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ABSTRACT

This report presents the results of a study to configure an advanced
multiprocessor for an avionics system. An advanced strategic bomber
avionics system was selected as representative of an advanced avionics
system application and the computational requirements for this system were
defined. The prototype laboratory version of an advanced multiprocessor
developed by Burroughs Corporation under Air Force Avionics Laboratory
sponsorship was examined and applied to the avionics system. It was found
that the Burroughs multiprocessor offers a very flexible and adaptable design.
Several improvements were noted to improve its performance and several

H design modifications were noted which are required in order to apply the
design to the avionics system. The resultant configuration showed that
mechanization of the computer system, using state-of-the-art technology.
for an advanced strategic bomber avionics system is feasible with the

L Burroughs multiprocessor concept. This report is also being published as
Autonetics internal report C72-812/201.
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1. INTRODUCTION

This report presents the results of a study to configure an advanced
* multiprocessor for an avionics system. The Air Force Avionics Laboratory has

developed a prototype of an advanced multiprocessor in recent contracts with
Burroughs Corporation (Ref 1). The objective of this stud" was to define
ithe computational requirements of an advanced avionics system, Investigate the
Burroughs multiprocessor in light of the requirements imposed by an avionics
system, and configure a computer system for the avionics application using the
Burroughs multiprocessor design.

The study was divided into four principal tasks as shown in Figure 1-1:

Task 1 - Requirements Analysis

Task 2 - Module Definition and Analysis

Task 3 - Configuration Definition

Task 4 - Physical Characteristics

Section 2 describes the results of defining the computational requirements. Section 3
contains a brief summary describing the Burroughs multiprocessor concept.
Section 4 presents the results of the analysis of the Burroughs multiprocessor with
regards its capabilities and limitations in an avionics system environment. Section 5
presents the configuration for the avionics system using the Burroughs multiprocessor
modules. Finally, Section 6 contains an estimate of the physical characteristics of
the Burroughs multiprocessor for the central computer of the avionics system.
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2. REQUIREMENTS ANALYSIS

The purpose of the Requirements Analysis was to provide a set of realistic

7 advanced strategic bomber avionics digital data processing requirements. From these

requirements and the results of the module analysis task, an appropriate Avionics
Processor-Controller subsystem can be configured.

2.1 ANALYSIS APPROACH

2. 1. 1 Advanced Strategic Bomber (ASB)* Avionics System Definition

The B-I Avionics System was selected as representative of the advanced
strategic bomber avionics system for the purpose of this study. The B-1 avionics
configuration was initially established by the September 1971 RFP for the B-1
Avionics System Interface Contractor (ASIC). This baseline configuration has been
amended as the result of amendments to the RFP, the new avionics subsystems
proposed by Autonetics in response to the RF11, and by changes to the B-1 avionics
system since award of the ASIC contract.

The fl-I avionics configuration was further modified in response to the goal of
this study in two definite areas. First, the offensive and defensive subsystems
defined by the modified RFP wyere combined into one avionics system. Secondly, the

t pre-processors currently in the 1l-I avionics hardware were assumed to be not
included in the avionics configuration.

The resultant 11-1 avionics configuration established for this requirements
analysis is oriented about a central digital data processing system. The final
avionics configuration for this study will be defined later in this report when pre-
processors are allocated as a result of the Configuration Definition task.

Some figures are included for background information. Figure 2-1 is a block
diagram of the 11-1 Avionics System as proposed by Autonetics in response to the last
AF amendments to the RFP. Note that central computers with specific functions are
contained in this system. In the offensive subsystem they are the (eneral Navigation
Computer (GNC) and Weapon Delivery Computer (WDC). Besides the primary
functions contained within each computer, backup mission essential functions (not
including CrTS) are also contained in each computer. These backup functions are
"activated in either computer should the other computer fail. The General Defensive

¶ . Computer (Gl)C) is the sole central computer in the Defensive Subsystem. Note Lhat
no backup processing of GDC functions is available in case of GDC failure. For this
reason, Autol.?ties proposed an alternate configuration as shown in Figure 2-2. Both
GDC and Central Integrated Test Subsystem (CITS) latckup mission essential functions

,,w can then be provided in identical central computer subsystems as well as primary

functions within the Defensive Subsystem.

Figures 2-3 and 2-4 show the Avionics Multiplex (AMUX) assignment contained
within the Autonetics proposal for the offensive and defensive subsystems, respec-
tively. The hardware subsystems arc grouped in response to functional capabilities
and data transmission loading considerations.

AM shall be used for "Advanced Strategic Bomber" in this report.

1 3
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Finally, Figure 2-5 shows the ASP,3 avioaics configuration established for this
study. A definition of the subsystem hardware abbreviations is contained in Table 2-1.
Note that the AMUX configuration shown is not the actual Implementation design
required, dual data transmission over separate AMUX lines is required for fail
operational AMUX capability. Also, while the primary function interface is shown,
e.g., Navigation with IMU 1, other functions may have data communication require-
ments, e.g., CITS with IMU I.

In defining the avionics configuration, the data transmission in and out of the
crew capsule was minimized for physical considerations. The hardwvare subsystems
included in the cockpit (crew capsule) are identified in Figure 2-5 to allow association
with Offensive and Defensive Subsystem operators (rear cockpit) as well as front scat
operation.

2.1.2 Processing Requirements Definition Approach

The overall processing tasks were first g ,ouped into major functional elements:

1. Navigation

2. Steering

3. Target/Checkpoint Acquisition

4. Weapon Delivery

5. Penetration Aids

0. Mission i)ata Management

7. CITS (Central Integrated Test System)

8. Executive

The association of the hardware subsystems with their major interfacing and
supporting functions is shown in Figure 2-5. The intent of the functional subsystem
grouping is to provide a maximum of subsystem operational capability with a minimum
of interfunction data transmission.

The detail processing requirements were estimated for each of the identified
functional groups. Each major function was broken clown into several processing
tasks. The processing tasks were determined based on interfacing hardware
processing requirements, the basic selectable modes of operation, and the complexity i
of the total function.

The definition of a processing task as used in this requirements analysis is a
major processing segment executable as one contiguous element at a specific rate. No
attempt was made to define extremely small tasks within a specified rate dependent
upon multiple conditions and mode selection. Most of the conditional logic is assumed
to be contained within a defined processing task. This approach was taken since it is !-

generally the most efficient avionics processing implementation approach. Extreme

10
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Table 2-1. A58 Avionics Subsystem Equipment List

Navigation Subsystems

Inertial Measurement Unit (IMUI, and 2

I)oppler Radar Set (DRS)

Radar Altimeter Set (RASi, I and 2

iNavigation Control Panel (NCP"

Navigation Display Panel (NDP), Front and Rear

Chronometer Unit (CU), Front and Rear

Terrain Following Radar (TFR)

Central Air Data Computer (CADC), - and 2

G-ro Stabilization Subsystem (GSS)

Steering Subsystems

Flight Director Computer (FDC), 1 and 2

Automatic Flight Control Subsystem (AFCS), 1 and 2

Steering Control Panel (SCP1, 1 and 2

Horizontal Situation Display (UISDi, I and 2

Vertical Situation Display (VSD), I and 2

Target Checkpoint A.(lu isition Subsystems

Forward-Looking Radar Control Panel (FLRCP)

Forward-Looking Radar Display (FLRM)1

Fo rwa rd-Look ing 11aidar (F LIZ)

L.ow Light l.cvel Television (LLTV)

Forwa rd- [ooking Infrared (FLU'%)

Offensive Tracking Ilandle (0T Ih

Multisensor Display (MSI))

EVS Control Panel (EVSCP)

EVS Autotracker (lEVSA) I
Video Recorder (VR)

Video Recorder Controller (VRC)

Video Recorder Control Panel (VHC P1

12- g
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Table 2-1. (Coat)

Weapon Delivery Subsystems

Stores Management Panel (SMP)

Store Logic Unit (SLU)

Weapon Interface Units (WIUs), I through 5

Stores Consent Panel (SCP)

Penetration Aids Subsystems

Radio Frequency Surveillance/Electronic Countermeasure Set (RFS/ECMS)

S - Infrared Surveillance Set (HISS)

Penetration Aids Control Panel (PACP)

Threat Symbology Generator (TSG)

Thr,2at Situation Display (TSD)

Threat Data Display (TDD)

Defensive Tracking Handle (DTII)

* :Dispensables Control Set (DCS)

Mission Data Management Subsystems

Oensive Integrated Control Panel (OICP)

Defensive Integrated Control Panel (DICP)

Mission Data Cartridge Reader (MDCR)

Mission Data Tape Recorder (MDTR)

--- Mass Memory Unit (MMU)

-. Mission Peripheral Controller (MPC)

Central integrated Test Subsystems

V Data Acquisition Unit (DAU), 1 through 5

CITS Maintenance Panel (CMP)

CITS Tape Reader (CTR)

CITS Printer (CPR)

0! CITS Control Panel (CCP)

CITS Status Panel (CSP), Front and Rear

I1
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modularization 1.ased upon multiple conditions is inefficient in an avionics implementation
for several reasons. First, a high overhead in executive task scheduling determina- I
tion logic and data shuffling is required due to the high number of multiple conditions
and executable tasks as well as intertask data transfer. Second, an excessive amount
of documentation must be generated and maintained for the separately identifiable
tasks and associated input and output data. Also, additional testing and verification a
must be performed at the detailed task level to validate task computation as well as
intertask data transmission. The task level selected allows mode and submode
branching to be performed within specified tasks.

The processing requirements were determined by performance of the following
tasks:

1. Estimation of the hardware/function interface signals and required data
transmission rates.

2. Estimation of the function/function interface signals and required data
transmission rates.

3. Segmentation of each major function into processing tasks executable at

specific processing rates.

4. Segmentation of each processing task into identifiable subtasks.

5. Estimation of the intra-function signals between processing tasks within
each fuaction.

.i, Estimation of the number of operations (instructions) and data (combined
parameters, variables, and constants) for each task and subtask. The
number of operations per iteration was computed based on assuming -.

80 percent of the total instructions per subtask being executed during a
given computational iteration. The total number of operations per second
Swas then computed based on the required iterations ler second. The total
task processing requirements were then summed by adding subtask totals.
if the task was determined to contribute to the worst case throughput
requirement, it was tagged for subsequent inclusion in the requirements
summation for the major function.

7. Prerequisite processing tasks were identified for each processing task.

8. The total memory and throughput requirements for each major function
were determined by totalling the Individual task requirements.

9. A block diagram of each major function was generated to give a visual
representation of 'he overall function operation. Major generic subfunctions,
consisting of mu!tiple processing tasks were identified. The major inter-
face signals between subfunctions and external hardware and other functions
were identified,

10. The off-line mass memory requirements were also estimated.

14



2.2 ASSUMPTIONS

1. The processing requirements are defined for a fault tolerant computer.
Fault tolerant requires that the computer will continue to operate in at
least a limited capability mode after failure of one of each type of module
in the computer. An on-line backup mechanization is required which will
allow at least a minimum continuous computation for critical functions
during the computer reconfiguration time. This reconfiguration time exists
from detection of a fault to the loading and subsequent initialization of an
off-line backup mechanization in the remaining operational computer
"elements.
The minimum on-line backup mechanization must consist of critical

elements of all critical functions. While a detail estimate of this backup
t. mechanization was not made (with exception of the Steering function), a

gross estimate is contained in Table 2-5.

2. The memory and throughput processing requirements were estimated for
the individual processing tasks without regard to memory word length or
instruction type. The total processing requirements were converted to an
absolute number of memory words and operations per second in terms of
a conventional computer by applying appropriate weighting factors. A
16-bit word length conventional computer was assumed. The total number
of 16-bit memory words and operations per second were computed from
weighting factors derived from FB-l11A/F-111D digital computer complex
experience (based on experience with the IBM 4 P1 avionics computer).

3. In estimating the throughput requirements, 80 percent of the actual
instructions (excluding subroutines) within a task were considered to be
executed per iteration. The total operations per iteration were then
determined by adding any common subroutine usages to the 80 percent
actual instruction count. Multiplication by the required iteration rate
gave the throughput in operations per second per task.

4. The worst case throughput requirements were considered for both subtasks
within processing tasks and processing tasks within a major function.
WVithin a processing task, the worst case subtask throughput was calculated
for tasks with mutually exclugive subtasks. Among processing tasks, the
rationale was used to include only worst case processing task throughput
requirements derived from worst case operating modes.

5. The processing requirements for the preprocessors presently planned for
inclusion in the B-1 Avionics System are included. These preprocessing
requirements are presently included in the inertial niavigator units, the
non-avionics CITS, the SMS, the IRSS and the RFS/EZMS.

(6. No data format conversion is required within the computer other than
binary to decimal and decimal to binary. All analog to digital and digital
to analog conversion is assumed to be performed by the ý'vionic subsystem
hardware.

15
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7. In addition to the basic requirements imposed by the functions described
in this report, it is required that the on-line system contain a 50 percent
spare capacity. It is also required that the total on-line system be capable
of a 100 percent growth factor.

8. The throughput requirements for common subroutines are based on FB-111A/
F-illD digital computer complex ex-perience. These requirements In terms
of operations per second are given in Table 2-2 and are used in calculating
the subtask and task throughput requirements.

Table 2-2. Subroutine Throughput Requirements

Subroutine Operations

Sine/Cosine (SC): '3) tr sin or cos) r

Arctangent (ATAN):

Square Root (SR): -I','

Matrix Multiply (MX): 70

Euler Transformation (EUL): 80

Binary to Decimal Converstion (iICD): 70

Decimal to Binary Conversion (DEC): 70

9. The weighting factor to determine the on-line menio. y requirements in
16 bit uords is based on a 70 percent short (16 bit) and 30 percent long
(32 bit) format mix of both instruction and data words. This mix is derived
from F B-iIIA/F- 111i) digital computer complex actuals.

Weighting No. of 16-flit Total Words
Factor Words (1(6 Bit)

.70 1 .70

.30 2 .60

1. 30 - weighting
factor to
determine total
memory in
16-bit words

10. The throughput requirements reprcesnt a mix of instrtuction types. The mix
is given in Table 2-3 and is bas,-d on Fl-IIIA'F-1IliD digital computer
complex actuals. Thic; mix may I e .,sed later in the study when the relative
execution time of the variolis instraction types is determined.
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Table 2-3. Throughput Weighting Factor

Instruction Type Execution Frequency Weighting

Load/Store .38
Add/Sub. .13

I • IMultiply .10
Divide .01
Shift .08
Bronch .14] ~Logic/Misc. .113

2.3 REQUIREMENTS SUMMARY

2.3.1 AS3 Avionics System Processing Requirements *-.....'

The ASB Avionics System central processing and input/output data transmission
requirements are summarized in Table 2-4. These requirements include both on-line

S - spare provisions and growth capabilities required in the central compute-. As
explained above, these requirements assume that all the processing for the major
functions is performed in a central computer.

Table 2-4. ASB Avionics 19ystem Processing Requirements Summary

M•emory Throughput Input/Output Rate
, (16 Bit Words) (KOPS/Sec) (16 Bit Words/See)

-. Primary Program 111,000 68801) 37,744

On-Line Spare (50(6) 55, 500 344 18,872

Subtotal 1016, 500 1,032 56,616
* Growth Capability (100(ý) 166,500 1,032 56,616

333,000 2,064 113,232

R(1) epresents a mix of various types of operations as given in Table 2-3

2.3.2 Processing Requirements of Central Computer Functions

A summary of the processing requirements for the functions mechanized in the
central computer is given in Table 2-5. These requirements are independent of word
length (the total requirements given in Table 2-4 were converted into equývalent
16 bit words) and represent a mix of various types of operations as indicated in
Table 2-3. It should be noted at this point that the values for the executive and on-line

f back-up program should be considered only as rough estimates. These requirements
are summarized from detailed tabulations of processing requirements for each of the
functions and are given in Appendix A. A portion of these detailed tabulations is given

in Section 2.4 for illustrative purposes.
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'Fable 2-5. Proccsv'ing Requirements of Central Computer Functions

Memory (3) Throughput (4)(WVords) {. I •bOPS/Sec)

I1 Nav'igation 13,217 126

2. Steerirgs 2.900 15.20

3. Target/Checkpoint Acquisition, 1,2810 57.8-6

•4. Wen'pon Delivery 1 10,245 83.24

5. Penetration Aids 2.3,540 220.36

ti. Terrain Following/AvoidanceM0 0

7. M*iission Data Managenient -1,285 17.52

• Mission and Traffic Control 2 0

9. Central Integrated Test Subsystem 18, 541 6U. 56

10. Executive (Estimate) .,0o 50.00

11. On-Line Back-up Program (Estimate) -1,000 50.00

Total 8;, -19- 6s(. 72

(lIlneluded in the Navigation function
(2)Growth function

nhlepetdent. of wor-I length, a multiplying factor of 1. 0 will convert these into

16 bit words as extilained in Section 2.2

1l[Repr:,sents a mix of instruction types ýs indicated ii, Tahle 2--3

2.3.3 input 'Output Dkita Transmission [1equirements

A sum---r of the input/output data transmis•sion rc'iuiremcnts is given in
Table 2-fi. Thi.s table gives the requirements by rate groups for both input and output

to tie central computer. The detailed tabulation of the input/output requirements
used to derive this summar; table is given in Appendix A.

The input ',xtput information transferred between the central compater and the

avionics hardware suhsys.ems must be transmitted over the Avionics Multiple:x (A.MUX)
subsystem. The transmitted data must conform Wo the format established I~y the
Multiplex Interface Modules (MIMs) which provide the interface between the AMUX and

adjoining subsystem hardkvare. Electrical and physical compatibility must also exist
lbetween the subsystem hardhvare and the interfacirg MIMs. A portion of the specifi-
catioaa for the MIM is included in Section 4 of this report where thi interface to the
ASB multinlex system is considered.

2.3.4 Mass Memory R-quirements

The mass memory requirements are given in abile 2-7. The requirements
are tahulated for five categories of information storage:

18



Table 2-6. hput/Output Data Transmission Requirements Summary

. Data Number of Number of
Transmission 16 Bit Words 16 Bit Words

Rate per Transmission per Second
(Transmissions/Sec) (Words/Transmission) (Words/Sec)

Function Input 64 8 512

32 193 6,176

16 948 15,168

8 12 96

4 14 56

2 743 1,486

1 90 9"

Function Output 64 8 512

32 40 1,280

16 569 9,104

8 0 0

4 0 0

2 1,629 3,258

1 6 6

Total words transmitted per second 37,744
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Table 2-7. PS Avionics System Mass Memory Requirements

Memory Words (16 Bit)

Primary Program (including On-Line Back-up) 111,000

Spare Primary 55,500
G -tti

Growth 166,500

Total Primary 333,000

Back-up Program (75 percent of Primary Program) 83,250

* Spare Backup Program (50 percent) 41,625

Growth hack-up Program (tOO percent) 124,875

Total Back-up Program 2-19,750

CITS Avionics Fault Isolation 15,000)

CITS Spare Avionics Fault Isolation (50 percent) 7,500

CITS Growth Avionics Fault isclation (100 percent) 22,500

CITS Non-Avionics Fault Isolation 10,100

rCIS Spare Non-Avionics Fault Isolation (50 percent) 5, 000

CITS Growth Non-Avionics Fault Isolation 15, 000
(10)0 percent)

Total CI'S Fault Isolation 75,000

Mission Data 25,000

Spare Mission D)ata (50 purcent) 12,500

Growth Mission Data (100 percent) 37,500

Total Mission 75,000

Potal Bulk MemorY Rlequirements 732, 750

I _______________________________________________ IWords)IL"
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"1. Primary Program

2. Back-up Program

3. CITS Avionics Fault Isolation

4. CITS Non-Avionics Fault Isolation

S i5. Mission Data

The primary program contains a duplicate -opy of the program in the central
computer. The back-up program contains a partial or degraded mode version of
the primary program. It Is used in the event failures iua the central computer result
"in insufficient capability to perform the primary program. The CITS fault isolation
routines are loaded into the computer in the event the CITS function detects a failure
and additional routines are required to isolate the failure.

2.4 EXAMPLE OF DETAILED PROCESSING REQUIREMENTS

The detailed data used to derive the processing requirements for the major
"functions are given in Appendix A. An example of some of those data for the Navigation
function is given in this section. Figure 2-6 indicates the primary i.nterconnections
of the avionics subsystems with the Navigation function in the central computer. The
Naviga'Aion function has four subfunctions: IMU Control, Ground Alignment, Navigate,
and SRAM Alignment. The interaction of each of these subfunctions with the avionics
subsystems and also with the other major processing functions ir the central
computer is shown in Figure 2-7.

•' I The navigation function was broknn down into 15 tasks as shown in Table 2-8.
* This table Indicates the iteration rate, amount of memory in words (without regards

to word length), and throughput required in thousands of operations per second for
each task. The four subfunctions shown in Figure 2-7 also identify the tasks and

* execution rate associated with each subfunction.

Table 2-9 is an example of the detailed description of the processing require-
ments for the tasks. In this table, Tasks 1. 1 and 1. 2 arc broben down into subtasks.

- The prerequisite tasks to these tasks are also identified as shown in Table 2-9
(Task 9. 1 is a prerequisite to both Tasks 1. 1 and 1.2). In addition, the last column
in Table 2-9 Indicates whether these particular tasks contrihute to the worst case
speed requirements. For the navigation function all Tasks except 1. 14 and 1. 15
contributed to the worst case speed requirements,

Table 2-10 contains a tabulation of the information iransfer required between
the tasks. This table is necessary when local vs central processing is considered and
separate tasks are performed locally at the subsystem rather than in the central
computer.
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DIGITAL PROCESSING -

DOPE CtMONMETER "

RADAR UIT
4 iSET (FRNT)

TERRAIN NISLAVIGATONE[ FOLLOWING DISPLAY PANEIL
RADAR - - (FRONT)

CENTRAL INERTIAL
!i COMPUTER 1 : •"UNIT 1 =

CENTRAL NAVIGATION
AIR DATA CONTROL
CoMPU',Er. 2 P-

RADAR -%40LET.
ALTIMETER MEASUREMENT

[ UNIT 2'

E RADAR NAVIGATION
ALTIMETER DISPLAY PANEL
SET 2 (REAR)

GYRO CHRONOMETER
STABILIZATION UNIT
SUBSYSTEM (REAR) j

Figure 2-6i. Navigation Function Equipment Interface

22

I



L-4-

~z

U -z; -

2D z

Z ak

zz

Z< R

I-A z

a 23i



Table 2-8. Navigation Function Processing Requirements Summary

Rate Memory Time
Task Title (lIt/see) (words) (KOPS/see)

1.1 IMU Control - Fast 64 218 18.02

1.2 IMU Control- Mid .32 653 37.65

1.3 IMU Control - Slow 1 394 0.46

1.4 IMU Control - Filter 1 217 0.58

1.5 Ground Aligimient - Fast 32 76 2.87
1.6 Ground Alignment - Mid 16 696 13.50

1.7 Ground Alignment - Slow 1 384 0.75

1. 8 Navigate - Fast 32 882 32. 90

1.9 Navigate - 16/sec 16 240 13.76

1.10 Navigate - 8/sec 8 180 2. 88

1.11 Navigate - 4/sec 4 500 1.44

1. 12 Navigate - Slow 2 355 0. 5.

1.13 Navigate - Filter 1/8 7632 0.65

1.14 SHlAM Alignment - Fast 16 55 0  2.50

1.15 SRAM Alignment - Slow 1 240 0. 18

13, 217 126.00
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3. MODULE DEFINITION

3.1 BURROUGHS COMPUTER DESCRIPTION

The Burroughs computer c:-ncept has been referred to by various acronyms in
recent reports (Ref 1, 2, 3, 4, Q such as the Interpreter Based System, Multiprocessor,
and Aerospace Multiprocessor; in .ýddition, the title of this study uses the acronym,

Savionics processor - controller. '1'-- term Burroughs multiprocessor or simply the
multiprocessor will be used in place :.1 Lbese acronyms In this report.

A block diagram indicating the genieal structure of the Burroughs multiprocessor
Sgiven in Figure 3-1. The basic modules ro'hilding blocks of the multiprocessor are:

1. Interpreters - Processing Elements vcrilstlng of arithmetic logic and
I j alterable microprogram controls

2. SWI (Switch Interlock Unit) - lnterconnectiu,. logic to allow interpreters to
communicate with memories and devices

L 3. Memories - Storage elements for programs and `ata

K 4. Devices - interface elements between peripherals an'- he SWI

5. PSU (Port Select Unit) - May be used In place of the SWL for single
interpreter systems

The Burroughs multiprocessor emphasizes two concepts (a) builc.ng block
structure and (b) variable machine architecture achieved through micropr•gramming.

The basic building blocks listed above allow multiprocessors with difi, - -ti
numbers of modules to be constructed to meet varying computational requlrL"-n.''rts.

t •The multiprocessor designed for the Air Force allowed up to five Interpreterb.
4.2 eight Memories, and eight Devices.

• r; Variable machine architecture is possible with the Burroughs multiprocesso. ',

i• reloading the microprogram memory with routines. For example it is possible to ta)
emulate existing computers, (b) perform higher order language processing, and (c)
process a problem optimized instruction set. Further, these could be performed
concurrently in a multiprocessing manner.

The computer can operate as a true multiprocessor since any interpreter may
"maccess any memory or device module and multiple interpreterns may be used simul-
taneously to process a computational task. Through the flexibility offered by variableS~machine architecture the interpreter can function as a CPU, as an 1/0 Processor, or

as a device controller.-[I
The Burroughs multiprocessor modules will be described below. Appendix Bcontains additional details on the modules and is a collection of extracts from

- •references 1 through 5.

27
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3.2 INTERPRETER DESCRIPTION

~3.2.1 General

.The nterpreteri s fte tim ons are to:

1. Contain the microprogram m emory.

I• 2. Provide the timing and control for sequencing and controlling according
to the microprogram memory.

3. Control the communication with external devices and memories.

S4. Perform the logical and arithmetic operations required.

In order to accomplish these in a flexible manner Burroughs has defined a
modular approach with the Interpreter consisting of submodules as follows:
(see Figure 3-2):

1. Logic Unit - The circuitry associated with the arithmetic, shifting, and
logic functions are contained in the Logic Unit. The data word length is
expandible from 8 to 64 bits in 8 bit increments.

2. Control Unit - The Control Unit contains registers for conditional control
and logic commands.

3. Memory Control Unit - The Memory Control Unit provides registers and
control for memory (interpreter and main memory) addressing.

4. Microprogram Memory - This unit provides storage for the microprogram
sequences. The unit could be implemented with ROM or RAM devices.

5. Nanomemory - The microcontrols for an Interpreter are supplied by the 54
bit wide Nanomemory. Most likely implementation of this is with the use of
ROM. The particular nanoword is selected by the MPM word using the
contained memory address.

3.2.2 Logic Unit (LU)

U Figure 3-3 contains a detailed description of the data and control flow in the
interpreter and Table 3-1 identifies the control provided by the 54 bits in the nanomemory

vword. Reference to Figure 3-3 and Table 3-1 will aid in following the interpreter
description given below.

One Logic Unit for each 8 bits of data word is required for each interpreter. The
LU is composed of: the threc A registers, a B register, an MIR register, adder, and
barrel switch logic.

Registers Al, A", and A3 an- functionally identical. Each temporarily stores
data and serves as a primary input to the adder. Any of the A registers can bf. loaded
with the output of the barrel switch.
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The B register is a primary external interfac? (from the Switch Interlock).
It serves as the second input to the adder and may be loaded with any of the following:4'

1. The barrel switch output.

2. The adder output.

3. The data from thc Switch Interlock.

4. The MIR output.

5. The carry complements (from the adder) of 4- or 8-bit groups with
selected zeroes (for 'se in decimal arithmetic or character processing).

6. The barrel'switch output ORed with 2, 3, or 4 above.

The MIR buffers information being written to main memory or to a peripheral
device. It is loaded from the barrel switch output and its output is sent to the Switch
Interlock, or to the B register.

Inputs to the adder are from selection gates which allow various combinations
of the A, B and Z inputs. The Z input is an external input to the LU and can be:

1. The 8-bit output of the counter of the MCU into the most significant 8 bits
with all other bits being ZEROs.

2. The 8-bit output of the literal register of the MCU into the least significant
8 bits with all other bits being ZEROs.

3. The 12-bit outpui of the alternate microprogram count register AAMPCR)
right justified into the middle 16 bits and the (wired) Interpreter number
right justified in the remaining four bits of the middle 16 bits. All other
bits are zeros.

t4. All 7ZEROs.
Using various combinations of Inputs to the selection gate., any two of the three

inputs can be added together, or can be added together with an additional ONE added
to t, e least significant bit. Also, all binary Boolean operations between the P. and B
and between the B and Z adder inputs and most of the binary Boolean operations between
the A and Z adder inputs can be done.

The barrel switch is a matrix of gates that shifts a parallel Input data word any
uumbe, of places to the left or right, either end-off or end-around, in one clock time.

The output of the barrel switch is sent to:

1. The A registers (Al, A2, Aq).

L: 2. The B register.

3. Memory Information Register (MIR).

£



4. Least significant 16 bits to MCU (registers BlI, DR2, MAR, AMPCR,
LIT, CTR). ii j!

5. Least significant five bits to shift amounit register (SAR) In the CU.

3.2.3 Control Unit (CU) -L

Major sections of the CU are: the shift amount register (SAR), the condition
register, part of the control register (CR), the MPM content decoding, and the clock
control.

The condition register: section of the CU performs four major functions-

I1. Stores 12 resettable condition bits in the condition registers. The 12 bits of
the condition register are used as error indicators, Interrupts, status ndi-
cators and lockout indicators.

2. Selects 1 of 16 condition bits (12 from the register and 4 generated during the
present clock time in the Logic Unit) for use in performing conditional
operations.

:3. Decodes bits from the Nanomemory for resetting, setting, or requesting
the setting of certain bits in the condition register.

.1. Resolves priority between Interpreters in the setting of global condition (GC)
bits.

3.2.4 Memory Control Unit (MCU)

This unit has three major sections:

1. The nicroprogram address section contains the microprogram count
register (MPCR), the alternate microprogram count 'register (ANMPCR),
the incrementer, the microprogram address control register, and
associated control logic. The output of the incrementer addresses the
MPM for the sequencing of the microinstructions. The AMPCR contents
are also used as one of the Z inputs to the adder in the LU.

2. The memory/device address section contains the main niemory address
register (MAR), base registers one and two (BRl, BR2), the base register
output selection gates, and the associated control logic.

3. The Z register section contains registers which are two of the Z Inputs to
th,• LU adder: a loadable counter (CTR), the literal register (LIT), selection
gates for the input to the memory address register and the loadable counter
and their associated control logic.

-: 3.2. 5 inteipreter Operation

A unique feature of the Interpreter Based System is the utilization of stored logic
in M and N memories anti uncommitted hardware logic to form flrmware control that is
exercised to a more primitive logic level than in conventional microprogrammed
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central processors. During each clock period, a 16 bit microinstruction is read from
the MPM. The first four bits of this microinstruction indicate which of two types of
instructions it is. If it is a Type I instruction, the remaining bits of the MPM word
specify a Nanomemory address to be accessed. The Nanomemory is then initiated and
its output, a set of 54 bits, provides the control functions as indicated in Table 3-1.

If the microinstruction is Type II, the remaining bits of the MPM word are
stored into one or two registers: namely, the SAR, LIT, SAR and LIT, or the AMPCR.
The determination of which registers are to be loaded is specified by the first four
bits of the MPM word. The Nanomemory is not accessed during a Type 11 operation.

Each Type I microinstruction has two parts (or phases). The first fetches the
histruction from the MPM and Nanomemory and the second executes the fetched
instruction. Figure 3-4 illustrates these two basic phases of each Type I microin-
struction.

The fetch phase involves: MPM accessing, Nanomemory accessing, condition
testing, selection of controls for the next instruction (successor) address computation,
and, in parallel, loading the control register for the execution of the microinstruction.
A fetch phase occurs for every Type I microinstruction and requires one clock time.
Since it always overlaps the execution phase of a prior Type I microinstruction, the
performance of each microinstruction requires effectively one clock interval.

L am m aima"
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The execution phase also required one clock time and always overlaps the fetch (
phase of the next Type I instruction. The control eignals for the execution phase are
from the output of the control register and have two parts: signals specifying the logic
unit operation (adder input selection, adder function, barrel switch shifting, etc. a and
signals specifying the destinatinn register(s) loading (i.e. clock enables). ThR complc-
tion of the execution phase (I. e. the destination register(s) loading), may be delayed
or suspended for one or more clock times. This suspended execution phase can occur
for threv primary reasons. The first and most frequent occurrence is when the ne-
instruction from the MPM is a Type II instruction. The second reason for the occur-
rence of a suspended execution phase is due to the existence of conditional logic unit
cperations. The other reason for a suspended execution phase is for use durlng the
loading of the MPM and Nanomemory. -•

The sequencing of Type I microprogram inst-uctions is controlled by Information
contained in the nanomemory word which provides three true and three false condition
bits for selection of the successor Type I microinstruction. The three selected bits
(True'False condition) provide eight possible successor commands as listed in Table 3-2.

