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ABSTRACT

A high-performance, monolithic operational amplifier has been
designed and developed. It incorporates the latest state-of-the-art
circuit design techniques and fabncation technology to achieve the
best performance available with current production processes.
Special attention was placed on achieveing high slew rate and fast
settling time. Unity gain slew rates of over 2500 V/usec and setiling
times of under 50 ns were achieved at power dissipation levels of
approximately 100 mW, The design was kept as simple as possible to
eliminate excess parasitic capacitances and to be operated at the
optimum power-speed condition for a given application.
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SECTION |
INTRODUCTION

The objective of this program has been to develop a fast operational amplifier for use in
high-speed, data-handling systems. Operational amplifiers are often used as buffer amplifiers or
voltage folicwers in such systems and are a major factor in limiting system spced. An operational
amplifier with very high slewing rates and fast settling time has been developed using the bhest
available technology in both circuit-design procedures and monolithic-fabrication processing, The
performance achieved will allow areas of research to be determined which will result in further

improvements in circuit performance.

The amplifier developed at Texas Instruments is of monolithic construction, fabricated with a
complementary bipolar, dielectric-isolution process which allows the formation of vertical NPN and
PNP transistor structures. The diclectric isolation is used to minimize parasitic capacitances which
contribute to propagation delays and increased transition time.

The circuit was designed to be as efficient as possible in order to maximize performance with
the smallest number of components. The circuit uses only one gain stage plus input and output
stages, which results in both high speed and low-power consumption.

Achieved performance was unity gain slew rates in both positive and negative directions of over
2500 V/us at a power dissipation of 100 mW. The unity gain bandwidth was greater than 50 MHz
and was unity gain stable with no internal or external capacitors. The d-c gain was above 70 dB.

The design and fabrication of the X776 <.erotional amplifier has achieved slew rates
obtainable only in hybrid form up to this tinw. "iybrid amplifiers are bulky, expensive. and
consume high power. The X776 is of monolithic consiruction and has all the reliability and
economic advantages attri-uted to this technelogy. This amplifier should enhance data-processing
syst::ms that require high-speed operational amplifiers.
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SECTION i1
TECHNICAL DISCUSSION

A. DESIGN PROBLEM

The increased use of operational amplifiers o handle data in digital computers demands an
ampiifier that has high-speed switching characteristics. A typical application is the introduction of a
rapidly changing signal to a buffer amplifier which must faithfully reproduce the input with a high
degree of accuracy within a time frame of nanoscconds. Applications requiring fast settling time and
slew rate to a high degree of accuracy are typificd by Sample-Hold circuits. Multipliers, and
Analog-to-Digital (A/D) and Digital-to-Analog (D/A} converters. The speed of the ampiifiers used in
these circuits determines the maximum data or information-transfer rate for a given accuracy. The
buffer amplifier is, in many cases, the 1 ajor limitation for over-all system speed.

Commercially available circuits up to this time having high slew rates and fast settling time
were in hybrid form. The major disadvantages of these circuits are power, size, costs. and reliability.
The objective of this program was to exceed the performance of these hybrid circuits by using 2
high degrec of monolithic integration. Inherent in monolithic integration is improved cost,
reliability, and size. Power and speed were an optimized trade-off.

The utilization of operational amplifiers in high-speed D/A and A/D converters implies that the
basic amplifier must be fast compared to the conversion speed. The amplifier essentially determines
the maximum data or information rate for a given accuracy. The amplifier in this system application
is generally used for impedance buffering. This is one of the most demanding applications because
the amplifier operates with 100% feedback. and the input stage must operate with its rated
common-mode voltage without loss of linearity. The buffer amplifier is shown in Figure 1. The gain
accuracy and linearity of such a unity-gain buffer are limited by the open-loop gain and the
common-mode rejection of the amplifier.

The objective of this program was the design. development, fabrication. characterization. and
evaluation of a high slew rate, fast settling operational amplifier. The amplifier was designed to be
versatile and have wide system appeal, but the emphasis was on operating speed.

The ampliiier was designed to have inverting and noninverting inputs. The design objectives for
the operaticnal amplifier were:
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Figure 1. Buffer Amplifier

Open-loop voltage gain: 84 dB min
Settling time to 0.1%:: 50 ns max

Slew rate: 2500 volts/us

Input voltage range: +10 volts min
QOutput voltage swing: £8 volts min
Outpui current: 50 mA min

Gain rolloff: 6 dB/octave (lincar)

Supply voltage: +15 volts

Operating temp. range: --55°C to +125°C

Input Offset Drift —
Current: 0.1 nA °C max
Voltage: 1 uV/°C max
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To achieve a low-cost, high-reliability, optimized operational amplifier, a total monolithic
construction was chosen. Most commercially available monolithic integrated circuits use
construction technigques that result in vertical NPN transistors and lateral PNP transistors. Lateral
PNPs suffer in the area of high-frequency performance. Therefore, a bipolar complementary process
{(vertical NPN and PNP) was chosen. The resulting transistors allow maximum circuit performance
from simple circuitry, the key to high-speed performance.

