16 bits. All other

4,

bits are zeros,

All ZEROs,

Using various combinations of inputs to the selection gates, any two of the three
inputs can be added together, or can be added together with an additional ONE added

to the least significant bit,

Also, all binary Boolean operations between the A and B

and between the B and Z adder inputs and most of the binary Boolean operations
between the A and Z adder inputs can be done,

Table B-4 summarizes the adder arithmetic and logical operations that may be
specified using TRANSLANG which is a microtranslator that produces micro and nano

instruction from symbolic instructions.

l-

5'

A Register Selection A
AQ

B Register Selection; B
B

0

1

Z Register Sclection Z
0

Inhibit 8 Bit Carry: 0
1

Adder Operation

2. Shifting

The following notes apply to this table:

Al A2 A3
All ZEROS

Any B Register Select option

ONES complement (by TRANSLANG)
of the specified B Register Select
option

All ZEROS

ALIL ONES

CTR| LIT| AMPCR
Ali ZEROS

All carry into bytes
Inhibit carry into byiés

As specified in Microprogramming
chart, Table B-1

There are four operations causing shifting, one of which is selected each time
an adder operator is used,

R Right end-off shift by amount in SAR, filled with left zeros,

L Left end-off by word length complement of amount in SAR, filled with

right zeros.

C Circular right end-around shift by amount in SAR.

No shift

C72-812/201

A Table B-4. Adder Operations
‘ Arithmetic Operaticns
. Register Select ABT Is
E Adder Resuit 1 o 3 4 5 True If
1 Operation Form A B Z IC8 ADDOP Result is All
s A ADD B A B 0 0 2 Ones
g A ADD Z R-8 A 0 Z 0 1 Ones
B ADD Z 0 B Z 0 9 Ones
4 A ADL' B A B 0 0 3 Zeros
A ADI. Z R-S8-1 A 0 Z 0 0 Zeros
B ADL Z 0 B Z 0 8 Zeros
- [AcapB | R -s A B 0 1 2 Ones
A CAD Z Without A 0 Z 1 1 Ones
, B CAD Z Carry 0 B Y/ 1 9 Ones
’ { DEC A A 1 0 0 2 Ones
L DEC B R-1 Invalid
DEC Z 0 VA 0 9 Ones
{ 0 0 0 0 0 2 Never
. 1 0 0 0 0 Never
/ MONADIC Logical Operations
z Register Select
{ ABT Is
f Adder Result 1 o 3 5 True If
Operalion Form A B Z ADDOD! Result is All
! A A 0 0 2 Ones
B R 0 B 0 2 Ones
V/ 0 0 Z 1 Ones
- NOT A _ A 0 0 15 Zeros
NOT B R 0 B 0 10 Zeros
T NOT Z 0 0 VA 12 Zeros
;" DYADIC Logical Operations
Register Select
. Adder Result 1 2 3 5 ABT is True
Operation Form A B Z ADDOP If Result is All
, A AND B A B o0 q Ones
. r A AND Z RAS A 1 z 13 Zeros
B AND Z 0 B Z 4 Ones
A NIN B _ A B 0 7 Ones
A NIM Z RAS _ INVALID
B NIM Z 0 B Z 13 Zeros
21

B e cche s it s 5L s 1 A e St e e

C172-812/201
Table B-4, (Cont)
DYADIC Logical Operations (Cont)
Lo Register Select
E - Adder Result 1 9 3 5 ABT is True
i} t Operation | Form A B 7 ADDOP If Result is All
A NRI B _ A B 0 10 Zcros
{ A NRI Z RAS A 0 Z 5 Ones
(. B NRI Z B Z 4 Ones
{
| L.
- ANORB | _ _ A B 0 10 Zeros
A NOR Z RAS INVALID
_ B NOR Z 0 B 7 13 Zeros
A XOR B _ A B 0 6 Ones
L Z XOR Z (RAS)v(RAS) A 0 Z 4 Ones
B XOR 7 0 B Z 14 Zeros
_ A EQV B e A B 0 6 Ones
{ A EQV Z RAS)y (RAS) A 0 Z 14 Zeros
B EQV Z 0 B Z 14 Zeros
A NAN _ A B 0 15 Zeros
1 ANANZ | RvS A 1 Z 5 Ones
B NAN 7 0 B Y/ 12 Zeros
, AINMPB _ A B 0 15 Zeros
i AIMP Z RvS _IN\'A LID
BIMP Z 0 B Z 5 Ones
A ORB A B 0 11 Ones
I AORZ RvS INVALID
B OR Z 0 B VA 5 Ones
- A RIM B _ A B 0 11 Ones
A RIM Z RvS A 0 Z 12 Zeros
B RIM Z 0 B YA 12 Zeros
[TRIADIC Logical Qperations
Adder 5 ABT is True
Operation ADDOP Result If Result is All
TRY1 A, B, Z 4 B(A XOR 7) Ones
- TRY2 A, B, 2 5 AZB Z Ones
TRY3 A, B, Z 12 ABZ Zeros
[TRY4 A, B, Z 13 AZB7Z Zeros
TRYS A, B, Z 14 (A B) QV Z Zeros

3. Data Loading

loading A1, A2, A3, MIR, BR1 and BR2, It provides one source for loading B, CTR,
MAR, SAR and AMPCR. These reserved words are also the register names. The
bits used in these transfers are indicated below.

E The principal data source is the barrel switch output. It is the only source for

Destination Barrel Switch Qutput
Register Source Bits
Al All
A2 All
{ A3 All
B All
- MIR All
BR1 2nd least significant byte
{ BR2 2nd least significant byte
MAR least significant byte
CTR least significant byte (ones complement)
{ SAR least significant bits
AMPCR least significant 12 bits

The B, MAR, CTR, SAR and AMPCR registers may have other inputs as well:

oSE——

B Register - (B)

PN,

BSW The barrel switch output is placed into B
BEX Data from the external source is placed into B
) BAD The adder output (unshifted) is placed in the B register
BC+ The duplicated complement of the 1-bit carries with zero fill is placed
» in the 13 register
BCS The duplicated complement of the 8-bit carries with zero fill is placed
1 in the B register

BMI The MIR content is placed in the B register independent of any
[concurrent change to the MIR
BBE The barrel switch output ORed with the data from the external source
[is placed in the B register
BBA The burrel switch output ORed with the adder output is placed in the
{ B register.
BBI The barrel switch output ORed with the MIR content is placed in the
(B register independent of any concurrent change to the MIR.
‘ .
4
¥
i { 23

A

“'B ”

o oy

BAl The adder output ORed with the MIR cnntent

BBAl The barrel switch output ORed with the added ocutput ORed with
" the MIR content

B41 The cumplement of the 4 bit carries ORed with MIR
BSI The complement of the 8 bit carries ORed with MIR
Memory Address Register - (MAR)
LMAR The literal register content is placed in MAR
Counter - (CTR)
LCTR The ones complement of the literal register content is placed in CTR
INC Increment Counter by 1
Shift Amount Register - (SAR)
CSAR Complement prior content of SAR
The Alternative Micro Program Count Register AMPCR may during the same
clock receive input from the MPCR if the MPAD CTLS register content was CALL or

SAVE. The MPCR source takes precedence over the AMPCR specification as a
destination.

