UNCLASSIFIED

AD NUMBER

ADO08244

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
only; Test and Evaluation; 18 APR 1972. O her
requests shall be referred to Air Force Flight

Dynam cs Laboratory, Attn: FYWight-Patterson
AFB, OH 45433.

AUTHORITY
AFWAL |tr, 14 Aug 1980

THISPAGE ISUNCLASSIFIED




THIS REPORT HMAS BEEN DELIMITED
AND CLEARED FOR PUBLIC RELEASE
UNDER DOD DIRECTIVE 5200,20 AND
NO RESTRICTIONS ARE 'MPOSED UPON
TS USE AND DISCLUSURE,

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE,
DISTRIBUTION UNLIMITE.,



AD;@%Zéé

AFFDL-TR-72-40

able to DDC dpes not
Volume | opy Tl

permit fully legible reproduction

V/STOL DYNAMICS AND AEROELASTIC
ROTOR-AIRFRAME TECHNOLOGY

Volume I. State-of-the-Art Review
of V/STOL Rotor Technology

H. R. ALEXANDER
P. F. LEONE

THE BOEING COMPANY, VERTOL DIVISION

TECHNICAL REPORT AFFDL-TR-72-40,

DD L
VOLUME 1 (ML

MAR 16 1973
GEIU b
JANUARY 1973 B8

Distribution limited to U.S. Government agencies only; test and evaluation; statement
applied 18 April 1972. Other requests for this document must be referred to the AF
Flight Dynamics Laboratory, (FY ), Wright-Patterson AFB, Ohio 45433,

AIR FORCE FLIGHT DYNAMICS LABORATORY
AIR FORCE SYSTEMS COMMAND
WFIGHT-PATTERSON AIR FORCE BASE, OHIO

ha¥ .




—

. ot 8

NOTICE

When Government drawings, specifications, or other data are
used for any purpose other than in connection with a definitely
related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formu-
lated, furnished, or in any way supplied the said drawings,
specifications, or other data, is not to be regarded by impli-
cation or otherwise as in any manner licensing the holder or
any other person or corporaticn, or conveying any rights or
permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

Copies of this report should not be returned unless return is
required by security considerations, contractual obligations,
or notice on a specific document.

AIR FORCE/56780/22 February 1973 — 100

Aw



V/STOL DYNAMICS AND AEROELASTIC
ROTOR-AIRFRAME TECHNOLOGY

Volume |, State-of-the-Art Review
of V/STOL Rotor Technology

H. R. ALEXANDER
P. F. LEONE

THE BOEING COMPANY, VERTOL DIVISION

Copy available 1o
DDC doys not
Pt [uuy ‘ngbh reproduction

Distribution limited to U.S. Government agencies only; test and evaluation; statement
applied 18 April 1972, Other requests for this document must be referred to the AF
Flight Dynamics Laboratory, (FY), Wright-Patterson AFB, Ohio 45433,



FOREWORD

This report was prepared by The Boeing Company, Vertol
Division of Philadelphia, Pennsylvania, for the Aerospace
Dynamics Branch, Vehicle Dynamics Division, Air Force Flight
Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio,
under Contract F33615-71-C-1310. This research is part of a
continuing effort to develop new and improved techniques for
defining dynamic and aeroelastic phenomena for rotor/propeller-
powered V/STOL flight vehicles under the Air Force Systems
Command's exploratory development program. This contract was
initiated under Project 1370, "Dynamic Problems in Military
Flight Vehicles," Task 137005, "Prediction and Control of
Flight Vehicle Vibration." Mr. A. R. Basso of the Aerospace
Dynamics Branch was the Project Engineer.

The final report is presented in three volumes. The first
volume contains a state-of-the-art review of stability and
blade vibratory loads in V/STOL aircraft. The second volume
contains the development of the analytical methods, the corre-
lation of analytical results with experimental data, and the
results of parametric investigations. The third volume con-
tains a user's guide to the digital computer programs including
input and output formats. The third volume is not being
distributed; however, it is available upon request from the
Air Force Flight Dynamics Laboratory/FYS, Wright-Patterson
Air Force Base, Ohio 45433.

Mr. H. R. Alexander was The Boeing Company, Vertol Division
Project Engineer.

This report covers work conducted from February 1971 through
February 1972. The manuscript was released by the authors in
February 1972 for publication as an AFFDL Technical Report.

This Technical Report has been reviewed and is approved.

s 5 Dbl

Assistant for Research and
Technology
Vehicle Dynamics Division
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ABSTRACT

The aeroelastic phenomena associated with prop/rotor systems
] are discussed and classified. It is concluded that an ac-
1 ceptable technology exists in several areas, including wing/

rotor divercence, whirl flutter, aeromechanical instability,
and air anq . ground resonance.

AT

The technology is less successful in those areas where the
flow through the rotor is significantly nonaxial, e.g., tilt-
rotor transition regime and high-speed helicopter flight;
also when forms of intermodal blade coupling exist due to
finite deflections of the blades. It is believed that, in
addition to collective deflections, finite cyclical deflec-
tions of the blades produce destabilizing coupling

effects in some cases. Significantly large edgewise flow in

combination with nonzero blade steady-state deflections is
also seen to be destabilizing.

e M

A minimum-complexity methodology which may be expected to
correlate with currently identified phenomena is defined.
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Part 1. Stability in V/STOL Aircraft

H. R. Alexander




INTRODUCTION

Until quite recently it was possible to regard the aeroelas-
tic stability problems of helicopter rotor systems and those
of fixed-wing aircraft as distinct areas of technology whose
study could quite properly proceed independently. The first
serious departure from this state of affairs occurred with
the Electra accidents of 1959 in which the propeller dynamic
effects specifically provided the unstable mechanism which
led to wing failures. After certain fatigue failures in the
engine mounting structure, a whirling oscillation of the pro-
peller would occur in a mode similar to the retrograde motion
of a gyroscope. In contrast to a gyroscope, which experiences
only damping force, the propeller aerodynamic forces beyond a
certain speed e¢lways tend to feed energy into the whirling
motion, with catastrophic results in the case of the Electra.

As an outcome of these incidents, the phenomenon of propeller
whirl, which had been previously recognized in the design of
engine mountings, was reformulated for the total dynamic system
consisting of the alrframe, propeller, engine and mounting struc-
ture, including the propeller's aerodynamic forces and moments.

The helicopter phenomenon known as ground resonance was suc-
cessfully formulated by Coleman (1) in terms of the inter-
action of the rotor system with fuselage degrees of freedom
which provided significant amplitudes of vibration in the
plane of rotation of the rotor. Prior to that time the aero-
elastic behavior of helicopter blades had been considered
independently of the rest of the system. It now became
apparent that fuselage and landing gear properties could
interact with the rotor to exhibit overall system instabili-
ties. While the propeller whirl phenomenon encountered on the
Electra involved propeller blades, adequate predictions could
be made assuming that ‘the blades were structurally rigid.
Prediction of ground resonance behavior, however, requ1red
lead~lag blade freedoms to be accounted for while the air-
frame motion was generally rolling in a rigid-body mode.
These phenomena then are opposite extremes in a spectrum of
interaction of rotary-wing and fixed-wing dynamic behavior.

Subsequent developments in V/STOL and helicopter design have
led to nearly every possible degree of interactive relation-
ship. In tilt-wing transport aircraft detailed account must
be taken of the airframe dynamic properties, but the prop/
rotor blades may only need to be represented by a fundamental
bending mode since they are relatively stiff, but not suffi-
ciently so to be considered rigid. Tilt-rotor V/STOL designs
generally feature large-diameter rotors and relatively low
blade frequencies so that accurate representation of the rotor
blade structural modes as well as the airframe is required.
Hence, in tilt-rotor configurations, the analyst is concerned
with preventing the occurrence of helicopter-type phenomena

3
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such as ground and air resonance, airplane-type phenomena

such as whirl flutter involving blades and wings, classical
flutter of the airframe and individual blades, and a variety
of instabilities caused by adverse coupling between the flap,
lag, and pitch freedoms of the blades. Limit-cycle instabili-
ties of a nonlinear nature must also be avoided.

It is evident that the conventional treatment of blade insta-
bility, wing stability, ground resonance, etc., as separate
phenomena is not valid in such cases and that a comprehensive
methodology is required. While most of the instability
mechanisms are well understood when viewed as general physical
phenomena, it is not uncommon in specific cases for an air-
craft to be in serious trouble because of one or more of them.
More than a general gualitative understanding is required

when margins of safety are to be established. Precise quan-
titative methods of analysis are required.

It is the purpose of this review to assess the problems which
are known to exist and the methods available for their predic-
tion. The limitations of Lhe methodology in relation to known
behavior will be defined.

CLASSIFICATION OF UNDESIRABLE AEROELASTIC EFFECTS

We may group the phenomena under discussion into several
distinct categories.

Mechanical Instability (Ground and Air Resonance)

Mechanical instability is a phenomenon in which the inertial
coupling between blade lagging motion and hub motion in the
plane of the rotor produces a growing oscillation (see

Figure 1). This may occur on the ground or in flight. The
introduction of rotor aerodynamic effects may modify the
severity and parametric boundaries of this type of phenomenon
but the essential nature of these instabilities remains the
same. Early studies (1) showed that this type of instability
can occur only when the blade lead-lag frequency is below 1P
and when the mounting frequency equalled @ - w blade.

Aeromechanical Instability

When aerodynamic forces are present, an instability involving
mechanical coupling has been experienced which involves a
lead-lag mode above 1 per rev (2) (see Figure 2). This showed
a similar coalescence of hub frequency as in ground resonance,
but in this instance the instability occurred when the hub
frequency was equal to 2 + w blade.
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Static Divergence

At the high advance ratios associated with cruise flight in
tilt-rotor V/STOL aircraft, the aerodynamic forces acting on
the rotor when its axis is inclined to the freestream provide
a large component of 1lift which is significantly destabilizing
in the static aeroelastic sense. Prediction of divergence
involves an analysis taking account of wing and blade struc-
tural properties and the aerodynamic effects of the net flow
through the rotor. Prop/rotors geherate side forces and yaw-
ing moments as well as normal forces and pitching moments when
inclined to the freestream, so that yawing as well as tor-
sional flexibility must be considered in a conservative
analysis as indicated in Figure 3. Prediction capability for
divergence is in a reasonably satisfactory state as indicated
by Figure 3, showing predictions accurate within + 6 percent
for the Boeing-Vertol Model 213 1/9-scale stowed-rotor con-
version model, shown in Figure 4.