Table 1-2. Microprogram Memory Addressing

Successor Next Content Next Content
Successor M-instruction of MPCR of AMPCR
Command Address will be will be

WA IT MPCR MPCR *

STEP MPCRH I MPCR+1 *

SKIP MPCR+2 MPCRi2

SAVE MPCR+l MPCR- l MPCR

CA,, 1. AMPCR+I AMPCR-1 MYCR

EXEC AMPCI II MPCR * *

,JUMP AM IO.lC I ANIPCR+l

IIIE'rN AMPCR.-2 AMPCR+2

* Not changed hy suecxýssor specification
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3.2.6 Multiprocessing Features

The SWI module is the primary hardware feature In the Burroughs multiprocessor
that allows the computer to operate as a multiprocessor. There are two additional
hardware feature6 includcd In the interpreter that aid in multiprocessing operation:
the global condition bits and the interrupt bit. The global condition bits are two of the

li 16 testable conditiorn bits in each interpreter. Each bit can be jet in only one interpreter
at a time and must be programmatically reset. .',n ilnterpreter nanoinetruct*,on contain-
ing the "Set Gl.obe Condition Bit" opei~tion will set the specified global condition bit

. in that interpreter only if that bit is not set in any interpreter and no other higher
(wired) pi iorit- interpreter is requesting the same bit.to be s~t in Its own interpreter.
The global coadition bits allow a multiprocessing executive to be implemented that
requiree tables In main memory to be locked such that only one interpreter may be
modifyhilg data in these tables at any one time.

One more of the testable cor.dit-on bits in each interpreter is wired to provide
an additional inter-interpreter signal. This bit is called the interrupt bit and is
simultaneously set in all interpreters by an operation originating from any interpreter.
This bit is reset in an interpreter when tested In that interpreter.

3.3 SWITCH INTERLOCK (SVWI) DESCRIPTION

.a3.1 SWI Modules

The Switch Interlock functions are to:

1. Provide the interconnection of the interpreters with the memories and
devices.

2. Provide the priority for the interpreters in the selection of devices and
* "memories.

Connection between Interpreters and devices Is by reservation with the Interpreter
& •having exclusive use of. the (locked) device until specifically released. Connection with

a memory module is for the duration of a single data word exchange, but is maintained
until some other module is requested or some other Interpreter requests that module.

In any such system it is desirable to keep the wires and logic in the crosspoints
to a minimum, while still maintaining a specified transfer rate. One way of achieving

• •this is by serial transmission of several partial words in parallel through the cross-
points. The Switch Interlock for the Burroughs Multiprocessor handles up to five
Interpreters, eight memories and eight devices. The transmission paths through the
Switch Interlock break the 32-bit data word into 4 - 8 bit bytes.

The SWI is mechanized with five modules; a block diagram Indicating the structure
of the SWI is given in Figure 3-5. This diagram also shows the internal and external
interface of the SWI. The five modules are:

1. Memory Device Control (MDC) - This unit, shown in Figure 3-6 decodes thUe
nanomemory bits and generates the signals for controlling the other SWI
modules. The MDC also contains the counter and logic to indicate to its
interpreter, data acceptance and transfer completion. There is one MDC per
interpreter.
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2. Device Control (DC) - The DC resolves conflicts between Interpreters
trying to lock to a device and checks the lock status of any Interpreter Li
attempting a device operation. The DC is shown in Figure 3-7, It receives
requests for device operations and lock/unlock requests through the MDC.
It responds by sending status signals to the MDC and control signals to the
Input and Output Switch Network modules. The DC module as mechanized
in the Burroughs multiprocessor provides device control for up to three
interpreters. A system %i th five interpreters will use two DC modules.

:3. Memory Control (MC) - The MC resolves conflicts between Interpreters
requesting the use of the same memory module and maintains an established
connection after completion of the operation until some other Interpreter
"requests that memory module. Figure 3-8 contains a diagram indicating a
typlcal interpreter stage in the memory control module. This stage receives
requests from the MDC and a 3 bit memory module address from the inter-
preter. The lower section of Figure 3-8 shows the memory request and
memory busy bus that connects to the priority logic for memory request
control. The Burroughs mechanization of the MC uses two modules MCO and
MC1. MCO contains three stages as shown in Figure 3-8 to provide memory
control for three Interpreters. MCI contains two stages and the memory
busy flip-flops.

4. Input Switch Network (lSN) - The ISN returns data from addressed devices or
Smemory modules to the requesting interpreter (i. e., the ISN is a "Multiplexer").
As seen in Figure 3-9 the ISN module provides selection for five interpreters
to up to eight memories or eight devices. The ISN provides a path for 10 bits
per interpreter. This path is used to provide eight data bits and a return
clck, one bit is unused. The ISN module mechanized by Burroughs actually
consists of two submodules, each submodule provides for 4 data bits and 1
clock bit from up to eight memories or devices to up to five interpreters.
The ISN is therefore modular in terms of -1 bit bytes. The ISN is under the
control of the MC or DC module.

5. Output Switch Network (OSN) - The OSN sends data, address, clock, and
control from Interpreters to addressed devices or memory modules (i. e., the
OSN is a "demultiplexer"). This unit is actually mechanized as two different
modules. Figure 3-10 shows the OSN for address output. This unit handles
4-address and 2-clock bits for five interpreters to up to eight memories on
devices. The address OSN is actually mechanized from two identical
submodules that provide two address bits and one clock bit each. In the
Burroughs multiprocessor, the address OSN uses four address and one clock
bit leaving one clock bit unused.

The data output OSN is shown in Figure 3-11. This unit provides eight bits
output to up to eight memories or devices from five Interpreters.

3.3.2 Switch Interlock Operation and Timing

Controls from the Interpreter (Nanobits 51-54) are strobed into the menmlev operation
register of the MDC if either theType I microinstruction is unconditional or the selected con-
dition is true. Controls derived from the output of this register will next load the output shift
registers of the interpreter andIgenerate one of three types of signals, depending upon the
operation to he performed. Each of these types of signals will be explained.
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3.3.2.1 Memoxy Operation

The first type of signal from the MDC is a "memory operation request' sigral
to the MC. This initiates the comparison and priority logic in the MC. When the MC
has granted access by that interpreter to the memory module it was requesting, a
compare signal is returned from the MC to the MDC. This will send a clear pulse to the
imemory interface logic through the memory OSN and will initiate the setting of SAd and
the transmission of high speed clocks to the output shift registers of the interpreter
and through the OSN's to the memory interface.

In the case of a memory write, the input/output counter in the MDC wth count
four output high speed clocks and will then stop them.

In the case of a memory read, output high speed clocks are not counted. Instead,
these high speed clocks are continually sent to the memory module intei face. this
interface will count four clocks coming in to it and will then !aitiate a memory read.
Upon return of a completion signal from the memory, the memory Interface will load
Its output shift registers and then allow four of the high speed clocks that are still
coming through the OSN to clock theý.e output chift registers and mo be returned to the
MDC and the interpreter with the shifted out data. AThe MDC counts it,--r of these
memory return clocks and will then stop the high speed outpt, clocks and set RDC in-
dicating that the data has been shifte4 into the interpret-'r input shift registers and is
ready to be strobed into the B register.

3.3.2.2 Device Lock and Unlock

The second type of signal emanating from the AIDC is a device lock or device
unlock request sent to the DC. A .ter the DC has accomplished this, a signal is returned
to the MDC in order to set SAl and the operation is complete.

3.3.2.3 Device Read and Writ,

The third type of signal from the MDC occurs for device reads or writez and is
sent to the DC to check the lock status of th. device being addressed by the BR1/BR2 of
the interpreter before proceeding. After it is confirmed that the device Is locked, the
DC returns a locked signal to the MDC. This will have the same effect as when a
memory module is obtained, i.e., a clear pulse is sent to the device interface logic
through the device OSN and initiates the setting of SAT and transmission of high speed
clocks to the output shift register oi he interpreter and through the OSN's to the
device interface.

However, the distinction made between memory reads a-,nd memory writes is not
made for devices. Both cases act like a memory read; i.e., for a device write the
MDC e)es not stop the outgoing high speed clock after four clocks and indeed does not
even count them. In both cases the dvvice interface counts four clocks coming in to it
and then stops accepting high speed clocks. In the case of a read, the device interface
waits for some kind of "data available" signal from the device which it will use to load
its output shift registers and to allow four high speed clocks which are still arriving
froui the OSN to clock these output shift registers and to be returned to the MDC and the
Interpreter with the data. The MDC, as for memory reads, counts return clocks and
will set ROC.

L
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In the case of a write, the response is very dependent upon the particular devicer being interfaced. In the case of a card reader, Burroughs sent back the next four high
speed clocks to the Interpreter. In the case of a printer, Burroughs used a signal
saying the last character was accepted by the printer to cause the device Interface to
allow return clocks. The four return clocks are counted by the MDC and used as a

•n means of saying that the device accepted the data sent out.

to:

44

* 47

I }



S4. MODULEANALYSIS

This section summarizes the ivvestigation of the Burroughs Multiprocessor
architecture and its modules, in particular the interpreter and SWI modules. The
machine's capabilities, limitations, and some recommended improvements are given
in this section.

4.1 INTER~MEDIATE (S) ]LANGUAGE CONSIDERATIONS

4. 1. 1 Definition of Approaches

Interpreters are microprogrammable. They have no order set and no specific
data structures. They are specialized by replaceable microprograms for the various
roles they must perform. Firmware is the word used for microprograms that will
reside within a control memory of a computer. Firmware specializes the logic design
for a specific purpose.

An "S" language of an Interpreter is equivalent to the object code or assembly
language of a conventional machine. Each "S" Instruction is equivalent to a machine
instruction In a conventional computer. An 'IS" instruction may be as simple or as
complex as the system requires (e.g., A NOP may be an instruction; so may an entire
matrix multiply program).

The interpreter based systems execute their programs under control of micro-
instructions. These microinstructions are derived from the languages used by
programmers to program the required tasks. I.termediate languages (called secondary
or S languages) are utilized in the main memory to provide the source for the
microinstructions.

S. -The selection of an S language for theAB avionics sys.em for processing in the
Burroughs Multiprocessor can be the subject of a !engthy study in itself. The answer is
probably only achievable through Iterative analysis involving language definition, trial

S * - programming, and evaluation of resultant statistics.

The types of S language to be considered for an A. a•ionics 4ystem can take or.
many forms. Three possible S languages or modes of operation which appear reasonable
to consider are:

1. Emulation of existing or hypothetical machines

2. Direct execution of high level languages

3. Microprogram optimization of the machine to the problem or
application

These three modes of operation are described as:

Emulation - Programs written in some other machine(s) language can be executed by
an interpreter. In this mode, the microprogram memories contain or are provided
with the microinstructions for each of the emulated machine instructions. A fetch
micro-routine is used to acquire these for decoding and transferral of control to the
correct microinstructions. Operands are fetched and routed to either the available
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hardware working registers or main memory locations assigned to be equivalent
to those of the emulated machine. Emulation may also be used to evaluate new or
proposed machine designs, thereby allowing such designs to be tested/evaluated
before being actually built.

Features in an interpreter which aid emulation capability are:

a. Modular word length
b. Fasi shift network
c. Flexible microinstructions
d. Zoned bit selection
e. Ease of communication with external devices and memories
f. Multiple interpreter usage via the SWI

The emulation mode of operation was investigated in detail by emulating the IBM 411
Avionics Computer and determining the Burroughs Multiprocessor throughput capability
while operating in such a mode.

Higher level language (IILL) processing - The program in the operating memory
consists of higher order language instructions. There exist many possibilities here
with regards to the actual HILL used and the amount of preprocessing done on the
language before placing the program in the multiprocessor for execution, Two extremes
in the amount ot preprocessing are:

1. Total compiling leading to the generation of an S language similar to
the machine language in a conventional computer.

2. Little or no preprocessing with an S language thae closely resembles
actual I[OL.

In between these extremes lie many possibilities with many tradeoffs involved
such as speed or efficiency of execution vs amount (f main memory and microprogram
memory required.

Optimized instruction repertoire - As with the emulation mode of operation,
instructions are fetched, decoded, and micro-routines used to perform processing
functions. The difference Is however, that macros can be defined more suited for
the particular task to be accomplished thus achieving a more optimum memory and
"speed match. In generating an optimum or problem oriented S language, a higher
order language processing approach or an emulation (modified by macros) approach
to operation can be considered. The use of macros to optimize the emulated IBM 411
computer wa: investigated and will be given later in this section.

4. 1. 2 Ilfgher Level Language Processing
4. 1. 2. 1 Language Selection

The selection of a particular fILL to use involves many factors. A recent study
(Ref C) conducted by the B-1 Division of Rockwell International examined the feasibility
of using a common higher-order programming language for the total computer complex
and related avionics functions; and, if practical, attempted to determine the language
best suited for this application.
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As a result of this study, it appeared feasible to apply a common language to

the areas of flight programming, mission software, and special support software.
For hardware testing, requirements were so different, few of the common language
candidates have the capability of handling the programs efficiently, and it is believed
a separate language may be preferable.

4. The study was carried ouf In the following steps: (1) Survey of available
languages and their compilers; (2) Comparison of language characteristics and attributes

7 •from the standpoint of B-1 requirements; (3) Choice of several candidate languages for
more intensive study, including the writing of test programs; (4) Compiling and
executing the test programs on equipment comparable to the planned B-1 computer
system; (5) Analysis of test results in view of selecting a language to be used for all
B-I software.

The recommendation as a result of this study was to use a modified version of
JOVIAL with SPL MARK IV as the alternate choice. Five paragraphs are quoted from
Ref 6 which summarize the results from the study:

t i' "Several fLatures of JOVIAL make it attractive for this prupose; namely, the
concept of the COMPOOL for data manageme.nt, the use of Tables for related
data of different types, the ability to pack daia in a computer word and address
it directly, the provision for fixed point arithmetic if required, and the ability
to manipulate bits and bytes. There are defi!iencies in the language as it
exists today; however, the USAF sponsored JOVIAL Committee is in the pro-
cess of evaluating and revising AFM100-24, Standard Computer Programming
Language for Air Force Command and Control Systems, dated 15 June 1967,
Rockwell International is participating in this effort as an observer. It is
anticipated that the "new" JOVIAL will adequately fulfill the tasks required by

S - - the B-I system software."

"PL/1 contains many desirable features for use as the B=I Common Language;
however, it is felt that the advantages of using PL/1 were not great enough to
justify its selection over JOVIAL or SPL. The reasons for the decision was its
incompatibility with the existing COMPOOL structure used extensively by SAC,
the lack of available compilers other than the IBM-360 series computer, the
high cost of compiler development for new computer equipment, and the
"compiler inefficiency as shown by B-I benchmark problems executed on the
IBM 360 series.

"SPL appears to have a good future In this area. The SPL MARK IV version
appears to best suit the needs of a B-i Common Language, but due to its
very recent development, little is known about its compiler efficiency."

"CMS-2 exhibits many of the desired characteristics but appears to have no
great advantage of JOVIAL, and the additional training of programmers and
the development of new compilers does not seem to warrant its use for the
B-1 application."
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"The U.S. Air Force JOVIAL Standards Committee is actively working towards
an update of JOVIAL to remedy the deficiencies currently recognized in the
language, The results of this effort will be reflected in a major revision to
AFM100-24. Thus, the recommendation at this time is the designation of
the "new" JOVIAL as the B-1 Common Computer Language and SPL MARK IV
as the alterniate choice.

4. 1.2. 2 Preprocessing to an S Language

The justification for the use of some amount of preprocessing on the selected
higher level language is that of speed improvement possible over the straight forward
use of the TILL. As noted in Ref 7, without preprocessing, program statements would
have to be scanned forward and in reverse in order to interpret their mealning at the
time of execution. Preprocessing also permits the conversion of statements to codes
more readily or efficiently processed and assigns addresses to variables and con-
stants. Further, redundant statements or characters can be eliminated.

Therefore, preprocessing tasks can be categorized as follows:

1. Editing - This streamlines the program stream to ease real time
processing. This is accomplishedby removal of comments or blanks
from source programs; conversion of expressions to more convenient
forms (as reverse Polish) for processing; error checking; and program
optimization,

2. Tabularizing - The tabularizing task places information into readily

interpreted forms. This includes the identification of source language
elements, insertion of pointers in compound statements, replacing
constants with internal forms, and allocation data to static or dynamic
environment.

3. Encoding - The generation of compact Internal codes is accomplished
with this preprocessing task. This requires the translation of
operators, delimiters, and keywords to code and expansion of higher
level features into lower ones if advantageous to execution results.

4. .kddress Forming - This task provides the conversion of labels.
procedural calls, and variables with addresses.

It is noted that these functions can be split between preprocessing or real time
processing In a number of ways. The allocation is dependent upon the memory and
execution time factors and the amount of abstractioaintroduced In the resultant S
language and its affects on the ILL use advantages including traceability.

Some of the factors that have to be considered in defining a preprocessirtg approach
are the method of strucbtring and processing the data. Much of the recent advanced
work in this area has centered on using stack mechanisms, reverse Polish notation
and descriptors (Ref 7, 8, and 9).
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A stack is a storage mechanism in which the contents are accessed on a last in,
T" first out basis. It has been used in the design of computers by Burroughs (B5500,

B6500, B1700), DEC (PDP1O, PDP11), and XDS (Sigma 7).

The dynamic behavior of stacks has been stated (Ref 8) to be well suited to the
mechanization of recursive procedures and aids in:

1. The management of nested subroutines or procedures.

-~2. The efficient execution of arithmetic statements

3. The compilation and/or execution of higher order languages

4. The dynamic allocation of memory space

5. The protection of program data.

Descriptors provide a means by which items such as variables, procedures and
control words can be defined as to type, attributes, size, location, initialization
information, etc. Their usage enables data identification, validity checking between
operators and operands, location pointing and indexing, and the monitoring of status,
location and condition of Information. The automatic identification of type and charac-
teristics of data at execution time results In retention of straight forward representa-
tion of information to that point and is stated to result in memory savings and speed
enhancement (Ref 9).

4.1.2.3 Example of Higher Level Language Processing

Reference 7 presents the results of a study, to design a computer capable of
processing an intermediate form (at a high level) of SPL/Mark IV. The objective of
this study was to design a special purpose computer architecture that could efficiently
process SPL at a high level and compare such a machine with a conventional computer.
A brief summary of the approach to the "S Ianguage" taken in the referenced study will
be given here since it is felt some of these results may be applicable to the consideration
of higher level language processing on the Burroughs Multiprocessor, particularly for

j an ASB avionics system since SPL is one of the two recommended ItLL for the B-1
L Systems.

The encoding task of the preprocessing in Ref 7 converted operators and other
symbols into "tokens". A token was defined as a short binary string on the order of
six bits representing SPL symbols. Table 4-1 presents the tokens defined to do the
following:

1. To encode primitiv.3 such as operators (1-0), delimiters (') '), or keywords
('IF') which appear in the object (preprocessor output) program.

2. To simplify the architecture. For instance, due to packing, the Noops are
needed to fill memory words following branching tokens.

U
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Table. 4-1. SPL Tokens Defined in Reference 7

7 1

No. Token Meaning

I ABS Absolute Value
IA F Floating i. d.
2 AND Bopr, and
2A RF Floating i.d. with rf
3 BIT References bits of a variahle
3A FR Floating I.D. rounded on assignment
4 BY Loop variable increment
4A RFR Floating I.d. rounded with rf
5 BYTE References bytes of a variable
5A FD Double precision (dp) floating i. d.
6 DECLARE Begins a declaration hlock in a rr prcd
7 ELSE Begins the E [SE clause of a conditionaI stm
7A RFD) dp floating i. d. with rf
8 END Terminate IF, FOR, and 1,OOP UNTIL

compound stmas
8A I Integer I. d.
9 END DATA Terminates a declaration hilock In a rr pred
10 EQ Rel apr, equals
10A RI Integer i.d. with rf
11 EQUIV B opr, equivalence
11A L Logical I. d.
12 FOR Begins a loop stm
12A IltL Logical I.d. Aith rf
13 GO TO r.rect GO TO stm
13A T Tential I. d.
14 GQ Rel opr, greater than or equal
14A RT Textual I. d. with rf
15 GR Rel opr, greater than
15A I1 Boolean 1.d.
16 IF Complex IF strn
16A RB Boolean i. d. with rf
17 [ND Indicates following stm label is indirectly

referenced as prcd argument
17A ARRAY Array i.d.
18 LMNI) Logical opr, product
18A RARRAY Array i. d. with rf
19 LOOP UNTIL Begins a loop sin,
20 LOR Logical opr, sum
21 LQ Rel opr, less than or equal

LECEND: rr recursive or reentrant B Boolean
i. d. item declaration Rel Relational
rf repetition factor A Arithmetic
opr operator prcd procedure
stm statement
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Table 4-1. (Cont)

No. Token Meaning

22 LS Rel opr, less than
23 LSH Left shift opr
24 LXOI Iagleal "to efAfbve ,W
25 NOT B opr, negation
26 NOOP No operation
27 NQ Rel opr, not equal
28 OR B opr, or
29 ORIF Begins subordinate conditional stm
30 RECURSIVE Indicates a rr prcd
31 REM Remainder of a division
32 RETURN Prcd return
33 SGOTO Switched GO TO stm
34 SIF Simple IF stm
35 STOP Computer halt
36 TPOSE Matrix opr, transpose
37 UNTIL Terminating condition in loop stm
38 o Indicate pred call
39 ( Delimiter
40 ) Delimiter
41 + A opr, add
42 - A opr, subtract
43 x A opr, multiply
44 / A opr, divide
45 ** A opr, exponentiation
46 Matrix opr, cross product
47 Matrix opr, multiply
48 Delimiter
49 = Assignment opr.
50 s Exchange opr

Lb
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A format for these tokens was defined as

0 Type (6 bits)

-Identifier Tag, 0 =Token

The tokens are used with address words to describe the program. The format for
address representation to acquire item names, constants, procedures and statement
names is

1 0/1 0/1 1Main Memory Address

L 0 Scalar, I = Nonscalar
• 0-- Absolute, I ý Relative

identifier Tag, I = Address

These preprocessed program elements are provided to and interpreted by the
hardware to accomplish the program execution. This includes the uuijxcking' of tokensand addresses and translation of these into a sequence of conitmands anti data addresses.

It is to be noted that the data in the referenced study is stored using descriptors
bits assigned to each data word to identify the word type. The following table defines
the eight descriptor types and t hree classes of data to represent tho program information.

Class Format Descriptor'I-pe

1 Value Floating Point, unirotunded

SExponent Floating Point, rounded
:Sign Floating Point, d(ouble

precision
Descriptor type Integer

Boolean
Nonsca lar (arrays)

Class Format Descriptor Type L
2 [lgical Value Logical

L Descriptor type

Pad (to provide for fixed memory word sizes)
Descriptor type jN,!
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It is felt an S language as described above from ref 7 can be executed on the

Burroughs Multiprocessor. With regards the particular level used for SPL. a
significant amount of effort would be needed to determine if the level used In Ref 7 can

be applied efficiently to an avionics processing application.

The execution of a preprocessed program represented by an S language as defined

by the tokens in Table 3-3 on the Burroughs Multiprocessor would involve the fetching

of the program element and the analysis of statements to obtain commands and sequences

to be performed by the primitives of the interpreters.

A program fetch routine consisting of micro instructions -would access the main

memory for program words containing tokens or address elements in a sequential

manner. Since eight bit bytes or words with memory packing would be used, the

fetch routine must extract the individual elements In proper order. The routine must

be initialized correctly by some external means. Further, the routine must respond

to requests for transfer of control to alternate locations within the programs as

required during execution.

The analysis of the sequence of addresses and tokens obtained as the result of

the fetch routine would le id to the translation of these into executable commands. A

coneept of translation of program information to microcontrols is shown diagrammati-

cally in Figure 4-1.

A token initially establishes a parsing state which determines the need for

additional tokens or semantic routines. Commands are provided to control routines
from either the state analysis or the semantic routines. These commands are trans-
lated to primitive interpreter operations using the data addresses as required and

calling upon the fetch routine for additional program elements or to control program
transfers.

Further, in-depth considerations with regards to HLL processing can be found

in Ref 7. Flow charts, processing logic, and stack features were defined for conversion
of preprocessed SPL into executable commands. It is felt some modifications to the
referenced study, such as converting expressions to reverse Polish notation would

be necessary for efficient S language execution.

4.2 INTERPRETER MODULE

4.2.1 Word Size

The word size to use In the Burroughs Multiprocessor depends upon many factors

including whether emulation or higher level language modes of operation are to be used.

The Burroughs approach has lwen to design modularity based upon 8-bit bytes. It

should also be noted that a 16-bit word length is desired for the microprogram memory

word. One reason given for this is to maintain compatibility with popular military
L memory word sizes. Figure 4-2 presents two plots of data extracted from reference 10

to support this statement.
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Figure 4-1. S language Translation

Of the 52 machines presented in Ref 10 in deriving Figtire 4-2, it is apparent that
a majority (-75 percent) is of the 16 or 32 bit single word, 8/16/32 multiple word, or
2.1 bit word classes. This data is for machines as of mid 1970. Since that time, the
trend toward these sizes is even more evident from considering the 16/32 bit computer
designs for the FI5 and B1 avionics.

C Both the instruction format and data requirements affect the selection of a word
length. The 16/32 bit data word has been found to be suitable for avionics applications.
Instruction word length is a function of the number of instructions necessary to fully
utilize the logic capabilities, the addressing requirements, and index register desig-
nators. It is usually desirable to make the data and instruction words the same length
so that they can be stored interchangeably in memory. If higher precision is required
in portions of an application, double word length operation is used.

It would be informative to examine the quantity of modern military computers
produced to discover popular word sizes on that basis. These numbers are not available.
Examination of Ref 10 and knowledge of the applicable military programs leads to the
conclusion that the above word sizes would also represent a high percentage of the latest
computers produced.

One advantage of higher level languages is the semantic conciseness possible.
Information can easily be conveyed in byte oriented instructions, descriptors, and data
streams. Compatibility between any [ILL avionics system and ground based machines
is desirable in order to simplify program and machine checkout and simulation. An
eight bit byte is considered standard within the commercial computing industry.
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The colclusion derived from this ezaml'Uton is to utilize an 8-bit byte awd
multiples of it for Multipiocessors operating in a higher level language and 16. 24
and 32 bit (including combinations of 16 and 32) for Multiprocessors operating in
emulation.

4.2.2 Microprogram Memory Organization

4.2.2. 1 General

Mhe source of microprogram instructtons may be via single or multiple memory
levels. The advantage of the latter bais been stated by Burroughs (Ref 3) as requiring
less total bits. The purpose of this discussion is to examine this area in order to
establish the various factors invoved.

This memory reduction is derived from a realization of common microinstructions
within different S instructions or macros. The key fartor is just how much replication
is expected. Further, it Is to be recognized that even with one memory level it is
p-•sslble to utilize, through branching, replication of mieroinstructions. The overhead
expense for this branching is a function of the order (sequential or random) of the
microinstructions and the similarity of the macros.

The number of macros ex-pected ranges from 20 to 60, with a likely number being
40.** Further, an esvimate of the range of microinstructions per macro is 10 to 40 with
the likely average value being 20. ** The plot, Figure 4-3, shows the total bits required
when implemented with a single (and no replication factor) or a dual memory approach
for various replication factors with a microprogram memory sizing approximating the
Burroughs design.

**Support for the estimates are from the following:

1. "Dynamic Microprogramming," A.B. Tucker and M. J. Flynn, CACM,
April, Vol. 14, No. 4, pp 240-250.

("To adapt the microprogrammed processor to a particular need, an
appropriate collection of macros is selected. Typically this might contain
40 macros. ")

2. Phone conversation with Burroughs indicated 15 microinstructions per
macro estimate.

3. Trial programming in an emulation mode (to be presented later in Section 4)
showed a typical estimate of 40-45 microinstructions per macro.

4. "Microprogrammlag Environment on the Burroughs B1700," Wayne T. Wilmer
*6th Annual IEEE Computer Society Conference, San Francisco,
September 12-14, 1972.

The fohowing Table 4-2 Is extracted from this reference:
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Table 4-2. Mlcroinstruetlon Requirements

Number of Number of
Abstract Machine Virtaal Instructions Micros per Instruction

Second Generation 25 6r

FORTRAN 41 39

COBO L, 42 39

Fourth Generation 74 25

The observations which can be made from the considerations in this section are:

1 . The replication reduction factor must be greater than 1/4 in order to
obtain a reduction in the total number of bits over a single level (straight
line coding shown for single level-this may be reduced by branching
between macros using commonality also, thereby increasing the replication
factor required).

2. Questions with regard to how much replication and the order of mici -

instructions depends upon the macros to be implemented for both single
and multiple memory levels, and can be answered only after the macro's
definition.

3. As Burroughs observed, the use of multiple level requires ebher faster
memories (at higher costs) or a speed loss. The cost effectiveness is
dependent upon the amounL of memory reduction and cost per bit.

4. The amount of logic is about the same with either approach.

1. 2 2 2 Two Level Microprogram i ord Size

Two lhvels of microprogram .i,'Žmury can save total memory bits if there is a
repetitive de(lnan for microinstructions ;a s discussed previously). Fnurther, advantages
canl be obtained by a tuv. level type if the longer single level word requires too much
interface logic. The factors involved in thle selection of an appropriate word size for
each of the t\wo levels tire discussed in the following paragraphs.

-1.2. 2. 2.1 Microprogram Memory (IPM) Level. The considerations involved
in the selection of a word size for the MPM are as follows:

1. Satisfaction of the functions to be peiformed

a. Addressing - With a nanomen'ory and MPM address copah-ility
of 1091% wuids, 12 bits are required.

b. Register Loading - The shift count register (-4, 5, 6 bits for 16, J
32, 64 bit data words, resoectively) and. the literal register (8 bits)
must he provided with information. Further, Burroughs indicates
these registers a re 1o,(ded together often enough to warrant both

being in the same word.
2 2
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c. Word Type Identification - The addressing and register loading
establishes the need to supply bits to identify the operation
involved. Burroughs has classified the MPM words in two types.
Type 1 provides the direct addressing of the nanomemory; Type 2,
the register loading operations.

2. Compatibility with the S memory. Most popular computers have been
organized with operating memories of either 16 or 32 bit word sizes.
The result is that many peripheral devices and memory units are of
these word sizes. Further, if byte processing is provided, 8 bits is
preferred. Thus, the desirable MPM word size from the viewpoint of
storage in the S memory is one of these. Since the 8 bit word size is
too small to contain the information to be conveyed without excessive
memory accesses and the 32 bit too large and leads to too many unused
bits, the 16 bit word size appears to be preferred.

The organization of a 16 bit MPM word size revolves around the above
requ'rements and the minimum number of gates to do the type decoding
in order to supply the control signals. Flexibility to accommodate
additional instruction types and levels of logic or delays are other
consideratios to be made.

Without considering the flexioility needs, a slight improvement in the
Burroughs MPM word format may be obtained by modifying it as next
discussed.

Decoding the MPM format requires the foliowing or equivalent logic:

I ............{~iiI) i LAD12 3 4 56 819 10111213141516

1 ___________ 2 3TL'LOAD WPM

A SAR 01 j Alt UT

SRLIT 00 JMCAM"1 00-1 .. A

. LIT 0030 N•A b.ADDMISS

TYPE 
I

THE ?4001116D FOPRMAT PAUIRzS-

LMD 213 45 6' ý10211213141516

DOW L40AD M?'M

1-1 FA UT
LUT

TYPE 1 0 AMPCR

'•OA4PR0 NADWOADIIESS
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It is obvious that the latter format simplifies the decoding.

The conclusion reached is that the 16 bit word size for the MPM is suitable.

4.2.2.2.2 N-Memory. The N-Memory word size Is dictated by the number of
control and condition signals required and the extent to which coding of the bits to
indicate these are used.

A longer word is required when minimal encoding of bits is used. This is
obviously a disadvantage with a large number of control points. Table 4-3 shows the
Burroughs' word and an estimate of the control points.

The Burroughs organization of the N-word reflects considerable design thought.
The capability to provide some operations in parallel is included. However, it it noted
only one condition can be tested at a time. To be able to do more would required more
additional bits in the Nanomemory word. The value o0 limitation of these features
requires examination by trial microprogramming.

The possibility of reducing the number of decode gates by increasing the N-word
size was examined. Table 4-3 presents Information showing the total number of
control or conditions as being 139. This word size would be required if no decoding
were used. Obviously encoding is desired to reduce the word size. Table 4-3 con-
tains an estimate of the number of Series 5400 integrated circuits required to decode
each field of the nanoinstruction. An alternate word is shown which uses less encoding
and more bits while retaining the same parallelism. This approach indicates an
increase of 16 bits in the N-word could lead to approximately 30 less integrated circuit
components. With a density of 256X1 (as used by Burroughs) the component count
between the 54 and 70 bit words remains about the same for a 512 word Nanomemory.
However, present day densities of 2 to 8 K bits at the required speeds are available
and would enhance the longer word usage.

The above ar ,lysis leads to a recommendation to consider expanding the N-word
size. A more extensive study which includes the consideration of interconnections,
partitioning, currently available integrated circuits,and power should be made.

