UNCLASSIFIED

AD NUMBER

AD911355

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies only; Test and Evaluation; FEB
1972. Other requests shall be referred to
Air Force Avionics Laboratory, Attn: AAM,
Wright-Patterson AFB, OH 45433.

AUTHORITY

AFAL ltr, 7 Oct 1977

THIS PAGE IS UNCLASSIFIED




AFAL.-TR.73-203
Volume |

w— .

AD911555

-
R

AVIONICS PROCESSOR-CONTROLLER |
CONFIGURATION STUDY Y

TECHNICAL REPORT-VOLUME |

L. J. Koczela
Electronics Group of Rockwell International
Anaheim, Californiz 92803

TECHNICAL REPORT AFAL-TR-73-203VOL. !

DISTRIBUTION STATEMENT

Distribution limited to U.S, Government Agencies oniy; N HLM
test and evaluation results reported; February 1972,

Other requests for this document must be referred to

Air Force Avionics Laboratory (AAM), WrightPatterson

Air Force Base, OH 45433,

AiIR FORCE AVIONICS LABORATORY

Air Force Systems Command
Wright-Patterson Air Force Base, Ohio 45433

. ., " T e
- . ) "




NOTICE

When Government drawings, specificaticns, or other deta are uaed for sny purpets
other thew in connsction with a definitely related Government procurement spenation,
the United States S overnment tharehy incury mo responsibility ner any obligstion
whatioaver, snd the fact that the government mey have formulated, furnished, or in
sny way supplisd the said drawings, spetifications, or other data, is not to be regarded
by implication or otherwise as in any manner licensing the holder or any other persas
or corpantion, or conveying any rights or permission to manufacturs, use, or sefl any
pitsnted invention that mey in any way b related therets,

Copies af this report should not be returned unless return is required by security
sonsiderations, contractal obligations, or notice on a specific document.

e wom g [
& .

e

oo

3
-

o
[ s—

| kY

[

T S




A

+
"
A5 RERD

B

Gprecig
[

[ AVIONICS PROCESSOR-CONTROLLER
CONFIGURATION STUDY

e §

TECHNICAL REPORT-VOLUME |

Bbtimnitend
LR

7 L. J. Koczela

Beta Aot

e d

[y
e fv s, e v es A e v o e

'y
-

Frmmanins
»

[C

DISTRIBUTION STATEMENT

Distribution limited to U.S, Government Agencies only;
tast and uvaluation results reported; February 1972,
Other requests for this document must be referred to
Air Force Avionics Laboratory (AAM}, Wright-Patterson
Air Force Base, OH 45433,

Buoioscnng
-

Armein, -

Py
[ P )

aesrwrell

1
i

:
£
i
{
v

i
i

T L T e g




FOREWORD

This Final Engineering Report was prepared by the
Rlectronics Group of Rockwell International, Anaheim,
talifornia. The work was accomplished under USAF Project
609C entitled “"Avionics Data Handling Technology", Task
01 entitled "Avionics Information Processing® and con-
tract No. F33615~72-C-1973 entitled "Avionics Processor-
Controller Configuration Study.” The work was administered
under the direction of Mr. J. E. Camp, Air Porce Avionics
Laboratory, APAL/AAM, Wright~Patterson AFB, Ohio.

This report covers work conducted from 1 July 1972
to 30 June 1973 and was submitted by the author 30 April
1973.

This technical report has been reviewed and is
approved for publication.

Colonel, USAF
Chief
System Aviconics Division
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ABSTRACT

This report presents the recults of a study to configure an advanced
multiprocessor for an avionics system. An advanced strategic bomber
avionics system was selected as representative of an advanced avionics
system application and the computational requirements for this system wers
defired. The prototype laboratory version of an advanced multiprocessor
developed by Burroughs Corporation under Air Force Avionics lL.aboratory
sponsorship was examined and applied to the avionics system. It was found
that the Burroughs multiprocessor offers a very flexible and adaptable design.
Several improvements were noted to improve its performance and several
design medifications were noted which are required in order to apply the
design to the avionics system. The resultant configuration showed that
mechanization of the computer system, using state-of-the-art technology,
for an advanced strategic bomber avionics system is feasible with the
Burroughs multiprocessor concept. This report is also being published as
Autonetics internal report C72-812/201.

iii




CONTENTS

P P A

1, lntmduction""'"""0-----0--00. ----- R N I 1
2. Requirements AnalysiS: + «+ - v ou ettt nroneennss 3

2.1 Amlysis:\pproach........o...-....-.-..l-...-......... 3
2.2 Assumpﬁonsco.-.-....--....ao...-.-....-....-..-... 15
2,3 Requirements Summary «- - - - e
2.4 Example of Detailed Processmg Requirements 2 |

3' N[OduleDefinition~"-~"-°'-'-"--°°"---'-"---""------ 2?
3.1 BurroughsComputerl)escn'ption.........-.................. 27

3.2 lnterpI'EterDeSCl'iption 5 @ F & 2 8 S % 0 2 B S T GV & B T o 6 8 & B B R 2 s 4o s 29
3.3 Switch Interlock (SWI) Description « « s « e s e o vt v s st it oo v a e 37

AR 4. Module Analysis « -+« - e o0 .. s e e e e e e s et ssecrsearases 18
3 4,1 Intermediate (S) Language Considerations ... .. ... .. ¢ 000 .o 19

» i 4.2 Inter‘preterl‘odllle L R R S O I L L I N N I T S S S R S S ) b

3 4.3 Switch Interlock Module « + « v+ v coneveurnrues.. R 2
L ’ 4,4 Multiprocessor Performance Capabilitys « v ¢ 5 e v e e s vvce v e v ae 89
» : 5. Configuration Definftion e « « » e« o cvvovsouseeeaeensecanssnesssas 115

115
110

Central vs Local Processing Allocation. . « v« v o o oo .
Interface to B-1 Multiplex System + .. .o 0 vveva.
.3 Failure Detection and Reconfiguration for the Burroughs
o MUltiprOCESSOT « + « ¢ v s e e vt v v e ssosasvssocansansosensees 168
i 5.4 Multiprocessor EXeCUtive - « + + o ot e v e nnvrorstacaneansseses 184

-
L]
-
.
-
.
-
.
.
.

[ S )
[7-0 -]

AN 6. Physical Characteristics .. ... e h s e e tesectancnr s erensens 109
6,1 Computer Description - « « « v e v e e vt v s o neeoneennsas e esaa. 199
6.2 niodulenlechar.\izationOOOOQIICQQOl.l'o.....'-l.'l.l...'206
6.3 Central Processor Packaging +........... cee e ceeeeasa 216
6.4 Summary of Physical CharacteristicS« + ¢ « v ot v s v 0t v 0w e v e v oo v 224
3 7. SummaryandCouclusions........-............--.............225

ReferenCesS « ¢ v v ¢ o ¢ ¢ 0 0 ¢ ¢ st ot o s s s 0 e v v s s oo s 8 a8 et e oecesen o 227

oy
[mm———

Bl v S

A e L IR M) 5 A ]
PR
:WJ




e U [ N T R . e . e m—t—

s AL B edt e

ILLUSTRATIONS

i
Figure Page
i 1-1.  Avionics Processor - Comtroller Study Flow+« ++ c s s o e e avenes e 2
‘- 2-1, B-1 Avionles System Block Diagram « s e st e s s rcecasrscnceassee 5§
2-2.  Alternate B-1 Central Computer Subsystem ««s cvsceseerarrec.oe 7
o 2-3, Offensive Subsystem Computer Interface <.+ +s sasen et sencocses 8
i 2.4, Defensive Subsystem AMUX Interface s« -ccceeioncecscssacesecs 9
2-5, Avionics System Function/Hardware Interconnection for the
.- Avionics Processor Controller Studv -+ cccveccccteorscieensees 11
| 2-6, Navigation Function Fquipment Interface -+ ++ 2o v e v evenrceeoes 22
g - 2-T. Navigation Function Block Digagram .« « e s s e e s v s vt e cv s ceeesvrae 23
3-1. Burroughs Mulfiprocessor.« -+« + s s e soerasssansovsssnosons 28
; 3-2, Interpreter Block Diagrame. « c « s s v e et svevctiscrtavsrrcrvaes 30
. 3-3. Interpreter Data and Control Flowe « ¢ « s v o vv v et ie i i o aev v 31
i 3-4, Timing Analysis Type I Instruction e c e e v s ce s v cace e sesensss 35
i 3-5. SWI Interface Diagram - .. .. ... s e s aeserarecreresesre s 38
4 3-6. MDC Block Diggram .« « e oo s o v naveroaacsssnrsassnsssnsesses 39
% 3-7. 3-Channel Device Control Block Diagram .+« + v v vt c v v v ca e s 41
h 3-8, Typical Stage - Memory Control -« . v cee vt oncvnanvrcvcnneans 42
] 3-9. 5-Channel Input Switch Network Block Diagram «<.oveeeieecccecs 43
3-10. 5-Channel Output Switch Network Address Block Dmgram- seenas e 44
‘ 3-11,  5-Channel Output Switch Network (Data) Block Diagram -+« cecvee 0 45
! 1-1., S Language Translation. « . .+« v tivitntenrenernaenntins . 58
4-2,  Military Computer Instruction Word Sizes as Reported in Ref 10 s++rseee 59
‘§ 4-3, Relationship Between Amount of Replication Within Macros and
i Total Microprogramming Bits « « « ¢ s e 0 v v cnav s oo enn Ceeeraeeas B1
T 4-4, Buffer Storage:« . «+ -+« cc.o .. et r e e s seee 70
3 4-5. SWI Timing - Memory Operation « .. . R R I &
} 4-6,  SWI Timing - Device Operation: « « + o - e e 0 vt o . 21
-g 4-7, SW1 Timing - Device Lock/Unlocke v s ¢ ¢ s e et e v s n e st vaves s e e 75
% 4-8. Interface Diagramse « « = v« e ¢ o v o v et C 4 e co 0 s e s s e s e T6
't 4-9, MC Logic Definition + ¢« e s o o n o v v v v eeeaian . £
|- 4-10. Typical Stage - Memory Control, Alternate «+ ++ s «v 0 cev v v v g3
3 : 4-11, Typical Stage - Device Control, Alternate « + ¢« s ¢ e v e v v e e o csr e B4
i 4-12, Input/Output Switch Network (I0OSN) - Dual Control tesr e sa e B85
it 4-13,  Alternate Switch Interlock for a Two Interpreter System (Two Channel
| JOSN) o o v v vonevanennens Y-
-1 4-14, Interpreter Emulation Operation « <+« e v o e e, e s e 90
4-15, MPM StrUCLUTE o + o v 5 5 ¢ v v 0 s 48 s ot 28 8 500 s st 8sssevsacs=ass 91 .
4-16, IFetch ROULING: + ¢ ¢ ¢ ¢ c ¢ ¢ s 0 0 s ¢ s s v 10200 c s s s e estecs e Q3 ;
§ Ve 4~17, Instruction Format Interpretation Routines » « = ¢« - ¢ v 00 v v e cer e 07 }
4-18.  Full Word Add Instruction Execution (1/2 Word Instruction Format) « « « + 100 i
i 4-19. Half Word Load Instruction Execution (1/2 Word Instruction Format) -+ « 101 ;
i 4-20, Compare Full Word Instruction Execution (1/2 Word Instruction :
Format) ¢« cev et eanen. e b s 4 s e v e e e e s s s s e o0 102 H
. 4-21.  Multiply Full Word Execuhon ----------- R R R - 104
U 4-22, Half Word Add Instruction Format Interpretation and Execution (Full
Word Instruction Format) . - .. ... R et e eeass o105

O S D AN R ¥yt i
¥




T RS S

Ny

TR

Figure

U)U’l?'lb‘lm
Gt i GO N e
.

.

1
)

Tey
oo ~1 ;N
*» @

5-9,
5~-10.
5-11.
5-12,
5-13,
5-14,

5-15,
5-16,
5-17,
5-18.
5-19,
5-20.
5-21,
5-22.
5-23.
5-24,
5-25,
6-1,
6-2,
6-3.
6--1.
6-5.
6-6.
6-17.
6-8,
6-9,
6~10.
6-11,
6-12,
6-13,
6-11,
6-15,

ILLUSTRATIONS (Cont)

Function I - Navigation ......0v00eesaan
Function 2 - Steering . . . . o vt o v oo v o neesn
Function 3 - Target/Checkpoint Acquisition .
Funetion & - Weapon Delivery, . . ... .0 0000

.
L T S }

Function 5 -~ Penetration Aids . ........
Central Processing Requirements. .. .. ..
Processing Alloeation. .. .. ........ .. e e
Present B-1 Multiplex Systemm . . . e 0 et e e i v e na
MIM Functional Block Diagram............. Ceesn

. Word Format ..... ® 4% 2 e st 4 s e s aa bt e et

MIU/PIU Interface Signals. . « o v e v e vt v e nnonnonse

. &« »

..

. .

.

-

-

e e @
* & e+ & * » @
s % = s »

.

.

-
LI Y
.

.

L .

Connection of Burroughs Multiprocessor System to Multiplex Svstem .

Direct interpreter Control Svstem. . . « . v . e v s v s v e v e

Data and Command Format for MUX Controller - Interpreter
Interface: s o o =« « v v 4 S s e e e e s e e s f e s s e s s . s .

Single Command Buffered System +« - v . o0 ot ot o a
Multiple Command Buffered System. ... .. .. cew oo
Dedicated Interpreter System .« v« v e v o v v v s ot avn e

ASBAvionics Computational System Interface . «. « ¢« v oo -

System Description for Failure Tolerance + .« - v v e e ¢
Modified MultiprocessSor « o ¢ v v e v v e v o s c et anssnnse

Modified GC LogiC « « v v e v e v vt v e vt e vnseonnnans
Failure Detection Process....... s e s s e en s e

Failure Isolation/Reconfiguration Program. . . - . .. ...
Task Table Organization « « + o« « s 0 v e s v s e v oo vee-.
Scheduling Sequence . . . ... ... e e et e s e
System Block Diagram of Central Processor ... .....

Interface Between Aodules Per Interpreter/SWI1 Channel
SWIChannel Interface . « v o o v - c e o v et v s s o necns
SWI Channel Internal Interface . « « . v, c vt v v v s e v e
B-Register and B-Adder Input Selectors.. ..........
A-Register and A-Adder Inputs. . . ... ...... St e e
Z-Inmputand Adder ..+ c v e v vt ettt et i i e

SAR Complementer and Barrell Switch .. ..........
Array Cross Section (Plated Wire Planey ..........
Array Cross Section (Word Strap Planey . ... .. e
Plated Wire Memory Timing .. .c oo v v v e aunn .
Avionics Processor aud Controllér ... .. .. . N

General Arrangement Avionics Processor and Comroller
General Arrangement Avicnics Processor and Controller
Cross~Sectional View Avionics I’racessor and Controller

viii

e s 5 5 s 0 5w

* 8 o 8 o ¢ .
- . s e v s
.. . 2 2 e .
“ e 0w s
L A L
L B Y B Y
. e o2 v e
® 8 s 5w w s e
........ .
o & v . 2 e
...... LY
P e v s e 2w
------ D)
L A L B R |
. . s s v & @
. s s . * s s .
> & e 6 0 s 2 0w
P2 T I I R + .
. v - s e v e
e v w v s s e oaa
+ s e o s « v @
-------- .
.« o . -
------- .
® s @ s 5 2 o 4
----- . LY

s ®» = @& » = 8
¢ e + » &
Pt ot b ot ot
SO
(S RN W=

i

Srilond j ettt hit, bt




P

| b ARt i, it ot

E i
- i
S |
; TABLES |
AL |
3 Table Page ;
! ! 2-1, ASBAvionics Subsystem Equipment List« - + o c v e et nr et v vecrnase 12
! e 2-2, Subroutine Throughput Requirements « « « + ¢ e e - v st s it sevsaees 16
G 2-3. Throughput Weighting Factor s+ « v e e s e v v s e cvennceroncesnnnss I7
; i - 2-4, ASBAvionics System Processing Requirements Summary + e s e n s e v o oo 17
E ¢ 2-5. Processing Requirements of Central Computer Functions . v v ccvevo. 18
2-6, Input/Output Data Transmission Requirements Summary ........... 19
A T 2-7. ASBAvionics System Mass Memory Requirements .. :cceaevevnss 20
k¢ o 2-8. Navigation Function Processing Requirements Summary .+ c v oo s s 0 v 24
SRR 2-9, Navigation Function Detail Processing Kequirements + + « + e - cvsvees. 25
E 2-10. Navigation Intrafunction Signals «. e e e ettt r et nnneeneaes 26
- 3-1. Detailed Nanobit ASSIgnment «+ «+ oot esveesnsonnccoensennees 32
. : 3-2, Microprogram Memory Addressing - « c ¢+ ¢ s et v e s e et svcssvances 36
e 4-1, SPL Tokens Defined in Reference 7... ... .. ... iouiaone. 54
e 4-2, Microinstruction Requirements « .+ -« .o oo ovvveoaa. e see. 62
- 4-3, Microprogram N-vword Assessment «.: .- .o vircsnsocccroccascs 65
E 4-4, SWITIMING + v v v vrovorecenunennenn P
e 4-5, Number of Boards in Present SWI ... ........ e e caan cseease 86
3 4-6, Number of Boards for Alternate Design - - - . - Cee et . 86
’ 4-7, Microcoding for IFetehe « « - -« e v v ettt e vt st s ot st annnaneen « e 95
. 3 4-8, Microcoding for Instruction Format Interpretation: « + « c v cv e v o un oo 98
-t 4-9, Microcode for Full Word Add Instruction Execution . . -+ .. . .. P 1} ]
g 4-10, Microcode for 1/2 Word Load Execution +« +«csvevenveen o, ... 103
. 4-11. Microcode for Compare Full Word Execution « v e s v e e v e veeeene... 103
- . 4-12, Microcode for 1/2 Word Add Instruction Format Interpretation and
E Execution « + e v+ o ¢ v s et st st e nentconnness e e e s e e « v o 106
‘ : 4-13, Instruction Execution Times in psec for short Format Instructions . ... 108
P 4-14, Typical Execution Times for 1/2 Word Fermat Instructions « v+« ...+« 109
. 4-15, Multiprocessor Capability .+ .+« c -ttt it ittt iinvesionssrsealld
: -1, Navigation Processing Allocation + « + ¢ = . v s o s e i i enc i ool o= 117
-2. Navigation Function Allocation Requirements « «+ ¢ e0v e . 118
-3. Steering Processing Allocation -+ «c.. v io vt viiverrncerorasallB
-4, Steering Function Allocation Requirements- « « « v v . o o v 0o v nn veens e 119
B S 1)

-6, Target/Checkpoint Acquisition Allocation Requirements + ¢« ce s ..o« 120
7. WeaponDelivery Processing Allocation + + + c « e st et v v aeenosons 120
-8, Weapon Delivery Allocation Requirements . .. .. .. R IR » a0 121

5
S
5
5
5-5, Target/Checkpoint Acquisition Processing Allocation
5
5
5
5-9, Penetration Aids Processing Allocation .+« ¢« v v vt i .a. 121

DTS s OIS G YK WA ] BT 1 e T
N

. 5-10. Penetration Aids Allocation Requirements « ¢« ¢« vovei v v aesveaa. 122
{j 5-11. Final Configuration forASB Avionics System. - « « e« v e e v v evenees . 139
5-12, Command WOId ¢ v ¢ o ¢« ¢ ¢ e s et e s oo arsennsserencesnasesoessallf
7e 5-13. Response Word (Valid Data TranSmission) « « + « v e e e v v v e et v veess 146
i 5-14, Response Word (Invalid Data TranSmission) - « « « « e e s v s e e vecveass 146
v 5-15. Data\\’ord-.................. ........ e I v
. 5-13. I/ORequjrements................... ..... creesssssecss 167
i t-1. Central Processor Characteristics « « . « v v o v v i v et ne e it a v on .+« 201
: G-2, Interpreter Parts Estimate « .. ... ...t Ce s s s e e 207
G-3, Interpreter Mechanization Summary - ... -. ... ... ... N IR {1 ¥ §

4 §

g 6-4. List of Major Assemblies in the Central Processor - - - - -+« ... ... - 219
ix




i 8 iz
3.

B X i e e it ﬂ
Fusivial
ke 9

Burroughs Corporation (Ref 1), The objective of this study was to define

the computational requirements of an advanced aviouics system, investigate the
Burroughs multiprocessor in light of the requirements imposed by an avionics
system, and configure a computer system for the avionics application using the
Burroughs multiprocessor design.

- s

gL 1. INTRODUCTION

e This report presents the results of a study to configure an advanced
- multiprocessor for an avionics system. The Air Force Avionics Laboratory has
f_ ) developed a prototype of an advanced multiprocessor in recent contracts with

e 0

The study was divided into four principal tasks as shown in Figure 1-1:

VL R RN g A g

Task 1 - Requirements Analysis

Task 2 - Module Definition and Analysis

sl

Task 3 - Configuration Definition

Task 4 - Physical Characteristics

Sy T

Section 2 describes the results of defining the computational requirements. Section 3
contains a brief summary describing the Burroughs multiprocessor concept.

Section 4 presents the results of the analysis of the Burroughs multiprocessor with
regards ils capabilities and Iimitations in an avionics system environment, Section §
presents the configuration for the avionics system using the Burroughs multiprocessor
modules. Finally, Section 6 contains an estimate of the physical characteristics of
the Burroughs multiprocessor for the central computer of the avionics system,
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2. REQUIREMENTS ANALYSIS

The purpose of the Requirements Analysis was to provide a set of realistic
advanced strategic bomber avionics digital data proeessing requirements. From these
requirements and the results of the module analysis task, an appropriate Avionics
Processor~Conirolier subsystem can be configured.

2.1 ANALYSIS APPROACH
2,1.1 Advanced Strategic Bomher (ASB)* Avionics System Delinition

The B~1 Avionics System was selected as representative of the advanced
strategic bomber avionics system for the purpose of this study. The B-1 avionics
configuration was initially established by the September 1971 RFP for the B-1
Avionics System Interface Coniractor (ASIC). This baseline configuration has been
amended as the result of amendments to the RFP, the new avionics subsystems
proposed bv Autonetics in response to the RFP, and by changes to the B-1 avionics
system since award of the ASIC contract,

The B-1 avionics configuration was further modified in response to the goal of
this study in two definile areas, First, the offensive and defensive subsystems
defined by the modified RFP were combined into one avionics system. Secondly, the
pre-processors currently in the B-1 avionics hardware were assumed to be not
included in the avionics configuration.

The resultant B-1 avionics configuration established for this requirements
analysis is oriented about a central digital data processing system. The {inal
avionies configuration for this study will be defined later in this report when pre-~
processors are allocated as 2 result of the Configuration Definition task.

Some figures are included for background information. Figure 2-1 is a block
diagram of the I3-1 Avionics System as proposed by Autonetics in response to the last
AF amendments to the RFP, Note that central computers with specific functions are
contained in this system. In the offensive subsystem they are the General Navigation
Computer (GNC) and Weapon Delivery Computer (\WWDC). Besides the primary
functions contained within each computer, backup mission essential functions (not
including CITS) are also contained in each computer, These backup functions are
activated in either coinputer should the other computer fail. The General Defensive
Computer {GIXC) is the sole ceniral computer in the Defensive Subsystem, Note that
no backup processing of GDC functions is available in case of GDC failurc. For this
reiason, Autoyn>tics proposed an alternate configuration as shown in Figure 2-2, Both
GDC and Central Integrated Test Subsystem (CITS) backup mission cssential functions
can then be provided in identical central computer subsystems as well as primary
functions within the Defensive Subsystem.

Figures 2-3 and 2~4 show the Avionics Multiplex (AMUX) assignment contained
within the Autonetics proposal for the offensive and defensive subsystems, respec-
tively. The hardware subsystems are grouped in response to functional capabilities
and dala transmission loading considerations.

B3
ASB shall be used for '"Advanced Strategic Romber" in this report.
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Figure 2-1. B-1 Avionics System Block Diagram
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‘Finally, Figure 2-5 shows the AS® avionics configuration established for this
study. A\ definition of the subsystem hardware abbreviations is contained in Table 2-1,
Note that the AMUX configuration shown is not the actual implementation design
recuired, dual data transmission over separate AMUX lines ig required for fail
onerational AMUX capability. Also, while the primary function interface is shown,

e, 8., Navigation with IMU 1, other functions may have data communication x‘equire-
ments, e.g., CITS with IMU 1

In defining the avionics configuration, the data transmission in and out of the
crew capsule was minimized for physical considerations, The hardware subsystems
included in the cockpit {craw capsule) are identified in Figure 2-5 to allow association
with Offensive and Defensive Subsystem operators (rear cockpit) as well as front seat
operation.

2.1.2 Processing Requirements Definition Approach

The overall processing tasks were [irst g "ouped into major functional elements:

1. Navigation
2. Steering
3. Target/Checkpoint Acquisition
4. Weapon Delivery
3. Penetration Aids
6. Mission Data Management
7. CITS (Central Integrated Test System)

8. Executive
The association of the hardware subsystems with their major interfacing and
supporting functions is shown in Figure 2-5. The intent of the functional subsystem
grouping is to provide a maximum of subsystem operational capability with a minimum
of interfunction data transmission.

The detail processing requirements were estimated for each of the identified
functional groups. Each major function wis broken down into several processing
tasks. The processing tasks were determined based on interfacing hardware
processing requirements, the basic selectable modes of operation, and the complexity
of the total function.

The definition of a processing task as used in this requirements analysis is a
major processing segment executable as one contiguous element at & specific rate. No
attempt was made to deline extremely small tasks within a specified rate dependent
upon multiple conditions and mode selection, Most of the conditional logic is agsumed

to be contained within a defined processing task, This approach was taken since it is
generally the most efficient avionics processing implementation approach. Extreme
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Table 2~1. ASB Avionics Subsystem Equipment List

p—

Navigation Subsystems
Inertial Measurement Unit (I.\H."), land 2
Doppler Radar Set (DRS)
Radar Altimeter Set (RAS), 1 and 2
Navigation Control Panel (NCP)
Navigation Display Panel (NDP), Front and Rear
Chronometer Unit (CU), Front and Rear '
Terrain Following Radar (TFR)
Central Air Data Computer (CADC), 1 and 2
Gyro Stabilization Subsystem (GSS)

Steering Subsystems

Flight Director Computer (FDCj, 1 and 2

i e L

Automatic Flight Control Subsystem (AFCS), land 2
Steering Control Panel (SCP), 1 and 2

Horizontal Situation Display (f1SDy, 1 and 2

Vertical Situation Display (VSI), 1 and 2

Target Checkpoint Acquisition Subsystems
Forwavd-Looking Radar Control Panel (FLRCP)
Forward-Looking Radar Display (FLRI)
Forwurd-Looking Radar (FLR)

Low Light Level Television (LLLTV)
Forward-Looking Infrared (FLIR)
Offensive Tracking Handle (OTH)
__\lultisensor Display (MSI)

EVS Control Panel (EVSECP)

EVS Autotracker (EVSA)

Video Recorder (VR)

Video Recorder Controller (VRC)

Video Recorder Control Panel (VRCP)
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Table 2-1, (Cont)

Weapon Delivery Subsystems
_Stores Management Panel (SMP)
Store Logic Unit (SLU)
Weapon interface Units (WIUs}, 1 through 5
Stores Consent Panel (SCP)

Penetration Aids Subsystems
) Radio Frequency Surveillance/Electronic Countermeasure Set (RFS/ECMS)
Infrared Surveillance Set (IRSS)
Penetration Aids Control Panel (PACP)
Threat Symbology Generator (TSG)
Threat Situation Display (TSD)
Threat Data Display (TDD)
Defensive Tracking Handle (DTH)
Dispensables Control Set (DCS)

Mission Data Management Subsystems
Offensive Integrated Control Panel (OICP)
Defensive Integrated Control Panel (DICP)
Mission Data Cartridge Reader (MDCR)

.. Mission Data Tape Recorder (MDTR)
Mass Memory Unit (MMU)
Mission Peripheral Controller (MPC)

Central Integrated Test Subsystems
Data Acquisition Unit (DAU), 1 through §
CITS Maintenance Panel (CMP)
CITS Tape Reader (CTR)
CITS Printer (CPR)
CITS Control Panel (CCP)
CITS Status Panel (CSP), Front and Rear
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modularization hased upon multiple conditions is inefficient in an avionics implementation
for several reasons, First, a high overhead in executive task scheduling determina-
tion logic and data shuffling is required due to the high number of multiple conditions

and executable tasks as well as intertask data transfer. Second, an excessive amount

of documentation must be generated and maintained for the separately identifiable

tasks and associated input and output data, Also, additional testing and verification

must be performed at the detailed task level to validate task computation as well as
intertask data transmission. The tasgk level selected allows mode and submode
branching to be performed within specified tasks,

The processing requirements were determined by performance of the following
tasks:

1. Estimation of the hardware/function interface signals and required data
transmission rates,

2. Estimation of the function/function interface signals and required data
transmission rates,

3. Segmentation of each major function into processing tasks executable at
specific processing rates.

4, Segmentation of each processing task into identifiable subtasks,

5. Estimation of the intra-function signals between processing tasks within
each fuaction,

6. Estimation of the number of nperations (instructions) and data (combined
parameters, variables, and constants) for each task and subtask, The
number of operations per iteration was computed based on assuming
80 percent of the total instructions per subtask being executed during a
given computational iteration., The total number of operations per second
was then computed based on the required iterations ner second. The total
task processing requirements were then summed by adding subtask totals,
If the task was determined to contribute to the worst case throughput
requirement, it was tagged for subsequent inclusion in the requirements
summation for the major function.

7. Prerequisite processing tasks were identified for each processing task,

8, The total memory and throughput requirements for each major function
were determined by totalling the individual task requirements.

9. A block diagram of each major function was generated to give a visual
representation of the overall function operation. Major generic subfunctions,
consisting of muliiple processing tasks were identified. The major inter-
face signals between subfunctions and external hardware and other functions
were identified.

10. The off-line mass memory requirements were also estimated,
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2.2 ASSUMPTIONS

¥

$oo cormng

1. The processing requirements are defined for a fault tolerant computer,
Fault tolerant requires that the computer will continue to operate in at
.. least a limited capability mode after failure of one of each type of module

P

in the computer, An on-linc backup mechanization is required which will

i ailow at least a minimum continuous computation for critical functions
during the computer reconfiguration time, This reconfiguration time exists

£3 from detection of a fault to the loading and subsequent initialization of an

§ ‘ off-line backup mechanization in the remaining operational computer
elements,

3i The minimum on-line backup mechanization must consist of critical
elements of all critical functions, While a detail estimate of this backup
mechanization was not made (with exception of the Steering function), a
gross estimate is contained in Table 2-5,

2. The memory and throughput processing requirements were estimated for
the individual processing tasks without regard to memory word length or
instruction type. The total processing requircments were converted to an
absolute number of memory words and operations per second in terms of

. a conventional computer by applying appropriate weighting factors. A

i 16-bit word length conventional computer was assumed. The total number H

i of 16-bit memory words and operations per second were computed from

weighting factors derived from FB-111A/F-111D digital computer complex

expericnce (based on experience with the IBM 4 PI avionics computer).

s bV Al Vi B e e e e e

[SCTRICU

3. In estimating the throughput requirements, 80 percent of the actual
instructions (excluding subroutines) within a task were considered to be :

. executed per iteration. The total operations per iteration were then

determined by adding any common subroutine usages to the 80 percent

actual instruction count. Multiplication by the required iteration rate :

gave the throughput in operations per second per task. !

4. The worst case throughput requirements were considered for both subtasks
within processing tasks and processing tasks within a major function.
Within a processing task, the worst case subtask throughput was calculated
for tasks with mutually exclusive subtasks. Amonrg processing tasks, the

- rationale was used te include only worst case processing task throughput

f requirements derived from worst case operating modes.

3. The processing requirements for the preprocessors presentiy planned for

Py inclusion in the B-1 Avionics System are included. These preprocessing
N requirements are presently included in the inertial savigator units, the
non-avionics CITS, the SMS, the IRSS and the RFS/ETMS.

SRR e

e

i' 6. No data format conversion is required within the computer other than

- binary to decimal and decimal to binary. All analog to digital and digital
.. to analog conversion is assumed to be performed by the nvionic subgystem

Ii hardware. i
& *
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7. In addition to the basic requirements imposed by the functions described
in this report, it is required that the on-line system contain a 50 percent
spare capacity. It is also required that the total on-line system be capable
of a 100 percent growth factor.

8. The throughput requirements for common subroutines are based on FB-111A/
F-111D digital computer complex experience. These requirements in terms
of operations per second are given in Table 2-2 and are used in calculating
the subtask and task throughput requirements,

Table 2-2, Subroutine Throughput Requirements
Subroutine -Dperations

Sine/Casine (SC): 3 uur sin or cos)

Arctangent (ATAN): T

Square Root (SR): 40

Matrix Multiply (MX): 70

Euler Transformation (EUL): 80

Binary to Decimal Converstion (BCD): 70

Decimal to Binary Conversion (DEC): 70

9. The weighting factor to determine the on~line memc. ¥ requirements in
16 bit words is based on a 70 percent short (16 bit) and 30 percent long
(32 bit) format mix of both instruction and data words. This mix is derived
from FB-111A/F-111D digital computer complex actuals.