Whirl Flutter

The term whirl flutter was originally used to describe the un-
stable whirling motion of propeller assemblies whlch occurs if
inadequate stiffness and damping are rresent in the mounting
system., The tendency toward instabilities in anti-vibration
mountings of englne-propeller packages was pointed out by Taylor
and Brown in 1938 (see Reference 3). The pitching and yawing
motion of the engine and propeller occurred in a manner that was
not significantly coupled with the rest of the airframe. While
anti-vibration mountings had the advantage of reduclng vibration
levels, 1t meant that the effective inertlas and stiffness of the
englne-propeller were approximately the same 1in pitch and yaw.
Since the princlpal coupling between pltch and yaw was gyroscopic
due to propeller rotation, a disturbance in either degree of
freedom would result in a whirling motion of the hub which was
nearly clrcular. Two modes existed, one retrograde in winich the
direction of whirl was in the opposite direction to the shaft
rotation and the other posigrade with the direction of whirl in

the same direction as the shaft rotation. As forward speed
increases f'rom zero, the total damping in the whirl modes
changes. Inlitlally damping in the retrograde mode increases
wlth speed but eventually begins to reduce until finally the
system becomes unstable. A definltive discusslion of the classi-
cal whirl flutter phenomenon is given 1n Reference 3: the caset
of such a flutter may be accurately predicted by analysis and
has been avolded by the provision of adequate stiffness, damp-
ing, and fallsafe characterlstics.

In the context of large prop/rotors, the term.ggjrl'fluttgr
has come to be habitually applied to instab%lltles 1nv91v1ng
blade flapping and significant amounts of airframe motion.
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The degrees of freedom involved may be such that no signifi-
cant whirling motion of the hub is observed. Degrees of
freedom participating in such a case may be wing vertical
bending and torsion and blade flapping. However, the flapping
behavior of the blades will be patterned such that the tip
path plane is pitching and yawing and therefore, in a certain
sense, whirling. Many cases correctly classified as whirl
flutter may exhibit significant amounts of lead-lag blade
motion; this occurs when the blades are highly twisted and the
modes have strong components of both flap and lag. Lead-lag
motion will also be present.-as a forced response when there

is significant in-plane hub motion present in the airframe
contribution to the whirl mode.

Distinguishing Features of Whirl Flutter, Mechanical
Instability, and Aeromechanical Instability

It is useful to distinguish between the various instabilities
on the basis of the following frequency and modal jarticipa-
tion criteria.

Whirl flutter involves predominantly flapping biade modes:
these will most often have frequencies above 1 per rev since
the centrifugal stiffening will automatically ensure this un-
less special features such as negative §3are present in the
blade. Frequency coalescence of rotor natural modes with
airframe modes is not a requirement since whirl flutter may
occur even with rigid blades. Individual blade motion in the
flutter mode will be complex but may generally be resolved
into the two frequency components © + wp which are expected
when a rotating system is excited at a fixed system frequency
WE .«

In contrast, mechanical instability and aeromechanical insta-
bility will generally exhibit a clear coalescence of modal
frequency in the rotor and in the fixed system. The presence
of hub motion in the plane of the votor and of lead-lag blade
motion is a requirement. In twisted blades noticeable amounts
of blade flapping may al:sio be present.

Air and ground resonances involve blade lead-lag freedoms
below 1 per rev; aeromechanical instability involves lead-lag
freedoms above 1 per rev. 7In the first case an airframe fre-
quency w is coalescent with the lower rotor frequency ¢ - wp
and in the aeromechanical case the coalescence occurs in the
upper rotor frequency Q + wp.

These frequency relationships in the unstable mode along with
the predominant blade motion will give a clear indication, in
almost all cases, of the mechanism of the instability. These
characteristics are summarizrd in Table I.
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Blade Instabilities

Instabilities of the rotating blade are a category which
involve detailed treatment of the blade internal properties
such as chordwise center of gravity location relative to the

elastic axis and blade deflections under load. The influence ;
H of centrifugal and coriclis forces and interactions of flap, F
lag, and pitch or torsion when the blade is deflected are
further effects which must be considered. This means that the
analysis of blade instabilitie: is inherently more difficult
than the phenomena discussed in the preceding paragraphs.

In addition to blade classical pitch-flap flutter, pitch-lag,
pitch-flap, and pitch-lag-flap mechanisms may be present due
to blade deflections, actual or effective ¢ 3 and 42, steady
thrust and torque, and cciriolis coupling between flap and lag.
Hub motion due to airframe vibratory freedoms will generally
couple with the blades if there is an instability due to any
of these mechanisms, so that the oscillatory motion of the
blades will assume a pronounced overall rotor pattern with
superficial similarity to ground or air resonance or whirl
flutter.

The detailed discussion of blade instabilities is presented
after the discussion on classical rotor airframe problems.

It is concluded that a comprehensive capability requires the
inclusion of blade effects normally ignored in the analysis of
whirl flutter and mechanical instabilities. These effects,
such as blade finite deflections, seem to provide the neces-
sary mechanisms to explain the occurrence of limit-cycle
behavior and other phenomena not falling into the traditional
classifications.

Stall Flutter \

The aerodynamic nonlinearity associated with stall provides

the mechanism for a singlie-degree-of-freedom instability in 1
blade pitch or torsion. This may become a serious source of

blade and pitch link loads if the blade is operating with a

significant proportion of its span in stall. This occurs most \
frequently in high-speed helicopter flight where the retreat- :

ing blade experiences large excursions of angle of attack. ‘
The destabilizing effect of stall and its effect on blade and

pitch link loads is discussed in full detail in Part IT and

will not be pursued further in this section.

12

-~ B e Lo o o e et A R s R T s st e SN 3
e RO iy ' ﬁ‘ st B fudf:sl:'-'f‘?“ AT yli‘ﬁfff oo e Y e TR Ot e it v




TECHNICAL ASPECTS OF CLASSICAL ROTOR/AIRFRAME INSTABILITIES

METHANICAL INSTABILITY OF ROTOR/AIRFRAME SYSTEMS

Ground resonance has been the most frequently encountered form
of mechanical instability experienced in helicopters, and for
many years has been predicted with sufficient accuracy that
preventive measures have generally been successful. The phe-
nomenon most often involves a coupled horizontal and rolling
motion of the blades in which the overall center of gravity of
the rotor disc precesses about the rotor shaft in the opposite
direction to shaft rotation, as indicated schematically in
Figure 1. The precession of the disc center of mass creates
periodic inertia forces which are reacted at the hub. This
produces a forced response in the pylon and airframe. A po-
tentially unstable situation exists if the precession fre-
quency is near that of a normal mode of the rest of the
system. However, the occurrence of an instability depends on
a number of parametric conditions. These include, but are not
limited to, the amount of linear motion at the rotor hub
normal to the shaft, the relative magnitude of blade and air-
frame masses, and damping in the blade and aircraft degrees

of freedom.

The frequency at which the retrograde motion of the blade
center of gravity occurs is Q-wp, where @ is the angular
velocity of the rotor shaft and wp is the natural frequency of
an individual blade. Since the regression mode frequency is
directly related to @, a number of potentially unstable reso-
nances may occur within the operating rpm range. In conven-
tional helicopters the frequencies of the aircraft on the
ground are those most likely to provide coalescence with the
rotor frequencies. This type of instability, known as ground
resonance, has been successfully prevented in conventional
helicopter configurations by the use of blade lag dampers and
careful choice of landing gear parameters. A definitive
analytical treatment of this problem is given in Reference 1
by R. P. Coleman. This basic approach continues to be used
successfully in conventional helicopter work.

A single-rotor helicopter on its landing gear has four sources
of hub displacement in the plane of the rotor; these are the
two coupled lateral-roll oscillations of the fuselage and the
two coupled longitudinal-pitch characteristics. In a tandem
helicopter, fuselage yaw introduces an additional source of
lateral hub motion which needs to be considered in ground
stability analyses. The possibilities of mechanical instabil-
ity might be expected to increase in tilt-rotor configurations
where the rotor is mounted at the tip of the wing, since the
number of potentially unstable situations expands by the num-
ber of wing modes within reasonable proximity of foreseeable
rotor speeds. However, Figure 5 illustrates a typical

13
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situation existing in one tilt-rotor design. The operational
rpm range is stable and the aircraft lateral mode, which is
troublesome in most helicopters, occurs at a frequency beyond
maximum hover rpm and is stable for small nominal amounts of
blade structural damping (i.e., heavy lag dampers required in
most helicopter applications). The two instabilities pre-
dicted occur at frequencies well beyond the design rpm range
and involve wing horizontal bending in the symmetric and anti-
symmetric modes.

When the aircraft is in flight, the rigid-body degrees of
freedom may usually be disregarded because their frequencies
from a structural stability standpoint become approximately
zero. However, the airframe frequencies persist with little
change in magnitude or mode shape into the flight regime and
instabilities of a mechanical nature-occurring in flight are
referred to as air resonance. The potential for instability
due to frequency coalescence continues into the cruise regime
of tilt-rotor aircraft and a changing spectrum of frequencies
needs to be considered as the rotor and nacelle tilt from the
vertical hover mode to the cruise mode. Blade damping in-
creases rapidly with collective pitch and inflow velocity to
the extent that conventional air resonance in the cruise mode
is generally not a problem.

The predictive capability for helicopter ground resonance has
been acceptable for many years. Good predictive capability
has also been established in tilt-rotor work as shown by
Figure 6. In this test of a 1/9-scale Boeing Folding Tilt-
Rotor model (4), mechanical instability was predicted at

1,050 rpm and 1,070 rpm with wind velocities of 140 feet per
second and 104 feet per second respectively. A mild air reso-
nance condition was experienced in test at 1,050 rpm and

104 feet per second. The unstable region is associated with
coalescence of the wing vertical bending frequency and the
lower (Q-w;) rotor frequency and extends to either side of the
point of intersection of the frequency curves.