4.2.2.3 Single Level Word Size

The considerations for the word size for a single level microprogramming
capability are similar to those for the two level. These are:

1. Addressing - Providing addressing capability for 4096 words defines
the need for 12 bits in the word.

2. Register Loading - The shift count and literal registers require 6
(for 64 bit data) and 8 bits respectively.

3. Word Type Identification - With a longer word, less types and less
identification bits are required since more than one or two information
fields can be included in a word type.
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Table 4-3. Microprogram N-word Assessment

Alternate Longer
Word

Condition
Bits or Est. Differ-

N-Bits Function Used Controls ence in IC's Bits

1-4 Condition Tested 4 16 - 4

T 5 Condition Value 1 2 - 1

I 6 Logic Unit Conditional 1 2 - 1

7 External Conditional 1 2 - 1

8-10 Condition Adjust 3 8 3 7

"11-13 Successor Instruction for 3 8 - 3
Condition

J 14-16 Successor Instruction for 3 8 3
not Condition

17-19 Adder X Input 3 8 3 7

20-26 Adder Y Input 7 18 2 9

27 Inhibit Carries into Bytes 1 2 - 1
4

28-31 Adder Operation 4 16 8 7

S32-33 Shift Type Selection 2 4 1 3

34-36 A Register Input from BSW 3 4 1 3

37-40 B Register Input Select 4 10 5 6

41 MIR Input from BSW 1 2 1

42 AMPCR Input from BSW 1 2 - 1

43-45(46) Memory/Device Address Input 4 7 3 3

47-48 Counter Input 2 4 1 2

49-50 SAR Input 2 3 1 2

1 51-54 Memory/Device Operation 4 13 2 5

Totals 54 139 30 70

1 65

I



4. Compat!bility with the S Memory - The word sizes possible for the single
level microprogram memory according to this factor are 16, 32 and 64
bits. The latter is felt to be too large and could lead to many unused
bits for the register loading type instructions. Further this size could
introduce more logic and/or complicate the loading (for read/write MPM)
and addressing of the microprogram memory. The 16 hit word -size would
require multiple microprogram memory accesses and may be worth
investigating if, upon examining the timing and the 32 bit size, it appears
feasible.

The single level microprogram word size of 32 bits can have a number
of different formats. The following Is not meant to present the best but
to define a workable set.

FomtAType A M C ET EX DDRESS EXT SPARE Tpe1
FomtA 22 12 2 I 2 Tpe1

[•rmat B [Type NEXT ADDRESS EXT LITERA L SPARE Type II
_2 12 •2 8 6 2~

-FTrnpe li1st half of minrocontrols - t d0

•:Format I) 1 T Pe 2nd halif of min rIo(eIt iols - 3

The timing with a single level memory can nerly approximate that definec
for the two level. The microprogram memory access required for a 32 bit
wide single level approach can be accomplished as with the two level. This
means two accesses for a TYpe I and one for a Type II microinstruction.

Phasing details can follow also. ks an alternate, it could he possible to
split the tWo accesses for thit Type I, and do one during each of the Phase 1
and 3 timing. This approach may offer a 3light improvement in speed
especially if there are a lot of unconditional situations.

4. 2.2. 3 Conmpa rison Between (hne and Two Level hieroprogram Memory

The one level, :12 bit word approach may lead to faster information transfer
from the operating nieniory (for rcad/i rite MPM), can simplify the decoding o.
instruction types, anti present a slight improvement in timing. Because both approaches
wouIl use microinstruction overlap, huffers are required. Additional logic would he
required with the one level to accommodate the iider hus interface to the operating
_nieenw'ry and the steering of the Type C and D format to the appropriate buffers. The
net result is that both approaches have about equal amounts of logic. The one level
aplproach can lhe made about 20 percent faster by:,
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1. Eliminating one memory access with the use of a wider (64 bit)
microprogram memory word, or,

2. Accessing the Phase 3 control word during the logic

conditional testing done in Phase 1.

As noted earlier, additional logic In the timing and selection of the interface to
the operating memory is needed.

The conclusion at this stage of the study is that the Burroughs two level micro-
program approach is a reasonable and cost effective approach. Change to any other
depends on whether additional speed is needed.

4.2.3 Limitations and Possible Improvements

4.2.3.1 General

The most apparent limitaiion of the interpreter observed in this study is the
throughput or speed capabIlity. The throughput capability for an emulation mode of

V operation was calculated by trial microprogramming and will be presented later in
this section. It was found, that the interpreter had limited throughput capability in the
emulation mode. There are two principal ways to improve the throughput capability.
One is to use the machine with an S language that is at a relatively high level and
containinga high degree of macros or complex operators. This reduces the amount of
main memory accesses and also the amount of instruction fetch and decode overhead.
The other method is to change the interpreter design, incorporating features that would
enhance its throughput. The purpose of this section is to identify some of the possible
changes in the interpreter design that w\ould enhance its throughput.

4.2.3,,2 Provide Temporary Storage Via MPM.

At present the MPM cannot be used to read out data for the interpreter.
If this were possible, the MIPM could be used to prov;ide either additional interpreter
registers or as temporary storage for data. These features could be particularly
useful in processing a complex Ii LL. The modifications needed to the interpreter to
provide this capability were briefly investigated.

A data input path to the MPM is needed, if it can only come from one place such
as the l38Vk then a nanomemory select bit is not needed for this function. An address
register is needed that would be used as an alternate N\hen writing Into MPM, no extra
nanobits are needed since its use would be implicit. Ilowever the capability to load
and operate on this address register would be required. If this register is brought in
as a Z input to the adder then an extra nanobit is needed. Also if this register is
loaded from the BSW then an extra nanobit may be needed depending un whether some
of the spare codes in nanobits 43-46 can be usid for this function. Finally an extra
nanobit may be needed to specify the MPMI write (possibly some of the codes in nareo-

L bits 51 -54 could be used).

It should be noted that multiple write cycle capability will be required since the
MPM is 16 bits wide and the interpreter is 11 x 8 bits wide (32 bits in th!s study).
Therefore more than 1 MPM A'write cycle would be required for executing a type 1
microinstruction that specifies a IPMl write.
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In summary this function wrill require an address register, changes to the con-
trol section to allow MPM write cycles and delayed fetch cycles (in case multiple
write cycles are required), andl probably 2 extra nanobits.

4.2.3.3 Provide More Registers

At present there are three A, registers and three nanobits that control their
loadting from the IISW (this allows them all to be loaded simultaneously). It is possible
to provide seven A registers and only require one additional nanobit (to select the
adder A input) it the ability to load all the A registers in parallel is given up.

More than three A registers would be a significant improvement in the interpreter.
For example, from the experience in the emulation mode trial microprogramming this
would:

1. Prevent having to store the emulated machines index registers in

main m emnry.

2. Allow the-emulated machines Q register to be kept in the interpreter

3. Allow these registers to be used for temporary storage in manipulating
the instruction format.

Providing more .\ registers would obviously also enhance the performance
in a IIL processing mode with the use of complex macros.

4. 2. 3. 4 Program Counter

In most application a program counter mechanization is needed. The Burroughs
imultiprocessor reqruire3 one of the A registers to be used as the program counter.

This is not very difficult to do since the logic unit is very flexible, Hlowever, since
this function w-ll normally he required, it may he more convenient to provide a
separate counter, This could be provided as MR3 or MW3 in nanobits 43-46. Two
additional nanobits would be required to control the counter:, no change, increment
; 1, input from BSW. If more A rv,.isters are provided than there would he less of

a need to provide a separate program counter register.

-1. 2.3.5 Changes to Logic Unit

There are a number of items in the logic tmit that will normally be required in
an emulation mode that are not presently implemented and therefore difficult to
perform in the present logic unit. One of these is the carry. At present this is
a dynamic condition and is only recorded if tested and a condition hit set. It appears
it would he more desirable to have the carry simply latch a FF if it occurs.

Another item is the shift control. It is frequently required to shift and spread
sign, this is presently difficult to perform and should be added to the shift control.
Also it Is desirable to be able to record if a one was shifted out of the shift register
for a shift of ' places, no such capability exists at present.
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thanThe above items would result in more condition bits. It is also felt that more

Sthan three EX condition bits should be provided. More flexibility should also be
provided in testing the condition bits. For example, a useful set of combinations
would be test EX1 + EX2 +EX3, EX1 + EX2, EXI + EX3, EX2 + EX3 etc. This would
facilitate the mechanization and testing of interrupts. This would alleviate having to
'or' all interrupts in to one bit or having to proceed through a number of separate
microinstructions to test a number of interrupts.

4.2.3.6 Buffer Storage

As an extreme to increase speed one might consider adding a buffer memory to
operate as a cache. The actual effectiveness of a buffer would depend on the particular
characteristics of the program being processed.

Features of buffers which must be considered in their design includes the manner
of buffer control. Either direct mapping or associative methods can be used. (Ref 11).
In the direct mapping, the S memory would be divided into blocks of information. Each
of these blocks would have a tag and be assigned to a fixed block location in the buffer.
In a fully associative mapping, any block in the S memory can be loaded anywhere into
the buffer. The blocks are tagged and everyone is searched to determine whether an
addressed block is in the buffer. This method gives more flexibility at the cost of
time and search logic.

Other, less associative methods as described in the reference can provide
performance with reduced flexibility, but with less hardware cost than the full approach.

Another consideration in the use of buffers is that of what is the best manner of
writing data into the buffer in order to eventually update the S memory. Two ways of
doing this are storing through and periodic block update. The storing through method
requires an S memory write for every buffer one. The block update method permits
the accumulation of the updated data in the buffer and a write into the S memory only
upon replacement of the block which has had data written into it while in the buffer.

Other aspects of the buffer to be examined in a detail design include the buffer
replacement algorithm. It should be simple, such as based upon activity. Fetch
anticipation is felt not to be necessary.

Studies to date (Ref 12 and 13) indicate the best typical sizes for the buffermemory to be 2 to 4 K words with blocks of data of 4 to 16 words.

A block diagram of a possible buffer is given in Figure 4-4. The functions of

the major components are as follows:{ 1. Buffer storage control. This logic provides the associative search
control to determine if the data requested is in the buffer and to provide
pointers for addressing any stack or file structures.

2. Address array. This storage contains the address information of the
data stored in the buffer.
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Figure 1-4. Buffer Storage

3. Replacement address array. This storage provides an activity source
for determining the buffer replacement in the event of addressed data
not being in the buffer.

--. Cache. This memory holds the instructions and data used in program
execution. It is transparent to the programmer and maintained
dynamically. This storage can also provide the temporary storage
"and stack locations.

5. S Buffer. This buffer accepts four to sixteen i- x Si word blocks

from the S memory.

4. 2. 3. 7 Multiply Capability

It became apparent in considering the interpreter in the emulation mode that the
speed of multiply is a limiting factor in the present design particularly for an avionics
application. The fastest multiply algorithm developed by Burroughs for use in the
present design is given in Ref 1. It is noted to consist (f the following:
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Clocks

1. Sign determination and conversion to positive values 2

"2. Setup of counter and registers 3

3. Multiply Loop, averaged for 32 bit data 80

I 4. Sign conversion to sign magnitude 2

Total 87

With a 4 MAlz clock this is an average multiply time of 21.75 microseconds, to
L thi. must be added the instruction and operand fetch times and instruction format

decode. This results in multiply times on the order of 30-35 microseconds.

* •The recommendation at this point in time would be to strongly consider faster
multiply algorithms, such as 2 bit at a time or 4 bit at a time, In future designs of
the interpreter.

4.2.3.8 Logic Speed

The present interpreter clock is 4 MHz. It is quite possible that a higher speed
clock could be used after carefully analyzing future logic designs. This would have a
direct affect on interpreter speed.

K !4.3 SWITCH INTERLOCK MODULE

4.3.1 SWI Timing

L .The logic diagrams of the SWI modules were analyzed to determine the time
required to complete read/write operations for memories and devices. A summary

j- of the results is contained in Table 4-4.

Detailed timing charts are contained in Figure 4-5 through 4-7 for memory and
device operations. The timing charts are for the SWI only and essentially start from
the time the nanobits are clocked into the MDC register. Any other time required to
setup the nanobits between the Interpreter and the SWI must be added to all memory/
device operations. Likewise, a specific memory/device cycle time has not been
assumed and must be added to all memory/device read/write operations.

Figure 4-5 contains the timing charts for memory operations. The detailed
sequence of events is first shown for a memory write assuming the new address (memory
module) Is Identical to the old address. The changes to this sequence are then shown
for read-old address, write-new address, and read-new address.

4.3. 2 SWI Interface with Memories and Devices
2

The present design of the SWI requires certaii interface logic to permit the
transfer of data, address and control information to devices or memories.
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rFigure 4-7. SWI Timing - Device Lock/Unlock

Figure 4-8 presents the Burroughs Multiprocessor concept for information
transferred.

As shown the interface at devices and memories requires shift registers and
a counter. Since the concept is to send the command (type of operation) in the address
word, additional logic is required to extract this information.

The memory operations are initiated by the decoding of the ranobits and issuing
a Mem. Opns. Req. from the MDC to the MC. If the address comparison priority and
memory busy logic permits, the SAI/Clear signal is generated. The latter provides a
reset for the counter and controls in the memory interface. Simultaneously, the high
speed (118) clock is enabled and transfer of the address and command informati.m
from the interpreter occurs. The clock pulses are counted and a memory initiate
command generated. The read or write operation is determined by the decoding of the
received address information.

If a write, the interpreter data is provided simultaneously with the address.
There is no need to transmit any information back to the SWI. The number of bytes
tranzfeired is controlled by a counter in the MDC as shown.

In a read, the return IS clock (MRC) is returned after the memory has performed
the command, counted in the MDC, and used to terminate the operation.
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For Devices, the read or write operation is the same in order to be able to send
status information back to the interpreter. The MDC controls the lock and lock check-
Ing before the operation is enabled. The Device Interface contains a counter used to
count incoming HS clock pulses and initiate the read or write. When the operation is

Y finished, high speed clocks (DRC) are gated back to the MDC and counted there to
: determine when the transfer is completed.

4.3.3 Memory Request Control

There exist two possibilities to consider when an interpreter requests access to
a memory module: The interpreter was the last one to use that memory, and the
interpreter was not the last one to use that memory. In the latter situation the
following series of events occurs in the SWI.

The comparison logic with MC is inhibited by the Valid Enable not being true.
Th Memory Request (MR) then gates the 3 bit memory module address to test whether
the memory module of interest is busy.

" 1. It is busy leads to cont-Iing inhibit of the interpreter clock (ifS/5).

The denial is erded by the addressed memory clearing the busy Flip
Flop (FF) with a cycle complete. The highest priority interpreter is
permitted to gate the Interpreter Clock (tint Clk). The others ara
locked out.

2. It is not busy results in the Int Clk enabled to transfer the address into
storage and set the Valid Address FF. A comparison is made and a
pulse generated which sets the busy FF of that addressed memory
module. This setting is sensed by the Use Determination logic and a
reset generated to clear the address registers of any other Memory
Control (MC) channel holding that memory module address.

In the former case with the interpreter having last addressed the requested
menmory module, the address register in the MC comparison logiQ will contain the
same three bits. The memory request will then be immediately granted. In imple-
menting this case Burroughs ran into problems of conflicts when different requests
"came into the SWI at slightly different times. In some cases access would be granted
to two interpreters to the same meinory module. This problem was eliminated by
disabling the comparison logic that grants immediate access to an interpreter if it last

4 - used the same memory module. As a result of this all memory requests must go
through the priority logic with the resultant added delays in granting access to an
interpreter.

It is possible to structure the logic in the MC module to permit the operat'cn to
be as originally desired. Figure 4-9 shows an approach and provides the means by
which 1che quantity of logic can be estimated. The addressed memory raodtle is first
"tested for its busy status. If available, the memory request enables the comparison
pulse ";o be generated which initiates the memory operation. Simultaneous requests
from .'wo interpreters results in an Inhibit signal being generated in lower priority
IMCts to prevent enabling the memory request gating.
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4.3.4 SWI Design Features

Some of the features designed into the SWI are noted below. The memory cycle f :'

and device cycle times can be variable due to the asynchronous interface allowed by
the SW. This allows a mixture of memory types to be used for the main memory
of the system.

One word transfers are only possible. For each word transferred, the
i• Interpreter must Issue a new request. This holds true for memories and devices.

Modularity was to be one of the key design features of the SWI. It is felt that
modularity can be achieved in the design of the SWI. However, in investigating the

modularity of the present SWI design It became apparent that a very limited degree
of modularity exists. A discussion of the modularity achieved in the present design
is given below.

The MDC is modular in that one is used per interpreter. There is no apparent
limitation as to how many MDC's could be used.

The MC is made up of two types of modules. The 'MCI' module handles two
interpreters and the Memory Busy FF's. The 'MCO' module handles three interpreters.
"MCI could be used alone, if only one or two interpreters were in the system, except
that pull up resistors are required which are contained on the MCO module. It appears
the concept could handle more than one MCO module as long as circuit limitations are
not exceeded. This would allow more than five interpreters to be used. The MC
modules handle eight memories. There is no modularity as far as the number of
memories accommodated by the MC. The same module is used for one or for eight
memories. The present design of the MC cannot easily be modified to service more
than eight memories. One possible approach to service more than eight memories is
to add another MC module to handle another bank of eight memories. This would
require some means oi handling an extra address bit to signify which bank of eight
memories to use; such a modification would have to be added either to the MDC or
the MC.

The DC is made up of two modules. Both modules are identical and handle up to
three interpreters by eight memories. One module may be used alone if three or less
interpreters are to be serviced. It appears that more than six interpreters can be
serviced by using more than two DC modules if the circuit limitations are not exceeded.

Y Expansion beyond eight device modules is not possible with the DC. Handling more
than eight devices would require modifications to the MDC or DC as discussed above
for the MC.

The Output Switch Network use'1 two types of modules, OSNI and OSNO. The
OSNI handles two bits and one clock per interpreter and the OSNO handles four bits

i per interpreter. Each type services five interpreters by eight memories. The
address output requires two OSNI modules since two clocks need to be transmitted
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(clear pulse and high speed clock). If more bits are desired to be transmitted in
parallel, then an OSNO module can be added (pending circuit limitations). This
would add four more bits to be transmitted in parallel. Additional OSNO modules
*would increase the parallelism in transmission. The data output uses two OSNO
modules. Additional OSNO modules would increase the parallelism In transmission
provididg circuit limitations are not exceeded. It appears expansion beyond five
htt orpreters Is not possible since the clock bits cannot be noded together from two
0SNO modules in parallel. The OSNI modules can be noded together (pending circuit
limitations,) to handle more than five interpreters. Afore than eight memory modules
0111 he serviced by using additional OSN modules in parallel provided the MC modules
are modified to handle more than eight memory modules.

-* "The Input Switch Network uses one type of module tMat provides transmission
of four bits per interpreter and services five interpreters by eight memories. T\\o
modules are used in the system providing transmission of eight bits in parallel.
Modules may he added to increase the parallelism, provided circuit limitations are
not exceeded. Likewise, more than five interpreters could be serviced by adding
modules in parallel provided circuit limitations are not exceeded. Expansion beyond
eight memory modules is also possible provided the MC modules are modified to
handle more than eight memory modules.

Another considleration in the SWI that Is tied in with modularity Is the failure
tolerance as;prectn of the SWI. The existing SWI design contains a number of failure
points %%hich can cause loss of more than one element or cause difficulty in detection
or reconfigiuration. After considering eacth of the SWI elements, some possible
failure modes are noted below.

1. D)C - The most obvious DC feature contributing to loue r
r-eliability and to difficulties in detection and reconfigu ration is
tthe use of common logic between stages. Some failures such as
those contributing to the generation of MDC control signals can
occur. These can be isolated and confined to one stage if the poeNer
connections permit. lHo\kever, others that are described uext use
(10c11omon logic and cannot be.

a. Common address selection is used for up to three stages.
'The address select can fail and prevent the ability to address

decode. The entire SW! can be lost.
i). Tile "OR" gate providing lock inhibit signals is used for

three stages and no,led with the others from the second DC for
more-than-three interpreter systems. Its loss would cause
loss of a particular device. Loss of the source of power for
this common "Ol" logic would mean loss of more than one
staige or even total loss of the SW!.

c. The priority inhibit logic is used between stages. A failure
in this area would he hard to isolate and reconfigure around.
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iii
2. MC - An with the other SWI elkments, certain MC failures

such as the comparator can be isolated to one interpreter. Other
types of failures which can occur with the MC and which present

• L greater problems are as follows:

a. Lower stage lockout - The priority signals are cascaded.
A failure of the signal or a power turnoff to an intermediate
stage can look out lower stages.

b. Multiple memory accessing - Inability to set the busy flip
flop can cause two interpreters to request access to one
memory. Also if the flip flop for reset of the address
buffer fails, two interpreters can also access a memory.

- - c. Failure to transfer information - A busy flip flop '"ON"
failure can prevent other channels from aci.essing a memory.
Also, a single power source provides powter to these flip flops
making it difficult to turn power off to a failed stage.

3. ISN/OSN - The design of the ISN/OSN is such that single failures for
the most part contribute to loss of either an interpreter, memory,

Y • or device.

Failure Af the strobe signal to "ON" can cause the continuous
readout of whatever Is addressed by the buffer storage for that
stage. Since separate power is supplied to each channel, it is
possible to remove the faulty channel and lose its ass'ociated
interpreter.

Inputs to interpreters from devices through ISN's are tied to those
from memories. Loss of one line prevents that interpreter from
communicating with either. Isolation and pomer removal to the
bad component may restore the communications over the good

* lines.
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1.3. 5 Alternate SWI Design

From the above dtscussions, it is obvious the modularity and failure tolerance
aspects of the SWI need to be investigated further. In considering alternate designs,
it is necessary to examine the partitioning of the electronics to the boards and the
number of pins required for interconnecting the SWI. It is desirable to have flexibility

* for difi'., cent word sizes; number of interpreters, memories, or devices; to make all
channels alike to achieve submodularity, and to minimize the board types. Achieving
all of these i;- difficult due to packaging limitations arising from the need to minimize
circuit connectors used, the number of pins and board sizes which are available, and .

to utilize available standard solid state devices. The following represents an approach
which offers greater potential in meeting the avionics needs than the present approach.
(The approach will follow the same commercial prototype packaging philosophy as
Blurroughs used in the multiprocessor, enabling a one-to-one comparison. An avionics
design mwy take on a slightly different approach.)

S.:,paration of tho channels and integration of all logic relative to a channel is
suggested. A\ channel is hereby defined as the information path for one interpretr.
Tie. MDIX design can remain as is since it is designed for a single interpreter or
channel approach. The circuitry for the MC and DC can be packaged on one board.
The ISN/0SN can either remain as presently designed or redesigned with each channel
oti one board4 and containing the circuitry for all or portions of an ISN, data OSN and
address (USN. This latter approach requires junctions external to the board in order
to cnable inputs to go.to each ISN (as contrasted to these junctions being presently
provided on the circuit boards). Similarly all corresponding OSN outputs would have
to be tied externally to enable any of the outputs to go to the proper device or memory.

Thealternate designs achieving this channel modularity and failure tolerance on

at channel basis are shown in Figures -4-10, 4-11. and 4-12. The MIC and DC channel
"11slices" are shown in Figures 4-10 and 4-11. These two can be packaged on one board,
hereafter referred to as the MC/DC module. The MC/DC module provides all the
me.,mory and device control for one interpreter. The former ISN, OSN-0, and OSN-I
mosdules are changed into one module now called the IOSN. Figure 4-12 shows a dual
-- 111channel %vrsion of the IOSN, a triple channel version is also feasible with the corn-
-imrcial prototype technology. Each channel on the IOSN module provides four data
bits and one clock bit out, two address bits out, and four data bits and one clock bit
in (to/from up to eight memory modules or eight devices).

A comparison with the previous design features shows:

1. No common logic exists between stages. iReconfigu ration and power
turnoff is possible.

2. Error detection logic such as parity bit can be added.

:1. ,Mdularity hy stages is achieved and provides advantages in checking and
inte :•. ihangeahility.

The pre'vious design consisted of a large number of boards and types of boards as
shown in Talhe 4--5.
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Table 4-5. Number of Boards in Present SWI

•.•OSN OSN

y ISN Data ADDR MC DC MDC Tota,
S~Per IC or DC -

12 2 3 1 1 2 16

3 2 3 1 1 1 3 17

4 2 3 1 2 2 4 20

5 2 3 1 2 2 5 21

Types 1 2 2 1 1 7

Table 4-6 presents the number of boards for different numbers of interpreters
(assuming a two channel IOSN and a three channel IOSN) for the alternate design
approach.

Table 4-6. Number of Boards for Alternate Design

ht. Qtyý IOSN MCli)c .MIC Total
S~Per N lC/I)C

22 2 21
3 2 3 3 10

4 4 14 Wi
3 -4 5 5 18

Types 2 1 1 -

This approach provides a better utitization of the electronics in matching the
number of interpreters with the number of SWI boards.

The MC is shown to he similar to the present design. Each stage has thrce
busy flip flops settable by the compare pulse when enabled by the priority sensing.
Each stage woul(I have a network to select the correct cycle complete signal to roset
its busy flipflops. Each stage also must have comparators which compare the stage's
address with any of higher priority to generate this priority UlIabh,. Folu a five inter-
preter capability, a maximum of four comparators is needed for the lowest stage. Itwould be practical to make all stages alike and tie off any unused Eitages. Since all
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eight combinations of address are used, the valid signal for each stage must also be
used to enable the comparison. Further, if the higher stage is turned off, the corn-
parison section for that stage must be so designed that its output cannot occur.

The MC operation is similar to the present.

1. New address - First thing to occur is the check of the busy signals.
If OK, the address Is dropped into the buffer and a comparison signal
generated. This sets the busy flip flop and initiates the operation.

2. Same address - A comparison is made immediately. An inhibit is also
generated with any lower address until the busy signal logic can generate
a reset for that logic. This new logic oercomes the previous described
problem of dual accessing presented in Section 4.3.3.

Without the ability, as described in Section 4.3.3, to permit the same interpreter
to use the same memory, an additional three integrated circuits per MC stage would be
needed for this new design over the present. With the function added to the original
design, this approach uses about six less integrated circuits per stage than the approach
shown in Section 4.3.3.

To accommodate the interconnections about 50 pins are required.

* The DC logic increases slightly with the elimination of common logic. About
three more integrated circuits per stage are required to perform the same functions.

S'The number of additional pins per stage needed is about 15.

The conclusion r'ached from the considerations of quantities of integrated
circuits and interconnection pins is that it is practical to place the MC and DC logic
per stage on one board. This is so indicated in the previous table as the MC/DC

* module.

Since individual channels were reeognized, the 10 design follows that of the
present except that a different packac.ng is recommended as a means of reducing both
types and quantities of boards. A number of ways that the input output area may be
structured were investigated, including single, dual, and triple channel. The recom-
mended approach is that of providing two board types. One board contains half of the
10 logic (for eight memories or eight devices) for two channels and the other board

S *. half for three channels. This gives better utilization of the electronics when the
number of interpreters is odd and while keeping the total board count down. The
estimated interconnection pins and integrated circuits per board support the conclusion
that these approaches are compatible with the board size and connector available

* (1 ;0 pin connector and 45-16 pin integrated circuits per board).

The resulting Switch Interlock is shown in Figure 4-13. All logic associated with
a channel could be connected to the power source regulator for that channel. This

4 •design provides better modularity and reconfigurability than the existing approach.
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4.4 MULTIPROCESSOR PERFORMANCE CAPABILITY

4.4.1 Introduction

Section 4.1 discussed the flexibility inherent in the multiprocessor and identified
different approaches to the S language. It is the intent of this section to define the] performance capability, quantitatively, i" terms of its throughput or speed. To
accomplish this the emulation mode of operation will be investigated further. The
emulation of the IBM 4r CP avionics computer was investigated. In addition such an
emulation modified by the use of macros was investigated. This gave the resultant
throughput improvement in using macros and also an estimate of storage redration.
This activity also enabled an estimate to be made of the amount of MPM and NM
required.

4.4.2 Emulation Mode of Operation

The IBM 4it CP avionics computer was selected for the emulat;on application.
This computer is characterized as a 16/32 bit (instruction ..ad data) mactin2 with the
following primary registers:

-32 bit accumulator (A)

"32 bit lower accumulator ()

16 bit instruction counter

3-16 bit Index Registers

The instruction formats are as follows:5°° 1 2
j " 1/2 Word -- Code f/F T Displacement

"index registers

-j 10: 1/2 word Instruction

*1_ 5 1 2 1 3 4 16
Flwod- OP IA 00 OP CodeCode /F 000 ext Address

f -0: direct addressing

1: indirect addressing

In emulating this machine one of the A registers, A 1 , was dedicated as the
program counter, and A2 was dedicated as the accumulator, the remaining registers
were stored in main memory.
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There are two basic types of instructions to be considered: 1/2 word (16 bits)
and full word (32 bits). Within the 1/2 word format there are thirty-one Instructions.
Seventeen of these use the regular format where the T bits are used in a normal manner
to generate an effective operand address. The ,emaining instructions utilize the bits
in various ways. For example, the shift instructions use two op codes but, utilize the
T bits in specifying the type of shift and part of the displacement to specify the shift
amount. Similar distinct uses of the instruction bits occur for several other instructions.

Within the full word format there are 27 instructions that each require special
functions to be performed with the bits in the instruction, some do not require inter-
pretation of the op code ext, others do not use the effective address, others require

*1 interpretation of the T bits, etc.

The operation of the interpreter in this emulation mode is illustrated in
Figure 4-14.

There exist three basic steps in the emulation process: instruction fetch,
instruction format interpretation, and instruction execution. In many cases (certain
instructions) the instruction format interpretation is integral with the instruction
execution and is not necessarily a separate routine for certain instructions as illustrated
in Figure 4-it. These concepts are further Illustrated in Pigure 4-15 where the struc-
ture of these routines is shown. The concept is that the I fetch routine uses the op
code to access a table of op code pointers (1) these pointers either lead to the I format

INSTRUCTION

FORIAT
INTERPRPFA IION

INSTRUCTION

EXEC IIIIOt

Figure 4-14. lnturprute r Emulation Operation
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I FETCH

OP CODE
POINTERS I) - -

OP CODE
POINTERS (2)

I

I FORMAT _ I
Figure INTERPRETATION

I EXECUIrlON 9

Figure 4-15. IPFM Structure

interpretation or to the I execution routines. If the I format interpretation routine
was entered, it will point to a set of op code pointers (2) that will then point to the
appropriate I execution routine. At the completion of an I execution routine, a pointer
is used to re-enter the I fetch routine.

The I fetch routine flow chart is shown in Figure 4-16 and the detailed micro-
coding is given in Table 4-7. The fiow charts along with the microcoding table are for
the most part self explanatory.

The flow chart for the instruction format interpretation routine is shown in
Figure 4-17 and the detailed microcoding in Table 4-8. It should be noted that this
routine is entered with the instruction in the B register aligned as follows:

I. 2 8 16 5 1

bits: Displi op code IH/F

An additional point to keep in mind in this emulation process is that the interpreter
logic unit and its interface with the main memory is 32 bits. The emulated machine
also has a 32 bit logic unit and memory interface. As a result, it must be kept in mind
which half of the word (instruction and data) is being processed and also if a full word
instruction is being processed whether the entire instruction has been received.
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F TRANSFER TO ROUTINE

Figure 4-16. I Fetch Rout'ne

93/94

----------



IU

.0CS

IL 0
w 0

cs 0 "1o 
4

0 .64

C) C
.4-'4

0 ca

o 0

1 -

0 C l C4V:
.0g A. "~ f ~ U) fU I

CO m2 to
ita 0I 0 " ý 0

0~ *

eq o

a) 0> '-4) V4 C'1 :D

-4 H 4 m 4- 14

95



(U

X4-

0.2

CCI

goo
X. Ul C- ro4 o- 14 -- C4 1

A 96



1, 2, 5, 6, 8, 10 FR IP~EET

LDISPL-fr A3

3,4,8
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LOAD LIT WITH LOWER
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Most of the IBM 4;t CP Instruction set was microprogrammed. It was found that
most of the short (store, load, add, compare, ete) type of instructions take a similar
amount of time to execute. Therefore, several examples will be given below.

The flow chart for the full word (32 bits data) add instruction using a 1/2 word
S(16 bits) instruction format is shown in Figure 4-18 and the corresponding microcode

is given in Table 4-9. 'i t is seen that the execution portion is relatively simple corn-
pared to the I fetch an&:I format interpretation. The 1/2 word load and full word
compare ising a 1/2 word instruction format are given in Figures -1-19 and 4-20 and
Tables 1-10 and 41-11. A flow chart for the multiply routine is given in Figure 4-21.
The micioe•oling for this routine is not given since it is identical to that given by
Burroughs in Reference 1. These instructions were branched to the I execution phase
from the I format interpretation routine as shown in Figure 1-17. Most of the short
format instructions are executed in this manner. Ilowever, some are entered directly
from the I fetch routine, such as the shift instructions. It is expected that a similar
amount of total time will also be required by these instructions.

A flow chart for a full word format instruction is shown in Figure -1-22. The
particular instruction is a 1/2 word add with the microcvling given in Table -1-12.
This flow chart is entered directly from I fetch and therefore includes the I format
interpretation and execution. At this point in time it is not certain whether each full
word format instruction will have its own I format and execution routine or whether
-a ummon I format interpretation routine can be used as for the 1/2 word format
inst ruot ions.