Weighting No. of 16-Bit Total Words
Factor Words (16 Bit)
.70 1 .70
.30 2 . 60
1.30 - weighting
factor to
determine total
memory in
1G-bit words
10. The throughput requircments represent a mix of instruction types. The mix

is given in Table 2-3 and is bas~d on £R-111A'F-111D digital computer
complex actuals. This mix may ! e ..sed later in the study when the relative
execution time of the various instraction types is determined,
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Table 2-3. Throughput Weighting Factor

Instruction Type Execution Frequency Weighting
Load/Store .38
Add/Sub, .13
Multiply .10
Divide .01
Shift .08
Branch . o 14
Logic/Misc. .16
-

2.3 REQUIREMENTS SUMMARY
2.3.1 AS3 Avionics System Processing Requirements .~

The ASB Avionics System central processing and input/output data transmission
requirements are summarized in Table 2~4. These requirements include both on-line
spare provisions and growth capabilities required in the central computer., As
explained above, these refuirements assume that all the processing for the major
functions is performed in a central computer,

Table 2-4. ASB Avionics fystem Processing Requirements Summary

Memory Throughput | Input/Output Rate
(16 Bit Words) (KOPS/Sec) | (16 Bit Words/Sec)
Primary Program 111, 000 asstl) 37,741
On-Line Spare (50%) 55, 500 344 18,872
Subtotal 166, 500 1,032 56,616
Growth Capability (100%) 166, 500 1,032 56,616
333, 000 2, 064 113,232

b Represents a mix of various types of operations as given in Table 2-3

2.3.2 Processing Requirements of Central Computer Functions

A summary of the processing requirements for the functions mechanized in the
central computer is given in Table 2-5, These requirements are independent of word
length (the total requirements given in Table 2-4 were converted into equivalent
16 bit words) and represent a mix of various types of operations as indicated in
Table 2-3. It should be noted at this point that the values for the executive and on-line
back-up program should be considered only as rough estimates. These reguirements
are summarized from detailed tabulations of processing requirements for each of the
functions and are given in Appendix A, A portion of these detailed tabulations is given
in Section 2. 4 for illustrative purposes,

R e
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Table 2-5., Proccseing Requirements of Central Computer Functions ]

Memory Throughput | )
(words) ¥ | ikoPs/Sec) ¥ -
1. Navigation 13,217 126 .4
2. Steerirg 2,900 15, 20 :
3. Target/Checkpoint Acquisition 1,810 57, 84 : .
4. Weapon Delivery 10,215 83,24 .
3. DPenetration Aids 235,300 : 220,36
6. Terrain Fo!lowing:’.—\voidance(i) ' 0 v
7. Aission Data Managenment 4,235 17.52
8. Misgion and Traflic Control ) 0 0
9, Central Integrated Test Subsystem 18,511 66, 56
10, Executive {(I:stimate) 3, 000 30, 00
11, OCn-Line Back-up Program (Estimate) -4, 000 50,00
Total 43,108 686, 72

(nlncluded in the Navigation function
(2)Gr()\\'th function

‘““lndepcndent of wor! length, & mulliplying factor of 1. will convert these into

16 bit words as explained in Section 2.2

{ l)Repr:!somt-; a mix of instruction types as indicated in Table 2--3

2.3.3 input Output Data Transmission Requirements

A suminary of the input/output data transmission requirements is given in
Table 2-6. This table gives the requirements by rute groups for both input and output
ta the central compater. The detailed tabulation of the input ‘output requirements
used to derive this summary table is given in Appendix A, \

The input ‘output inforimation transferred between the central computer and the
avionies hardware subsystems mast be transmitted cver the Avionies Multiplex (AMUX)
subsystenm, The (ransmitted data must conform (o the format established by the
Multiplex Interface Modules (MIMs) which provide the interface between the AMUX and
adjoining subsystemn hardware. Electrical and physical compatibility must also exist
between the subsystem hardware and the inlerfacing MINMs. A portion of the specifi-
cation for the MIM is included in Section 4 of this report where the interface to the
ASPB multiplex system is considered.

2.3.4 Mass Memory Requirements { i

The mass memory requirements are given in Table 2-7, The requirements
are tabulated for five cutegories of information storage: 8
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Table 2-6, Input/Output Data Transmission Requirements Summary

VR, AR U R T S T R R R R I T %WE Rho
iy
.

g Data Number of Number of
: Transmission 16 Bit Words 16 Bit Wordse
Ti Rate per Transmission -per Second
;fu b {Transmissions/Sec) {Words/Transmission) (Words/Sec)
3 Function Input 64 8 512
- L
B - 32 193 6,176
- b 16 948 15,168
i 8 ' 12 96
RIS 4 14 ) 56
N 2 743 1,486
¢ L 1 90 90
e
- S S Function Output 64 8 512
g 3
: ;
. 32 40 1,280
:
: 16 569 9,104
é- S .
e L 8 0 0
g
. i 4 0 0
F 2 1,629 3,258
I 1 6 6
T I s
& iy
§ Total words transmitted per second g 37,744
- [ .
-
ﬁ o
P
B Ld
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Table 2-7. ASB Avionics System Mass Memory Requirements

Memory Words (16 Bit)

Primary Program (including On-Line Back-up) 111,000
Spare Frimary : 55,500
Growth 164, 500
Total Primary 333, 000
Back-up Program (75 percent of Primary Program) 83,250
Spare Backup Program (50 percent) 41,625
Growth Back-up Program (100 percent) 124,875
Total Back-up Program 219,750
CITS Avionice Fault [solation 15,000
CITS Spare Avionics Fault Isolation (50 percent) 7,500
CITS Growth Avionics Fault Isclation (100 percent) 22, 500
CITS Non-Avionics Fault Isolation 10, 000
CITS sSpare Non-Avionics Fault Isolation (50 percent) 5, 000
CITS Growth Non~Avionics FFault Isolation 15, 000
(100 percent)
Total CI'TS Fault Isolation 75, 000
Mission Data 25, 000
Spare Mission nita (50 percent) 12, 500
Growth Mission Data (100 percent) 37, 500
Total Mission 75, 000
4
Total Bulk Memory Requirements 732,750

(16 hit
words)
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1. Primary Program

2, Back-up Program

3. CITS Avionics Fault Isolation

4, CITS Non-Avicnics Fault Isolation

5. Mission Data
The primary program containa a duplicate zopy of the program in the central
computer. The back-up program containg a partial or degraded mode version of
the primary program. it is used in the event failures ia the tentral computer result
in insufficient capability to perform the primary program. The CITS fault isolation
routines are loaded into the computer in the event the CITS function deteots a failure
and additional routines are required to isolate the failure.
2.4 EXAMPLE OF DETAILED PROCESSING REQUIREMENTS

The detailed data used io derive the prucessing requirementé for the major

functicas are given in Appendix A. An example of some of thaese data for the Navigation

function is given in this section, Figurz 2+6 indicates the primary interconnections
of the avionics subsystems with the Navigation function in the central computer, The
Naviga:iion function has four subfunctions: IMU Conirol, Ground Alignment, Navigate,
and SRAM Alignment. The interaction of each of these subfunctions with the avionics
subsystems and also with the other major processing functions ir the central
computer is shown in Figure 2-7,

The navigation function was broken down into 15 tasks as shown in Table 2-8,
This table indicates the iteration rate, amount of memory in words (witl:out regards
to word length), and throughput required in thousands of operations per second for
cach task, The four subfunctions shown in Figure 2-7 also identify the {asks and
execution rate associated with each subfunction.

Table 2-9 is an example of the detailed description of {he processing require-
ments for the tasks. In this table, Tasks 1.1 and 1.2 arc broken down into subtasks.
The prerequisite tasks to these tasks are also identified as shown in Table 2-9
(Task 9.1 is a prerequisite to both Tasks 1.1 and 1,2). 1n addition, the last column
in Table 2-9 indicates whether these particular tasks contribute to the worst case
speed requirements, For the navigation function all Tasks except 1.14 and 1,15
contributed to the worst case speed requirements,

Table 2-10 contains a tabulation of the information iransfer required between
the tasks. This table is necessary when local vs central processing is considered and
separate tasks are performed locally at the subsystem rather than in the central
computer, .
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Table 2-8. Navigation Function Processing Requirements Summary

B i
i af i

Rate Meinory Time .

Task Title (It/sec) (words) {KOPS/sea)
1.1 IMU Control - Fast 64 218 18,02
1.2 IMU Control ~ Mid .32 653 37.65
1.3 IMU Control - Slow 1 394 0.46
1.4 IMU Conirol - Filter 1 217 0.58
1.5 Ground Alignment - Fast 32 76 2.87
1.6 Ground Alignment - Mid 16 696 13,50
1.7 Ground Alignment - Slow 1 384 0.5
1.8 Navigate - Fast 32 882 32,90
1.9 Mavigate - 16/sec 16 240 13.76
1.10 Navigate - 8/sec 8 180 2,88
1.11 Navigate - 4/sec 4 500 1,44
1.12 Navigate - Slow 2 as55 0,54
1,13 Navigate - Filter i/8 7632 0.65
1,14 SRAM Alignment - Fast 16 550 2.50
1.15 SRAM Alignment ~ Slow 1 240 0,18

13,217 126, 00
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3. MODULE DEFINITION

3,1 BURROUGHS COMPUTER DESCRIPTION

The Burroughs computer c-ncept has been referred {o by various acronyms in
recent reports (Ref 1, 2, 3, 4, J) such as the Interpreter Based System, Multiprocessor,
and Aerogpace Multiprocessor; in uddition, the title of this study uses the acronym,
avionics processor - controller, T2z term Burroughs multiprocessor or simply the
multiprocessor will be used in place <. these acronyms in this report,

A block diagram indicating the gencra' structure of the Burroughs multiprocessor
is given in Figure 3-1. The basic modules + hailding blocks of the multiprocessor are:

1, Interpreters - Processing Elements vcnsisting of arithmetic Iogxc and
alterable microprogram controls

2. SWI (Switch Interlock Unit) -~ Interconnectic:. logic to allow interpreters to
communicate with memories and devices

3. Memories - Storage elements for programs and Jala
4. Devices - interface elements between peripherals an< the SWI

5. PSU (Port Select Unit) - May be used in place of the SW. for single
interpreter systems

The Burroughs multiprocessor emphasizes two concepts (a) building block
structure and (b) variable machire architecture achieved through micropregramming.

The basic building blocks listed above allow multiprocessors with dific «t
numbers of modules to be constructed to meet varying computational requiremonts,
The multiprocessor designed for the Air Force allowed up to five Interpreters.
eight Memories, and eight Devices,

Variable machine architecture is possible with the Burroughs multiprocesso. ‘.
reloading the microprogram memory with routines. For example it is possible to (a)
emulate existing computers, (b) perform higher order language processing, and (c)
process a problem optimized instruction set., Further, these could be performed
concurrently in a multiprocessing manner.

‘The computer can operate a8 a true multiprocessor since any interpreter may
access any memory or device module and multiple interpreters may be used simul-
taneously to process a computational task. Through the flexibility offered by variable
machine architecture the interpreter can function as a CPU, as an 1/0 Processor, or
as a device controller.

The Burroughs multiprocessor modules will be described below. Appendix B
contains additional details on the modules and is a collection of extracts from
references 1 through 5,
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3.2 INTERPRETER DESCRIPTION
3.2,1 General
The interpreter’s functions are to:
1. Contain the microprogram memory.

2. Provide the timing and control for sequencing and controlling according
to the microprogram memory.

3. Control the communication with external devices and memories.
4, Perform the logical and arithmetic operations required.

In order to accomplish these in a flexible manner Burroughs has defined a

modular approach with the Interpreter consisting of submodules as follows:
(see Figure 3-2):

1, Logic Unit - The circuitry associated with the arithmetic, shifting, and
logic functions are contained in the Logic Unit. The data word length is
expandible from 8 to 64 bits in 8 bit increments,

2. Control Unit - The Control Unit contains registers for conditional control
and logic commands.

3. Memory Control Unit -~ The Memory Control Unit provides registers and
control for memory (interpreter and main memory) addressing.

4. Microprogram Memory - This unit provides storage for the microprogram
sequences. The unit could be implemented with ROM or RAM devices.

5. Nanomemory ~ The microcontrols for an Interpreter are supplied by the 54
bit wide Nanomemory. Most likely implementation of this is with the use of

ROM. The particular nanoword is selected by the MPM word using the
contained memory address. _

3.2,2 Logic Unit (LU)

Figure 3-3 containg a detailed description of the data and control flow in the
interpreter and Table 3-1 identifies the control provided by the 54 bits in the nanomemory

word. Reference to Figure 3-3 and Table 3-1 will aid in following the interpreter
description given below,

One Laogic Unit for each 8 bits of data word is required for each interpreter, The

LU is composed of: the threc A registers, a B register, an MIR register, adder, and
barrel switch logic.,

Registers A1, A2, and A3 arc functionally identical. Each temporarily stores

data and serves as a primary input to the adder. Any of the A registers can be loaded
with the output of the barrel switch.
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The B register is a primarv external interface (from the Switch Interlock).
It serves as the second input to the acder anid may be loaded with any of the following:

ero—
LY

1, The barrel switch output.

2. The adder output.

3. The data from the Switen Interlock.
', 4, The MIR output.

' 5. The carry complements (from the adder) of 4- or 8-bit groups with
= selected zeroes {for vse in decimal arithmetic or character processing).

6. The barrel switch output ORed with 2, 3, or 4 above.

The MIR buffers information being written to main memory or to a peripheral
device. It is loaded from the barrel switch output and its ouiput is sent to the Switch
Interlock, or to the B register. '

Inputs to the adder are from selection gates which allow various combinations
of the A, B and Z inputs. The Z input is an external input to the LU and can be:

1. The 8-bit output of the counter of the MCU into the most significant 8 bits
with all other bits being ZEROs.

2. The 8-bit output of the literal register of the MCU into the least significant
- 8 bits with all other bits being ZEROs.

3. The 12«bit output of the alternate microprogram count register (AMPCR)
right justified into the middle 16 bits and the (wired) Interpreter number
right justified in the remaining four bits of the middle 16 bits. All other
bits are zeros.

4. All ZEROs.

i, Using various combinations of inputs to the selection gates, any two of the three
inputs can be added together, or can be added together with an additional ONE added

to the least significant bit, Also, all birary Boolean operacions between the £ and B
and between the B and Z adder inputs and most of the binary Boolean operations betwect
the A and Z adder inputs can be done,

‘ The barre! switch is a matrix of gatcs that shifts a parallel input data word any
{: numbe. of places to the left or right, cither end-off or end-around, in one clock time.

£ The output of the barrel switch is sent to:
1. The A registers (A1, A2, AY),

2, The B register.

3. Memory Information Register (MIR).
A 33
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4. Least significant 16 bits to MCU (registers BR1, BR2, MAR, AMPCR,
LIT, CTR).
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5, Least significant five bits to shift amount register (SAR) in the CU,

oy
i
bin s g

3.2.3 Control Unit (CU)

Major sections of the CU are: the shift amount register (8AR), the condition 1
register, part of the control register (CR), the MPM content decoding, and the clock i

control,

g

The condition register section of the CU performs four major functions:

1. Stores 12 resettable condition bits in the condition registers. The 12 bits of
the condition register are used as error indicators, interrupts, status indi-
cators and lockout indicators.

2, Selects 1 of 16 condition bits (12 from the register and 4 generated during the
present clock time in the Logic Unit) for use in performing conditionnl

operations.

. ; 3. Decodes bits from the Nanomemory for resetting, setting, or requesting
the setting of certain bits in the condition register,

} ; : 4, Rusolves priority between Interpreters in the setting of global condition (GC)
c bits.

K 3.2.-1 Memory Control Unit (MCU)
This unit{ has three major sections:

3 1. The microprogram address section contains the microprogram count

i3 register (MPCR), the alternate microprogram count register (AMPCR),
) the inerementer, the microprogram address control register, and

T 4 associated control logic. The output of the incrementer addresses the
- MPM for the sequencing of the microinstructions. The AMPCR contents
are also used as one of the Z inputs to the adder in the LU,

2. The memory /device address scction contains the main memory address
register (MAR), base registers one and two (BR1, BR2), the base reglster
output selection gates., and the associated control logic.

3. The Z register section contains registers which are two of the Z inputs to ..
the LU adder: a loadahle counter (CTR), the literal register (LIT), selection
gates for the thput to the memory address register and the loadable counter b
and their associated control logic, | t

3.4,5 Intcrpreter Operation o
[

A unique feature of the Interpreter Based System (s the utllization of stored logic
in M and N memorices and uncommitted hardware logic to form firmware conirol that is .
exercised to a more primitive logic level than in conventlonal microprogrammed i}
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central processors. During each clock period, a 16 bit microinstruction is read from
the MPM, The first four bits of this microinstruction indicate which of two types of
Instructions it is. If it is a Type I instruction, the remaining bits of the MPM word:
specify a Nanomemory address to be accessed. The Nanomemory Is then initiated and
its output, a set of 54 bits, provides the control functions as indicated in Table 3~1.

If the microinstruction is Type 11, the remaining bits of the MPM word are
stored into one or two registers: namely, the SAR, LIT, SAR and LIT, or the AMPCR.
The determination of which registers are to be loaded is specified by the first four
bits of the MPM word. The Nanomemory is not accessed during a Type II operation.

Each Type I microinstruction has two parts (or phases), The first fetches the
instruction from the MPM and Nanomemory and the second executes the fetched
instruction. Figure 3-4 illustrates these two basic phases of each Type I microin-
struetion.

The fetch phase involves: MPM accessing, Nanomemory accessing, condition
testing, selection of controls for the next instruction (successor) address computation,
and, in parallel, loading the control register for the execution of the microinstruction,
A fetch phase occurs for every Type I microinstruction and requires one clock time.
Since it always overlaps the execution phase of a prior Type I microinstruction, the
performance of each microinstruction requires effectively one clock interval.

Snorponion — M —— M

CR. Al$ ~—ADDER ~—PIW ~—DEST —

_____________ e o i —— . o e — o — i — . —— v ——— o —— e Ao vatar 42t
PMASE ¢ (PETCH) PHASE D (EXEC)

e B e By TeSY.

Al — ADDER —BIW —ox DESY —
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Figure 3-4. Timing Analysis Type I Instructions
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The execution phase also required one clock time and always overlaps the fetch
phase of the next Type | instruction, The control signals for the execution pbase are
from the output of the control register and have two paris: signals specifying the logic
unit operation (adder input selection, adder function, barrel switch shifting, etc.) and
signals specifying the destination register(s) loading (l.e. clock enables), The comple~-
tion of the execution phase (i, e. the destination reglister(s) loading), may be delayed
or suspended for one or more clock times, This suspended execution phase can occur
for three primary reasons. The first and most frequent occurrence is when the nexi
instruction from the MPM is a Type II instruction. The second reason for the occur-
rence of a suspended execution phase is due to the existence of conditional logic unit
cperations. ‘The other reason for a suspended execution phase Is for use during the
loading of the MPM and Nanomemory.

The sequencing of Type I microprogram instructions is controlled by information
contained in the nanomemory word which provides three true and three false condition
bits for selection of thie successor Type I microinstruction, The three selected bits

{(True ‘False condition) provide eight possible successor commands as listed in Table 3-2,

Table 3-2, Microprogram Memory Addressing

Successor Next Content Next Content
Successor M-instruction of MPCR of AMPCR
Command Address will be will be
WAIT MPCR MPCR *
STEP MPCR+1 MPCR+1 *
SKIP MPCR+2 MPCR+2 ¥
SAVE MPCR+1 MPCR+1 MPCR
CALL AMPCR+1 AMFCR+1 MFCR
EXEC AMPCR+1 MPCH * *
JUMP AMVCR!1 AMPCR+1 *
RETN AMPCR-FZ AMPCR+2 *

* Not changed by sucevssor specification
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3.2.6 Multiprocessing Features

" The BWI module is the primary hardware feature in the Burroughs maltiprocessor
that aliows the computer to operate as a multiprocessor, There are two additional
hardware features included ir the interpreter that aid in multiprocessing operation:
the global condition bits and the interrupt vit. The global condition bits are two of the
16 testable conditior. bits in each interpreter. Each bit can be set in only one Interpreter
at a time and must be programmatically reset. /.n interprewer nanoinstruct.on contain~
ing the ""Set G'obal Condition Bit" opeiation will set the speciried global condition bit
in that intexrpreter only if that bit is not set in any interpreter and no other higher
(wired) piiority interpreter is requesting the same bit.to be s=t in its own interpreter.
The global coadition bits allow a multiprocessing executive to be implemented that
requirez tavles in main memory to be locked such that only one interpreter may be
modifylag data in these tables at any one time,

One more of the testable cordition bits in each interpreter is wired toc provide
an additional inter-interpreter signal., This bit is called the interrupt bit and is
simultaneously set in all interpreters by an operation originating from any interpreter.
This bit ie reset in an interpreter when tested (n that interpreter.

3.3 SWITCH INTERLOCK (SWI) DESCRIPTION
3.3.1 SWI Modules
The Switch Interlock functions are to:

1, Provide the interconnection of the interpreters with the memories and
devices.

2. Provide the priority for the interpreters in the selection of devices and
memories.

Connection between Interpreters and devices is by reservation with the Interpreter
having exclusive use of.the (locked) device until specifically released. Connection with
a memory module is for the duration of a single data word exchange, but {s maintained
until some other module is requested or some other Interpreter requests that module.

In any such system [t is desirable to keep the wires and logic in the crosspoints
to a minimum, while still maintaining a specified transfer rate, One way of achieving
this is by serial transmission of several partial words in parallel through the cross-
points. The Switch Interlock for the Burroughs Multiprocessor handles up to five
Interpreters, eight memories and eight devices. The transmission paths through the
Switch Interlock break the 32-bit data word into 4 ~ 8 bit bytes.

The S8WI is mechanlzed with five modules; a block diagram indicating the structure
of the SWI is given in Figure 3-5. This diagram also shows the internal and external
interface of the SWI, The five modules are:

1. Memory Device Control (MDC) - This unit, shown in Figure 3~6 decodes the -
nanomemory bits and generates the signals for controlling the other SWI
modules. The MDC also contains the counter and logic to indicate to its
interpreter, data acceptance and transfer completion, There is one MDC per
interpreter. a7
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2. Device Control (DC) - The DC resolves conflicts between Interpreters
trying to lock to a device and checks the lock status of any Interpreter
attempting a device operation, The DC is shown in Figure 3-7, It receives
requests for device operations and lock/unlock requests through the MDC.
It responds by sending status signals to the MDC and control signals to the
Input and Qutput Switch Network modules. The DC module as mechanized ‘

- in the Burroughs multiprocessor provides device control for up to three {
interpreters. A system with five interpreters will use two DC modules. o

qu N ¥ o 4
| S [ O—

3. Memory Control (MC) ~ The MC resolves conflicts between Interpreters
requesting the usc of the same memory module and maintains an established b
connection after completion of the operation until some other Interpreter
requests that memory module. Figure 3-8 contains a diagram indicating a
typical interpreter stage in the memory control module. This stage receives
requests from the MDC and a 3 bit memory module address from the inter-
preter. The lower section of Figure 3-8 shows the memory request and _ !
memory busy bus that connects to the prioritv logic for memory request . o
control, The Burroughs mechanization of the MC uses two modules MC0 and P
MC1, MCO containg three stages as shown in Figure 3-8 to provide memory
control for three-interpreters. MC1 contains two stages and the memory
busy flip-flops. '

4. Input Switch Network (ISN) - The ISN returns data from addressed devices or
memory modules to the requesting interpreter (i.e., the ISN is a "Multiplexer').
As seen in Figure 3-9 the ISN module provides selection for five Interpreters
to up to eight memories or eight devices. The ISN provides a path for 10 bits
per interpréter, This path is used to provide eight data bits and a return
cleck, one bit is unused. The ISN module mechanized by Burroughs actually
consists of two submodules, each submodule provides for 4 data bits and 1
clock bhit from up to eight memories or devices to up to five interpreters,
The ISN is therefore modular in terms of -t bit bytes. The ISN is under the
control of the MC or DC module, '

5. Output Switch Network (OSN) - The OSN sends data, address, clock, and
control from Interpreters to addressed devices or memory modules (i.e., the
OSN is a "demultiplexer”). This unit is actually mechanized as two different
modules. Figure 3-10 shows the OSN for address output. This unit handles
4-address and 2-clock bits for five interpreters to up to eight memories on .
devices. The address OSN is actually mechanized from two identical
submodules that provide two address bits and one clock bit each. In the
Burroughs multiprocessor, the address OSN uses four address and one clock
bit leaving one clock bit uhused.

L !
W

The data output OSN is shown in Figure 3-11, This unit provides eight bits
output to up to eight memories or devices from five interpreters,

r. L

3.3.2 Switch Interlock Cperation and Timing

L

Controls from the Interpreter (Nanobits 51-54) are strobedinto the mem/iev operation
register of the MDC if either theType I microinstruction is unconditional or the selected con-
dition {strue, Controls derived from the cutput of this register will next load the output shift
registers of the interpreterandgenerate one of three types of signals, depending upon the
operation tobe performed. Eachofthesetypes of sighals will be explained.
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3.3.2.1 Memory Operation

The first type of signal from the MDC is a "memory operation request” signal
to the MC. Tiis initiates the comparison and priority logic in the MC., When the MC
has granted access by that interpreter to the memory module it wvas requesting, a
compare signal is returned from the MC to the MDC, This will send a clear nulse to the
memory interface logic through the memory OSN and will initiate the setting of SAY and
the transmission of high speed clocks to the vutput shift registers of the intarpreter
and through the OSN's to the memory interlace.

piosi g

In the case of 2 memory write, the input/output counter in the MDC wili count

' four output high speed clocks and will then stop them.
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In the case of 2 memory read, output high speed clocks are not counted, Instead,
these high speed clocks are continually sent to the memory module interface., [Chis
interface will count four clocks coming in to it and will then iaitiate 3 memory read.
Upon return of a completion signal from the memory, the memory interface will load
its output shift registers and then allow four of the high speed clocks that are still
coming through the OSN to clock thexe output chift registers and io be retumed to the
MDC and the interpreter with the shifted out data. The MDC counts fuur of thesc
memory return clocks and will then stop the high specd outpri clocks and get RDC in-
dicating that the data has been shiftes into the interpretor input shift vegisters and is
ready to be strobed into the B register.

ok

3 3.3.2.2 Device Lock and Unioci

1 , The second type of signal emanating from the MDC is a device lock or device

: unlock request sent to the DC, Alter the DC has accomplished this, a signal is returned
: to the MDC in order tc set SAT and the operation is complete,

3.3.2.3 Device Read and Write

The third type of signal from the MDC occurs for device reads or writes and is
sent to the DC to check the lock status of the device being addressed by the BR1/BR2 of
the interpreter before proceeding. After it is confirmed that the device is locked, the
DC returns a locked signal to the MDC, This will have the same effect as when a
memory module is obtained, i.e., a clear pulse is sent to the device interface logic
through the device OSN and initiates the setting of SAT and transmission of nigh speed
clocks to the output shift register oi :he interpreter and through the OSN’s to the
device interface.

However, the distinction made between memory reads and memory writes is not
made for devices. Both cases act like a memory read; i.c., for a device write the
MDC daes not stop the outgoing high speed clock after four clocks and indeed does not
even count them. [n both cases the device interface counts four clocks coming in to it
and ther stops accepting high speed clocks. In the case of a read, the device interface
waits for some kind of "'data available' signal from the device which it will use to load
its oulput shift vegisters and o allow four high speed clocks which are still arriving
from the OSN to clock these output shift registers and to be returned to the MDC and the
interoreter with the data. The MDC, as for memory resds, counts return clecks and
will set RDC.
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In the case of &2 write, the response is very dependent upon the particular device
belng interfaced. In the case of a card reader, Burroughs sent back the next four high
speed clocks to the Interpreter. In the case of a printer, Burroughs used a signal
saying the last character was accepted by the printer to cause the device interface to
allow return clocks. The four return cloocks are counted by the MDC and used as a
means of saying thet the device accepted the data sent out.
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4. MODULE ANALYSIS

s 4

This section summarizes the ipvestigation of the Burroughs Multiprocessor
architecture and its modules, in particular the interpreter and SWI-modules. The
machine's capabilities, limitations, and some recommended improvements are given
in this section,

D e
S i

4.1 INTERMEDIATE (8) LANGUAGE CONSIDERATIONS

R 4.1.1 Definition of Approaches

E : Interpreters are mieroprogrammable., They have no order set and no specific
v il data structures. They are specialized by replaceable microprograms for the various

roles they must perform., Firmware is the word used for microprograms that wili
Co reside within a control memory of a computer. Firmware specializes the logic design
X for a specific purpose. ’

P | . An "S" language of an Interpreter is equivalent to the object code or assembly
o language of a conventional machine. Each "S" instruction is equivalent to a machine
s instruction in a conventional computer. An "S" instruction may be as simple or as
- complex as the system requires (e.g., A NOP may be an instructicn; so may an entire
L matrix multiply program).

The interpreter based systems execute their programs under control of micro-
instructions. These microinstructions are derived from the languages used by
programmers to program the required tasks. Intermediate languages (called secondary
ot S languages) are utilized in the main memory to provide the source for the
\ . microinstructions.

3
i
i
t
H
i

The selection of an S language for the ASB avionics system for processing in the
: Burroughs Multiprocessor can be the subject of a lengthy study in itself. The answer is
. probably only achievable through iterative analysis involving language definition, trial
o programming, and evaluation of resultant statistics.

The types of § language to be considered for an ASB avionics system can take on
many forms. Three possible S languages or modes of operation which appear reasonable
to consider are:

1. Emulation of existing or hypothetical machines

2. Direct execution of high level languages

3. Microprogram optimization of the machine to the problem or
application

A weae AN v e

These three modes of operation are described as: ]

Emulation - Programs written in some other machine(s) language can be executed by

an interpreter. In this mode, the microprogram memories contain or are provided

with the microinstructions for each of the emulated machine instructions. A fetch

micro-routine is used to acquire these for decoding and transferral of control to the
3 correct microinstructions. Operands are fetched and routed to either the available
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hardwave working registers or main memory locations assigned to be equivalent .
to those of the emulated machine, Emulation may also be used to evaluate new or iy
proposed machine designs, thereby allowing such designs to be tested/evaluated
before being actually built.

Features in an interpreter which aid emulation capability are:

a. Modular word length

b. Fasi shift network

¢, Flexible microinstructions

d. Zoned bit selection

e, Ease of communication with external devices and memories
f. Multiple interpreter usage via the SWI

The emulation mode of operation was investigated in detail by emulating the IBM 411
Avionics Computer and determining the Burroughs Multiprocessor throughput capability
while operating in such a mode.

Higher level langunge (HLL) processing - The program in the operating memory
censists of higher order language instructions. There exist many possibilities here
with regards to the actual HLL used and the amount of preprocessing done on the
language hefore placing the program in the multiprocessor for execution, Two extremes
in the aumount of preprocessing are:

1. Total compiling leading to the generation of an S language similar to
the machine language in o conventional computer.

2, Little or no preprocessing with an S language thac closely resembles
actual HOL,

In between these extremes lie many possibilities with many tradeoffs involved
such as speed or efficiency of execution vs amount of main memory and microprogram
memory required,

Optimized instruction repertoire - As with the emulation mode of operation,

instructions are fetched, decoded, and micro~routines used to perform processing

functions. The difference is however, that macros can be defined more suited for

the particular task to be accomplished thus achieving 1 more aptimum memory and
. speed match. In generating an optimum or problem oriented $ language, a higher
i order language processing approach or an emulation (modified by macros) approach
: to operation can be considered. The use of macros to optimize the emulited IBM :HI
computer wars investigated and will be given later in this section, ;

4,1,2 Higher Level Language Processing

4,1.2.1 Language Selection

The selection of a particular HLL to use involves many factors. A recent study .
(Ref ¢) conducted by the B-1 Division of Rockwell International examined the feasibility i
of using a common higher-order programming language for the total computer complex -
and related avionics functions; and, if practical, attempted to determine the language
best suited for this application.
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As a result of this study, it appeared feasible to apply a common language to
the areas of flight programming, mission software, and special support software.
For hardware testing, requirements were so different, few of the common language
candidates have the capability of handling the progra'ns efficiently, and it is believed
& separate lenguage may be preferable.

The study was carried oul in the following steps: (1) Survey of available
languages and their compilers; (2) Comparison of language characteristics and attributes
from the standpoint of B-1 requirements; (3) Choice of several candidate languages for
more intensive study, including the writing of test programs; (4) Compiling and
executing the test programs on equipment comparable to the planned B-1 computer
system; (5) Analysis of test results in view of selecting a language to be used for all
B-1 software.

The recommendation as a result of this study was to use a modified version of
JOVIAL with SPL MARK IV as the alternate choice. Five paragraphs are quoted from
Ref 6 which summarize the results from the study:

"Several fatures of JOVIAL make it attractive for this prupose; namely, the
concept of the COMPOOL for data managemant, the use of Tables for related
data of different types, the ability tc pack daia in a computer word and address
it directly, the provision for fixed point arithmetic if required, and the ability
to manipulate bits and bytes. There are defiziencies in the language as it
exists today; however, the USATF sponsored JOVIAL Committee is in the pro-
cess of evaluating and revising AFM100-24, Standard Computer Programming
Language for Air Force Command and Control Systems, dated 15 June 1967,
Rockwell International is participating in this effort as an observer, It is
anticipated that the "new"” JOVIAL will adequately fulfill the tasks required hy
the B-1 system software."

"PL/1 contains many desirable features for use as the B-1 Common Language;
however, it is felt that the advantages of using PL/1 were not great enough to
justify its selection over JOVIAL or S8PL. The reasons for the decision was its
incompatibility with the existing COMPOOL structure used extensively by SAC,
the lack of available compilers other than the IBM-360 series computer, the
high cost of compiler development for new computer equipment, and the
compiler inefficiency as shown by B-1 benchmark problems executed on the
IBM 360 series."

"SPL appears to have a good future in this area. The SPL MARK IV version
appears to best suit the needs of a B-1 Common Language, but due to its
very recent development, little is known about its compiler efficiency. "

"CMS-2 exhibits many of the desired characteristics but appears to have no
great advantage of JOVIAL, and the additional training of programmers and
the development of new compilers does not seem to warrant its use for the
B-1 application, "




"The U.8. Air Force JOVIAL Standards Committee is actively working towards ()
an update of JOVIAL to remedy the deficiencies currently recognized in the -
language. The results of this effort will be reflected in a major revision to
AFM100-24, Thus, the recommendation at this time ts the designation of ;
the "new" JOVIAL as the B-1 Common Computer Language and SPL MARK IV i E ;
as the alternate choice." Co

4.1.2.2 Preprocess'ing to an § Language

The justification for the use of some amount of preprocessing on the selected
higher level language is that of speed improvement possible over the stralght forward
use of the HI.I.. As noted inRef 7, without preprocessing, program statements would
have to be scanned forward and in reverse in order to interpret their meaining at the
time of execution. Preprocessing also permits the conversion of statements to codes
more readily or efficiently processed and assigns addresses to variables and con-
stants. Further, redundant statements or characters can be eliminated.
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Therefore, preprocessing tasks can be categorized as follows:

1. Editing - This streamlines the program stream to easge real time
processing. This is accomplished by removal of comments or blanks
from source programs; conversion of expressions to more convenient
forms (as reverse Polish) for processing; error checking; and program
optimization,

2, Tabularizing - The tabularizing task places information into readily
interpreted forms. This includes the identification of source language
elements, insertion of pointers in compound statements, replacing
constants with internal forms, and allocation data to static or dynamic
cnvironment,

3. Encoding - The generation of compact internal codes is accomplished
with this preprocessing task. This requiresa the translation of
operators, delimiters, and keywords to code and expansion of higher
level features into lower ones if advantageous to execution results,

4. Address Forming - This task provides the conversion of labels,
procedural calls, and variables with addresses.

1t is noted that these functions can be split between preprocessing or real time
processing in & number of ways. The allocation is dependent upon the memory and
execution time factors and the amount of abstractionintroduced in the resultant 8 !
language and its affects on the HLL use advantages including traceability. v

Some of the factors thiat have to be considered in defining a preprocessing approach
are the method of structuring and processing the data. Much of the recent advanced
work in this area has centered on using stack mechanisms, reverse Polish notation
and descriptors (Ref 7, 8, and 9).
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A stack is a storage mechanism in which the contents are accessed or a last in,
first out basis. It has been used in the design of computers by Burroughs (B5500,
B6500, B1700), DEC (PDP10, PDP11), and XDS (Sigma 7).

The dynamic behavicr of stacks has been stated (Ref 8) to be well suited to the
mechanization of recursive procedures and aids in:

1. The management of nested subroutines or procedures.

2. The efficient execution of arithmetic statements

3. The compilation and/or exeéution of higher order languages
4. The dynamic allocation of memory spa;:e»

5. The protection of program data,

Descriptors provide a means by which items such as variables, procedures and
control words can be defined as to type, attributes, size, location, initialization
information, ete. Their usage enables data identification, validity checking between
operators and operands, location pointing and indexing, and the monitoring of status,
location and condition of information, The automatic identification of type and charac-
teristics of data at execution time results in retention of straight forward representa-
tion of information to that point and is stated to result in memory savings and speed
enhancement (Ref 9).