The normal monolithic integrated circuit also uses junction isolation with the resulting high
parasitic capacitance. To eliminate parasitic capacitance, a dielectric (8i04) isolation process was
selected. The combination of di=lectrically isolated and complementary bipolar transistors yields a
high-performance structure discussed in a later section, This structure has opened areas of circuit
design not available to integrated-circuit designers until recently.

The design philosophy used in designing a high-performance operational amplifier is simplicity
itself. A minimum number of stages should be used to eliminate propagation delays. The open-loop
gain was somewhat sacrificed to use a single aiplification stage. The amplification stage should have
one dominant pole so that 5 unity gain stable circuit results without compensation capacitors. The
compensation capacitors neéeded in other amplifier designs limit the attainable slewing rate. If a
relatively high-gain (> 60 dB) amplifier stage can be decigned that is unity gain stable without
compensation capacitors, the unity gain slew rate is the same as the open-ioop slew rate.

B. CIRCUIT DESIGN

The block diagram of such a design is shown in Figure 2. The design includes input buffer
stages, a single-gain stage, and an output buffer stage. The input buffer stage should provide
high-input impedance and low-input current. The gain stage should have moderate gain (> 60 dB)
and a single high-frequency pole. The output stage should buffer the load so that it does not affect
the voltage gain of the gain stage.

The design of the input buffer stage must incorporate the following design trade-offs. The
stage must have large quiescent currents to charge and discharge circuit and parasitic capacitances.
The input bias current should be as low as possible (< 1 uA). The Junction Field-Effect Transistor
(JFET) has such qualities. The gate current (input bias current) is basically independent of source to
drzin current since it is the reverse bias junction leakage current. This device is the basic input stage
of high-speed hybrid circuits.

The JFET has several disadvantiages. High-performance JFETs are not easily obtained in
monolithic construction. In addition, voltage offsets in the millivolt range are also not obtainable in
high-yield circuitry, The fiput current, although low at room temperature, increases rapidly at high
temperature; that is, it doubles approximately every 8°C. Alternatives to the JFET approach were
investigated.
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Figure 2. Block Diagram of High Speed Operational Amplifier

‘ An approach that uses only bipolar transistors was investigated. This structure is called a
- composite transistor in this report. The composite transistor schematic is shown in Figure 3. The
[ basic assumption is that the NPN transistors’ current gains (betas) are matched and the PNP
transistors’ betas are matched. There is no need to require that the NPN and PNP current
gains be matched. The operation of the circuit, using the above assumptions, can be explained as
be follows. The input transistor’s (Q1) base current and the sense transistor’s (Q2) base currents are
equal if we assume matched betas and I~I, that is if the betas are high. Since the transistor bases
of Q2 and Q3 are connected, the base current of Q3 is equal to the base current of Q2. Using the
same assumption for Q3 and Q4, we can equate the base currents of Q3 and Q4. Therefore, the net
result is that base current of Q1 is equal to, but in the opposite sense of Q4. The input current

(Igy -1g4? is zero and does not depend on the emitter current (lE) of the device. [t approaches the
same condition obtainable from a JFET.

The composite transistor circuit was cvaluated as the input transistors for variot ; gain stages.
The circuits of Figure 4 and Figure 5, were breadboarded. The results are summarized in Figure 6
and Figure 7 with the constant current (Ig) as the variable. The unusual result is that an apparent
zero causes the gain to level off or, in some cases, increase after the normal 6 dB/octave initial B
. . decrease. This basic effect was also predicted using computer aided design programs. The circuits of
E’ : Figures 8 through 11 were simulated. The results are summarized in Figure 12.
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Figure 3. Composite Transistor Circuitry
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Figure 4. Differential Amplifier Using Composite Transistors and Resistive Loads
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Figure 5. Differential Amplifier using Composite Transistor and Active Loads

The final approach was to use the composite transistor not in the gain stage but in the input
buffer stage. The input buffer stage is shown in Figure 13. The nominal emitter current was set at
0.5 mA, as determined by the breadboard analysis. The input current and power dissipation may be
improved if it can be determined that this bias current can be reduced. The reduced parasitic
capacitance of the integrated circuit may make possible this improvement. The resistor R1 provides
short-circuit protection for the input stage, und resistor R3 is used in the offset adjust scheme,

The basic gain-stage design is shown schematically in Figure 14. The design uses vertical PNPs
to advantage., Advantages of this circuit are wide common-mode input voltage range (within
2 Vgg's of the plus and minus voltage supplies), high single-stage voltage gain (70 dB), and a large
voltage output swing (within 1.0 volt of the power supplies). The circuit also converts the
differential input into a single-ended output without any loss in voltage gain.