FETCH
OPERAND

[ + A2-*-wA2

TRANSFER
TO i FETCH
ROUTINE

FETCH

Figure -1-18. Full Word Add Instruction Execution
(1/2 Word Instruction Format)

100 d•" Format)
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Table 4-9. Microcode for Full Word Add Instruction Execution

4Microinstr Microcode Comments

1 Ext Op uncond, MR2

2 Type 2, Load AMPCR With jump address to
I fetch

T 3 LU cond, SC = RDC, SC 0 then
46 wait, BEX

4 LUuncond, A2 -A, BTTT - B,
Add A&B, BSW -A2,

- I Successor : Jump

1,4 FETCH

OPERAND

25,6,7 ALIGN

OPERAND

i DB*A2

3,6,7 TRANSFER
TO I FETCH
ROUTINEII

I FETCH

Figure 4-19. Half Word Load Instruction Execution
(1/2 Word Instruction Format)
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FETCH
OPERAND

4

2,7,8

•ii

2.5S LS YES

- - -YES
RE rURN Al 2 4' -^1

TOO
FETCI NO~t

•,,7

S~Figure 4-20. Compare Full WVord Instruction Execution
S~(1/2 Wori! Instruction Format)
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Table 4-10. Microcode for 1/2 Word Load Execution

Microinstr Microcode Comments

1 Ext Op uncond, MR2

2 Type 2, Load SAR with 16

3 Type 2, Load AMPCR With jump address to
I feth

4 LU cond, SC = RDC, SC= 0
then wait, BEX

5 LU cond, SC = LC1, Left Shift B,
BSW - A2, SC = 1 then jump

Q q, otherwise step

6 LU uncond, Right Shift B, BSW - B

7 LU uncond, Left Shift B,
BSW - A2, Successor jump

Table 4-11. Microcode for Compare Full Word Execution

1 lMic roinstr Microcode Comments

1 Ext Op uncond, MR2

2 Type 2, Load AMPCR With jump addeess to I fetch

3 LU eond, SC = RDC, SC 0 then wait,
BEX

4 LU uncond, A2 - A, BTTT - B,
"SUB A&B

5 LU cond, SC = LST, SC = I then step,
SC =0 ther. jump, Al - A, B1C0 -. B,
Add A&B, 13SW - A1

"* 6 LU uncond, A2 - A, BTTr -• B,
SUB A& (B-i)

•"•7 LU cond, SC = LST, EC ý 0 then jump,
"A] - A, B100 -B, AddA &B,
BSW - Al

8 LU uncond, Al- A, B 100 - B,

I Add A&B, BSW - Al,
Successor Jump
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The flow charts given above enable the total instruction execution times to be
calculated in interpreter clocks and tirm for memory responses. It was assumed that
the interpreter clock was 0. 25 iýisec (4 MHz) as in the present design. Thq memnory
response time was calculated based on the SWI timing analysis presented in Section4.3.1.
The memory cycle times assumed were 0.5 I&sec read cycle and 0.8 4sec write cycle
which is compatible with the 2-mtl plated wire memory technology to be used in the
packaging characteristics portion of this study. The total memory read time including
SWI delays is therefore 1.0 Osec. This assumes no added delays due to priority
resolution in a multiprocessor configuration. The degradation factors due to multi-
processor configurations will be considered separately.

The timing results for the short format instructions are summarized In Table4-13.
It is seen that the times are variable and depend on factors such as whether addressing
is relative to the program counter (the Al register) or to one of the index registers
(stored in memory), whether the operand address is even or odd, etc. A listing of
typical short format instruction times is given in Table 4-14. It is estimated that the
average short (add, load, store, etc) type of instruction will take 11 1sec and the
multiply will take 32.75 Osec. These are complete times and include, I fetch,
I interpretation, operand fetch, and I execution.

Table 4-13. Instruction Execution Times In psec for
Short Format Instructions

Addressing Relative to

P Ctr Index Reg

I FETCII 3.75 3.75

I Format Interpretation 4.75 5.75

Subtotal 8.50 9.50

I iEXECUTION

1. Full Word add, Figure 4-18 1.75 1.75

2. iU2 Word load, Figure -1-19

a. 1:%ven address 2.25 2.25
b. (dd address 1.75 1.75

:1. Full Wonl compare, Figure 4-20 2.00-2.75 2.00-2.75

i. Multiply, Figur, 4-v'l average 23.75 2;3.75
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Table 4-14. Typical Execution Times for 1/2 Word Format instructions

'I Time
Instruction { psec

Add 10.25- 11.25

Add 1/2 10.50-12

Compare 10.50 - 12.25

Compare 1/2 11.00 - 13.00

Load 10.25 - 11.25

Load 1/2 10.25 - 11.75

Store 10.25 - 11.25

Store 1/2 10.25 - 11.75

Sub 10.25 - 11.25

Sub 1/2 10.50 - 12.00

AND 10.25 - 11.25

, OR 10.25 - 11.25

EXCL OR 10.25 - 11.25

Multiply 32.25 -33.25

Average Short Instr 11.00 psec

Average Multiply 32.75 ILsec

The 1/2 word add instruction using a full word instruction format (Figure 4-22)

took the following times:

1. No indirect, odd operand and instruction address 7. 75 psee

2. No indirect, even operand and instruction address 8. 75 pscc

3. Indirect, even operand and instruction address - 10.50 Lsec

The complete instructLun time, as seen, ranged from 7.75 to 10. 50 •csc. A similar12 range is expected for other short type of instructions by extrapolating from the experi-
ence in Table 4-14. Based on experience in the FB-111A/F-111D avionics system it
is expected that very few instructions will use the indirect addressing format (3 percent
from statistics on the referenced system). Therefore the following average times are
expected for instructions using the full word (32 bit) instruction format:

1. Short (add, load, store, etc) - 8.75 •sec

2. Multiply - 30 4sec
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At this point, an estimate of the interpreter's throughput capability can be made,
when operating in an emulation mode for the IBM 47T CP avionics computer. An *1
instruction mix representing various types of operations derived from the FB-1IA/ U
F-111D avionics system will be used to derive the throughput in operations per second.

As stated in Section 2 the percentage of long and short instructions expected is
30 percent and 70 percent respectively. This leads to the following average instruction

times-

timeShort (add, store, load, etc) = 0.7 (11) ' 0.3 (8.75) = 10.3 pLsec

time 0.7 (32.75) + 0.3 (30) = 32 tseccNMPY

The relative frequency of occurrence of the various types of operations is given in
Table 2-3 and shows 89 percent are short type (add, load, store, logical, branch, etc)
and 11 percent are long type (MPY, divide). This leads to the following throughput in
operations per second

tag 10.3 x 0.89 + 32 x 0.11 = 12.68 ýisec

throughput = 106/12.68 - 79,000 operations/second

The other aspect of the interpreter that needs to be considered in the emulation
mode of operation is the size of the NIPM and NM. The following approximations were
made to arrive at these sizes.

1. MPM

a. I fetch - 23 micros + 1 x 65 op codes = 88
b. Short Instr format Interpretation - 31 micros t- 1 x 17 op codes 48
c. Short Instr execution - 7 micros (avg) x 17 op codes = 119
d. Short Instr execution (not using I format interpretation) - 30 micros (avg)

x 8 op codes - 240
e. Long Instr format interpretati'n and execution - 25 micros (avg)

x 29 op codes = 725

Total r 1220

2. NM

A rough estimate indicated that approximately 784 of these are Type 1
microinstructions. If it is assumed that half of these are common,
then:

Total = 392

4.4.3 Emulation Optimized with Macros

It is obvious, when considering the above data in Section 4.2, that there is a
significant overhead in the I fetch and I format interpretation of every instruction.
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This is one of the reasons for considering macros that optimize the interpreter to the

application. Macros can perform more complex operations in a single instruction
thereby eliminating a significant overhead that goes along with every Instruction in
Section 4.2.

Two types of macros were considered to optimize the emulation presented in
Section 4.2. Data was available on each thereby offering an estimate of the quantitative
improvement from the use of macros. The first type of macro was placing conventional
subroutines such as sine, arc tan, etc in MPM and using a single macroinstruction to
execute each. The other type of macro was specialized complex instru'tions that
could replace sequences of code.

The first type of macro considered, conventional subroutines, was based on
statistics from the FB-111A/F-111D avionics system. The data from this system
showed that approximately 44 percent of execution time was spent in subroutines.
Further most of this time was due to ten subroutines:

1. Sine Cosine

2. Square Root
4.•

.3. Bin dec/Bin dec half

4 :4. Arc tan/Arc tan half

5. Euler, Euler Ck

6. Limit

"7- Pcostart

8. Root Sum Square

9. Synchro

10. Matrix 3 x 3, Matrix 3 x 3 T

Some of these subroutines were examined to determine the throughput improvement
by placing them as macros in the MPM. It was found that in most cases a throughput
improvement factor of two resulted, i.e. it took half as long to execute the subroutine.
For example, in the conventional subroutine manner, the subroutine for sine and cosine
would have taken -580 jisec; however as a macro it took 261 4sec. It was also noted
that the principal limiting factor in this improvement was the speed of multiply. In the
261 ýisec for the sine macro, 85 percent of this time was spent in multiply. The same
points hold true for most of the other subroutines converted into macros. Therefore,
if the subroutines are converted into macros, the speed requirements of the avionics

jj system can be reduced by 22 percent (1/2 of 44 percent). It should also be noted that .
UJ this does not have any significant impact on the main storage requirements.

'3_
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The other type of macro considered was converted sequences of conventional-
instructions into a single macro. A recent study conducted by Autonetics (Ref 14)
considered the use of macros for an art-anced tactical missile inertial guidance system. AJ
Extensive statistics were gathered Va this study and many are applicable to the avionics
application under consideration he'e.

.1
In the referenced study mxny macros were considered. In addition to the

conventional subroutines already considered above, the following macros along with
the percent of time spent in them were noted:

Macro % Execution Time Used by

VXSC Vector x Scalar 11%

VAD3 - Vector Add (I x 3) 5.5%

VSU3 - Vector Sub (1 x 3) 6%

VXFR - Transfer Vector in memory 1%

Matrix Multiply 1 x 3 x 3 x 1 8%

-Matrix Multiply 2 x 3 x 3 x 1 7%

38-1/2%

In the vector add and vecto' subtract a signiflcal.tt improvement should be realized if
they are placed in MPM. The others will be limited by the speed of multiply, however,
even here there will be at least a 1/3 improvement since the I fetch and interpretation
are eliminated. Therefore a factor of two is again a good approximation for the
throughput improvement due to these types of macros. This will give a 19 percent
reduction in the speed requirements.

Considering the combined effects of the two types of macros; the first type has
effected .4-4 percent of the required throughput, there then remains 56 percent that can
be improved with the second type of macro. If this 56 percent can be reduced by 19
percent, this gives a net reduction of 11 percent for the second type of macro. The
net effect for the two types of macros can be summarized as follows:

Type of Macro Throughput Requirements Reduction

Subroutine 22%

Complex instruction 11%

Net Effect 33%

The net effect of macros can then be expressed in either of two ways:

1. The throughpu, requirements are reduced by 33 percent, or

2. The throughput capability of an interpreter is increased by 50 percent and
the requirements remain the same.
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The second type of macro, complex instructions, also has an effect on the main
memory storage requirements. Many instructions are now replaced by a single
instruction. It should be noted that the first type of macro, subroutines, has no effect
on the main memory requirements. Therefore, since 38-1/2 percent of the operations
per second are effected by the complex instruction macros, an estimate of the instruc-
tions effected by these macros can be made. If it is assumed that these effected
operations per second actually represent 1/2 of the total instructions (allowing for the
fact that many will be in high iteration rate loops), then 19.25 percent of the instructions
are ccaverted into complex macros. It is estimated, considering the complexity of the
macros, that each complex macro will replace approximately five instructions giving
an effective reduction of 80 percent to the 19.25 percent of the total instructions. This
gives a net reduction of 15.5 percent to the total instruction requirements.

In summary the use of macros has the following effect on the computational
requirements:

1. Speed - requirements reduced by 33 percent

2. Storage - instructions reduced by 15.5 percent

The other factor that needs to be considered in the emulation mode optimized
with macros, is the additional MPM and NM required. The subroutines and complex
macros were examined and it was estimated that they would add approximately 647
words to the MPM and 324 words to the NM. This brings the total requirements to:

1. MPM - 1867 words

2. NM - 716 words

4.4.4 Multiprocessor Characteristics and Capabilities

In the previous sections the capabilities of the Interpreter have been defined for
two of the possible modes of operation identified in Section 4.1:

1. Emulation:

Speed - 79, 000 operations/see

2. Emulation optimized with macros for typical avionics application:

Speed - requirements reduced by 33 percent er define capability as
119,000 operations/sec

Storage - requirements for instruction storage reduced by 15.5 percent

These capabilities are based upon emulation of a conventional state of the art avionics
computer such as the IBM 4r CP.

11
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The capabilities of the Burroughs multiprocessor as defined above hold true for
a single interpreter. More interpreters may be added, thereby increasing the through-
put capability of the multiprocessor. however due to conflicts of interpreters accessing
memory in multiprocessor configurations, the increase in throughput is not simply the
sum of the individual interpreters throughput which could be defined as an ideal multi-
processor. A multiprocessor degradation factor can be defined as one mints the
effective throughput divided by the ideal multiprocessor througput (percent degradation
compared to ideal case). The degradation factor can be expected to increase as more
interpreters are added. This factor is very dIfficult to specify. It depends on a number
of parameters such as the type of executive utilized, the effort put into (and the resultant
cost of) programming for a multiprocessor environunent, the characteristics of the
problem being run, and the particular data the problhxn is being used on.

Little information is available on the degradatior: factors in multiprocessing
systems and any information available is very applicatiun dirpendent. Therefore for
lack of any better information the following table of degra•.itiun factors will be assumed
as shown in Table 4-15.

Table 1-15. Multiprocessor Capability

Total
Number of Degradation Relative Throughput
Interpreters Factor Throughput (ops/sec)

1 0 1.00 79,000/119,000

2 0.10 1.80 142,500/213,750

3 0.20 2.40 190,000/285,000

4 0.25 3.00 237,000/355,500

5 0.30 3.50 277,000/415,500

Another consideration, in defining multiprrocessor configurations, is the relative
number of interpreters to memory modules. 3i- general, the number of memory
modules should be equal to or greater thauti ki. ;timber of interpreter modules otherwise
conflicts in access to memory will incra.at and the degradation factor will increase.

J
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5. CONFIGURATION DEFINITION

5.1 CENTRAL VS LOCAL PROCESSING ALLOCATION

5. 1.1 Introduction

The objective of this portion of the study was to specify the recommended
allocation of the processing tasks. The tasks were donsidered either allocated to
a central processor or to local processors associated with the subsystems. The
processing requirements were defined in Section 2 in summary form, i.e., the
requirements for each major function were given. The requirements used in the
processing allocation were at a lower level; the requirements of individuai tasks
within a major function were used. These task requirements are contained in detail
in Appendix A. Further, In using these task requirements a number of assumptions
had to be made regarding overhead functions such as executive. input/output,
synchronization, test, etc. The following estimates were made for these overhead
factors:

Local Processing Central Processing

SPEED:

Add to Basic Requirements*: Add to Basic Requirements*:

7 percent for executive, 20 percent for executive.
15 percent for sync 50 percent spare
communication.test, 50 percent
spare

STORAGE:

Add to Basic Requirements : Add to Basic Requirements":
30 percent for a short/long 30 percent for a short/Iong
instruction format, 7 percent instruction format, 15 percent
for executive, 15 percent for for executive, 50 percent spare
sync/communication/test,
50 percent spare

*: Operations/sec represent a mix of instruction types as specified in Table 2-3.
**. Assuming requirements are independent of word length as explained in Section 2.2.

It should be noted that these overhead factors are only approximations at this point in
time and are included to arrive at a realistic sizing of the local and centi-al processors.
The 50 percent sparc is a requirement as specified in Section 2.2.

The sizing of the local and central processors will be performed using the
capabilities defined In Section 4.4. The mode of operation will be assumed to be
emulation optimized by macros. Table 4-15 defines the throughput capability for a
-muitiprocessor with up to five interpreters. The throughput capability i4 operations
per second represents a mix of Instruction types as defined In Table 2-3. As noted
in Section 4.4, with this mode of operation, the storage requirements for instructions
should be reduced by 15.5 percent.
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5. 1.2 Candidate Allocations

The processing requirements specified in Section 2 were defined based upon
central processing. These requirements were analyzed to determine which could be
pertormed in local processors. The processing requirements consist of ten major
functions. Five functions were found to be amenable to local processing; namely,
Navigation, Steering, Target/Checkpoint Acquisition. Weapon Delivery, and Penetra-
tion Aids. The remaining five were not suitable for local processing for a variety of
reasons. Terrain Following/Avoidance and Mission and Traffic Control are growth
functions and are presently not included in the digital processing requirements.
Mission Data Management and Central Integrated Test are functions that involve
processing of data for all other major functions and all the subsystems; as a result,
these functions cannot be efficiently allocated to local processors. The Executive
function is an overhead functicn that is required to one degree or another in all the
processors.

Each of the five functions is comprised of various tasks as defined in Appendix A.
The functions were analyzed to determine tasks uithin each function that could be
allocated to local processing. Some of the factors considered in arriving at task
allocations were:

1. The 1/0 rate and nun.)ber of I/O signals of a particular task with other
tasks within the same function, with other functions, and with the
hardw-are items associated with each subsystem.

2. The prerequisite tasks required to be executed before the allocated task
is executed.

3. The number and type of hardware items interfaced with the allocated
task.

Due to the large number of tasks within each function. it is not possible to
examine all possible combinations of tasks within a function allocated to local
processors. Based upon the factors noted above, each function was anal zed to
define reasonable candidates for allocation to local processors. The results are
presented in Tables 5-1 through 5-10, and Figures 5-1 through 5-5. For each
function there is a table that defines the candidate allocations considered for
analysis, a table that presents the processing requirements for each candidate, and
a figure that graphically presents the processing requirenments (the processing
requirements. speed and storage, are for the local processor),

As an example, Table 5-1 defines eight candidate allocations for local
processing for the Navigation function. The numbers 1. 1, 1.4 etc., in this table
refer to the numbering system adapted in the requiremients analysis description
in Appendix A; 1. 1 is the task IMU Control-Fast. 1.-4 is the task IMU Control-Filter,
etc.

Table 5-2 definesthe local processor speed and storage, the 1/0 rate and number
of signals between the subsystem (including the local processor, if any) and the central
processor, and any pertinent considerations in a remarks column. The speed is
specified in operations/second, and represerts a mix of instructions (add, multiply,
etc.) as specified in Table 2-3, and as used in deriving the throughput capability of
an interpreter in Section 4.4. The storage is specified in number of 16 bit words. In
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Table 5-1. Navigation Processing Allocation

CANDIDATES:

Number Tasks in Local Processor

S1. None
4 2-. I. IMU Control - Fast

.3. 1.2 IMU Control - Mid

4. 1.1, 1.2, 1.3, 1.4 AlilMUSubtasks
5. 1.1. 1.3, 1.4 iMUControl-Fast,

- Slow,
- Filter

6. 1.1 through 1.12 All IMU, G.-d. Align.,
and Nay Subtasks
except Nay-Filter

7. 1.1 through 1. 13 All IMU, Grd. Align.,
and Nav Subtasks

S8. All

this part of the processing allocation analysis, the 15.5 percent reduction in
number of instructions required is not taken into account, overa!l, this typically is
11 percent since the storage is typically represented by 73 percent instructions and

L. .27 percent data. The I/O rate specifies the number of 16 bit words/sec transmitted
between the central processor and the subsystem (including any local processors).
Figure 5-1 simply contains a graphical representation of Table 5-2.

5.1.3 Recommended Allocation

In general, the ultimate criteria upon which allocation decisions are based are
factors such as cost, reliability, and physical parameters such as size and weight.
This assumes that whatever is being traded off meets performance rcquirements or
goals. There are many items which directly affect the above factors. The items

- i.which are considered pertinent to this allocation analysis are listed below:

1. The data rates on the i/O data bus

2. The management and technical interface between subsystems and

the central Proc es sor

3. The impact of design changes

4. Subsystem reliability

5. The processing load
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Table 5-2. Navigation Function Allocation Bequirements

1/O Rate
Local Local Subsystem * [I/ Signals

Processor Processor -Central Subsystem-

Candidate Speed Storage Processor Central
Allocation (ops/sec) (Words) (words/sec) Processor Remarks

I - - 3,104 235

2 33,337 1,036 2,928 263 Only interfaces
with IMIU's

3 69,652 2,079 2,548 270 1.2 is a pre-
requisite to 1. 5

4 104,913 3,669 2,270 196 1.2 prerequisite
to 1.5; 1.4
pe requisite
to 1.7

5 35.261 2,502 2,870 193 Only interfaces
with IMU's

6 231,897 12,010 3,388 516 1.7 prerequisite
to 1.15

7 243,100 30,337 3,266 362

8 243,100 32,312 2,866 246

"Includes any local processors

Table 5-3. Steering Processing Aliocation

CANDIDATES:

Number Subttsks in Local Processor

1. None

2. 2.1, 2.6 Lateral Steering - Fast

3. 2.1, 2,2, 2.5, 2.6, 2.7, 2.10 All of Lateral Steering

4. 2.3, 2.4, 2.8, 2.9 All of Pitch Steeriih

5. AllA
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Table 5-4. Steering Function Allocation Require.nerts

1/0 Rate
Local Local Subsystem- I/O Signals

Processor Processor Central Subsystem- Remarks
Candidate Speed Storage { Processor Central
Allocation (ops/sec) (words) (words/sec) Processor

I:1 -- 448 40

2 2,200 800 6-14 66
3 24,420 5,120 862 142 1.11 Is pre-

requisite to

this allocatfon

4 2,700 2,864 580 50 2.1 and 2,2 are
prerequisites to
this allocation

: 5 28,120 7,472 794 152

7 - Table 5-5. Target/Checkpoint Acquisition Processing Allocation

CANDIDATES:

Number Suhtaslks in Local Processor

S1. None

2. 3.1, 3.2, 3.6 Cursor Control,
FLR Control,

"Y ,.. Altitude Calih.

3. 3.2, 3,6 FLIt Control,
Altittide Calib.

4. 3.3 E\S Control

5. All
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Table 5-6. Target/Checkpoint Acquisition Allocation Requirements

Locl I/O Rate
Local Local Subsystem- I/O Signals
"Processor Processor Central Subsystem-

Candidate Speed Storage Processor Central
SAllocation (ops/sec) (words) (words/sec) Processor Remarks

S.1142 43

2 44,622 1ý,964 2356 130 1.8 and 3.5 are
prerequisites to

this allocation,
3.Z is a pre-
revquisite to
3.3. and 3.6 is
z prerequisite
to 3. 7. only
interfaces with
FL t

-142.254 1.340 2260 75 3. l and 3.5 are
prerequisites to

"i this allocation

41 30,784 908 1634 70 3.2 is pre-
requisite to
this allocation

5 107,004 4,207 2974 202 1.8, 1.9, and
1.11 are pre-

requisites to
_ this allocation

Table 5-7. Weapon Delivery Processing Allocation

CANDIDATES:

Number Subtasks in Local Processor

None

2, 4.1, 4.2, 4.3, 4.4 Bomb Release2' Level Deliv. - Fast and Slow i
Drogue Deliv.

:1, 4.1, 4.3, 4.4 Bomb Release,
Level Deliv. - Slow,
Drogue Deliv.

4. 4.7, 4.8, 4.9 All of SRAM Delivery

5. All U
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Table 5-8. Weapon Delivery Allocation Requirements

1/0 Rate
Local Local Subsystem- I/O Signals

Processor Processor Central Subsystem-
Candidate Speed Storage Processor Central
Allocation (ops/sec) (words) (words/see) Processor Remarks

51 - - 9 1715
2 84,841 6,464 6926 1802 3.1 is a pre-

requisite to
this allocation.
only interfaces
%with SLU

3 4 6,361 - 5,024 6453 1768 4.2 is a pre-
requisite to
this allocation

4 43,475 11,012 412 100 1.8, 1.12,
5.11 are pre-
requisites to
this allocation

5 153,994 25,100 945 85

Table 5-9. Penetration Aids Processing Allocation
CANDIDATES:

Number Subtasks in Local Processor

1. None

2. 5.1 Identify IlI Threat
- 12 3. 5.1, 5.2 Identify IR Threat,

I.I Track File Proc.
4. 5.3 AF Known Emitter Sort

5. 5.3, 5.4 BF Emitter Sort,
IIF Characteristics

6. 5.3 through 5.7, 5.14 All 1F Processing

7. 5.9, 5.10, 5.11 All CM Processing

8. 5.12, 5.13 All TSD Command Proc.

9. 5.3 through 5, 7, All RF Proc. and All
5.12 through 5. 14 TSD Command Proc.

10. All

121



Table 5-10. Penetration Aids Allocation Requirements T

I/O Rate
Local Local Subsystem- I/O Signals

Processor Processor Central Subsystem- LI
Candidate Speed Storage Processor Central
Allocation (ops/sec) (words) (words/sec) Processor Remarks

1- - 16,3120 969

2 93,980 4,832 19.048 1086 1. 8 is prerequisite
to this allocation

3 12", 132 8,672 18.068 1058

4 37,888 9,152 6,912 :188 1. 9 is prerequisite
to this allocation

5 52.096 11,072 6,14-1 340

16 175,734 36,492 10,622 678

7 37,888 6,752 16,224 991 5.8 is prerequisite
to this allocation

8 19,5:36 6,272 16.-488 1004 5.11 and 1. 12 are
prerequisites to
this allocation

9 195,270 -2.292 8,(6.-6 537 1.9, 1.12, and
S5.11 are pre-
requisites to this
allocation

10 407,666 61,637 7.519 293
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In a system design study these items may be quantitatively related through
suitable mathematical expressions to system design decision criteria, e.g. , cost and
reliability. Such an effort must encompass the entire system which in this case would
be the entire air vehicle. This type of effort is beyond the scope of this study. The
justification and rationale for considering the above items as quantitative measures for
the central versus local processing allocation in this study is given below.

Item I is measured directly by the I/O data rate between the subsystem
(including any local processors) and the central processor. This item affects the
complexity of the information transfer system and hence its cost. On the other hand,
if an information transfer system exists with a certain capability, then a reduction in
data rate with a fixed capability provides increased spare, growth, and provision for
more redundancy and error checking.

Item 2 is difficult to measure. It involves the complexity in implementing the
interface between a subsystem and the central processor. This complexity can be
measured by the number of signals. or items of information required to he transferred,
since each signal requires documentation, testing, validation, design interface between
different manufacturers. etc. HIowever, it should be noted that this is definitely not an
absolute measure since many other factors. regarding the type and nature of the signals,
also need to be considered, Some of these factors are any critical timing or
synchronization required in the interface, e.g.. signals may be required at precise
intervals of time. signals may require the precise synchronization of other events to
reception of these signals, etc. These type of factors are difficult to quantify at this
point for the ailocation analysis. Nevertheless, they must be kept in mind when
comparing strictly the number of signals in an interface.

item 3 is a difficult factor to quantify. However, it should be apparent that a
design change, that only affects a local processor, which has a simpler program than
the central processor. Mill have a lower cost impact than if the local processing
functions were in the central processor with the resultant design change affecting the
central processor program. This results from the fact that design changes require
increased effort as the size and complexity of the program changed increases and that
program validation and checkout increases with the size and complexity of the program
changed. Likewise hardware changes to a local processor should be simpler to handle
than to the central processor. Therefore, in general, the cost of design changes will
be reduced by utilizing local processing rather than central processing.

Item 4, subsystem reliability, can be increased in certain cases by utilizing
local processing. This may be true for subsystems that can provide autonomous
functions through a local processor in the event of central processor failure. In such
cases the reliability of the local processor and not the central processor enters into
the successful performance of such functions. The reliability of the local processor
in these cases may be required to be greater than the central processor. A typical
example of this situation is the provision of local processing xwith an IMU to provide
autonomous navigation capability in the event of central processor failure (such as the
F-111 avionics systemh.
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Item 5, the processing load, on the central processor determines the complexity,
feasibility and technical risk Involved In meeting the requirements. If the processing
load is excessive, the use of local processing may reduce the load on the central
processor, reducing its complexity and in some cases making it feasible at a reasonable
technical risk. In this system, the speed capability of the interpreter is a limiting
factor in meeting the system requii-ements, storage requirements do not appear as a
limiting factor on the interpreter. Therefore, an important consideration is the use
of local processing to reduce the speed requirements )n the central processor.

In summary, the following items are desired to be accomplished in performing
t/e local vs central processing tradeoff:

1. Reduce the data rates on the I/O data bus.

2. Reduce the management and technical interfaces between subsystems.

3. Reduce the cost of design changes through minimization of impact
on the system of such changes.

4. Increase system reliability.

5. Reduce the central processor load to minimize the central processor
complexity.

Quantitative data on Items 1, 2 and 5 wvas prepared for each of the candidate
processing allocations. Items 3 and 4 are difficult to measure at this point in time.
These factors may be measured when the ASB system design is specified in more detail.

The relative importance of all the tradeoff factor-s is what ultimately leads one
to a decision on allocation; this is extremely difficult to specify quantitatively. It is
normally accomplished after cost and technology parameters are specified for the
complete system. Thus far in this study, with the knowledge of the processing
requirements and the preliminary estimate of the interpreter's capability, it is
apparent that Item 5 is very important if not critical to the successful implementation
of the system. It is therefore highly desirable to place as much of the processing
speed load in local processors as possible. It is also desirable to perform this while

Sreducing the complexity of the interface between the subsystem and the central processor.

T"able 5-2 and Figure 5-1 gives the quantitative data on the navigation function
candidate allocations. Examination of this data and evaluating the relative interface
reduction and speed reduction showvs that three candidates should be examined more
closely, Candidates 4, 5, and 8. The following observations are noted regarding the17interface:

1. Candidate 4 - All IMU tasks done locally

a. Reduces I/O signals from 235 to 196 (almost minimum)
b. Reduces I/O rate from 3,104 to 2,27C (minimum)
c. No prerequisites to these tasks, they are prerequisites only

to tasks in ground align nioie
d. Interfaces with the two IMU's and the two FDC's

0 129

- ....... LJ



2. Candidate 5 - All IMU tasks except IMU Control - Mid done locally

a. Reduces i/O signals from 235 to 193 (minimum)
b. Reduces I/O rate slightly, 3,104 to 2,870
c. Same prerequisites as in Candidate 4
d. Only interface is with the two IMU's

3. Candidate 8 - Entire navigation function done locally

a. Slight increase in 1/0 signals from 235 to 246
b. Slight decrease in 1/0 rate from 3,104 to 2,866
c. Interfaces with large number of hardware items
d. Many other functions have as prerequisites tasks within

the navigation function; strict synchronization and timing
of the central processor to the local processor may be required

The following observations are noted regarding the processing load:

1. Candidate 4

a. Takes approximately 105,000 ops /sec off the central processor,
would require one interpreter

b. Low storage reduction, approximately 3.5 K

2. Candidate 5

a. Low speed reduction, approximately 35,000 ops/sec
b. Low storage reduction, approximately 2.5 K

3. Candidate 8

a. Significant speed reduction, approximately 250,000 ops/sec
b. Significant storage reduction, approximately 32. 000

Candidate 4 is the recommended allocation (all IMU tasks done locally). It
reduces the I/O signals almost to the mirimum, minimizes the I/O rate, and takes a
considerable speed load off the central processor. Plerhaps most important, but difficult
to quantify, is the simpler interface with this allocation. tligh rate closed loop control
computations for the IMU are performed locally. This enables a simpler selloff and
validation of performance when the subsystem contains the IMU control computations.
This allocation will require one interpreter and one 4K memory module,. Candidate 8
would only be recommended if a further speed reduction in the central processor is
required and this consideration outweighs the increase in interface complexity.

Table 5-4 and Figure 5-2 show the data on the candidates for the steering function
and Table 5-6 and Figure 5-3 show the data on the candidates for the Target/Checkpoint
Acquisition function. Neither of these two functions appear to have suitable candidates

'The memory modules are specified in 32-bit w-oLd length. The requirements in the
t corresponding tables are equivalent 16-bit words.
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for local processing. The I/O rate, I/O signals, and interface complexity are
Vý •increased for all candidates over central processing. The steering function offers

very little speed reduction. The Target/Checkpoint Acquisition function offers a
considerable speed reduction (approximately 107,000 ops/sec) if all of it is done
locally, however, this c-nmplicates the interface considerably (4 x number of 1/0
signals, 2 x I/O rate). In addition, many of the tasks in both functions require the
navigation function as prerequisites. The recommended allocation is central
Sprocessing for these two functions.