4.1.2.3 Example of Higher Level Language Processing

Reference 7 presents the results of a study, to design a computer capable of
processing an intermediate form (at a high level) of SPL/Mark IV, The objective of
this study was to design a special purpose computer architecture that could efficiently
process SPL at a high level and compare such a machine with a conventional computer.
A brief summary of the approach to the 'S Language" taken in the referenced study will
be given here since it is felt some of these results may be applicable to the consideration
of higher level language processing on the Burroughs Multiprocessor, particularly for
an ASBavionics system since SPL is one of the two recommended HLL for the B-1
Systems.

The encoding task of the preprocessing in Ref 7 converted operators and other
symbols into "tokens". A token was defined as a short binary string on the order of
six bits representing SPL symbols, Table 4-1 presents the tokens defined to do the
following:

1. To encode primitivcs such as operators ('+'), delimiters (') '), or keywords
(*IF') which appear in the object (preprocessor output) program.

2, To simplify the architecture. For instance, due to packing, the Noops are
needed to fill memory words following branching tokens.
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SPL Tokens Defined in Reference 7

No. Token Meaning

1 ABS Abgolute Value

1A F Floating i.d.

2 AND Bopr, and

2A RF Floating i.d, with ¥f

3 BIT References bits of a variahle

3A FR Floating I.D, rounded on assxgnment

4 BY Loop variable increment

4A RFR Floating i.d. rounded with rf

5 BYTE References bytes of a variable

5A FD Double precision (dp) floating i.d.

6 DECLARE Begins a ‘declaration biock ina rr pred

7 ELSE Begins the E LSE clause of a conditional stm

7A RFD dp floating i. d. with of

8 END Terminate IF, FOR, and LOOP UNTIL

compound stms

8A I Integer i.d,

] END DATA Terminates a declamtmn block ina ry pred

10 EQ Rel opr, equals ,

10A RI Integer i.d. with rf

11 EQUIV B opr, equivalence

11A L Logical i.d.

12 FOR Begins a loop stm

12A RL Logical i.d. with rf

13 GO TO Pirect GO TO stm

13A T Tentual i. d.

14 GQ Rel opr, greater than or equal

14A RT Textual i.d, with rf

15 GR Rel opr, greater than

15A n Boolean i.d.

16 93 Complex [F stm

16A RB Boolean i.d. with rf

17 IND Indicates following stm label is indirectly

referenced as pred argument

17A ARRAY Array i.d.

18 LAND Logical opr, product

18A RARRAY Array i.d. with rf

19 LOOP UNTIL Begins a loop st

20 LOR Logical opr, sum

21 1Q Rel opr, less than or eoual B

LEGEND: rr recursive or reentrant B Boolean
i.d. item declaration Rel Relational
rf repetition factor A Arithmetic
opr operator pred procedure
stm statement
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Tabie 4-1. (Cont)

No. Token Meaning
22 1s Rel opr, less than

23 ISH Left shift opr

24 LXOR dogioal opr, enclasive or

25 NOT B opr, negation

26 NOOP No operation

27 NQ Rel opr, not equal

28 OR B opr, or

29 ORIF Beging subordinate conditional stm
30 RECURSIVE Indicates a rr prcd

31 REM Remainder of a division

32 RETURN Prcd return

33 SGOTO Switched GO TO stm

34 SIF Simple IF stm

35 STOP Computer halt

36 TPOSE Matrix opr, transpose

37 UNTIL Terminating condition in loop stm
38 o Indicate pred call

39 { Delimiter

40 ) Delimiter

41 + A opr, add

42 - A opr, subtract

43 X A opr, multiply

44 / A opr, divide

45 ** A opr, exponentiation

46 /* Matrix opr, cross product

47 /*/ Matrix opr, multiply

48 R Delimiter

49 = Assignment opr,

50 ==

Exchange opr
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A format for these tokens was defined as

0 Type (6 bits)

Identifier Tag, 0 = Token

The tokens are used with address words to describe the program. ‘The format for
address representation fo acquire ifem names, consiants, procedures and statement
names is

I 1 [ o2} o/t | Main Memory Address

‘e— $ = Scalar, 1 = Nonscalar
0 = Absolute, 1 = Relative
Identifier Tag, 1 = Address

These preprocessed program elements are provided to and interpreted hy the
hardware to accomplish the program execution. This includes the uupacking of tokens
and addresses and translation of these into a sequence of comuands and datn addresses.

It is to be noted that the data in the referenced study is stored using descriptors
bits assigned to each data word to identify the word type. The following table defines
the eight descriptor types and three classes of data to represent the program information.

Class Format Descriptor Type
1 ‘ L T Value j Floating Point, unrounded
— Exponent Floating Point, rounded
——- Sign Floating Point, double
precision
Descriptor type Integer
Boolean

Nonscalar (arrays)

Class Format Descriptor Type
2 r[ Logical Valui] Logical
Descriptor type
a ‘ C1 -—— Cr Textual

I

—— Characters
L— Pad (to provide for fixed memory word sizes)
Descriptor type
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It is felt an S language as described above from ref 7 can be executed on the
Burroughs Multiprocessor. With regards the particular level used for SPL, a ,
significant amount of effort would be needed to determine if the level used in Ref 7 can
be applied efficiently to an avionics processing application.

The execution of a preprocessed program represented by an S language as defined
by the tokens in Table 3-3 on the Burroughs Multiprocessor would involve the fetching
of the program element and the analysis of statements to obtain commands and sequences
to be performed by the primitives of the interpreters.

A program fetch routine consisting of micro instructions would access the main
memory for program words containing {okens or address elements ina sequential
manner. Since eight bit bytes or words with memory packing would be used, the
fetch routine must extract the individual elements in proper order. The routine must
be initialized correctly by some external means. Further, the routine must respond
to requests for transfer of control to alternate locations within the programs as
required during execution.

The analysis of the sequence of addresses and tokens obtained as the result of
the fetch routine would le id to the translation of these into executable commands. A
conzept of translation of program information to mierocontrols is shown diagrammati-
cally in Figure 4-1.

A token initially establishes a parsing state which determines the need for
additional tokens or semantic routines. Cominands are provided to control routines
from either the state analysis or the semantic routines. These commands are trans-
lated to primitive interpreter operations using the data addresses as required and
calling upon the fetch routine for additional program elements or to control program
transfers.

Further, in-depth considerations with regards to HLL processing can be found
in Ref 7. Flow charts, processing logic, and stack features were defined for conversion
of preprocessed SPL into executable commands. It is felt some modifications to the
referenced study, such as converting expressions to reverse Polish notation would
be necessary for efficient S language execution.

4.2 INTERPRETER MODULE
4,2.1 Word Size

The word size to use in the Burroughs Multiprocessor depends upon many factors
including whether emulation or higher level language modes of operation are to be used.

The Burroughs approach has been to design modularity based upon 3-bit bytes. It
should also be noted that a 16-bit word length is desired for the microprogram memory
word. One reason given for this is to maintain compatibility with popular military
memory word sizes. Figure 4-2 presents two plots of data extracted from reference 10
to suppert this statement.
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Figure 4-1. S lLanguage Translation

Of the 52 machines presented in Ref 10 in deriving Figure 4-2, it is apparent that
a majority (~75 percent) is of the 16 or 32 bit single word, 8/16/32 multiple word, or
24 bit word classes, This data is for machines as of mid 1970. Since that time, the
trend toward these sizes is even more evident from considering the 16/32 bit computer
designs for the F15 and Bl avionics.

Both the instruction format and data requirements affect the selection of a word
Iength. The 16/32 bit data word has been found to be suitable for avionics applications.
Instruction word length is a function of the number of instructions necessary to fully
utilize the logic capabilities, the addressing requirements, und index register desig-
nators. It is usually desirable to make the data and instruction words the same length
so that they can be stored interchangeably in memory. If higher precision is required
in portions of an application, double word length operation is used.

It wouid be informative to examine the quantity of modern military computers

produced to discover popular word sizes on that basis, These numbers are not available.

Examination of Iief 10 and knowledge of the applicable military programs leads to the

conclusion that the above word sizes would also represent a high percentage of the latest
computers produced.

One advantage of higher level languages is the semantic conciseness possible,
Information can easily be conveyed in byte oriented instructions, descriptors, and data
streams. Compatibility between any HLL avionics system and ground based machines
is desirable in order to simplify program and machine checkout and simulation. An
eight bit byte is considered standard within the commercial computing industry.
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The conclusion derived from this examination is to utilize an 8-bit byte and
multiples of it for Multiprocessors operating in a higher level language and 16, 24
and 32 bit (including combinatione of 16 and 32) for Multiprocessors opersting in
emulation.

4,2.2 Microprogram Memory Organization
4.2.2.1 General

The scurce of microprogram instractions may be via single or multiple memory
levels, The advantage of the latter has bean stated by Burroughs (Ref 3) as requiring
less total bits, The purpose of thiz discussion is to examine this area in order to
establish the various factors invoived.

This memory reduction is derived from a realization of common microinstructions
within different S instructions or macros. The key fartor is just how much replication
is expected. Further, it {s to be recognized that even with one memory level it is
pussible to utilize, theough branching, replication of microinstructions. The overhead
expense for this hranching is a function of the order (sequential or random) of the
microinstructions and the similarity of the macros.

The mimber of maeros ezpected rangea from 20 to 60, with a likely number being
40.** Further, an es.imate of the range of microinstructions per macro is 10 to 40 with
tho likely average value being 20.** The plot, Figure 4-3, shows the total bits required
when implemented with a single {and no replication factor) or a dial memory approach
for various replication factors with a microprogram memory sizing approximating the
Burroughs design.

**.Support for the estimates are from the following:

1. "Dynamic Microprogramming," A.B. Tucker and M. J. Fiynn, CACM,
April, Vol. 14, No. 4, pp 240-250,

("To adapt the microprogrammed processor to a particular need, an
approoriate collection of macros is selected. Typically this might contain
40 macros. ")

2. Phone conversation with Burrougls indicated 15 microinstructions per
macro estimate,

3. Trial programming ir an emulation mode (to be presented later in Section 4)
showed a typical estimate of 40-45 microinstructions per macro.

4. '"Microprogrammiag Snvironment on the Burroughs B1700," Wayne T. Wilmer
‘6th Annual IERE Computer Society Conference, Sun Francisco,
September 12-14, 1972.

The foliowing Table 4-2 i3 extracted from this reference:
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20K
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SINGLE LEVEL MICROPROGRAM MEMORY
%0 INSTRUC1 ;JONS/MACRO; 54 BITS/INSTRUCTION

— ame e« TWO-LEVEL MICROPROGRAM MEMORY
20 INSTRUCTIONS/MACRO; M @ 16 BITS
PER INSTRUCTION; N @ 54 BITS PER
INSTRUCTION

l 1 I 1l J

Figure 4-3,

20 30 40 50 60
MACROS IN MICROPROGRAM MEMORY

Relitionship Between Amount of Replication Within Macros
and Total Microprogramming Bits
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Table 4-2. Microinstruction Requirements

Number of Number of

Ahstract Machine Virtua: Instructions h!icgos per Instruction ,:: ?

Second Generation 25 i o
FORTRAN 41 39
COBOL 42 39
Fourth Generation 74 25

The observations which can be made from the ronsiderations in this section ave:

1. 'The replication reduction fuctor must be greater than 1/4 in order to
ohtain a reduction in the total number of bits over a single level (straight
line coding shown for single level—this may be reduced by branching
hetween macros using commonality also, thereby increasing the replication
factor required).

2. Questions with regard to how much replication and the order of mic1 “-
instructions depends upon the macros to he implemented for hoth single
and multiple memory levels, cnd can be answered only after the macro's
definition.

3. As Burroughs observed, the use of multiple level requires eiiher faster
memories (it higlier costs) or a speed loss. The cost effectiveness is
dependent upon the amount of memory recuction and cost per hit.

4, The amount of logic is about the same with either approuch,
L2.2.2 Two Level alicroprogram Word Size

Two levels of microprogram memory can save totil memory bits if there is a
repetitive dermand for microinstructions (as discussed previously), Further, advantages
can be obtained by a twx level type if the longer single level word requires too much
interface logic. The factors involved in the selection of an appropriate word size for
each of the two levels are discussed in the following paragrarhs.

4,2, 2,2.1 Microprogram Memory (MPM) Level. The considerations involved
in the seiection of a word size for the MPM are as follows:

1, Satisfaction of the functions to be performed

l . Addressing - With a nanomemary and MPRI address copahility
] of 1096 wulds, 12 bits are required.
o Y. Register Loading - The shift count register (1, 5, 6 bits for 16,
32, 64 bit data words, resovectively) and the literal register (8 hits)
; must be provided with information. Further, Burroughs indicates
these registers are louded together oiten enough to warrant both
beiuz in the same word.
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¢, Word Type Identification - The addressing and register loading
establishes the need to supply bits to identify the operation
invelved, Burroughs has classified the MPM words in two types.
Type 1 provides the direct addressing of the nanomemory; Type 2,
the register loading operations.

o ie e e e T g

2, Compatibility with the S memory. Most popular computers have heen
organized with operating memories of either 16 or 32 hit word sizes,
The result is that many peripheral devices and memory units are of
these word sizes. Further, if byie processing is provided, 8 bits is
preferred. Thus, the desirable MPM word size from the viewpoint of
storage in the S memory is one of these. Since ithe 8 bit word size is
too small to contain the information to be conveyad without excessive
memory accesses and the 32 bit too large and leads to too many unused
bits, the 16 bit word size appears to be preferred.

The organization of a 168 bit MPM word size revolves around the above
requirements and the minimum number of gates to do the type decoding
in order to supply tie control signals. Flexibility to accommodate
additional instruction types and levels of logic or delays are other
corsideratiorns to be made,

Without considering the flexioility needs, a slight improvement in the
Burroughs MPM word format may be obtained by modifying it as next
discussed.

Decoding the MPM format requires the foliowing or equivalent logic:

LOAD
: 123 456 78010111213141516
3 {10 LOAD MPM
L. apnan! B ol
1u] sae

. ¥ - SAR 01 SAR T
i, ) SAR & UT oot |- AMPCR
A

3 AMPCR 00-1 l ur
.- o LIT 0030 NANOADDRESS
H 4
1
he

3 T So TYPE
3

THE MODIFIED FORMAT REQUIRES:

T l I r—--*r_.;..l>°““*° 13345367 ° 310111213141516
. ‘naag ] 0000 [ LOAD M2M

g-{  sar
L ur n
SAR ) uT

e TYPE | oo AMPCR

i 00-3 NANOADDRESS
L AMPCR
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1t is obvious that the latter format simplifies the decoding.
The conclusion reached is that the 16 bit word size for the MPM is suitable,

4.2,2.2.2 N-Memory. The N-Memory word size is dictated by the number of
control and condition signals required and the extent to which coding of the bits to
indicate these are used.

A longer word is required when minimal encoding of bits is used. Thisis
obviously a disadvantage with a large number of control points. Table 4-3 shows the
Burroughs' word and an estimate of the control points.

The Burroughs organization of the N~word reflects considerable design thought.
The capability to provide some operations in parallel is included. However, it it noted
only one condition can be tested at a time. To be able to do more would required more
additional bite in the Nanomemory word. The value o1 limitation of these features
requires examination by trial microprogramming.

The possibility of reducing the number of decode gates by increasing the N-word
size was examined. Table 4-3 presents information showing the tolal number of
control or conditions as being 139, This word size would be required if no decoding
were used. Obviously encoding is desired to reduce the word size. Table 4-3 con-
tains an estimate of the number of Series 5400 integrated circuits required to decode
each field of the nanoinstruction. An alternate word is shown which uses less encoding
and more bits while retaining the same parallelism. This approach indicates an
increzse of 16 biis in the N-word could lead to approximately 30 less integrated circuit
components. With a density of 256X1 (as used by Burroughs) the component count
between the 54 and 70 bit words remains about the same for a 512 word Nanomemory.
However, present day densities of 2 to 8 K bits at the required speeds are available
and would enhance the longer word usage.

The above ar..lysis leads to a recommendation to consider expanding the N-word
size. A more extensive study which includes the consideration of interconnections,
partitioning, currently available integrated circuits,and power should be made,

4,2,2,3 Single Level Word Size

The considerations for the word size for a single level microprogramming
capability are similar to those for the two level. These are:

1. Addressing - Providing addressing capability for 4096 words defines
the need for 12 bits in the word.

2, Register loading - The shift count and literal registers require 6
(for G1 bit data) and 8 bits respectively.

3. Word Type ldentification - With a longer word, less types and less

identification bits are required since more than sne or two information
fields can be included in a word type.
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Table 4-3. Microprogram N-word Asseasment

A!tefnate longer R
Word
Condition o
Bits or Est. Differ~
Function Used | Controls| enceinlIC's | Bits

Condition Tested 4 16 - 4

Condition Value 1 2 - 1

Logic Unit Conditional 1 2 - 1

External Conditional 1 2 - 1

Condition Adjust 3 8 3 1

; Successor Instruction for 3 8 - 3

- Condition

.,i 14-16 Successor Instruction for 3 8 - 3
G not Condition

- a j 17-19 Adder X Input 3 8 3 7

% - 20-26 Adder Y Input 7 18 2 9

f 5 27 Inhibit Carries into Bytes 1 2 - 1

‘E "' 28-31 Adder Operation 4 16 8 7

g; ™ 32-33 Shift Type Selection 2 4 1 3

: é_ 34-36 A Register Input from BSW 3 4 1 3

. 37-40 B Regisier Input Select 4 10 5 6

5 .;.:. 41 MIR Input from BSW 1 2 - 1

‘ k4 42 AMPCR Input from BSW 1 2 - 1

& 43-45(46) | Memory/Device Address Input 4 7 3 3

g: 47-48 Counter Input 2 4 1 2

49-50 SAR Input 2 3 1 2

g 51-54 Memory/Device Operation 4 13 2 5

Totals 54 139 30 70




4. Compatibility with the 8 Memory - The word sizes possible for the single
level microprogram memory according to this factor are 16, 32 and 64
hits. The latter is felt to be too large and could lead to many unused
bits for the register loading type instructions, Further this size could -
introduce more logic and/or complicate the loading (for read/write MPM) i
and addressing of the microprogram memory. The 16 hit word size would >
require multiple microprogram memory accesses and may be worth

investigating i{f, upon examining the timing and the 32 bhit size, it appears
feasible.

The single level microprogram word size of 32 bits can have a number
of different formats. The following is not meant to present the best but
to define a workable set.

v i 4.\ 3 N < R, | ) ;‘
Format A 'ljépe A Ilg C E§1 NEXT \&DRF%S E)2(T J SP:;RF Type 11 i

. Type | NEXT ADDRESS | EXT | LITERAL{ SA R | SPARE Type I i
Format B 2 12 9 g 6 9

Format C Tylpe 1st half of microcontrols - 30

Type 1

Format D |, 'I}lfpe 2nd half of microcontrols - 30

The timing with a single level memory can neurly approximate that defined
for the two level. The microprogram memory access required for a 32 bit
wide single level approach can be accomplished as with the two level. This
means two accesses for a Type [and one for a Type II microinstruction,

Phasing details can follow also. As an alternate, it could he possible to

split the two accesses for the Type [, and do one during each of the Phase 1 -
and 3 timing. This approach may offer i slight improvement in speed

especially if there are n lot of unconditional situations.

+.2,2.3 Comparison Between One and Two Level Microprogram Memory

The one level, 32 bhit word approach may lead to faster information transfer :
from the operating memory (for read/write MPAD), can simplify the decoding of
instruction types, and present a slight improvement in timing., Because both approaches
would use microinstruction overlap, buffers are required, Additional logic would he o
required with the one level to accommodate the wider hus interface to the operating :
memory ind the steering of the Type C and D format to the appropriate buffers. The
net result is that both upproaches have about equal amounts of logic, The one level
approach can be made about 20 percent faster by: d
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1. Eliminating one memory access with the use of a wider (64 bit)
microprogram memory word; or,

2. Accessing the Phase 3 control word during the logic
conditional testing done in Phase 1.

As noted carlier, additional logic in the timing and selection of the interface to
the operating memory is needed.

The conclusion at this stage of the study is that the Burroughs two level micro-
program approach is a reasonable and cost effective approach, Change to any other
depends on whether additional speed is needed.
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4.2.3 Limitations and Possible Improvements

i

4,2.3.1 General r

Rty
s

The most apparent limitation of the interpreter observed in this study is the ;
throughput or speed capability. The throughput capability for an emulation mode of :
operation was calculated by trial microprogramming and will be presented later in
this section. It was found that the interpreter had limited throughput capability in the P
emulation mode. There are two principal ways to improve the throughput capability. B
One is to use the machine with an S language that is at a relatively high level and
containing a high degree of macros or complex operators. This reduces the amount of o
main memory accesses and also the amount of inatruction fetch and decode overhead. :
The other method is to change the interpreter design, incorporating features that would
enhance its throughput. The purpose of this section is to identify some of the possible
changes in the interpreter design that would enhance its throughput.
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é. 1.2,3.2 Provide Temporary Storage Via MPM. o
. At present the MPM cannot be used to read out data for the interpreter.
B If this were possible, the MPM could be used to provide either additional interpreter B
§,‘, registers or as temporary storage for data. These features could be particularly ;
useful in processing a complex HLL. The modifications needed to the interpreter to
T provide this capability were briefly investigated.
- A data input path to the MPM is needed, if it can only come from one place such
: as the BSW then a nanomemory select bit is not needed for this function. An address
§. register is needed that would be used as an alternate when writing into MPM, no extra
e nanobits are needed since its use would be implicit. However ihe capability to load
and operate on this address register would be required. 1If this register is Lhrought in
§' as a Z input to the adder then an extra nanobit is needed. Also if this register is
e loaded from the BSW then an extra nanobit may be needed depending un whether some b

of the spare codes in nanobits 43-4G can be us~d for this function. Finally ar exira
nanobit may be needed to specify the MPM write (possibly some of the codes in naro-
bits 51 -54 could be used),

1oy T SN AT e R

L
It should be noted that multiple wrile cycle capability will be required since the
g MPM is 16 bits wide aud the interpreter is 1 x 8 bits wide (32 bits in this study).
. Therefore more than 1 MPM write cycle would be required for executing a type 1
microinstruction that specifies a MPNM write.
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In summary this function will require an address 'reg.ister, changes to the con- {

trol section to allow MPM write cycles and delayed feteh cycles (in case multiple HE
write cycles are required), and prohably 2 extra nanobits, 4 L

4.2.3.3 Provide More Registers

s
[

At present there are three .\ registers and three nanobits that control their -
loading from the BSW (this allows them all to be loaded simultaneously). It is possible o3
to provide seven A\ registers and only require one additional nanobit {to select the :
adder A input) if the ability to load all the A registers in parallel is given up.

More than three .\ registers would be a significant improvement in the interpreter, ,
For examyple, from the experience in the emulation mode trial microprogramming this
would:

1. Prevent having to store the emulated machines index registers in B
main memnry.

2. Allow the.emulated machines () register to be kept in the interpreter

i 3. Allow these registers to be used for temporary storage in manipulating
the instruction format,

Providing more \ vegisters would obviously also enhance the performance
in a HILL processing mode with the use of complex macros.

+4.2,3.4 Program Counter

3 In most application a program counter mechanization is needed. The Burroughs
multiprocessor reguires one of the A registers to be used as the program counter,
This is not very difficult to do since the logic unit is very flexible, However, since
this function will normally be required, it may be more convenient to provide a

~ 3 separate counter, This could be provided as MR3 or MW3 in nanobits 43-46, Two
additional nanohits would he required to control the counter:, no change, increment
+1, input from BSW, If more A registers are provided than there would he less of

a need to provide a4 separate program couster register.

rn
v

+.2.3.5 Changes to Logic Unit

There are a number of items in the logic unit that will normally be required in
an emulation mode that are not presently implemented and therefore difficult to
perform in the present logic unit. One of these is the carry. At present this is
o dynamic condition and is only recorded if tested and a condition bit set. [t appears
it would be more desirable to have the carry simply latch a FF if it oecurs.

Auother item is the shift control. It is frequently required to shift and spread
sign, this is presently difficulf to perform and should be added to the shift control,
. Also it is desirable to be able to record if a one was shifted out of the shift register
i for a shift of  pluces, no such capability exists at present.




The above items would result in more condition bits. It is also felt that more
than three EX condition bits should be provided, More flexibility should also be
provided in testing the condition bits. For example, a useful set of combinations
would be test EX1 + EX2 +EX3, EX1 + EX2, EX1 + EX3, EX2 + EX3 etc. This would
facilitate the mechanization and testing of interrupts. This would alleviate having to
tor' all interrupts in fo one bit or having to proceed through a number of separate
microinstructions to test a number of interrupts, ) '
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4,2.3.4 Buffer Storage

trow"*

As an extreme to increase speed one might consider adding a buffer memory to
operate as a cache, The actual effectiveness of a buffer would depend on the particular
characteristics of the program being processed.

LRI T e
Bowyr o

: Features of buffers which must be considered in their design includes the manner
g ; of buffer control. Either direct mapping or associative methods can be used. (Ref 11}).
b b sl In the direct mapping, the S memory would be divided into blocks of information. Each
- of these blocks would have a tag and be assigned to a fixed block location in the buffer.
In a fully associative mapping, any block in the S memory can be loaded anywhere into
the buffer. The blocks are tagged and everyone is searched to determine whether an
addressed block is in the buffer. This method gives more flexibility at the cost of
time and search logic.

Lo e B go e s 4

.- Other, less associative methods as described in the reference can provide
performance with reduced flexibility, but with less hardware cost than the full approach.

¢ s

i Another consideration in the use of buffers is that of what is the best manner of
writing data into the buffer in order to eventually update the S memory. Two ways of
doing this are storing through and periodic block update. The storing through method
requires an S memory wrile for every buffer one. The block update method permits
the accumulation of the updated data in the buffer and a write into the S memory only
upon replacement of the block which has had data written into it while in the buffer.

R A L

i Other aspects of {the buffer to be examined in a detail design include the buffer
replacement algorithm. It should be simple, such as based upon activity. Fetch
anticipation is felt not to be necessary.

[ EVXVN |

Studies to date (Ref 12 and 13) indicate the best typical sizes for the buffer
memory to be 2 to 4 K words with blocks of data of 4 to 16 words.

[

4 A block diagram of a possible buffer is given in Figure 4-4. The functions of
. the major components are as follows:
H 1. Buffer storage control. This logic provides the associative search
control to determine if the data requested is in the buffer and to provide
T pointers for addressing any stack or file structures.

4 2, Address array. This storage contains the address information of the
8 data stored in the buffer.

e e =
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INTERFACE BUFFER

ADDRESS CACHE
ARRAY 2K X 32
BUTFER
BUVFER REPLACEMENT
STORAGE ADDRESS
CONTROL ARRAY

bttty

3. Replacement address array.
not being in the buffer.

4. Cache,
execution,

dynamically.
and stack locations.

5. S Buffer.

—— — — Ao w—

Figure i-4.

from the S memory,

4.2.3.7 Multiply Capability

INTERPRETER

Buffer Storuge

This storage provides an activity source
for determining the buffer replicement in the event of addressed data

This buffer accepts four to sixteen 1 x 33 word hlocks

This memory holds the instructions and data used in program
It is transparent to the programmer and maintained
This storage can also provide the temporary storage

It became apparent in considering the interpreter in the emulation mode that the
speed of multiply is a limiting factor in the present design particularly for an avionies
The fastest multiply algorithin developed by Burroughs for use in the

application.

present design is given in Ref 1,

It is noted to consist of the following:
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Clocks
1. Bign determination and conversion to positive values 2
2, Setup of counter and registers 3
3. Mult;piy Loop, averaged for 32 bit data 80
4. Sign conversion to sign magnitude 2
Total _.8-7—

With a 4 MHz clock this is an average multiply time of 21. 756 microseconds, to
thi. must be added the instruction and operand fetch times and instruction format
decode. This results in multiply times on the order of 30-35 miecroseconds.

The recommendation at this point in time would be fo strongly consider faster
multiply algorithms, such as 2 bit at a time or 4 bit at a time, in future designs of
the interpreter.

4,2.3.8 Logic Speed

The present interpreter clock is 4 MHz. It is quite possible that a higher speed
clock could be used after carefully analyzing future logic designs. This would have a
direct affect on intorpreter speed.

4.3 SWITCH INTERLOCK MODULE
4.3.1 SWI Timing

The logic diagrams of the SWI modules were analyzed to determine the time
required to complete read/write operations for memories and devices. A summary
of the results is contained in Table 4-4.

Detailed timing charis are contained in Figure 4-5 through 4-7 for memory and
device operations. The timing charts are for the SWI only and essentially start from
the time the nanobits are clocked into the MDC register. Any other time required to
setup the nanobits between the interpreter and the SWI must be added to all memory/
device operations. Likewise, a specific memory/device cycle time has not been
assumed and must be added to all memory/device read/write operations.

Figure 4-5 contains the timing charts for memory operations. The detailed
sequence of events is first shown for a memory write assuming the new address (memory
module) is identical to the old address. The changes to this sequence are then shown
for read-old address, write-new address, and read-new address.

4.3.2 SWI Interface with Memories and Devices

The present design of the SWI requires certaia interiace logic to permit the
transfer of data, address and control information to devices or memories.
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Figure 4-7. SWI Timing - Device Lock/Unlock

Figure 4-8 presents the Burroughs Multiprocessor concep! for information
transferred.

As shown the interface at devices and memories requires shift registers and
a counter. Since the concept is to send the command {type of operation) in the address
word, additiona! logic is required to extract this information,

The memory operations are initiated by the decoding of the nanobits and issuing
a Mem. Opns. Req. from the MDC to the MC, 1If the address comparison priority and
memory busy logic permits, the SAI/Clear signal is generated. The latter provides a
reset for the counter and controls in the memory interface. Simultaneously, the high
speed (118) clock is enabled and transier of the address and command information
from the interpreter occurs. The clock pulses are counted and a memory initiate
command generated. The read or wrile operation is determined by the decoding of the
received address information.

If a write, the interpreter data is provided simultaneously with the address.
There is no need to transmit any information back to the SW1, The number of bytes
trancferred is controlled by a counter in the MDC as shown.

In & read, the return HS clock (MRC) is returned after the memory has performed
the command, counted in the MDC, and used to terminate the operation,
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For Devices, the read or write operation is the same in order to be able to send
status information back tothe interpreter. The MDC controls the lock and iock eheck-
ing before the operation is enabled. The Device interface contains a counter used to
count incoming HS clock pulses and initiate the read or write. When the operation is
. finished, high speed clocks (DRC) are gated hack to the MDC and counted there to
i determine when the transfer is completed.

forme. ¥

[ et

4,3.3 Memory Request Control

T AT A o b -
8 e i L b R g

N There exist two possibilities to consider when an interpreter requests access to
a memory module: The interpreter was the last one to use that memory, and the

- interpreter was riot the last one to use that memory, In the latter situation the

following series of events occurs in the SWI.

The comparison logic with MC is inhibited by the Valid Enable not being true.
L, The Memory Request (MR) then gates the 3 bit memory module address to test whether
the memory module of interest is busy.

I S,

: ‘ 1. It is busy leads to continuing inhibit of the interpreter clock (HS/5).
I The denial is ended Ly the addressed merory clearing the busy Flip
' Flop (FF) with a cycle complete., The highest nriority interpreter is
-2 - permitted to gate the Interpreter Ciock (Int Clk). The others ars

? ;. locked out.

2. 1 is not busy results in the Int Clk enabled to transfer the address into
storage and set the Valid Address FF, A comparison is made and a
i pulse generated which sets the busy FF of that addressed memory
module. This setting is sensed by the Use Determination logic and a
reset generated to clear the address registers of any other Memory
Control (MC) channel holding that memory module address.

. In the former case with the interpreter having last addressed the requested

i memory module, the address register in the MC comparison logi: will contzain the

v same three bits. The memory request will then be immediately granted. In imple-
menting ithis case Burroughs ran into problems of conflicts when different requests

; came into the SWI at slightly different times. In some cases access would be granted

i B to two interpreters to the same ‘memory module. This problem was eliminated by

- disabling the comparison logic that grants immediate access to an interpreter if it last

.- used the same memory module. As a result of this all memory reguests must go

through the priority logic with the resultant added delays in granting access to an

interpreter.

It is possible to structure the logic in the MC module to permit the operaticn to
ia be as originally desired. I'igure 4~9 shows an approach and provides the means by .
which the quantity of logic can be estimated. The addressed memory module is first i
tested for its busy status, If available, the memory request enables the comparison §
pulse ‘o be generated which initiates the memory operation. Simultaneous requests :
from ‘wo interpreters results in an inhibit signal being generated in lower priority
MC's to prevent enabling the memory request gating,
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4,3.4 SWI Design Features

Some of the features designed into the SWI are noted below. The memory cycle
and device cycle times can be variable due to the asynchronous interface allowed by
the SW1. This allows a mixture of memory types to be used for the main memory
of the system.

One word transfers are only possible. For each word transferred, the
interpreter must issue a new request. This holds true for memories and devices,

Modularity was to be one of the key design features of the SWI, It is feill that
modularity can be achieved in the design of the SWI, However, in investigating the
modularity of the present SWI design it became apparent that a very limited degree
of modularity exists. A discussion of the modularity achieved in the present design
is given below,

The MDC is modular in that one is used per interpreter. There is no apparent
limitation as to how many MDC's could be used.

The MC is made up of two types of modules. The *'MCI' module handles two
interpreters and the Memory Busy FF's. The 'MCO' module handles three interpreters.
MCI could be used alone, if only one or two interpreters were in the system, except
that pull up resistors are required which are contained on the MCO module. X appears
the concept could handle more than one MCO module as long as circuil limitations are
not exceeded. This would allow more than five interpreters to be used, The MC
modules handle eighi memories. There is no modularity as far as the number of
memories accommodated by the MC. The same module is used for one or for eight
memories. The present design of the MC cannot easily be modified to service more
than eight memories. One possible approach to service more than eight memories is
to add another MC module to handle another bank of eight memories. This would
require some means or handling an extra address bit to signify which bank of eight
memories to use; such a modification would have to be added either to the MDC or
the MC.

The DC is made up of two modules. Both modules are identical and handle up to
three interpreters by eight memories. One module may be used alone if three or less
interpreters are to be serviced. It appears that more than six interpreters can be
serviced by using more than two DC modules if the circuit limitations are not exceeded.
Expansion beyond eight device modules is not possible with the DC. Handling more
than eight devices would require modifications to the MDC or DC as discussed above
for the MC.