The a-c¢ frequency response of this circuit is very interesting. The response is represented in
Figure 15. As the ccnstant current (IO) is increased, the voltage gain remains essentially constant,
but the bandwidth is increased. This property of the gain stage influenced the design so that a
programmable slew rate operational amplifier was built. One pin was brought out of the package so
that the user could pick the operating bandwidth and power.
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Figure 8. Circuit for Computer Modeling of a Differential Amplifier using Single Input
Transistor and Resistive Loads
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Figure 9. Circuit for Computer Modeling of a Differential Amplifier using Single Input
Transistors and Active Loads
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Figure 10. Circuit for Computer Modeling of a Differential Amplifier with
Comporite Transistors and Resistive Loads
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Figure 11. Circuit for Computer Modeling of a Differential Amplifier with
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The output stage is of conventional design. The NPN and PNP (ransistors were designed to
handle 75 to 100 mA of output current without affecting the gain stage.

The final circuit schematic of the high slew rate amplifier is shown in Figure 16. The design
uses the principles previously discussed. The input stages were set at a nominal emitter current of
0.5 mA by the voltage reference of Q16, RS, and R6. The transistors Q1, Q2, Q3, Q4, and Q15 plus
the resistors R1 and R3 make up the positive input buffer amplifier. The negative iaput buffer
amplifier is made from transistors Q5, Q6, Q7, Q8, and Q17 and resictors R2 and R4.

The current set node is used to determine the power level of the circuit, except for the input
circuitry. The current is set by connecting a resistor from the current set node to the positive supply
voltage.

The gain stage consists of transistors Q9, Q10, Qt1, Q12, Q13, Q14, Q22,Q26,Q27, and Q28.
The tesistor R8, R9, R10, R11, R12, and R3 are set to vary the currents in the various branches of
the gain stage in proportion to the set current. Resistor R14 is a bleed resistor for the
Darlington-connected transistors Q27 and Q28

The output transistors are Q33 and Q34. The resistors R17 and R18 reduce tae idle current in
the output stage to save power. This will cause some crossover distortion, which is not an important
parameter in buffer amplifiers.

The combination of Q29, Q30, Q31, and Q32 provided additional current gain and biasing of
the output transistors. The diode-connected transistors Q23, Q24, and Q25 are directly in the gain
stage’s output path and bias the output stage.

Short circuit current is sensed by the resistors R16 and R17 and tura on either Q20 or Q21,
respectively.

The circuit is also provided with a compensation nc.i- This node is used for a< frequency
shaping when desired.

The circuit of Figure 16 was breadbocrded using available complementary bipolar transistors.
The breadboard data taken on this circuit is shown in Figuiz< 17 through 20. All data was taken at a
set current (ISET) of 0.5 mA. The open-loop slew rate data for the breadboard is summarized in
Table 1.

16
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Table 1. Amplifier Open-Loop Slew Rate of Breadboard Circuit

POSITIVE INPUT NEGATIVE INPUT
Paositive-Going Negative-Going Positive-Going Negative-Going
Output Output Output Output
Slew
Rate 1800 1400 400 2000
{V/usece)

C. FABRICATION

Two possible fabrication approaches were considered for the high slew rate amplifier. These
approaches included a monolithic/hybrid circuit with three chips and a mmonolithic design which
uses complementary vertical bipolar transistors.

The hybrid design approach considered utilized a single silicon bipolar chip as the main portion
of the circuit. The input stage of the circuit would use two outboard FET chips to obtain very high
input impedance. The main advantage of this approach is the ability to select pairs of FET devices
which are matched by a computer. These devices would have low-input bias currents and extremely
low-input offset currents.

There are several disadvantages to the outboard FET approach. First, the high offset-voltage
and input drift current are undesirable. The hybrid circuit is more complex and is, therefore, more
expeasive to assemble than a monolithic circuit. Reliability was also considered to be affected by
the inéreased number of bond wires required in this process. After all of these factors were
considered collectively, the monolithic circuit was chosen as the more desirable approach.

The monolithic approach considered used a dielectrically isolated, complementary bipolar
process for implementation of the complete circuit in a single chip. Advantages of this approach
include lower fabrication cost, improved reliability, and less processing time. A new circuit
techiique for improving input characteristics with bipolar transistors offered a reasonable
alternative to the FET input. In addition, if the input characteristics of the monolithic circuit were
not acceptable, the hybrid FET input devices could be added at a later time by making a simple lead
pattern change.