Table 5-8 and ligure 5-4 show the data on the candidates for the Weapon
D)elivery function. Examination of the five candidates and evaluating their relative
interface complexity and speed rduction indicates that two should be examined
closely, namely 4 and 5. The following observations are noted on these candidates:

1. Candidate 4 - All of SRAM delivery tasks

a. Significant reduction in IO rate from 5,952 to 412 (minimal)
b. Significant reduction in I/O signals from 1, 715 to 100 (ahnost

- : -minimal)
c. Some speed reduction on central processor, approximately

43,000 ops/sec
d. Some storage reduction, approximately 11,000
e. Some Navigation and Penetration Aids functions are

,prerequisite to these tasks

2. Candidate 5 - All of Weapon I)elive.r- Function

a. Significant reduction in 1/O rate from 5,952 to 945
1), Significant reduction in I/O signals from 1, 715 to 85 (minimal)
c. Considerable speed reduction, approximately 154, 000 ops/sec
d. Some Navigation, Penetration Aids, and Target'Checkpoint

Acquisition functions are prerequisites

The choice between these two candidates is difficult to make. Both offer
similar reductions in I/0 rate and number of I/O signals. lowever, the management

S' Interface is simpler with Candidate 4, all SR1AM done locally, since it does not
* irnterface directly with other functions and has a relatively simple interface with other

tasks in the weapon delivery function. Candidate 5 does not appear to be an overly
complex interface either if done locally, however it is not as straightforward as
Candidate 4. On the other hand, Candidate 5 offers a considerable speed reduction
compared to Candidate 4. Therefore, Candidate 5 would be recommended due to
the impirtance of soted reduction, however, if, upon further examination of the
centra! processor complexity, Candidate. 5 ran be reasonably placed in the central
processor, then Candidate 4 would be the preferred choice. Candidate 4 will require
one interpreter and one 8K memory module and Candidate 5 will require two interpreters
and two SKnI memory modules.

Table 5-10 and Figure 5-5 show the data on the candidates for the Penetration AiCs
function. Examination of the ten candidates indicates that Candidate 10 is the best
choice. It minimizes the I/O interface in terms of l."O signals, I/O rate (nearly
minimal,, and management interface complexity and also offers a significant reduction
in speed on the central processor. llcenever, this application requires a multiprocessor
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with five interpreters, the maximum allowable. It should be noted at this point that
it is desirable, in this allocation analysis, to use at the most four interpreters. This
allows one spare interpreter to be placed in a multiprocessor if desired. Therefore,
alternate allocations using sets of multiprocessors in n multicomputer mode were also
considered for this function. •,

Four sub allocations were considered:

1. Sub Allocation I

III tasks (5. 1 and 5.2) in one multiprocessor and remaining
-Penetration Aids tasks in another multiprocessor

-2, Sub Allocation 2

1117 tasks (5.3 through 5.7, 5. 14) in one multiprocessor and remaining
-Penetration Aids tasks in another multiprocessor

3. Sub Allocation :1

III and TSi) (Threat Situation Display) tasks (5. 1, 5.2, 5. 12, 5. 13)
in one multiprocessor and remaining tasks, hF. CM (countermeasures),
and threat correlation in another multiprocessor.

4. Sub Allocation 4

_Il tasks (5.1. 5.2) In one multiprocessor. RF tasks (5.3 through 5.7, 5. 1-41
in another multiprocessor, and TSD, CM, and threat correlation (5. 8
through 5. 13) in another multiprocessor.

The processing requirements and multicomputer configurations required for
each sub allocation are:

1. Sub Allocation I

NMP (multiprocessor) 1: 134,000 ops/sec
9, 100 words
Two interpretero
Two 4K memory modules

MP2: 295,000 ops/sec
56, 100 words
Four Interpreters
Four 8K memory modules
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2. Sub Allocation 2

SMPI: A185,000 ups/see

l38,400 words
Two Interpreiers

I Three SK memory modules

MP2: 244,000 ops/sec
26, 900 words
Three Interpreters
Three 4K memor mod•tiucs

3. Sub Allocation 3

MPA : 1 315,000 opS/see
1.5,200 words
Two Interpreters
Two 4K memory modules

NMF2: 274, COO ops/see
•"• 49,300 word.E

Three InterpreterE
Three 8K memory modules

4. MPI: 134,000 ops/see
9,100 words
Two Interpreters
Two 4K memory mod4kes

MP2: 185,000 ops/see
38,40G %vords
Two Interpreters
3 8K mentory modules

1% 1 P3" 104,724 ops/see
18,400 words
One Interpreter
One 8K memon, module

k : i.All of these sub allocatio,- take a similar amount of hardware. Sub allocati.'n I
requires the most interpreters, six comnared to five in all the other sub allocations.
Sub allocation three minimizes the amount of hardware used; however, it results in a

potentially complex management interface between the two multiprocessors. in this
sub allocation one multiprocessor does the In processing and the other the AF
processing. In addition, each multiprocessor does some of the processing that
requires both IRl and RF processing results. If one multiprocessor were to be

[ programmed by one manufacturer (c. g., the RF subsystem supplier) and the ohei
by a different manufacturer (e.g., the In subsystem supplier), the management
Interface between these two suppliers would increase in thIs sub allocation compared
to the other sub allocations.
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Comparing sub allocations 2 and 4, the latter requires slightly more hardware
(same number of interpreters, 4K more memory, three versus two SWI) however
it results in a much simpler interface between the multiprocessors. One multi-
processor is used for IR processing (MPI), another for RF processing (MP2), and the
other for functions that use outputs of both of these multiprocessors (MP3). MPI and
MP2 do not require any intercommunication, they simply interface with MP3. MP1 4
and MP2 take the form of true local processors and may be considered part of the ItI
and RF subsystems, respectively. In this situation the IR and RF subsystem may be
more easily sold off, tested and validated by their respective suppliers. In addition,
the reliability and redundancy requirements for MP7 and MP2 may be chosen by the
subsystem supplier to meet the requirements specified for each particular subsystem.
Therefore, it is felt that the slight increase in hardware complexity for sub allocation
4 will be offset by the simpler interface requirements and is the recommended
approach for the Penetration Aids function.

At this point, specific local processing configurations have been developed
for the Navigation. Weapori Deliver-y, and Penetration Aids functions with the remaining
functions performed in the central processor. The requirements remaining on the
central processor will now be examined. These requirements are reduced as shownm
in Figure 5-6 (case 1) to the following:

S§eed Storage
Function (ops/sec) (words)

1.0 Navigation 124,800 26,300

2.0 Steering 27,400 6,500

:3. 0 Target/Checkpoint 104,000 -1,050
Acquisition

7.0 Mission and Data 31,600 9,600
4! Management

9.0 CITS 120,000 41,500

Total 407,800 87,950

B1-bit words, executive overhead distributed over all functions, 50 percent spare
capacity included.

The speed requirement requires a five interpreter multiprocessor. As
noted above, it is desirable to use only four interpreters functionally, thereby allowing
a spare Interpreter to be provided in a multiprocessor. In addition, there exist
some 1/0 processing requirements to be added to the above requirements which ill1
probably exceed the capability of a five interpreter multiprocessor. Therefore,
either more functions/tasks must be allocated to local processing or a multicomputer
configuration must be used for the ('entrR processor. The remainder of the Navigation
function could be allocated to local processing. This approach appears undesirable
since it increases the interface with the subsystem and increases the management
interface between the navigation subsystem and the central processor. Many other
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functions have as prerequisites the tasks in the Navigation function. If these tasks
were performed locally, the communication and synchronization between functions
would become considerably complex if not unmanageable.

The functions in the central processor were exarmiined to determine if a
multicomputer configuration could be readily implerented. The CITS function is
most suitable of all the functions to be placed in one multiprocessor, due to interface
complexity considerations with the remaining functions in another multiprocessor.
The multicomputer configuration then takes the form of two multiprocessors with the
following requirements:

1. Multiprocessor 1- CITS
126,000 ops/see*
41,500 words

2. Multiprocessor 2 Navigation, Steering, Target/Checkpoint
Acquisition, Mission Data Management
302,000 ops/sec

46,500 words

--Additional overhead is added to operate as a multicomputer.

Multiprocessor I requires two interpreters and three 8K memory modules (recall
these are :12-bit word modules) and Multiprocessor 2 requires four interpreters
and five 4K memory modules.

This is a reasonable candidate to consider for the central processor. Two
additional candidates were examined to determine if the processing load and functions
could be more evenly split between the two multiprocessors. The following two sub
allocations appear as suitable candidates for equalizing the computational requirements
while maintaining a reasonable management interface between the two multiprocessors:

1. Sub Allocation I

SMPI: CITS, Navigation
Three Interpreters
Four 8K mnemorv modules

M P2: Steering, Target/Checkpoint Acquisition, Mission Data Management
Two Interpreters
Two SK memory modules

2. Sub Allocation 2

MPt: CITS, Mission Data Management
Two Interpreters
Four 8K me.norv" modules

MP2: Navigation, Steering, Target/Checkpoint Acquisition
Three interpreters
Three SK memory modules
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Either one of these two sub allocations increase the management Interface
between the two multiprocessors but it is difficult to determine if one is significantly
more complex than the other. Therefore, on the basis that it requires slightly lesshardware (one memory module), sub allocation 1 is the preferred approach.

At this point a system has been configured for the local processors and the
I • central processor. It is now necessary to examine the central processor configura-

tion to determine if additional capability may be easily added to it. If this is the
case, then some of the allocations made previously, that were primarily influenced
by speed capability, would have to be re-examined. Multiprocessor, MP2, in the
central processor contains two interpreters and may be easily expanded to four
interpreters thereby providing additional speed capability.

lRe-examination of the processing allocations indicates that the allocation
selected for the Weapon Delivery function (complete local processing) was based
primarily on speed whbile the other functions were based on both a minimum interface
complexity and a speed reduction. Therefore, the approach of using Candidate
Allocation Number 4 (all of SHAM delivery done locally) for weapon delivery and
thereby bringing into the central computer all the non-SlAM delivery computations
should be examined. This allocation (Cand:date 4) requires oneinterpreter and one
memory module in the weapon delivery subsystem. The resultant configuration In
the central processor then takes the following form:

1. Multipiocessor 1 CITS, Navigation
256,000 ops/sec
67,800 words
Three Interpreters
Four 8K memory modules

2. Multiprocessor 2 Weapon Delivery, Steering, Target/
Checkpoint Acquisition, Mission Data Management

284,000 ops/sec
34,000 words
Four Interpreters
Four 4K memory modules

This approach has essentially eliminated one interpreter and one memory
module at the weapon delivery local processor and added two interpreters and memory
modules in the central processor. The interface is considerably simpler with this
approach since the weapon delivery computations that interface closely with the
navigation, steering, target/checkpoint acquisition, and mission data management
functions are now integrated In the central processor. in addition, the local processor
"in the weapon delivery subsystem now interfaces primarily with the SRAM weapon
interface units and not with a variety of equipment in the weapon delivery subsystem.
Therefore, this approach has been selected for the weapon delivery processing
allocation since it is felt the simplification of the Interface wll outweigh the additiohalI iihardware added to the total system. The overall effects on the central processing
requirements of this allocation is shown in Figure 5-6 as local processing - Case 2.

The recommended configuration for the entire system is shown in Figure 5-7
and is summarized in Table 5-11.
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Table 5-11. Final Configuration for AM3 Avionics System

Central Processor:

Multiprocessor 1 - Three Interpreters
- Four SK memories

Multiprocessor 2 - Four Interpreters

Four 4K memories

Penetration Aids:

Multiprocessor I - Two Interpreters
-• . Two 4K memories

Multiprocessor 2 - Two Interpreters
+ Three 8K memories

Multiprocessor 3 One Interpreter

One SK memory

Weapon Delivery Processor:

L Single Processor - One Interpreter
One 8K memory

"-IMU Processor:
One Interpreter

Single Processor One 4K memory

The memory modules in this configuration consist primarily of 8K modules
w ith some 4K modules. The 4K modules may be replaced with 8K modules, using
slightly more hardware, if one desires to maintain commonality among the memory
modules.

It should be noted that this configuration is what is required to meet the
computational requirements. These requirements include overhead functions and
the 50 percent spare factor but exclude the 100 percent gro%%th requirement. The
growth can be met in a variety of ways. In some cases additional interpreter
and/or memory modules may be added to the appropriate multiprocessor. In other
cases a multicomputer configuration may be needed by adding another multiprocessor
to meet the growth.

The other factor that needs to be considered in an ultimate configuration is
reliability and failure tolerance. Failure tolerance characteristics of the Burroughs
Multiprocessor will be investigated in Section 5.3. However, it can be noted that in
each of the above processors additional interpreter and memory modules may be
provided that -would provide failure tolerance. If mass storage can be used to provide
backup programs in the event of reconfiguration, then the addition of one interpreter
and one memory module to each of the above processors provides the ability toj withstand an interpreter or memory module failure with no degradation in performance.
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5.2 INTERFACE TO B-i MULTIPLEX SYSTEM

5.2.1 Introduction

A definition of the B-i Tnultiplex system is not currently available. A recent
study by Radiation, Inc. (Ref 15) presented a study of !.he 1-i information transfer
requirements and the definition of a nultt•lex systern' to solve these requirements.
This study considered the information transfer requirements of tC'e entire air
vehicle, the central computer complex was on)lv a portion of the system. The
recommended multiplex system as a result of this study was a multiple bus, baseband,
TDM system using a central controller. The central computer constituted one of
many terminals connected to a bus and essentially received the same type of service
as any other subsystem terminal connected to the bus. It is felt that this system
should not be used as the baseline multiplex system for this study for three primary
reasons: (1) the approach of treating the central computer as a subsystem and using
a central coitr6ller may result in considerable problems in timing and synchroniza-
tion between the computer and subsystems and it is felt this may be an unworkable
approach for a real time control central computer system such as the B-1; (2) the
status of this multiplex system recommendation is unknown at this time and can only
be regarded as a paper design, (3) from what is known of the present B-I system, the
central computer serves as the bus controller.

The present B-1 system is configured as shown in Figure 5-8. Two dual
redundant buses are used that are driven by a multiplex controller which in turn Is
controlled by the central computer complex. This system concept will be used as the
baseline for this study, however, the present multiplex controller design will not
be assumed. The best available description of this multiplex system was found in
Ref W( which is the Rockwell International specification for the MIM. multiplex
interface module (Boeing is responsible for the multiplex system specification).
Pertinent extracts from the MIM specification are given below in Section 5.2.2 that
will provide an understanding of the way the present 13-1 multiplexing system will
function. It should be kept in mind that in Figure 5-8, the "multicomputer complex"
(which is presently in the B-1 corresponds to the central processor derived in this
study as shown in Figure 5-7.

5.2.2 Multiplex Interface Module and Sstem Operation'

5.2.2.1 Item Definition

The multiplex interface modules (MIM's) shall provide the interfaces between
the B-1 air vehicle multiplex transmission cables and LRU electronics. MIM's shall
be configured using two unique units, hereafter referred to as the multiplex interface
unit (MIU) and the parallel interface unit(s) (PIU). The MIU and PIU shall be configured
so they can be mounted and interconnected on printed circuit cards. All MIU's shall be
identical and interchangeable. All PIU's shall be identical and interchangeable. The
MIM's shall be capable of receiving/transmitting serial digital data on either of two
transmission cables, referred to herein as the multiplex channels or the primary

*This section contains extracts from Ref 16 and does not represent material generated

under this study contract.
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multiplex channel aftd the secondary multiplex channel. (The above operation shall
be under the direction of a controller.) The MIM's shall include transmitters-
receivers, coupling transformers, isolation resistors, clock generators, encoders-
decoders, self-test logic, signal interface buffers, and the logic necessary to regulate
the operation of the MIM multiplex transmission lines and LRU electronics interfaces.
The MIM shall be capable of accepting asynchronously data from both multiplex channels,
and shall be able to transmit response and data words on the channel in which a valid
command word was received.

5.2.2. 1.1 Item Diagram. The major components of the MIM and their
functional relationship will be as shown in Figure 5-9.

5.2,2.1.2 Interface Definition
5.2.2. 1.2.1 Message Format. The message format for the transfer of data

to a MIM shall consist of the following forms:

1. One command word, followed by zero to 31 data words, followed by
a response word.

2. One command word, followed by no response word (error in the
command wvord received by the MIM).

The message format for data requested from a 21IM shall consist of the
following forms:

1. One commanded word, followed by a response word, followed by
one to :1 data words.

2. One command word. folloed by no response word (error in the.command word received by the MM..

The response word shall be generated by the .MIM. The command word will
be generated by the controller. The data will be generated by the LRU electronics.
The MIM will obtain the data from the LRU electronics and format the data into data
words and transfer them to the controller.

5.2.2.1.2.2 Word Format. (See Figure 5-10. )

5.2.2.1.2.2.1 Command Word. The command word shall contain the
Information listed in Table 5-12.

5.2.2.1.2.2.2 Response Word. Except for the sync, the response word shall *-

be an echo of the command word. Therefore, the information contained in the
response word shall be identical to the information contained in the command word
that caused the NMI.M to respond. Refer to Tables 5-13 and 5-14. When a command
word error is detected, the MIM will not transmit a response word.

5.2.2.1.2,2.3 Data Word. The data word shall contain the information
listed in Table 5-15.
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Table 5-12. Command Word

Item Bits Definition

a I through 3 Sync bit. Three-bit nonvalid Manchester code.

Sb 4 Spare (S) bit - unuse'd bit. Unused bits shall be set
to logic "0. "

c 5 Validity (V) bit. Logic "1": The command word is not
usable due to controller's transmitting equipment having
a fault condition as determined by self-test and/or
monitoring components in the transmitting equipment.
Logic "0"" The command word meets acceptability
criteria of transmitting unit as determined by its self-

test and/or monitoring components.

d 6 Spare (S) bit -,unused bit. Unused bit shall be set to
logic "0.

e 7 Spare (S) bit - unused bit. Unused bit shall be set
to "0."

f 8 through 12 Address bits. A five-bit code that identifies the MIM
that shall respond to a given command word. Addresses
"shall be assigned from 1 to :31. Address C shall be a
nonvalid address and a MIM shall not respond to it.

g 13 Transmit/receive (T/R) bit. Logic I'll': Commands
addressed MIM to transfer requested data. Logic "0":
"Commands addressed MIM to receive data and activate
a mode discrete

h 14 through 18 Data block/mode bits. A five-bit code that identifies the
LiLT data block starting memory location or commands
the LRU into a specific mode/operation.

i 19 through 23 Number of data words. Identifies the number of data
vwords to be transmitted/received. Code 00000 shall

be equal to one, code 00001 shall be equal to two, etc.
to code 11111 which shall be equal to 32.

j 24 Parity (P) bit. This b shall be set to a value so that
the total number of on( in the word is odd.

- 14
,-, 145

_ I



Table 5-13. Response Word (Valid Data Transmission)

Item Bits Definition

a 1 through 3 Sync. Three-bit nonvalid Manchester code.

b 4 Spare. Definition per Table 5-12.

c 5 Validity bit. Definition per Table 5-12.

d 6 Spare. Definition per Table 5-12.

e 7 Spare. Definition per Table 5-12.

f 8 through 12 Address. Definition per Table 5-12. ¶

g 13 Transmit/receive. Definition per Table 5-12.

h 14 through 18 Data block/mode. Definition per Table 5-12.

i 19 through 23 Number of data words. Definition per Table 5-12.

j 24 Parity. Definition per Table 5-12.

rTable 5-14. Response Word (Invalid Data Transmission)

Item Bits Definition

a I through 3 Sync hits. Three-bit nonvalid Manchester code.

Sb -t Spare (S) bit - unused bit. Unused bits shall be set to

logic "0."

c 5 Validity (V) bit. Same as command word validity bit.

d Spare (S) bits - unused hit. Unused bits shall be set to
logic "0."

e 7 Spare (S) bits - unused bit. Unused hits shall be set to
logic "0.'

f 8 through 12 Address bits. A five-bit co(;ýt-that Identifies the MIM
which is responding to a command word. Under normal
operating conditions (no faults associated with the address
logic) the receive command word address and the MIM
response word address shall he identical.

g 13 Transmit/receive (T/R) bit. Logic "1": Commands
addressed MIM to transfer requested data. Logic "0":
Commands addressed MIM to receive data and activate
a mode discrete.

h 1-i through 23 Bit denoting the type of error (Ti11D).

i 24 Parity (P) bit. This bit shall be set so that the total
number of bits is odd.
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Table 5-15. Data Word.

Item Bits Definition

1) 4 Spare (S) bit - unused bit. Unused bits shall be

set to logic "0."

c 5 Validity (V) bit. Logic "1": Data word is not usable
due to fault(s) as identified by the LlU's or.controller's
self-test and/or monitoring components. (The data word
shall be transmitted even if the validity bit is a logic "1. 1"
The validity bit on only those word(s) that are affected
by a failure(s) shall be set to a logic "1." Logic "0":
1Data word meets acceptability criteria as determined by
the LRU's or controller self-test logic.

d 6 Spare bit - unused bit. Unused bit shall be set to a
logic "0."

e 7 Spare bit - unused bit. Unused bit shall be set to a
logic "0."

f 8 through 23 Data. Information generated by LEU or controller.
Information transmitted in binary, binary-coded
decimal (13CD), discrete, or other required forms.
Bit 23 is the least significant bit.

g 24 Parity (11) hit. This bit shall be set to a value so that
the total number of ones in the word is odd.

5.2.2.1.2.3 MIU/I3IU Interface. The MIUPIU interface shall consist of the
signals shownii in Figure 5-11. The transfer of data between the MIJU and 131U shall
Cbe controlled 1W the MIU. The functions and associated logic levels of the signal

shall he as follows:

5.2.2. 1. 2.3. 1 MIU Input-PIU Output Signals.

1. Transmit Enable. The transmit enable signal in the logic "1" state shall
enable the Manchester II encoder portion of the MIU. The encoder shall
convert to Manchester II the nonreturn to zero (NRZ) data presented to
MIU by the PIU while the transmit enable is a logic "1."

2. Transmit Sync. A Logic "I" pulse 250 to 500 nanoseconds wide shall be
provided to synchronize the encoder clocks and output signals. The pulse
shall precede each transmission of data to establish the data link dead time
between the commands received and the response word(s).

3. Nonreturn to Zero (NIZ) 1)ata In. NRZ data presented to the MIU for
transmission on the multiplex channel.
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Figure 5-11. MIU/PlU Interface Signals
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5.2.2.1.2.3.2 MIU Output-PIU Input Signals

t. Send Data. The send data signal shall be a logic 11 during the period
the MIU is capable of accepting and encoding NRZ data in.

2. Encoder Shift Clock. The encoder shift clock shall be provided for
synchronizing the transfer of signals.

3. Dead Line Detect. The dead line detect signal in the logic "I" state
shall indicate the multiplex channel is activated. In the logic "0" state
it wll indicate the multiplex channel is inactive.

IT
79: 4. Command Sync. A logic "I" for 21 microseconds follo%%ing the receipt

of a valid command sync.

5. Data Sync. A logic "I" for 21 microseconds following the receipt of
a valid data sync.

6 . Take l)ata. A logic "1" during the time the NI1Z data out is available
Al from the MIU.

7. Valid Word. A logic "0" for 3.5 microseconds following the output
of a valid word from the MIU via the NRZ data out line.

8. Valid Parity. A logic "I" for 500 plus or minus (TBD) microseconds
following the output of a word with a valid one's parity from the
SMWIU via the NHZ data out line.

9. NRZ Out. NRZ data presented to the PIU.

"5.2.2.2 Performance

S5.2.2.2.1 MIM General Characteristics. The 1IIE shall continuously
monitor both the primary and secondary channels when in the receive mode. The
MIM shall operate in the receive mode at all times except when requested to transmit
data as indicated by the presence of a logic "1" transmit-receive bit of a valid
command word having tle applicable MIM address. After the MIM has responded,
the MIM shall switch to the received mode \ithin I microsecond. The switching
shall be accomplished wiithout generating transients on the multiplex channel.

- G5.2.2.2. 1. 1 Receive Mode. The major functions of the MIM in the receive
mode shall be as follows:

1. Accept the incoming signal in the specified format.

2. Decode the Incoming signals u3ing the Manchester code to derive clocking.

3. Determine the validity of the incoming words by means of its seif test

logic.
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4. Determine the command word address is Identical to the address assigned
to the MIM. If the address is not identical, ignore the incoming signals
until an applicable command word is received.

5. Decode the command word that has an address identical to the MIM's
and provide a data block starting address/mode to the LRU electronics.

6. Transfer the incoming controller data words to the LRU e!ectronics.

7. Transfer an appropriate response uord to the controller after the data
words have been transferred to the LRU electronics.

5.2.2.2. 1. 2 Transmit Mode. The major function of the MIM in the transmit

mode shall be as follows:

1. Accept the incoming signals in the specified format.

2. Decode the incoming signal using the Manchester code to derive clocking.

3. Determine the validity of the incoming command word by means of self-
test logic.

4. Determine if the command word address is identical to the address
assigned to the MIM. If the address is not identical, ignore the incoming
signals until an applicable command word is received.

5. Decode the command word that has an address identical to the MIM's
and provide a data block starting address to the LRU electronics for the
transfer of data from the LRU to the MIM.

6. Transmit an appropriate response word to the controller.

7. Receive the number of data words specified by the command word from
the LRU electronics.

8. Transmit the incoming LRU data words to the controller.

5.2 2. 2. 1.3 Response to Command Word. The MIM response to an applicable
command word shall be a function of the command word and the MIM/LRU self-test
logic:

1. The command word's number of words code shall specify the number
of words to be transmitted/received.

2. The command word's transmit/receive (T/R) bit shall specify whether
the MIM shall collect data words from the LRU electronics or transmit
incoming data words to the LRU electronics.

3. The command words data block/node code shall specify the location of the
first word to be transmitted/received by the LRU electronics or command
the LRU into specific mode/operation.
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4. The logic state of command word bit 5, the T/R bit, and the MIM self-test
logic shall determine the MIM operation in order to form the required

t •message.

5.2.2.2.2 Multiplex Interface Unit (MIU) Characteristics

5.2.2.2.2. 1 General. The M1U shall consist of a transmitter, detector,
transmitter switch, sync generator, Manchester encoder, command and data word
"identification logic, Manchester decoder, data validation logic, parity generator,
and miscellaneous logic to control operation. The MIU shall have the capability
of generating command syncs as well as data syncs.

5.2.2.2.2. 2 Transmitter Sxwitch. The M1I1 shall include a transmitter
r switch. The transmitter switch shall isolate the transmitter from the multiplex

channel during the nontransmitting mode of operation.

5.2.2.2.2.3 Sync Field Generator. The MIU shall include a sync generator.
The sync shall be transmitted prior to each data word.

5.2.2.2.2.4 Manchester Encoder. The MIU shall include a Manchester
4 • encoder to encode the data words.

5.2.2.2.2.5 Word and Message Identification. The MIU shall have the
capability of identifying incoming words as command words or data words based
on the contents of the sync field preceding the word.

5.2. 2. 2. 2. 0 Detector. The MIU shall include a receiver-detector(s. The
detector shall detect 1.0 megabit per second Manchester biphase coded data that
is greater than the threshold level. The detector shall detect both the positive and
negative excursions of the Manchester biphase coded data.

5.2.2.2.2.7 Manchester Decoder. The MIUI shall include a Manchester
biphase decoder. The detected data shall be decoded from Manchester biphase
to NRZ digital binary, "1"/"0" logic level signals.

5.2.2.2.2.8 Reset. The MIU control circuitry shall include a "reset"
signal. The reset signal shall reset all the PIU logic circuitry, except the response/
status registers, and shall also be \tired to the MIM-LRU interface for use by the
registers, and shall also be wvired to the MIM-LRU interface for use by the LRU.

5.2.2.2.2.9 Data Validation. The MIU shall have the capability of
recognizing improperly coded signals, a data dropout, or excessively noisy signals
occurring during the reception of a word and of producing signals indicating that a
nonvalid word has been received.

5.2.2.2.2.9 Validation Criteria. The incoming data shall be evaluated oa a
bit-by-bit and overall word basis. Each word shall meet the following requirements
in order to be valid:
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1. The word shall be preceded by valid sync.

2. The word shall have 21 bits.

3. The word shall have the correct parity. ,,

4. Each Manchester bit shall have a "I"/"0" or " 0 "i/T1p sequence.

Failure of the incoming multiplex word to meet the above criteria shall cause
the MIU to transmit the appropriate status signal to the PIU response/status register.

5.2.2.2.2. 10 Parity Generator. The Ml U shall include a parity generator.
The parity generator shall generate odd "ones" parity. The parity generator shall
contain logic which will permit the inhibit of the generation of parity for data words.
The LIU's which provide data words, which include parity, shall provide a steady-
state, 3.5-volt signal which shall inhibit the MIU parity generation for the data
uwords. This inhibit parity shall not inhibit the generation of parity by the MIM -,
for the response wrd.

5.2.3 Interface to and Control of the Multiplex System by the Burroughs

Multiprocessor

5.2.3.1 General

An overall diagram shoning the connection of the multiplex buses to the
Burroughs Multiprocessor is shown in Figure 5-12. Connection to the multiprocessor -.

is via the switch interlock with a multiplex interface and control module providing
the interface between the multiplex buses and the switch interlock. The multiplex
interface and control module is essentially treated as a device to the multiprocessor.
Two multiplex buses are used with one serving as a backup; it is required that the
multiplex interface and control module be capable of working with either bus.

The multiprocessor system is required to function as the controller of the bus.
Therefore all commands for data transmission originate from the multiprocessor
system. The multiplex interface and control module in Figure 5-12 provides the
interface between the multiplex buses and the switch interlock; it also provides some
control for the data and coamrand transmissions that occur on the multi lex buses,
the amount of this control is dependent on the design of this module. Regardless of
the design of this module, the multiprocessor system retains ultimate control of the
multiplex system. Several approaches to the design of the multiplex interface and
control module nill be given below.

5.2.3.2 Multiplex Interface and Control Module

-The degree of control of the multiplex bus between the .Multiplex Interface
and Control module (MIC) and the multiprocessor system is dependent on the
complexity of the MIC. This primarily effects the degree of involvement of an
interpreter in controlling the actual data transmission process on a multiplex bus.
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5.2.3.2.1 Direct Interpreter Control System. A block diagram of the MIC
with a minimum amount of control capability is shown in Figure 5-13. The left-hand
portion of the figure contains functions (the MIU and serial-parallel registers)
needed to interface with the multiplex bus. The MIU, multiplex interface unit,
detects and generates sync codes, decodes biphase coded data, etc.; it is very
similar to the MIU described in the previous section and the same unit may possibly
be used here. The parallel/serial and serial/parallel registers provide the required
serial interface for transmission on the multiplex bus. Two MIU's are used to
provide capability for working with either multiplex bus as was explained in
Section 5.2.2. The right-hand section of the figure is the interface that is required
to work with the SWI. This consists of a set of input shift registers, a set of output
shift registers, and clock interface logic. The information format at the SWI
interface is shown in Figure 5-14. The interpreter sends commands and data
(both 19 bits) to the MIC with the form showvn in Figure 5-14 (c and d). In addition,
two extra bits, for a total of 21, are sent to signify whether the information sent is
to be output over the multiplex bus (command or data) or whether a request to input
data to the interpreter is present. Information to be output on the multiplex bus is
sent to the parallel/serial register and then to the MIU. The interpreter is respon-
sible for timing the rate at %,,hich It sends information to the MIC. This rate should
be high enough to supply a steady stream of output on the multiplex bus (24 usec per
command/data word) and not too high such that the IN shift register is not cleared to
accept information from the interpreter.

The MIC sends irnormation to the interpreter with the format shown in
Figure 5-14 (d). This consists of data and response words (20 bits). The MIC
continuously loads this iniornmation inLt the OUT shift register as it is received and
processed from the multiplex bus. The contents of the OUT shift register are sent
to the interpreter when a "data in` request is received from the interpreter via the
IN shift register. The interpreter is responsible for keepingup with the rate at
which information is received over the multiplex bus.

The lower right-hand portion of this figure contains logic to receive the clock
from the SIVI (used to drive the shift registers) and logic to return the clock to the
SWI. The counter counts four clocks and enables the readout of the shift registers.
The control portion of the MIC will enable the return of clock signals to the SWVI by
the generation of an acknowledge signal. Note that the MIC could control the output
rate of the interpreter into the IN shift register by not acknowledging if the parallel/
serial register still contains information to be sent out on the multiplex bus.

5.2.3.2.2 Single Command Buffered System. The previous system required
close operation of the interpreter with the entire transmission process on the
multiplex bus. The interpreter would probably not be capable of doing any other
functions while it is controlling an input or output transmission on the bus. In other
words, while transmissions are in progress on the multiplex bus, an interpreter
would be dedicated to an I/O processing function.