The destination operators explicitly specify registers in which changes are to
occur at the end of a logic unit operation.

4. Ixternal Operations

The external operations are functions which if explicitly present affect the
operations external to the Interpreter logic. An external operation may be specified
as either conditional or unconditional.

The memory or device operations are used to transfer data between the
Interpreter and main S-memory or a peripheral device. Address source registers
for those operations are the concatenation of either BR1 or BR2 with MAR, indicated
respectively by MAR1 or MAR2, The MAR purt is less significant. The explicit
memory or device operations follow. If none is specified,then any memory or device
operation in progress is continued and no new operation is initiated. Address or MIR
change may terminate the operation.

MR1 Memory Read 1
Read data from S-memory address specified in MAR1

MR2 Memory Read 2
Read data from S-memory address specified in MAR2

24

MW1 Memory Write 1
E Write data from MIR to S-memory address specified in MAR1

MwW2 Memory Write 2
Write data from MIR to S-memory address specified in MAR2

ASR Status Request for highest priority locked device*

ASE Status Request for highest priority unlocked device*

r—

DL1 Device Lock 1 Request*

Reserve the device or memory module named in MAR1 for use by
this Interpreter

DI1.2 Device Lock 2 Request*

Reserve the device or memory module named in MAR2 for use by
this Interpreter

DR1 Device Read1 -

Read data from device name in MAR1

DR2 Device Read 2

Read data from device named in MAR2

DW1 Device Write 1
Write data from MIR to the device name in MAR1

—— p—

Dw2 Device Write 2
I Write data from MIR to the device name in MAR2

DU1 Device Unlock 1
{ Release the locked device named in MAR1

DuU2 Device Unlock 2
Release the locked device named in MAR2

P e ——

—— ettt e e s —

]

*Systems with switch interlock use DL1 and DL2; systems with port select unit use
ASR and ASE.

25

C72-812/201

4, SWITCH INTERLOCK (SWIi) DESCRIPTION

A. SWI Modules

The Switch Interleck functions are to:

1. Provide the interconnection of the interpreters with the memories and
devices.

2. Provide the priority for the interpreters in the selection of devices and
memories.

Connection between Interpreters and devices is by reservation with the
Interpreter having exclusive use of the (locked) device until specifically released.
Connection with a memory module is for the duration of a single data word exchange,
but is maintained until some other module is requested or some other Interpreter
requests that module.

In any such system it is desirable to keep the wires and logic in the crosspoints
to a minimum, while still maintairing a specified transfer rate. One way of achieving
this is by serial transmission of several partial words in parallel through the cross-
peinis. The Switch Interlock for the Burroughs Multiprocessor handles up to five
Inzerpreters, eight memories and eight devices. The transmission paths through the
Svitcen Interlock break the 32-bit data word into 4 - 8 hit bytes.

The SWI is mechanized with five modules; a block diagram indicating the structure
of the SWT is given in Figure B-5. This diagram also shows the internal and external
interfice of the SWI. The five modules are;

1. Memory Device Control (MDC) - This unit, shown in Figure B-6 decodes the
nanememory bits and generates the signals for controlling the other SWI
modules. The MDC also contains the counter and logic to indicate to its
interpreter, data acceptance and transfer completion. There is one MDC per
interpreter,

2. Device Control (DC) - The DC resolves conflicts between Interpreters trying
to lock to a device and checks the lock status of any Interpreter attempting a
a device operation. The DC is shown in Figure B-7, it receives requests for
device operations and lock/unlock requests through the MDC. It responds by
sending status signals to the MDC and control signals to the Input and Output
Switch Network modules. The DC module as mechanized in the Burroughs
multiprocessor provides device control for up to three interpreters. A
system with five interpreters will use two DC modules.

3. Memory Control (MC) - The MC resolves conflicts between Interpreters
requesting the use of the same memory module and maintains an established
connection after completion of the operation until some other Interpreter
requests that memory module. Figure B-8 contains a disgram indicating a
typical interpreter stage in the memory control module. This stage receives
requests froin the MDC and a 3 bit memory module address from the
interpreter. The lower section of Figure B-8 shows the memory request

26

C72-812/201

AdORTN

weadei 90U}INU] TS

“¢~-¢f 2an3yY

AUOIHN

LA

IOLAG

27

_ bt ° _
. . ®
. & =" |
v . |
Cp Ld ®
_ Viva e 9 »{ viva _
NSO <9 > NSO
() J
|) T = 3 |
>l = P sy
ssaNday - m.q] "> NSO
_ NSa c | EEbEE ﬁumaa(...ﬂ“m_«%w e _
3718V NT INTIW 1D1A30 . |Z H m = <1 L OIAL MH 18 ¢ .
| N3N LIE ¢ S I¥ s |[EEEl| s.ouumioor U e— |
i (o] Z lLHEke| aadMoo3IniAIa Tda
g 15 FIPLNO A LPIOR« E_EEMII
~ pg— 201D e} NI X LIMORYdJ ¥3HOIH H““ _
< - = ADOTO .
_ 2N SSTAAY AW - SLI8 ¢ Y1y Ssaay A3 st v > w “”m:y‘..,_
bl Y
AIHOCT
7 TAVINOD : _
a0 WA L
DT A
¢
H e o o ® Jan ’ MO s _
\ =5 w ACIFAr _
: =z i
w 7 z m =z m H 0 N i
. 2 z|g| |2 _
— — I—ZIM — e e | e [| | e [F -3 m N — — —— — ——
v 2l
2
b
g | g [Ny
| o
® Y ® * WL GALNY
-y 'Ill.\ R — N . o