AEROMECHANICAL INSTABILITY

The mechanical instabilities discussed in the preceding para-
graph are associated with the lower (Q-uj) lead-lag mode of
rotors having blade natural frequencies below 1 per rev.
Reference 2 described an instability which involves mechanical
coupling between the rotor upper lag frequency (Q+wy) and
linear motion of the hub. The interesting feature of this
case is the fact that the blade lead-lag frequency involved is
significantly above 1 per rev. Predictive capability appears
to be excellent as shown in Figure 7.
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WING/ROTOR DIVERGENCE

When a wing supports large propellers or rotors, a number of
factors are present which make the accurate prediction of
divergence conditions more difficult than is the case with a
clean wing configuration. These include the following.

Local Flexibilities

The net compliance of the rotor in pitch is the sum of wing
pitch, tilt actuator, and bearing flexibilities. This net

value may be significantly less than that due to the wing
alone.

Location of Prop/Rotor

The aerodynamic forces on the prop/rotor act well forward of
the wing torsional axis and, in the case of tilt-rotors, near
the outer wingtip. This generally means that the static aero-
elastic behavior is dominated by the rotor hub force and
moment derivatives and that these must be accurately estimated
if reliable divergence speeds are to be calculated.

Technical Discussion of Factors Influencing Divergence
Behavior

Elements which determine the behavior of rotor derivatives are
aeroelastic as well as aerodynamic. Blade flapping natural
frequency has been seen to significantly influence all hub
force derivatives (see Figure 8). Lock number and advance
ratio also influence the derivatives significantly.

The effect of Lock number variation is shown in Figure 9 for
constant blade flap natural frequency and very high lag and
torsion frequencies. These results show that the rotor deriv-
atives are highly sensitive to blade frequencies and mass-
inertia properties so that particular accuracy must be
observed in these parameters in divergence prediction and
correlation studies. Preliminary studies of blade lag fre-
quency also indicate a strong influence on the rotor normal
force derivative Cpg, which is directly related to divergence
properties as shown by Figure 10.

Elementary Mathematical Formulation

The mechanism of static divergence will be illustrated by the
following discussion of the behavior of a prop/rotor mounted
on a wing (Figure 11). The wing and rotor are tilted to the
airstream by an angle ag. The aerodynamic loading at the
rotor tends to twist the wing and produce further aerodynamic
force increments. These in turn produce more twist and so on.
If the wing is stiff enough, the process will be a finite
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amount. Ignoring for the moment the effects of wing aero-
dynamic force, we may express the behavior mathematically as
follows: Let the initial unloaded wing and rotor setting be
ag. Assume that the only aerodynamic loads present are those
on the rotor and that, as a consequence of the rotor aerody-
namic effects, the wing twists through an angle a. Then, if
the system reaches an equilibrium twist angle, we may state
that

Kga = Aerodynamic Moment Apout the Torsion Axis
= 1/2pV2 (a; + a)S {xCyy + DCpgo} (1)
where kK6 = torsional stiffness of the wing at the

rotor location

1/2pV2 = dynamic pressure

a = elastic twist of the wing

ay = initial incidence of the wing

CN = normal force derivative

C., = hub pitching moment derivative

g = rotor disc ar~a

D = rotor disc diameter

x = moment arm from the rotor hub to the

torsional axis

From Equation 1 we may solve for the elastic twist

-1
a = {Kg = 1/20V2S(xCy_ + DCp )}

.+ 1/2pV2Sa_{xCy + DC_ }
/2pV4Sa, Ng m,
So long as {Ky - 1/2pV28(xCy, + DCp,} remains positive, a
finite solution for o exists. However, when Ke_il/ZijS(xCNa
+ DCp,) » the net stiffness is zero or negative and the system
is divergent. We define the divergence speed to be
v - ( Kg ) 1/2
DIV 1/20S(xCy, + DCpgq)

(2)

Induced In-Flow Effects

The magnitude of rotor hub derivatives is also strongly influ-
enced by the in-flow induced by the wing and the rotor itself.
Flight experience, e.g., XC~142 experience (Figure 12) and
wind tunnel test work have shown that the presence of a lift-
ing wing behind the prop/rotor can bring about large increases
in the rotor aerodynamic derivatives compared with those of an
isolated rotor (Figure 13). The mechanism may be explained

by reference to potential flow theory in the 2-dimensional
case where the prop/rotor is ahead of a wing of high aspect
ratio.
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Intuitively we recognize that the upwash produced by the wing
3 increases the angle of attack of the rotor. This may be

; interpreted as an increase in the rotor derivatives, in

r particular that of normal force, Cy,.

The wing lift also induces incremental velocities normal to
* the disc with the tendency that the flow through the upper
half disc is increased and flow through the lower section is
decreased. This produces an azimuthai blade angle of attack
variation which is experienced as a nose-up pitching moment.
Since this is proportional to the wing angle of attack, the
effect may be accounted for by a change in the rotor deriva-
tive. Both of these effects, ACyn, and ACy,, are destabilizing
for normal configurations.

Estimates of Magnitude of Induced-Flow Velocity Component

We may usefully discuss these effects further in an elementary
but quantitative manner by considering a prop/rotov in front
of a wing of infinite aspect ratio.

For such a wing with uniform lift L per unit span, the circu-
lation function is given by L = pIV_.

Also, L

1/20v,%C « cf.

Hence, T V, C/2 * Cy.

Hence the potential at a radial distance r from the quarter-
chord point is

T
w = 37 loge r

o= r

giving Vo = 52 = uir
Ve 1 dCy,
=7r ° ¥ (CLo + o 5~}

where y is radial distance expressed in half chords and
dacy, Vg 1
assuming gz— = 2, G- = 7 {ag + al}.

Vg may pe resolved into components parallel and normal to the
rotor disc and the effect integrated over the rotor disc to
produce a set of modified derivatives.

The magnitude of the effect may be estimated by considering a
point directly ahead of the wing. Assuming as in Figure 14
that the rotor is located one chord length ahead of the lead-
ing edge, we have:

T




Figure 14. Induced Velocity Components
Caused by Circulation
(2-Dimensional Approximation)
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: Vg
®ROTOR = OWING * ¥, = ¢, + 1/3 {a  + o,}

or the change AoR in effective rotor shaft angle produced by
a change Aa in wing angle is

AoROTOR = (1 + 1/3) AaWING

This is equivalent to an increase in the rotor derivatives
relative to those of an isolated rotor and the effect is
clearly significant.

The incremental induced flow normal to the rotor will be es-
timated at the 3/4R station of the blade. If the blade
radius is of the order of 8 semichords and the hub is 3 semi-
chords from the center of pressure, the radial distance is

45 semichords. The induced flow normal to the disc is

Vn = Vg Cos 6 = }? {ay, + a} Cos 8
Vi 3
=/75 lao + al 7
Voo
i.e., Vh = 1 {“o + a}l

and this may be expressed as an equivalent rate of pitch
about the rotor hub

o — 0 V“”( )
R= T P a, + a
6(3) 90(7)
Hence, a unit incremental change in wing angle of attack pro-

duces an induced-flow effect at the rotor of an order
equivalent to pitching about the hub with angular velocity

Vo rad/sec.

Hence, at a forward speed of 360 feet per second, we have an
effect equivalent to 8 rad/sec pitch velocity, for each

C
radian of incremental wing angle of attack.

That is, we have additional induced C&a which may be esti-
mated by




1/2 v2s pch, = 1/2 v2spCy (v/90(35)}

or Cha = V=/90 Cpq x (2/C) = V/90(C/2) - Cmq
Since Cmg tends to vary inversely with J or A, this effect
will teng to remain constant over the speed range.

Tn actual practice the situation is more complicated since
large prop/rotors are generally located at the wingtip and
two-dimensional assumptions are involved. Additional effects
due to the wingtip vortex, fuselage proximity, the nacelle
and spinner, and thrust-induced effects are all present to a
greater or lesser degree.

Recommendations

The conclusions that may be drawn from the preceding discus-
sion on divergence are that a satisfactory state of the art
exists. Caution must be exercised, however, in the assess-
ment of V/STOL vehicles for which the rotor hub force
derivatives may dominate the behavior. These have been seen
to depend critically on blade elastic and inertial properties
as well as the purely aerodynamic characteristics of the rotor
blade. Also, in certain cases, the effect of wing-induced
inflow components may be very significant. However, if care
and good judgement are used in quantifying these effects,
accurate predictions of static divergence are possible.

It is also noted that divergence is a static aeroelastic phe-
nomenon, in which the wing twists under the influence of
nonvibratory loads. It is therefore important to evaluate
and use the mode of twist appropriate to such loads, rather
than the mode of twist associated with the fundamental
vibration mode.

This implies a divergence calculation in which the basic
static aeroelastic properties, rather than the vibratory
modes, are used to represent the wing. Thus, if the diver-
gence speed is sought using a flutter-oriented program,
particular care must be taken to ensure that the inputs will
permit the structure to adopt the nonvibratory torsional wing
mode shape associated with divergence.

WHIRL FLUTTER AND OSCILLATORY BEHAVIOR

The oscillatory stability of a tilt-rotor configuration is
considerably influenced by the presence of large, flexible
rotors. In addition to providing gyroscopic coupling (as is
the case with rigid propellers), the blade flexibility adds
additional degrees of freedom whose effects must be accounted
for in assessing stability. An acceptable measure of success
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has been achieved in predicting the oscillatory behavior of
propeller systems and certain types of flexible blade systems.
Reference 3 reports that good correlation with test is
achieved for propellers which are stiff enough to be consid-
ered rigid. Better correlation was reported using empirically
measured propeller derivatives, but conservative results were
obtained with calculated values. The principal conclusions of
Reference 3 in relation to the whirl behavior of rigid pro-
pellers are presented in Figures 15 and 16.

The conclusion was that the technology for analysis of the
phenomenon for rigid prop ‘lers was in a satisfactory condi-
tion. 1In the development of an articulated propeller system,
a small model tested by Grumman exhibited instability in which
blade flapping played a critical part (Reference 3). This
test was of limited value because of the small scale of the
model and the isotropic inertial properties of the nacelle.