The Output Switch Nelwork use= two types of modules, OSNI and OSNO. The
OSNI handles two bits and one clock per interpreier and the OSNO handles four bits
per interpreter. Each type services five interprcters by eight memories. The
address output requires two OSNI modules since two clocks need to be transmitted
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{clear pulse and high speed clock). H more bits are desired to be transmitted in
paralie]l, then an OSNO module can be added (pending circuit limitations). This
would add four more bits to be transmitted in parallel. Additional OSNO modules
would increase the parallelism in transmission. The data output uses two OSNO
modules. Additional OSNO modules would increase the parallielism in transmission
providiag circuit limitations are not exceeded. It appears expansion beyond five
intorprefers is not possible since the clock bits cannot be noded together from two
0OSNO modules in parallel. The OSNI modules can be noded together (pending circuit
Iimitations) t{o handle more than five interpreters. Aore than eight memory modules
can he serviced by using additional OSN modules in parallel provided the MC modules
are modified to handle niore than eight memory modules,

The Input Switch Network uses one type of module that provides transmission
of four hits per interpreter and services five interpreters by eight memories. Two
niodules are used in the system providing transmission of eight bits in parallel.
Modules may be added to increase the parallelism, provided circuit limitations are
uot exceeded. Likewise, more than five interpreters could be serviced by adding
mudules in parallel provided circuit limitations are not exceeded. Expansion beyond
eight memory modules is also possible provided the MC modules are modified to
handle more than eight memory modules.

Another consideration in the SWI that is tied in with modularity is the failure
tolevance aspocts of the SWI.  The existing SWI design contains a number of failure
points which can cause loss of more than one element or cause difficulty in detection
or reconfiguration, After considering each of the SWI elements, some possible
failure modes are noted helow,

1. DC - The most obvious DC feature contributing to lower
relinbility and to difficulties in detection and reconfiguration is
the use of common logic between stages. Some failures such as
those contributing to the generation of MDC control sigmils can
occeur. These can be isolated and confined to one stage if the power
counections permit. However, others that are described next use
common logic and cannot be,

a. Common address selection is used for up to three stages.
The wddress select can fail and prevent the ability to address
decode,  The entire SWI can be lost.

b. The "OR" gate providing lock inhibit signals is used for
three stages and noded with the oihers from the second DC for
more-than~three interpreter systems, Its loss would cause
loss of a particular device, Lloss of the source of power for
this common "OR" logic would mean loss of more than one
stage or even total loss of the SWI,

¢. The priority inhibit logic is used between stages. A failure
in this area would be hard to isolate and reconfigure around.
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2.. MC -~ Ar with the other SW! elements, certain MC fatlures

such as the comparator can be isolated to one interpreter, Other
types of failures which can occeur with the MC and which present
greater problems are as follows:

a. Lower stage lockout - The priority signals are cascaded,

A failure of the signal or a power turnoff to an intermediate
stage can lock out lower stages.

b. Multiple memory accessing - Inability to set the husy flip
flop can cause two interpreters to request access to one
nemory. Also if the flip flop for reset of the address
buffer fails, two interpreters can also access a memory.

¢. Failure to transfer information - A busy flip flop "'ON"

failure can prevent other channels from acressing 2 memory.
Also, a single power source provides power to these flip flops

making it difficult to turn power off to a failed stage.

ISN/OSN - The design of the ISN/OSN is such that single failures for

the most part contribute to loss of either an interpreter, memory,
or device,

Failure »f the strobe signal to "ON" can cause the continuous
readout of whatever is addressed by the buffer storage for that
stage. Since separate power is supplied to each channel, it is
possible to remove the faulty channel and lose its asrociated
interpreter.

Inputs to interpreters from devices through ISN's are tied to those
from memories. Loss of one line prevents that interpreter from
communicating with either. Isolation and power removal to the
bad component may restore the communications over the good
lines,
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4,3.5 Alternate SWI Design

From the above discassions, it is obvious the modularity and failure tolerance
aspacts of the SWI need to be investigated further. In considering alternate designs,
it is necessary to examine the partitioning of the electronics to the boards and the
number of pins required for interconnecting the SWi, It is desirable to have flexibility
for diffevent word sizes; number of interpreters, memories, or devices; to make all
channels alike to achieve submodularity, and to minimize the board types. Achieving
all of these is difficult due to packaging limitations arising from the need to minimize
cirenit connectors used, the number of pins and board sizes which are available, and
to utilize available standard solid state devices. The following represents an approach
which offers greater potential in meeting the avionics needs than the present approach.
{The approach will follow the same commercial prototype packaging philosophy as
Burroughs used in the multiprocessor, enabling a one-to~one comparison. An avionics
design muay take on a slightly different approach.)

Soparation of the channels and integration of all logic relative to a channel is
suggesfed. .\ channel is hereby defined as the information path for one interpretcer.
The MDC design can remain as is since it is designed for a single interpreter or
channel approach, The circuitry for the MC and DC can be packaged on one board,
The ISN,/OSYN can either remain as presently designed or redesigned with each channel
on one board and containing the circuitry for all or portions of an (SN, data OSN and
address O8N, This latter approach requires junctions external to the board in order
to enable inputs to go.to each ISN {(as contrasted to these junctions being presently
provided on the circuit boards). Similarly all corresponding OSN outputs would have
to be tied externally to enable any of the outputs to go to the proper device or memory.

The alternate designs achieving this channel modularity and failure tolerance on
a channel basis are shown in Figures 4-10, 4-11 and 4-12. The MC and DC channel
"slices" are shown in Figures 4-10 and 4-11, These two can be packaged on one hoard,
hereafter referred to as the MC/DC module. The MC/DC module provides all the
memory axt device control for one interpreter. The former ISN, O8SN-0, and OSN-1
madules arve changed into one module now called the I0SN. Figure -1-12 shows a dual
chitnnel version of the 108N, a triple channel version is also feasible with the com-
mevrcial prototype technology, Each channel on the I10SN moddule provides four data
bits and one clock bit out, two address bits out, and four data hits and one clock bit
in (to/from up o eight memory modules or eight devices).

A comparison with the previous design features shows:

1. No common logic exists beiween stages. RReconfiguration and power
turnoff is pogsible,

2. Iirror detection logic such as parity bit can be added.

3. Modularity by stages is achiceved and provides advantages in checking and
interchangeahility.

The previous design consisted of a large number of boards and types of boards as
shawn in Table 1-5,
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Table 1-5. Number of Boards in Present SWI

Int, Qty ISN Data ADDR MC DC MDC Tota}
5 Per MC or DC o
2 2 3 1 1 1 2 16 3
3 2 3 1 1 1 3 17 _“
4 2 3 1 2 2 4 20 ‘ 3
3 2 3 1 2 2 5 21
Types 1 2 - 2 1 1 7 3
Table 4~6 presents the number of boards for different numbers of interpreters

(assuming a two channel IOSN and a three channel IOSN) for the alternate design ' i
approach, '

Table 4-6. Number of Boards for Alternate Design

SwWi -
Element

d mt. Qty IOSN AMC/DC AMDC Total
B Per MC/DC

2 2 2 2 8
3 3 2 3 3 10
3 4 + i 4 16
: 5 1 3 5 1%
3 Types 2 1 1 i

This approach provides a better utilization of the electronics in matching the
number of interpreters with the number of SWI boards.

The MC is shown to he similar to the present design. Each stage has three
husy flip flops settable by the compare pulse when enabled by the priority sensing,
Each stage would have a network to select the correct eycle complete signal to reset
its busy flipflops. FEach stage also must have comparators which compare the stage's
address with any of higher priority tv generate this priorily cnable, For a five iater-
preter capability, a maximum of four comparatcrs is needed for the lowest stage, It
would be practical to make all stages alike and tie off any unused stages. Since all -
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eight combinations of address are used, the valid signal for each stage must also be
used to enable the comparison., Further, if the higher stage is turned off, the com-
parison section for that stage must be so designed that its cutput cannot occur.

= £
The MC operation is similar to the present.

1. New address - First thing to occur is the check of the busy signals.
If OK, the address is dropped into the buffer and a comparison signal
generated. This sets the busy flip flop and initiates the operation.

2. Same address - A comparison is made immediately, An inhibit is also
generated with any lower address until the busy signal logic can generate
a reset for that logic. This new logic overcomes the previous described
probiem of dual accessing presented in Section 4.3.3.

Witheout the ability, as described in Section 4,3.3, to permit the same interpreter
to use the same memory, an additional three integrated circuits per MC stage would be
needed for this new design over the present. With the function added to the origina!l
design, this approach uses about six less integrated circuits per stage than the approach
shown in Section 4.3.3.

To accommodate the interconnections about 50 pins are required.

The DC logic increases slightly with the elimination of common logic. About
three more integrated circuits per stage are required to perform the same functions.
‘The number of additional pins per stage needed is about 15.

The conclusion reached from the considerations of quantities of integrated
circuits and interconnection pins is that it is practical to place the MC and DC logic
per stage on one board. This is so indicated in the previous table as the MC/DC
module.

Since individual channels were rec-.gnized, the 10 design follows that of the
present except that a different packa<.ng is recommended as a means of reducing both
types and quantities of boards, A number of ways that the input output area may be
structured were investigated, including single, dual, and triple channel. The recom-
mended approach is that of providing two board types. One board contains half of the
10 iogic (for eight memories or eight devices) for two channels and the other board
half for three channels. This gives better utilization of the electronics when the
number of interpreters is odd and while keeping the total board couni down, The
estimated interconnection pins and integrated circuits per board support the conclusion
that these approaches are compatible with the board size and connector available
(110 pin connector and 45-16 pin integrated circuits per board).

The resuiting Switch Interlock is shown in Figure 4-13, All logic associated with
a channel could be connected to the power source regulator for that channel. This
design provides better modularity and reconfigurability than the existing approach.
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Figure 1-13. Alternate Switeh Interlock for a Two Interpreter System
(Two Channel IOSN)
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4.4 MULTIPROCESSOR PERFORMANCE CAPABILITY
4.4,1 Introduction

Section 4.1 discussed the flexibility inherent in the multiprocessor and identified
different approaches to the S language. It is the intent of this section to define the
performance capability, quantitatively, i~ terms of its throughput or speed. To
accomplish this the emulation mode of operation will be investigated further, The
emulation of the IBM 4 CP avionics computer was investigated. In addition such an
emulation modified by the use of macros was investigated. This gave the resultant
throughput improvement in using macros and aiso an estimate of storage redvction.
This activity also enabled an estimate to be made of the amount of MPM and NM
required.

4,4.2 Emulation Mode of Operation

The IBM 4x CP avionics computer was selected for the emulat.on application.
This computer is characterized as a 16/32 bit (instruction ..nd data) machinc with the
following primary registers:

32 bit accumulator (A)

32 bit lower accumulator Q)

16 bit instruction counter

3-16 bit Index Registers

The instruction formats are as follows:

5 1 2 8
op
1/2 Word — Code H/F T Displacement
L index registers
0: 1/2 word instruction
5 1 2 1 3 4 16
, OF O Code
Full word Code |{H/F | T |!a| 000 ext Address

—0: direct addressing

L——1: indirect addressing

In emulating this machiie one of the A registers, A1, was dedicated as the
program counter, and Ay was dedicated as the accumulator, the remaining registers
were stored in main memory.
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There are two basic types of instructions to be considered: 1/2 word (16 bits)
and full word (32 bits). Within the 1/2 word format there ave thirty-one instructions,
Seventeen of these use the regular format where the T bits are used in a normal manner
to generate an effective operand address. The remaining instructions utilize the bits
in various ways, For example, the shift instructions usc two op codes but utilize the
T bits in specifying the type of shift and part of the displacement to specify the shift
amount. Similar distinct uses of the instruction bits occur for several other instructions.

Within the full word format there are 27 instructions that each require special
functions to be performed with the bits in the instruction, some do not recuire inter-

pretation of the op code ext, others do not use the effective address, others require
interpretation of the T bits, ete.

The nperation of the interpreter in this emulation mode is illustrated in
Figure 4-1d,

There exist three basic steps in the emulation process: instruction fetch,
instruction format interpretation, and instruction execution, In many cases (certain
instructions) the instruction format interpretation is integral with the instruction
execution and is not necessarily a separate routine for certain instructions as illustrated
in Figure 1-11, These concepts ave further illustrated in Figure 1-15 where the struc-
ture of these routines is shown. The concept is that the I fetch routine uses the op
code to access a table of op code pointers (1) these pointers either lead to the [ format

¥

INSTRUCTION
FETCH

l

INSTRUCTION
FORMAT
INTERPRETA TION

l

INSTRUCTION
EXECUTION -

-
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carmtencs
b et marlieliall Bt b Sl e
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Figure 4-14. Interpreter Emulation Operation
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Figure 4-15. MPM Structure

interpretation or to the I exccution routines. If the I format interpretation routine
was entered, it will point to a set of op code pointers (2) that will then point fo the
appropriate I execution routine. At the completion of an I execuiijon routine, a pointer
is used to re-enter the I fetch routine,

The I fetch routine flow chart is shown in Figure 4-16 and the detailed micro-
coding is given in Table 4-7. The fiow charts along with the microcoding table are for
the most part self explanatory.,

The flow chart for the instruction format interpretation routine is shown in
Figure 4~17 and the detailed microcoding in Table 4-8, It should be noted that this
routine is entered with the instruction in the B register aligned as follows:

2 8 16 5 1

bits: T Displ | -~ - =~ - -~ - = - - - op code H/F

An additional point to keep in mind in this emulation process is that the interpreter
Jogic unit and its interface with the main memory is 32 bits. The emulated machine
also has a 32 bit logic unit and memory interface. As a result, it must be kept in mind
which half of the word (instruction and data) is being processed and also if a full word
instruction is being processed whether the entire instruction has been received.

91

[ENPFIET

&P a g e

FORTTO ARV



DESIGNATES
CRO INSTRUCTION . .
\ INCREMENT @ ODD/EVEN
@ " ADDRESS
@ PCTR
- BR1
@ OP CODE
@ FETCH = A
INSTR, 1
[ LOAD AMPCR
W. OP CODE PTR,
@ LOAD SHIFT BASE ADDA
AMT, FOR INSTR. —
FORMAT INTERPRETATION
_ ADD OP CODE
@ TO AMPCR
: & SAVE IN MIR
ODI/EVEN MODIFY T
ADDRESS SHIFT @
AMOUNT FETCH OP CODE
ROUTINE POINTER
TRANSEER TO
@ ROUTINE
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e B UL
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e

T AT R Lon Rt b RN, 828 A S SO

PCTR+1 = pCTR | (19

MODIFY
SHIFT PCTR +1 38
AMOUNT new |8

FETCH REMAINDER
OF INSTRUCTION @

o

ZERO BIT 6 OF INSTRUCTION,
OF CODE —a= A3

8

LOAD AMPCR WITH
OP CCDE POINTER BASE
ADDRESS

OP CODE 4+ AMPCR -s= AMPCR

FETCH OP CODE ROUTINE
POINTER

TRANSFER TO ROUTINE

U

Figurc 4-16. I Fetch Routine
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Figure 4-17. Instruction Format Interpretation Routine
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Most of the IBM 4# CP instruetion set was microprogrammed. It was found that
most of the short (store, load, add, compare, ete) type of instructions take a similar
amount of time to execute. Therefore, several examples will be given below.,

The flow chart for the full word (32 bits data) add instruction using a 1/2 word
{16 bits) instruction format is shown in Figure 4-18 and the corresponding microcode
is given in Table 4-9. (It is seen that the execution portion is relatively simple com-
pared to the I fetch and'l format interpretation. The 1/2 word load and full word
compure using a 1/2 word instruction format are given in Figures 1-19 and 4-20 and
Tables t-10 amnd £1-11, A flow chart for the multiply routine is given in Figure 4-21,
The microcoding for this routine is not given since it is identical to that given by
Burroughs in Reference 1. These instructions were branched to the I execution phase
from the I format interpretation routine as shown in Figure {-17, Most of the short
format instructions are exccuted in this manner, iHowcever, some are entered directly
from the I fetch routine, such as the shift instructions. It is expected that a similar
amonnt of total time will also be required by these instructions.

A flow chart for a full word format instruction is shown in Figure 1-22. The
particular instruction is a 1/2 word add with the microcoding given in Table 4-12,
This flow chart is entered directly from I fetch and therefore includes the I format
interpretation and execution. At this point in time it is not certain whether each full
word format instruction will have its own { format and execution routine or whether
i common [ format interpretation routine can be used as for the 1/2 word format
instructions,

FETCH
OPERAND

!

B+ A2~ A2

¥

TRANSFER
TO i FETCH
ROUTINE

Figure -1-18, Full Word Add Instruction Execution
(1/2 Word Instruction Format)
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Table 4-9. Microcode for Full Word Add Instruction Execution

Microinstr Microcode Comments
' 1 Ext Op uncond, MR2
é ‘o 2 Type 2, Load AMPCR With jump address to
; 1 fetch
g
3 E 3; 3 LU cond, SC = RDC, SC = 0 then
y : wait, BEX
BT 4 LU uncond, A2 — A, BTTT — B,
7 €= Add A&D, BSW — A2,
1 Successor = Jump
 F
E
o
P
: 1,4 FETCH
P OPERAND
B :
2,5,6,1 ALIGN
! OPERAND
- ; . 57 B®A2
20 3,5,7 | TRANSFER
TO 1 FETCH
ROUTINE
L

Figure 4-19. Half Word Load Instruction Execution
(1/2 Word Instruction Format)
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RETURN

TO
{ FETCi!

RETURN
TO
1 FETCH

Figure 4-20. Compare Full Word Instruction Execution
{1/2 Word Instruction Format)
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Table 4-10. Microcode for 1/2 Word Load Exccution

Add A&B, BSW — A1,
Successor = Jump

Microinstr Microcode Comments
1 Ext Op uncond, MR2
2 Type 2, Load SAR with 16
3 Type 2, Load AMPCR With jump address to
1 fet=h
4 1.U cond, SC = RDC, SC =0
then wait, BEX
5 LU cond, SC = LC1, Left Shift B,
BSW -~ A2, SC =1 then jumg
otherwise step
6 LU uncond, Right Shift B, BSW — B
7 LU uncond, Left Shift B,
BSW — A2, Successor jump
Table 4-11, Microcode for Compare Full Word Execution
Microinstr Microcode Comments
Ext Op uncond, MR2
2 Type 2, Load AMPCR With jump adavess to I fetch
LU cond, SC = RDC, SC = 0 then wuit,
BEX o
4 34U uncond, A2 -- A, BTTT -~ B,
SUB A&B
5 LU cond, SC = LET, SC = 1 then step,
SC = 0 then jump, A1 — A, B100 — B,
Add A&B, BSW — Al
6 LU uncond, A2 — A, BTTf — B,
SUB A& (B-1)
7 LU cond, SC = LST, £C = ¢ tien jump,
Al —~ A, B100 — B, Add A & B,
BSW — Al
8 LU ancond, A1 — A, B 100 — B,
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SHIFT B ) MULTIPLICAND
BY ! TO B AND
: CIRCULAR SMIFT § 7
SET . .
DIFFERENT -1 - l 1 ;
? i
1 * AVG. OF T
No | 2.5 '
PLACK 188 PER BIT :
OF B INTO :
MSB OF A3 Lo
MULTIPLICAND P
.0, SN : :
3 MICAOS — A2 :
Y INCREMENT L
. CTR .
LOAD CTR,
LI, BAR
| ' MO cov
?
— , _ Tus ‘
RIGHT ST T
MULIPLIER A ]
BY | SET MSB - 1
l :
[ 2 MICROS
3ET MED =0

STORE
AY@Q) IN
MEMORY

-
g

RETURN TO
I FETCH

()

Figure 4-21. Multiply Full Word Execution
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The flow charts given above enable the total instruction execution times to be
calculated in interpreter clocks and time for memory responses., It was assumed that
the interpreter clock was 0,25 psec (1 MHz) as in the present design. The memory
response time was ealculated based on the SWI timing analysis presented in Section4.3.1,
The memory cycle times assumed were 0,5 psec read cycle and 0.8 usec write cycle
which is compatible with the 2-mil plated wire memory technology tc be used in the
packaging characteristics portion of this study. The total memory read time including
SWI delays is therefore 1.0 usec. This assumes no added delays due to priority
resclution in a multiprocessor configuration, The degradation factors due to multi-
processor configurations will be considered separately. '

The timing results for the short format instructions are summarized in Table 4-13.
It is seen that the times are variable and depend on factors such as whether addressing
is relative to the program counter (the Al register) or to one of the index registers
{(stored in memory), whether the operand address is even or odd, etc. A listing of
typical short format instruction times is given in Table 1-14, It is estimated that the
average short (add, load, store, etc) type of instruction will take 11 usec and the
multiply will take 32,75 psec. These are complete times and include, I fetch,
1 interpretation, operand feteh, and I execution,

Table ~1;13. Instruction Execution Times in psec for
Short Format Instructions

Function Addressing Relative to
P Ctr Index Rleg
| FETCH ' 3.75 - 3.75
I Format Interpretation . 4.75 5.75
Subtotal 8. 50- 9.50
I__!ZX ECUTION
1. Full Word add, Figure 4-13 1. 75 1.75
2. 1/2 Word load, Figure 1-19
a, Even address 2.25 2.25
h., (xd address 1.75 1.75
3. Full Word compare, Figure 4-20 2.,00-2.75 2,00-2.75
t. Multiply, Figure 4-:1 average 23.175 23.175
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Table 4-14. ‘Typical Execution Times for 1/2 Word Format instructions

. Time
Instruction psec
Add 10,25 - 11,25
Add 1/2 10,50 - 12
Compare 10.50 - 12.25
Compare 1/2 11.00 - 13,00
Load 10,25 ~ 11,25
Load 1/2 10.25 - 11.75
Store 10.25 - 11.25
Store 1/2 10.25 - 11,75
Sub 10.25 ~ 11,25
Sub 1/2 10.50 - 12,00
AND 10.25 -~ 11.25
OR 10,25 - 11.25
EXCL OR 10.25 - 11.25
Multiply 32,25 « 38.25
Average Short Instr 11,00 usec
Average Multiply 32,175 psec

The 1/2 word add instruction using a full word instruction fermat (Figure 4-22)
took the following times:

1. No indirect, odd operand and instruction address - 7.75 psec
2. No indirect, even operand and instruction address - 8.75 usec
3. Indirect, even operand and instruction address — 10.50 usec

The complete instructiun time, as seen, ranged from 7.75 to 10.50 psec. A similar
range is expected for other short type of instructions by extrapolating from the experi-
ence in Table 4-14, Based on experience in the FB-111A/F~111D avionics system it

is expected that very few instructions will use the indirect addressing format (3 percent
from statistics on the referenced system). Therefore the following average times are
expected for instructions using the fuil word (32 bit) instruction format:

1. Short (add, load, store, etc) - 8.75 psec

2, Multiply - 30 psec
109
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At this point, an estimate of the interpreter's throughput capability can be made,
when operating in an emulation mode for the IBM 47 CP avionics computer, An
instruction mix representing various types of operations derived from the FB-111A/
F~1111) avionics system will be used to derive the throughput in operations per second.

As stated in Section 2 the percentage of long and short instructions expected is
30 percent and 70 percent respectively, This leads to the following average instruction
times:

timeg, . (add, store, load, etc) = 0.7 (11) + 0.3 (8.75) = 10.3 psec

timeMPY = 0.7 (32.75) + 0.3 (30) = 32 psec

The relative frequency of occurrence of the various types of cperations is given in
Table 2-3 and shows 89 percent are short type (add, load, store, logical, branch, ete)
and 11 percent are long type (MPY, divide). This leads to the following throughput in
operations per second

it

t

avg 10,3 x 0.89 +32 x 0,11 = 12,48 psec

throughput = 10%/12.68 = 79,000 operations/second

The other aspect of the interpreter that needs to be considered in the emulation
mode of operation is the size of the MPM and NM. The following approximations were
made to arrive at these sizes.

1. MPM
a. I fetch—23 micros + 1 x 65 op codes = 88

b. Short Instr format Interpretation — 31 micros + 1 x 17 op codes = 48
c. Short Instr execution — 7 micros (avg) x 17 op codes = 119

d. Short Instr execution (not using I format interpretation) — 30 micros (avg)

x 8 op codes = 240
e. Long Instr format interpretation and exccution — 25 micros (avg)
x 29 op codes = 725
Total = 1220
A rough estimate indicated that approximately 784 of these are Type 1
microinstructions, If it is assumed that half of these are common,
then:
Total = 392
4.4,3 Emulation Optimized with Macros

It is obvious, when considering the above data in Section 4.2, that there is a
significant overhead in the I fetch and I format interpretation of every instruction.
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This is one of the reasons for considering macros that optimize the interpreter to the
application. Macros can perform more complex aperations in a single instruction
thereby eliminating a significant overhead that goes along with every instruction in
Section 4. 2. :

Two types of macros were considered to optimize the emulation presented in
Section 4.2, Data was available on each thereby offering an estimate of the quantitative
improvement from the use of macros. The first type of macro was placing conventional
subroutines such as sine, arc tan, etc in MPM and using a single macroinstruction to
execute each. The other type of macro was specialized complex instruntions that
could replace sequences of code.

The first type of macro considered, conventional subroutines, was based on
statistics from the FB-111A/F~111D avionics system. The data from this system
showed that approximately 44 percent of execution time was spent in subroutines,
Further most of this time was due to ten subroutines:

1. Sine Cosine

2. Square Root

3. Bin dec/Bin dec half
4. Arc tan/Arc tan half
5, Euler, Euler Cy

6. Limit

7. Pcostart

8. Root Sum Square
9. Synchro
10. Matrix3 x3, Matrix3x3 T

Some of these subroutines were examined to determine the throughput improvement
by placing them as macros in the MPM, It was found that in most cases a throughput
improvement factor of two resulted, i.e. it took half as long to execute the subroutine.
For example, in the conventional subrouiine manner, the subroutine for sine and cosine
would have taken ~580 usec; however as a ma<ro it took 261 psec. It was also noted
that the principal limiting factor in this impro/ement was the speed of multiply. Inthe
261 psec for the sine macro, 85 percent of this time was spent in multiply. The same
points hold true for most of the other subroutines converted into macros. Therefore,
if the subroutines are converted into macros, the speed requirements of the avionics
system can be reduced by 22 percent (1/2 of 44 percent). It should also be noted that
this does not have any significant impact on the main storage requirements.
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they are placed in MPM,

The other type of macro considered was converted sequences of conventional

instructions intc a single macro. A recent study conducted by Autonetics (Ref 14)
considered the use of maeros for an advanced tactical missile inertial guidance system.
Extensive statistics were gathered i this study and many are applicable to the avionics
application under consideration hece.

In the referenced study mwny macros were considered, In addition to the

conventional subroutines already considered above, the fonowmg macros along with
the percent of time spent in them were noted:

Macro % Execution Time Used by
VXSC - Vector x Scalar 11%
VADZ — Vector Add (1 x3) 5.5%
V8U3 — Vector Sub (1 x 3) 6%
VXFR — Transfer Vector in memory 1%
Matrix Multiply 1x3x3x 1 8%
Matrix Multiply 2x3x3x 1 %
38-1/2%

In the vector add and vecto: subtract a significant improvement should be realized if
The others will be limited by the speed of multiply, however,
even here there will be at least a 1/3 improvement since the I fetch and interpretation
are eliminated. Therefore a factor of two is again a good approximation for the
throughput improvement due to these types of macros. This will give a 19 percent
reduction in the speed requirements.

Considering the combined effects of the two types of macros; the first type has

effected -1 percent of the required throughput, there then remains 56 percent that can
be improved with the second type of macro. If this 56 percent can be reduced by 19
percent, this gives a net reduction of 11 percent for the second type of macro. The
net effect for the two types of macros can be summarized as follows:

Type of Macro Throughput Requirements Reduction
Subroutine 22%
Complex instruction : 11%

Net Effect 33%

The net effect of macros can then be expressed in either of two ways:

1. The throughpu. requirements are reduced by 33 percent, or

2. The throughput capability of an interpreter is increased by 50 percent and
the requirements remain the same.
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The second type of macro, complex instructions, also has an effect on the main
memory storage requirements. Many instructions are now replaced by a single
instruction. It should be noted that the first type of macro, subroutines, has no effect
on the main memory requirements. Therefore, since 38-1/2 percent of the operations
per second are effected by the complex instruction macros, an estimate of the instruc-
tions effected by these macros can be made, I i is assumed that these effected
operations per sccond actually represent 1/2 of the total instructions (allowing for the
fact that many will be in high iteration rate loops), then 19, 25 percent of the instructions
are ccaverted into complex macros. It is estimated, considering the complexity of the
macros, that each complex macro will replace approximately five instructions giving
an effective reduction of 80 percent to the 19,25 percent of the total instructions. This
gives a net reduction of 15.5 percent to the total instruction requirements.

In summary the use of macros has the following effeet on the computational
requivements:

1. Speed — requirements reduced by 33 percent

2, Storage — instructions reduced by 15.5 percent

The other factor that needs Lo be considered in the emulation mode optimized
with macros, is the additional MPM and NM required. The subroutines and complex
macros were examined and it was estimated that they would add approximately 647
words to the MPM and 324 words to the NM. This brings the total requirements to:

1. MPM - 1867 words

2. NM — 716 words
4,4.4 Multiprocessor Characteristics and Capabilities

In the previous sections the capabilities of the interpreter have been defined for
two of the possible modes of operation identified in Section 4. 1:

1. Emulation:
Spced - 79,000 operations/sec
2. Emulation optimized with macros for typical avionics application:

Speed — requirements reduced by 33 percent cr define capability as
119, 000 operations/sec

Storage — requirements for instruction storage reduced by 15.5 percent

These capabilities are based upon emulation of a conventiona] state of the art avionics
computer such as the IBM 4r CP,

113




St e

The capabilities of the Burroughs multiprocessor as defined above hold true for
a single interpreter. More interpreters may be added, thereby increasing the through-
put capability of the multiprocessor. however due to conflicts of interpreters accessing
memory in multiprocessor configurations, the increase in throughput is not simply the
sum of the individual interpreters throughput which could be defined as an ideal multi-
processor. A multiprocessor degradation factor can be defined as one minus the
effective throughput divided by the ideal multiprocessor througput (percent degradation
compared to ideal case). The degradation [actor can be expected to increase as more
interpreters are added. This factor is very difficult to speeify. It depends on a number
of parameters such as the type of executive vtilized, the effort put into (and the resultant
cost of) programming for a multiprocessor environmwent, the characteristics of the
problem being run, and the particular data the prohle:n is being used on.

Little information is available on the degradatior: factors in multiprocessing
systems and any infoermation available is very applicetion dependent. Therefore for
lack of any better information the following table of degradstion factors will be assumed
as shown in Table 1-15,

Table 1-15, DMultiprocessor Capability

Total

Number of Degradation Relative Throughput
Interpreters Factor Throughput (ops/sec)

1 0 1.00 79,000/119, 000

2 0.10 1.80 142,500/213, 750

3 0.20 2.40 190, 000/285, 000

4 0.25 3.00 237, 000/355, 500

5 0.30 3.50 2717,000/415, 500

RO B . .

L2

Another consideration, in defining multipracessor configurations, is the relative
number of interpreters to memory modules. i general, the number of memory
modules should be equal to or greater than iie number of interpreter modules otherwise
conflicts in access to memory will increaz« and the degradation factor will increase.
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5. CONFIGURATION DEFINITION

PRI

5.1 CENTRAL VS LOCAL PROCESSING ALLOCATION
5.1.1 Introduction

The objective of this portion of the study was to specify the recommended
: allocation of the processing tasks, The tasks were considered either allocated to
i, a central processor or to local processors associated with the subsystems. The
processing requirements were defined in Section 2 in summary form, i.e,, the
requirements for each major function were given, The requirements used in the
processing allocation were at a lower level; the requirements of individuai tasks
within a major function were used. These task requirements are contained in detail
. in Appendix A, Further, in using these task requirements a number of assumptions
: had to be made regarding overhead functions such as executive. input/output,

e syvnchronization, test, etc. The following estimates were made for these overhead
factors:
Local Processing Central Processing
SPEED:

Add to Basic Requirements*: Add to Basic Requirements*: .
7 percent for executive, - 20 percent for executive. :
15 percent for svnc: 30 percent spare
communication/test, 50 percent
spare

. STORAGE;
Add to Basic Requirements  : Add to Basic Requirements**:
30 percent for a short/long 30 percent for a short/long
instruction format, 7 percent instruction format, 15 percent
for executive, 15 percent for for executive, 50 percent spare

, sync/communication/test,
{ 30 percent spare

. *: Operations/sec represent a mix of instruction types as specified in Table 2-3,
HE **: Assuming requirements are independent of word length as explained in Section 2. 2.

It should be noted that these overhead factors are only approximations at this point in
time and are included to arrive at a realistic sizing of the local and cential processors.
The 50 percent spare is a requirement as specified in Section 2. 2.

The sizing of the local and central processors will be performed using the
capabilities defined in Section 4.4. The mode of operation will be assumed to be
emulation optimized by macros, Table 4-15 defines the throughput capability for a
3 multiprocessor with up to five interpreters. The throughput capability in operations
per second represents a mix of instruction types as defined in Table 2-3. As noted

in Section 4, 4, with this mode of operation, the storage requirements for instructions
should be reduced by 15,5 percent.
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5.1,2 Candidate Allocations 1

The processing requirements specified in Section 2 were defined based upon
central processing, These requirements were analyzed to determine which could be
performed in local processors, The processing requirements consist of ten major
functions. Five functions were found to be amenable to local processing; namely,
Navigation, Steering, Target/Checkpoint Acquisition, Weapon Delivery, aud Penetra-
tion Aids, The remaining five were not suitable for local processing for a variety of
reasons, Terrain Following/Avoidance and Mission and Traffic Control are growth
functions and are presently not included in the digital processing requirements,
Mission Data Management and Central Integrated Test are functions that involve
processing of data for all other major functions and all the subsystems; as a result,
‘these functions cannot be efficiently allocated to local processors. The Executive
function is an overhead functicn that is required to one degree or another in all the
processors,

Each of the five functions is comprised of various tasks as defined in Appendix A,
The functions were analyzed to determine tasks within each function that could he
allocated to local processing, Some of the factors considered in arriving at task
allocations were:

1. The I/O rate and number of 1/0 signals of a particular task with other
tasks within the same function, with other functions, and with the
hardware items associated with each subsvstem,

2, °The prerequisite tasks required to be executed before the allocated task
is executed.