B] ﬂ«nﬂ?&wﬂf

L

LS

5 et

MR Y

C72-812/201

weadeiqg yoold DU

*g-¢ 2an81g

D1A3d
[
et Z m 1no
VT o3y 2 ng Q% A1
N3N a1 "R 5T %I S°'H 1vs ~ay
A + r#) »
oNas | A
h IIvH LNI +
o)
m
=
mm
F)
m
>
T WIW
£lzx2 < 101A3Q
40 s R ADOINN ava— _
W tn] mU = M WIN
Z 2 A
=< _ _ _ _ g A1
= |
|
p \ 300030 / 118YNa nao | o NIOL Nao L 1 D
2 3asind 351Nd INI
2 I onzs, IIDd | OIND A onxs g1vH | onas Ting e
t T
ADOINN
yidand 40 N \ } Aﬁ\‘
N35 N3 WD uqhbm%ﬁm 118 ANV MOLREAO
3s1nd || {3s1nd g y YVIIO
L L ANV +
I._ > o I ELAL A (e AT °S°H
ERRY T
14 LNI waw + ¥3.LNNOD -
oz ANY p g o) ﬁ
2 ‘S°H / .
> 3810d! aax o 14|
3 m.:“ 118 ANY) \ 201
ALTUM HO!
ava A3d)

28

]
i
i

;
5

-
<
o
S
[]
4
[o]

3
o~
b
(@]

ureaSe]d }0olg 10JJUOD 30143 [BUDBYD-E

*1~g @and g

mw - wm - 83
TR . ST ™0y
§¢ H
c.o z
2% Lmna mm) mm o
z =
mw womo fay 3] poamo nnﬂn:. uumxullxna.“
=g oo o %G1
an m o1l +¢o+ oow ¥ %es
a a ()) @)
y & ~11d S.L18 o sug | o ¢
xsng wsa Y1 AN DI | 0y | 30vioLs ¢ | ool ® | ovi0us |2
M e zdee a1 e oy ADCT " ADOT ° wol | e
LI8IMNT XOON LIGIHRI AD01 g 1 =
. e .)
1 1) A-- _.‘ o
TO4INOY &) \J— u .
Dinig 9 | o o & H % | 3000m
WHIO $ 1 e . . | [ss3vaay
o1 (==
i 4 3
420181 153725
* i ssuaav
SIDGT C
LIEHNT 3-
ximorsd |
e ¢ o L
[
232
5 [L] [} [B
& ® Bl & BZ6
935 F G |2 |5 ® BGE:
imm m = M = W » m
u ®x &y %1 Xo- M
— e R I s [FRRAS [Ty

29

C72-812/201

DDRESS
our
MEMORY
REQUEST
CLOCKN
COMPARE

VA
_GVALD

ADDRESS

ENABLE
iN

&

<T
] E RESET N\
ADDRESS
y , BUJFFER SET
) 3 -8
9 - L
— COMPARATOR
<H
w
3
=2
; 8
i x4
o3
g3
{ = 2
ADDRESS
DECODE ese
. HIGHER s
| STAGE | : MEMORY
' BUSY SET BUSY
BUSY j —§] FFs
l INDICA'l ONS {. . e ;
TO NEXT SN
STAGE BUSY SIGNAL BUS*
'- , SELECT ;‘;MY
i 1 145 A TO
HIGHER e o NEXT
PRI 2 ¢ —>
. RICRITY T STAGE
PRIORIT Y
INHIBIT
CHECK {
' .
, ADDRESS
DECODE
e ool LOWER
. PRIORITY
INHIBIT CHECK

A vy

Figure B-8. Typical Stage - Memory Control

30

C72-8:2/201

and memory busy bus that connects to the priority logic for memory request
control. The Burroughs mechanization of the MC uses two modules MCO0 and
MC1. MCO contains three stages as shown in Figure B-8 to provide memory
control for three interprecters. MC1 contains two silages and the memory
busy flip-flops.

4. Input Switch Network (ISN) - The ISN returns data from addressed devices or
memory modules to the requesting interpreter (i.c., the ISN is a '""Mulliplexer'),
As seen in Figure B-9 the ISN module provides selection for live interpre-
ters to up to eight memories or eight devices. The ISN provides a path for
10 bits per interpreter. This path is used to provide eight data bits and a
return clock, one bit is unused. The ISN module mechanized by Burroughs
actually consists of two submodules, each submodule provides for 4 data bits
and 1 clock bit from up to eight memories or devices to up to five

-4 interpreters. The ISN is therefore modular in terms of 4 bit bytes. The ISN
' is under the control of the MC or DC module.

; e it itk T g

5. Output Switch Network (OSN) - The OSN sends data, address, clock, and
conirol from Interpreters to addressed devices or memory modules (i.e.,
the OSN is a "demultiplexer’). This unit is actually mecharized as two
different modules. Figure B-10 shows the OSN for address output. This
unit handles 4-address and 2-clock bits for five interpreters to up to eight
memories on devices. The address QSN is actually mechanized from two
identical submodules that provide two address bits and one clock bit each,

In the Burroughc mulliprocessor, the address OSN uses four address and one
clock bit leaving one clock bit unused,

The data output OSN is shown in Figure B-11. This unit provides eight bits
output to up to cight memories or devices from five inierpreters,

B. SWITCH INTERLOCK OPERATION AND TIMING .

Controis from the Interpreter (Nanobits 51-54) are strobed into the mem ‘dev
l operation register of the MDC if cither the Type 1 microinstruction is unconditional or
the selected condition is true. Conirols derived from the output of this register will
next load the output shift registers of the interpreter and generate one of three types of
L signals, depending upor. the operation to be performed. Each of these tvpes of signals
will be explained.

. S

1. Memory Opcration

i _ a. General

The first type of signal from the MDC is a "memory operation request’ signal to 1
the MC, This initintes the comparison and priority logic in the MC. When the MC has
granted access by that interpreter to the memory module it was requesting, a compare
signal is returned from the MC to the MDC. This will send a clear pulse to the memory
interface logic through the memory OSN and will initiate the setting of SAI and the trans~
mission of high speed clocks to the output shift registers of the interpreter and through
the OSN's to the memory interface,

31

U NPT JEERRS VLS " T ol DA U WO W ol -y e ot X ool et Lo Do
- . LJ L L el e ca i gl il sl

- B ne - -k T - - e el e ——

weasvi(] Yoojd NI0MIBN yomg Indul [ouueyd-¢ *6-¢ oIndig

[}

o ¢l a u
@+ T18VN3 @» 319VNa @» TIYNG |@» TIEVNE @» T14VN3

e —

HOLD3M3S JOLOI13S ¥OLO313s 401D03173S HOLD313s
yiva p—O viva 1l@ yiva .l@ v1lva viva @
lgaxot yaay lig 8 X ol ¥ady) 118X 01 ¥adv) ndgsxot waavy| lLigs xotl ¥aav

]
P
&
n,
« “ooo* Hooo% »ooo* »ooo o
[] .e ®
o~
© NI ®)
° []
OQ/ W ==z
®
ap B g . s - —— ‘ “ —— R— o) it [S—— - Aboanis =

C72-812/201

wradeig Yoo SSOUAPPY HIOMION Yo img inding) jpuueyd-¢

*01-¢ 94n31]

I 41D
8 1D ‘S °H
it Lo
30 O Nigl HO 40 40 le) ¥O
e see]| Y feoe ese leee Teee o]
i o_ i _.u.._m<zm ® o ¢ 37g¥YNT _o ® e |378VNd _ ® & @ |TidvN
3 XI1dLLINNEd ¥I X311 INNE 43 X31d1L1NNA X31dILINN3I
8I X2 8T X I X2 T X
€D °S°H A1D 'S°H A1O *s°H A1 'S°H A1 ST
#1 el A I i
LU/ <
. 18 1 .
noe °
e ®
oa/N <@

ﬂ. ® & {TIGYN3I

43 x31d111INNEd
(FUIX Y

Teche
4!