The process used for the fabrication of thc single-chip bipolar structure is a dielectrically
isolated complementary bipolar process. The dielectricélly isolated structure was selected because
the isolation capacitances are much smaller than those associated with the collector-substrate
junction capacitances of junction-isolated structures.
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Several approaches to complementary processing exist. The incorporation of both NPN and
PNP transistors in the same integrated circuit introduces considerable complexity into the circuit
processing. Typically, in common processing, bases and emitters are selectively deposited and then
diffused. In a complementary process; however, both a p-type and an n-type base and an n-type and
p-type emitter must be included.

Simple techniques utilize a base deposition and diffusion as the collector of one polarity device
and an emitter deposition and diffusion as the base of the opposite polarity device. While these
processes are simpler because of fewer processing steps, the two polarities of transistors differ
greatly in their characteristics. In a better approach, both bases can be deposited separately and
difiused simultaneously; the emitters are done similarly. This introduces two extra selective oxide
etching steps and two extra deposition steps. In this manner, the opposite polarity transistor types
are similar in performance and have approximately equal diffusion depths.

The process now in use at Texas Instruments for the fabrication of oxide-isolated structures is
the ““Single-Poly” (“Precision Grind, Lap, and Polish™) method. Of the several fabrication processes
available, this has proven to be the best compromise in terms of fabrication cost (yields and
complexity of process steps) and device performance (control of critical component parameters).
Devices are presently being fabricated in volume quantities in the Special Circuits department at
Texas Instruments using this process. The process steps are described below and illustrated in
Figure 21.

o  Starting material is N-type silicon.
* Dopant is diffused to give Ntand P regions of controlled thickness and resistivity.

L Moats for isolation, lap stops, and bar scribing are etched into the back side using
preferential-ctching techniques.

v

. Isolation oxide is grown on the back side, followed by polycrystalline silicon for
mechanical support.

®  The front side is lapped down to provide isolated regions completely surrounded by
silicon dioxide and then a surface oxide is grown.

Following these steps, the slices are ready for normal integrated-circuit processing to diffuse

the bases and emitters, open oxide for contacts, and apply the metallization for interconnects. The
doping on the bottom of the pockets and the pocket thickness are critical factors in the process.
The completed structure, with metallization, is shown in Figure 22. Only the NPN transistor
structure is shown. The PNP structure is exactly the same with one exception. The PNP transistor
has a P* guard ring around the base region to prevent surface inversion.
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It is important that the thickness of the transistor pockets be accurately controlled, since it is
primarily this thickness that determines the saturation collector resistance of the transistor. A
system of visual indicators is used at Texas Instruments to stop the lap-back operation at a known
thickness. The visual indicators are based on the preferential-etch technique wher=in the sidewalls of
the etched moats are at a known fixed angle to the surface. The depth of the etched moat can be
controlled by controlling the width of the isolation oxide opening. In practice, several stripes of
graduated width are opened up and etched duriag norma! etch, forming short moats of known
graduated depth. Then, during lap-back, it is only necessary to count the number of stripes visible at
the surface to determine the thickness of the transistor pockets.

It is desirable that the surface area of the monolithic circuit chip be used as efficiently as
possible. This resuits in a minimum chip size which improves manufacturing yields and presents a
lower total exoosed volume in a radiation environment. Chip size is minimized by reducing the
geometries of the active elements and increasing their packing density.

The resistors used in the circuit are diffused resistors mads with either the P-base or the
N-emitter diffusion. The P-base resistors are used where high sheet resistances are required to obtain
large resistor values. Small resistors of a few ohms are fabricated with the N-emitter diffusion.

Aluminum interconnects are tailore¢ to meet maximum worst-case, current-density
requirements. Each interconnect is considered individually on the basis of the maximum current it
would be required to carry for any worst-case condition, and its width is then adjusted to ensure a
safe current density (based on a known minimum thickness). This current density is detined for
three conditions:

e 1=2X10° amp/cm2 for continuous operation, maximum operating conditions.

o J=5X 10 amp/cm2 for intermittent operation, such as the short-circuit output
condition with maximum operating supply voltage.

e 1 =10 X 10° amp/cm2 for surge current conditions, such as transisent
radiation-recovery levels.