3. The number and type of hardware items interfaced with the allocated
task. '

Due to the large number of tasks within each function, it is not possible to
examine all possible combinations of tasks within a function allocated to local
processors, Based upon the factors noted above, each function was analvzed to
define reasonable candidates for allocation to local processors. The results are
presented in Tables 5-1 through 5-10, and Figures 5-1 through 5-5. For each
function there is a table that defines the candidate allocations considered for
analysis, a table that presents the processing requirements for each candidate, and
a figure that graphically presents the processing requirements (the processing
requirements. speed and storage, are for the local processor),

As an example, Table 5-1 defines eight candidate allocations for local
processing for the Navigation function. The numbers 1.1, 1,4 etc., in this table
refer to the numbering system adapted in the requirements analysis description
in Appendix A; 1.1 ig the task IMU Contrel-Fast, 1.1 is the task IMU Control-Filter,
ete,

Table 5-2 defines the local processor speed and storage, the [/0O rate and number
of signals between the subsystem (including the local processor, if any) and the central
processor, and any pertinent considerations in a remarks column., The speed is
specified in operations/second, and represeris a mix of instructions (add, multiply, a
etc.) as specified in Table 2-3, and as used in deriving the throughput capability of
an interpreter in Section 4.1, The storage is specified in numbér of 16 bit words. In
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Table 5-1, Navigation Processing Aliocation

r_ CANDIDATES:
Number Tasks in Local Processor
1. Non_e
2. 1.1 IMU Contro! ~ Fast
. 3, 1.2 ~ IMU Control - Mid
4, 1.1, 1.2, 1,3, 1.4 Al IMU Subtasks
8, 1.1, 1.3, 1.4 iMU Control - Fast,
- Slow,
- Filter
G. 1.1 through 1,12 All IMU, Gxd. Align.,
and Nav Subtasks
except Nav-Filter
7. 1.1 through 1,13 All IMU, Grd. Align.,
and Nav Subtasks
8, All

this part of the processing allocation analysis, the 15,5 percent reduction in
number of instructions required is not taken into account, overall, thic typically is
11 percent since the storage is typically represented by 73 percent insiructions and
27 percent data. The 1/0 rate specifies the number of 16 hit words/sec transmitted
between the central processor and the subsystem (including any local processors),
Figure 5-1 simply contains a graphical represeniation of Table 5-2.

5.1.3 Recommended Allocation

In general, the ultimate criteria upon which allocation decisions are based are
factors such as cost, reliability, and physical parameters such as size and weight,
This assumes that whatever is being traded off meeis performance rcguirements or
goals, There are many items which directly affect the above factors, The items
which are ccnsidered pertinent to this allocation analysis are listed below:

1. The data rates on the 1/0 data bus

2, The management and technical interface between subsyvsiems and
the central processor

3. The impact of design changes
4. Subsystem reliability

5. The processing load
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Table 5-2. Navigation Function Allocation Requirements

I/0 Rate
Local Local |Subsystem* | 1/0 Signals
Processor Processor ~Central | Subsystem-
Candidate Speed Storage Processor Central
llocation (ops/sec) (Words) | (worde/sec)| Processor Remarks

1 - - 3,104 235

2 33,337 1,036 2,928 263 Only interfaces
with IMU's

3 69, 652 2,079 2,318 270 1.2 is a pre-~
requisite to 1.5

4 104,913 3,669 2,270 196 1.2 prerequisite
to 1.5; 1,4
prerequisite
to 1.7

5 35,261 2,502 2,870 193 Only interfaces
with IMU's

6 231, 897 2,010 3,388 516 1.7 prerequisite
to 1,15

7 243, 100 30,337 3,266 362

8 243, 100 32,312 2,866 246

*Includes any local processors

Table 5-3. Steering Processing Aliocation

2,1, 2,6

CANDIDATES:

2.1, 2.2, 2.5, 2.6, 2.7, 2,10

2.3, 2.4, 2.8, 2.9

Subtasks in Local Processor

ey

None

Luteral Steering - Fast

All of Lateral Stearing

All of Pitch Steeriigc

All
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Table 5-4. Steering Function Allocation Require.neris

1/0 Rate
Local Local Subsystem- | 1/0 Signals
Processor Processor| Central Subsystem- ' Remarks
Candidate Speed Storage | Processor | Cent‘ral
Allocation | {ops/sec) {words) |(words/sec) | Processor
1 - - 448 10
2 2,200 800 614 66
3 24,420 5,120 862 142 1.11 is pre-
requisite to
this allocatfon
4 3,709 2,864 580 50 2.1 and 2.2 sre
] prerequisites to
this allocation
5 28,120 7,472 794 152

Table 5-5, Target/Checkpoint Acquisition Processing Allocation

CANDIDATES:
E\'umber
1,
2. 3.1, 3.2, 3.6
3. 3.2, 3.6
4, 3.3
5.

Subtasks in Local Processor

None

Cursor Control,
FLR Control,
Allitude Calib,

I.R Control,
Altitnde Calib,

FV'S Control

All
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Table 5-6, Target/Checkpoint Acquisition Allocation Requirements ?:
I/0 Rate ,
Local Local Subsystem- 1/0 Signals i
Processor | Processor Central Subsystem- i
- |Candidate Speed Storage Processor Central
Allocation {ops/sec) (words) | (words/sec) Processor Remarks ; %
H - - 1142 13 v
2 44,622 1964 2356 130 1.8 and 3,5 are il
\ prerequisites to 2
\ this allocation,
: 3.2 is a pre-
requisite to
3.3, and 3,6 is
2 prerequisite
to 3.7, only =
interfaces with o
FLR
3 12,254 1,340 2260 75 3.1 and 3.5 are
prerequisites to
] this allocation
i 4 | 30,784 908 1634 70 3.2 is pre- P
requisite to i
i this allocation
; 3 107,004 1,207 2974 202 1.8, 1.9, and y
\ 1.11 are pre- :
! requisites to
! i this allocation

Table 5-7. Weapon Delivery Processing Allocation

] CANDIDATES;
Number Subtasks in Local Processor
1. None
2, 1.1, 4,2, 4.8, 1.4 Bomb Release o
Level Deliv, - Fast and Slow ! ]
Drogue Deliv,
ioi
3, 4.1, 4.3, 4.4 Bomb Release, ‘ l
Level Deliv, - Slow,
: Drogue Dellv,
!
4, 4,7, 1.8, 1.9 All of SRAM Delivery
5. All
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Table 5-8, Weapon Delivery Allocation Requirements

i
!

1/0 Rate
Local Local Subsystem~ | 1/0 Signals
Processor | Processor Central Subsystem-~
Candidate Speed Storage Processor Ceniral
Allocation | (ops/sec) {(words) (words/sec) Processor Remarks
- - 5952 1715
2 84,841 6,464 6926 1802 3.1 is a pre~
requisite to
this allocation,)
only interfaces
with SLU
3 46,361 . 5,024 6453 1768 4,2 is a pre-
requisite to
this allocation
4 43,475 11,012 412 100 1.8, 1,12,
5.11 are pre-
requisites to
this allocation
5 153,994 25, 100 945 85
Table 5-9. Penetration Aids Processing Aliocation
CANDIDATES:
Number Subtasks in Local Processor
1. None
2, 5,1 Identify IR Threat
3, 5.1, 5.2 Identify IR Threat,
IR Track File Proc,
4, 5.3 RF Known Emitter Sort
- 5, 5.3, 5.4 RF Emitter Sort,
RYF Characteristics
6. 5.3 through 5.7, 5.14 All RF Processing
7. 5.9, 5,10, 5,11 All CM Processing
8. 5.12, 5,13 All TSD Command Proc.
8. 5.3 through 5,7, All RF Proc, and All
5,12 through 5,14 TSD Command Proc,
10. All

T




Table 5-10. Penetration Aids Allocation Requirements

1/O Rate
Local Local Subsystem- | I/O Signals
Processor | Processor | Central Subsystem-
Candidate Speed Storage Processor Central
Allocation (ops/sec) (words) | (words/sec)| Processor Remarks

1 - - 16,320 969

3 93, 950 4,832 19,048 1086 1. 8 is prerequisite
to this allocation

3 127,132 8,672 18,0668 1058

" S 37, 888 9,152 6,912 384 1.9 is prerequisite
to this allocation

3 52,096 11,072 6, 144 340

G 175,734 36,492 10, 622 678

7 37, 888 6,752 16,224 991 5.4 is prerequisite
to this allocation

8 19,536 6,272 16, 188 1004 5.11 and 1,12 are
prerequisites to
this allocation

9 193,270 12,292 8, 646 a37 1.9, 1,12, and
5.11 are pre-
requisites to this
allocation

10 407, 666 61,637 7.519 293
122
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Figure 5-4. Function 4 - Weapon Delivery
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In a system design study these items may be quantitatively related through
suitable mathematical expressions to system design decision criiceria, e.g., cost and
reliability. Such an effort must encompass the entire sysiem vhich in this case would
be the entire air vehicle, This type of effort is hevond the scope of this study, The
justification and rationale for considering the above items as quantitative measures for
the central versus local processing allocation in this study is given below,

Item 1 is measured directly by the 1/0 data rate between the subsystem
(including any local processors) and the central processor, This item affects the
complexity of the information transfer system and hence its cost, On the other hand,
if an information transfer system exists with a certain capability, then a reduction in
data rate with a fixed capability provides increased spare, growth, and provision for
more redundancy ani error checking,

Item 2 is difficult to measure, It involves the complexity in implementing the
interface hetween a subsystem and the central processor, This complexity can be
measured by the number of signals. or items of information required to he transferred,
since each signal requires documentation, testing. validation, design interface between
different manufacturers. etc. However, it should be noted that this is definitely not an

absolute measure since many other factors. regarding the type and nature of the signals,

also nced to be considered. Some of these factors are any critical timing or
synchronization required in the interface, e.g.. signals may be required at precise
intervals of time. signals mayv require the precise synchronization of other events to
reception of these signals, ete. These type of factors are difficult to quantifv at this
point for the ailocation analvsis. Nevertheless, they must be kept in mind when
comparing strictly the number of signals in an interface,

item 3 is a difficult factor to quantifv. However, it should be apparent that a
design change, that only affects a local processor, which has a simpler program than
the central processor, will have a lower cost impact than if the loeal processing
functions were in the central processor with the resultant design change affecting the
central processor program. This results from the fact that design changes require
increased effort as the size and complexity of the program changed increases and that
program validation and checkout increases with the size and complexity of the program
changed. Likewise hardware changes to a local processor should be simpler to handle
than to the central processor. Therefore, in general, the cost of design changes will
be reduced by utilizing local processing rather than central processing,

Item 1, subsystem reliability, can he increased in certain cases by utilizing
local processing. This may he true for subsystems that can provide autonomous
functions through a local processor in the event of central processor failure, In such
cases the reliability of the local processor and not the central processor enters into
the successful performance of such functions, The reliability of the local processor
in these cases may be required to be greater than the central processor. A typical
example of this situation is the provision of local processing with an IMU to provide
autonomous ravigation capabhility in the event of central processor failure (such as the
F-111 avionics system).
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Item 5, the processing losd, on the central processor determines the complexity,
feasibility and technical risk involved in meeting the requirements, 1f the processing
load is excessive, the use of local processing may reduce the load on the central
processor, reducing its complexity and in some cases making it feasible at a reasonable
technical risk, In this system, the speed capahility of the interpreter is a limiting
factor in meeting the system requirements, storage requiremenis do not appear as a
limiting factor on the interpreter. Therefore, an important consideration is the use
of local processing to reduce the speed requirements » the central processor,

In summary, the following items are desired fo be accomplished in performing
the local vs central processing tradeoff:

1. Reduce the data rates on the 1/0 data bus,
2. Reduce the management and technical interfaces between subsystems,

3. Reduce the cost of design changes through minimization of impact
on the system of such changes,

4. Increase system reliability.

5. Reduce the central processor load to minimize the central processor
complexity,

Quantitative data on Items 1, 2 and 5 was prepared for each of the candidate
processing allocations, Items 3 and 4 are difficult to measure at this point in time,
These factors may be measured when the ASB system design is specified in more detail,

The relative importance of all the tradeoff factors is what ultimately leads one
to a decision on allocation; this is extremely difficult to specify quantitativelv. It is
normally accomplished after cost and technology parameters are specified for the
complete system. Thus far in this study, with the knowledge of the vrocessing
requirements and the preliminary estimate of the interpreter's capability, it is
apparent that llem 5 is very important if not critical to the successful implementation
of the system. It is therefore highly desirable to place as much of the processing
speed load in local processors as possible, It is also desirable to perform this while
reducing the complexity of the interface hetween the subsystem and the central processor.

Table 5-2 and Figure 5-1 gives the quantitative data on the navigation function
candidate allocations. Examination of this data and evaluating the relative interface
reduction and speed reduction shows that three candidates should be examined more
closely, Candidates 4, 5, and 8. The following observations are noted regarding the
interface:

1. Candidate 4 - All IMU tasks done locally

a. Reduces 1/0 signals from 235 to 196 (almost minimum)

b. Reduces 1/0 rate from 3, 104 to 2, 272 (minimum)

¢. No prerequisites to these tasks, they are prerequisites only
to tasks in ground align mode

d, Interfaces with the two IMU's and the two FDC's
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2. Candidate 5 - All IMU tasks except IMU Control - Mid done locally

a. Reduces {/0 signals from 235 to 193 (minimum)
b. Reduces /0 rate slightly, 3,104 to 2,570

¢. Same prerequisites ag in Candidate 4

d. Only interface is with the two IMU's

3. Candidate 8 - Entire navigation function done locally

a. Slight increase in 1/0 signals from 235 to 248
b. Slight decrease in [/O rate from 3, 104 to 2,866
c. Interfaces with large number of hardware items
d. Many other functions have as prereyuisites tasks within
the navigation function; strict synchronization and timing .
of the central processor to the local processor may be required

The following observations are noted regarding the processing load:
1, Candidate 4

a, Takes approximately 105,000 ops /sec off the central processor,
would require one interpreter
h. Low storage reduction, approximately 3.5 K

3

2. Candidate 5 W

a. Low speed reduction, approximately 35,000 ops/sec
b. Low storage reduction, approximately 2.5 K

3. Candidate 8

a. Significant speed reduction, approximately 250,000 ops/sec
b, Significant storage reduction, approximately 32, 00

Candidate 4 is the reconimended allocation (all IMU tasks done locally), It
reduces the 1/0 signals almost to the minimum, minimizes the /0 rate, and takes a
considerable speed load off the central processor. Perhaps most important, but difficult
to quantify, is the simpler interface with this allocation. High rate closed loop control
computations for the IMU are performed locally. This enables a simpler selloff and
vatidation of performance when the subsystem contains the IMU control computations.
This allocation will require one interpreter and one 1K memory module*. Candidate 8
would only be recommended if a further speed reduction in the central processor is
required and this consideration outweighs the increase in interface complexity,

Table 5-4 and Figure 5-2 show the data on the candidates for the steering function
and Table 5-6 and Figure 5-3 show the data on the candidates for the Target/Checkpoint
Acquisition function. Neither of these two functions appear to have suitable candidates

*The memory modules are specified in 32-bit woird length. The requirements in the
corresponding tables are equivalent 16-bit words.
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for local processing, The 1/O rate, 1/0 signals, and intexface complexity are
increased Yor all candidates over central processing. The steering function offers
very little speed reduction, The Target/Checkpoint Acquisition function offers a
considerable speed reduction (approximately 107, 000 ops/sec) if all of it is doune
locally, however, tkis complicates the interface considerably (4 x number of 1/0
signals, 2 x 1/0 rate)., In addition, many of the tasks in both functions require the
navigation function as prerequisites. The recommended allocation is central
processing for these iwo functions.

¢
vt g w__g‘}'_‘i"x"-‘ﬂ"i;’z“f’fi"ﬁ:

. 9 Table 5-8 and I'igure 5-1 show the data on the candidates for the Weapon
v Delivery function. Examination of the five candidates and evaluating their relative
A interface complexity and speed reduction indicates that two should be examined
, SR closely, namely 4 and 5. The following observations are noted on these candidates:

g4

RPN PR,

1. Candidate 4 - All of SRAM delivery tasks

i a, Significant reduction in 1/0 rate from 5,952 to 412 (minimal)
b. Significant reduction in 1/0 signals from 1,715 to 100 (almost
B - minimal)
¢, Some speed reduction on central processor, approximately
43,000 ops/sec

. d. Some storage reduction, approximately 11,000
.~ e. Some Navigation and Penetration Aids functions are

-5 s prerequisite to these tasks

;:.: E 2, Capdidate 5 - All of Weapon Delivery Function

a, Significant reduction in 1/0 rate from 5, 952 to 945
. b, Significant reduction in 1/0 signals from 1, 713 to 83 (minimal)
¢. Considerable speed reduction, approximately 154,000 ops/sec
d, Some Navigation, Penetration Aids, and Tarpet: Checkpoint »
Acquisition functions are prerequisites

s The choice berween these two candidates is difficult to make, Boih offer
similar reductions in I/0 rate and number of 1/0 signals. lowever, the management

- interface is simpler with Candidate 4, all SRAM done locally, since it does not

interface directly with other functions and has a relatively simple interface with other

: tasks in the weapon delivery function, Candidate 5 does not appear to be an overly

% . complex interface either if done locally, however it is not as straightforward as {

L Candidate 4, On the othex hand, Candidate 5 offers a considerahle speed reduction :

o compared to Candidate 4. ‘Therefore, Candidate 5 would he recommended due to

@ the impnrtance of sveed reduction, however, if, upon further examination of the

h central processor complexity, Candidate 5 can be reasonably placed in the central

‘e processor, then Candidate 4 would be the preierred choice. Candidate 4 will require
one interpreter and one 8K memory mudule and Candidate 5 will require two interpreters

. and {wo 8K memory modules,

i Ao s wire et

e

Table 3-10 and Figure 5-5 show the duta on the candidates for the Penetraticn Ails
function. Examination of the ten ¢andidates indicates that Candidate 16 is the hest
choice, It minimizes the 170 interface in terms of 1°0 signals, 1/0 rate (nearly

4 minimal}, and management interface complexity and also offers a significant reduction
in speed on the central processor, Hewever, this application requires a multiprocessor
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with five interpreters, the maximum allowable, It should be noted at this point that

it is desirable, in this allocation analysis, to use at the most four interpreters. This
allows one spare interpreter to be placed in 2 multiprocessor if desired. Therefore,
alternate allocations using sets of multiprocessors in A multicomputer mode were also
considered for this function,
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Four sub allocations were considered: o)

1.

Sub Allocation 1

IR tasks (5.1 and 5.2) in one multiprocessor and remaining
Penetration Aids tasks in another multiprocessor

Sub Alloecation 2

RF tasks (5.3 through 5.7, 53.14) in one multiprocessor and remaining
Penetration Aids tasks in another multiprocessor T

Sub Allocation 3

IR and TSD (Threat Situation Display) tasks (3.1, 5.2, 5.12, 3,1}
in one multiprocessor and remaining tasks, RF, CM (countermeasures),
and threat correlation in another multiprocessor.

Sub Allocation -t

IR tasks (3.1, 5.2) in one multiprocessor. RF tasks (5.3 through 5.7, 3,14
in another multiprocessor, and TSD, CM, and threat correlation (5.8
through 5, 13) in another multiprocessor,

The processing requirements and multicomputer configurations required for
each sub allocation are:

1.

Sub Allocation 1

MP (multiprocessor) 1: 134, 000 ops/sec

MP2:

9, 100 words
Two interpreters
Two 4K memory modules

295, 000 ops/sec

56, 100 words

Four Interpreters

Four 8K memory modules
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2. Sub Allocation 2

MP1; 185,000 ops/sec
38,400 words
Two Interpretere
Three 8K memory modules

MP2: 244,000 ops/sec
26, 960 words
Three Interpreters
Three 4K mentory moduies

3. Sub Allocation 3

MP1; 131,000 ops/sec
15,200 words
Two Interpreters
Two 4K memory moduies

MI2: 274, €90 ops/sec
48,300 words
Three Interpreters
Three 8K memory modules

4, WMPl: 134,000 ops/sec
9, 100 words
Two Interpreters
Two 4K memory modules

MP2: 185,000 ops/sec
38,406 words
Two Interpreters
3 8K memory modules

MI3: 194,724 ops/sec
18,400 words
One Interpreter
One 8K memory module

All of these sub allocations take a similar amount of hardware. Sub a2llocation 1
requires the moct interpreters, six comoared to five in all the other sub allocations.
Sub allocation three minimizes the amount of hardware used; however, it results in a
potentially complex management interfacc betwoen the two multiprocessors. in this
sub allocation one multiprocessor does the IR processing and the other the RF
processing. In addition, each multiprocessor does some of the processing that
requires both IR and RF processing results. If one multiprocessor were to he
programmed by one manufacturer (e.g., the RF subsystem supplier) and the oihex
by a differcnt manufacturer (e.g,, the IR subsystem supplier), the management
interface between these two suppliers would increase in this sub sllocation compared
to the other sub allocations,
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Comparing sub allocations 2 and 4, the latter requires slightly more hardware
(same number of interpreters, 4K more memory, three versus two SWI) however
it resulis in a much simpler interface between the multiprocessors, One multi-
processor is used for IR processing (MPLl), another for RI" processing (MP2), and the
other for functions that use outputs of both of these multiprocessors (MP3)., MP1 and
MP2 do not require any intercommunication, they simply interface with MP3. \MP1
and MP2 take the form of true local processors and may be considered part of the IR
and RF subsystems, respectively. In this situation the IR and RF subsystem may be
more easily sold off, tested and validated by their respective suppliers. In addition,
the reliability and redundancy requirements for MP1 and MP2 may be chosen by the
subsystem supplier to meet the requirements specified for each particular suhsvstem,
Therefore, it is felt that the slight increase in hardware complexity for sub allocation
4 will be offset by the simpler interface requirements and is the recommended
approach for the Penetration Aids function.
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At this point, specific local processing configurations have been developed
for the Navigation, \Weaporn Delivery, and Penetration Aids functions with the remaining
functions performed in the central processor. The requirements remaining on the T
central processor will now be examined. These requirements are reduced as shown ;
in Figure 5-6 (case 1) to the following:

Speed Storage
Function (obs/’sec) (words) *
1.0 Navigation 124, 800 26, 300 o
2.0 Steering 27,400 6,500
3.0 Target/Checkpoint 104, 000 1,050
Acquisition
7.0 Mission and Data 31, 600 9, 600
Management
9.0 CITS 120, 000 11,300
Total 407, 800 87,950
* 16-bit words, executive overhead distributed over all functions, 50 percent spare
capacity included,

The speed requirement requires a five interpreter multiprocessor. As 2
noted above, it is desirable to use only four interpreters functionally, thereby allowing '
a spare interpreter to be provided in a multiprocessor, In addition, there exist
some [/0 processing requirements to be added to the ahove requirements which will i
probably exceed the capability of a five interpreter multiprocessor. Therefore,
either more functions /tasks must be allocated to local processing or a multicomputer
configuration must be used for the central processor, The remainder of the Navigation
function could be allocated to local processing. This approach appears undesirable {
since it increases the interface with the subsystem and increases the management
interface hetween the navigation subsystem and the central processor. Many other
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functions have as prerequisites the tasks in the Navigaticn function, If these tasks

were performed locally, the communication and svnchronization between functions ;g
would become considerably complex if not unmanageable, L

The functions in the central processor were examined to determine if s ‘g
multicomputer configuration could be readily implemsnted. The CITS function is %

most suitable of all the functions to be placed in one multiprocessor, due to interface

complexity considerations with the remaining functions in another multiprocessor. -y
The multicomputer configuration then takes the form of two multiprocessors with the i
following requirements: o

1. Multiprocessor 1 - CITS {
126, 000 ops /sec* Ll
41,500 words

2, Multiprocessor 2 - Navigation, Steering, Target/Checkpoint P
Acquisition, Mission Data Management
302, 000 ops/sec
46,500 words

*Additional overhead is added to operate as a multicomputer.

Multiprocessor 1 requires twe interpreters and three 8K memory modules (recall i
these are 32-bit word modules) and Multiprocessor 2 requires four interpreters
and five 4 memory modules,

This is a reasonable candidate to consider for the central processor. Two
additional candidates were examined to determine if the processing load and functions ,
could be more evenly split between the two multiprocessors. The following two sub '
allocations appear as suitable candidates for equalizing the computational reguirements ‘
while maintaining a reasonahle management interface hetween the two multiprocessors:

1. Sub Allocation 1

MPi: CITS, Navigation
Three Interpreters
Four 8K memory modules

MP2: Stearing, Target/Checkpoint Acquisition, Mission Data Management o
Two Interpreters
Two 8K memoryv modules

2, Sub Allocation 2

MP1: CITS, Mission Data Management
Two Interpreters
Four 8K memory modules

MP2:  Navigation, Steering, Target/Checkpoint Acquisition : :
Three interpreters -
Three 8K memory modules

136




R o o0

P Ze o

W )

WO PRI ko

.

F g

Pt
B e A

Bopremsin

Sdrnarny

i

[,

Y,

P vt
QS

[ IR wvee Y v

Either one of these two sub allocations increase the management interface
between the two multiprocessors but it is difficult to determine if one is significantly
more complex than the other. Therefore, on the basis that it requires slightly less
hardware (one memory module), sub allocation 1 is the preferred approach.

At this point a system has been configured for the local processors and the
central processor. It is now necessary to examine the central processor configura-
tion to determine if additional capability may be easily added to it, If this is the
case, then some of the allocations made previously, that were primarily influenced
by speed capability, would have to be re-examined. Multiprocessor, MP2, in the
central processor contains two interpreters and may be easily expanded to four
interpreters thereby providing additional speed capability.

Re-examination of the processing allocations indicates that the allocation
selected for the Weapon Delivery function (complete local processing) was based
primarily on speed while the other functions were based on both a minimum interface
complexity and a speeqd reduciion. Therefore, the approach of using Candidate
Allocation Number 4 (all of SRAM delivery done locally) for weapon delivery and
thereby bringing into the central computer all the non-SRAM delivery computations
should be examined. This allocation (Cand.date 4) requires oneinterpreter and one
memory module in the weapon delivery subsystem, The resultant configuration in
the central processor then takes the following form:

1. Multiprocessor 1 - CITS, Navigation
256, 000 ops/sec
67,800 words
Three Interpreters
Four 8K memory modules

2, Multiprocessor 2 - Weapon Delivery, Steering, Target/
Checkpoint Acquisition, Mission Data Management
284, 000 ops/sec
34,000 words
Four Interpreters
Four 4K memory modules

This approach has essentially eliminated one interpreter and one memory

module at the weapon delivery local processor and added two interpreteis and memory

modules in the central processor. The interface is considerably simpler with this
approach since the weapon delivery computations that interface closely with the
navigation, steering, target/checkpoint acquisition, and mission data management

functions are now integrated in the central processor. In addition, the local processor

in the weapon delivery subsystem now interfaces primarily with the SRAM weapon
interface units and not with a variety of equipment in the weapon delivery subsystem.
Thereiore, this approach has been selected for the weapon delivery processing

allocation since it is felt the simplification of the interface will outweigh the additional

hardware added to the total system. The overall effects on the central processing
requirements of this aliocation is shown in Figure 5-6 as local processing - Case 2,

The recommended configuration for the entire system is shown in Figure 5-7
and is summarized in Table 5-11,
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Table 5-11, Final Configuration for AS3 Avionics System

Central Processor:

Multiprocessor 1 -  Three Interpreters
-~ Four 8K memories

Multiprocessor 2 -~  Four Interpreters
Four 1K memaories

Penetration Aids;

Multiprocessor 1 -  Two Interpreters
Two 4K memories

Multiprocessor 2 - Two Inierpretexrs
Three 8K memories

Multiprocessor 3 -  One Interpreter
One 8K memory

Weapon Delivery Processor:

Single Processor - One Interpreter'
One 8K memory

IMU Processor:
One Interpreter

Single Processor -~ One 4K memory

The memory modules in this configuration consist primarily of 8K modules
with some 4K modules, The 4K modules may be replaced with 8K modules, using

slightly more hardware, if one desires to maintain commonality among the memory
moduies.

It should be noted that this configuration is what is required to meet the
computational requirements, These requirements include overhead functions and
the 50 percent spare factor but exclude the 100 percent growth requirement. The
growth can be met in a variety of ways, In some cases additional interpreter

_ and/or memory modules may be added to the appropriate multiprocessor. In other

cases a multicomputer configuration may be needed by adding another multiprocessor
to ineet the growth.

The other factor that needs to be considered in an ultimate configuration is
reliability and failure tolerance. Failure tolerance characteristics of the Burroughs
Multiprocessor will be investigated in Section 5.3. However, it can e noted that in
each of the above processors additional interpreter and memory modules mav be
provided that vould provide failure tolerance, 1If mass storage can he used to provide
backup programs in the event of reconfiguration, then the addition of one interpreter
and one memory module to each of the above processors provides the ability to
withstand an interpreter or memory module failure with no degradation in performance,
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5.2 INTERFACE TO B-1 MULTIPLEX SYSTEM

grre g
Ravoninee s

5.2.1 Introduction

T

P

A definition of the B-1 multiplex system is not currently available. A recent
study by Radiation, Inc, {Ref 15) presented a study of the B-1 information transfer
requirements and the definition of a multiplex syster to solve these requirements,
This study considered the iaformation transfer requirements of tl.2 entire air
vehicle, the central computer complex was only a portion of the system., The -
recommended multiplex system as a result of this study was a multiple hus, baseband,

TDM system using a central controller. The central computer constituied one of P
many terminals connected to a bus and essentially received the same type of service
as any other subsystem terminal connecied to the bus. It is felt that this system
should not be used as the baseline inultiplex system for this study for three primary -3
reasons: (1) the approach of treating the central computer as a subsystem and using £
a central coiitroller may result in considerable problems in timing and synchroniza- )
tion between the computer and subsystems and it is felt this may be an unworkable

approach Yor a real time control central computer system such as the B-1; (2) the

status of this multiplex syvstem recommendation is unknown at this time and can only

be regarded as a paper design, (3) from what is known of the present B-1 system, the

central computer serves as the hus controller,

®

The present B-1 system is configured as shown in Figure 5-8, Twe dual
redundant huses are used that are driven hy a multiplex controller which in turn is
controlled by the central computer complex, This system concept will be used as the -
baseline for this study, however, the present multiplex controller design will not o
he assumed. The best available description of this multiplex system was found in
] Ref 16 which is the Rockwell International specification for the MIM, multiplex
interface module (Boeing is responsible for the multiplex system specification).

Pertinent extracts from the MIM specification are given helow in Section 5.2,2 that

i will provide an understanding of the way the present B-1 multiplexing system will
! function. It shouid be kept in mind that in Figure 5~8, the "multicomputer complex™
(which is presently in the B-1) corresponds to the central processor derived in this
study as shown in Figure 5-7.

5.2,2 Multiplex Interface Module and System Operation®
v 5.2,2.1 Item Definition

The multiplex interface modules (MIM's) shall provide the interfaces between

the B-1 air vehicle multiplex transmission cables and LRU electronics. MIM's shall ty

é be configured using two unique units, hereafter referred to as the multiplex interface :

e 3 unit (MIU) and the parallel interface unit(s) (PIU). The MIU and PIU shall be configured ""

A so they can be mounted and interconnected on printea circuit cards, All MIU's shall be ,
identical and interchangeable. All PIU's shall be identical and interchangeable. The ot
MIM's shall be capable of receiving/transmitting serial digital data on either of two '
transmission cables, referred to herein as the multiplex channels or the primary

*This section contains extracts from Ref 16 and does not represent material generated
under this study contract, ﬂ
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multiplex channel ard the secondary multiplex channel. (The above operation shall 7 i
be under the direetion of a controller.) The MIM's shall include transmitters- i
receivers, coupling transformers, isolation resistors, clock generators, encoders-

decoders, self-test logic, signal interface buffers, and the logic necessary to regulate -
the operation of the MIM multiplex transmission lines and LRU electronics interfaces, A
The MIM shall he capable of accepting asynchronously data from both multiplex channels, -4

and shall be able to transmit response and data words on the channel in which a valid .
command word was received, H

5.2,2,1,1 Item Diagram. The major components of the MIM and their

functional relationship will be as shown in Figure 5-9, i

5.2,2,1,2 Interface Definition

5.2.2.1.2.1 Message Format, The message format for the transfer of data
to a MIM shall consist of the following forms:

1. One command word, followed by zero to 31 data words, followed by
a response word,

2. One command word, followed by no response word (error in the
command word received by the MIN).

The message format for data requested from a MIM shall consist of the
following forms:

1. One commanded word, followed by a response word, followed by
one to 31 data words.

2. One command word, followed by no response word (error in the
command word received by the MIM).

The response word shall be generated by the MIM, The command word will
be generated by the controller. The data will he generated hy the LRU electronics.
The MIM will obtain the data from the LRU electronics and format the data into data
words and transfer them to the controller.

3.2.2,1,2,2 Word Format, (See Figure 5-10,)

%
5.2.2.1.2.2,1 Command Word, The command word shall contain the
information listed in Table 5-12,

5.2,2,1,2,2,2 Response Word. Except for the sync, the response word shall
be an echo of the command word, Therefore, the information contained in the
response word shall be identical to the information contained in the command word
that caused the MIN to respond. Refer to Tables 5~13 and 5-11. When a command
word error is detected. the MIM will not transmit a response word.

3.2,2.1,2,2,3 Data Word. The data word shall contain the information

listed in Table 3-15, L.
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Table 5-12. Command Word

1
1
T = D G, T A A e .l ‘lj

Item Bits Definition
a 1 through 3 Syne bit, Three-bit nonvalid Manchester code.
b 4 Spare (8) bit - unuseq bit, Unused bits shall be set

to logic "0."

c 5 Validity (V) bit. Logic "1": The command word is not
usable due to controller’s transmitiing equipment having
a fault condition as determined by self-test and/or
monitoring compouents in the transmiiting equipment. ;
Logic "0"" The command word meets acceptability :
i criteria of transmitting unit as determined by its self~
1 iest and/or monitoring components.

d 6 Spare (8) bit ~mused bit. Unused bit shall be set to
T logic 0. " :
N
A e 7 Spare (8) bit - unused bit, Unused bit shall be set
- to 0. "
j’f f 8 through 12 Address bits, A five-bit code that identifies the MIM

that shall respond to a given command word. Addresses
shall be assigned from 1 to 31, Address € shall be a
ws nonvalid address and a MIM shall not respond to it.

.- g 13 Transmit/receive (T/R) bit, Logic "1": Commands
addressed MIM to transfer requested data. Logic "0":
Commands addressed MIM {0 receive data and activate
.. a mode discrete

@ h 14 through 18 Data block/mode bits. A five-bit code that identifies the
LIRRU data block starting memory location or commands
the LRU into a specific mode/operation,

i 19 through 23 Number of data words. ldentifies the number of data
. words to be transmitted/received. Code 00000 shall

' be egual to one, code 00001 shall be equal to two, etc,
to code 11111 which shall be equal to 32,

j 24 Parity (P) bit. This b - shall be set to a value so that
the total number of on ; in the word is odd.




Table 5-~13,

Response Word (Valid Data Transmissgion)

Item Bits Definition

a 1 through 3 Sync., Three-bit nonvalid Manchester code,

b 4 Spare. Definition per Table 5-12,

c 5 Validity bit, Definition per Table 5-12,

d 6 Spare, Definition per Table 5-12,

e 7 Spare. Definition per Table 5-12,

f 8 through 12 Address. Definition per Table 5-12,

g 13 Transmit/receive. Definition per Table 5-12,

h 14 through 18 Data block/mode, Definition per Table 5-12,

i 19 through 2! Number of data words, Definition per Table 5-12,

j 24 Parity, Definition per Tabhle 5-12,

Table 5-14, Response Word (Invalid Data Transmission)
Item Bits Definition

a 1 through 3 Svnc hits, Three-bit nonvalid Manchester code,

b 4 Spare (S) bit - unused bit. Unused bits shall be set to
logic "0."

c 5 Validity (V) bit. Same as command word validity bit,

d 6 Spare (S) bits - unused bit, Unused bhits shali be set to
logic "0, "

e 7 Spare (S) bits - unused bit. Unused hits shall he set to
logic "0."