XTdLINNG
(s:1) &

Y1lvo

p ¥aqy

Yiva o

Jaayv

4. * orﬂzm

hzxandl1nmwad
1) X

Yivad 5 4aav

Ho ® & ITa¥YNd

®&@® |1gVN]

1.m§&h.5.2mf MIXTIdIL N
(8:1) x ¥ (1Y x
viva ; ¥aav viva ¥Uo A

]

33

C72-812/201

weadelg Mool (Biea) aompyN yojimg nding jeuueyd-¢ 11-d aandrg

) 8
LA'W o? ﬁ —9- f —— <
ino e ®
° ™
Ood/n 3
eo ¢ LA oes e e o9 s es
{F18YNa 4y NI E1d YNS BYN3 F18V¥Ni
8 X51d1.L1NWaA XTIAILUINAEA W XITLLINNWEA Haxa1d110Nad I XSTILNINIC
(1) x 8 (81) X 8 {(8:1} X § (1) x g (1) x 5
& 5, 8 i 5 £ m_ £ 8 £
y.iva Jaav yilvd saay viva ¥aay vilvg qaav vilvd yaav
¥
I & ¢ Y o
sl i v < w— ! - it cemmae — e o ‘e i o e b o

34

C72-812/201

In the case ot 2 memory write, the input/output counter in the MDC will count
E four output high speed clocks and will then stop them,

In the case of a memory read, output high speed clocks are not counted, Instead,
these high speed clocks are continually sent to the memory module interface., This
interface will count four clocks coming in to it and will then initiate a memory read.
Upon return of a completion signal from the memory, the memory interface will load
its output shift registers and then allow four of the high speed clocks that are still
i coming through the OSN to clock these output shift registers and to be returned to the
i MDC and the interpreter with the shifted out data, The MDC counts four of these
memory return clocks and will then stop the high speed output ¢clocks and set RDC

1 indicating that the data has been shifted into the interpreter input shift registers and is
l ready to be strobed into the B register.
‘-{ . b. Memory Groups and Interpreter Access Priority
.] t
5 { The switch interlock module for memory connection conlains a group of 8 ports

for connecting memory modules to interpreters. Each port provides MR and MV,
Convurrent access to all memories in a group by different Interpreters is permitted,
Interpreters have fixed priority for access to all modules of a group,

S gty

Conflicts in access to the same module are resolved in favor of the Interpreter
that last accessed the module, otherwise the highest priority requesting Interpreter.
Once aceess is granted it continues until that memory operation is complete. When
one access is complete, the highest priority request is honored from those Inter-
preters then in contention, The Interpreter completing access is not able to compete
again for one clock. Thus the two highest priority Interpreters arc assured of access.
Lower priority Interpreters may have their access rate significantly curtailed.

o~~~

The switch interlock "remembers” the prier connection of each memory module
to some Interpreter. If the next request is also from the remembered Interpreter,
the new connection is made with less delay, since no priority resolution need take place.

¢. Alemory Use Sequence

The sequence of operations necessary (o access S-memory is simple in single
Interpreter systems where no conflict in access can exist, In such cases once the
address setup is complete (as is the MR for writey, the memory read (or write) ean be
initiated, After a suitable time the data from memory can be aceessed via BEX or BBE,
In the presence of conflict potential, the folloving control sequence should be used.

This sequence is recommended for sytems without a switch interlock as well.

oom

o

1. The S~mewmory address should be in the selected base register and MAR,

2y

! 2, Memory Read

P,

2,1 A test of RDC should be included in some prior instruction, By convention
this should be the previous memory read (or device read or write by request).
A test of SAI should be included if address register changes arve required
before the RDC is returned, or if confirmation of access to the switch inter-
lock ie desired.

oy

Lo a e e —asewm

r-'-vﬁ

PSS

re——

C72-812/201

2.2 The memory read can occur the instruction aiter the address is
(unconditionally) loaded into MAR1 or MAR2,

2.3 A SAI is returned when the switch interlock has accepted the address and the
memory is connected to the requesting Interpreter through the switch
interlock.

2.4 A group of intervening instructions can be issued, depending on the relative
speeds of the Interpreter clock and the S-memory. Once SAl is set and
tested, these instructions may change the address registers or even include
device read or write operation on demand.

2.5 A RDC (read complete) signal is returned when data will become available
for entry into the Interpreter the following clock.

2.6 If no intervening device or memory reads occur, BEX may be repeated
each time receiving the data in XDI non-destructively.

3. DMemory Write
3.1 The data to be written should be in MIR,
3.2 The address should be in the selected base register and MAR,

3.3 The memory read can occur the instruction after both the address and data
have the desired values.

3.4 Return of SAI indicates that the memory is connected and therefore the
address and data have been accepted in the XDA and XDO buffer registers
respectively, and thus the address registers and MIR may be subsequently
changed.

3.5 1t is possible that the memory is still in its memory cyele, but if so, no
other access will be granted to that memory module.

2. Device Lock and Unlock

The second type of signal emanating from the MDC is a device lock or device
unlock request sent to the DC. After the DC has accomplished this, a signal is returned
to the MDC in order to set SAI and the operation is complete.

The switch interlock module for device connection contains a group of eight ports
for connecting devices to up to five interperters. DI, DR, DW, and DU are provided
for each port. Priority order for resolving concurrent requests by Interpreters for
DL or DU is fixed within each group.