D. DISCRETE DEVICE CHARACTERISTICS

The integrated-circuit-device requirements for tne high slew rate operational amplifier were
determined by the breadboard and computer-aided circuit design. Optimum operating points and
currents for each device were defined. In addition, a 100% worst-case design margin was allowed in
current-carrying capabilities since it was believed that higher power levels (approximately one watt
quiescent power) might be required for optimum slewing. Since the power level for optimum
slewing is actually about an order of magnitude lower in the integrated circuit than in the
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breadboard, the device geomeiries are somewhat oversize and could be significantly reduced
without adversely affecting circuit capabilities. In fact, the smaller geometries would have lower
parasitic capacitances and, hence, better frequency performance capabilities.

The basic transistor structure is defined by the fabrication process chosen. A profile view of
the transistors fornned Ly the complementary bipolar dielectric isolation process is shown in
Figure 22. It was recognized that a major problem would be the saturation voltage due to
high~output current requirements of the output transistors. The design of the oufput transistors
involved a trade-off between high resistivity of the collector material required for breakdown
voltages in excess »f 30 volts and low resistivity required for low saturation voltage. Two
approaches were used to solve the problem. First, a highly doped layer was formed by a diffusion
on the bottom of each transistor pocket. This diffusion serves two purposes — it forms a
low-resistivity, buried layer under the device which lowers the parasitic resistance associated with
the collector region of the transistor and it also forms a retrograde doping profile for the transistors.
The retrograde doping is especially beneficial to the transistors in the gain stage, since the gain of
the amplifier is determined by the output impedance of these transistors. The gain of the amplifier
is increased by the retrograde doping of the collector regions due to the buried layer diffusion.
However, this diffusion causes a breakdown problem due to its up diffusion toward the device
surface during the dielectric isolation process and subsequent high-temperature processing. The
second approach used to reduce the saturation voltage of the output transistors was to provide a
large enough geometry to meet the high current requirement with a relatively deep collector pocket,
even if the additional doping on the reverse side could not be used.

The resulting device characteristics are shown in Figures 23 and 24. The transistor
characteristics are identified as geometry “A”, “B”, “C”, or “D”. These identifying letters ar¢ the
same as those which appear in Figure 16 so that the corresponding characteristics may be identified
for cach device.

The other significant area of device design involves the use of junction area ratios in the
current sources to set operating points of high-current paths without dissipating unnecessary
amounts of power. A low current is set in the reference device, which causes a higher current to
flow in the device being controlled. The savings in power occurs because the power in the voltage
reference path can be made lower than if both devices were dissipating equal amounts of power.

E. DEVICE RESULTS
1. Circuit and Packaging

This section describes the results of monolithic fabrication of the high slew rate amplifier. The
device has been designated the X776 operational amplifier. The circuit of Figure 16 was fabricated
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22 MIL EMITTER NPN 22 MiL EMITTER PNP
GEOMETRY "D GEOMETRY “D”

CA32573

Figure 24. Complementary Output Transistor Characteristics

using the complementary bipolar dielectric isolation structure previously described. A photograph
of the X776 bar is shown in Figure 25. The device was packaged in a nine-pin power package for
high output current use and in a TO-5 package for lower-power applications.

The nine-pin power package is shown in Figure 26. The package was not developed on this
prograin and was the best power package available at the time of fabrication. The nine pin bonding
diagram is hown in Figure 27 and the TO-S configuration is shown in Figure 28. A typical
configuration showing the connection for the offset adjust and current set for the power package

configuration is shown in Figure 29.
2.  Electrical Characteristics

The open-loop frequency response is shown in Figure 30 for various power levels. The power is
varied by changing the set current (igr). The open-loop characteristic of Figure 30 shows an
interesting trend. As the set current (XSET) is decrsased, the circuit becomes more stable without
sacrificing bandwidth. The breadboard required 600 mW to obtain high open-loop slew rates but it
was not unity gain stable. The X776 also was not unity gain stable at high powers but becomes
more stable as the power is decreased. This trend continues in Figure 3i. The remaining data will be
shown at two power levels. They are a set current of 0.5 mA (Pp=~ 600 mW) and a set current of
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Figure 26. Photograph of the Nine Pin Package
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ADIUST
CAl257&
Figure 27. Nine Pin Power Package Pin Configuration (Top View)
COMPENSATION
OUTPUT
vt INVERTING
@ INPUT
NC '\@) NON-INVERTING
INPUT
@ @ OFFSET
GURRENT SET ADJUST
OFFSET
CA32377 ADJUST

Figure 28. TO-5 Package Pin Configuration (Top View)

32

SEALRIETIY

i



RgET. 55K MIN —_Vt
2

FREQUENCY
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{OPTIONAL)} SKi MIN

CA32578

Figure 29. Typical Circuit Connection of the X776 for the Ninte Pin Power Package

0.05 mA (Pp = 106 mW). The higher bias level was not stable when connected in a unity gain
configuration and required large compensating capacitances. This seriously lowered slew rates as will
be seen later. The lower bias level was unity gain stable and required no external capacitor for
compensation, thus the amplifier was able to achieve very fast slew rates at urnity gain.