A slightly more complicated MIC is shown in Figure 5-15. This MIC has a
small buffer memory added to it for the purpose of providing sufficient memory toI process one command (up to 31 words) without continuous information transfer with
the interpreter. In this system the interpreter sends a command to the IN shift
register as in the prior case. However, the command is now examined to determine
if a read or write to a subsystem is requested and the number of words in the
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spe • •/J Mt. 19 bits

a) Interpreter to Am Controller command format

S3 16 •

spare Data 19 bits

b) Interpreter to Hux Controller data format

Direct Interpreter Control System:

1 1 19

Command/Data 21 bits

CozmndfData out
Data In

c) Input - Interpreter to Mux Controller

IS1 v Is Data 20 bits

20

Response WordE 20 bits

d) Output - Mux Controller to Interpreter

Single Comand Buffered System:

11 19

I I I Command/Data 21 bits

L mux command
Memory Read

e) Input - Interpreter to JMux Controller

11 1 1 16

S.!1 v Is l1 Date 20 bits

20

I.Response Word 20 bits

-) Output - Mux Controller to Interpreter

Figure 5-i4. Data and Command Format for NTUX
Controller - Interpreter Interface
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transmission. The command Is output on the multiplex bus and the memory used to
buffer either input or output data between the multiplex bus and the interpreter. The
interpreter is now not tied to the information rate on the multiplex bus; it can load up
to 31 data words in the memory as fast as it can for output or it can come back when
it desires to read in up to 31 data words from the memory for input. The input
format from the interpreter is shown in Figure 5-14 (c). Two control s'gnals are
used; one to indicate the presence of a command and the other to indic~ate a request
for a memory read (note that one word at a time will be read out of the memory with
the MIC word counter stepping through the set of buffered data in the memory).

5.2.3.2.3 Multiple Cmimand Buffered System. A further increase in
complexity of the MIC is shownm in Figure 5-16. The previous system allowed the
interpreter to issue one command to the MIC and then not be tied to the data rate
on the multiplex bus. However, if a string of commands were to be processed the
interpreter may or may not be able to do other meaningful work in between the
commands. The MIC shown in Figure 5-16 allows the interpreter to do exactly what
was done .Nith the MIC in Figure 5-15 except that this MIC can process a string of
commands so that the interpreter is further isolated from the transmission rate and
message sequences on the multiplex bus.

In addition to data, commands are now also stored in the memorv. Additional
logic is needed such that the MIC can sequence through a string of commands,
recognize that all commands have been executed, and know where the data is to he
stored in the memory. The interface with the interpreter is via an address shift
register and an IN shift register as shown in Figure 5-14 (g and h). The address
shift register receives an address (10 bits - should he adequate for the largest
buffer memories used) and two control signals signifiying whether a read or wr'te
into that address is requested. The IN shift register receives 20 bits which consists
of the command or data to be output and one bit signifying whether a command or
data is present. An address of where to store commands in the memory is not sent
over to the MIC with the commands since the MIC contains a command storage
counter that points to an address of where to store the nex.t received command. This
counter simply recycles on itse!f. The command program counter points to the
address of the nommand currently being executed by the AMIC. When a command is
received from the interpreter the command storage counter is used to store the
command and it is incremented by one. The command program counter will contin-
uously fetch commands as long as its contents do riot equal the command storage
counter. The address that is sent over with a command is the address where the
multiplex bus response word shouid be stored in the memory. This address %%III have
to be saved with the command.

The interpreter accesses information in the memory by sending the MIC an
address w\ith a memory read request. The MIC then interleaves this request with
any command execution in progress and sends the interpreter the requested
Information via the OUT shift register.

The MIC contains coptrol circuitry, data address counter, word counter,
etc., to execute commands. One problem, that arises with dedicating more
control to the MIC, is the identification by the interpreter of when a command has
been executed. One means of providing such identification is via the responsc- word.
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If the location that the response word is to be stored in Is set to zero when a command
is loaded in the memory from the interpreter, then this location can be checked by: )the interpreter to determine if a command has been executed. The setting of this
memory location to zero could be performed by the interpreter or by the MIC.

This design allows the interpreter to set up a sequence of commands and
output data in the MIC and then return to other processing tasks. The interpreter
can then return later to fetch received information from the MIC.

5.2.3.2.4 Dedicated Interpreter System. Another possible approach to the
MIC is to make it a true I/O processor by using an interpreter with its own memory;
such an approach is shown in Figure 5-17. A Port Select Unit (PSU) is used to
connect the interpreter to the memory since this interpreter essentially operates
as a si-ngle interpreter.

The complete I/O program now resides in the MIC. The only interaction
with the multiprocessor portion of the system is the transfer of data and possibly

ki some form of master sync or control.

5.2.3.3 Interpreter 1/O Operation

The first three approaches to MIC design require the interpreter to execute
an I/O program that sends the appropriate data and commands to the MIC and
fetches the appropriate data from the MIC. It is not the intent at this point to
design this I/O program, however, it is observed that this area is a natural for
macro 'IS" instructions. A single "S" instruction could be designed to fetch a
command and data from main memory, send it to the MIC, check the response word,
and do any retransmission in case of errors. A first cut at some of the gross
steps involved in such a macro "S" instruction is given below (for data output
to the MIC):

1. Fetch "S" instructions

2. Device locked? Lock if not
3. Execute device write to send command word to MIC

4. Fetch data from memory (two words/cycle)

5. Execute device write to send data to hlIC

6. Execute device read to get response word from MIC

7. Check response word

8. Any errors? If so, retry
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5.2.3.4 Conclusions and Recommendations

At this point an approach to the MIC cannot be firmly recommended. However,
it is felt that the first two approaches, the direct interpreter control system, or
the single command buffered system would be preferred. The reason is that the
interpreter was designed to be flexible and easily configured to do arithmetic
or 1/0 processing in a dynamic nature. The interpreter can very well do the 1/0
processing. In fact, an interpreter could be assigned to 1/0 processing only for
the actual time needed; it may be assigned to other processing tasks when I/O
processing is not needed. It is also desirable not to add specialized or complex
hardware to the interpreter system since thi3 hinders modularity and may result
in problems from a failure tolerance standpoint. It will be assumed at this point
that the first approach, the direct interpreter control system, which is tile simplest

L MIC module, will be used in the central processor for purposes of this study.
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5.2.4 System Configuration

5.2.4.1 System Description

The 1/0 requirements and the computer system configuration based on the
processing allocation as shown In Figure 5-7 were reviewed to define the method of
input/output for the entire system. A system configuration including the 1/0 implemen-
tation Is shown in Figure 5-18. Four modules (or devices), each Interfacing with SWi's,
are shown for performing the I/O:

1. MIC - Multiplex Interface Controller

Allows a multiprocessor to control the communications on a multiplex bus as
described in Section 5.2.3.

2. PC - Parallel Channel

Allows one multiprocessor to communicate with another multiprocessor. This
is a dedicated channel and operates on a request acknowledge basis.

3. MT - Multiplex Terminal

The basic interface for si! devices or subsystems (this Includes a multipro-
cessor that is part of a subsystem, e.g. the SRAM processor) connected to a
multiplex bus. It recognizes a unique ID address and responds to a command
sent out from the MIC to send or receive data over the multiplex bus. This
module is functionally very similar to the MIM described in Section 5.2.2.

4. DI - Device Interface

Interfaces subsystems or devices directly to a multiprocessor. The operation
of this module is not controlled by the multiplex bus. It will typically be a
specialized module matching the requirements of particular subsystems.

Two multiplex buses are used in this system. Both are driven by the central
processor, with one bus dedicated to one multiprocessor and the other bus to the second
multiprocessor. Fach bus is actually dual redundant as explained in Section 5.2.2.
Each multiprocessor is connected. to its bus by a MIC module. Local processors, such
as the IMU processor, and subsystems/devices are connected to each bus. All Informa-
tion transfer is to/from the central processor and under control of the central processor.
The local processors and subsystems/devices interface to the multiplex bus via a MT
module.

The central processor and pen aids processor are actually multi-omputers, In that
more than one multiprocessor is contained therein. Communication between these multi-
processors In a multicomputer configuration is via n PC module. An alternate approach
would be to communicate via the multiplex buses; however, it is felt this method would
require a similar amount of hardware and result in a slower communicatiun link. In the
central processor this alternate method would require the addition of MT modules to each
multiprocessor. Use of the alternate method for the pen aids processor, would require
the central processor to set up communication links between two multiprocessors in the
pen aids processor. U
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The exact method of communicating with subsystems or devices that interface
directly with the local processors is not completely specified at this time. The use of
DI modules is shown in Figure 5-18. This actually could be a set of direct connections
to subsystems/devices or a multiplex bus could be used as is the case for the central
processor.

5.2.4.2 1/0 Requirements and Processing Implications

A quantitative tabulation of the i/O requirements is given In Table 5-16. The
rate, in words/sec, is given for each of the information links shown In Figure 5-18.
These are basic data rate requirements and include the 50 percent spare requirement.
These requirements are for information or data transfer and do not include any over-
head for command words required to operate the various information links.

The method of operating the multiplex bus was described in Section 5.2.2. Two
words, a command word and a response word, are required for each message. Each
message can have up to 31 data words. The data itself is 16 bits, however, data and
command words are transmitted as 24 bit words by the time sync, parity, etc., are
added to each word. The bit rate on the bus is I Mtlz; therefore, a maximum of
41,500 words/see can be sent on the bus (including data and commands) if any delays
and dead time on the bus is ignored.

In practice, all messages will not be fully loaded with 31 data words. Examination
of the 1/o requirements reveals that a likely average for the number of words per
message is 10. Adding two overhead words per message results in 5/6 efficiency on
the bus. This results in an effective data or information rate on the bus of 34,600 data
words/sec. Ad mentioned in Section 5.3 the simplest form of a MIC module will be
assumed in this study, this basically dedicates an interpreter to performing 1/O
functions while I/O transmissions are in progress on the multiplex bus. Thus a
measure of the percent of an interpreters capability required to drive the MIC module
can be determined by using the effective bus rate of 34,600 words/second and applying
that to the data rate required with the MIC as shown in Table 5-16. It should be noted
that this same capability requirement of an interpreter will apply to Interpreters work-
ing with the MT module since the same effective data rate applies to that module.

The effect of the PC and DI data rates also needs to be considered on the required
interpreter capability. Detailed designs of these modules have not been performed.
However, it is expected a data rate of approximately 750,000 words/second shall be
within the state of the art over the PC channel and data rates on the order of 100,000
words/seconds can be expected over the DI module.

Utilizing the 1/O module data rates above and applying this to the requirements in
Table 5-16, it is then possible to determine the percent of time an interpreter can be
expected to be devoted to performing I/O processing functions. The results of this
analysis are expressed in terms of the effective Interpreter speed requirements in
operations per second for performing I/O functions as shown in Table 5-16.

Having the I/O requirements on each processing configuration of Figure 5-7, it
is now necessary to reexamine the configuration of Figure 5-7 to determine If it can
handle the I/O processing functions. The largest i/o requirement is in the central
processor, in particular multiprocessor 2. Examining the data in Section 5. 1.3, shows
that MP2 In the central processor contains sufficient capability to also handle the 1/O U
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Table 5-16. 1/0 Requirements

1/O Data Rate Effective Interpreter
Requirements Speed Requirements

_Computer (Words/Sec)* (Ops/Sec)

* • a. Ceetral Processor

1. Multiprocessor 1

*MWC 7,494
PC 4,240

Interpreter 1/0 Requirements 27,000

2. Multiprocessor 2

MIC 19,549
PC 4,240

Interpreter 1/0 Requirements 58,520

b. Pen Aids Processor

1. Multiprocessor I

MT 3,534
PC 1,536
DI 2,448

Interpreter I/O Requirements 12,720

2. Multiprocessor 2

MT 4,105
PC 4,128
DI 16,848

Interpreter 1/O Requirements 16,920

3. Multiprocessor 3

MT 3,639
PC 5,664
DI 5,184

Interpreter I/O Requirements 14,040

4• c. IMU Processor

MT 1,860
DI 3,111

Interpreter I/O Requirements 6,240

d. SRAM Processor

MT 210
DI 8,520

Interpreter I/O Requirements 1,800

NOTE: 50 percent spare factor is included
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processing functions. The same holds true for MPI in the central processor as well
as all the other multiprocessors in the ASB avionics configuration as shown in Figure 5-7.Li
Therefore no additional interpreters are required to Figure 5-7 to accommodate the
I/O processing requirements as defined in Table 5-16.

5.2.4.3 Interrupts

An additional factor that should be considered when investigating the 1/0 require-
ments is the need for interrupts. There are two basic types of interrupts to be consid-
ered, internal and external. At this point in time it is difficult to establish a quantitative
figure for the number of these interrupts, however, both types will be required in this
system. Internal interrupts typically consist of power up, parity error, storage
protect. ial time clock, etc.

The only external interrupt firmly identified at this time is the designate interrupt.
The F-111 avionics had in addition to this interrupt an INS reset interrupt and two
display freeze interrupts.

Therefore, it is felt that at least four external and four internal interrupts should
be provided, a more conservative approach, and the recommended approach, would
be to provide eight of each type of interrupt.

5.2.4. - Other I/O Functions

In addition to the I/O functions described above, there will in all likelihood be two
additional I/O functions when the final system is configured. One of these is a mass
memory channel and the other is the provision of discrete input/output signals.

The ASB aviorics system will have a mass memory, exactly how communications
will be handled with this device is unknown at this time. There will probably be a device
channel that allows communication with the mass memory.

In most avoinics systems there generally is some requirement that calls for
several discrete 1/0 signals. An example of such a signal may be the failure go/no-go
status of the computer.. There should be some provision for handling several discrete
I/O signals.

5.3 FAILURE DETECTION AND RECONFIGURATION FOR THE BURROUGHS
MULTI PROC ESSOR

5.3.1 Introduction

The approach to failure detection, isolation and reconfiguration is outlined below.
Detailed system requirements are not available for those factors and the selected
approach is based on certain assumptions. One assumption is that the computer system
is required to survive at least one failure with a higher failure tolerance desireable.
It is also assumed that it Is required to provide continuity of certain functions during
any reconfiguration process. The general approach to faildre detection and reconfigura-
tion is shown in Figure 5-19. Two multiprocessors are shown in this figure (this
corresponds to the central processor in Figure 5-18), each one is conmprised of a switch
interlock with Eome number of memory and interpreter modules.
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This system is a multicomputer system with two computers where each one is a
multiprocessor. Fach multiprocessor contains its own failure detection capability
and reports its failures to the other multiprocessor. Each multiprocessor contains
backup capability for the other. When a failure indication is received, the non failed
multiprocessor enters a backup mode wherein some of its normal functions may be
suspended and some of the failed multiprocessor's functions are performed. The
failed multiprocessor contains its own isolation and reconfiguration capability.

The multiprocessors each have their own dedicated mass memory. Depending
on the computational functions, the mass memory may be used to store past values of
data such that some computational functions may be restarted. Data integrity in the
failed multiprocessor cannot be assumed after a failure and reconfiguration requires
a complete restart or reloading data from the other multiprocessors or from mass
memory.

This approach to failure detection and reconfiguration is very similar to that
used for the F-Ill Avionics System except that the system described here contains
reconfiguration capability within each computer (a multiprocessor) of the multicomputer
system (the F-1ll System contained two single computers with no reconfiguration capa-
bility within a computer). The basic approach described in Figure 5-19 is applicable
when two multiprocessors are used. Referring to Figure 5-18 in the previous section
describing the Interface to the ASB multiplex system, this Is applicable to the 'central
processor'. The approach to failure detection and reconfiguration for the IMU, SRAM,
and Pen Aids processors would depend on the individual requirements of these sybsys-
tems. The Pen Aids processor contains more than one multiprocessor and the same
approach as described in Figure 5-19 could be applied here. The IMU and SRAM
processor contain one multiprocessor. Reconfiguration within these multiprocessors
is possible however computational continuity during reconfiguration cannot be assured
unless more than one multiprocessor is used as described in Figure 5-19.

5.3.2 Modified Burroughs Multiprocessor

A block diagram indicating the modified version of a multiprocessor, configured
from the Burroughs multiprocessor system, is shown in Figure 5-20. This modified
multiprocessor incorporates a number of changes or additions to meet the ASB system
requirements and to provide for failure tolerance.

5.3.2.1 Real Time Clock

A real time clock (RTC) has been added to the system. The real time clock is a
counter that is driven by the system clock, counts down to zero which generates a
signal that is input as an interrupt to all interpreters via the interrupt module, and Is
reset to a specified value (typically 1/64 or 1/32 of a second). The RTC is needed to
provide a precise timing source for the execution of periodic programs in a real time
mode. (The executive aspects are discussed in Section 5.4.)

In servicing this interrupt, each interpreter will attc ipt to access the system
executive tables to determine what task to perform next. ' his will be accomplished by
attempting to set the GC bit. Therefore, in case of exactly identical timing response to
the RTC interrupt, the interpreter with the highest priority (as determined by the
connections in the logic of the SWI Channels) will be the first one to access the executive.
An alternate choice, to the approach shown in Figure 5-20 of providing a common RTC,
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is to provide a RTC per interpreter and use this RTC for an internal interrupt. The
RTC in each interpreter would be driven by the common clock for the entire system.
This would ensure that the RTC within each interpreter remains in sync. There
appears little If any advantage to this approach and it ads hardware to an interpreter
that may not be needed in other applications. Therefore, the approach of using a
common RTC is recommended.

5.3.2.2 Modularity

The SWI has been redesigned to provide for better modularity and failure isolation
as described previously in Section 4.3. The new approach basically partitions the SWI
into channels where one channel Is used per interpreter. The maximum number of
interpreters and memories in a multiprocessor is limited to some amount, N and X,
that is designed to initially. The SWI redesign kept X = 8 as was the case originally.
The maximum number of interpreters can easily be designed to be greater than five
which is the current figure. It should be noted that the figures for N and X include any
spares that are to be reconfigured automatically (i. e. without any manual replacement
or switching).

5.3.2.3 Interrupts

The interpreter as presently designed contains no true interrupts by the classical
meaning of interrupts. Interrupts are provided for by having condition bits that can be
tested via a microinstruction, the condition bits being set by an "interrupt". The
microinstructions provide flexibility to perform this by allowing the successor micro-
instruction to be conditionally selected depending on the state of a condition bit. There-
fore, the current microinstruction can state, for example, that the next microinstruction
is arrived at via a jump if a certain condition is false or via a skip if a certain condition
is true. Eight successor choices are provided for the false state and eight for the
true state of a condition. A limiting factor in this approach, is that only one condition
can be tested at a time.

The approach to mechanizing the interrupts is shown in Figure 5-20. An
interrupt module is provided that basically 'or's' interrupts into one of the condition bits
in each interpreter. The interrupt module contains an interrupt register which records
which interrupt has occurred, the RTC is one of the interrupts, the failure indication
from each interpreter provides an additional N interrupts, additional external interrupts
as required by the system mechanization are Input to this register. All of these inter-
rupts are essentially or'ed to provide the signal to each interpreter that sets the EX1
condition bit in the interpreters.

The interrupt module Is treated as a device (except for the signal to the EX1
condition bit which is h2rdwired di rectly) such that the interpreters communicate with
it via the SWI. The interpreters can sample the interrupt register to determine what
the interrupt was. This register will be reset when sampled. The first interpreter
responding to the interrupt will sample the register and record the interrupt in memory.
The remaiain& interpreters will saniple a clear intereupt register aad will then go to
meinory where the interrupt is stored and being serviced '.ia the executive routine.

The EXI condition bit will be tested in the last microinstruction of an S instruction.
(If an S instruction were tested before completion, some means of saving the Interpreter
registers would be needed, no such paths exist in the interpreter at present.) The
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testing of this single condition bit thereby provides a test of all the interrupts input to
the interrupt module. Other types of interrupts such as memory parity or memory
protect, if provided, can be serviced by the other two external condition bits and
would be tested in appropriate microinstructions (. e.g. memony protect would be
tested after a memo"ry write microinstruction.

The interrupt module also contains a mask register that may be set to any bit
pattern by the interpreters. This register effectively masks selected Interrupt lines
into the interrupt module, it prevents these masked inputs from entering the interrupt
register and setting the EX1 bit, if desired. This mask register can be used to
prevent failed subsystems from hanging up the multiprocessor by continuously generating
interrupts.

5.3.2.4 Global Condition Logic

In the course of investigating the failure detection, isolation and reconfiguration
characteristics, Rt was determined that the global condition (GC) logic, as presently
implemented, presents a single point of failure around which reconfiguration cannot be
accomplished. Examination of Figure 7 of 'Reference 4 indicates hiat the request, GC
bit, and ripple logic are all in series, Therefore, the failure of any interpreter in
this path will disable the functioning of the GC logic in all interpreters. This problem
cannot be solved by turning power of, to an interpreter. In fact, this design approach
prevents turning power off to an interpreter if it is not needed in operation.

An alternate approach to the GC logic is shown in Figure 5-21. This approach is
similar to the Burroughs approach em(',)t that the G(? request is sent out on a separate
signal for each interpreter instead of being rij pled through interpreters. The advantagc
of this approach is that nower can be turned off to any interpreter without affecting the
operation of the GC logic in other interpreters.

It was decided in the failure tolerance analysis '.hat it would not be necessary to
turn pmwer off to interpreters. Therefore, in order to prevent a failed interpreter
from affecting the operation of the GC logic, the GC logic shown in Figure 5-21 was
moved to the SWI ss shown in Figure 5-20 (power will be turned off to the SWI channels
in the event of failure). rhe set, reset, and GC bit signals are sent between the
interpreter and the SWI channel of that interpreter. IU should be noted witlh this approach
that the maximum number of interl)reters, N, must be planned for ahead of time in the
or logic of the CC request signals as shown in Figure 5-21.

5.3.2.5 Failure Detection, Isolation, and Recunfiguration

Several minor modifications were made to pr-cvide for failure tolerance. The GC
logic was changed and moved to the SWI as explained above. A test counter was adde(I

- to each interprete,-. This counter must be periodically reset by the interpreter or a
failure indication signal will be generated. A power switch was added to each SWI channel
in the event a failure indication is generated within that interpreter. The SWI was
redesigned on a channel per interpi-eter basis so that failures do not affect more than
one interpreter. in addition software which allows tests of the memory, SWI and
interpreters was added. Spare mcmoz'y, SWI channel, and interi)reter modules would
be provided as needed to meet system reliability requirements. The approaches to
"failure detection, isolation, and reconfiguration will be explained in further detail below.
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5.3.3 Failure Tolerance

The general philosophy of the selected approach to failure tolerance was outlined
in Section 5.3. 1. The implementation of failure tolerance will be described in this

- section with a specific discussion of failure detection, isolation, and reconfiguration
in subsequent sections. Failure tolerance requires that the multiprocessor, as shown
in Figure 5-20, detects a failure within the multiprocessor, reports the failure to a
backup device (another multiprocessor in the central computer case), and reconfigures
into a correctly operating multiprocessor, informing the backup device of a successful
reconfiguration.

The multiprocessor was investigated to determine if it could be relied upon to
.. perform reconfiguration such that a backup device is not required. The basic problem

in the multiprocessor is that data integrity cannot be assumed after a failure is detected.
An interpreter, through a SWI, can access any memory module. Failures may occur
such that the interpreter writes into the wrong memory location, thereby destroying
data. Such failures can readily occur in many portions of the interpreter andi SWI,
e.g. in the address decoding of the SMI which selects the proper one out of eight menl(i'Y
modules, in the interface between the interpreter and the SWI, in the registers in the
interpreter, in the data paths in the Interpreter, in the adder of the interpreter, etc.
These types of failures may also occur in the memory where incorrect information is
recei\ ed from one memory that results in a read into another memory module into an__,• :.incorrect location.

Software and hardu-are schemes may be used to reduce the probability of such
failures. e.g. coding oii portions of the memory address logic (programs and ( -n.9tants
may be preserved using various memory write protect schemes). However, I :der
to provide data integrity with a reasonable confidence level, after a failure, ior a

* real timie control application such as the A33 avionics, it is necessary to use massive
redundancy with independent modules. In the multiprocessor, this would require the
ability to operate the interpreters and memories as sets of independent comput( rs.

SSonic means of a lock mechanism would be needed to accomplish this such that a
memory module could be dedicated to only a selected interpreter(s), preventing access
(at least write) to all non selected interpreters. A system such as this could then be
reconfigured after a failure by changing the control to the lock mechanism. It should
be noted that as reliability requirements are increased to the point where any failure
must be tolerated, then perfect failure detection, isolation, and reconflgurntion must
be provided, such stringent requirements reqjuire at least a level of redundancy of
three (Ref 17), using techniques such as majority voting, to meet the reliability goals.

The approach taken here was to preserve the basic architecture of the Burroughs

-- Multiprocessor as shown in Figure 5-20, allowing it to be used as a true multiprocessor.
Data integrity is not assumed after a failure is detected in the multiprocessor. Redun-

"- "dancy in the form of another multiprocessor, as shown in Figure 5-19, is used during
reconfiguration to achieve failure tolerance for tihos computational functions that
require continuity of performance (this may be a degraded mode of performance).
Failure tolerance for the A3 avionics central computer thereby takes the form of using
two multiprocessors, each multiprocessor Is reconfigurable after a failure, and each
multiprocessor provides backup for the other durlng reconfiguration for critical
functions requiring continuity of performance.
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Each multiprocessor contains its own failure detection, isolation, and
reconfiguration capability. Failure detection is primarily accomplished by using a
software test routine that is scheduled for periodic execution by each Interpreter. A
test counter Is provided for each interpreter, as shown in Figure 5-20, thaz must be
periodically reset otherwise a failure indication signal will be sent out from the counter.
The test counter is reset only if the software test routine Is completed successfully.
Failures detected by this approach can be caused by malfunctions in the interpreter,
SWI, or memory modules and as stated above the failures could have destroyed data
anywhere in memory (programs and constants may be preserved using a memo,'y
protect scheme on such information). Failures are not Isolated between an interpreter
and its SWI channel since loss of either precludes use of the other. A power switch,
that is driven by the test counter in each interpreter, is provided in each SWI channel.
This switch prevents a failed interpreter/SWI channel from affecting the proper
operation of the multiprocessor after a failure is isolated and reconfiguration
accomplished. Reconfiguration is accomplished by reloading a spare memory module,
if required, with a copy of a failed memory module's program, reinitializing any
required data, and informing the other multiprocessor of a successful reconfiguration.

5.3.4 Failure Detection

An overall flow chart depicting the failure detection process is shown in Figure
5-22. The failure detection program is scheduled to be executed periodically once every
n seconds. It is entered by means of the RTC interrupt which sends the interpreters
to the task scheduling tables. The failure detection task is scheduled for execution by
each interpretcr.

Part of the failure detection program resides in main memory and part in the

interpreter's microprogram memory (MPM) (permanently in a ROM portion of the MPM).

The portion of the failure detection routine that permanently resides in the MI'M acts
as an executive and controls the execution of the failure detection program.

As shown in Figure 5-22, Block 1, scheduling of the failure detection program
results in control being transferred to a fixed location in the MPM of the interpreter.
The first portion of the failure detection program checks the operation of the interpreter.
The interpreter will fetch an interpreter test routine, which is part of the failure detec-
tion program, from main memory (Block 2). This routine will be checked to determine
its integrity by forming a check sum of the routine. The interpreter will compare the
results of the check sum with a permanently stored constant in the MPM. if the test
does not agree, then another memory module (Block 4) is accessed for the interpreter
test routine. After the test routine is validated, it is executed by the Interpreter. This
routine will check the logic, control and data paths in the interpreter. If the interpreter
falls to execute this routine correctly, it will halt and the test counter will run out
resulting in a failure indication.

Successful performance of the Interpreter test routine will be followed by the
interpreter testing its switch interlock (SWI) channel. The interpreter fetches a SWt
test routine and dctcrmines Its validity by jiieans )f a che'k sum (Blocks 8, 9, 10) in
the same manner as for the interpreter test routine. The memory modules will each
have a prestored constant In a known location which will be a d ffercnt value and location
in each memory module. The SWI test routine will read the -constants and compare
these with the expected response (Blocks 11, 12, 13). This test Nill check the informa-
tion transmission paths and address decoding logic of the memory r'Xlquest section of the
SVWI. The device rexiuest section of the SWI is checked in a similar manner. The exact
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test used will depend on the characterist!cs of the devices connected to each device
port, e.g. the interrupt module can be used to write and then read a value into the mask
register, the MIC can be used to send a value to a subsystem and then retrieve it, etc.
If the SWI is checked out with no apparent failures, then the test counter in the inter-
preter is reset.

If a failure is detected in the SWi test, it must then be isolated. The failure
could be in a memory/device or in the SWI. Failures with more than one memory/device

will be cause to suspect the SWI and failures with all memories/devices will result in
the SWI being declared faulty in which case the interpreter would halt (Block 18) with
the test counter eventually indicating a failure. Failures with only certain memories/
devices will be isolated by communication with other interpreters to determine if they
are also experiencing failures with those memories/devices.

Following successful completion of the interpreter and SWI channel tests the
interpreter will return to the scheduler in main memory. The next test to be performed
is on the memory modules. The memory module test program needs to be executed by
only one interpreter. The first interpreter to complete its interpreter and SWI channel
tests will execute the memory module test program (scheduled just like any other task)
and the remaining interpreters will be assigned productive computational tasks. The
memory module test program will test each memory module's ability to read/write
selected bit patterns into selected locations.

The method used for failure detection does not guarantee that the failure
indication from the test counter results in an isolated failure. The failure indication
could be the result of another Interpreter's failure or a memory module failure. This
results from the fact that the failure indication program is scheduled via-4nformation
contained in memory. This information could be incorrectly altered by a faulty
interpreter or the memory itself could fail. This may result in the failure detection
program not being scheduled in time to prevent the test counter from running out. An
alternate approach, which may eliminate the above problem, and result in a failure
indication that provides an isolated signal, is to use a self scheduling mechanism
within the interpreters for the failure detection program. The test counter as shown
in Figure 5-20 is an X bit counter., If an additional output from the counter is provided
at t bits, then this output could be used to interrupt the interpreter and force the failure
detection program to be performed in exactly the same manner as described in Figure
5-22. The length X-t would be selected to provide sufficient time to perform the
failure detection program.

This method may result in executive scheduling problems since the interpreters
would be scheduling tasks in addition to the tasks scheduled via the system executive
tables. Timing and interference problems may result with this approach. Therefore,
the first approach deonribed is recommended at this time with the result that the failure
indication signal from the test counter does not necessarily represent an isolated failure.

An additional point that should be noted here is tlie possibility of a meimory
resulting in a failure indication from an interpreter due to a no resporse failure. The
Interpreter 'nterface with the mcmcrieS is -s'nc-h',no-,, •. th the inte rprcter rq,.---
a memory operation and a memory response arrivLog at some variable time due to the
multiprocessing operation of the system. The interpreter can halt and wait for the
response, do other functions and inte rmittently test for a men or' response, etc. A
memory failur3, such that no response is received. wil eventua1  hang up ) interpreter.
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Burroughs used a time out counter in their bread board system to get around this
problem. The t.mer was automatically reset every time a memory request was made
and If no response was received the timer would overflow and set an external condition
bit in the interpreter and also force the interpreter to step to the next MPM location.

A : It is not certain that this timer will be required in the ASB avionics application.
A no response from the memory will eventually be detected by the test counter In the
interpreter running out with a resultant failure indication signal. This is another case
where the failure indication signal does not represent an isolated interplreter failure.
One situation where a memory response timer is required, Is during initial startup or
failure Isolation/reconfigurction in which the failure detection program as described
in Figure 5-22 will be performed. Whenever main memory accesses are made (such
as Block 2, 8, 11), some form of a timer must be used to prevent a memory failure
from preventing the failure detection program to be run. This can be accomplished by
using the CTR register In the interpreter for timing out the memory response. The
interpreter can go into a small loop where this register is incremented and tested;
if it overflows, the interpreter can branch out and not be hung up waiting for a failed
memory.

This CTR register could possibly be used during normal operation to time out the
"memory response. However this is not certain at this time, since it may be required
to implement the 'S' instruction and hence could not be relied upon to be available as a
timer. It should also be noted that, if an isolated failure Indication signal is required
from the interpreter, such as was described previously by using a test counter with two
taps on it, then some form of a memory response timer must be used.

The failure detection process described above required one hardware modification
to the present system, the test counter. This counter will be driven by the interpreter
clock and count up to a sufficient value (on the order of one second). The counter can
be reset by using one of the 16 combinrations provided by nanobits 51-54, Mem-Dev Op,
since several spares presently exist. The counter could actually be placed in the MDC
portion of the SWI, since these particular nanobits are decoded therein. In this case no
change is actually made to the interpreter. However, if the counter Is placed in the SW!,
power to the counter must not be turned off by the power switch of the SWI since there
would be no way to start up an interpreter from a cold start or after a failure indication
for purposes of failure isolation.

5.3.5 Failure Isolation

An overall diagram depicting the failure isolation/reconfiguration process is
shown In Figure 5-23. This diagram presents a first level overview of the process,
numerous details are not shown here. The process is cnte:-ed by a failure indication
interrupt. The first step the interpreter takes is to reset the teet counter and go to

1 Block 2 which is basically the failure detection process which was described in the
previous section and shown in Figure 5-22. The failure detection interrupt is broadcast
to all interpreters and all Interpreters will be following the process shown in Figure
5-23. It should be noted that the interpreter that sent out the interrupt cannot retrieve
the actual interrupt from the !nterrupt register through the SWI channel, since its test
counter will have turned power off, through the power switch, to its SWI channel.
Therefore, as shown in Figure 5-20, the signal from the test counter is also wired to
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the EX2 condition bit. The interpreter in normal operation will test the EXI condition
bit (any Interrupts) in the last microinstruction of an 'S' instruction. If the EXI bit is
true, then the interpreter will test the EX2 bit to determine if this interrupt was
caused by its own test counter, if not, then the interpreter will ret, .eve the interrupt
register.