A carefully engineered model test conducted in 1968 (Reference
5) produced a significant amount of whirl flutter data. This
model featured an articulated flapping rotor mounted at the
tip of a wing spar which was scaled to be representative of
the full-scale modes and frequencies of a tilt-rotor aircraft
in vertical and horizontal bending and torsion (see Figure 17).
The nacelle inertias and degrees of freedom were representa-
tive of full scale. Windmilling tests of this model provided
many flutter data points. The testing procedure was to select
a blade collective pitch setting and increase tunnel speed
gradually until an unstable condition was reached or the rpm
stress limits were attained. The procedure was repeated for a
wide range of collective pitch settings and a flutter boundary
defined. This was done for a set of parametric variations of
wing spar stiffness, blade hinge offset, and blade inertia.
The analytical correlation was good in that the mode of
flutter was correctly predicted, although in places the pre-
diction was overly conservative (Figure 18). Typical flutter
traces from this test are shown in Figure 19. These results
are in broad agreement with results reported by Bell
(Reference 2) for a similar system, Figure 20. The lack of
agreement noted in the flutter speeds of Figure 18 may have
resulted from approximations in the mathematical model then
current (C-26). This assumed a zero hinge offset with the
blade frequency controlled by a restraining spring. The cor-
relation was observed to be better with the smaller (5 percent)
hinge offset than in the case of the 12-1/2 percent offset,
indicating that the discrepancy in mode shape introduced by
the mathematical model was important. Later programs include
a general mode shape capability.

An interesting feature of the Bell results is the phenomenon
described as aeromechanical instability. This is described as
involving the lead-lag cyclic rotor mode and the focal mount
stiffness. When the angular frequency of the rotor @ plus the
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blade second mode frequency (approximately 3/rev) coalesced
with the focal mount frequency, an instability occurred. The
airspeed at which this occurred is proportional to the focal
mast spring stiffness as shown in Figure 7 and good correla-
tion between analysis and test is reported. This is of con-
siderable interest because it demonstrates that mechanically
coupled instabilities are not confined to blade modes with
frequencies below one per rev. It also demonstrates the need
for care in the application of feedback to suppress instabil-
ities. This point is also made in Reference 6, where it is
shown that rotor blade pitch feedback introduced to improve
handling results in loss of damping in an air resonance mode.

CHARACTERISTICS OF STATE-OF-THE-ART THEORY

A number of assumptions have traditionally been made in
analysis addressing propeller whirl and other airframe-rotor
interactive modes of behavior. The features of a typical
group of such analyses are listed in Table II. Most of these
assumptions have been made around technical grounds, although
simplicity and minimization of analytical derivation have also
been factors. All the analyses listed are for the cruise con-
figuration, i.e., axial flow only, on the basis that tilt and
transition occur at very much lower airspeeds than maximum
design dive speed and that this would therefore be the most
critical case. A less plausible assumption has been that the
effects of blade deflections under load could be ignored.
Blade torsion has also been ignored on the assumption that
blade torsional frequencies would be so high compared with the
other frequencies of the system that this degree of freedom
would not participate in low-frequency whirl flutter.

This assumption is frequently tenable provided the blade re-
mains undeflected in flap and lag. However, when the blade
is deflected, finite steady amounts of perturbation in either
flap or lag will generate an associated twisting motion which
has the same effect as §, or a,. These effects may be impor-
tant even if the torsional natural frequency is high relative
to the flap and lag frequencies.
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OSCILLATORY BEHAVIOR NOT READILY PREDICTED BY CURRENT
STATE-OF-THE-ART TECHNOLOGY

It is noted from the foregoing discussion that the prediction
and correlation of static and oscillatory aeroelastic behavior
have been reasonably successful in a number of important ap-
plications. These applications are those where the classical
assumptions of small deflections and near-axial flow were
valid. See Table II for description of Boeing-Vertol state-
of-the-art analyses.

A number of cases which depart from these assumptions and in
which correlation is not so good are now presented.

EFFECT OF TILT

Model test results in the cruise configuration indicate a
quite good predictive capability for whirl flutter in the
cruise configuration. Behavior during transition does not
show the same good correlation. The few published data on
this topic relate to rigid-rotor behavior. Figure 21 shows
data from the Boeing 1/22-scale model which indicates signif-
icant behavior variation with tilt. The blades on this model
were articulated and designed to have freedom only in flap out
of the plane of rotation. It is seen that, with one wing
stiffness, flutter occurs with 4-1/2 degrees of tilt at much
lower speeds than when the rotor shaft is untilted. With a
different wing stiffriess condition, the onset of flutter is
increasingly delayed as the shaft is tilted.

This behavior has not been successfully correlated with ex-
isting analyses. Features present in the test which were not
accounted for in the available analyses are the effects of
nonaxial flow and the initial steady-state cyclic flapping of
the blades.

LIMIT-CYCLE PHENOMENA

The model test data discussed above are for a rotor whose
blades have freedom only to flap or whose lead-lag frequencies
are high. A later test conducted by Boeing was on a hingeless
rotor model, Figure 22, whose blades had flexure mode fre-
quencies of 0.84 and 1.2 per rev at the operating rpm and
collectives. This model did not exhibit the clear-cut diver-
gent oscillations encountered on the earlier model, but rather
limit-cycle oscillations which were clearly self-sustaining.
These occurred only at a combination of negative thrust and
rpm conditions such that the blades were coned back signifi-
cantly from the precone angle, Figure 23. The freedoms in-
volved in these instabilities included fundamental vertical
flexure torsion mode dJf the wing and blade flap, lag, and
torsion. This type of instability appears to have something
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in common with the behavior predicted in Reference 7. How- ]
ever, the analysis of Reference 7 is not by itself adequate /
4 to predict the behavior noted since it does not include the

{ hub deqgrees of freedom, which appear to be an important com-

ponent of motion in the unstable mode. ’

,/

BLADE MOTION - AH-56 1P-2P INSTABILITY

Experience with the AH-56 (8) indicates that the flap-lag
coriolis-type instability is a threat in any situation where ¥
the lag impedance to in-plane forces induced by flapping is 7
small. An unstable region was observed to exist when the
¥ blade cyclic flapping exceeded a certain limit which ap-
proached a minimum when the blade lag frequency was at 2P
Figure 24. The mechanism of this instability seems to b
similar to that discussed in Reference 7 where collecsive flap
deflection of the blade produces in-plane forces to ive the
lag mode when its frequency is near 1P. In Refere
mechanism involves large cyclic initial conditio
flapping which produce in-plane coriolis 2P loads.
creates the conditions necessary for a flap-lag instability.
When the lag frequency is exactly 2P the ingtability becomes
a slow rotor tilt divergence.

AIRFRAME AND ROTOR INSTABILITY IN FORWARD FLIGHT

Also reported in Reference 8 is " effect described as a 1/2-
per-rev hop. This seems to bg/vimilar to effects described
by Hohenemser, References 7 and 9. The phenomenon is de- #
scribed as occcurring in high-speed forward flight and can be

predicted conservatively by an analysis whose critical param- |
eters are collective Bifch stiffness, blade lag frequency, i
and flap-pitch coupling or é&3. In Figure 25, sensitivity y
studies conducted by Lockheed indicate that a l3-degree-of-
freedom analysis predicts the behavior with a conservative
margin of approximately 10 percent. An increase of 10 percent
.in the critical speed required a 20-percent increase in col-
lective stiffness. The sensitivity to lag frequency depended
on the rpm. '

At 3 percent above operating rpm, there was no change in the q
critical speed for a range of in-plane frequency from 1.46 to
1.52 per rev. At 3 percent below operating rpm, the same 1
change in lag frequency produced a shift in critical speed ]
from 150 knots to 160 knots, i.e., to produce a 6-percent

increase in speed we require a 4-percent increase in lag

frequency. A 50-percent increase in lag damping was calcu- [
lated to increase the critical speed by less than 2 percent. {

Overall, the underestimated speed was conservative by about
1 10 percent.
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SUMMARY OF ROTOR/AIRFRAME STABILITY PREDICTION CAPABILITY

At this point several things have become clear:

l.

Typical analyses used to predict divergence, whirl
flutter, and aeromechanical and mechanical insta-
bility are successful enough when the inherent
assumptions are valid. Such assumptions have
included: (a) small perturbations about zero

deflection equilibrium ‘conditions, (b) axial flow
through the rotors.

Incidents in which the existing theory has not
proved successful have involved finite blade
deflections and nonaxial flow.

It is concluded that these effects must be considered if the
range of correlated phenomena is to be extended. Since a
considerable body of literature exists on the behavior of
individual blades, this will be examined to provide guide-
lines as to what effects are important in the context of the
overall aircraft. This study will indicate which effects
must be included in an upgraded capability.
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BLADE INSTABILITY MECHANISMS

Since one of the departures of state-of-the-art analyses from
reality relates to the blade idealizations used, and since a
considerable body of literature exists concerning the stabil-
ity of individual blades, a survey of the main mechanisms
identified for individual blades will now be undertaken. This
will indicate additional features to be included in an up-
graded technology if correlation with a wider range of phe-
nomena is to be attempted.

The principal mechanisms and types of instability in individ-
ual blades are listed in Table III and discussed in detail in
the following paragraphs.

BLADE CLASSICAL FLUTTER

A blade possesses all the potential for undesirable aeroelas-
tic behavior familiar from fixed-wina experience, but even the
classical problems tend to be more severe when encountered in
the rotating environment. The flexure torsion flutter prob-
lem, for example, becomes more sensitive to chordwise center-
of-gravity location because of the additional coupling
produced by the centrifugal force field.

For hover or vertical flight, as in the propulsion mode for
.tilt rotors, the equations take the same form as those for
classical fixed-wing flutter:

1 cal o Mg Cy | 6 Mg Cq | ©
Sal e 1= =0
Ca 1 B Cv Mg | 8 Ca Mg | 8
The equations have been divided through by the pitching and

flapging mass moments of ,inertia I, and Ig respectivelg. In
the first equation, the 6 coefficient arises from aerodynamic
pitch damping.