The open-loop frequency response for various temperatures at high power level is shown in
Figure 37 The lower power level temperature characteristics for two units arc shown in Figures 33
and 34. Since the X776 is not unconditionally stable at high power levels, the device requires
compensation capacitors in certain closed-loop configurations. The open-loop (frequency
characteristic for various compensation capacitors are shown in Figure 35. The closed loop
characteristics at high power lcvels are shown in Figure 36. The X776 is stable for all closed loop
configurations at iower power; therefore, no compensating capacitor is required.

The d-c open-loop transfer characteristivs are shown for the high-power case in Figure 37. The
transfer characteristics for the lower bias case, as shown in Figures 38 and 39, show some crossover

distortion. The crossover distortion is a result of designing the output stage to conserve power. This
distortion does not appear at higher power levels.
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Figure 38. DC Open-Loop Transfer Characteristics at Low Power Levels (Unit 4-11)
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The siew rate has been the parameter of most interest. Figure 40 demonstrates the fact that as
the power dissipation is descreased, the open loop slew rate is not drastically affected. Since the
open loop frequency response is becoming more stable at lower power, it would appear that the
optimum power-speed trade off would be to decrease the power until the device is just unity gain
stable. Notice that open loop slew rates in excess of 5000 V/usec have been achieved.

The X776 was connected in a unity gain, voltage buffer configuration as shown in Figure 41.
The compensating capacitor (Cc) was optimized at each power level. The device is becoming more
stable as the power is decreased and therefore the capacitor can be decreased. At a set current of
approximately 0.05 mA (Ppy = 105 mW), the capacitor is not needed and the slew rate is essentially
the open loop slew rate. A minimum siew rate of 2700 V/usec at a power of 105 mW is achieved. As
the set current is reduced even further (Iger =0.01 mA), the power does not decrease
proportionally because the set current does n )t controi the bias current and the power of the input
stage. The input stage power is internally controlled and therefore the minimum power dissipation
in the circuit is determined by the input stage.

The large-signal, open-loop slew characteristics for the four possible conditions are shown in
Figure 42. These photographs were taken at a power dissipation of 555 mW (IgpT = 0.5 mA). The
results of various devices are presented in Table I for various closed loop configurations. This data
was taken af high power levels (approximately 600 mW). The unity gain slew responses for these
units using the test circuit shown in Figure 43 are presented in Figures 44, 45, and 46. All slew rates
are over 2500 V/us at power dissipations of approximately 100 mW.

The device also has a minimum of overshoot. The large signal pulse response (nonslewing
condition) is shown in Figure 47.

Typical screening data at a set current of 0.5 mA is shown in Table 111 and additional screening
data taken at a set current of 0.05 mA is shown in Table IV. The input bias currents and offset
voltage versus temperature for three units are summarized in Table V. The input offset voltage as a
function of temperature is plotted for one of the devices in Figure 48.

The output characteristics are plotted in Figures 49 and 50. The short circuit currents are
saomewhat unbalanced but they do meet the 50 mA minimum output current requirement,

The input common mode rejection ratio for several devices is summarized in Table VI. The
power supply rejection ratios are shown in Figure 51. Typical values of 50 to 80 dB were observed.
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Figure 41. Unity Gain Slew Rate versus Power Dissipation
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A

Compensation for High Power Dissipation

Table I1. Closed Loap Slew Rate Measurements Using Internal Node

R¢ Ce Paositive Input Negative input
Nurmber | k2 pF Pos. Signal | Neg. Signal | Pos. Signal | Neg. Signal
17 100 24 175 2330 1750 360
2-1 100 24 890 1970 1850 3715
6-11 100 24 560 2100 1480 300
11 100 10 1410 3250 2950 465
17 10 50 350 770 650 230
21 10 50 405 720 120 260
6-11 10 50 285 680 549 215
11 10 50 260 700 540 205
17 1 390 32 k1 34 32
21 1 390 35 55 32 33
6-11 1 390 27 30 27 25
11 1 390 26 28 27 24

CLOSED LOOP SLEW RATE (V/usec)

ISET = 0.5 mA
POWER SUPPLIES = +15 VDC

TEST CONFIGURATION
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Figure 43. Unity Gain Test Circuit

The data for the X776 are summarized in the next two tables, Table VII summarizes the
amplifier performance at a set current of 0.5 mA, Table VIIl summarizes the amplier performance
at a set current of 0.05 mA. The performance indicated in Table VIII meets the major requirements