£ 8 through 12 Address bits, A five-bit cods-that identifies the MIM
which is responding to a command word. Under normal
operating conditions (no faults associated with the address
logic) the receive command word address and the MIM
response word address shall be identical,

g 13 Transmit/receive (T/R) bit, Logic "1'": Commands
addressed MIM to transfer requested data, lLogic "0":
Commands addressed MIM to receive data and activate
a mode discrete.

h 11 through 23 Bit denoting the type of error (TBD).

21

Parity (P) bit. This bit shall be set so that the total
number of bits is odd,
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Table 5-15. Data Word.

o e e = iy ok A

Item

Bits

Definition

h

[

1 through 3
4

934

6

-1

8 through 23

Sync hit, Three-bit nonvalid Manchsaster code,

Spare (S) bit - unused bit, Unused bits shall be
set to logic "0, " :

Validify (V) bit. Logic “1'": Data word is not usable

due to fault(s) as identified by the LLRU's or.controller's
self-test and/or monitoring componenis, (The data word
shall be transmiited even if the validity bit is a logic "1, ")
The validity bit on only those word(s) thal are affected
by a failure(s) shall be set to a logic "1," Logic "0":
Data word meets acceptability criteria as determined by
the LRU's or controller self-iest logic,

Spare bit - unused bit, Unused bit shall be set o a
logic "0."

Spare hit - unused bit, Unused bit shall be set to a
logic "0."

Data. Information generated by LRU or controller,
Information transmitted in binarv, binaryv-coded
decimal (BCD), discrete, or other reyuired forms,
Bit 23 is the least significant bit,

Parity (I?) bit, This bit shall be set to a value so that
the total nummber of ones in the word is odd.

5.2,.2,1.2.3 MIU,/PIU Interface, The MIU/PIU interface shall consist of the

signals shown in Figure 5-11.
be controlled iy the MIU.

shall be as follows:

The transfer of datn between the MJU and PIU shall

The functions and associated logic levels of the signal

5.2.2,1,2,3.1 MIU Input-PIU Output Signals,

1,

Transmit Enable, The transmit enable signal in the logic "1 state shall
enable the Manchester II encoder portion of the MIU, The encoder shall
convert to Manchester II the nonretum to zero (NRZ) data presented to
MIU by the PIU while the transmit enable is a logic "1."

Transmit Svne,

A Logic 1" pulse 250 to 500 nanoseconds wide shall be

provided to synchronize the encoder clocks and output signals, The pulse
shall precede each transmission of data to establish the data link dead time
between the commands received and the response word(s).

Nonreturn to Zero (NRZ) Data In. NRZ data presented to the MIU for
transmission on the multiplex channel,
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Figure 5-11. MIU/PIU Interface Signals
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5.2,2,1.2,3,2 MIU Output-PIU Input Signals

t. Send Data. The send data signal shall be a logic "1" during the period
the MIU is capable of accepting and encoding NRZ data in,

2. Encoder Shift Clock. The encoder shift clock shall be provided for
synchronizing the transfer of signals,

Dead Line Detect. The dead line detect signal in the logic "1 state
shall indicate the multiplex channel is activated, In the logic 0" state
it will indicate the multiplex channel is inactive,

g
>

Command Syne. A logic "1" for 21 microseconds following the receipt
of a valid command syne. :

1

5. Data Syne. A logic "1" for 21 microseconds following the receipt of §
a valid data syne,

[EN
g

2
[+
-

Take Data. A logic "1' during the fime the NRZ data out is available
from the MIU.

Lo ]
*
.

s e

- 7. Valid Word. A logic ''0" for 3.5 microseconds following the output
i of a valid word from the MIU via the NRZ data out line,

8. Valid Parity. A logic "1" for 500 plus or minus (TBD) microseconds
following the output of a word with a valid one's parity from the

e vt i it W faTn

il MITU via the NRRZ data out line,

.- 9. NRZ Out, NRZ data presented to the PIU,

i

- 5,2.2.2 Performance

It 5.2,2,2.1 MIM General Characteristics. The MIM shall continuously

in monitor both the primary and secondary channels when in the receive mode. The
MIM shall operate in the receive mode at all times except when requested to transmit

T data as indicated by the presence of a logic "1' {ransmit-receive bit of a valid

fv command word having tke applicable MIM address. After the MIM has responded,
the MIM shall switch to the received mode within 1 microsecond. The switching

oe shail be accomplished without generating transients on the multiplex channel.

5,

éa 5.2,2,2,1,1 Receive Mode. The major functions of the MIM in the receive

mode shall be as follows:
& 1. Accept the incoming signal in the specified format,
2, Decode the incoming signals using the Manchester code to derive clocking.

3. Determine the validity of the incoming words by means of its seif test
logic. '
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4, Determine the command word address is identical to the address assigned T3

to the MIM. If the address is not identical, ignore the incoming signals 2. i
until an applicable command word is received, ‘

5. Decode the command word that has an address identical to the MIM's ,§
and provide a data block starting address/mode to the LRU electronics. e

6. Transfer the incoming controller data words t{o the LIRRU electronics,

= 7. Transfer an appropriate response word to the controller after the data
2 words have been transferred tc the LRU electronics,

5.2.2,2,1,2 Transmit Mode, The major function of the MIM in the transmit
l mode shall be as follows:

1, Accept the incoming signals in the specified format,
2, Decode the incoming signal using the Manchester code to derive clocking,

3. Determine the validity of the incoming command word by means of self-
. test logic.

4. Determine if the command word address is identical to the address .
: assigned to the MIM, If the address is not identical, ignore the incoming
by signals until an applicable command word is received,

5. Decode the command word that has an address identical to the MIM's
E and provide a data block starting address to the LRU electronics for the
e transfer of duta from the LRU to the MIM.

R 6., Transmit an appropriate response word to the controller.

7. Receive the number of data words specified by the command word from
the LRU electronics,

8, Transmit the incoming LRU data words to the controller,

_ 5.2,2,2.1.3 Response to Command \Word, The MIM response to an applicable
. command word shall be a function of the command word and the MIM/LRU self-test
X logic:

1. The command word's number of words code shall specify the number i
of words to be transmitted/received. -~

TR D

2. The command word's transmit/receive (T/R) bit shall specify whether
the MIM shall collect data words from the LRU electronics or transmit
incoming data words to the LRU electronics.

3. The command words data block/mode code shall specify the location of the
. : first word to be transmitted/received by the LIRU electronics or command
2 l , the LRU into specific mode/operation.
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4. The logic state of command word bit 5, the T/R bit, and the MIM self-test

logic shall determine the MIM operation in order to form the required
message,

e

R
e

5.2.2,2,2 Multiplex Interface Unit (MIU) Characteristics

s

Fhareq
L

5.2,2.2,2.1 General, The MI1U shall consist of a transmitter, detector, ;
transmitter switch, sync generator, Manchester encoder, command and data word :
identification logic, Manchester decoder, data validation logic, parity generator,
and miscellaneous logic to control operation. The MIU shall have the capability
of generating command syncs as well as data syncs.
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5.2,2,2,2,2 Transmitter Switch, The MIU shall include a transmitter
switch, The transmitter switch shall isolate the transmiiter from the multiplex :
channel during the nontransmitting mode of operation, f

PG IR R R E AN YRR
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5.2.2,2,2,3 Syne Field Generator, The MIU shall include a sync generator,
The sync shall be transmitted prior to each data word.

il I PO YA SR
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5.2,2,2,2,4 Manchester Encoder, The MIU shall include a Manchester
encoder to encode the data words.

et g
e

5.2.2,2,2,5 Word and Message ldentification. The MIU shall have the
capability of identifving incoming words as command words or data words based
on the contents of the syne field preceding the word,

ot dsie A

5.2,2,2,2,6 Detector. The MIU shall include a receiver-detector(s). The
detector shall detect 1.0 megabit per second Manchester biphase coded data that
- is greater than the threshold level. The detector shall detect both the positive and
' negative excursions of the Manchester biphase coded data. |

5.2.2,2,2,7 Manchester Decoder. The MIU shall include a Manchester
biphase decoder. The detected data shall be decoded from Manchester biphase
i. to NRZ digital binary, "1"/"0" logic level signals,

1" 5.2.2.2,2,8 Reset. The MIU control circuitry shall include a "reset”

i signal, The reset signal shall reset all the PIU logic circuitry, except the response/
: status registers, and shall also be wired to the MIM-LRU interface for use by the

. registers, and shall also be wired to the MIM-LRU interface for use by the LRU,

- 5.2.2,2,2,9 Data Validation, The MIU shall have the capability of
recognizing improperly coded signals, a data dropout, or excessively noisy signals
occurring during the reception of a word and of producing signals indicating that a
nonvalid word has been received. '

[ ey

|

5.2.2.2.2.9 Validation Criteria. The incoming data shall be evaluated 0. a
bit-by-bit and overall word basis. Each word shall meet the following requirements
in order to be valid:
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1. The word shall be preceded by valid sync,

2. The word shall have 21 bits.

L R e

3. The word shall have the correct parity,
4. Each Manchester bit shall have a "1"'/"0" or "0"/"1" sequence,

Failure of the incoming multiplex word to meet the above criteria shall cause T
the MIU to transmit the appropriate status signal to the PIU response/status register,

5.2,2.2,2.10 Parity Generator, The MIU shall include a parity generator,
The parity generator shall generate odd "ones™ parity. The parity generator shall
contain logic which will permit the inhibit of the generation of parity for data words,
The LRU's which provide data words, which include parity, shall provide a steadyv~
state, 3.5-volt signal which shall inhibit the MIL parity generation for the data
words, This inhibit parity shall not inhibit the generation of parity by the MIM
for the response word,

5.2.3 Interface to and Control of the Multiplex System by the Burroughs
Multiprocessor

5.2,3.1 General

An overall diagram showing the connection of the multiplex buses to the :
Burroughs Multiprocessor is shown in Figure 5-12. Counnection to the multiprocessor o
is via the switch interlock with a multiplex interface and control module providing
the interface between the multiplex buses and the switch interlock, The multiplex
3 interface and control module is essentially treated as a device to the multiprocessor.

. Two multiplex buses are used with one serving as a backup; it is required that the
multiplex interface and control module be capable of working with either bus,

The multiprocessor system is required to function as the controller of the bus,
Therefore all commands for data transmission originate from the multiprocessor
system. The multiplex interface and control module in Figure 3-12 provides the
E; interface between the multiplex buses and the switch interlock; it also provides some
control for the data aud comnand transmissions that occur on the multi ;lex huses,

the amount of this control is dependent on the design of this module. Regardless of

E the design of this module, the multiprocessor system retains ultimate contrel of the -
3 multiplex system, Several approaches to the design of the multiplex interface and
contro! module will be given below.

s LR

T

5.2.3.2 Multiplex Interface and Control Module

The degree of control of the multiplex bug between the Multiplex Interface
and Control module (MIC) and the multiprocessor system is dependent on the
: complexity of the MIC, This primarily effects the degree of involvement of an
| interpreter in controlling the actual data transmission process on a multiplex bus.

L% RE L (e
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5.2.3.2.1 Direct Interpreter Control System, A block diagram of the MIC
with 2 minimum amount of control capability is shown in Figure 5-13. The left-hand
portion of the figure contains functions (the MIU and serial-paraliel registers)
needed {o interface with the multiplex bus, The MIU, multiplex interface unit,
detects and generates sync codes, decodes biphase coded data, ete,; it is very
similar to the MIU descrihed in the previous section and the same unit may possibly
be used here, The parallel/serial and serial/parallel registers provide the required
serial interface for transmission on the multiplex bus. Two MIU's are used to
provide capability for working with either multiplex bus as was explained in
Section 5.2.2, The right-hand section of the figure is the interface that is required
to work with the SWI, This consists of a set of input shift registers, a set of output
shift registers, and clock interface logic. The information format at the S\VI
interface is shown in Figure 5-14. The interpreter sends commands and data
(both 19 bits) to the MIC with the form shoun in Figure 5-14 {c and d). In addition,
two extra bits, for a total of 21, are sent to signifv whether the information sent is
to be output over the multiplex bus (command or data) or whether a request to input
data to the interpreter is present. Information to be output on the multiplex hus is
sent to the parallel/serial register and then to the MIU, The interpreter is respon-
sible for timing the rate at 'chich it sends information to the MIC, This rate should
be high enough to supply a steady stream of output on the multiplex bus (24 usec per
command/data word) and not too high such that the IN shift register is not cleared to
accept information from the interpreter,

The MIC sends information to the interpreter with the format shown in
Figure 5-14 (d). This consists of data and response words (20 bits). The MIC
continuously loads this information into the OUT shift register as itis received and
processed from the multiplex hus. The contents of the OUT shift register are sent
to the interpreter when a “'data in" request is received from the interpreter via the
IN shift register. The interpreter is responsible for keeping up with the rate at
which information is received over the multiplex hus,

The lower right-hand portion of this figure contains logic to receive the clock
from the SW1 (used to drive the shift registers) and logic to return the clock to the
SWI. The counter counts four clocks and enables the readout of the shift registers.
The control portion of the MIC will enable the return of clock signals to the SWI by
the generation of an acknowledge signai. Note that the MIC could control the output
rate of the interpreter into the IN shift register by not acknowledging if the parallel/
serial register still contains information to be sent out on the multiplex hus,

5.2,3.2.2 Single Command Buffered System. The previous system required
close operation of the interpreter with the entire transmission process on the
multiplex bus. The interpreter would probably not be capable of doing any other
functions while it is controlling an input or output transmission on the hus. In other
words, while transmissions are in progress on the multiplex bus, an interpreter
would be dedicated to an IO processing function,

A slightly more complicated MIC is shown in Figure 3-13. This MIC has a
small buffer memory added to it for the purpose of providing sufficient memory to
process one command (up to 31 words) without continuous information transfer with
the interpreter. In this system the interpreter sends a command to the IN shift
register as in the prior case, However, the command iS now examined to determine
if a read or write tc a subsystem is requested and the number of words in the
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General .
3 s 1 s 5
Spare| MIM i‘lﬁl tata | at.

s) Interpreter to Mux Controller command format

3 16
| spare | Data

b} Interpreter to Mux Controller data format
Direct Interpreter Control System:

(T T o]

L——Comnand/bata Out
Data In

¢) Input - Interpreter to Mux Controller

-
L

B[ o]
20
r Response Word l

d) Output - Mux Controller to Interpreter

Single Command Buffered System:

i 1 19
I Command/Data |
) l L-Mux Command
Memory Read
. e) Input - Interpreter to Mux Controller
1111 16
[sfvsis] Date 1
20
l Response Word l

f) Output - Mux Controller to Interpreter

19 bigs

19 bits

21 bits

20 bpits

20 bits

21 bits

20 bits

20 bits

Figure 5-i4. Data and Command Format for MUX

Controller — Interpreter Interface
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Multiple Command Buffered System:

11 10
[ ! l Memory Address { 12 bits
L—Read
Write
g) loput - Interpreter to Mux Controller {Address Shift Register)
1 19
I ] Command /Data ] 20 vits
L—Mux Command
k) Input - Interpreter to Mux Controller (Inm Shift Register)
1111 16
{ 1T I ] pate ] 20 vits
20
[ Response Word j 20 bits
i) Output ~ Mux Controller to Interpreter

Figure 5-14. (Cont)
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transmission, The command i8 output on the multiplex bus and the memory used to
buffer either input or cutput data between the multiplex bus and the interpreter., The
interpreter is now not tied to the information rate on the multiplex bus; it can load up
to 31 data words in the memory as fast as it can for output or il can come back when
it desires to read in up to 31 data words from the memory for input. The input
format from the interpreter is shown in Figure 5~14 (e}, Two control s'gnals are
used; one to indicate the presence of a command and the other to indicate a request
for a memory read (nole that one word at a time will he read out of the memory with
the MIC word counter stepping through the set of buffered data in the memory).

5.2,3,2,.3 Multiple Command BPuifered System. A further increase in
complexity of the MIC is shown in Figure 5-16. The previous system allowed the
interpreter to issue one command to the MIC and then not be tied to the data rate
on the multiplex bus. However, if a string of commands were to be processed the
interpreier may or may not be able to do other meaningful work in beiween the
commands. The MIC shown in FFigure 5-16 allows the interpreter to do exactly what
was done with the MIC in Figure 5-15 except that this MIC can process a string of
commands 8o that the interpreter is further isolated from the transmission rate and
message sequences on the multiplex bus,

In addition to data, commands are now also stored in the memorv., Additional
logic is needed such that the MIC can sequence through a siring of commands,
recognize that all commands have been executed, and know where the daia is to he
stored in the memory. The interface with the interpreter is via an address shift
register and an IN shift register as shoun in Figure 5-14 (g and h). 'The address
shift register receives an address (10 bits - should be adequate for the largest
buffer memories used) and two control signals signifiying whether a read or write
into that address is requested. The IN shift register receives 20 hits which consists
of the command or data to be output and one bit signifying whether a command or
data is present, An address of where to store commands in the memory is not sent
over to the MIC with the commands since the MIC contains a command storage
counter that points to an address of where to store the next received command., This
counter simply recycles on itself. The command program counter points (o the
address of the command currently being executed by the MIC. When a command is
received from the interpreter the command storage counter is used to store the
command and it is incremented by one. The command program counter will contin-

. .. uously fetch commands as long as its contents do not equal the command storage
- . counter. The address that is sent over with a command is the address where the
e : multiplex bus response word shouid be stored in the memory. This address will have
to be saved with the command.

. . The interpreter accesses informution in the memory by sending the MIC an
- address with a memory read request. The MIC then interleaves this request with
o - any command execution in progress and sends the interpreter the requested
H information via the OUT shift register, ‘

- The MIC contains control circuitry, data address counter, word counter,
- - etc,, to execute commands, One problem, that arises with dedicaling more
. - control to the MIZ, is the identification by the interpreter of when a command has
: been executed. OUne means of providing such identification is via the responsz word,
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If the location that the response word is to be stored in'is set to zero when a command b
is loaded in the memory from the interpreter, then this location can be checked by !
il the interpreter to determine if 2 command has been executed. The setting of this

memory location to zero could be performed by the interpreter or by the MIC,

This design allows the interpreter to set up a sequence of commands and
2w output data in the MIC and then return t{o other processing tasks. The interpreter
can then return later to fetch received information from the MIC,

TP PR

i 5.2.3.2.4 Dedicated Interpreter System. Another possible approach to the
MIC is to make it a true 1/O processor by using an interpreter with its own memory;
such an approach is shown in Figure 5-17, A Port Select Unit (PSU) is used to
connect the interpreter to the memory since this interpreter essentially operates

as a single interpreter,

ARSI

The complete 1/0 program now resides in the MIC, The only interaction
with the multiprocessor portion of the system is the transfer of data and possibly
some form of master sync or control,

i 5.2.3.3 Interpreter 1/0 Operation

g . The first three approaches to MIC design require the interpreter to execute
a0 an 1/0 program that sends the appropriate data and commands to the MIC and

3 e fetches the appropriate data from the MIC, It is not the intent at this point to

design this 1/0 program, however, it is observed that this area is a natural for
macro "S" instructions, A single '"S" instruction could be designed to fetch a
command and data from main memory, send it to the MIC, check the response word,
and do any retransmission in case of errors. A first cut at some of the gross

steps involved in such a macro "S" instruction is given below (for datu output
to the MIC):

1, Fetch "S" instructions

7- " 7 2. Device locked? Lock if not

] B 3. Execute device write to send command word to MIC
: ‘ .. 4, Fetch data from memory (two words/cvele)

. 5, Execute device write to send data to LIIC

b 6. Execute device read to get response word from MIC o

7. Check response word

3 BRI 205

8. 2ny errors? If so, retry

gy e
A

e
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5.2.3,4 Conclusions and Recommendations

At this point an approach to the MIC cannot be firmly recommended. However,
it is felt that the first two approaches, the direct interpreter control system, or
the single command buffered system would be preferred. The reason is that the
interpreter was designed io be flexible and easilv configured to do arithmetic
or 1/0 processing in a dynamic nature. The interpreter can very well do the 1/0
processing. In fact, an interpreter could be assigned to 1/0 processing only for
the actual time needed; it may be assigned to other processing tasks when 1/0
proceseing is not needed. It is also desirable not to add specialized or complex
hardware to the interpreter system since this hinders modularity and may result
in problems from a failure tolerance standpoint. It will be assumed at this point
that the first approach, the direct interpreter conirol system, which is the simplest
MIC module, will be used in the central processor fur purposes of this study.
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5.2.4 System Configuration
5.2.4.1 System Description

The 1/0 requirements and the computer system configuration based on the
processing allocation as shown in Figure 5-7 were reviewed to define the method of .
input/output for the entire system. A system configuration including the 1/0 implemen-
tation ig shown in Figure 5-18, Four modules (or devices), each interfacing with SWIl's,
are shown for performing the 1/0:

1. MIC - Multiplex Interface Controller

Allows a multiprocessor to control the communications on a multiplex bus as
described in Section 5.2.3.

2. PC - Parallel Channel

Allows one multiprocessor to communicate with another multiprocessor. This
is a dedicated channel and operates on a request acknowledge basis.

3. MT - Multiplex Terminal

The hasic interface for ai! devices or subsystems (this inciudes a multipro-
cessor that is part of a subsystem, e.g. the SRAM processor) connected to a
multiplex bus. It recognizes a unique ID address and responds to a command
sent out from the MIC to send or receive data over the multiplex bus, This
module is functionally very similar to the MIM described in Section 5.2.2.

4, DI - Device Interface

Interfaces subsystems or devices directly to a multiprocessor. The operation
of this module is rot controlled by the multiplex bus, It will iypically be a
speclalized module matching the requirements of particular subsystems.

Two multiplex buses are used in this system. Both are driven by the central
processor, with one bus dedicated to one multiprocessor and the other bus to the second
multiprocessor. Fach bus is actually dual redundant as explained in Section 5.2, 2.

Each multiprocessor is connected to its bus by a MIC module. Local processors, such
as the IMU processor, and subsystems/devices are connected to each bus. All informa-
tion transfer is to/from the central processor and under control of the central processor,
The local processors and subsystems/devices interface to the multiplex bus via a MT
module,

The central processor and pen aids processer are actually multiromputers, in that
more than one multiprocessor is contained therein. Communication between these multi-
processors in a multicomputer configuration is via a PC module. An alternate approach
would be to communicate via the muitiplex buses; however, it is felt this method would
require a similar amount of hardware and resuit in a slower communicatiun link. In the
central processor this alternate method would require the addition of MT modules to each

multiprocessor, Use of the alternate method for the pen aids processor, would require [
the central processor to set up communication links between two multiprocessors in the
pen alds processor. ﬁ
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The exact method of communicating with subsystems or devices that interface
directly with the local processors is not completely specified at this time. The use of
DI modules is shown in Figure 5~18. This actually could be a set of direct connections
to subsystems/devices or a multiplex bus could be used as is the case for the central -
processor, : o

»omoon
[ IS

5.2.4.2 1/0O Requirements and Processing Implications

A guantitative tabulation of the I/O requirements is given in Table 5-16, The L.
rate, in words/sec, is given for each of the information links shown in Figure 5-18.
These are basic data rate requirements and include the 50 percent spare requirement.
These requirements are for information or data transfer and do not include any over~
head for command words required to operate the various information links,

The method of operating the multiplex bus was described in Section 5.2.2. Two
words, a command word and a response word, are required for each message. Each
message can have up to 31 data words. The data itself is 16 bits, however, data and
command words are transmitted as 24 bit words by the time sync, parity, etc., are
added to each word. The bit rate cn the bus is 1 MHz; therefore, a maximum of
41,500 words/sec can be sent on the bus (including data and commands) if any delays
and dead time on the bus is ignored.

In practice, all messages will not be fully loaded with 31 data words. Examination
of the 1/0 requirements reveals that a likely average for the number of words per
message is 10. Adding two overhead words per message results in 5/6 efficiency on
the bus. This results in an effective data or information rate on the bus of 34,600 data
words/sec. Ad mentioned in Section 5.3 the simplest form of a MIC module will be
assumed in this study, this basically dedicates an interpreter to performing 1/0
functions while 1/0 transmissions are in progress on the multiplex bus. Thus a
measure of the percent of an interpreters capability required to drive the MIC module
can be determined by using the effective bus rate of 34, 600 words/second and applying
that to the data rate required with the MIC as shown in Table 5-16. It should be noted
that this same capability requirement of an interpreter will apply to interpreters work-
ing with the MT module since the same effective data rate applies to that module.

The effect of the PC and DI data rates also needs to be considered on the required
interpreter capability. Detailed designs of these modules have not been performed.
However, it is expected a data rate of approximately 750, 000 words/second shall be
within the state of the art over the PC channel and data rates on the order of 100,000
words/seconds can be expected over the DI module.

Utilizing the I/0 module data rates above and applying this to the requirements in
Table 5-16, it is then possible to determine the percent of time an interpreter can be
expected to be devoted to performing I/0 processing functions. The results of this
analysis are expressed in terms of the effective interpreter speed requirements in
operations per second for performing I/O functions as shown in Table 5-16,

Having the I/O requirements on each processing configuration of Figure 5-7, it
is now necessary to reexamine the configuration of Figure 5-7 to determine if it can
handle the I/0 processing functions. The largest [/O requirement is in the central
processor, in particular multiprocessor 2, Examining the data in Section 5.1.3, shows
that MP2 in the central processor contains sufficient capability to also handle the 1/O ﬁ
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Table 5-16.

1/0 Requirements

1/0 Data Rate Effective Interpreter
Requirements Speed Requirements
Computer (Words/Sec)* (Ops/Sec)
a. Cevtral Processor
1. Multiprocessor 1
MIC 7,494
PC 4,240
Interpreter 1/0 Regquirements 27,000
2, Multiprocessor 2
MIC 19,549
PC 4,240
Interpreter 1/0 Requirements 58, 520
b. Pen Aids Processor
1. Multiprocessor 1
MT 3,534
PC 1,536
DI 2,448
Interpreter 1/0 Requirements 12,720
2. Multiprocessor 2
MT 4,105
PC 4,128
DI 16,848
Interpreter 1/0 Requirements 16,920
3. Multiprocessor 3
MT 3,639
PC 5,664
DI 5,184
Interpreter 1/0 Requircments 14, 040
c. IMU Processor
MT 1, 860
DI 3,111
Interpreter 1/0 Requirements 6,240
d. SRAM Processor
MT 210
DI 8,520
Interpreter /0 Requirements 1,800

* NOTE: 50 percent spare factor is included
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processing functions. The same holds true for MP1 in the central processor as well

as all the other multiprocessors In the ASB avionics configuration as shown in Figure 5-7.
Therefore no additional interpreters are required to Figure 5-7 to accommodate the

1/0 processing requirements as defined in Table 5-16.

5,2.4.3 Interrupts

An additional factor that should be considered when investigating the 1/0 require-
ments is the need for interrupts. There are two basic types of interrupts to be consid-
ered, internal and external. At this point in time it is difficult to establish a quantitative
figure for the number of these interrupts, however, both types will be required in this
system, Internal interrupts typically consist of power up, parity error, storage
protect  al time clock, ete.

The only external interrupt firmly identified at this time is the designate interrupt.
The F-111 avionics had in addition to this interrupt an INS reset interrupt and two
display freeze interrupts.

Therefore, it is felt that at least four external and four internal interrupts should
be provided, a more conservative approach, and the recommended approach, would
be to provide eight of each type of interrupt.

5.2.4.1 Other 1/0 Functions

In addition to the 1/0 functions described above, there will in all likelihood be two
additional 1/0 functions when the final system is configured. One of these is 2 mass
memory channel and the other is the provision of discrete input/output signals.

The ASB avionks system will have a mass memory, exactly how communications
will be handled with this device is unknown at this time. There will probably be a device
channel that allows communication with the mass memory.

In most avoinics systems there generally is some requirement that calls for
several discrete [0 signals. An example of such a signal may be the failure go/no-go
status of the computer. There should be some provision for handling several discrete
1/0 signats. '

5.3 FAILURE DETECTION AND RECONFIGURATION FOR THE BURROUGHS
MULTIPROCESSOR

5.3.1 Introduction

The approach to failure datection, isolation and reconfiguration is outlined below.
Detailed system requirements are not available for those factors and the selected
approach is based on certain assumptions., One assumption is that the computer system
is required to survive at least one failure with a higher failure tolerance desireable.

It is also agsumed that it is required to provide continuity of certain functions during
any reconfiguration process. The general approach to failure detection and reconfigura-
tion is shown in Figure 5-19. Two multiprocessors are shown in this figure (this
corresponds to the central processor in Figure 5-18), each one is comprised of a switch
interlock with eome number of memory and interpreter modules.
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This system is a multicomputer system with two computers where each one is a i
multiprocessor. Each multiprocessor contains its own failure detection capability -
and reports its failures to the other multiprocessor. Each multiprocessor contains
backup capability for the other. When a failure indication is received, the non failed
‘multiprocessor enters a backup mode wherein some of its normal functions may be
sugpended and some of the failed multiprocessor's functions are performed. The
failed multiprocessor contains its own isolation and reconfiguration capability.

The multiprocessors each have their own dedicated mass memory. Depending o
on the computational functions, the mass memory may be used to store past values of
data such that some computational functions may be restarted. Data integrity in the
failed multiprocessor cannot be agssumed after a failure and reconfiguration requires

a complete restart or reloading data from the other multiprocessors or from mass
memory,

This appreach to failure detection and reconfiguration is very similar to that
used for the F-111 Avionics System except that the system described here contains
reconfiguration capability within each computer (a multiprocessor) of the multicomputer
system (the F~111 System contained two single computers with no reconfiguration capa-
bility within 2 computer). The basic approach described in Figure 5-19 is applicable
when two multiprocessors are used. Referring to Figure 5~18 In the previous section
describing the interface to the ASB multiplex system, this is applicable to the 'central
processor'. The approach to failure detection and reconfiguration for the IMU, SRAM,
and Pen Aids processors would depend on the individual requirements of these sybsys-
tems. The Pen Alds processor contains more than one multiprocessor and the same
approach as described in Figure 5-19 could be applied here. The IMU and SRAM
processor contain one multiprocessor. Reconfiguration within these multiprocessors
is possible however computational continuity during reconfiguration cannot be assured
unless more than one multiprocessor is used as described in Figure 5-19.

5.3.2 Modified Burroughs Multiprocessor

A block diagram indicating the modified version of a multiprocessor, configured
from the Burroughs multiprocessor system, is shown in Figure 5-20. This modified
multiprocessor incorporates a number of changes or additions to meet the ASB system
requirements and to provide for failure tolerance, -

5.3.2.1 Real Time Clock

A real time clock (RTC) has been added to the system. The real time clock is a
counter that is driven by the system clock, counts down to zero which generates a
signal that is input as an interrupt to all interpreters via the interrupt module, and is
reset to a specified value (typically 1/64 or 1/32 of a second). The RTC is needed to
provide a precise timing source for the execution of periodic programs in a real time
mode. (The executive aspects are discussed in Section 5.1.)

In servicing this interrupt, each interpreter will ait. :npt to access the system
executive tables to determine what task to perform next. '1his will be accomplished by
attempting to set the GC bit. Therefore, in case of exactly identical timing response to
the RTC interrupt, the interpreter with the highest priority (as determined by the
connections in the logic of the SWI Channels) will be the first one to access the executive.
An alternate choice, to the approach shown in Figure 5-20 of providing a common RTC,
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is to provide a RTC per interpreter and use this RTC for an internal interrupt. The
RTC in each interpreter would be driven by the common clock for the entire system.
This would ensure that the RTC within each interpreter remains in sync. There
appears little if any advantage to this approach and it ads hardware to an interpreter
that may not be needed in other applications. Therefore, the approach of using a
common RTC is recommended.

5.3.2.2 Modularity

The SWI has been redesigned to provide for better modularity and failurc isolation
as described previously in Section 1.3. The new approach basically partitions the SWI
into channels where one channel is used per interpreter. The maximum number of
interpreters and memories in a multiprocessor is limited to some amount, N and X,
that i{s designed to initially., The SWI redesign kept X = 8 as was the case originally,
The maximum number of interpreters can easily be designed to be greater than five
which is the current figure. It should be noted that the figures for N and X include any
spares that are to be reconfigured automatically (i.e. without any manual replacement
or switching).

5.3.2.3 Interrupts

The interpreter as presently designed contains no true interrupts by the classical
meaning of interrupts. Interrupts are provided for by having condition bits that can be
tested via 2 microinstruction, the condition bits being set by an "interrupt”, The
microinstructions provide flexibility to perform this by allowing the successor micro-
instruction to be conditionally selected depending on the state of a condition bit. There~
fore, the current microinstiruction can state, for example, that the next microinstruction
is arrived at via a jump if a certain condition is false or via a skip if a certain condition
is true. Eight successor choices are provided for the false state and eight for the
true state of a condition, A limiting factor in this approach, is that only one condition
can be tested at a time.

The approach to mechanizing the interrupts is shown in Figure 5-20. An
interrupt module is provided that basically 'or's' interrupts into one of the condition bits
in each interpreter. The interrupt module contains an interrupt register which records
which interrupt has occurred, the RTC is one of the interrupts, the failure indication
from each interpreter provides an additional N interrupts, additional external interrupts
as required by the system mechanization are input to this register. All of these inter-
rupts are essentially or'ed to provide the signal to each interpreter that sets the EX1
condition bit in the interpreters.

The intermipt module is treated as a device (except for the signal to the EX1
condition bit which is hardwired directly) such that the interpreters communicate with
it via the SWI. The interpreters can sample the interrupt register to determine what
the interrupt was. This register will be reset when sampled. The first interpreter
responding to the interrupt will sample the register and record the interrupt in memory.
The remaining interpreters will sample a clear intercupt cegister aad will then go to
memory where the interrupt is stored and being serviced via the executive routine.

The EX1 condition bit will be tested in th= last microinstruction of an 8§ instruction,
(If an 8 instruction were tested before completion, some means of saving the interpreter
registers would be needed, no such paths exist in the interpreter at present.) The
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testin~ of this single condition bit thereby provides a test of all the interrupts input to
the interrupt module, Other types cf inlerrupig such as memory parity or memory
protect, if provided, can be serviced by the other {wo external condition bits and
would be tested in appropriate microinstructions (.e.g. memory protect would he
tested after a memory write microinstruction.

The interrupt module also contains a mask register that may be set to any bit
paitern by the interpreters. This register effectively masks seleeted interrupt lines
into the interrupt module, it prevents these masked inputs from entering the interrupt
register and seiting the EX1 bit, if desired. This mask register can be used to

prevent failed subsystems from hanging up the multiprocessor by continuously generating
interrupts.

5.3.2,4 Global Condition logic

In the course of investigating the failure detecticn, isolation and reconfiguration
characteristics, it was determined that the giobal condition (GC) logic, as presently
implemented, presents a single point of failure around which recenfiguration cannot bhe
accomplished. Examinration of Figure 7 of Reference 4 indicates .hat the request, GC
bit, and ripple legic are all in series, Therefore. the failure of any interpreter in
this path will disable the functioning of the GC logic in all intevpreters. This problem
cannot be solved by turning power off to an interpreter. In fact, this design approach
prevents lurning power off Lo an interpreter if it is nol needed in operation.