The 6 coefficient consists of three components:

1. The aerodynamic moment resulting from the center of
pressure not being at the pitch axis.

2. The centrifugal restoring moment or tennis racquet
effect. '

3. The elastic restoring moment due to the pitch spring,
i.e., control stiffness.
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The pitching moment arising from flapping (i.e., the coeffi-
cient of g in the first equation) may be 51milarly identified.
The f term arises from the product of inertia about the pitch-
flap axes, the R term because the lift does not in general act
at the pitch axis, and the £ term due to centrifugal forces
actlng on the masses which may be off both flapplng and pitch-
ing axes. In the second equation, the R term is strlctly
aerodynamlc flap-damping, and if there is no flap-spring, the
g term is just due to centrifugal restoring moments. The 8
term is duve to product of 1nert1a, and the 6 term is the aero-
dynamic flapping moment arising from blade pitch. Finally,
the 6 coefficient Cq has two parts: (a) a centrifugal flap-
ping moment arising from product of inertia and (b) an
aerodynamic part which exists because lift causes a flapping
moment. For a rigid uniform blade, with zero &3, and
neglecting all wake aerodynamic effects, aerodynamic con-
tributions to effective mass, and structural damping, the
coefficients are:

. I . Y
Me %‘fﬁz[ ][—-Za];Me--"B-Q
YI Q2
. £ e . = 2
Me—we I R a 'ME we
I - IR
Ca = =— ; Ca = =
Ie I
YI @ - Y @ 73 d
Cv =8I, R 2 i & = - g g (7o)
Ir — Ir Y
= DA = . = 02(== - L
Cq = 9% 1 P Cq=9°\1T -3
where Yy = Lock Number = 2 HoCR4/If
wp = uncoupled, rotating flap natural
frequency
wg = uncoupled, rotating pitch natural
frequency
I, = product of inertia about pitch-flap
axes
I = moment of inertia about pitch axis
I = moment of inertia about flap axis

The literature dealing with this problem for cases which
involve the rigid-body flapping and pitching motions of hinged
blades, with and without various amounts of elastic bending
and twisting motion, is reasonably complete (see References
10, 11, 12, and 13). The principal parameter of influence in
these cases is, as it is for fixed wings, the distance between
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the section center of gravity and the section aerodynamic
center*, although this is not obvious in the coefficients
listed above since the chordwise position of the center of
gravity is integrated into the product of inertia, I..

Further, the critical flutter speed will tend to be a minimum
where a flap-bending degree of freedom and a pitch-torsional
degree of freedom are close together, for any given value of
pitch frequency. When these effects are considered, the
critical flutter speed will tend to be directly proportional
to the pitch-torsional frequency. When flexible modes and
nonuniform blade properties with span are considered, the
coefficients involve integrals over the span which must be
evaluated numerically. The coefficients listed above are the
values of such integrals for the special case of a linear
flap mode and a twist mode in which all the rotation occurs
at the root (i.e., pitch).

Quasi-static aerodynamics usually are satisfactory for pre-
dicting the critical speeds, although fixed-wing type un-
steady, potential flow results are often used (Reference 13,
for example). The relationship is such that quasi-static
aerodynamics remain if F and G are assumed to be 1 and 0,
respectively, and aerodynamic effective mass terms (i.e.,
those which are coefficients of accelerations) are dropped.
An exception to this rule is that some analysts drop the a4,
or effective camber terms when making the quasi-static as-
sumption. Where the total downwash velocities through the
rotor are low enough that the wake shed and trailed from
oscillating blades remains closg to the rotor disk, then
neither fixed-wing unsteady nor quasi-static aerodynamics are
adequate to the task of predicting rotor flutter. Such so-
called wake flutter cases are examined, for example, in
Reference 12, using the results of Reference 14. Figure 26
taken from the former paper shows that several additional
branches of what appears to be flutter of a classical type
can exist when a rotor blade operates close to its own wake
or that of a preceding blada.

Reference 14 also shows that, at low values of inflow, single-
degree-of-freedom pitch flutter can occur if the pitch axis is
forward of the quarter chord. These effects apparently become
negligible when the axial distance between shed vorticity in

chord lengths, %%%, is greater than about 3. Under these

circumstances, the major differences between these rotor

*This term really implies. the center of pressure for changes
in 1lift, as distinct from center of pressure including
steady-moment terms which are of no consequence to classical
flutter.
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PITCH-FLAP RATIO = 2, VIRTUAL §3 = 63.4°

FLUTTER FREQ
SHAFT SPEED

PITCH FREQ AT
Q.__O 1!6'
SHAFT SPEED

EQUIVALENT C.G. (% CHORD AFT
OF PITCH AXIS)

Figure 26. Pitch-Flap Flutter of a Blade
Operating in Wake Effects
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flutter cases and wing flutter are in the dynamic effects
associated with rotation.

FLAP-PITCH FLUTTER (é3)

The kinematic coupling between flapping and pitching, tan §3,
is shown in Reference 11 to be destabilizing for bending modes
where the root bending slope is in the same direction as the
tip deflection. This, of course, is an effect with no direct
counterpart in the case of fixed-wing aircraft; furthermore,
it is not likely to have been predicted intuitively since
positive 63 is stabilizing from many consideratiors. When the
root slope direction is opposite from the tip hending deflec-
tion, tan 63 tends to be stabilizing.

FINITE DEFLECTIONS, PITCH-LAG COUPLING

Large, steady bending deflections, mentioned earlier in con-
nection with drag forces and static divergence, have potential
importance for helicopter rotor blade flutter as well, as was
pointed out in Reference 10. In cases where a blade section
is above the extension of the pitch axis at the same radial
station (as in Figure 27), then there are important additional
coriolis moments introduced about the inboard pitch axis. To
illustrate this effect, consider a blade with a pitch axis and
flapping axis in the plane of rotation and at the centerline
of the rotor. Suppose this blade was preconed to a value fg.
In this case not only would the feathering moments of inertia
about the pitch axis change as compared to a blade where

fo = 0, Figure 28, but the coupling term C,;, would change by

the amount - 2%9 Q@ sin? g;. Further, Reference 10 points out

that, in such cases, the steady lift at an outboard section
vertically displaced will be laterally displaced an amount

8 x Sin g, by rotation, 6, about the inboard pitch axis. This
component of pitching moment plus that caused by variations in
in-plane aerodynamic force acting through the vertical offset
moment arm about the pitch axis will change the terms C,, and
Mg by the amounts

6 )
Y I 0._-.2_) 2 XL I <_°-Z
Q21‘580<4 RV LA 39

respectively. Similar steady bending effects in th¢ plane of
rotation can also introduce additional pitching moments as a
result of lift variations. Since the center of gravity also
moves aft, however, and it is center of gravity-aerodynamic
center relationship that matters, rather than reference to the
pitch axis, these steady in-plane bending effects are less
likely to be important. Where concentrated masses are added,
however, the effective center of gravity can move more rapidly
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than the aerodynamic center, so that in such cases the effect
of steady lag-bending deflections should not be neglected in
stability analyses.

PITCH-LAG AND FLAP-LAG INSTABILITIES

In the preceding section, steady in-plane deflections were
mentioned as a potentially important part of the configuration
when flap-pitch instabilities are considered. When lag hinges
and/or substantial flexibility in chordwise bending are incor-
porated, such deflections must often be considered as addi-
tional degrees of freedom (Figure 29). There is under these
circumstances an increase in the number of dyramic instabil-
ities possible. An early theoretical analysis showing the
possibility of a classical type instability involving lag
motion appeared in Reference 15, and the first analysis of a
case where such instabilities were actually encountered was
given in Reference 16. The degrees of freedom involved are
lagging and flapping. The most critical parameter, however,
is a kinematic coupling, tan a2, causing a pitch angle change
to occur as a result of hlade lag deflections (Figure 30).

For this reason, the phenomenon has been called a pitch-lag
instability. The equations of motion for a rotor with ¢3 but
no flap hinge offset and zero twist are:

. L e =
[ 1]&*[67. Mg V| Mg e T

8o 8o
where Cv = QY7 - 3 eg
Y 2
Ca = - g @° tan o,
2F e e
e @ sl 2y . L & 1 _2 5) ( i)
Cv—a(wé'.'Q) 152[04"3'e6+'2_' +Al/3-2>
= Y 2 e
Ca = f% %— tan &3 (3-- 55 A
W & =i 4 1L g2 {t 8 (— - 2/3 + f

YI @2 1 €
— ) ML . o e
ME; = (UE + IE ) tan (12 (3 p) A
Here ME and Mg are as defined earlier but the latter has the
2
quantity 1%— tan §3 subtracted from it to account for the ef-
fect of 63.
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Pitch-lag kinematic coupling can arise from inclination of the
lag hinge with respect to the blade axis and/or the adverse
positioning of control links with respect to such axes when
all the other blade angles such as lag, flap, and pitch are
accounted for as initial deflections (Figure 31). If this
kinematic coupling is such that the blade pitch angle in-
creases as the blade lags forward (negative, in the convention
of the above equations) and the lagging frequency, We o is
below the flap frequency, wg, (which also implies wg < @),
Reference 16 shows clearly that an instability can result and
presents the following simple stability criterion,

™
N

tan “2
l'
l - = tan 63
[o]

C

o
v
o

<D
[}

The value of lag damping is particularly critical where the
principal motion is in lagging or chordwise bending and the
frequency of the unstable motion is close to the uncoupled
lagging frequency. Reference 17, in further studies of this
phenomenon, shows that the aerodynamic damping due to 1lag
motion and proper accounting for blade hinge offsets must be
included to be assured of a conservative analysis.