The test counter is reset In the interpreter if the EX2 bit was true, so that the
interpreter can access main memory and execute the failure detection program. The
EX2 condition bit also causes the power up or cold start sequence to be entered. This
sequence accesses location 0 of all memory modules to determine where to go next.

= •Following this procedure prevents a failed memory from inhibiting the failure isolation
program from being entered. It should be noted that if the interpreter actually failed,
it would not enter the failure isolation./reconfiguration routine unless it failed in a
state where it is testing the EXI or EX2 condition bits and also is functioning so that
it can process the interrupt and execute microinstructions to follow the process"
Figure 5-23.

For purposes of this analysis it is assumed that some form of memory protect
is used on program/constants in main memory. This assumption allows one to
proceed on the premise that such information is not altered except due to a failure of n
particular memory module itself. Information that is critical to the failure detection,
isolation, and reconfiguration process will be stored in two memory modules such
that it cannot be destroyed except by those two memory modules failing simultaneously.

If the interpreter/SWI channel pass the failure detection program, the test
counter will be reset and failure isolation will be entered in Block 3 of Figure 5-23.
If any failures with particular memories/devices were detected, they will be isolated
to either the SWI channel or the particular memories/devices in Blocks 4 through 7.
This will be accomplished by intercommunication with the other interpreters in the
multiprocessor. If the SWl channel ofa particular interpreter is inoperative with
selected memories/devices, the degraded capability of that interpreter will be noted
in the resources tables. Such an interpreter may or may not be used depending on
the sophistication of the executive used in the multiprocessor. likewise if the failure

-* was a memory or device this vould be recorded in the resources tables.

"The memories are tested by one interpreter and a program similar to that used
in the normal failure detection process fIsed. The isolated failure is recorded and1 the process transfers to the reconfiguration phase as shown in Figure 5-23.

The basic tool of the failure detection process was the test counter and the
basic tool in the failure isolation process described here is the power switch in
the SWI channels. This switch is driven by the test counter and prevents a failed
interpreter from causing an apparent failure of the complete multiprocessor. Such
a failure could occur if the interpreter were making incorrect memory requests:
this could degrade the performance of the system due to the failed interpreter
stealing memory cycles from good interpreters or data in the memories could be
destroyed by the failed interpreter making the system comp-letely in operative.
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Additional failures that could seriously effect the system arc an interpreter
issuing false GC (global condition) signals. Part of this problem with the GC logic
was corrected by the modification shown previously in Figure 5-21. The remainder
of this problem with the GC logic is eliminated by placing the GC logic in the SWI
channel where it will be disabled with power off. The same discussion applies to the
INT (interrupt) bit logic, it should be placed in the SWI channel. The power switch
in the SWI channel thereby allows failure isolation and subsequent reconfiguration to
be successfully implemented.

5.3.6 Reconfiguration

As discussion above the reconfiguration process described in Figure 5-23
will be entered after the failure isolation process has isolated the failure and recorded
the status of the multiprocessor in the resource tables. The type of failure will
first be examined, as shown in Figure 5-23, to determine the exact reconfiguration
process to use.

If the failure was an interpreter or SWI channel (failures are not isolated
between these two modules since one is useless without the other), the task require-
ments would be compared with the interpreter resources available. If sufficient
interpreter resources are not available to perform critical tasks (usually tasks that
must have periodic timing maintained), then less critical (e.g. certain background
type of tasks) tasks would be deleted. Deletion of eirtical tasks would also be
carried out on a priority basis depending on the state of the interpreter resources.

If the failure were a memory' module, the first step to perform is to determine
if a spare memory module is available. An available spare module would be reloaded
with the failed modules program from mass memory. If no spare memory modules
arc available, it will be necessary to determine if sufficient Interpreter capability
exists such that processing tasks can share main memory by being swapped out of
mass memory. If this is not feasible, then less critical tasks must be deleted.

After the above reconfiguration steps have been completed, the state of the
other multiprocessor (when using th, concept shown in Figure 5-191 will be examined.
If the other multiprocessor is opernting properly, then it will be performing
temporary backup functions for the multiprocessor that was doing reconfiguration.
The reconfigured multiprocessor will communicate with the other multiprocessor
to inform if of a successful reconfiguration and to obtain Ary data from it that
may be needed in reinitializing the reconfigured multiprr r:!ssor. If the other
multiprocessors were not functioning properly (or in sy iems using only one
multiprocessor), then the reconfigured multiprocessor wi'ould be reinitialized
using startup parameters from mass memory.
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The above process assumes that program and constants in main memory are
protected against writing. If this is not the case, then additional steps will be
required in the isolation and reconfiguration process. Some means of verifying the
integrity of this information, or of reloading the entire main memory must then
be provided in the multiprocessor.

5.3.7 Other Approached Considered

Alternate approaches to the failure detection, isolation, and reconfiguration
process were considered. One basic approach that should be noted, is using a
method for failure detection similar to that proposed by Burroughs in reference 18.
This approach eliminated the need for the test counter in each interpreter.
Essentially, this counter is then implemented by software. Each interpreter has
a 'time due' to report in to a table. All the interpreters check on each other to

f" make sure the interpreters report is in on time, this is functionally very similar
to the test counter.

1 This method works about as well as the test counter for failure detection
except it does not work with only one interpreter in the multiprocessor, failures
cannot be detected since there is no other interpreter to check on the failed
interpreter.

There are several drawbacks in implementing isolation and reconfiguration
processes.

This approach also makes failure isolation difficult since it requires
interpreters cheching other interpreters. A failed interpreter can report good

* interpreters as faulty and can induce apparent failures in other Interpreters. It
is difficult to acheive failure Isolation in the case of conflicting failure detection
reports, some means of software or hardware voting may be reqluired to carry
out failure isolation. Some form of power switching will also be required in this
approach. Since the failure indication signal is not autonomous from an interpreter,
then it must be provided by the other non-failed interpreters in the system in order
to effect power switching. This introduces some difficulty in the isolation and
reconfiguration process since failed interpreters would have the capability of
issuing erroneous power switching signals.
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5.4 MULTIPROCESSOR EXECUTIVE

5.4.1 Introduction

Burroughs has designed an executive structure for the multiprocessor system.
This software structure, described in Ref 18, is designed to accommodate a wide
range of computing activities and hardware/firmware configurations. It is therefore
quite general and highly flexible. In particular many of the executive functions are
designed for an environment in which processing tasks with varying and unpredictable
computational requirements (memory, throughput, 1/0, utilities, etc.) can be asynehro-
nously entered into or removed from the computer system. This environment is
typical of a batch-oriented data processing facility.

The executive or more accurately, the operating system to support this type of

processing must include features to accommodate:

L. Job (task) insertion/deletion on-line to the system

2. Dynamic allocation of system resources (particularly memory and [/0)
during system operations

3. On-line debugging of tasks during system operation

4. Variation in system configurations in terms of number and type of 1/0
devices, memory, etc.

A real-time aerospace application such as the AB avionics system represents
a rather specific class of processing requirements which differs significantly from
non-real time data processing.

The functions/obje-tives of the executive software are affected by the
characteristics of these processing requirements. The most significant characteristics
-ire described below:

1. Predictable Processing Load - The total processing requirements (memory,
throughput, I/O, etc.) are known and fixed prior to system operation.
While different combinations of processing tasks may be required for
different operating modes of the system, the precise combinations are all
predetermined.

2. Cyclic Processing Tasks - A high percentage of the processing tasks are
cyclic - iL e., they must be executed at a predetermined frequency, such as
every 1/32 of a second. Generally tasks which are not cyclic are treated
as "background" and are guaranteed some maximum completion time by an
analysis of the total throughput.

3. Limited User Interaction - The system "user" (the A.B crew) has a limited
and rigorously defined interface (interaction witlh he processing software)
being able only to select from predetermined various modes, options and
parameters of system operation. Additional processing tasks cannot be
entered into the system (luring operation and no software debugging is
performed when the system is on-line.
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Software executives for this type of application are generally highly specialized
to optimize tas, scheduling efficiency and minimize executive overhead. This is
accomplished at a sacrifice in flexibility/generality, taking advantage of the specific
processing c]haracteristics noted above.

While a highly flexible/general executive structure such as described by
* Burroughs could potentially accommodate the A.0 processing requirements, many of

the features would not be used and significant inefficiency and overhead would result.
On the other hand, some executive overhead is warranted in order to make effective
use of the unique characteristics of the Burroughs Multiprocessor. In designing the
executive for the Burroughs Multiprocessing system for the A.a avionics system, the
structures and terminology described by Burroughs in Ref 18 were retained as much
as possible and the basic philosophy of that structure remained intact. The executive
design is described in the following paragraphs. A significant deviation from or
modifications to the Burroughs design are noted and additional detail specific to the
ASB application is presented.

5.4.2 System Configuration

* The exemutive design is based on a multiprocessor configuration as shown in
Figure 5-20. The computer system consists of one or two multiprocessors and a
mass memory.

4. A multiprocessor consists of one to five interpreters, one to eight memories, one
to eight devices, and a switch interlock. Each interpreter can access (read/write)
any memory module or device through a portion of the switch interlock dedicated to
the interpreter. In order to access a device, an interpreter must request a "lock" to
the device and when locked, no other interpreter can access the device.

Each multiprocessor has an executive. The executives are identical for all
multiprocessors except for data in the System Control Segment (described in a later
section) which identifies the specific hardware in the multiprocessor and the specific
tasks which it is to performn.

Each interpreter has a hardware test counter which sets a failure indication

* signal if it is allmn\ cid to run without being reset for a fixed length of time. The test

counter is reset ipeiodicallv by the executive software as long as the interpreter is
operating satisfactorily. The failure indication signals from all the interpreters in a
given multiprocessor are "Olled" together to form a Multiprocessor Failure Indicator
(MFI) which is routed to the interrupt module of the other multiprocessor (if there is
one) in the system. This MFI interrupt is used to initiate on-line backup operations
in the other multiprocessor. The MFI signal is also routed to tile interrupt module
internal to the multiprocessor to enable interpreters to initiate failure diagnosis and
recovery. lun-out of the test counter causes the interpreter to transfer control to a
fixed location in the microprogram memory from which the executive attempts tor diagnose and recover from the failure.

"The computer systeni contains a Real Time Clock (RTC) which generates a
signal at a fixed interval (1/64 or 1/32 of a second). This signal is routed to the[ interrupt modules in each multiprocessor. This signal is used to schedule real-time
Processing.
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5.4.3 Executive Structure

f The executive software consists primarily of a set of microprogram modules
and a data structure called the System Control Segment (SCS. As in the Burroughs
design, the executive functions are distributed among the interpreters, i. e., an
executive module can be executed by any interpreter whenever required. A single
System Control Segment is stored in main memory for each multiprocessor. The SCS
defines the sequence of processing tasks to be performed and the status of the various
hardware modules of the multiprocessor. Each interpreter accesses the SCS to deter-
mine the next task to perform. The entries in the SCS are -locked" using the Global
Condition bits to prevent access by one interpreter while an entry is being modified by
another interpreter. In the Burroughs design, microprogram executive modules were
stored in main memory (or some off-line storage) and when a particular interpreter
required an executive function, it would load the appropriate module f. -n main
Smemory into its microprogram memory. In the Ab system all the executive modules
would he permanently resident in ROM in the microprogram memories. The cost and
overhead of using alterable microprogram memories and dvnalmic in icruprogram
memory allocation is not justified for the A.B applicatiorn since the executive's
functions are small anti relatively constant during system operation. The Locator and
Allocator modules and the parts list described by Burroughs were used to locate and

*, load executive modules into microprogram memory and are therefore not required in
tb - A.B system.

5.4.3.1 System Control Segment

The term System Control Segment (SCS), borrowed from the Burroughs
ldescription refers to a set of data tables which define the status and schedule of tasks

for a particular multiprocessor. The SCS is the data which directs and coordinates
the executive functions in each of the interpreters. The SCS contains the following
tables.

Task Table - This is a simplified, slightly modified version of the corresponding
table in the Burroughs design. It is used for scheduling unscheduling processing tasks.
It contains one entry for each task in the multiprocessor. An entry contains the
following information:

ENTRY READY-TO- COMMON
INACTIVE RUN BITS TASK WORK X AREA POINTER
BIT BITS Lt

1. Entry Inactive Bit: This bit is reset when the corresponding task is being
processed by some interpreter.

2. Ready-to-Run Bits: These bits indicate the status of the task in terms of
execution criteria. When all the bits are set, the task is "ready to run.

3. Common Task Bits: These bits are set \%hen the task is to I)e executed hv
a specific interpreter or combination of interpreters.
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4. Work Area Pointer: This field contains the main memory address at the
work area for the task. (I)escription of work area is defined later, ) In the
B3urroughs design, task priority was part of tile informatioin slored in the
task tal)le whien requires that the entire task table be se arelhed each time a
new task is to be scheduled in order to find the high priorit. , rady-to-run
task. Since all tasks in the A53 application are predetermined, their
priority can be pre-assigned. Ilence, the task table will he ordored by task

p~riority and the next task to be scheduled in the system will always be the
first entry (from the top) whose ready-to.-run bits are set.

"Interpreter Tlable - This is a simplified version of the corresponding table in
the Burroughs design. The table contains an entry for each interpreter in the multi-
processor which specifies the status of the interpreter. An entry contains the
following information.

Entry Interl)reter Task Communicat ion
Inactive Down Number Area
lit

1. Entry Inactive Bit: This bit is reset to indicate that the entry is being
modified.

2. Interpreter lown: This bit is set when the interpreter is non-operative.

3. Task Number: This field contains the number of the task table entry
currently being processed by the interpreter.

4. Communication Area: This portion of the entry is used for temporary
storage by the interpreter.

Note that the function of the '"slart time," "wait time," and "time next report due,"
* fields in the Burroughs design lhave been replaced by the hardware-implemented tesi

counter which acts as a "watchdog" timer for the interpreter.

'Memory Map - In the Burroughs design, main memory was segmented into 256i
word pages and allocation/sta•us was maintained at this level. In the proposed B-1
design, main memory is ,'onkp)osed1 of .1 1, or 8 K modules and replacement/reconfigui -

ation is performed at the module level. Therefore, the memory map contains an
entry for each module in a multiprocessor. The entry contains the following
information:

FIRST AI)DRESS LAST ADDRESS

j Entry
Inactive STA T1US STATUS STATUS
1BIT #1 12 #n
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2. Lirst Address: The main memory address of the first word of the module.
S2. L~ast Adldre~ss: The nmain memory address of the last wvord o• the module. * - •

3. Entry Inactive Bit: This bit is reset to indicate that the entry is being
modified.

-1. Status tl: This bit is set to indicate that this module has successfully
passed the test performed by the ith interpreter.

Resource Table - This is a greatly simplified version of the corresponding
table in the Burroughs design and contains an entry for each external input/output
device or channel. Each entry contains the following information:

.• ~Ent ry
Inactive ID Status

•: BIT

1. Entry Inactive Bit: This bit is reset to indicate that the entry is being
modified.

2. ID. A unique identification of the resource.

3. Status: The current sLiLus of the resource; i.e., operational/non-operational
and fault indicators.

SThe additional information stored in the resource table in the Burroughs design
was related to use of freneral purpose resources such as card readers, printers, tape
units, etc., and is aot appropriate/necessary in the ASB system.

5.4.3.2 Table Locks

Since the data tables in the system control segment -are accessed by all the
interpreters. in; the multiprocessor, a mechanism must be included to prevent conflicts
in using the tables; i.e. , one literpreter uses an entry while another interpreter is
modifying it or vice versa. The locking philosophy described by Burroughs using the
global condition bits and the entry inactive bits will adequately Ir ovide the mechanism.
This philosophy requires that an entry can only be modified/used when its entry
inactive bit is set. The cntry inactive bit can only be set when the interpreter's
global condition bit is set.

5.4.3.3 Task Work Area

There is a unique work area in main memory for each task specified in the task
table. T'his work -area has the same function as that descrihed in the Burroughs
design, namely to define the state of the task and the task' - interaction (via ready- to-
run bits) with other tasks. The work area contains the following information:

*These tields are required to allow for variable size nmeory modules
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TASK No. RR BITS RESEIT MASK

Interrupt
BIT'i TASK ENTRY POINTER?

"S'' Machine State

R R Masks for Associated Tasks

1. Task No. : This f ied contains the number of the task table entry
corresponding to this task.

I.M11 Bits 11usdt Mask: This field contains a mask which is to be "ANDed'
"with thle Hleady-to-Run bits ill the corresponding task table entry at the
completion of the tas. This hasth effect of resetting specific liead(yto
Hun coflditvins1.

3.Interrupt Biit: This bit is set wh-len the task is interrupted prior to its
complletion.

1. 1Taisk Ent ry 11ointer: IThis field contains the main memory address of the
first ''S" language instruction of thle task.

5i. "S" Machine St.' c: Tlhis area provides storage for the "S" machine
registers inl thle event that the ta sk is interrupted.

0I. IlM Masks for Associated Ta sks: This area contains a sequence of 1111 hit
mnask~s and task noinbers. T hese masks are "O~led" with tile Ell1 bits in thle
specified task table eintries.

The task- work area in the Blurroughs design contained additional information
suchi as a source table and task vesomrce tblue which was used to provide access to
microprograml exocutive nmldules and general Inirpose 110 resources. This informa-
tion is not necessary in the A6Bdesign since all executive modulcs are p~ermanently
storedl in microp~rogram mnenorY andi 1/0 resources are accessedl directly in the "S"
langua',ge.

In thýw Burroughs design, the 'S" machine registers; i. e. , the accumulator,
registers, progratm coui~ter, etc. of the emnulated machine, were located in the work
area for the particular "S'' level ta sk~ heing exectited. In tliis manner, the "S" miachine
state was correctly stored with a task :0tl te completion of each "S'' instruction and no
additional iniurniation ncleede to be saxed if this task were interruptedl. The primiary
disadva--ntage of this approach is the overlie: d (execution time) required to access andl
restore these registers from ma in miemory for each "S' instruction. This overhead
is compounded by the p~otential conflicts in main mnemory access between multiple
interpreters. Thie register limitations (if thle interpreter design wvere noted in
Section 4. 2 of this report.



5. .1.3. -1 Executive Modules

As previously indicated, the executive modules are segments of microcode
stored in the read-only microprogram memory of each interpreter. The following
paragraphs describe each of these modules.

5.-. 31. i. 1 S-Language Interpreter. This module interprets and executes the
prmeessing tasks which are written in an S-language. The S-language would be
similar to the machine language of a large airborne computer but would also contain
instructions for performing input/output. The input/output necessary to perform the
avionics system processing will be either imbedded in the S-language processing tasks
or progranmmed as separate S- language tasks.

The S-language Interpreter is entered from the Scheduler module and it returns
to the Scheduler in response to an S-language instruction executed as the last
instruction of each processing task. The microcode to interpret/execute each
S-language instruction includes testing of the external condition bits to detect real
time clock and mnultiprocessor failure indicator interrupts. If an interrupt is detected,
the status of the "S-machine" is saved in the work area for the current processing
task together with an indication that the task has been interrupted, Intepreter control
is then transferred to the Interrupt Processor module.

5. 4.3. -1. 2 S-Level Subroutines. This module is an extension of the S-language
Interpreter and consists of microcoded subroutines available directly in the S-language
tligh-usage Fanctions such as trigonometric subroutines would be programmed in
microcode to decrease the required interpreter execution time and thereby enhance
the overall system throughput.

5.4. 3. I. 3 Scheduler. This module accesses the task portion of the s;ystem
control segment to determine the next task to he executed by the particular interpreter
and to update the task table entries at the completion of a task.

The scheduler is initially entered from the Initialization module after system
start-up or system reconfiguration after a failure. During normal operation, the
scheduler transfers control to the S-language Interpreter to execute each processing
task and regains control at the completion of the task.

The schedulhr tests the external condition bits at convenient points during its
execution to detect real time clock and multiprocessor failure indicator interrupts.
If an interrupt is detected, interpreter control is transferred to the Interrupt
Processor module. The Interrupt Processor nmodule in turn transfers control to a
specific entry point in the scheduler, once interrupt processing has been completed.

5.4.3.4. I Interrupt Processor. This module performs the junctions neces-ary
to process the real-time clock (RTC) and multiprocessor failure indicator (MFI)
interrupts. The function of these two interrupts is described in subbequent sections,
but the processing pcrformed by the Interrupt P-ocestor involves executing specific
system tasks which modify entries in the tlask table. The result of this processing is
to add specific tasks or sequences of tasks to the r'urrent list -"rcady-to-run" tasks.

-9
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The interruptr. ure recognize(d and processed by all interpreters in the multi-
processor. liowý:ver, the processing necessary to schedule the appropriate systeien/
",rocessing tasks is performed by only one interpreter -- the first one to respond.
The common interrupt (INT) which can be "broadcast" by any interpreter to al! other
interpreters is used to coordinate this type oi "system" function. The first interpreter
to recognize an RTC or MFI interrupt sets the common interrupt bit in all other
interpreters and stores a code word in their communication areas (in the int(rpreter
table) indicating that the processing has been initiated. Each interpreter responding
to the rI'C or MFI interrupt first tests ils common interrupt bit and communication
i area to determine whether it is the first one to respond. All interpreters tfter the

first simply return to their scheduler modules to select their next processing tasls.
(Depending on the relative timing, the interpreter may return to the task it suspended,
or proceed to a new higher priority task.)

5.4.3.4. 5 Self-Test Executive. This module initiates and controls execution of
"the multiprocessor test procedure used(l during initial system start up and reconfigura-
tion. This module gets control when a test counter runout occurs or a power-up
interrupt is issued. The test procedures are described in a subsequent section.

5. t. 3. 4. 6 Bootstrap Loader. This module is used to locate and load the system
loader software from mass memory or some peripheral device. This operation is
necessary during system start-up (power-up) or during reconfiguration after a failure.

5.4.4 Scheduling

5.4.4.1 General

The technique used by the executive to select and execute a task is based on the
approach described in the Bur oughs design. The scheduling philosophy has been
simplified and made more specialized, hence more efficient, for the B-1 applicaltion.

Scheduling is performed individually by each interpreter using its scheduler
module and the task table portion of the system control segment. The scheduler scans
the task table from top to bottom looking for the first entry which has its ready-to-run
bits set. Since the task table is oldei -d by priority, this task will represent the
highest priority task which is ready-to-run. Since all tasks are coded in the same
S-ianguagc and the S-language interpreter is permanently stored in each interpreter,
no overhead is required to prepare the interpre.er for executing a task and all inter-

Sprcters are equally efficient at executing any sequence of tasks.

Note that, by contrast, a system where multiple S-languages are used with

emulators dynamically loaded into microprogram memories, significant overhead/
inefficiency results from retrieving S-language emulators from main memory. This
inefficiency could be potentially overcome by forming "chains" of tasks of the same
S-language in the task table as described in the Burroughs design. In this way tnsks
in n given S-language are effectively dedicated to a given interpreter so that the
interpreter will not waste time changing emulators. However, this approach has the
disadvantages that the scheduling algorithm becomes more complex (hence time and
memory consuming) and some of the inherent flexibility of multiprocessing is
sacrificed.
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In general, the task table is organized as shown in Figure 5-24. The tasks are
grouped in the task table according to their ,xecution frequency; the higher the execu-
tion frequency the higher the priority. The highest priority tasks are the system tasks
which represent executive functions such as system testing which are scheduled in
response to system interrupts (RTC, NFI, and Power-up). The lowest priority tasks
are the background tasks which do not have a specific real-time requirement and can
be executed on a "ti ne-av tilabte" basis,

Within each frequency group, the tasks are ordered according to their ready-to-
run criteria, i. e. , a task which generates data needed by a second task will precede
the second task in the task table. G;enrally the first tasks in each frequency group
are I/0 tasks which input data from external subsystems.

An index or pointer is stored w ith the task table which indicates either the task
scheduled or the hibhest priority task which is ready-to-run. W'hen the scheduler
searches the task fable for a new task, it begins at the entry specified by the task
table index and it updates the pointer when it schedules a new task. At the termination
of each task, the scheduler updates the lil bits specified in the work area of the task
just completed. If the lilt kits which are modified cause a new task to become ready-
to-run, the scheduler compares the priority of the task (equivalent to its index in the
task table) with the current value of the table pointer (equivalent to the priority of the
-most recently scheduled task). If the priority of the new task is higher, its index is
stored in the table pointer. In this manner a mininmum number of task table entries
are scanned to schedule each new\ task.

5.-4. 4.2 Real Time Clock Processing

The real-time clock interrupts define "the processing 'nterval for the highest
frequency tasks. The lower execution frequencies are all derived from the real-time
clock frequency, i.e., 1 '2, 1/I, 1 8, etc. Processing at each of the execution
frequencies is initiated by the interrupt processor module in re:zponse to the RTC
interrupt. The interrupt processor sets a tI hit in the sys~em task corresponding
to the IITC interrupt. The RTC system task simply maintains a binary counter from
which it determines which frequency groups are to be scheduled during the next real
time interval. Two groups are scheduled for each RTC interrupt, the highest
frequency group corresponding to the RTC frequency and one of the lower frequency
groups. If the IITC frequency \\ere 64/see, the scheduling sequence would be as
pictured in Figure 5-25 for successive RTC interrupts.

Scheduling a given frequency group involves setting a RR bit in the first (highest
prioi ity) task in the group and in any other task whose execution is not dependent on
data geaerated by another task in the same frequency group. All other tasks in the
group will subsequently get scheduled as a result of prerequisite tasks being completed
Lndl -'etting their Rllt bits.

After processing the RTC interrupt, the interrupt processor module transfers
control to the scheduler module rather than returning to the interrupted module (most
likely the S-langguage intorpreter). In this manner. processing in all interpreters will
be re-initiated at the highest priority waiting task -- ,ither the one that \was inter-
rupted or the new tasks scheduled as a result of the IITC. The first task scheduled
after the RTC will of course be the IITC system task which will be executed by the
first available interpreter. ¶
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TASK TABLE POINTER

SYSTEM TASKS

FIFOUIENCY GROUP i1
(HtIGHIEST I',QUENCY-)

FRIQUENlCY GROUP '2
(1/12 -1 l HE tlttEST FREX•)

FREQUENCY GR2UP ,43
(1/4 TIlE IIIGIIFST FRRQ)

- • BACKGROUND TASKS
(NO SPECIFIC REAL,-TIME RrAIIITS)

Figure 5-24. Task Table Organization
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RTC 1: 64/SEC + ;2/SEC

RTC 2: 61/SiC 161 SEC

RTC :': 64/SEC + 32/SEC

RTC 4: 64/SEC + 8/SLC

RTC 5: 64/SEC €:121SEC-

RTC 6;: 64E'SEC + 16/SEC

RTC 7: 64/SEC -.32/SEC

RTC 3: 61/SEC + -4/SEC

Figure 5-25. Scheduling Sequence

5.4. 1. 3 Task Execution

Once the scheduler locates tile highest priority "'waiting" task, it must set the
interpreter's global condition bit in order to n-odify the task table entry and initiate
execution of the task. The use and operation of the global condition bits has been
described by Burroughs and in other portions of t'is report. Essentially the global
condition logic provides the means by which a given interpreter can "lock out'" other
interpreters when necessary to avoid interpreter conflicts. Once the interpreter
achieves the global condition iock, i.e. , succeeds in setting its global condition bit,
it again checks the "entry inactive bit" in the task table entry to make StLI'e n1o other
interpreter has just set it. If the entrv inactive bit is still reset, the interpreter
examines the "common task bits. " If the entry is a normal task, i.e., one that is to
be executed by only one interpreter, the interpreter sets the entry inactive bit, up-
dates the task table pointer, and releases the global condition lock. If the entry is a
task to be executed by more than one interpreter, the scheduler resets only its bit
in the common task bits field, does not set the entry inactive bit and does not update
the task table pointer. I

In order to initiate execution of the task, the scheduler stores the task index in
the interpreter table, retrieves the work area pointer from the tastý table entry, and
transfers control to the S-language interpreter. The S-language inuwrpretor ex•.M'in-es

"*Note that for a "common task," the last interpreter to execute the task will set the

entry inactive bit and update the task table pointer, thu, removing the task from the
"waiting" list. >1
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the task work area to deterimine where to begin task execution. If the interrupt bit is
set indienting that execution of the task hId been previously interrupted, the S-machine
registcrs (including the program counter) are loaded from the "S machine state" field
of the work area. Otherwise, the program counter is loaded from the "task cntry
point•r" field.

Once execution of the task by the S-language intcilprcter has begun, the task is
executed until itih•er it is completed or it is suspended due to the occurrence of an
interrupt. When a task is completed (as determined by the execution of a particular
S-language instruction), the S-languagc interpreter returns control to the schedul, r.
The scheduler updates the i101 bits specified in the task work area (the lilt bits of the
task just compleled as well as those of any related tasks), resets the entry inactive
bit, and procceds to schedule the next waiting task.

If a WFC or MFI interrupt is detected during task execution, the fask is
suspended to allow processing of the interrupt. Suspending :i task is accomplished in
the S-language interpreter by setting the interrupt bit in the task work area, storing
the S-machine registers in the work area, resetting the entry inactive bit in the task
table, and transferring control to the interrupt processor riodule. The task's
cxecution will be resumed at a subsequent time when it again becomes the highest
priority ready-to-run task.

It should be noted that in a two multiprocessor system there are two MFI
interrupts processed by each multiprocessor, one which comes from the "other"
multiprocessor and one which is caused by a test counter runout within the multi-
processor. The former results in scheduling the on-line backup tasks while the latter
initiates the multiproLissor reconfiguration procedure.

5.4.5 Failure Recov:ery

5.4.5.1 General

The failure detection and reconfiguration philosophy was discussed in Section 5.3.
The essential characteristics of the proposed approach are summarized below.

1. Failure detection is signaled by "runout" of the test counter in one of the
interpreters. Failure to reset the test counter results from either loss of
program control or from a fault detected during the software/firmware self-
test performed periodically by each interpreter.

2. Runout of the test counter in a given interpreter does not necessarily imply
a fault in that interpreter; the fault could be with another interpreter, a
memory module, or a switch interlock channel. *

3. Runout of the test counter in a givon interpreter causes an interrupt to be
set in the interrupt module of the corresponding multiprocessor. It also
turns off the p)ower switch in the corresponding switch interlock channel
"thus preventing memory or device access by the interpreter. Program con-
trol in the interpreter is forced to a fixed address in microprogram memory.

*The switch interlock is a single functional element but it is partitioned to provide
an independent channvl for each interpreter
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1. The "Olled" result of the test counter runout (TCR) signals from all
interpreters in a given multiprocessor is called the Multiprocessor
Failure Indicator (MFI) and is routed to the interrupt module of the other
nmultiprocessor (if any) in the system. This signal is used by the executive
software to initiate scheduling of on-line back-up tasks.

5. WVhen a TCR occurs, the corresponding multiprocessor stops all execution
of avionic system tasks and initiates a restart procedure to isolate the
fault (through comparison of results of interpreters' self-tests), reload
system data, reload program data (if ;a memory module has failed) and
reinitialize the processing tasks.

i. Reconfiguration of the multiprocessor in tile event of a memory module
failure involves loading (and "relocating") the programs/data into a spare
nmodule or reloading the entire system with a degraded mode configuration
which requires less memory. The power switch in the corresponding
switch interlock channel is used to remove a failed interpreter from the
system. The system can continue to operate after interpreter failures as
long as sufficient throughput is still available to perform the primary mode
or degraded mode computations. Switch interlock failures are isolated on
a channel basis and are not distinguished from interpreter failures.

; 5. 5.2 On-Line Back Up

In a computer system containing two multiprocessors, each multiprocessor
provides an on-line back-up capability for the other. In order to provide rapid switch-
over and/or avoid interruption in the comput.ý,ckxi some processing tasks must be
computed redundantly by both multiproeessors. In this case, use of the output data
from the "secondary" multiprocessor is signaled by issuance of tVe MIl signal from
-thie "primary. " In other cases, back-up tasks are only scheduled upo, receipt of the
NMFI interrupt signal.

The hack-up situation is retained until the operating multiprocessor receives
information that the other multiprocessor iras liven successfully reconfigured. This
information is transmitted over the paral (, etnianel communication path l)etween the
twvo multiprocessors.

5. 1. 5. 3 Itecorfige ration

Once a multiprocessor has "shutdowt," is a result of a TCR indication, a
"reconfiguration procedure is initiated in each interpreter under control of the self-
test executive module in microprogram memory. The procedure is as follows:

1. A limited interpreter self-test is executed using only the internal interpreter
registers and data. if this is successful, the test counter is reset which
turns on power to the switch interlock channel and allows memory' vdev ice
access. If this test fails, the interpreter does not reset its test counter
and is effectively removed f:-om the system.