Confiicts in DL and DU requests may occur. The DL request from the highest
priority requesting Interpreter is honored over a co-occurring request for the same
device from any lower priority Interpreter. Concurrent DL requests for different
devices in the same group cause the lower priority request to incur a one clock delay
in achieving the DL or DU, and in return of SAl for each higher priority request. Con-
sequently DL or DU requests from Interpreters other than the highest priority may be

36

C72-812/201

arbitrarily delayed. The earliest confirming SAI response occurs two instructions
after issue of the DL or DU, If SAI is true, thenthe DL or DU was successful. If
SAI is false, then it means that the DL or DU is not yvet successful. The design justi-
fication for this potential arbitrary delay is that DL or DU are infrequent events for
which arbitrary delay is of little consequence,

Provision for conscious control of this timing is provided (and recommended) by
use of Global Conditional Bit 2 to protect DL and DU attempts by more ihan one Inter-
E preter at a time.

j 3. Device Read and Write
a. General

The third type of signal from the MDC occurs for device reads or writes and is
sent to the DC to check the lock status of the device being addressed by the BR1/BR2
of the interpreter before proceeding. After it is confirmed that the device is locked,
the DC returns a locked signal to the MDC. This will have the same effect as when a
memory module is obtained, i.e., a clear pulse is sent to the device interface logic
through the device OSN and initiates the setting of SAI and transmission of high speed
clocks to the output shift register of the interpreter and through the OSN's to the device
interface.

[However, the distinction made between memory reads and memory writes is not
made for devices. Both cases act like a memory read; i.e., for a device write the

E MDC does not stop the outgoing high speed clock after four clocks and indeed does not
even count them, In both cases the device interface counts four clocks coming in to it
and then stops accepting high speed clocks, In the case of a read, the device interface
waits for some kind of "data available' signal from the device which it will use to load

i its output shift registers and to allow four high speed clocks which are still arriving
from the OSN to clock these output shifl registers and to be returned to the MDC and
the interpreter with the data. The MDC, as for memory reads, counts return clocks

[and will set RDC.

In the case of a write, the response is very dependent upon the particular device
being interfaced. In the case of a card reader, Burroughs sent back the next four high
speed clocks to the Interpreter, In the case of a printer, Burroughs used a signal
saying the last character was accepted by the printer to cause the device interface to
allow retu:'n clocks. The four return clocks are counted by the MDC and used as a
means of saying that the device accepted the data sent out.

b. Duration of Device Operations

I The duration of a DL request depends on :ts success. If successful the lock oceurs
concurrent with the following instruction, at the end of which SAI is set true. Thus SAl
l is available for test in the second following instruction, If false at this time,the DL

request continues while other work may be in progress so long as neither the device
identification changes nor another memory or device operation is initiated. When the
previously issued DL is successful, SA will be returned.

s

r—uf“h

C72-812/201

Device reads or writes are only completed with devices locked to the Interpreter
issuing the DR or DW. Depending on the device address, a DR or DW may be on
demand or by request.

1. On Demand. DR and DW provide immediate data exchange. The duration of
DR or DW on demand is one instruction after issue. Confirmation of com-
pletion may be checked by SAI being true the second instruction after issue.
If SAI is false, the device was not locked to the requesting Interpreter.

2., By Request. DR and DW provide data exchange when the device is ready.
The duration of DR or DW by request is determined by the device and is
signalled to the requesting Interpreter by the return of RIDC - "Request of
device complete.' As with DR aud DW on demand, SAIl is returncd by the
second instruction after issue, and indicates that the device is locked to the
requesting Interpreter,

The duration of DU is one instruction after issue,unless conflicts from DL or DU
requests by other Interpreters occur as indicated above. SAI will be returned only if
the device had been locked to the requesting interpreter. SAI is available for test in
the second instruction after issue if no conflicts arise. Any conflict with other DL or
DU in the same group can cause delay.

c¢. Device Use Sequence

The sequence of device operations necessary for an Interpreter to use a device
is as follows:

1. A test of "IF SAI" should he included in some instruction to reset it. This
usually can be in the instruction with the unconditional device operation.

2. Device Lock Request: The data in the indicated base regisler (and possibly
MAR) is used as the device identification., On the second following
instruction, SAI may be tested.

2,1 If true, then the device lock was successful,

2.2 If false, then the device lock wias unsuccesstul. The request remains in
progress while other instructions not chaning the device identification or
issuing other memory or device operation may be executed. The DL request
is terminated by the first of the following actions:

(a) The Interpreter initiates another memory or device operation,
(b) The Interpreter changes the device identification.

ic) The device becomes available and sets SAI. All co-occurring actions
are valid. Should (a) and (¢) co-occur, SAI refers to the DLin the
following instruction and should be tested. Then in the next instruction
thereafter SAI refers to the new memory or device operation. Should
termination by (b) occur without co-occurrence of (c¢), the new device
identification applies to the DL still in progress, and the path for SAI
return is diverted to the newly identified device (if there is one so
identified) without reissue of another DL.

38

P

I
|
!
‘
l
i

4.1

1.2

1.3

5.1

C72-812/201

Once the desired device is locked to the Interpreter. 2 sequence of one or
more data exchanges may be initiated using the following. Assume for sim-
plicity that adeguate bandwidth connection is provided so that data transfer is
completed in one clock, Otherwise add an appropriate number of clock times
to the discussion.

Device Write: The data in the indicated base register (and possibly MAR) is
used to specify the device, and the data in the MIR provides the information
to be written to the device, The second instruction after the device write,
SAI may be tested, If true, the Interpreter is locked to the device, and data
in the MIR hus been accepted by the XDO register, and so the MIR may sub-
sequently be changed. If false, the Interpreter was not locked to the
requesting device.

On Demand: The device is immediately ready to accept input data from the
Interpreter. Consequently the SAI need not be checked, and the MIR or device
identification could even be changed in the instruction after the DW.

By Request: The device provides an RDC when it has completed the requested
write. The SAT also indicates that the MIR data has been accepted in the switch
interlock. Similar to DL, the request continues until the first of the corres-
ponding three actions.

() The Interpreter initiates another memory or device operation.
() The Interpreter changes the device identification. |

(¢) The DW is completed and sets RDC. All co-occurring actions are
valid. Should (a) and (¢) co-occur, SAI refers to the DW in the fcllow-
ing instruction and should be tested. In the next following instruction
SAI then refers to the new memory or device operation. Should (b) not
co-occur with (¢), then the DW in progress is diverted to apply to the
new device identification without reissue of another DL.

Separate device identifications are required if the same device is to be read
both on demand and by request (some distinguishing bit).

Device Read: The data in the specified base register and MAR is used to
specify the device. The second instruction after the device read, SAI may be
tested. If true, the Interpreter is locked to the device; otherwise not.

o ———

On Demand: The device output register is assumed immediately able to be
read on demand (possibly some part of the resulting data indicates validity).
The data requested is available for Interpreter access the clock after Phase 1,
Thus BEX or BBE may be included in the same instruction as the device read,
The SAI need not be checked, and the device identification may be changed in
the instruction after the DR (so long as the address is still not required for a
prior memnory operation or device read by request).

A L e——

5.2

[+
.
w

C72-812/201

By Request: The device provides a RDC after the device read request when

it has sent the desired data from its output register. Thus the same instruc-
tion that finds RDC true may include BEX. RDC should be reset by testing
prior to use for device read by request (usually as part of the prior instruction
using BEX).