SPECIAL ASPECTS OF PROP/ROTORS

The coupled flap-lag analyses of References 15 through 17 are
all intended for the helicopter state, in which the total in-
flow is relatively small compared to the rotor tipspeed. When
a V/STOL prop-rotor operates in high-speed airplane flight
regimes, the inflow ratio, J, is no longer negligible compared
to unity, and this gives rise to additional aerodynamic coup-
lings between motions in the plane of rotation and out of the
plane of rotation. 1In fact, flap-lag instabilities can occur,
as discussed in Reference 18, for rotors with natural rotating
lag-bending and flap-bending frequencies close to and higher
than rotor speed. As pointed out in this reference, the need
for high geometric pitch angles at high values of J rotates
the low beamwise bending stiffness of the prop-rotor blades so
that substantial beamwise motion (i.e., perpendicular to the
local chord plane) contributes to in-plane motion, thus lower-
ing the frequency of the first in-plane mode. Similarly, this
rotation orients the chord-bending stiffness so as to have a
larger component out of plane, and consequently, the first
flap-bending mode tends to be raised. As expected, 63 has a
substantial influence on this kind of instability. Reference
17 calls attention to the fact that the modes of highly
twisted prop/rotor blades at high advance ratios are coupled
and that a mode identified as being predominantly in-plane
will have substantial out-of-plane flap bending slopes. Thus
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the presence of 63 provides kinematic pitch coupling for a
predominantly in-plane mode, i.e., in such a situation §3 can
provide effective pitch-lag coupling «a,5.

COUPLED FLAP-PITCH-LAG FLUTTER

It is not unusual to have natural frequencies in flap, pitch,
and lag reasonably close to one another and rotor blades may
be shown to be susceptible to flutter in situations where out-
of-plane bending or flapping motions and in-plane bending are
coupled, both to each other and to torsional or pitching
motions.

An example of such an analysis is found, for example, in
Reference 9. Although the hub configuration considered is
unusual, many important characteristics of rotor flutter are
discussed in this paper. The steady inflow, for example, was
found to be important, even though the rotor is in the heli-
copter state; further, these studies showed the coupling
between lag-bending and pitch to be one of the most important
parameters. The importance of inflow in flap-lag instabil-
ities was also noted in Reference 18 for the prop/rotor case.

The lag bending pitch coupling is associated with the effect
shown in References 15 through 17 to be critical for pitch-
lag instabilities. However, these references demonstrate a
destabilizing effect produced by increasing angle of attack

as the blade leads forward while Reference 9 indicates it to
be stabilizing. The difference appears to be due to the fact
that, in References 16 and 17, the lag frequency is consid-
erably lower than rotational speed, while in Reference 9 it

is not. The simplified criterion given in Reference 16 is
obtained by neglecting terms associated with the lag frequency
ratio on the assumption of their being small compared with
other terms in the equation, particularly some multiplied by
the lag damping constant. 1In Reference 17, this approximation
was not made but the frequency ratios were of the same size

so that the results of Reference 17 essentially confirmed
Chou's approximation.

For blades without lag hinges, the lag frequency is higher
and the damping is much lower.

Equation 21 of Reference 16 shows that, if tan «, is positive
and 2& is not small compared to 1.0, then a second amplified
pitch-lag stability criterion emerges; namely for stability

8o Ce \rueN: , Ce Ce Bo ..
tan a9 < -z—e-g-[l“(l-I—gﬁ)(ﬁ—) +T—ET2-(1+1—E§-)-3:tan 63]

1




Note that, here if C;—o0 and wg—Q, virtually any amount of
positive tan aj will 'be unstable.

It is important to note that the results of Reference 9 empha-
size the importance of lag-bending frequency ratio in arriving
at stability criteria. The effects of steady bending deflec-
tions discussed in Reference 10 are also borne out by the
results of Reference 9 where increases in blade tip weight
increased the flutter stability, principally by reducing the
amount of steady flap-bending and hence, the contribution to
lag-pitch coupling.

FLAP-LAG CORIOLIS INSTABILITY

the classical flutter theme in which blade twist or pitch is
replaced as an independent degree of freedom by flap or lag,
with pitch appearing as a geared effect due to the presence
of 63 or aj. Thus, while the phenomena are of great practical

importance, they do not present anything unexpected in terms
of classical theory.

‘ All of the instabilities discussed so far are variations on

However, References 7 and 19 identify a quite different type
of instability. This is limit cycle in nature and requires
only the presence of flexural degrees of freedom in flap and
lead-lag, and can occur with blade pitching or twisting
totally absent. The essential coupling consists of coriolis
forces between flap and lead-lag perturbations which are
present when the blade is deflected due to thrust. The
strength of the coupling depends on the amplitude of the
initial deflection and the frequency of the flapping mode.
The mechanism is self-limiting since the strength of the
coupling is reduced as the amplitude of oscillation grows.
Reference 7 also shows that the effect of forward flight {u}
is destabilizing in this mode of behavior. '

The phenomenon is of less significance for articulated rotors
since the balance of aerodynamic load and blade steady flap
which exists tends to eliminate the coupling mechanism. 1In
hingeless rotors, however, this type of instability may be !
quite troublesome, although not catastrophic. Reference 7 poa
shows that blade equations in flap and lag in the hover case N
may be written in the form:

: [1 o]é' [Y/8 -ZEon%]é I:l +nZ o ] ; 1
I .+ , =0 .
o 1lJg -2¢, 2n€ ndg o ng £

where ng is the flap nonrotating natural frequency
ng is the lead-lag natural frequency
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i.e., if np = 0, the two equations are effectively decoupled.

The physical explanation of this is that when the blade has an
effective mean positive angle of attack, a rate of lead motion

produces an incremental upward aerodynamic moment and an in-
cremental downward centrifugal flapping moment. If ¢, is
obtained by the balance of thrust moment and centrifugal
moment, these two opposing incremental effects are equal and
no flap-lag coupling exists. If ¢, is reduced because of
elastic flapping restraint, the incremental aerodynamic flap-
ping moment dominates and a rate of lead motion produces an
up-flapping moment which can cause unstable blade behavior.

When a balance of centrifugal and thrust moments is accom-
plished by the use of precone, the incremental centrifugal
moment is restored to the same magnitude as the incremental
aerodynamic moment and the motions are decoupled. Thus small

perturbations in flap and lag about the preconed position are
always stable.

In forward flight, however, additional coupling terms are
present and preconing will not guarantee stability. 1In
forward f£light the following additional contributions to the
coefficient of the damping matrix are present:

[%YuSinw,aYuSinw ]
o , Y/3 a2y Sin y

It is seen that even if np = 0, the term « ysin y provides
coupling which may destabflize, so that as long as the coning

deflection R_ is non-zero the strength of the coupling between

the modes will increase with u; so we might expect the onset
of flap-lag instability as a function of forward speed.

It is observed that, if there is no elastic restraint in flap,




REQUIRED FEATURES OF AN ENGINEERING ANALYTICAL CAPABILITY

1 THE NEED FOR COMPREHENSIVE ANALYSES

When we define the requirements of an engineering capability
for stability analysis, the question may pose itself as to why
such an analysis or capability is required. Most of the phe-
nomena discussed are described adequately in the literature.
However, it will frequently be found that the mathematical
models in published papers are selected to demonstrate the
phenomenon rather than to represent a hardware system. The
influence of additional members of the system is often ig-
nored, although these may have a cumulative effect which, from
4 a practical point of view, may be just as important as the
critical parametric variations on which published material
tends to concentrate. Thus, unstable behavior indicated by
examination of one system element (say, the rotor blade) in
isolation may be significantly improved or impaired when the
influence of the rest of the system is taken into account.

As an example of potential interaction of this sort, we will
discuss flap-lag coriolis instability analyzed in Reference 7.
In this type of instability the coriolis forces couple the
rotor flapping freedom and the lead-lag freedoms and, under
certain conditions of blade natural frequency and steady de-
flection, an instability occurs at the lead-lag natural
frequency. However, we know that blade lead-lag motion will
couple with airframe motion in the plane of the rotor (ground
resonance or mechanical instability) so that, when the three
degrees of freedom are examined together, we should not be
surprised if the total system were less stable than either of
its component subsets. The opposite might hold true depending
on the circumstances of the particular configuration.

It is difficult to envision a heavily damped airframe mode

coupling with the blade lead-lag and absorbing sufficient

energy to stabilize the flap-lag systems. Speculation of this

kind can only be ended by a comprehensive analysis whick takes

into account all the potentially significant factors. (The

same objective can be achieved using a modeling technigie but ¢
a prior analytical approach is justified.) i

Nevertheless, valuable guidance is provided by the academic h
studies investigating 1l- and 2-degree-of-freedom systems so
far as they define critical parameters which must be consid-
ered in formulating more general analyses and provide rules i
which may be used effectively in preliminary design.

The other major source of information on parameters which
influence stability is experience with dynamically similar
models and full-scale hardware.
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ANALYTICAL REQUIREMENTS FOR PROP/ROTOR CONFIGURATIONS

An engineering analytical capability must address the problems
outlined in the previous sections in a quantitative way. A
modal description of blade freedoms is a primary requirement.
The use of equivalent hinge offset systems is a generally
understood way of demonstrating the existence of the various
phenomena and their parametric sensitivity; however, for ac-
curacy in the prediction of point design behavior, and
particularly in the case of highly twisted blades, a modal

. approach is required, since the relationships between flap,
lag, and torsion vary along the span and cannot be easily
accounted for by constants such as ay and ¢3.

We may then outline the principal features necessary for the
upgraded technology designed to address the problem areas not
covered adequately by current state-of-the-art capabilities
(see Table 1IV).

® Blade Degrees of Freedom

A minimum blade representation is required which will
include analytically the mode which is predominantly:

(a) Fundamental out-of-plane flap

(b) Fundamental lead-lag

(c) Fundamental torsion

(d) Pitch of the blade about the pitch axis

® The requirement is satisfied by the provision for
four general mode shapes with each allowed components
in flap-lag-torsion. This then permits representation
of (a) through (d) in as general a form as may be re-
quired. It also permits consideration of higher modes
than the fundamental if this is desired. The analysis
must address the stability of perturbations about
initially deflected conditions of the blades caused by
aerodynamic and inertial loadings.

® Airframe Degrees of Freedom

The hub to which the blades attach must have degrees
of freedom representing the rigid-body motion of the
aircraft, the vibratory modes of the airframe, and
local freedoms introduced by soft mounting or by
gimbaling the rotor.

The number of such airframe and rigid-body modes re-
quired depends on the special circumstance pertaining
in any given case.