: of this program.
Tables IX and X give a detailed specification covering the important parameters and the

conditons under which they apply for the X776 operational amplifier. Table IX gives the operating
conditons and maximum device ratings and Table X gives performance limits of the amplifier.
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Figure 44. Unity Gain Slew Rate for Unit 4-18
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POWER DISSIPATION = 102 mW
{
1]
N 5000 V/uSEC
oV — uS
5 VDIV
a
i
F i
4
oV
§ V/DIV
! t
2960 V/uSEC {
.
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Figure 45. Unity Gain Slew Rate for Unit 4-11
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4400 V/uSEC

2700 V/uSEC

Figure 46. Unity Gain Slew Rate for Unit 2-1
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Table VI. Input Common Mode Rejection Ratio

Nt CMRR, dB
Positive Negative ,
11 75.7 134
1-7 134 704
21 68.0 7.6 J
6-11 104 66.0
9-11 62.8 62.4
9-17 70.0 63.8
TYPICAL COMMON MODE

REJECTION RATIO VALUES
v+
vour

Vin 53 Q

POWER SUPPLY =15V
VIN=$2V
'SET =0.5 mA .
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Table VII. X776 High Slew Rate Operational Amplifier Performance

Typical Perf.
Goals ® ISET =0.5bmA

Open Loop Voltage Gain 84 dB Min 70 dB Min
Setting Time to .1% 50 nS Max 25n8
Slew Rate (Dpen Loop) 2500 Volts/;:Sac > 3000 V/uSec
input Voltage Bange + 18 Voits Min + 10 Volts
Output Voltage Swing £ B Volts Min + 12 Volts
Qutput Current 50 mA Min 75 mA
Gain Roll Off 6 dB/0ctave 2 Slopes
Supply Voltage + 18 Voits * 18 Volts Max
Querating Temperature Range -55°C to +125°C —~55°C to +125°C
Input Offset Drift

Current 0.1 nA/°C Max 7nAlC

Voitage 1uvV/le 20 uV/°C
Positive Power Supply Voltage Rejection Ratio - 80d8
Negative Power Supply Voltage Rejection Ratio - 50 dB
Input Qffset Voltage - t5mV
Input Bias Current - <i10uA
Input Offset Current - <10 uA
Power Consumpton - 600 mW
Unity Gain Bandwidth - 50 MHz
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Table VHII. X776 High Slew Rate Operational Amplifier Perfonnance

(Iggr =0.05 mA)
Typical Perf.
Goals @ iSET =005mA

Qpen Loop Voitage Gain 84 dB Min 70 dB Min
Setting Time to0 .1% 50 nS Max 25 nS
Stew Rate (Unity Gain) 2500 Velts/uSec > 2500 V/uSec
input Voltage Range + 10 Voits Min + 10 Volts
Output Voltage Swing + § Valts Min +12 Volts
Output Current 50 mA Min 50 mA
Gain Roll OH 6 4B/0ctave 6 dB/0ctave
Supply Voltage 115 Valts + 15 Volts Max
Operating Temperature Range -55°C 10 +125°C ~55°C to +125°C
Input Offset Drift

Current 8.1 nA/°C Max 1nAFC

Voltage fuvre 20,,V7°C
Positive Power Supply Voitage Rejection Ratia - 80 d8
Negative Power Supply Voltage Rejection Ratio - 50 dB
Input Offset Voltage - +5mV
Input Bias Current - <10uA
Input Offset Current - <10uA
Power Consumption - 105 mW
Unity Gain Bandwidth - 50 MHz
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Table IX. Operating Conditions and Absolute Maximum Rating

Dperating conditions.
Supplyvoltagerange . . . . . . . . . . . . . 5tox15Vdc
Ambient temperaturerange . . . . . . . . . . . =55°ta+125°C
Absolute maximuin ratings.
Supplyvoltegerange . . . . . . . . ., . . . . z18Vde
Input common-mode voltagerange . . . . . . . . . 112Vde1/
Differential inputvoltagerange . . . . . . . .. . t18Vvde
Storage tempevature range . . . . . . . . . . . . —0857to+180°C
Output short-circuit duration. . . ., . . . . . . . Unlimited 2/

Lead temparature (soldering, 60sec) . . . . . . . . 300°C

Junctiontemperature . . . . . . . . . . . . . TJ=150°C§_/

1/ For supply voltages less than 15 Vdc, the maximum input common mode voltege is aqual
1o the supply voltage minus £3 volts.

2/ Short circuit is applied to ground. Rating applies to +125°C case temperature or +75°C
ambient temperature. ISET = 0.05 mA.,

3/  For short term test (168 hours, maximum) TJ = 275°C.