Separate device identifications are required if the same device is to be read
both on demand and by request.

Device Unlock: When use of the device is completed the lock should be
terminated by issuing a device unlock, An SAI is returned if the issuing
Interpreter was locked to the device. An attempt to unlock a device that is
not locked lo the Interpreter will not return SAL SAI is available for test at
earliest the second instructicn afi.r the device unlock.

40

Py oy

o —ty

|
t
t
i
i
[?
f
I
I
L

5. SOFTWARE

A. INTRODUCTION

The basic philosophy behind the multiprocessor executive (Ref B-6) is that it
operates independent of any particular interpreter. The executive is structured such
that no interpreter operates as a hardcore or has control of the system. In effect the
executive functions "float" among all interpreters resulting in a distributed executive.

Figure B-12 presents a grossly simplified diagram of the operation of the
system. The hardware portion of the system is depicted as Interpreters and Main
Memory. In particular the microprogram memory of each interpreter is shown.

The distributior of software elements among the microprogram memory and main
memory is shown in this figure. Each microprogram memory contains a portion that
is permanent, namely the locator and allocator functions. In addition a microprogram
and various executive modules are contained in the microprogram memory that may
vary depending on the needs of each task,

Tasks constitute particular jobs or functions desired to be performed on the
computer system. Each task has its own work area in main memory and contains a
microprogram, S program, and data area in main memory. The microprogram is
loaded into an interpreter's microprogram memory when the task is selected for
execution, A number of executive modules are also stored in main memory. A
task may select and execute these executive modules by loading them into micro-
program me:uary, One of the executive modules is the scheduler. This module is
run after a task is ended and uses the executive tables to define the next task to be
run, Each interpreter uses the same executive functions and performs its own
scheduling and other execrutive functions.

B. TASK OPERATION
1. Task Work Area

Once a task is selected by an interpreter for execution, its work area, located
in main memeoery /pointed to by the task table in the executive table), defines where
and how to run the task. A task is initiated or continued via its work area
(Figure B=13).

The Work area contains a state vector which defines the state (all the registers)
of the 'S' machine (Figure B-14). The state vector also defines where and which
microcode must be in microprogram memory for the task to run, In addition to the
pointer to the microprogram location in main memory, the state vector contains the
address of where to start the microprogram. ’

A program reference table is also part of the task work area. This table contains
pointers to the 'S' programs and data areas needed for the task., The table also contains
other information such as whether the 'S' programs are in main memory or in mass
memory. The use of this table as part of the task work area is shown in Figure B-15,
The task table is part of the executive table that the scheduler uses and will be explained
later,

41

uopeasd(y aienljos “zZi-g arIndig

318V 43I DIdYILNI
TIEVL IDYNOSTY
FI9VI NSV.L
STTEY.L 2AILNDIXI
TINAON
¥ITNAIHDS] WdW
d3LTAUILNI
Y
°
[
X 31NAON b
. °
®
X I1Ndon j—q ERIZI Y . .
N4OM
SIINAOW *Daxd #3sn Z 310AON
L4 T1YVL ToToomemee
. xmﬁ 354NOS T X T1NAOW
- ceceemenue
X TINGOW
 1SIT S.L¥Vd
vivd g— 18V L
IO¥N0S
319VL
WV3O0ud S -
< FONRIIN NVEOOUdOUDIN
WVED0Ud
T A i .,
~CHOIN _HO1vo0TIV ~ 30 D08DIN
T MSY.L VRIY SHOM SV L HOIYHOT ‘ INANV N3
NAIN
¥ILFWYILNI

N — ———r P [N— [N N F—

——— o

STATE VECTOR

SOURCE TABLE
(POINTERS TO EXECUTIVE MODULES)

P

PROGRAM REFERENCE TABLE
(POINTERS TO PROGRAM AND
DATA SEGMENTS

—

TASK RESOURCE TABLE
{POINTERS TO ASSIGNED RESOURCES)

ey

e Sy

USER
WORK SPACE

P e

Pr———

Figure B-13, Contents of the Work Area

) 43

_ il

- o — P

Py P P r——

POINTER TO USER WORK SPACE POINTER TO LAST USEDWORD IN AREA
LOCATION OF POINTER TO MICROPROGRAM ADDRESS TO START MICROPROGRAM
TASK TABLE ENTRY NO. ASSOCIATED TASKS WHOSE RR BITS MUST BE SET

"8 MACHINE REGISTERS (DEFINED BY MICROPROGRAM]
(PCR, BASE REGISTERS, ACCUMULATORS, INDEX REGISTERS, ETC.)

TASK TABLE ENTRY READY-TO-RUN BITS AND RESOURCES

GLOBAL LUC

Figure B-14, State Vector

A source table is also contained in the task work area. This table contains
pointers to the executive modules that are needed to run this task. The source table
also contains information such as whether the executive module is in microprogram
memory or in main mamory as shown below:

Location in Location in Microprogram
LtC Size Parts List Memory or Location of Allocator

A task resource table in the work area defines which resources have been
assigned to a task and which resources are unavailable., The user work space inthe
task work area is used to maintain a local operating environment for a module so
that the modules may be written in reentrant code,

2. Microprogram Memoryv

The microprogram memory of an interpreter contains three separate areas
(variable bounds): the locator/allocator, the microprogram, and the executive modules,

The locator/allocator is permanent microcode that is invariant of the task being
run. In running a task various executive modules may be called upon to execute certain
functions such as 1/0 from a peripheral, subroutines, etc. These modules are executed
from microprogram memory, The task calls the locator to execute an executive
module (Figure B-16). The locator saves the return address in the task and restores it
after the module is executed, The locator uses the index supplied by the task to select
the proper entry in the source table of the task's work area to locate the module,

Figure B-17 depicts how a module is located. If the source table indicates the module

44

3l4Bl I0uaxd)ay wexdoa g ayy Buisn *c¢i-g 2andrg

(s3718vL '33X3 40 1¥vd)

— LN3WO3S Viva

A NSYL
Y3LNIOd ¥iVvQ
¥ILNIOd 3009 ..5.. J
WYHO0Md ..5.. H3ILNIOd 30030HIIW w
b e

2 A AsSvl
lud

WYHEO0BIOHIIN
MHSYL
/S i

(WdW OINI” (AHOWIW NIVW)
a3aavol YIHV NHOM X NSYL

3g 1M (AHOWAW NIV 378VL NSVL
- {AHOWIN NIVIA)

T PP e R = B & =~

. oy m

-~

s

SAVE
RETURN
ADDRESS

i GEY POINTER
MODULE NUMBER)
‘ FROWM

I SOURCE TABLE

USE
MICROPROGRAM
MEMORY ADORESS
TO SELECY
NEXY CODE

MNOT PRESENT

UNITY
PRESENT IN —_ - PRESENT
MICROPROGRAM
MEMORY /
UPDATE
LAST USED

GLOBAL COUNYER
LUC ¢+ ¥ —= LUC
(GLOBAL AND
SOURCE)

EXECUTE
SELECTED
MODULE

RESYORE

RETURN
ADDRESS

Figure B-16. Locator

46

TASK

(VIA CALL TO LOCATOR)

MHCROPROGRAM MEMORY

— . — e ——— . e e e — — e —_—— i — .