4 ® A minimum capability will include:
] (a) Six rigid-body degrees of freedom

(b) As many general airframe modes as are required
to represent:

(1) Wing fundamental vertical bending and
torsion

(2) Wing fundamental horizontal bending
(3) Fuselage bending and torsion
(4) Local modes of the nacelle

(c) Adequate represertation of landing gear dynamics
to permit prediction of ground resonance effects.

® Blade and Hub Geometry

Control system representation must take account of the
fact that the pitch axis may occupy a variable posi-
tion with respect to the blade deflected shapes; the
amount of pitch, lag-flap coupling is directly influ-
enced by the spanwise location of the pitch axis.
Precone, prelead or lag, offset, and sweep are impor-
tant in various contexts and will be included.

® Aerodynamic Representations

Aerodynamic sophistication in the blade representation
is not required for prediction and correlation of the
phenomena discussed: typical blade chords, fre-
quencies, and velocities are such that the klade
frequency parameters, K = “Yb, are small and quasi-
\Y

static assumptions appear to be adequate. Wing-
induced effects need to be included since they are
seen to have a potentially powerful effect on the
rotor derivatives and thus on divergence speeds.
Wing and empennage properties, however, require that
account be taken of frequency dependency. The range
of airframe frequencies present in the airframe might
lead to errors in stability boundaries if this repre-

antation were restricted to be quasi-static.
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Small angle assumptions regarding flow are not accept-

Direction and Type of Flow Through Rotor

able, since the analysis will be used to investigate
flight conditions ranging frcm the propeller cruise
mode (axial flow) through transition (nonaxial high
angularity) to the helicopter regime (edgewise flow).
In addition, nonuniform effects caused by the wing-
bound circulation must be considered.

® Blade Deflections

One of the more troublesome phenomena in recent years
has been the presence of flap-lag coupling instabil-

ities associated with deflected blades.

These have

been limit cycle in nature but would nevertheless be

an unacceptable feature in operation.

Prediction

capabilities must therefore include the behavior of
blades deflected under loading arising from steady
centrifugal and aerodynamic forces.

TABLE IV

MINIMUM REQUIREMENTS FOR AN UPGRADED TECHNOLOGY

|Airframe Degrees of Freedom

Rigid-body modes

All vibration modes which
are of same order of fre-
as 2 + wB

These may extend well
beyond fundamentals

Local nacelle modes

Above objectives may be
achieved by provision of
sufficiently large num-
ber of general airframe
modes

Blade Degrees of Freedom

Sufficient to represent
fundamental pitch, flap,
lag, and torsion

Model representation must
include coupled effects so
that effective 63, a3,
etc., are included

Dynamic and aerodynamic
effects of deflections
must be included

Aerodynamics must include
effect of yu as well as A

A
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OUTLINE DESCRIPTION OF THE STABILITY ANALYSIS DEVELOPED
UNDER CONTRACT AND DISCUSSED IN VOLUME II

The analytical rzquirements defined in the preceding paragraphs
have substantially been incorporated in the aeroelastic stabil-
ity analysis computer program described in Volumes II and III.

Airframe Representation

The program permits representation of the six rigid-body de-
grees of freedom and an additional six elastic modes of the
airframe. This is adequate to accommodate the fundamental
structural modes and additional selected modes to represent
local effects, such as flexibility between the engine-nacelle
package and the wing.

Rotor Representation

Two rotors are included in the analysis, each rotor having 3
or more blades. Rotor gimballing freedoms in pitch and yaw are
available, and also a shaft rotation mode. Up to four blade
modal degrees of freedom may be used, each mode having flap,
lag, and torsional components if required. The aeroelastic
coupling effects of blade deflections are taken into account in

evaluating the coefficients of the differential equation of
the system.

Aerodynamic Representation

A two-dimensional strip theory representation has been used for
the wings and empennage. The rotor blade aerodynamics account
for o effects (optional) and for large angles of inflow such as
occur in the tilt-rotor transition regime. The program will
also account for nonuniform inflow such as induced by the wing,
provided that the flow field is specified.

Landing Gear Representation

Although most configurations feature two main gears and a nose
gear, the program was written for systems with up to four gears,
since a number of helicopters have a four-poster arrangement.
An idealized linear spring and damper arrangement is used to
represent each set of struts, oleos, and tires.

Application to Articulated Rotors

The program can be used to evaluate articulated rotor systems.
Blade flap and lag about a hinge and kinematic effects such as
§3 or ajp may be represented by linear mode shapes with the
appropriate torsional components.
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Part II. Blade Vibratory Loads
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INTRODUCTION

SOURCE OF AIRLOADS

Velocity Relative to the Airfoil

A prop/rotor blade operating in an environment in which the
forward-flight velocity vector has a component in the plane
normal to the rotor shaft will experience a l/rev fluctuation
in the total relative wind velocity acting at a blade section.
This is the result of the fact that, in the advancing-rotor
half cycle, the forward velocity vector adds to the rotational
speed vector; whereas, in the retreating-rotor half cycle, the
reverse is true (see Figure 32). Since the dynamic pressure
acting at an airfoil section is proportional to the square of
the total relative wind velocity, it results as a periodic
quantity over one rotor cycle containing steady, l/rev, and
2/rev harmonic components. The introduction of a rotor col-
lective pitch angle is felt as a steady aerodynamic angle of
attack by the section which, when multiplied by the dynamic
pressure, will give rise to aerodynamic forces which are also
periodic in one rotor cycle and contain steady, l/rev, and
2/rev components. The introduction of a 1/rev cyclic pitch
angle to the rotor when multiplied by the dynamic pressure
will now introduce an additional vibratory term, being a 3/rev
component, as well as its own steady, l/rev, and 2/rev compo-
nents (see Figure 33).

Blade Motion and Downwash

Blade flexibility in the flapwise, chordwise, and pitch direc-
tions, along with vorticity due to lift variations with time
and blade span, generates airloads of all frequencies (see
Figure 34). Pitch deflections change the mechanical angle of
attack of the airfoil while flapwise and chordwise deflections
induce a change in the angle of attack by altering the direc-
tion of the wind relative to the blade. Discontinuities in
spanwise blade lift generate trailed vortices, with an espe-
cially strong vortex trailed at the blade tip. Changes in
blade 1lift with time generate shed vortices from the blade.
The distribution of shed and trailed vortices created by the
rotor blade itself or by other rotor blades of the same rotor
or other rotors operating in the vicinity of the rocor blade
in question generates an induced velocity on the blade that
further changes the angle of attack and blade 1lift.

Other Sources of Vibratory Airloads

These periodic aerodynamic forces are those derived from the
fundamental expression for a 1lift force in which the section
lift coefficient is a linear function of the aerodynamic angle
of attack and the discussion in the preceding paragraphs is
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valid for aerodynamic angles of attack up to stall. Associ-
ated with the lift there are periodic aerodynamic profile and
induced-drag forces and quarter-chord moments which are gener-
ated by the periodic dynamic pressure acting at an airfoil
section and derived from the section drag moment coefficients.
Over and above the fundamental periodic aerodynamic section
lift, drag, and moment derived from linear incompressible
theory, there are additional nonlinear compressible counter-
parts to these section excitations which contribute to the
aeroelastic response of the rotor blade as the local angles

of attack vary rapidly. These nonlinear compressible compo-
nents are of particular importance for those blade sections
operating in a stalled environment (see Figure 35).

The Axial-Flow Flight Condition

For a prop/rotor operating in a pure axial-flow environment,
the total relative wind velocity acting at a blade section
will be a constant (see Figure 32). The introduction of 1l/rev
cyclic pitch angle to the rotor will now yield a steady and
l/rev 1lift (see Figure 33). A small component of velocity in
the plane normal to the rotor shaft due to the angle of attack
of the rotor shaft or cyclic induced lead-lag deflections (see
Figure 36) will introduce the multifrequency airloads dis-
cussed above.

BLADE LOADS

Components of the Load

The consequence of these periodic aerodynamic forces acting
upon the prop/rotor blade is the generation of periodic bend-
ing moments which are partially relieved by centrifugal and
inertial forces (see Figure 37), the remainder being expended
in deforming the blade, thus producing bending strains and
their associated bending stresses. These resulting periodic
bending stresses are generated throughout the duration of the
periodic dynamic pressure in the rotor shaft normal plane;
which, as in the case of the helicopter, is the full duration
of its forward-flight condition. Consequently, the structural
design problem of a prop/rotor blade centers largely upon its
ability to withstand these cyclic fatigue stresses for a pre-
scribed period of time.

Effect of Blade Root Constraint

One method for minimizing this basic problem is to employ
mechanical hinges at the blade root; this compels the blade
bending moments to approach a zero value at the hinges. When
mechanical springs and dampers are considered about the hinge
axes, nonzero bending moments result that are proportional to
the spring and damper rates. A hingeless rotor blade, on the
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other hand, must absorb these root bending moments which rise
sharply in this region, the rate being proportional to the
bending stiffness at the root (see Figure 37). Consequently,

the typical hingeless rotor blade employs a low bending stiff-
ness in the inboard root area to minimize these rapidly rising

bending moments. As a result, the typical hingeless rotor
blade deforms in its fundamental mode in a manner similar to
an articulated rotor blade having a large effective hinge
offset from the rotor center in the region of minimum bending
stiffness.

Coriolis Loads

Both the articulated rotor blade witih mechanical hinges and
the hingeless rotor blade featuring effective hinges execute
angular motions about the hinge axes which give rise to
coriolis inertia forces which must be absorbed by the rotor
blade (see Figure 38). These coriolis inertia forces are
proportional to twice the product of the rotor angular veloc-
ity with a linear velocity of a mass point relative to the
rotating frame of reference. Like the aerodynamic forces,
these criiolis inertia forces are periodic in nature and con-
tain 1l/rev, 2/rev, etc., harmonic components but no steady
components.