An alternate approach to the GC logic is shown in Figure 5-21, This approach is
similar to the Burroughs approach except that the G reguest is sent out on a separate
signal for each imerpreter instead of being riy pled through internreters. The advantage
of this approach is that nowcr can be turned off to any interpreter without affecting the
operation of the GC logic in otha~ interpreters,

It was decided in the failurc tolerance analysis ‘hat it would not be necessary to
turn power off to interpreters. Therefore, in order io prevent a failed interpreter
from affecting the operation of the GC logic, the GC logic shown in Figure 5-21 was
moved to the SWI as shown in Figure 5-20 (power will be turned off to the SWI channcls
in the event of failurc). The set, reset, and GC bit sigrals are sent between the
interpreter and the SWI channel of that interpreter, 1t should be noted with this approach
that the maximum number of interpreters, N, must be planned for ahead of time in the
or logic of the GC reguest signals as shown in Pigure 5-21.

5.3.2.5 Failure Dclection, Isolation, and Reconfiguration

Several minor modifications were made to previde for failure tolerance. The GC
logic was changed and moved to the SWI as explained above. A test counter was added
to cach interpreter. This counter must be periodically reset by the interpreter or a
faiiure indication signal will be generated. A power switch was added to each SWI channel
in the event a failure indication is generated within that interpreter. The SWI was
redesigned on a channel per interpreter basis so that failures do not affeet more than
one interpreter. In addition software which allows tests of the memory, SWI and
interpreters was added. Sparc memory, SWI channel, and interpreter modules would
be provided as needed to meet system reliability requirements. The approaches to
failure detection, isolation, and reconfiguration will be explained in further datail below.
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5.3.3 Failure Tolerance

The general philosophy of the selected approach to failure tolerance was outlined
in Section 5.3.1. The implementation of failure tolerance will be described in this
section with a specific discussion of failure detection, isolation, and reconfiguration
in subsequent sections. Failure tolerance requires that the multiprocessor, as shown
in Figure 5-20, detects a failure within the multiprocessor, reports the failure to a
backup device (another multiprocessor in the central computer case), and reconfigures
into a correctly operating multiprocessor, informing the backup device of a successiul
recon{iguration.

The multiprocessor was investigated to determine if it could be relied upon to
perform reconfiguration such that a backup device is not required. The basic problem
in the multiprocessor is that data integrity cannot be assumed after a failure is detected,
An inlerpreier, through a SWI, can access any memory module. Failures may occur
such that the interpreter writes into the wrong memory location, thereby destroying
dala. Such failures can readily occur in many portions of the interpreter and SWI,

e.g. in the address decoding of the SWI which selects the proper one out of eight memory
modules, in the interface belween the interpreler and the SWI, in the registers in the
interpreter, in the data paths in the interpreter, in the adder of the interpreter, ete,
These types of failures may also occur in the memory where incorrect information is
received from one memory that results in a read into another memory module into an
incorrect location.

Software and hardware schemes may be used {o reduce the probability of such
failures. e.g. coding on portions of the memory address logic (programs and ¢ “nstants
may he preserved using various memory write protect schemes), However, i .der
to provide daia integrity with a2 reasonable confidence level, after a failure, tor a
real time control application such as the ASB avionics, il is necessary to use massive
redundancy with independent modules, In the mulliprocessor, this would require the
ability to epcerate the interpreters and memories as sets of independent computers.
Some means of a lock mechanism would be nceded to accomplish this such that a
memory module could be dedicated to only a sclected interpreter(s), preventing access
(at least write) to all non seleeted infeipreters. A system such as this could then be
reconfigured after a failure by changing the control to the lock mechanism. It should
be noted that as reliability requirements are increased to the point where any faflure
must be tolerated, then perfect failure detection, isolation, and reconfiguration must
be provided, such stringent requirements require at least a level of redundancy of
three (Ref 17), using techniques such as majoritly voting, to meet the reliability goals.

The approach taken here was to preserve the basic architecturc of the Burroughs
Multiprocessor as shown in Figure 5-20, allowing it to be used as a true multiprocessor,
Data integrity is not assumed after a failure is detected in the multiprocessor, Redun-
dancy in the form of another multiproccssor, as shown in Figure 5-19, is used during
reconfiguration to achieve failure tolerance for thos. comgputational functions that }
require continuity of performance (this may be a degraded mode of performance). :
Failure tolerance for the A3} avionics ceniral computer ihereby takes the form of using
two mulliprocessors, each multiprocessor is reconfigurable after a failure, and each
multiprocessor provides backup for the other during rceconfiguration for critical
functions requiring continuity of performsance.



Each multiprocessor contains its own failure detection, isolation, and
reconfiguration capability, Failure detection is primarily accompiished by using a
software test routine that is scheduled for periodic execufion by each interpreter. A
test counter is provided for each interpreter, as shown in Figure 5-20, thai must be
periodically reset otherwise a failure indication signal will be sent out from the counter.
The test counter is reset ounly if the software test routine is completed successfully.
Fallures detected hy this approach can be caused by malfunctions in the interpreter,
SWI, or memory modules and as stated above the failures could have destroyed data
anywhere in memory (programs and constants may be preserved using a memocy
protect scheme on such information), Failures are not isolated hetween an interpreter
and its SWI channel since loss of either precludes use of the other. A power switch,
that is driven by the test counter in each interpreter, is provided in each SWI channel,
This switch prevents a failed interpreter/SWI channel from affecting the proper
operation of the multiprocessor after a failure is isolated and reconfiguration
accomplished. Reconfiguration is accomplished Ly reloading a2 spare memory module,
if required, with a copy of a failed memory module's program, reinitializing any
required data, and informing the other multiprocessor of a suecessiul reconfiguration,

5.3.1 Failure Detection

An overall flow chart depicting the failure detection process is shown in Figure
5-22, The failure detection program is scheduled to be executed periodically once every
n seconds. It is entered by means of the RTC interrupt which sends the interpreters
to the task scheduling tables. The failure detection task is scheduled for execution by
each interpreter,

Pact of the failure detection program resides in main memory and part in the
interpreter's microprogram memory (MPM) (permanently in a RCM portion of the MPM),
The portion of the failure detection routine that permanently resides in the MPM acts
as an executive and controls the execution of the failurc detection program,

As shown in Figure 5-22, Block 1, scheduling of the failure detection program
results in control being transferred to a fixed location in the MPM of the interpreter.

~The first portion of the failure detection program checks the operation of the intevpreter,

The interpreter will fetch an interpreter test routine, which is part of the failure detec~
tion program, from main memory (Block 2), This routine will be checked to determine
its integrity by forming a check sum of the routine. The interpreter will compare the
results of the check sum with a permanently stored constant in the MPM. If the test
does not agree, then another memory module (Block 1) is accessed for the interpreter
test routine, After the test routine is validated, it is executed by the interpreter, This
routine will check the logic, control and data paths in the interpreter. If the interpreter
fails to execute this routine correctly, it will halt and the test counter will run out
resulting in a failure indication.

Successful performance of the interpreter test routine will be followed by the
interpreter testing its switch interlock (SWI) channel. The interpreter fetches a SWI
test routine and determines its validity by mieans f a check sum (Blocks 8, 9, 10) in
the same manner as for the interpreter test routine, The memory modules will cach
have a prestored constant in a known location which will be a di fferent value and location
In ench memory module. The SWI test routine will read the zonstants and compare
these with the expected responsc (Blocks 11, 12, 13). This test will check the Informa-
tion transmission paths and address decoding logic of the memory request section of the
SWI., The device request section of the SWI is checked in a similar manner. The exact
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test used will depend on the characteristics of the devices connected to each device
port, e.g. the interrupt module can be used to write and then read a value into the mask
reglster, the MIC can be used to send a value to a subsystem and then retrieve it, etc.
If the SWI is checked out with no apparent failures, then the test counter in the inter-
preter is reset. -3

TR
L

-

If a failure is detected in the SWI test, it must thea be isolated. The failure
could be in a memory/device or in the SWI. Failures with more than one memory/device
will be cause to suspect the SWI and failures with all memories/devices will result in
the SWI being declared faulty in which case the interpreter would halt (Block 18) with
the test counter eventually indicating a failure. Failures with only certain memories/
devices will be isolated by communication with other interpreters to determine if they
are also experiencing failures with those memories/devices.

Following successful completion of the interpreter and SWI channel tests the
interpreter will return to the scheduler in main memory. The next test to be performed
is on the memory modules. The memory module test program needs to be executed by
only one interpreter. The first interpreter to complete its interpreter and SWI channel
tests will execute the memory module test program (scheduled just like any other task)
and the remaining interpreters will be assigned productive computational tasks. The
memory module test program will test each memory module's ability to read/write
" selected bit patterns into selected locations.

The method used for failure detection does not guarantee that the failure
indication from the test counter results in an isolated failure, The failure indication
could be the result of another interpreter's failure or a memory module failure, This
results from the fact that the failure indication program is scheduled via-information
contained in memory. This information could be incorrectly altered by a faulty
interpreter or the memory itself could fail. This may result in the failure detection
program not being scheduled in time to prevent the test counter from running out. An
alternate approach, which may eliminate the above problem, and result in a failure
indication that provides an isolated signal, is to use a self scheduling mechanism
within the interpreters for the failure detection program. The test counter as shown
in Figure 5-20 is an X bit counter.' If an additional output from the counter is provided
at t bits, then this output could be used to interrupt the interpreter and force the failure
detection program tc be performed in exactly the same manner as described in Figure
5-22. The length X-t would be selected to provide sufiicient time to perform the
failure detection program.

This method may result in executive scheduling problems since the interpreters
would be scheduling tasks in addition to the tasks scheduled via the system executive
tables. Timing and interference problems may result with this approach., Therefore,
the first approach des~ribed is recommended at this time with the result that the failure
indication signal from the test counter does not necessarily represent an isolated failure,

An additioral point that should be noted here is the possibility of a memory
resulting in a failure indication from an interpreter due to a no resporse failure. The
interpreter interface with the memeries Is agynchronous with the inte rpreter reguestisg
a memory operation and a memory response arriving ot some variable time due to the
multiprocessing opcration of the system. The interpreter can halt and wait for the
response, do other functions and inte mittently test for a men oiv response, ete. A
memory failurz, such that no response is received, wil: eventual,, hang up e interpreter,
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Burroughs used a time out counter in their bread board system to get around this
problem, The timer was automatically reset every time a memory request was made
and if no response was received the timer would overflow and set an external condition
bit in the interpreter and also force the interpreter to step to the next MPM location.

It is not certain that this timer will be required in the ASB avionics application.
A no response from the memory will eventually be detected by the test counter in the
interpreter running out with a resultant failure indication signal. This is another case
where the failure indication signal does not represent an isolated interpreter failure.
One situation where a memory response timer is required, is during initial startup or
failure isolation/reconfiguration in which the failure detection program as described
in Figure 5-22 will be performed. Whenever main memory accesses are made (such
as Block 2, 8, 11), some form of a timer must be used to prevent a memory failure
from preventing the failure detection program to be run. This can be accomplished by
using the CTR register in the interpreter for timiug out the memory response. The
interpreter can go into a small loop where this register is incremented and tested;
if it overflows, the interpreter can branch out and not be hung up waiting for a failed
memory. )

-

This CTR register could possibly be used during normal operaticn to time out the
memory response. However this is not certain at this time, since it may be required
to implement the 'S* instruction and hence could not be relied upon to be available as a
timer., It should alze be noted that, if an isolated failure indication signal is required
from the interpreter, such as was described previously by using a test counter with two
taps on it, then some form of a memory response timer must be used.

The failure detection process described above required one hardware modification
to the present system, the test counter. This counter will be driven by the interpreter
clock and count up to a sufficient value (on the order of one second). The counter can
be reset by using one of the 16 combinations provided by nanobits 51-54, Mem-Dev Op,
since several spares presently exist, The counter could actually be placed in the MDC
portion of the SWI, since these particular nanobits are decoded therein. In this case no
change is actually made to the interpreter. However, if the counter is placed in the SWI,
power to the counter must not be turned off by the power switch of the SWI since there
would be no way to start up an interpreter from a cold start or after a failure indication
for purposes of failure isolation,

5.3.5 Failure Isolation

An overall diagram depicting the failure isolation/reconfiguration process is
shown in Figure 5-23, This diagram presents a first level overview of the process,
numerous details are not shown here. The process is entered by a faiiure indication
interrupt, The first step the interpreter takes is to reset the teet counter and go to
Block 2 which Is basically the failure detection process which was described in the
previous scetion and shown in Figure 5-22. The failure detectiov interrapt is broadcast
to all interpreters and all interpreters will be following the process shown in Figure
5-23. It should be noted that the interpreter that sent out the interrupt cannot retrieve
the actual interrupt from the interrunt register through the SWI channel, since its test
counter will have turned power off, through the power switch, to its SWI channel,
Therefore, as shown in Figure 5-20, the signal from the test counter is also wired to
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the EX2 condition bit. The interpreter in normal operation will test the EX1 condition
bit (any interrupts) in the last microinstruction of an 'S’ instruction. I the EX1 bil is
true, then the interpreter will test the EX2 bit to determine if this interrupt was
caused by its own test counter, if not, then the interpreter will ret) .eve the interrupt
register,

The test counter is reset in the interpreter if the EX2 bit was true, so that the
interpreter can access main memory and execufe the failure detection program., The
EX2 condition bit also causcs the power up or cold siart sequence to be entered. This
sequence accesses location 0 of all memory modules to determine where to go next.
Following this procedure prevents a failed memory from inhibiting the failure isolation
program from being entered. Ii should be noted that if the interpreter actually failed,
it would not enter the failure isolation/reconfiguration routine unless it failed in a
state where it is testing the EX1 or EX2 condition bits and also is functioning so that
it can process the interrupt and execute microinstiructions to follow the process I -
Figure 5-23,

For purposes of this analysis il is assumed that some form of memory protect
is used on program/constanis in main memory. This assumption allows one to
proceed on the premise that such information is not altered except due to a failure of
particular memory module itself. Information that is critical o the failure detection,
isolation, and reconfiguration process will be stored in two memory modules such
that it cannot be destroyed except by those two memory modules failing simultaneously.

If the interpreter/SWI channel pass the failure detection program, the test
counter will be reset and failure isolation will be entered in Block 3 of Figure 5-23.
If any failures with particular memories/devices were detected, they will be isolated
to cilther the SWI channel or the particular memories/devices in Blocks 4 through 7.
This vill be accomplished by intercommunication with the other interpreters in the
multiprocessor, If the SWI channel of a particular interpreter is inoperative with
selected memories/devices, the degraded capability of that interpreter will be noted
in the resources tables. Such an inferpreter may or may not be used depending on
the sophistication of the execufive used in the multiprocessor. Likewise if the failure
was a memory or device this would he recorded in the resources tables.

The memories are tesied by one interpreter and a program similar to that used
in the normal failure detection process ¥¥%Used. The isolated failure is recorded and
the process transfers to the reconfiguration phase as shown in Figure 5-23.

The basic tool of the failure detection process was the test counter and the
basic tool in the failure isolation process described here is the power switch in
the SWI channels. This switch is driven by the test counter and prevents a failed
interpreter from causing an apparcnt failure of the complete multiprocessor. Such
a failure could ceccur if the interpreter were making incorrect memory requests:
this could degrade the performance of the system due to the failed interpreter
stealing memory cycles from good interpreters or data in the memories could be
destroyed by the failed interpreter making the system compylelely in operative.
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Additional failures that couid seriously effect the system are an interpreter
issuing false GC (global condition) signals., Part of this problem with the GC logic
was corrected by the modification shown previously in Figure 5~21, The remainder
of this problem with the GC logic is eliminated by placing the GC logic in the SWI
channel where it will be disabled with power off. The same discussion applies to the ,
INT (interrupt) bit logic, it should be placed in the SWI channel. The power switch .
in the SWI channel thereby allows failure isolation and subsequent reconfiguration to
be successfully implemented.
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5.3.6 Reconfiguration

3 As discussion above the reconfiguration process described in Figure 5-23 -
will be entered after the failure isolation process has isolated the failure and recorded
the status of the multiprocessor in the resource tables. The type of failure will

first be examined, as shown in Figure 5-21, to determine the exact reconfiguration
process to use,

If the failure was an interpreter or SWI channel (failures are not isolated
between these two modules since one is useless without the other), the task require-
ments would be compared with the interpreter resources available. If sufficient
interpreter resources are not available to perform critical tasks (usually tasks that
must have periodic timing maintained), then less critical (e.g. certain background
type of tasks) tasks would be deleted. Deletion of cirtical tasks would aiso be
carried out on a priority basis depending on the state of the interpreter resources.
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If the failure were a memory module, the first step to perform is to determine
if a spare memory module is available. An available spare module would be reloaded
with the failed modules program from mass memory. If no spare memory modules
arc available, it will be necessary to determine if sufficient interpreter capability
exists such that processing tasks can share main memory by being swapped cut of
mass memory. If this is not feasible. then less critical tasks must bhe deleted,

After the above reconfiguration steps have been completed, the state of the
other multiprocessor (when using the concept shown in Figure 5-1% will be examinced.
If the other multiprocessor is operating properly, then it will be performing
temporary backup functions for the multiprocessor that was doing reconfiguration.
The reconfigured multiprocessor will communicate with the other multiprocessor
to inform if of a successful reconfiguration and to obtain ary data from it that
may be needed in reinitializing the reconfigured multipre ¢ 2s80r, If the other
multiprocessors were not functioning properly (or in sy :ems using only one
multiprcessor), then the reconfigured multiprocessor would be reinitialized
N using startup parameters from mass memory,




The above process assumes that program and constants in main memory are
protected against writing. If this is not the case, then additional steps will be
required in the isolation and reconfiguration process. Some means of verifying the
integrity of this information, or of reloading the entire main memory must then
be provided in the multiprocessor.

5.3.7 Other Approached Considered

Alternate approaches to the failure detection, isolation, and reconfiguration
process were considered. One hasic approach that should be noted, is using a
method for failure detection similar to {hat proposed by Burroughs in reference 18,
This approach climinated the need for the test counter in each interpreier.
Essentially, this counter is then implemented by software. Each interpreter has
a '"lime due'’ to report in to a table. All the interpreters check on each other to
make sure the interpreters report is in on time, this is functionally very similar
to the test counter.

This method works about as well as the test counter for failure detection
except it does not work with only one interpreter in the multiprocessor, failures
cannol be detected since there is no other interpreter to check on the failed
interpreter.

There are several drawbacks in implementing isolation and reconfiguration
processcs.

This approach also makes failure isolation difficult since it requires
interpreters checking other interpreters. A failed interpreter can report good
interpreters as faulty and can induce appareni failures in other interpreters. 1t
is difficult to acheive failure isolation in the case of conflicting failure detection
reports, somec means of software or hardware voting may be required to carry
out failure isolation, Some form of power switching will also be required in this
approach. Since the failure indication signal is not autonomous from an interpreter,
then it must be provided by the other non-failed interpreters in the svstem in order
to effect power switching., This introduces some difficulty in the isolation and
reconfiguration process since failed inlerpreters would have the capability of
issuing erroncous power switching signals.
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5.4 MULTIPROCESSOR EXECUTIVE
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5.4.1 Introduction

Burroughs has designed an executive structure for the multiprocessor system.
This soffware siructure, described in Ref 18, is designed to accommoditte a wide .
range of computing activities and hardware/firmware configurations. It is therefore
quite general and highly flexible. In particular many of the executive functions are
designed for an environment in which processing tasks with varying and unpredictable
computational requirements (memory, throughput, 1/0, utilities, etc.) can be asynchro-
nously entered into or removed from the computer system., This environment is :
typical of a batch-oriented data processing facility. i

[T———

The executive or more accurately, the operating system to support this type of )
processing must include features to accommodate: 'i

i. Job giask) insertion/deletion on-line to the system

2. Dynamic allocation of system resources (particularly memory and I/0)
during system operations

3. On-line debugging of tasks during system operation

4, Variation in system configurations in terms of number and type of 1/O
devices, memory, etc,

A real-time aerospace application such as the ASB avionics system represents
a rather specific class of processing requirements which differs significantly from
non-real time data processing.

The functions/obje.tives of the executive software are affected by the
characteristics of these processing requirements. The most significant characteristics
are described below:

1. Predictable Processing Load - The total processing requirements (memory,
throughput, [/0, etc.) are known and fixed pricr to system operation,
While different combinations of processing tasks may be required for
different operating modes of the system, the precise combinations are all
predetermined.

2. Cyclic Processing Tasks - A high percentage of the processing tasks are
cyclic - i.e,, they must be executed at a predetermined frequency, such as
every 1/32 of a second. Generally tasks which are not cyclic are treated
as "background” and are guaranteed some maximum completion time by an
analysis of the total throughput,

J. Limited User Interaction - The system "user” (the ASB crew) has a limited
and rigorously defined interface {interaction with ‘he processing software)
_ being able only to select from predetermined viavious modes, options and
parameters of system operation, Additional processing tasks cannot be
| entered into the system during operation and no software debugging is
performed when the system is on-line. U
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Software cxecutives for this type of application are generally highly specialized
- to optimize tash scheduling efficiency and minimize executive overhecad. This is
S accomplished at a4 sacrifice in flexibility/generality, taking advantage of the specific
@ processing characteristics noted above,

\While a highly flexible/general executive structure such as described by

E Burroughs could potentially accommodate the ASB processing requirements, many of
the features woukld not be used and significant inefficiency and overhead would result.
On the other hand, some executive overhead is warranted in order to make effective
use of the unique claracteristics of the Burroughs Mulliprocessor. In designing the
executive for the Burroughs Multiprocessing system for the ASB avionics system, the
. struetures and terminology deseribed by Burroughs in Ref 18 were retained as mueh

. as possible and the basie philosophy of that structure remained intact, The executive
LR design is described in the following paragraphs. A significant deviation from or
modifications to the Burroughs design are noted and additional detail specific to the
ASB application is presented.

[ IR )
[ ]

5.4.2 System Configuration

The cxeculive design is based on a mulliprocessor configuration as shown in
Figure 5-20. The computer sysiem consists of one or two multiprocessors and a
mass memory,

i A mulitiprocessor consists of one to five interpréters, one to eight memories, one
to eight devices, and a switch interlock., Each interpreter can access (read/write)
any memory module or deviee through a portion of the swilch interlock dedicated to
the interpreter. In order {o access a device, an interpreter must request a "lock” to
the device and when locked, no other interpreter can access the device.
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Each multiprocessor has an executive. The executives are identical for all
- multiprocessors except for data in the System Control Segment (described in a later
section) which identifies the specific hardware in the multiprocessor and the specific
tasks which it is to perform,

-

Each interpreter has @ hardware test counter which sets a failure indication

H signal if it is allow ed to run without being reset for a fixed length of time. The test
counter is reset periodieallv by the executive software as long as the interpreter is
operating satisfactorily. The failure indication signals from all the interpreters in a
given muitiprocessor are "ORed"” together to form a Multiprocessor Failure Indicator
(MFI) which is routed to the interrupt module of the other multiprocessor (if there is
one) in the system, This NI interrupt is used to initiate on-line backup operations
in the other multiprocessor. The MFI signal is also routed to the interrupt module
internal to the multiprocessor to enable interpreters to initiate failure diagnosis and
. recovery, Run-out of the test counter causes the interpreter to transfer control to a

fixed location in the microprogram memory from which the executive attempts to

diagnose and recover from the failure.
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The computer system contains a Real Time Clack (RTC) which generates a
signal at a fixed interval (1/64 or 1/32 of a second), This signal is routed to the
interrupt modules in each multiprocessor. This signal is used to schedule real-time
r ocessing.
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5.4.3 Executive Structure

(SRR PR N

The executive software consists primarily of a set of microprogram modules - i
and a data structure called the System Control Segment {(8CS). As in the Burroughs
design, the executive functions are distributed among the interpreters, i.e., an :
executive module can be executed by any interpreter whenever required. A single :
System Control Segmest is stored in main memory for each multiprocessor, The SCS
delines the sequence of processing tasks to be performed and the status of the various .
hardwiare modules of the multiprocessor, Each interpreter accesses the SCS to deter- :
mine the next task to perform. The entries in the SCS ure "locked” using the Global e _
Condition bits to prevent access hy one interpreter while an entry is being modified by N
another interpreter. In the Burroughs design, microprogram executive modules were :
stored in main memory (or some off-line storage) and when a particular interpreter .
required an executive function, it would load the appropriate module {: m main
memory into its microprogram memory, In the A3 system all the executive modules
would be permanently resident in ROM in the microprogram memories. The cost and
overhead of using alterable microprogram memories and dynamic microprogram
memory allocation is not justified for the ASB applicatiorn. since the executive's -
funetions are small and relatively constant during system operation. The Locator and
Allocator modules and the parts list described by Burroughs were used to locate and
load executive mocdules into microprogram memory and are therefore not required in
th> ASB system.
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. = 3.4.3.1 System Control Segment

The term System Control Segment (8C5), horrowed from the Burroughs
, description refers to a set of data tables which define the status and schedule of tasks
g for a particular multiprocessor. The SCS is the data which directs and coordinites
i the executive functions in each of the interpreters. The SCS contains the foliowing
tables.

Task Table - This is a simplified, slightly modified version of the corresponding
table in the Burroughs design. It is used for scheduling unscheduling processing tasks.
It contains one entry for eiach task in the multiprocessor. An entry contains the
following information:;

ENTRY READY-TO- CONMON
INACTIVE RUN BITS TASK WORK AREA POINTER
BIT BITS

1. Entry Inactive Bit: This bit is reset when the corresponding task is being
processed by some interpreter.

2. Ready-to-Run Bits: These bits indicate the status of the task in terms of
execution criteria. When all the bits ire set, the task is “"ready to run,”

3. Common Task Bits: These bits are set when the task is to be executed hy
a specific interpreter or combination of interpreters,
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4. Work Area Pointer: This ficld contains the main memory address of the
wcrk area for the task, (Description of work area is defined later,) In the
Burroughs design, task priority was part of the infformation stored in the

ask table which requires that the entire task table be searched cach time a
new Lask is to be scheduled in order to {ind the high priority , readyv—to-run
task. Since nll tasks in the ASB application are predetermined, their
priority can be pre-assigned. Hence, the task table will he ordered by task
priority and the next task to be scheduled in the system will always be the
first entry (from the top) whose ready-to-run bits are set,

Interpreter ‘I'able - This is a simplified version of the corresponding table in
the Burroughs design. The table contains an eniry for each interpreter in the multi-
processor which specifies the slatus of the interpreter. An entry contains the
following informuation.

Entry Interpreter Task Communication
Inactive Down Number Area
Bit

1. Entry Inactive Bit: This bit is reset {0 indicate that the entry is being
modified.

2, Interpreter Down: This bit is set when the interpreter is non-operative,

3. Task Number: This field contains the number of the task table entry
currenily being processed by {he interpreter,

4. Communication Area: This portion of the entry is used for temporary
storage by the inlerpreter.

Note that the function of the "start time, " "wait time, " and "time nexi report duc,
fields in the Burroughs design have been replaced by the hardware-implemented test
counter which acts as a "watchdog" timer for the interpreter,

Memory Map - In the Burroughs design, main memory was segmented into 256
word pages and allocation/status was maintuined at this level, In the proposed B-1
design, main memory is somposed of 4 kK or 8 K modules and replacement/reconfigur -
ation is performed at the module level, Therefore, the memory map contains an
entry for cach module in a multiprocessor. The entry contains the following
information;

FIRST ADDRLSS LAST ADDRESS

Entry
Inactive STATUS STATUS .. STATUS
BIT #1 #3 #n
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1. First Address: The main memory addres: of the first word of the module, *
2. Last Address: 'The main memory address of the last word of the module. *

3. Entry Inactive Bit: This bit is reset to indicate that the entry is being
maodified.

4, Staius #1: This bit is set to indicate that this module has successfully
passed the test performed by the ith interpreter,

Resource Table - This is a greatly simplified version of the corresponding
table in the Burroughs design and contains an entry for each external input/output
device or channel. Each entry contains the following information:

Fntry ]
Inactive iD Status
BIT

1, Eutry Inactive Bit: This bit is reset to indicate that the entry is being
modified.

2, ID. A unique identification of the resource,

3. Status: The current stalus of the resource; i.e., operational/non~operational
ard fault indicators,

The additional information stored in the resource table in the Burroughs design
was related to use of reneral purpose resources such as card readers, printers, tape
units, etc., and is not appropriate/necessary in the ASB system,

5.4.3,2 Table Locks

Since the data tables in the system control segment are accessed by all the
internreters in the multiprocessor, a mechanism must be included to prevent conflicts
in using the tables; i,e., one iaterpreter uses an entry while another interpreter is
modifying it or vice versa. The locking philosophy described by Rurroughs using the
global condition bits and the entry inactive bits will a2dequately pr ovide the mechanism.
This philosophy requiras that an entry can only be modified/used when its entry
inactive bit is set. The cntry inactive bit can only be set when the internreter's
global condition bit is set.

5.4.3.3 Task Work Area

There is a unique work area in main memory for eiach task specified in the task
table, This work area has the same function as that described in the Burroughs
design, namely to define the state of the task and the task' - interaction {via ready-to-
run bits) with other tasks, The work area contains the foliowing information:

*These fields are required to allow for variable size memory modules
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TASK NO, RR BITS IESET MASK

Interrupt
LBIT TASK ENTRY POINTER

"8 Machine State

RR Masks for Associated Tasks

1. Task No.: This ficld contains the number of the task table entry
corresponding to this task,

2. KRR Bits Reset Mask: This ficld contains a mask which is to be "ANDed"
with the Ready-to-Run bits in the corresponding task table entry at the
completion of the task, This has the effect of resetting specific Ready~-to-
Run conditions,

3. Interrupt Bit: This bit is set when the task is interrupted prior to ils
completion,

t, Task Entry Dointer: This field contains the main memory address of the
first "S" language instruction of the task,

5. "8" Machine Stete: This area provides storage for the 8" machine
registers in the event that the fask is interrupted.

6. IR Masks for Associated Tasks: This area contitins a sequence of RR bit
masks and task numbers. These masks are "ORed" with the RR bits in the
specified task table entries,

The task work area in the Burroughs design contained additional information
such s a source table and task resource table which was used to provide access to
microprogram executive modules and goneral purpose 170 resources. This informa~
tion is not necessary in the AsBdesign since all executive modules are permanently
stored in microprogram memory and 170 resources are accessed directly in the 8"
language.

In the Burroughs design, the 'S machine registers; i. e., the accumulaior,
registers, program cournter, ete. of the emulated machine, were located in the work
areca for the particular "8 level task being executed.  In this manner, the "'S" machine
state was correctly stored with a task at the completion of each "S" instruction and no
additional intormation needed to be saved if this task were interrupted, The primary
disadvantage of this approach is the overhend (excecution time) required to access and
restore these registers from main memory for each 8" instruction, This overhead
is compounded by the potential conllicts ir main memory access between multiple
interpreters, The register limitations of the interpreter design were noted in
Section 4,2 of this report.
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5.4.3.4 Executive Modules

As previously indicated, the executive modules are segments of microcode
stored in the read-only microprogram memory of each interpreter, The following
paragraphs describe each of these modules.

5.4 3. 1 S-Language Inferpreter. This module interprets and executes the
processing tasks which are written in an S-language. The S-language would be
similar to the machine language of a lurge airborne conmiputer hut would also contiin
instructions for performing input/output, The input/output necessary to perform the
avionics system processing will be either imbedded in the S-language processing tasks
or programmed as separate 8- language tasks,

The S-language Interpreter is entered from the Scheduler module and it returas
to the Scheduler in responsc to an 8-language instruction executed as the last
instruction of each processing task., The microcode to interpret/execute each
S-language instruction includes testing of the external condition bits to detect real
time clock and multiprocessor failure indicator interrupts., If an interrupt is detected,
the status of the "S-machine” is saved in the work area for the current processing
task together with an indication that the task has been inferrupted, Intepreter control
is then transferred to the Interrupt Processor module,

5.4.3, 4 2 S-Level Ssubroutines. This module is an extension of the 8-language
Interpreter and consists of microcoded subroutines available directly in the S-language
High-usage finctions such as trigonometric subroutines would be programmed in
microcode to decrease the required interpreter execution time and thereby enhance
the overall system throughput.

5.-0.3. L3 Scheduler. This medule accesses the task portion of the system
control segment to determine the next task to be executed by the particular interpreter
and to update the task table entries at the completion of a task,

The scheduler is initially entered from the Initialization module after system
start-up or system reconfiguration after a failure. During normal operation, the
scheduler transfers control to the S-language Interpreter to execute each processing
task and regains control at the completion of the task.

The scheduler tests the external condition bits at convenient points during its
execution to detect real time clock and multiprocessor failure indicator interrupts.
If an interrupt is deteeted, interpreter control is transferred to the Interrupt
Processor module. The Interrupt Processor module in turn transfers control to a
specific entry point in the scheduler, once interrupt processing has been completed.

5.4.3.4. 1 Interrupt Processor, This module performs the functions necessary
to process the real-time clock (RTC) and multiprocessor failure indicator (MFI)
interrupts. The function of these two interrupts is deseribed in subsequent sections,
but the processing performed by the interrupt Processor inveives executing specific
system tasks which modify entries in the tosk table, The result of this processing is
to add specific tusks or sequences of tasks to the current list ol "ready-to-run” tasks.
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The interrupts are recognized and processed by all interpreters in the muli-
processor, Howover, the processing necessary to schedule the appropriate systoem,’
rrocessing tashs is performed by only one interpreter -- the first one {o respond,

The common interrupt (INT) which can be "broadeast' by any interpreter to all ofhers
interpreters is used to coordinate this type of "system' function, The [irst interpreter
to recognize an RTC or MFI interrupt sets the common interrupt bit in all cther
interpreters and siores a code word in their communication areas (in the intcrpreter
table) indicating that the processing has heen initiated. Each interpreter responding

to the RTC or MFI interrupt first tests its common interrupt bit and communicuation
area to determine whether it is the first vne to respond. Al interpreters after the
first simply return to their scheduler modules to seleet their next processing lushs,
{Deperding on the relative timing, the interpreter may return to the task it suspended,
or proceed {o a new higher priority task.)

it cabored s siuses

5.4.3.4.5 Self-Test Excentive, This module initiates and controls eaxceution of
the multiprocessor test procedure used during initial sysiem start up and reconfigura-
tion, This module gets conirol when a fest counter runout ocecurs or a power-up
interrupt is issued. The test procedurcs are described in a subsequent section,

5.4.3.4.6 Bootstrap Loader., This module is used to locate and load the system
loader software {from mass memory or some peripheral device. This operation is
necessary during system stari-up (power-up) or during reconfiguration after a failure.

5.4.4 Scheduling
5.4.4.1 General

The technique used by the executive to select and execule a task is hased on the
approach described in the Burroughs design. The scheduling philosophy has been
simplified and made more specialized, hence more efficient, for the B3-1 application.

Scheduling is performed individually by each interpreter using its scheduler
module and the task table portion of the system control segment. The scheduler scans
the task table from lop to bottom looking for the {irst entry which has its ready-to-run
bils set. Since the task table is ordeied by priority, this task will represent the
highest priority task which is ready-tfo-run, Since all tasks are coded in the same
S-ianguage and the S-language interpreter is permanently stored in each interpreter,
no overhead is regquired to prepare the interpre.er for executing a task and all inter-
preters are equally efficient at excecuting any sequence of tasks.