- { {DIRECTLY)

POINTER SOURCE TASIE

(VIA CALL TO ALLOCATOR)

PARYS LISTY POINTER moouLE

L

POINTER FILE DIRECTOAY

P T)

MAIN MEMOAY

EXTERNAL DEVICES

o m——

Figure B-17, Locating a Module Through Storage Hierarchy

47

{
{

e mamiy

[P,

———

5

ety

i3 in microprogram memory, it will contain a pointer to the module, If it is not in
microprogram memory, it will point to the allocator. The allocator then uses the
entry in the source table to point to a Parts L.ist Table (this is a master table with
one per system) which will contain a pointer to the module in main memory.

If the module were not in main memory, the Parts List would point to a file
directory that would point to a location on some peripheral. The allocator function is
used to find space and copy an executive module into the microprogram memory to
execute it (Figure B-18), The allocator function may also have to deallocate some
modules from the microprogram memory if enough free space is not availatle therein,
Modules are deallocated (overlayed) based upon their relative use by the task veing
executed.

C. EXECUTIVE OPERATION

There are a number of modules that perform executive functions. Two modules
that perform tasks basic to operation of the computer system are the schedvler and
end task modules. The scheduler module scans the task table to determine which
task is to be executed next. The task table (Figure 13-19; contains bits defining if a
task is presentiy being run, if it is ready to run, its § machine 1D. its work area
pointer, etc.

Each interpnreter is assigned a global bit. Onrly one interpreter can have is
associated global bit set at any one time, Simultaneous requests to set a global bit
arc resolved in favor of the higheast priority interpreter. An interpreter must set
its global bit before changing any bit of a task ir the task table, (this is shown in
Figure B-20). This prevents conflicts hetween interpreters in siinuitaneously
attempting to make changes in the executive tables,

Another executive table is the resource table (Figure B-21), This table defines
if a resource is being used and contains a iink to a resource waiting list.

An additional executive table, the interpreter table (Figure 13-22), contains
information defining the status of each interpreier in the system. The interpreter
table defines if an interpreter is busy, what task is being run o , a time check on
the interpreter for failure detection (an interpreter has to repo. n to the table
within a specified time interval after starting 4 task), and a com:: . unication ares for
sending messages between interpreters.

The end tack module unschedules a task, This module updates system tables,
relecases resources, and checks the interpreter tables to check cn the operation of the
other interpreters,

The use of the end task and scheduler modules in the cyclic fiow of execution of
2sks is shown in Figure B-23. The scheduler moduie selects a task io run and
allocates resources as needed. LExecutior is then turned over to the task which will
select and run any executive modules needed. Tie task must also report in periodically
to its interpreter table. When the task is to be enred the end or suspend tasl 1nodule
performs the functions illustrated whereupon it then cails upon the scheduler module to
initiate the process over again,

48

o e

e

e e ey

ALLOCATOR

GET LOC CF
POINYER IN
PARTS LIST

/ GET
MICROPROGRAM
MEMOR Y

SPACE .
Lock

PARTS
LISY

v

USECOUNT « ¥
—& USECOUNT
SET LAY

g — ————- e e e
/ //A
(MODULE IN LISECOUNT uNLOCK
MAIN MEMORY > PARTS WAt
L / LIST
YES
UNLOCK
PARTS
st —
- ASSIGN MAIN
.. [wemoRv Gt
MODULE FROM
COPY MODULL DEVICE
INTO b
MICROPRUGRAM ,.__._] —— ___*. .
MEMORY / ’A OCATE AND r
Lt
S T MODULE I n:?::m -
1IN MEMORY ¥
UPDATE
SOURCE TABLE
ENTRY
e g e
| d - a
LOCK USECOUMT UNLICK Loc?
PARTS |IST —& USECOUNT PARTS 15T OF
LOCATOR
s
Figure I3-13, Allocator

12

————y

ENTRY TASKI'D & WORK
INACTIVE :'L':D;'TTS(" PRIORITY TIMING. STATISTICS ARFA
BIT "S" MACHINF I'D POINTER
AND LINK
1 2 3 4 s 6
RESOURCE LIST
9 CORRFSPONDING
ALTERNATE NUMBER OF TYPE b STATI RR BIT TYPE
WORK RESOURCES POSITION
AREA
POINTER
7 8

Figure B-1Y, Task Table Entry.

50

LOCK

REQUEST
GLOBAL
CONDITION

[123

YES

ENTRY - GET
INACTIVE BT

[

RESET

NO GLOBAL

CONDITION
nr

SELECT
NEW TABLE
ENTRY

YES

MM

| r RESET ENTRY
INACTIVE
L. [123

RESET
GLOBAL

, [CO-IDITION
T .y

o ——— ——

{ Figure B-20. Locking

51

-

o

Yo

ENTRY TASK TYPE | waning | uiGHEST
INACTIVE TYPE) STATE | TASK | PRIORITY | LINK List PRIORITY

BIT LINK WAITING

| 2 3 ‘ $ 6 7 ' 9
Figure B-21, Resource Table Entry
1
I:AN(']‘.FI:,/E INTERPRETER RUN TASK START | waIT :g‘fT COMMUNICATION
, ,

BIT DOWN DIAGNOSTICS | NUMBIR | TIME | TiME | SEXT AREA

1) 3 . s 6 1 8

Figure B-22, Interpreter Table Entry

52

A

waIIsig 9y Jo Mol d1194D

*gg-d aandrg

_ MIALINGUILNI 378Vl nSVL
H3LINeN3iM o> OavesolsaL | NI XSVL
_ ave L4043y LONNLINCITM ¥3iN33Y
_ N3L3WANILNI
ave
_ 3evi ONINNNY 1TV
HI1IUGYILNI
_ ¥23HD SHILININILNI
* iWvis3aud 4 _
wod _
_ AINVONNGIN [i 1
unsN3 | | s31naon ANVSSIOIN
_ [|| AVVhdowad 3AILNIIX3 H NIHM
_ # :.M.;_w: Q313313 | _ $30HNOSIY
_ ONISSIO0Md “ NNY I — 34V30T1 Y
W31V HO4 = |
_ aLvis 3AVS S |_|_ J W —I_I.l_ “
3NVLaSVL I _ _ _ NNY-01-AQY3Y
_ 31vQ4n wsvigdols [ea———i NSYLNNN |O———— NSVL ALIMOINY
$30MN033y P> _ | _ _ 1SIHOIM 133738
_ 21¥2011v30 _ _ _ _ 13NAIHIS
_ NOILNIIX3 —
_ 31NAOW SVL GN3dSNS HO ON3 _ _ NSVYL “ | 3NGOW 43Ina3HIS
_ | _ —

e | L s

M

———

r— er——

REFERENCES

Davis, R. L., C. M, Campbell, S. Zucker; Aerospace Multiprocessor Interim
Report, Burroughs Corporation, Feb 1972