Blade Dynamics

Because of its elasticity, the prop/rotor blade has natural
modes of vibration whose individual natural frequencies vary
with the rotor angular velocity (see Figure 39). Since the
periodic aeromechanical exciting forces are describable in
terms of harmonic components whose frequencies are integral
multiples of rotor speed, it is obvious that a resonance can
occur in any one natural mode for more than one rotor speed.
Fortunately, aerodynamic damping forces are generated by the
blade elastic motions which reduce these resonant responses
(see Figure 40). However, care must be taken in the design
of a prop/rotor blade to avoid such resonances in the normal
operating rotor speed band; a determination of the blade
natural modes is of primary importance during initial design
of the rotor blade. In addition to determining the undamped
natural frequencies for each natural mode, it is desirable to
include the determination of the associated damped amplifica-
tion factors for rotor harmonic exciting frequency. These
factors are important in assessing the effects of elasticity
and mode shape on the aerodynamic damping process generated
by the rotor blade in its natural modes of vibration.
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{3 CURRENT MATHEMATICAL MODEL

ROTOR BLADE REPRESENTATION

| The current mathematical model in use by Boeing-Vertol to
predict the aeroelastic response of a prop/rotor blade to
aeromechanical excitations has for its basis the decomposition
of the blade into a finite number of lumped masses intercon-
nected by massless elastic beams (see Figure 41). This basic
technique permits accounting for the nonuniform spanwise dis-
tributions of the blade aerodynamic and structural properties.
Each lumped mass is subjected to its individual aeromechanical
excitation, its resulting response being coupled to its adjac-
ent lumped masses through linear difference equations which

relate the local changes in deflection, slope, moment, shear,
1 and torque. At the blade root, boundary conditions are satis-
fied which permit the solution for the blade deformation
response at each lumped mass station. Thé current model
accounts for dynamic and aerodynamic coupling between flap
bending and torsion and uncoupled chord bending and is appli-
cable to a low-twist prop/rotor blade, such as a helicopter
rotor blade. The net result of the analysis is the solution
for the flap bending, chord bending, and torsional aeroelastic
response, including the total solutions for the blade deflec-
tion, slope, moment, shear, and torque, the associated control
system forces, the associated rotor hub loads, and the rotor
performance.

AERODYNAMIC REPRESENTATION

Because of its use of unsteady aerodynamics, nonuniform down-
wash, airfoil section data, shed wake effects, and compressi-
bility effects, the current model has been very successful in
predicting pitch link load waveforms throughout the level-
flight speed range, including, of particular importance, the
stall regime for full-scale helicopter rotors (see Figures 42,
43, and 44). The model has had good success in predicting 1
flap and chord bending moments and rotor lift distributions i
(see Figures 45, 46, and 47) from 110 to 125 knots for the ]
full-scale H-34 helicopter rotor. 1In the area of highly |
twisted V/STOL wind tunnel model rotors, the mathematical 3
model has been adequate for predicting flap bending moments !
but less successful in predicting the chord bending moments
(see Figures 48 and 49) and pitch link loads. The current |
aerodynamic capability is reviewed in Figures 50 and 51. ¥

DYNAMIC REPRESENTATION

The poor prediction for the highly twisted model rotor is be-
lieved due largely to the neglect of the large twist angle of
the model and its effects on the resultant elastic and aero-

dynamic coupling. Although the current mathematical model

8l
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Figure 43. Low-Speed Pitch Link Load Waveforms
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accounts for both the articulated and hingeless rotor config-
urations, it does not account for those V/STOL rotor designs
whose root-end attachments, although hingeless in appearance,
are actually pinned with an effective angular spring about the
pin along with an effective linear spring acting outboard of
the pin axis. This is a potential reason for poor bending
moments for highly twisted rotors of this type. Still another
reason is the aerodynamic coupling between the flap and chord
bending motions which is not accounted for in the present
mathematical model and which is believed to be of particular
importance for soft-in-plane hingeless rotors. These major
deficiencies, along with many others of less importance, will
be removed in the mathematical model being developed under
this contract. This new model will employ the most advanced
concepts in dynamics, aerodynamics, and elasticity known at
this time for a prop/rotor blade.

PROGRAM USAGE

Utilization of this program requires the definition of a
flight condition, detailed rotor blade physical properties,
and gross aircraft properties. A trim analysis must be run
to define the control input, thrust, aircraft attitude, and
blade initial deflections. A blade idealization program is
required to lump the detailed blade properties into discrete
elements. For hover conditions an additional calculation
must be performed to correct the cyclic to account for the
downwash due to lift dissymmetry. For other conditions where
wing circulation passes through the rotor, another program
must be run to define the velocity distribution due to this
blade circulation. A review of the program usage is given in
Figure 52.

PROGRAM FLOW DIAGRAM

Figure 53 shows a simple block diagram of the current loads
program. The nonuniform downwash calculation is based upon
the initial deflections only. The airload c&lculations can
provide required thrust by altering the collective angle until
the required thrust is obtained. The program can provide up
to 10 iterations between the airloads and the coupled flap-
pitch response. The uncoupled lag response is determined by
the airload and coriolis calculations; the lag response is not
used to alter the airloads or flap-pitch response.
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MATHEMATICAL MODEL UNDER DEVELOPMENT

The mathematical model being developed under this contract
will include modifications to the current model which will
improve its prediction capabilities and enlarge its applica-
bility to include V/STOL-type prop/rotor blades. These major
modifications to the current mode include the following items.

BLADE IDEALIZATION

Number of Mass Sﬁations

The model now has a prop/rotor blade idealization that in-
cludes 20 mass stations and 15 aerodynamic stations, thereby
increasing the accuracy of the dynamic and aerodynamic force
representations.

Coupled Flap-Chord-Pitch

A new solution technigyue considers a fully coupled analysis
for flap bending, chord bending, and torsion. Specifically,
the coupling includes dynamic, aerodynamic, and elastic forces
involving the bending deflections normal and parallel to a
section chord line with the section torsional deflections.

Other Improvements

The prop/rotor blade idealization now permits the inclusion of
a large built-in twist angle, blade precone, blade prelag,
variable vertical and horizontal neutral axes, variable shear
center, and section inertias.

AERODYNAMICS

An advanced unsteady aerodynamic theory which has improved the
prediction of pitch link loads in the stall regime of a heli-
copter rotor was reported in the May 1971 Annual Forum Meeting
of the American Helicopter Society.

COMPUTER TECHNIQUES

There is a new digital computer program of the model that re-
flects the improved efficiency in coding techniques and data
processing gained from experience with the current model.

APPROACH

Although the mathematical model under development contains the
most recent advances in the field, only those items of impor-
tance are being selected in order to avoid generatin¢ an im-
practical computer program because of the inability to predict
input data, long running time, or numerical convergence
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problems. This limiting compromise follows from the fact that
the state of the art for a rotor aeroelastic analysis is de-
termined not by advanced theories in dynamics, aerodynamics,
and elasticity, but by the practical limits of computer time
and numerical tractability. A review of the additional capa-
bility under development is given in Figures 54 and 55.

PROGRAM FLOW DIAGRAM

Figure 56 shows the changes in the simple block diagram of
Figure 53. The program under development shows the coupled
flap-lag-pitch deflection calculations iterated with the
airloads. This allows the flap, lag, and pitch degrees of
freedom to be included in the airloads and includes all
significant couplings between flap, lag, and pitch.
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INDUSTRY REVIEW

< METHOD OF SOLUTION

All of the available published data indicates that the major-
ity of the members of the rotary-wing industry employ the
lumped-mass approach in solving the rotor loads problem for a
V/STOL prop/rotor blade. An alternative approach to the
solution of this problem is the modal analytical method which
employs the prop/rotor blade normal modes derived from a free
vibration analysis. The lumped-mass approach appears to have
an advantage over the modal analytical method in that it does
not require preknowledge of the blade normal modes, nor does
1 it encounter numerical convergence problems which are inherent
in the modal analysis. References 20 through 38 list the de-
tails of these analytical methods and their predictive capa-
bilities which vary in technique due to consideration of a
particular rotor system where experience has shown that a
particular mode of description or a particular parameter in
the dynamics, aerodynamics, or elasticity provides the best
correlation between theory and flight test data.

The typical rotor aeroelastic analysis first determines the
actual or equivalent flapping motion of the prop/rotor blade
by a step-by-step timewise integration of the inelastic flap-
ping equation of motion; the solution will converge to a
cyclic pattern when the steady-state flight condition is being
analyzed. This analysis can be refined further by introducing
the first flap bending normal mode and its associated equation
of motion, where now the two equations are integrated on the
basis of a set of starting boundary values determined from the 4
inelastic blade solution. When a steady-state condition is ‘j
being analyzed, the integration proceeds in small but finite

timewise steps; after a number of rotor revolutions, the pre-
dicted motions will become cyclic within a desired tolerance.
This is the usual solution sought, and the rotor performance, ]
loads, stress, and dynamic calculations are based on these
accepted cyclic motions. The airload calculations include
airfoil section geometry, compressibility, stall, 3- |
Gimensional flow, unsteady aerodynamics, and nonuniform down-
wash. The unsteady aerodynamic loads are calculated by various V
modifications of the stall loads resulting from the airfoil
tables. The modifications typically include Theodorsen's shed
wake function or a derivative thereof, dynamic stall effects '
based upon oscillating airfoil data, and yawed flow across the
blade. The nonuniform downwash calculations are based on shed
vortex data that ranges from tip vortex, tip and root vortex,
to multiple vortices immediately behind the blade. Several
different iterative schemes are used to establish vortex
strength as a function of calculated blade lift. Dissipation
of the vortex downstream is somewhat arbitrary in present

1 analytical techniques and the wake in most cases is assumed
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rigid with drift relative to the hub and a resultant velocity
due to uniform inflow and aircraft speed. The solution for
the nonlinear aerodynamic loads and the coupled blade response
is performed in a series and the iteration between the air-

loads and blade response is used to obtain the final steady-
state solution.

PUBLISHED CORRELATION

Figures 57 through 65 summarize the available published data
on the loads-prediction capability typical of the industry.
This data includes the Kaman theory correlation with the CH-34
full-scale flight test conducted by NASA-Langley as reported
in Reference 35; the Sikorsky theory correlation with the
CH-34 full-scale tunnel test conducted by NASA-Ames as re-
ported in Reference 37; and the Sikorsky theory correlation
with the S-61F full-scale flight test counducted by Sikorsky

as reported in Reference 38. Generally speaking, the corre-
lation of theory with test data is fair to good, indicating
the obvious necessity for continued refinement of all theories
presented herein.
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