Note that, by contrast, a system where multiple S-languages are used with
emulators dynamically loaded into microprogram memories, significant overhead/
inefficiency results from retrieving S-language cmulators from main memory. This
inefficiency could be potentially overcome by forming '"chains" of tasks of the same
S-language in the task table as described in the Burroughs design. In this way tasks
in & given S-language are effectively dedicated to a given interpreter so that the
interpreter will not waste time changing emulators. However, this approach has the
disadvantages that the scheduling algorithm becomes more complex (hence time and
memory consuming) and some of the inherent flexibility of multiprocessing is
sacrificed,
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In general, the task table iz organized as shown in Figure 5-24, The tasks are
grouped in the task table according to their execution frequency; the higher the execu~
tion frequency the higher the priority, The highest priority tasks are the system tasks
which represent executive funetions such as system testing which are scheduled in
response to system interrupts ({1TC, NFI, and Power-up). The lowest priority tasks
i are the background tasks which do not have a speeific real-time requirement and can
be executed on a "time-available' basis,

-3 Within each frequency group, the tasks are ordered according to their ready-to-
ot run criteria, i.e., o task which generates data needed by a second task will precede
1 the second task in the task table. Generally the first tasks in each frequency group

are 170 tasks which input data from cxternal subsystems.

An index or pointer is stored with the task table which indicates either the task
scheduled or the highest priority task which is ready-to-run. When the scheduler
searches the task tuble for a new task, it begins at the entry specified by the task
table index and it updates the pointer when it schedules a new task. At the termination
of ench task, the scheduler updates the RR bits specified in the work area of the task
just completed, If the R Lits which are modified cause a new task to become readyv~
to~run, the scheduler compares the priority of the task (equivalent to its index in the
task table) with the current value of the table pointer (equivalent to the priority of the
most recently scheduled task). If the priority of the new task is higher, its index is
stored in the table pointer. In this wanner a minimum number of task table entries
are scanned to schedule each new task,

5.4 4.2 Real Time Clock Processing

The real-time clock interrupts define "the processing ‘uterval for the highest
frequency tasks. The lower execution frequencies are all derived from the real-time
clock frequency, i.e., 172, 174, 1’8, etc. Processing at each of the execution
frequencies is initiated by the interrupt processor module in response to the RTC
interrupt. The interrupt processor sets a RR bit in the svsiem task corresponding
to the RTC interrupt. The RTC system task simply maintains a binary counter from
which it determines which frequency groups are to be scheduled during the next real
time interval. Two groups are scheduled for each RTC interrupt, the highest
frequency group corresponding to the RTC frequency and one of the lower frequency
groups, If the RTC frequency were 61/sec, the scheduling sequence would be as
pictured in Figure 3-23 for successive RTC interrupts.

Scheduling a given frequency group involves setting a RR bit in the first (highest
priority) task in the group aml in any other task whose execution is not dependent on
data geaerated by another task in the same frequency group. All other tasks in the
group will subsequently get scheduled as a result of prerequisite tasks being completed
und =zetting their RR bits,

After processing the RTC interrupt, the interrupt processor module transfers
control to the scheduler module rather than returning to the interrupted module (most
likely the S-language interpreter). In this manner, processing in all interpreters will
be re-initiated at th¢ highest priority waiting task -- cither the one that was inter-
rupted or the new tasks scheduled as o result of the RTC, The first task scheduled
after the RTC will of course be the RTC system task which will be executed by the
first available interpreter.
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Figure 5-24. Task Table Organization
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RTC 1: 64/SEC + 32/SEC
RTC 2: 631/S5C + 16/SEC
RYC 3: 84/SEC +32/8EC
RTC 4: 64/SEC + B/SEC

RTC 5: 64/SEC + 12/SEC
RTC ¢; 64/SEC +16/SEC
RTC 7: 64/SEC ¥ 32/SEC
RTC 3: 61/SEC +4/SEC

®
®
®
Figure 5-25. Scheduling Sequence

5.4, 1,3 Task Execcution

Once the scheduler locates the highest priority "waiting' task, it must set the
interpreter's global condition bit in order to modify the task table entry and initiate
execution of the task., The use and operation of the global condition bits has been
described by Burroughs and in other portions of this veport. Essentinlly the global
condition logic provides the means by which a given interpreter can "lock out” other
interpreters when necessary to avoid interpreter conflicts, Once the interpreter
achieves the global condition iock, i.e., succeeds in setting its global condition bit,
it aguin checks the "entry inictive bit” in the task table entry to make sure no other
interpreter has just set it. If the entry inactive bit is still reset, the interpreter
cxamines the ""common task bits. " If the entry is a normal task, i.e., onc that is to
be executed by only one interpreter, the interpreter sets the entry inactive bit, up-
dates the task table pointer, and relenses the global condition lock. If the entry is a
task to be executed by more than one interpreter, the scheduler resets only its hit

in the common task bits field, does not set the entry inactive bit and does not update
the task table pointer. *

In order to initiate execution of the task, the scheduler stores the task index in
the interpreter table, retrieves the work area pointer from the task table entry, and

transfers control to the $-language interpreter. The S-language interpretor examines

*Note that for a ""common task,' the last interpreter to execute the task will set the

entry inactive bit and update the task table pointer, thus removing the task from the
"waiting' list.
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the task work area to defermine where to begin task execution. I the interrupt biv is
set indicating that execution of the task had been previously interrupted, the S-machine
registers (including the program counler) are loaded from the 'S machine state” Tield
of the work area. Otherwise, the program counter is loaded from the "task entry
pointer” field,

Once execution of the task by the S-language intcipreter has begun, the task is
executed until either it is completed or it is suspended due to the oceurvence of an
interrupt, When a task is completed (as determined by the exccution of a particular
S-language instriction), the S-language interpreter returns control to the schedul-r,
The scheduler updates the RR bits specified in the task work area (the RR bits of the
task just compleled as well as those of any related tasks), rescts the entry inactive
bit, and procceds to schedule the next waiting task.

If a RTC or MF1 interrupt is detected during task execution, the fask is
suspended to allow processing of the interrupt. Suspending :t task is accomplished in
the S~language interpreter by setting the interrupt bit in the task work area, storing
the S-machine registers in the work area, reseiting the enlry inactive bit in the task
table, and transferring control to the interrupt procvessor riodule. The task's
execution will be resumed at a subscquent time when it again becomes the highest
priority ready-to-run task,

It should be noted that in a two multiprocessor system there are two MFI
interrupts processcd by cach multiprocessor, one which comes from the "other”
multiprocessor and one which is caused by a test counter runout within the mylti-
processor, The former results in scheduling the on-line backup tasks while the Jatter
initiates the multiproccssor reconfiguration procedure,

5.4.5 Failure Recovery
5.4.5.1 General

The failure detection and reconfiguration philosophy was discussed in Section 5. 3.
The essential characteristics of the proposed approach are summarized below,

1. Tailure detection is signaled by ''runout” of the test counter in one of the
interpreters, TFailure to reset the test counter results from either loss of
program control or from a fault detected during the software/firmware self-
test performed periodically by each interpreter.

2, TRunout of the test counter in a given interpreter does not necessarily imply
a fault in that interpreter; the fault could be with another interpreter, a
memory module, or a switch interlock channel. *

3. Runout of the test counter in a given interpreter causes an interrupt to be
set in the interrupt module of the corresponding multiprocessor. H also
turns off the power switeh in the corresponding switch interlock channel
thus preventing memory or device access by the interpreter. Program cen-
trol in the interpreter is forced to a fixed address in microprogram memory.

*The switch interlock is a single functional element but it is partitioned to provide
an independent channel for each interpreter
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1, The "ORed” result of the test counter runout (TCR) signals from all
interpreters in a given multiprocessor is called the Multiprocessor
Failure Indicator (MFI) and is routed to the interrupt module of the other
multiprocessor (if any) in the system. This signal is used by the executive
software to initiate scheduling of on-line back-up tasks.

3. When 2 TCR occeurs, the corresponding multiprocessor stops all execution
of avionie system tasks and initiates a restart procedure to isolate the
fauit (through comparison of results of interpreters' self-lests), reload
system data, reload program data (if 1 memory module has failed) and
reinitinlize the processing tusks,

6. Reconfiguration of the multiprocessor in the event of a memory module
fiilure involves loading (and “'relocating') the programs/data into a spare
module or reloading the entire system with a degraded mode configuration
which requires less memory., The power switch in the corresponding
switch interlock channel is used to remove a friled interpreter from the
system, The system can continue to operate after interpreter failuves as
long as sufficient throughput is still available to perform the primary mode
or degraded mode computations, Switch interlock failures are isolated on
a channel basis and are not distinguished from interpreter failures.

3.-4.5.2 On-Line Back Up

In a computer system containing two multiprocessors, each multiprocessor
provides an on-line back-up capability for the other. In order to provide rapid switch-
over and/or avoid interruption in the computad i some processing tasks must he
computed redundantly by both multiprocessors. (n this case, use of the output datu
from the "sccondary’ multiprocessor is signaled by issuance of the MFI signal from
the "primary.” In other cases, back-up tasks are only scheduled upon receipt of the
MFET interrupt signal,

The back-up situation is retained until the operating multiprocessor receives
informution that the other multiprocessor has hoen successfully reconfigured. This
information is transmitted over the paralie! enannel communication path between the
two multiprocessors.

5. 1. 5.3 Reconfiguration

Once a multiprocessor has "shutdoww as a result of 2 TCR indieation, a
reconfiguration procedure is initiated in each interpreter under control of the self-
test executive module in microprogram memory. The procedure is as follows:

1. 3 limited interpreter sclf-test is executed using only the internal interpreter
registers and data. If this is successful, the test counter is reset which
turns on power to the switch interlock channel and allows memory ‘device
access.  If this test fails, the interpreter does not reset its test counter
and is effectively removed from the system.

2. All interpreters which have passed their self-test perform a read write test
on eich of the memory modules and store the results of their test in fixed
locations in every memory module,
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3. After a fixed delay timed by the interpreter's counter, each interpreter
examines the results of the tests. Based on the test resulls, the interpreters
select the operating memories* and one interpreier uses its bootstrap Joader
to load tne system loader which in turn loads the system conirol segment amd
the program information into the good moemory modules. Note that, as
described in the Burroughs design, the address of the system control
segmoent is stored in a fixed location in cvery memory module to ensure
that it can be "found" by any interpreter, As desceribed for the RTC inter-
rupt processing, the first interpreter to achieve the global condition loack is
the one that performs the Joading {unction, and the common interrupt (INT)
is used to signal thot the task is already being pertormed,

4. Onec the system control segment (SC3) has heen loaded, the status of the
system is stored by cach interpreter in the SO and the yemainder of the
procedure is controlled by system tasks stored in main memary and listed
in the task tuble. These tasks include swilch interlock and device tests,
S-language interpreter tests, und initinlization of avionics processing {asks.

3. Once the system tasks have been completed, the reconfiguration is reported
to the other multiprocessor (a function of the last system tasky and the
scheduler proceeds with its normal operation,

. *\'arious algorithms are possible for analysis of the multiple test results, The
simplest is probably to consider a memory module failed if it fails more than one
interpreter’'s test and an interpreter (or SWI channel) failed if a memory module
; passes cvery interpreter's *est but one,
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6. PHYSICAL CHARACTERISTICS

6.1 COMPUTER DESCRIPTION

The objective of this seetion is to estimate the physical characteristics of the
Burroughs Multiprocessor, in an avionics environment, to implement the ceniral
processor for the ASB avionies system. The total eomputational system wis described
in Figure 5-13; the objective of this scction is to estimate the characteristics of the
computer identified as the "central processor” in this fipure. The central processor
actually consists of two multiprocessors, The multiprocessors nre basically the
Burroughs configurations as desceribed in Section 3 with the necessary modifications
required to operate in the ASBE avionies system, These modifications are for the most
part deseribed in Scetion 5,3.2 and shown in Figure 5-20,

The resultant central processor to be mechanized is shown in Figure 6-1, The
following modifications to the present Burroughs multiprocessor design are assumed:

1. Interpreter:

a. GC and INT logic removed,
b, Test counter {24 bits) added thao counts down to 0 and is wired {o EX2,
it is reset by a code in nano bits 51-584,

2. SWI:

a. DPartitioned on a channel per interpreter basis as explained in
Section 3.3.5.

b. GC logic redesign and placed in SWI, INT logic placed in SWL

¢. Power switch added on a channel basis,

3. Devices:

a, Interrupt module added that contains a real time clock (RTC), an
interrupt register, and an interrupt mask register.

. Multiplex Interface Controller (MIC) added.

<. Parallel Channel (I*C) added.

d. Mass Alemory Channel (MMC) added,

e. Discrete 170 added,

The characteristics of each multiprocessor are given in Table 6-1. Basically
these characteristics provide a one to one correspondence with the Burroughs lab

prototype version described in Reference 1 except that the necessary modifications
listed above hayve been addet as shown in Figure 6-1,

199

PRECID1NG PAGE BLANK-NOT FILMED




CIT3, NAVIGATION FUNCTIONS (MP )

! -
INTERRUPT ! -
INT { 1 I MODULE
MIC
SWi Swi SW1
SWI CHANNEL CHANNEL CHANNEL
pC
1 2 3
MMC
3K 3K 8K BK
DISCRETE
/0
PWR CLOCK DEVICES

WEAPON DELIV, STEERING, TGT/CKPT ACQ, MDM FUNCTIONS (MP2)

: . | I INTERRUPT
MODULE
MIC
SWI SWl SWI SWI
CHANNLL | CHANNEL | CHANNEL | CHANNEL v
M 2 3 4
. MMC
i
/ 1K 4K 4K 4K
% DISCRETE
;0 g
. CLOCK PWR

Figure 6-1. System Block Diagram of Central Processor
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Table 6-1. Central Processor Characteristics

Multiprocessor 1 (MPi1)

a. 3 Infcrpreters, 2048 x 16 bit
ROM for the MPM, 1024 x 54 bit
ROM for the NM, 4 Mlz clock rate, 32 bit LU

! b. 3 SWI channels, 20 MHz clock, 8 bit wide data in/out interface,
4 hit wide address interface
E - c. 4~ 85,192 word x 32 bit memory modules
: d. Interrupt Devieo
- e. MIC Device
f. PC Device
g. MDMC Device
h. Discrete 1/0 Device
3 | Multiprocessor 2 (MP2)

a. - Interpreters

b, 4 SWI channels

c. 4 -4,096 x 32 bit memory modules
d. Interrupt Device

e. MIC Device

f. PC Device

g. MMC Device

h. Discrete I/0 Device
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The interface both within the computer and external to the computer was itemized

to aid in performing the physical definition. The external interface to each multi- .
processor is given below:

1. MIC - 2 twisted pair - shielded cables

2. PC - 16 signals (estimated)

3. MMC - 16 signals (estimated)

1, Discrete /O - 8 signals (estimated)

5. Interrupt - 8 signals (estimated)

6. AMemory Port - 39 signals (estimated), allows connection to main
memories via 21 SWI channel for off line operations such as memory load,

7. DMiscellaneous external control - 10 signals (estimated)

8. Power - 115 volt - 400 cycle

The internal interface is shown in Figurcs 6-2 through 6~ and is summarized

below:

1. Interpreter:

a.
b.
C.
dc

C,

SWI (MIDC) - 13 signals, Int. Clock, and H, 8. Clock.

SWI (AMC/DC) - 3 signals,

SWI (IOSN - 1 bits data in and out, 2 bits address, and clocks) -
10 signals.

SWI (IOSN - total for 8 bits data and 4 bits address for 8 memories
and 8 devices) - 20 signals.

Interrupt device - 2 signals.,

2. SWIL:

MDC

(1)
@)
@)
()
()
(6)

Interpreter ~ 13 signals, Int. Clock, and 1. 8. Clock
Other MDC channels - 5 signals

MC/DC ~ 9 signals

IOSN - 1 signal

H,.S. Clock

External clear signal

MC/DC

(1)
(2)
(3)
(h
(5)
($)

Intecpreter - 3 signals

MDC - 9 signals

I0OSN - § lines

Other MC/DC channels - 32 signals .
Memories - 8 signals il
External clear signulzo2 ‘
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Figure 6-2, Interface Between Modules Per Interpreter/SWI1 Channel
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c¢. [OSN (¢ bits data in/out, 2 bits address)

(1) Each interpreter - 10 signals

{2) Memories or devices - 96 signals
(3) Each MC/DC - 5 signals

(4) Euxch MDC - 1 signal

3. Memory

a,  SWIIOSN ~ 23 signals
b, SWI MC/DC - 1 signal

4., Device
d, SWI IO8N - 23 signals
6.2 MODULE MECHANIZATION
6.2.1 Introduction

The logic technology utilized in estimating the physical characteristies was
bipolar MSI, Currently available state-of-the-art devices were used in estimating
the parts count, The memory technology utilized was 2 mil plated wire which is
considered a state-of-the-art technology. The packaging philosophy utilizes standard
avionies practice with multilayer circuit and interconnect boards with forced air
cooling., The resultant physical estimate for the central processor represents a
computer mechanized from state-of-the-art technology that is readily producible
requiring no techiology developments or "breakthroughs.”

6.,2.2 Interpreter Mechanization

The basic module was a plug-in board, This module was based on approximately
a 6.5 inch high by 9.0 inch wide hoard, A preliminary logic design of the interpreter
was performed to arrive at an estimate of the number of integruted circuits required.
Table 6-2 gives the integrated cireuit types and amounts used in the prelimiuary
design, Table 6-3 gives a summary of the mechanization, Allowing approximately
a 20 percent spare factor for miscellaneous functions overlooked in the preliminary
design, 300 IC's dissipating 25 watts are required,

Figure -5 through 6-8 show prelimimry logic dingrams for part of the
interpreter. These logie dingrams and parts counts should be considercd preliminary
estimates only, A final design would require detailed study of timing and control
signals.

For a module of 6.5 x 9.0, or 58,5 square inches of mounting area, a considerable
number of components can be mounted on a board; norimal practice would allow in the
neighborhood of 300-14 lead flat pack integrated circuits. However, in view of the
number of intercommections internal to the module and externally into the system, the
module would become very cumbersome to layout and require a substantial number of
layers of circuitry to effect al! the interconnections (the large power requirements
not withstanding), Therefore, it is estimated that the interpreter will require two

.
[ooes
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Table 6-2, Interpreter Parts Estimate

‘ Power
. Device No, of Dissipation Total Power
Quantity | Number Device Name Pins Typ MW Dissipation
10 MMG255] 1024 x 10 bit ROM 24 500 5000
1 74LS00 Quad 2-in. NAND 14 8 8
3 71LS04 Hex Inverter 14 12 36
2 7408 Quad 2-in. AND 14 80 160
1 7411 Triple 3-in, AND 14 40 40
1 741820 Dual 4-in. NAND 14 4 4
1 7423 Dual 4~in, NOR 16 45 45
3 7432 Quad 2-in, OR 14 95 285
1 74LS51 Dual 2-wide AOI 14 28 23
1 74L855 2-wide 4-in, AOI 14 28 28
1 7460 Dual 4-in, Expander 14 8 8
5 TiL873 Dual J-K FF 14 20 100
1 7486 Quad 2-in, XOR 14 150 150
25 T4L895A} 4-bit Shift Register 14 50 1250
2 74LS138| 3 to 8 Line Decoder 16 32 G4
1 74150 16-bit MUX 24 200 200
58 74LS153 | Dual 4-bit MUX 16 31 1798
1 74154 4 to 16 Line Decoder 24 170 170
24 74157 Quad 2-bit MUX 16 150 3600
32 74LS174} Hex D FF 16 66 2112
12 7418175 Quad D FF 16 44 528
R 8 74L8181 | Arith Logic Unit 24 105 840
- 3 74182 Look-ahead Carry Unit] 16 180 540
. 5 74LS197| Binary Counter 14 60 300
. 4 7418295| 4-bit SR w/3-State 14 ¢0 240
: 8 8243 8-bit Position Scaler 24 315 2520
- 12 9006 Dual 4-in. Expander 14 7 R4
. 32 9008 Expandable 4-wide AOI] 14 40 1280
} - 21,418 MW
! = 21.5 watts
R
- Table 6-3. Interpreter Mechanization Summary
N ; Parts Estimate
i Type Quantity Power
N 14 pin 98
§ 16 pin 132
b E 24 pin 28
: £ Total 256 : 21,5 watts
With approximately 20 percent pad factor
Total 300 25 watts
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modules in its final mechanization, These two modules will be referred to as interpreter
Module A and Interpreter Module B, The exact partitioning between these two modules
was not performed in this study. However a most likely partitioning will be having the
MPM, NM, and MCU on one module and the CU and LU(s) on the other module,

6,2,3 SWI Mcechanization

The SWI alternate design presented in Section 4. 3.5 was examined to determine
its method of implementation in an avionies environment, It was found that coasider-
ably higher density could be used than in the approach taken in Section 4.3,5, The
restltont BWI was mechanized with two tynes of modules: (13 MDC-MC. DC and (2)
OSSN, The MDC as described in Section -1, 3.5 requires approximately 30 IC's and
the MC/DC requires approximately 10 IC's, further these are primarily Ll pin IC's.
It is definitely feasible to piace the MDC and MC/DC on one module,

The 108N was investigated and it was found that up to four channels (interpreters)
could be placed on one module (total of approximately 55 IC's required). This IOSN
provides -t data bits in, 4 data bits out and 2 address bits for either 8 memories or
8 devices.,

Therefore, the SWI was mechanized with two types of modules, one module
provides all the control/selection/priority logic for one interpreter and the other
module provides the required interconnection ogie between memories, devices and
the interpreters. It is estimated that using low power shottky devices, the MDC-
MC/DC module would require approximately 3 watts and the IOSN module approximately
2 watts,

6.2.-+ Memory Mechanization

The memory modules are mechanized using 2-mil plated wire technology. This
technology has been pioneered by Autonetics and is now considered a state~of-the-nrt
producible technology., The basic memory modules are constructed from a 6,5%3 x
9 x 0,52 board (module) that contains the plated wire array for 3K x 16 bits, This
bhoard also contains the x, y switches, diode substrates, bit axis substrates and strobe
eleetronies. This organization allows the sense eleetronics to be practically integral
to the memory array, thereby eliminating signal problems resulting from lengthy
interconnections. Two of these boards are used to make up a4 8K x 12 bit memory.,

I addition to the memory array boards, two electronics boards are required for the
bit drivers, timing and control,address decode, data register, ete electronics. These
modules will be referred to as "Memory Electronics Module A* and "Memory
Electronics Module B,

Some features of the Autonetics design are listed below:

1. Small Diameter (2-31il) Wire

Provides minimum arrayv size and power, and permits smitll, low power
clectronics., The wire has wide operating margins, and high output signal
characteristics,




2, High Density Array
Double mat approach in conjunction with high bit density permits comnlete
subsystem (8K x 16 bitsy on n single board, thereby eliminating the require-
ment for less reliable flexible cabling to other boards., Design significantly
reduees interconnuctions and eliminates plated through holes in the mat.

3. lybrid Packages

Repetitive circuits are combined into hybrid packages for smalles volume
and increascd reliability.,

1.  Modularized Array Configuration
Low volume hybrid packages plus high density array permit the placement
cf all first level electronies on the same board, This yields maximum

signal-to-noise rutio.

5,  Conservative Eleetrical Design

ki
2
g
<3
&

Two active erossovers per bit are used for balance and maximum signal
margin,

Word circuit design requires relatively fov parts and provides t:nhtl)
controlled word current,

Bit axis electronie cireuitry is greatly simplilicd through the use of an
integrated MOS multiplexing cireuit,

bV e

The plated wire planc uses Auteneties 2, 0 mil plated wire and high density mat
technologies to provide memory sl()l“lge with low power drive requirements and high
signal-to-noisc output characteristics

The planes are located on the array modules, which they share with the word
and bit eleetronics which constitute the first level of interface with the plane. Due to
a unique stacking of planes on the array module's support hoard, the storage capacity
is twice that normally associated with a board this size. Fach array board contains
four plated wire mats so that a1 complete sense loop i1s accomplished on each side of
the board. Figure -9 shows these plated wire hairpins in a eross section view., The
word straps, viewed in cross section in Figure 6-10, actually wrap around the support
board in addition to wrapping around cach tunncl stru(lurc layer, Thus, the number of
word matrix circuits is reduced from four to two since one set of circuits services the
inner mats on both sides, and another set services the outer mats on Loth sides.
Further, the number of interconnections is reduced because of the wrap around
featurcs, and plated through holes are eliminated.

The memory is organized with two crossovers per bit, which is accomplisherd
by jumpering together adjacent pairs of hairpins where indicated in Figure -9, The
other end of the adiacent hairpins lie on pads at the edge of the bit axis substrate,

which couples them tothe input of the sense multiplexer function which is on the
Memory Electronics Module,
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The word lines are composed of a one turn strap, and are joined to ceramic
substrate boards containing the matrix diodes and the X and Y buses,

Keepers and ground planes are used to provide the desired magnetic field for
optimum bit operation and to give proper word circuit operation.

The resulting characteristics of this plane design permit clean drive current
waveshapes and high signal-to-noise output voltages, This transiates into more
reliable memory system operation.

The memory timing waveforms are shown in Figure 6-11, This results in the
following memory operation times:

Read access: 350 nano sec
Read cycle: 800 nano sec
Write cycle: 800 nano sec

The central processor requires two types of memory modules. MP1 requires
8K x 32 bit modules and MP2 requires 4 K x 32 bit modules. As explained above a
8 K x 32 bit module would be mechanized from two array boards and two electronics
hoards. Alternative configurations w:2re examined for the 4 K x 32 bit module and it
was determined that this module also would require the same basic structure as for
the 8K x 32 bit module. It is not possible to place the 4 K x 32 bit memory array on
one board, Consequently the 4 K x 32 bit memory module will also require 4 boards
However, the memory array boards can have some of the components and arrays
left off the boards resulting in 1 K x 16 bit array modules.

6.2.5 Device Modules

The device module types were listed in Section 6.1. The design of the MIC
device was presented in Section 5,2,3,2. It is expected that this device module
could be easily implemented on one board. The remaining device modules were not
investigated in detail, However, it should be noted that the remaining four device

modules are very simple in their mechanization and it is expected that they could all
be placed on one board.

6.3 CENTRAL PROCESSOR PACKAGING

The central processor of the avionics processor and controller is packaged in
two separate forced air cooled packages, one for cach multiprocessor as shown in
Figure 6-12, One houses the CITS and navigations functions (MP1), and the other
houses the weapon delivery, steering, target/checkpoint acquisition and mission data
management functions (MP2), Each multiprocessor unit is patterned after the
MIL-C-172 case size of the MS 91403-C1D, It measures 7,63 inches high by 15,38
inches wide by 20. 80 inches long for a volume of approximately 1.-11 cubic feet.
Both units weigh approximately the same, 79 pounds each, Though there are less
modules in MP1, the weight difference is picked up in the larger memories., Table
-4 lists the major assemblies for each of the units and Figure 6-13 shows the
general arrangement in each unit.
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Table 6-4, List of Major Assemblies in the Central Processor

: MP1 MP2
3 Assembly Name Quantity Quantity
Device Modules:
A PC, MMC, Disc 1/0, INT Module 1 1
L MIC Module 1 1
. - SWI Modules:
s . 10SN Module 4 4
o MDC-MC/DC Module 3 4
’ Interpreter Modules:
Interpreter Module A 3
Interpreter Module B 3 4
Memory Modules:
8 K x 16-bit Array Maodule 8 -
4 K x 16-bit Array Module - 8
Memory Electronics Module A 4
; Memory Electronics Module B 4
Power:
Power Converter A 1 1
.. Power Converter B 1 1
-- General:
i Master Interconnect Board 1 1
. Structures (Chassis, Covers, etc) 1 1
e
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The housing for the uniis are identical in size and configuration for each of the
two units, For a difference of 1,05 inches in depth to accommodate the three modules,
it was decided to have one vommon chassis, The structure is of all aluminum construc-
tion and uses integral heat exchangers., The heat exchangers are double pinned sections
serving two compartments, the power converters on the one side and the plug-in
electronics and memory modules on the other., Details are shown in Figures 6~14 and
6-15. Construction techniques to be used in the fabrication of the chassis are brazing
and machining with all aluminum alloys to be used in the construction,

The plug-in modules of the system are cized from a standard that is compatible
with the plated wire memory modules. That is, the modules are approximately 6.5 inches
high by 9,0 inchkcs wide, In analyzing the functional requirements and in implementing
the mechanization of those functions, the modules have been simplified in the layers
required and the quantity of parts per module without sacrificing efficiency and functionil
performance requirements of the system. The most complicated module in the mulli-
processor will be one of the inlerpreter modules (( ~10 layers). The remaining modules
are relatively simple requiring 2-4 layer boards, Each of the modules utilizes plug
typn connectors to comply with the pin and socket connector arrangement required of
airborne electronic equipment within specification M11.-E-5400, leat dissipation "rails"
are bonded to the boards which have in turn components bonded to them to conduct the
heat out on these ''rails' to the forced air cooled heat exchangers. Module locks on
the principle of a wedging action are used to retain as well as help in the heat transfer
from module to heat exchanger,

The power converters are in a different situation with RT'I heing the most
problematical. The packaging for the power converter has them enclosed in "RF!
tight' cans and mounted direclly to the heat cxchangers in "coldplate mount™ fashion,

Interconnections from inodule to module are accomplished with a master
interconneet board. Maximum number of layers to accomplish the interconnection
would run approximately six layers.

The following is an estimate of the power dissipation in each multiprocessor:

Multiprocessor 1:

3 Interpreters 75 waits
SW1 17 watts
2 Device Modules 20 watts
4 Memory Modules* 65 watts
Total 177 waltts
with 2/3 efficiency
in Power Supply: 265 watts

*Note: The power dissipation of 2 memory module is approximately 20 watts when
operating and 5 watts in standby. This power is approximately the same for the 4 K
and 8 K memory modules. In MP1, since there is one more memory module than
interpreters, one module will on the average he in standby.
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L .
f> Multiprocessor 2: : '
4 4 Interpreters 100 watts .
3 SWI 20 watts
, 2 Device Modules 20 watts
3 4 Memory Modules* 80 watts t
Total 220 watts
with 2/3 efficiency
g in Power Supply 330 watts
N 6,4 SUMMARY OF PHYSICAL CHARACTERISTICS
13
;’ The central processor was defined to consist of two multiprocessors, each in
identical packaging units, The characteristics of each multiprocessor are summarized
¥ balow: .
Multiprocessor 1:
1 Size 1,41 cu ft
. Weight 79 b
- i Power 265H watts

Multiprocessor 2:

Size 1.1l cu ft
Weight 79 1b
Power 330 watts !

*Note: The power dissipation of a memory module is approximately 20 watts when

operating 2nd 5 watts in standby. This power is approximately the same for the 1K
i and 8 K memory modules. In MP1, since there is one more memory niodule *han
interpreters, one module will on the average be in standby. -
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7. SUMMARY AND CONCLUS{ONS

The computational requirements for an advanced Avionics Sys(em were defined,
In particular, the ASBavionics system was selected as representative of an advanced
avionics system. The Burroughs multiprocessor concept was analyzed considering the
requirements imposed on this design by the avionies system. I was found that in
general the Burroughs multiprocessor offers a very flexible and adamable design,

however, it does have some limitations which were considered to he capable of being
corrected.

The multiprocessor offers a wide possibility in the type of language choosen to
run on the machine. It is suitable for emulation applicaticns, execution of a higher
level language, and optimization of a particular language to the application. The
emulation of an IBM 4 v CP avionics computer was investigated in detail. I was
estimated that a single interpreter’s throughput capability when operating in such a
mode would be approximately 79, 000 operations/second for a typical avionics mix of
operation (instruction) types. In addition, the optimization of this emulation through
the use of macro instructions was investigated. I was found thai for the same applica-
tion, the cffective throughput of an interpreter could be increased to 120,000 operations/
second., The throughput capability is considered somewhat low when compared to state-

of-the-art avionics processors and this is the primary limitation of the Burroughs
multiprocessor.

Various methods to increase the throughput capability of an mterproter were
considered. Some of the more important ones are noted below:

1. Provide more A registers
2. Faster multiply algorithm

3. Modify logic to provide typically required functions such as: set carry
latch for a carry overflow, more shift functions such as shift and spread
sign, provide more conditions that can be set and more flexibility in
testing multiple conditions.

The 3WI1 module was analyzed to defermine its timing, interface with memories -
devices, modularity, and failure tolerance. It was found that modularity and failure
tolerance were not achievable with the present design. An alternate design was arrived
at that essentially partitions the SWI ‘nto channels where each inteipreter is dedicated
to a channel. This new design enhances modularity and allows failure tolerance to he
readily achieved through power control to individual channels. In addition the new
design uses less modules and reduces the types of modules reyuired.

Using the results of the avionics system requirements definition and the definition
of the capahilities and limitations of the Burroughs multiprocessor modules, a configu-
vation for the avionics application was arrived at. The processing requirements were
analyzed to determine which computations should be performed in a central processor
and which in a local processor at the subsystem level. As a result of this allocation
analysis, three subsystems were allocated local processors: a penetration aids
processor for the entire pen aids subsystem, a navigation processor for IMU control
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processing for the navigation subsystem, and a weapon delivery processor for the

o SRAM processing in the weapon delivery subsystem. The remainder of the processing

functions were performed in the central processor. The resultant configuration for
the central processor required two multiprocessors, one with three interpreters and
the other with four interpreters.

: The interface to the ASBavionics multiplex system wasg investigated and a
g multiplex interface controller module that functions as a device in the multiprocessor
4 was defined. It was found that the inherent flexibility of the interpreter allowed it to

readily perform I/0 processing functions.

The failure detection and reconfiguration methods for the central processor were

investigated and defined. Several modifications and additions were required in order

1,

.2.

6,

1.

oy 1

to provide a failure tolerant system:

Real time cloek that provides periodic interrupts added
Test counter added to interpreter

Interrupt module added

GC logic modified and moved to SWI

SWI partitioned per new design

Power switch added to SWI channels

Software detection, isolation, and reconfiguration programs added

It was determined that with the above modifications/additions, a failure tolerant multi-
processor could be achieved,

The executive required to operate the multiprocessor in a real time control
avionics system was investigated and dcfined. [t was determined that the Burroughs
executive concept could be used with many simplifications to its basic structure.

A preliminary design of the central processor was performed based on state-of-
the-art bipolar MSI logic and 2 mil plated wire memory technology. It was determined
that the central processor would consist of two units, each housing one multiprocessor,
Each multiprocessor occupies 1, 41 cu ft and weighs 79 lbs, One multiprocessor
dissipates 265 watts and the other 330 watts,

The conclusion reached from this study is that it is feasible to mechanize the
ASB avignics compuiational system with the Burroughs multiprocessor concept and
achieve a mechanization that is reasonable in its physical characteristics, This
mechanization requires certain modifications as were noted above. In addition,
improvements were noted that could further enhance the performance of the design and
potentially improve the resualtant physical characteristics.
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