2§
d

b
!
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Table X. Electrical Performance Characteristics

Limhs
Characteristic Symbol Conditions Min | Max | Units
Input offset Vio V=5V T, =25 10 mV
voltage —85°C <Tp <126% m | mv
Test Circuit: See Fig. 48
tnput offset voliage AVyg Tast Circuit: See Fig. 48 +20 wi'e
temperature seqsi- AT
tivity
Tnput offset current H Tp=25°C 50
P e 10 Vi=115 A . . HA
~55°C <1 <125°C 70 | pA
Test Circuit: See Table V
input offset current Ayg -85°C<TA<125°C
tomperature sensi- AT Test Circuit: See Table V 20 | nAfC
tivity
tuput bias current he Tp=25C 580 | A
V=15V . o
~85°C <7, <i25°C 10 | 1A
Tast Circuit: See Table V
Power supply rejection +PSRAR V=115V
ratio Tas 28°C -10 d8
Test Circuit: See Fig. 51
Power supply rejection —PSRR Viz+18V
watio Tp=25C -50 8
Test Circuit: See Fig. 51
Input voltage common CMRR Vi=15V 60 dB
mode rejection Vg2V
Test Circuit: See Table Vi
Adjustment for input Vlo Vi= 15V +12 mV
offset VOM! ADJ
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Table X. Electrical Performance Characteristics (Continued) & .
Limits
Characteristic Symbol Conditions Min Max Units
. QOutpat short circuit '08 Tast Circuit: See Fig. 49 50 150 mA _
- current {for positive t+ )
J output)
1 Butput short circuit lost-) Test Circuit: See Fig. 49 50 | 150 mA >
Y current {for negative
A . output)
[ { E
o
T : OC power dissipa- Pn -55°C <TaA <125°C 150 mW
ﬁ 3 tion per amplifier ISET = 0.06 mA
Vour=90
Dutput voltage Voop Vo= 16V, Ry =2 KD 2 v
swing {maximum
peak to peak)
: Open loop voltage A“(i.) Vee=15V TA = 25°¢C 70 a8
g gain R =2KQ  -85°C<T, <126°C B5 8
Vgur =20V ,{
Test Circuit: See Fig. 38 )
. 3
N
Slew rate SR Vec=15V  Closd lrop 2000 v
Vig =310V voltage gain = 1 ussc
R See Fig. 43 i
Settling time TS Wee=15V 50 nsac
: H).1% See Fig. 43 .
Owvershoot Test Circuit: See Fig. 43
Bandwidth 1/
0.3%
1/ Calculated value from: BW (MHz} = —————
- Riss time (usc)

Nots: These elecrrical performance charsctaristics apply over the full oparating ambient temperature rangs of —55°C te 126°C
and for supply voltsges of 35 Vdc to +15 Vdc, unless otherwite specified.
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SECTION Il
ASSESSMENT OF CURRENT TECHNOLOGY

The present design has utilized the best available technology to achieve a high speed monolithic
1 operational amplifier.

The use of a dielectrically isolated structure allowed complementary transistor structures with
low parasitic capacitance values to be fabricated. Improvements in speed can be achieved by using
better isolation structures which would result in lower parasitic capacitances. Further improvements
could be achieved through the use of high frequency transistors wiih shallow junctions and reduced
geometries. A junction field effect transistor compatible with the complementary bipolar
technology would yield iniprovements in input characteristics.

The circuit was designed to achieve the maximum slew rate attainable with a single stage in
order to avoid the need for compensating canacitances. Higher voltage gain per stage can be
achieved with an improved current source design. Improved input bias compensation configurations
have been demonstrated that can be used to lower the input bias current of this circuit. Other areas
where performance could be enhanced by improvements in circuit design include optimizing current
levels, improving output short circuit current limiting, and providing slew detection circuitry.
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SECTION IV
SUMMARY

The X776 high-performance operational amplifier has been designed and developed. Its
performance has been characterized and the results are detailed in this report.

The amplifier was designed with special emphasis placed on attaining high slew rate and fast
settling time. Both of these objectives were met; the amplifier is extremely fast and is stable in a
unity gain configuration — an important feature for system applications.

There are two areas where the amplifier does not meet the design goals: input characteristics
and open-loop gain. The input bias currents obtained are not as low as might have been attained
using an FET input stage; however, the input characteristics are more stable with variations in
temperature than an FET input stage would be. The open-loop gain — typically 72 dB — is also less
than the design goal of 84 dB, but is sufficient for most system applications for amplifiers of this
type.

Twenty-two units were delivered to AFAL on 9 March 1973, in partial fulfiliment of the

contract requirements. An additional 13 units, mounted in special headers, were also delivered at
the request of AFAL.
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