Wehr, K. C., Technical Summary of the Interpreter-Based System, Burroughs
Corporation, Jan 1971

Davis, R. L., and S. Zucker; Structure of a Multiprocessor Using
Microprogrammable Building Blocks, NAECON '71 Record, pp 186-200,

Davis, R.L., and S, Zucker, C. M, Campbell, A, Building Block Approach to
Multiprocessing, 1972 Spring Joint Computer Conference, pp 685-703.

Reigel, E. W,, U. Faber, D. A, Fisher, The Interpreter - A Microy. rogrammable
Building Block System, 1972 SJCC, pp 705-723.

. Zucker, S., Aerospace Multiprocessor Executive, Burroughs Corp, Paoli, Pa.,

Technical Report AFAL-TR-72-144, April 1972,

54

i

DISTRIBUTION LIST
Contract F33615-72-C-1973

Address

WPAFB ACTIVITIES

AFAL/TSR
WPAFB OH 45433

AFAL/AAM (Mr. J. Camp)
WPAFB OH 45433

AFIT (Library)
WPAFB OH 45433

ASD/YHEV (Mr. Jim Hutson)
WPAFB OH 45433

2750ABW/SSL
WPAFB OH 45433

OTHER ACTIVITIES

HQ USAF/SAMID
Wash DC 20330

AU
Library
Maxwell AFB AL 36112

Director
Naval Research Lab
Wash DC 20390

Commanding Officer
Naval Avionics Facility
21st and Arlington Ave
Indianapolis IN 46218

US Army Electronics R&D Lab
Attn: Dr. H. Jacobs
Ft Monmouth NJ 07703

Director, NSA
R-13
Ft George Meade MD 20755

No. of Copies

18

DDC 2 |
Cameron Station {
Alexandria VA 22314

INDUSTRY

Control Data Corp 1l
4130 Linden Ave
Dayton OH 45432

Hughes Aircraft Co 1
; Aerospace Group
! Culver City CA 90230

‘4 Honeywell 1
: Military Products Group

2314 Standly Ave
Dayton OH 45404

IBM Corp 1
33 West First St
Dayton OH 45402

ool

RCA 1
Aerospace Systems Division

Box 588

Burlington MA 01801

M

McDonnell Douglas Corp 1 !
333 West First St
Dayton OH 45402

Raytheon 1
333 West First St
Dayton, Ohio 45402

Westinghouse Electric Corp 1
Aerospace Division

Friendship International Airport

Box 746

Baltimore MD 21203

Litton Systems, Inc. 1
Guidance & COntrol System Division

5500

Canoga Ave ;
Woodland Hills CA 91364 I

Texas Instruments, Inc. 1l
Equipment Group

Suite 205

3300 South Dixie Drive

Dayton OH 45439

I

|

General Electric Co 1
Aerospace & Defense Sales & Service

3430

South Dixie

Dayton OH 45439

Univac 1
Defence Systems Division

333 West First St

Dayton OH 45402

Burroughs Corp 1
Federal & Special Systems Group

Attn: D.F. Sullivan

Paoli PA 19301

Boeing Computing Systems 1
Attn: J.F. Cramer

8R-39 Mail Stop

Box 3707

Seattle WA 98124

Singer-Kearfott Division 1
Attn: M.G. Page

33 West First St

Dayton OR 45402

The Garrett Corp 1
333 West First St
Dayton OH 45402

P——

Grumman Aircraft 1l
333 West First st

L Dayton OH 45402
Northrop Corp 1

379 West First st
Dayton OH 45402

Department of Transportation !
Transportation Systems Center

Attn: Mr, G. Y. Wang

Cambridge, Mass.

National Aercnautics and Space Administration
Llangley Research Center

Attn: Mr, L., Spencer

Hampton, Virginia 23365

| Dl 1
m T—— | —— e Jo———

~

" ———

<
Security Clasaification

(Security classification of titie, body ol abstract and indexing snnotation must be sntered when the overall report is clussilied)

‘ DOCUMENT CONTROL DATA - R & D

QRISINATING ACTIVITY (Corpoarate author) 28. REPORT SECURITY CLASSIFICATION

Autonetics Division of Rockwell International UNCLASSIFIED

3370 E. Mraloma Ave, Anaheim, Ca. 92803 . GROUP

3. REPORT TITLE

Avionics Processor Controller STudy, Volume 3, Multiprocessor
Description

4. DESCRIPTIVE NOTES (Type of repoet and inclusive dates)

Final Report July 1972 - June 1973

8- AUTHORI(S) (Firast name, middle iInitial, l1ast name)

L. J. Koczela

¢ REPORY DATE 78, TOTAL NO. QF PAGES 7b. NO. OF REFS
June 30, 1973 59 6
8. CONTRACY OR GRANT NO. %a. ORIGINATOR'S REPORT NUMBE RIS)
F33615-72-C-1973
8 PROJECT NoO. €72-812/2061, Vol 3
c. 0. OTHER REPORT NO{S) (Any other numbers that may be auljmd
this report)
AFAL-TR~73-203, Vol. 3
d.

10. DISTRIFPUTION STATEMENT)
Distribution limited to U.S. Government Agencies only; test and evaluation
resulis reported; February 1972, Other requests for this document must be
Eifserrtsli_lto“%force Avionics Laboratory (AAM), Wright-Patterson Air Force

1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIiviTY

AFAL/AAM
WPAFB, Ohio 45433

13. ABRSTRACT

This volume presents a detailed description of the Burroughs Multi-
processor. The descriptive material of the multiprocessor was scattered
through several reports. The purpose of this volume is to extract the
appropriate material from these reports and present the available
material, upon which the study was based, in one unified report.

DD roms o 473 UNCLASSIFIED

s NOV S

Security Classification

Security Ciassification

re
KEY

WORDS

LINK A

LINK &

LiNK C

ROLE wY

ROLE wT

ROL E wY

Multiprocessing
Computer Archituecture
Computer Organization
Microprogramming

Security Claswfication

Nt

o S

b s

[T —

Koo -t

e e 2 ¥