2. All interpreters which have paý;sed their self-test perform a read write test
on each of the memory modules and store the results of their test in fixed
locations in every memory modul,.
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:1. After a fixed delay t imed by the initerpr-eter's cournter, each interp~reter-
examines thec results of tile tests. Based onl the lest results, the interpreter!s
select the operating mecmories* anti one interpreter' uses its bootstrap) loader
to load LieC systemn loader which in mmr loads the systemi vontrol segment and
the program information into the good niemorv modules. Note that, as
deSCriined in the Murroughis dlesign, (lthe address of thI( system control
segilunt is stored ill a fixed locaition tillcc] evr H11CMM.N hItloUliP to ensure'
that it can be "found" by any interpreter. As 'tesurihed for the RTC inter-.
rup~t processing, the first interpreter to achieve t he global Condition lock: I

teone that performs the loading function, and the- commifon interrupt (INI I
is used to -siggnal that the task is al rcadN, hei n;- 1riornied.

A. Once Owe system control segment (SCsI lias been loaded, the status of the
system is stored by each interpreter in the S( S antd the renm~inder of the(
p~rocedure- is controlled by system !asks stored ill ma in memory and listed
In the task table. These tasks include swituh interilock and device tests,
5-language interpreter tests, and initiaflization of avionics processing task~s.

5.Onev the system tasks have been completed, the r'-eonfigriration is reported
to the other multip~rocessor (a funetion of the last system task) and thev
scheduler lprocceds with its normal operation.

*Vairious algrorithmns are possible for analvsis of the multiple test results. Thle
simplest is probably to consider a memory module failed it it fails more than one
interpreter' s test and an interp~reter (or SWIl channel) failed if a memory module

T ~passes every interpreter's !cst but one.
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6. PHYSICAL CHARACTERISTICS

6.1I COMPUTERI DESCRIIPTIO)N

The objective of this seciion is to estimate the physical cha racteri stics of the
Burroughs Multiprocessor, in an avionics environment, to implement thle ventral
prIocess5or for the AS1 avionics s% stcm. The total computational system was described
in Figure 5-18; the objective of thjis se-ction is to estimiate the characteristics of the
computer identified as the "central processor" in this figure. The central processor
actua lly consists of two multiproce ssors. The multiprocessors are basically the
Burroughs configA rations as descrihed in Section 3 wvith the necessary modifications
required to operate in the ASP. aviumivs systemn. These modifications arc for the most
part described in Section 5.3.2 aind shown in Figrure 5-210.

The resultant central processor to be mechanized is shown in Figure 6i-1. The
following modifications to the present Burroughs multiprocessor design are assumed:

1. Interpreter:

a. GC and INIT logic reiiiaed.
1). Test connter (2-1 bits) added that- counts down to 0 and is wired to EX2,

it is reset by n code in nano bits 51-54.

2. SWVI:

a. Pailitioned on a channel per interpreter basis as explained in
Section -;.3. 5.

b. GC logic redesign and placed in SWI, INT logic placed in SWI.
c. Power switch a-dded on a channel basis.

:3. Devices:

a. Interrupt module added that contains a real timie clock (IITC), an
interr'upt register, and an interrupt mask register.

1). Multiplex Intterface Controller (11IC) addedI.
1.Parallel Chiannel (P1C) added.

d. Mass Memory Channel (MM1,\C) added.
e. Discrete 1/0( addeld.

The chia'acteristics of each multiprocessor are given in Table 6-1. Risically
these characteristics provide a one to one correspondence wýith the Burroughs lab
prototype version described in Reference 1 except that the necessary m~odifications
listed above ha~e been added as shown in Figure 6-1.
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Figure 6-1. System Block Diagram of Central Processor
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Table 6-I. Central Processor Characteristics

1Multiprocessor I (MAh)

a. 3 Interpreters, 20-18 x 16 bit
I M()M for the AIPM, 102-4 x 54 bit

ROM for the NM, 41 M1z clock rate, 32 bit LU

b. 3 SVI chanmels, 20 M;lz clock, 8 bit wide data ill/out interface,
4 bit wide atddress interface

c. 4 - 8,192 \\ord x 32 bit memory modules

d. Interrupt )evice,

e. MIC Device

f. PC Device

g. MMC I)evice

h. Discrete I/() Device

Multiprocessor 2 (MP2)

a. -1 Interpreters

b. 4 SWI channels

c. 4 - 4, 096 x 32 bit memnory modules

d. Interrupt Device

e. MIC Device

f. PC l)e\'ice

g. M MC I)evice

h. Discrete I/O Device
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The interface both within the computer and external to the computer was itemized
to aid in performing the physical definition. The external interface to each multi-
processor is given below:

1. MIC - 2 twisted pair - shielded cables

2. PC - 16 signals (estimated)

:3. MMC - 16 signals (estimated)

-1. Discrete I/O - 8 signals (estimated)

5. Interrupt - 8 signals (estimated)

6. Memory Port - 39 signals (estimated), allows connection to main
memories via a SWI channel for off line operations such as memory load.

7. Miscellaneous external control - 10 signals (estimated)

8. Power - 115 volt - 400 cycle

The internal interface is shown in Figures 6-2 through 6(-4 and is summarized
below;

1. Interpreter:

a. SWI (MI)C) - 13 signals, Int. Clock, and 11. S. Clock.
1. SWI (MC/DC) - 3 signals.
c. SWI ,IOSN - 4 bits data in and out, 2 bits address, and clocks) -

10 signals.
d. SWI (IOSN - total for 8 bits data and 4 bits address for 8 memories

and 8 devices) - 20 signals.
c. Interrupt device - 2 signals.

2. SWI:

a. IDC

(1) Interpreter - 13 signals, Int. Clock, and II.S. Clock
(2) Other MDC channels - 5 signals
(3) MC/DC - 9 signals
(4) IOSN - I signal
(5) US. Clock
(6) External clear signal

b. MC/DC

(1) Interpreter - 3 signals
(2) MDC - 9 signals
(3) IOSN - 5 lines
(4) Other MC/DC channels - 32 signals
(5) Memories - 8 signals !
(;) External clear signal
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c. IOSN (4 bits data in/out, 2 bits address)

(1) Each interpreter - 10 signals
(2) .Memories or devices - 96 signals
(3) Each MC/DC - 5 signals
(4) Each MDC - 1 signal

3. Memory

a. SWI IOSN - 23 signals
b. SWI MC/DC - 1 signal

•.1 Device

a. SWI IOSN - 23 signals

_6.2 MODULE MECHANIZATION

6..2.1 Introduction

The logic technology utilized in estimating the physical characteristics was
bipolar MSI. Currently available state-of-the-art devices were used in estimating
the parts count. The memory technology utilized was 2 mil plated wire which is
considered a statc-of-the-art technology. The packaging philosophy utilizes standard
avionics practice xith multilayer circuit and interconnect boards with forced air
cooling. The resultant physical estimate for the central processor represcnts a
computer mechanized from state-of-the-art technology that is readily producible
requiring no technology developments or "breakthroughs."

(6.2.2 Interpreter Mechanization

The basic module was a plug-in board. This module was based on approximately
a 6,.5 inch high by 9. 0 inch wide board. A preliminary logic design of the interpreter
was performed to arrive at an estimate of the number of integrated circuits required.
Table 6-2 gives the integrated circuit types and amounts used in the prelimiuary
design. Table 6-3 gives a summai.' of the mechanization. Allowing approximately
a 20 percent spare factor for miscellaneous functions overlooked in the preliminary
design, 300 WC's dissipating 25 watts are required,

Figure G;-5 through 6-8 show prelimim ry logic diagrams for part of the
interpreter. These logic diagrams and parts counts should be considered preliminary
estimates only. A final design would require detailed study of timing and control
signals.

For a module of 6.5 x 9.0, or 58.5 square inches of mounting area, a considerable
number of components can be mounted on a board; normal practice would allow in the
neighborhood of 300-14 lead flat pack integrated circuits. llHvever, in view of the
number of irnterconnections internal to the module and externally into the system, the
module would become very cumbersome to layout and require a substantial number of
layers of circuitry to effect all the interconnections (the large power requirements
not withstanding). Therefore, it is estimated that the interpreter will require two

"2065

, ,,- , ,, ... .



Table 6-2. Interpreter Parts Estimate

I Power
Device No. of Dissipation Total Power

Quantity Number Device Name Pins Typ MWV Dissipation

10 MM6255 1024 x 10 bit ROM 24 500 5000
1 74LS00 Quad 2-in. NAND 14 8 8
3 74 LS04 Hex Inverter 14 12 36
2 7408 Quad 2-in. AND 14 80 160
1 7411 Triple 3-in. AND 14 40 40
1 74LS20 Dual 4-in. NAND 14 4 4
1 7423 Dual 4-in. NOR 16 45 45
3 7432 Quad 2-in. OR 14 95 285
1 74LS51 Dual 2-wide AOI 14 28 23
1 74LS55 2-wide 4-in. AOI 14 28 28
1 7460 Dual 4-in. Expander 14 8 8
5 74LS73 Dual J-K FF 14 20 100
1 7486 Quad 2-in. XOR 14 150 150

25 74LS95A 4-bit Shift Register 14 50 1250
2 74LS138 3 to 8 Line Decoder 16 32 64
1 74150 16-bit MUX 24 200 200

58 74LS153 Dual 4-bit MUX 16 31 1798
1 74154 4 to 16 Line Decoder 24 170 170

24 7-4157 Quad 2-bit MUX 16 150 3600
32 74LS174 Ilex D FF 16 66 2112
12 74LS175 Quad D FF 16 44 528

8 74LS181 Arith Logic Unit 24 105 840
3 74182 Look-ahead Carry Unit 16 180 540
5 74LS197 Binary Counter 14 60 300
4 74LS295 4-bit SR w/3-State 14 (,0 240
8 8243 8-bit Position Scaler 24 315 2520

12 9006 Dual 4-in. Expander 14 7 84
32 9008 Expandable 4-wide AO 14 40 1280

21,418 MW

21.5 watts

Table 6-3. Interpreter Mechanization Summary

Parts Estimate

Type Quantity Power

14 pin 98
16 pin 132
24 pin 28_

STotal 258 21.5 watts

With approximately 20 percent pad facttor

Total 300 25 watts
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modules in its final mechanization. These tw.Ao modules will he referred to as interpreter
Module A and Interpreter Module B. The exact partitioning between those two Modules
was not performed in this study. However a most likely partitioning will be having the
MIPM, NMI, and NICU on one module and the CUi and LU(s) on the othe--r module,

6i. 2. 3 SW! Mechanization

The SW! alternate design presented in Section 4.3.5 wvas examined to determine
its method of imiplementation in an avionics environment. It wvas found that consider-
ablY higher density could be used than in the approach taker, in Section 4.3 5i~. The
resultanti SW! wvas mechanized with two types of modules: (1) MIDC-ICI i)DC and (2)
IOSN. The MI)C as dlescribed in Section -1.3.5 requires approximately :30) IC"' andl~
the NMC/l) requires approximiately 40 IC's, further these are primarily 1-1 pin IC's.
It is definitely feasible to piace the MIDC and MC/DC on one module.

Thie IOSN was investigated and it was found that up to four channels (interpretel. 2)
could be placed on one module (total of approximately 55 IC's required). This IOSN
provides 41 data bits in, 4 dlata bits out and 2 address bits for either 8 memories or
S (let-lces.

Therefore, the SW! was mechanized with two types of modules, one module
provides all the control/selection/pr~iority logcic for one interpreter and the other
module prvie the required interconnection logic between memories, devices and
the interpreters. It is estimated that using low power shottky devices, the %MDC-
MC IlDC module would require approximately 3 watts and the IOSN module approximately
2 watts.

6. 2.4 Memory Mechanization

Tht* me mo'&y modules are me~chanlized( usingr 2 -mil plated] wire technology. This
technology has been pioneered by Aulonetics aind is nowt considered a state-of-thc-:irt
prodlucib~le technology. The basic miemory mo(Iules are constructed from a 6. 5S5 x
9 x 0.5~2" board (module) that contains the platelI %wire array for 8 K x 16 bits. This,
hoard also contains the x, y switches, dliode substrates, hit axis substrates and] strobe
electronics. This organization allows the sense electronics to be practically integ.ral
to the mnemory a rray, thereby eliminating sig-nal problems resulting from !ength
interconnections. Twvo of these boards are used to make up a 8 K N :12 bit memory%.
I- adIdition to 'the mnemory array boards, two electronics boards are required fo r the
bit drivers, timing and control, address decode, data register, etc electronics. These
modIules m-ill be referred to as "Memiory Electronics Module A" and *"Memnory
Electronics Module B."

Some features of the Autoneties design are listed below:

1. Small Diameter (2-Mil) Wire

Provides minimium array size and power, and permits smiall, low power
electronics. The wire has w'ide opetating ma rgins, and high output signal
characteristics.
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2. high Density Array

Dlouble mat approach in conjunction with high bit density permits complete
subsystem (8K x 16 bits) on n single board, thereby eliminating the require-
ment for less reliable flexible cabling to other boards, Design sig-nificantly
reduces interconntctions and eliminates plated through holes in tie mat.

3. Hybrid P~ackages

SRepetitive circuits are combined into hybrid packages for smallei volume
"and increasLd reliability.

-4. Modularized Array Configuration

Lou volumc hybrid packages plus high density array permit the placement
cf all first level electronfc. on the same board. This yields maximuni
signal-to-noise ratio.

S5. Conservative Electric.l Design

-Tlo aetive vro:.sovers per hit arc used for balance and maximum signial
mIa rgin.

-Word circuit design requires rulatively few parts and provides tightly

controlled word current.

Bit axis electronic circuitry i.s greatly simplilied through the use of an
integrated MOS multiplexing circuit.

The plated wire plan(. uses Autenctic6 2. 0 iril plated wire and high density miat
technologies to provide memory storage with low Ip~or drive requirements and high
signal -to-noise output characteristics.

The planes are located on the a rrav modules, which they share w% ith the word
and hit electronics which constitule the i rst le\(,l of interface with the plane. Due to
a unique stacking of planes on the array miodule's support board, the storage capacity
is twice that normally associated wvith a board this size. Each array board contains
four plated wire mats so that a complete sense loop is accomplished on each side of
the board. Figure 6-9 shows these plated wire hairpins in a cross section view. The
word straps, viewed in cross section in Figure 6-10, actully wrap around the support
board in addition to w'rapping around each tunnel structure layer. Thus, the number of
_word matrix circuits is reduced from four to two since on01 set of circuits services the
inner mats on both sides, and another set serx ices the outer mats on Loth sides.
Further, the number of interconnections is reduced because of the wrap around
features, and plated through holes are eliminated.

The memory is organized with two crossovers per bit, which is accomplished
by jumpering together adjacent pairs of hairpins where indicated in Figure (o-9. The
other end of the adjacent hairpi-s He on pads at the edge of the hit axis substratc,
Swhich couples them to the input of the sense multiplexer function which is on the
""lMemory Electronics Module.
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The word lines ore composed of a one turn strap, and are joined to ceramic
substrate boards containing the matrix diodes and the X and Y buses.

Keepers and ground planes are used to provide the desired magnetic field for
optimum bit operation and to give proper word circuit operation.

The resulting characteristics of this plane design permit clean drive current
waveshapes and high signal-to-noise output voltages. This translates into more
reliable memory system operation.

The memory timing waveforms are shown in Figure 6-11. This results in the
following memory operation times:

Read access: 350 nano see
Read cycle: 800 nano see
Write cycle: 800 nano sec

The central processor requires two types of memory modules. MP1 requires
8 K x 32 bit modules and MP2 requires 4 K x 32 bit modules. As explained above a
8 K x 32 bit module would be mechanized from two array boards and two electronics
boards. Alternative configurations w.•re examined for the 4 K x 32 bit module and it
was determined that this module also would require the same basic structure as for
the 8 K x 32 bit module. It is not possible to place the 4 K x 32 bit memory array on
one board. Consequently the 4 K x 32 bit memory module will also require 4 boards.
However, the memory array boards can have some of the components and arrays
left off the boards resulting in 4 K x 16 bit array modules.

6.2.5 Device Modules

The device module types were listed in Section 6. 1. The design of the MIC
device was presented in Section 5.2. 3. 2. It is expected that this device module
could be easily implemented on one board. The remaining device modules were not
investigated in detail. However, it should be noted that the remaining four device
modules are very simple in their mechanization and it is expected that they could all
be placed on one board.

6.3 CENTRAL PROCESSOR PACKAGING

The central processor of the avionics processor and controller is packaged in
two separate forced air cooled packages, one for each multiprocessor as shown in
Figure 6-12. One houses the CITS and navigations functions (MP1), and the other
houses the weapon delivery, steering, target/checkpoint acquisition and mission data
management functions (MP2). Each multiprocessor unit is patterned after the
MII.-C-172 case size of the MS 91403-C1D. It measures 7.63 inches high by 15.38
inches wide by 20.80 inches long for a volume of approximately 1.-41 cubic feet.
Both units weigh approximately the same, 79 pounds each. Though there are less
modules in MP1, the weight difference is picked up in the larger mlemories. Table
61-4 lists the major assemblies for each of the units and Figure 6-13 shows the
general arrangement in each unit.
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Table 6-4. List of Major Assemblies in the Central Processor

M131 MP2

Assembly Name Quantity Quantity

Device Modules:

T PC, MMC, )isc 1/O, INT Module

4i' • MIC Module 1 1

SWI Modules:

IOSN Module 4 4

- MDC-MC/DC Module 3 -t

Interpreter Modules:

Interpreter Module A 4

Interpreter Module 1A 3 4

Memory Modules:

8 K x 16-bit Array Module 8 -

4 K x 16-bit Array Module - 8

Memory Electronics Module A 4 4

Memory Electronics Module B 4 4

Power:

.. -Power Converter A 1 1

-.. Power Converter 13 1 1

- General:

- Master Interconnect Board 1 1

Structures (Chassis, Covers, etc) 1 1

K 1

ii
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The housing for the units are identical in size and configuration for each of the
two units. For a difference of 1. 05 inches in depth to accommodate the three modules,
it was decided to have one commomn chassis. The structure is of all aluminum construe-
tion and uses integral heat exchangers. The heat exchangers are double pinned sections
serving two compartments, the power converters on the one side and the plug-in
electronics and memory modules on the other. Details are shown in Figures 6-14 and
6-15. Construction techmiques to be used in the fabrication of the chassis are brazing
and machining with all aluminum alloys to be used in the construction.

- The plug-in modules of the system arc .uized from a standard that is compatible
with the plated wire memory modules. That is, the modules are approximately 6.5 inches

*•- high by 9.0 inches wide. In analyzing the functional requirements and in implementing
the mechanization of those functions, the modules have been simplified in the layers
required and the quantity of parts per module without sacrificing efficiency and functional
performance requirements of the system. The most complicated module in the multi-
processor will be one of the Interpreter modules.( -10 layers). The remaining modules
are relatively simple requiring 2-4 layer boards, Each of the modules utilizes plug
typ" connectors to comply with the pin and socket connector arrangement required of
airborne electronic equipment within specification MIL-E-5400. Heat dissipation "rails"
are bonded to the boards which have in turn components bonded to them to conduct the
heat out on these "rails" to the forced air cooled heat exchangers. Module locks on
the principle of a wedging action are used to retain as well as help in the heat transfer
from module to heat exchanger.

The power converters are in a different situation with RFI being the most
problematical. The packaging for the power converter has them enclosed in "RFI
tight" cans and mounted directly to the heat exchangers in "coldplate mount" fashion.

Interconnections from inodule to module are accomplished with a master
interconnect board. Maximum number of layers to accomplish the interconnection
would run approximately six layers.

The following is an estimate of the power dissipation in each multiprocessor:

Multiprocessor 1:

3 Interpreters 75 watts
SWI 17 watts
2 Device Modules 20 watts
4 Memory Modules* 65 watts

Total 177 watts

with 2/3 efficiency
in Power Supply: 265 watts

*Note: The power dissipation of a memory module is approximately 20 watts when
operating and 5 watts in standby. This power is approximately the same for the 4 K
and 8K memory modules. In MP1, since there is one more memory module than
interpreters, one module will on the average be in standby.
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Multiprocessor 2:

4 Interpreters 100 watts
SWI 20 watts
2 Device Modules 20 watts
4 Memory Modules* 80 watts

Total 220 watts

with 2/3 efficiency
in Power Supply 330 watts

6.4 SUMMARY OF PHYSICAL CHARACTERISTICS

The central processor was defined to consist of two multiprocessors, each in
identical packaging units. The characteristics of each multiprocessor are summarized
below:

Multiprocessor 1:

Size 1.41 cuft
Weight 79 lb
Power 265 watts

Multiprocessor 2:

Size 1.41 cu ft
Weight 79 lb
Power 330 watts

*Note: The power dissipation of a memory module is approximately 20 watts when
operating ?nd 5 watts in standby. This power is approximately the same for the 4 K
and 8 K memory modules. Li MP1, since there is one more memory module khan
interpreters, one module will on the average be in standby.
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7. SUMMARY AND CONCLUSIONS

The computational requirements for an advanced Avionics System were defined.
In particular, the ASB avionics system was selected as representative of an advanced
avionics system. The Burroughs multiprocessor concept was analyzed considering the
requirements imposed on this design by the avionics system. It was found that in
general the Burroughs multiprocessor offers a very flexible and adaptable design,
however, it does have some limitations which were considered to be capable of being
corrected.

The multiprocessor offers a wide possibility in the type of language choosen to
run on the machine. It is suitable for emulation applications, execution of a higher
level language, and optimization of a particular language to the application. The
emulation of an IBM 4 Tr CP avionics computer was investigated in detail. It was
estimated that a single interpreter's throughput capability when operating in such a
mode would be approximately 79, 000 operations/second for a typical avionics mix of
operation (instruction) types. In addition, the optimization of this emulation through
the use of macro instructions was investigated. It was found that for the same applica-
tion, the effective throughput of an interpreter could be increased to 120,000 operations /
second. The throughput capability is considered somewhat low when compared to state-
of-the-art avionics processors and this is the primary limitation of 1he Burroughs
multiprocessor.

* Various methods to increase the throughput capability of an interpreter were
considered. Sonic of the more important ones are noted below:

1. Provide more A registers

2. Faster multiply algorithm

3. Modify logic to provide typically required functions such as: set carry
latch for a carry overflow, more shift functions such as shift and spread
sign, provide more conditions that can be set and more fheN ilility in
testing multiple conditions.

* The SWI module was analyzed to determine its timing, interface with memories,
devices, modularity, and failure tolerance. It was found that modularity and failure
tolerance were not achievable with the present design. An alternatv design was arrived
at that essentially partitions the SWI ;nto channels where each interpreter is dedicated
to a channel. This new design enhances modularity and allows failure tolerance to be
"readily achieved through power control to individual channels. In addition the new

* design uses less modules and reduces the types of modules required.

Using the results of the avionics system requirements definition and the definition
of the capabilities and limitations of the Burroughs multiprocessor modules, a configu-
"ration for the avionics application was arrived at. The processing requirements were
analyzed to determine which computations should be performed in a rentral processor
and which in a local processor at the subsystem level. As a result of this allocation
analysis, three subsystems w\'ere allocated local processors: a penetration aids
processor for the entire pen aids subsystem, a navigation processor for IMU" control
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processing for the navigation subsystem, and a weapon delivery processor for theS ~SRAM processing in the weapon delivery subsystem. The e'emainder of the processing

functions were performed in the central processor. The resultant configuration for
the central processtor required two multiprocessors, one with three interpreters and
the other with four interpreters.

The interface to the ASB avionics multiplex system was investigated and a
multiplex interface controller module that functions as a device in the multiprocessor
was defined. It was found that the inherent flexibility of the interpreter allowed it to
readily perform I/O processing functions.

The failure detection and reconfiguration methods for the central processor were
investigated and defined. Several modifications and additions were required in order
to provide a failure tolerant system:

1. Real time clock that provides periodic interrupts added

.2. Test counter added to interpreter

3. Interrupt module added

4. (CC logic modified and moved to SWI

5. SWI partitioned per new design

6. Power switch added to SWI channels

7. Software detection, isolation, and reconfiguriation programs added

It was determined that with the above modifications/additions, a failure tolerant multi-
processor could be achieved.

The executive required to operate the multiprocessor in a real time control
avionics system was investigated and defined. it was determined that the Burroughs
executive concept could be used with many simplifications to its basic structure.

A preliminary design of the central processor was performed based on state-of-
the-art bipolar MSI logic and 2 mil plated wire memory technology. It was determined
that the central processor would consist of two units, each housing one multiprocessor.
Each multiprocessor occupies 1. 41 cu ft and weighs 79 lbs. One multiprocessor
dissipates 265 watts and the other .330 watts.

The conclusion reached from this study is that it is feasible to mechanize the
.A6SB avionics computational system with the Burroughs multiprocessor concept and
achieve a mechanization that is reasonable in its physical characteristics. This
mechanization requires certain modifications as were noted above. In addition,
improvements were noted that could further enhance the performance of the design and
potentially improve the resultant physical characteristics.

226

S-..-,..---.--.....-(. - . . . . . . . . -



"- REFERENCES

1. Davis, It. L., C. Ml. Campbell, S. Zucker; Aerospace Multiprocessor Interim
Report, Burroughs Corlporation, Feb 1972

2. Wehr, K. C., Technical Summary of the Interpreter-Based System, Burroughs
Corpor-ation, Jan 1971

3. Davis, R. L., and S. Zucker; Structure of a Multiprocessor Using
Microprogrammable Building Blocks, NAECON '71 Record, pp 186-200.

4. Davis, R. L., S. Zucker, C. M. Campbell, A Building Block Approach tu
Multiprocessing, 1972 Spring Joint Computer Conference, pp 685-703.

5. Reigel, E. W., U. Faber, D. A. Fisher, The Interpreter - A Microprogrammable
Building Block System, 1972 SJCC, pp 705-723.

G. L. F. Solberg, I. C. 1Ham, G. L. Kreglow, "-B Common Language Study,"
North American Rockwell, Los Angeles Division, NA 71-605, October 1971.

7. Nielsen, W. C., Vtere, S. A., LI-uro, J. A., "Aerospace HIOL Computer,"
AFAL-TR-72-292, Logicon, Inc., October 1972.

8. Mauck, E. A., and Dent, B. A., "Burroughs B6500/B7500 Stack Mechanism"

Proc SJCC 196,i, pp 245-251.

9. Keeler, F. S., etal "Computer Architecture Study" AF/SAMSO, Report TR 240,

October, 1970.

10. C. R. Frost, Military CPU's, Datamation, July 15, 1970, pp 87-98.

11. Conti, C. .J. "Conc-'pt; for Buffer Storage," Computer Group News, March 1969,
pp) 9-13.

12D.D i. Gib7son "Consideraions in Block Oriented Design," AFIPS, Spring 1967,
pp 75-ýi0.

13. P. M. Melliar - Smith "A Design for a Fast Computer for Scientific Calculations,
AFIPS, Fall 1969, pp 201-206.

14. "Computer Aided Requirewaents D)etermination," Report No. C,-2778/301, North
American Rockwell - Autonetics I)ivision, November 19(68.

15. "The Application of Information Transfer Techniques for Solving the Internal
Communication Requirements of an Advanced Manned Bomber," Technical Report
AFAL-TR-72-209, Vol 1, Radiation, Inc., September 1972.

10. 'B-1 Multiplex Interface Module Preliminary Technical Requirements," B-I
Division, North A...rican R=ock-O•c•l, ,Sept ,be-. 12, 1972,

227

I'



17. Koczela, L. J., A Three Failure Tolerant Computer System, IEEE Transactions
on Computers, November 1971.

IS. Zucker, S., Aerospace Multiprocessor Executive, Burroughs Corp, Paoli, Pa.,
"rochnical Report AFAL-TR-72-144, April 1972.

228



- ..

DISTRIBUTION LIST

Contract F33615-72-C-1973

Address No. of Copies

WPAFB ACTIVITIES

AFAL/TSR 1
WPAFB OH 45433

AFAL/AAM (Mr. J. Camp) 18
WPAFB OH 45433

AFIT (Library) 2
WPAFB OH 45433

ASD/YHEV (Mr. Jim Hutson) 2
WPAFB OH 45433

2750ABW/SSL 1
WPAFB OH 45433

OTHER ACTIVITIES

HQ USAF/SAMID I
Wash DC 20330

AU 1
Library
Maxwell AFB AL 36112

Director 1
Naval Research Lab
Wash DC 20390

Commanding Officer 1
Naval Avionics Facility
21st and Arlington Ave
Indianapolis IN 46218

US Army Electronics R&D Lab 1
Attn: Dr. H. Jacobs
Ft Monmouth NJ 07703

Director, NSA 1
R-13
Ft George Meade MD 20755



- -' •F • •••:• • •• •• •.- .- 94 - . .', - • • ........ . -.... . ..

DDC 2
Cameron Station
Alexandria VA 22314

INDUSTRY

Control Data Corp
4130 Linden Ave
Dayton OH 45432

Hughes Aircraft Co
Aerospace Group
Culver City CA 90230

Honeywell 1
Military Products Group
2314 Standly Ave
Dayton OH 45404

IBM Corp 1
33 West First St
Dayton OH 45402

RCA 1
Aerospace Systems Division
Box 588
Burlington MA 01801

McDonnell Douglas Corp 1
333 West First St
Dayton OH 45402

Raytheon 1
333 West First St
Dayton, Ohio 45402

Westinghouse Electric Corp 1
Aerospace Division
Friendship International Airport
Box 746
Baltimore MD 21203

Litton Systems, Inc.
Guidance & COntrol System Division
5500
Canoga Ave
Woodland Hills CA 91364

Texas Instruments, Inc.
Equipment Group
Suite 205
3300 South Dixie Drive
Dayton OH 45439

ii



General Electric Co
Aerospace & Defense Sales & Service
3430
South Dixie
Dayton OH 45439

Univac
Defence Systems Division
333 West First St
Dayton OH 45402

Burroughs Corp
Federal & Special Systems Group

Attn: D.F. Sullivan
Paoli PA 19301

Boeing Computing Systems
Attn: S.F. Cramer
8R-39 Mail Stop
Box 3707
Seattle WA 98124

Singer-Kearfott Division
Attn: M.G. Page
33 West First St
Dayton OH 45402

The Garrett Corp
333 West First St
Dayton OH 45402

Grumman Aircraft
333 West First St
Dayton OH 45402

Northrop Corp
379 West First St
Dayton OH 45402

Department of Transportation
Transportation Systems Center
Attn: Mr. G. Y. Wang
Cambridge, Mass.

National Aeronautics and Space Administration
Langley Research Center
Attn: Mr. I, Spencer
Hampton, Virginia 23365

fI

At



UNCLASSIFIED

-7- DOCUMENT CONTROL DATA- R & D
"I(S el'uity cas•) •tiirarton of tflt, h ... -o) f OhItIaci and ind.sxin • -r, n t fie elterrd In-r the e report is

I ONRIGIN ATING ACT "VITY (Crrf e uh) [?a.. ItC C A TION

Antonetics Div sion oi Rockw ell International
3370 E. Miraloma Ave., Anaheim, CA 92803 2h GOP

3 REPORT TITLE

Avionics Processor Controller Study, Volume 1, Technical Report

4 IFiP T na eV e lj y ,f IT, I unc Ie t 3

S. AUTHORISI (First name, middle intitial, lasat namt)

L. 3. Koczela

6. REPORT DATE 70. TOTAL NO. OF PAGES ~b O PREPS

June 30. 1973 238 18_._.• ,•. t:,• .- ,"c,,, T•Zo. 'OT* NO.OF P,•E -17b. NO,. OF_•.

to, CONTRACT OR GRANT NO. go. ORIGINATOR'S REPOýT NIUMRERS)

F33615-7Z-C-1973 C72-81z/z01, Vol I
b. PROJECT NO

C. lt, OTHER REP 1RT NO(S) (Any other *umbers that may be a..ienrd
this report)

AFAL-TR-73-203, Vol. 1
d.

rIC j fA•Ton ftn•Ai{ed to U.S. Government Agencies only; test and evaluation results

reported; February 1972. Other requests for this document must be referred to

Air Force Avionics Laboratory (AAM), Wright-Patterson Air Force Base, OH454331

11 SUPPLEMENTARY NOCTES I2 SPONSORINGCO ILI'ARY ACTi\'Tr

AFAL/A-AM
WPAFB, OH 45433

13 ABSTRACT

This report presents the results of a study to configure an advanced multiprocessor
for an avionics system. An advanced strategic bomber avionics system was
selected as representative of an advanced avionics system application and
computational requirements for this system were defined. The prototype laborator)
version of an advanced multiprocessor developed by Burroughs Corporation under
Air Force Avionics Laboratory sponsorship was examined and applied to the
avionics system. It was found that the Burroughs multiprocessor offers a very
flexible and adaptable design. Several improvements were noted to improve its
performance and several design modifications were noted which are required in
order to apply the design to the avionics system. The resultant configuration
showed that mechanization of the computer system, using state-of-the-art technolog
for an advanced strategic bomber avionics system is feasible with the Burroughs
multiprocessor concept. This report is also being published as Autonetics internal
report C7Z-812/Z01.

DD 1FORM 473 UNCLASSIFIED"T S.', UItI\ D.DNovi(a147,

&- : . -' -,V . ..- .....-•.-. .
-- ran. , , i i I I|••' ..



--- 1 Se~W asilain-LINK LINK . LINK C-x•" • ~KEY WORDS J ,

0 WT R01 WT ROLE• W Rt WT •

Avionics Systems >
Multiproc es sing
Computer Architecture
Computer Organization
Mic roprogramnming
Computational Requirements
Failure Tolerant Systems

Security Classification D


