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FOREWORD

The work described in this report was conducted within the Propulsion
Branch, AFAPL/TBA, of the Turbine Engine Division at the Air Force Aero
Propulsion Laboratory, Wright-Patterson Air Force Base, Ohio. The effort
was accomplished under Project 698DE from May 1970 through January 1971.

This report was submitted by the authors February, 1972.

Publication of this report does not constitute Air Force approval of
the report's findings or concliusions. |t is published only for the

exchange and stimulation of ideas.

- /’/ /
»?;.‘/cffkf//i ol
ERNEST C. SIMsSP

Director, Turbine Engine Division
Air Force Aero Propulsion Laboratory
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Abstract

Results of this study indicate that, for an externally blowa flap
transport airzraft and missions investigated, aircraft gross weight
raductions on the order of 10% can be obtained from the utilization or
turbofan engines incorporating Advanced Technology Components when com-
pared to near term propulsion technology. Engine thrust/weight ratio was
clearly'the most significant propulsion design parameter in terms of
providing aircraft weight reductions. Other propulsion parameters such
as cruise SFC, bypass ratio, and overall pressure ratio had only secondary
effects on aircraft gross weiqht. While the effect of noise abatement
was not considered, variations of engine thrust/weight ratio and cruise
SFC were evaluated. Using these variations, preliminary estimates of the
penalties associated with noise can be obtained by expressing it in terms
of an ergine thrust{/weight reduction and cruise SFC increase and assessing
the resultant aircraft weight increase. A recommendation is made to
initiate a preliminary design activity whose objective would bz to define

suitable, high thrust/weigh. turbofan propulsion systems for the 1950+
time period.
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SECTION |

INTRODUCTION

In May 1970, the Tactical Air Command issued Required Gperational
Capability (ROC) No. 52-69, '‘dedium STOL Transport,'' which established a
requirement for a new aircraft to replace the C-130. This aircraft is
envisioned as a four engine, high subsonic speed, $TOL transport capable
of safe, routine operations onto 2000 foot runways. Projected initial
operational capabitity (i0C) date for this aircraft varies from 1978 to
1983, with funding availability for full scale development being a critica:

parameter in establishing this variance.

Using mission, speed, and payload data from this ROC 2 paranetric
study was conducted by the Air Force Aero Propuision Laboratory (AFAPL;
to investigate the impact and influence of engine cycle parameters and
propulsion state-of-the-art on the take-off gross weight characteristics
of a typical STOL aircraft configurstion. Tkz principal objac.ives of
the study were to evaluate the relative advantages of advanced versus
near term propulsion technology for this class of aircraft and to def ne
key propulsion items requiring advanced development demonstration effort.
A turbofan powered, externaily blown flap aircraft was select:d for use
in the stedy primarily beceuse aerodynamic and weight data were available
for this type of configuration. 1t is recognized that other acrodynamic
lift concepts are being considered to satisfy the regquirements for this
mission which could result in the identification of propulsior configu-

rations othar than those discussed in this report.
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SECTION |

MISSION DESCRIPTION

t. INTRODUCTION

Two mission profiles, simulating a primary employment mission
and a ferry deployment mission, were investigated in this study. In-
formation required to formulate mission characteristics such as take-off
field tength, range, speed, payioad, etc., was obtained from TAC ROC No.

52-69, ""Medium STOL Transport,' and from information obtained from the

AFAPL Plans Office.

2, PRIMARY EMPLOYMENT MISSION
The primary mission profile is illustrated in Figure la. This

mis.ion was used to size the aircraft. Required payload is 28,000 pounds

which is carried on both the outbound and return legs. Only internal
wing fue! is utilized with no refueling permitted at the mid-point. Air-
craft hold times at the mid-point and final destination are 10 and 30

minutes, respectively. Hold fliaht condition is MN = 0,2 at 1000 feet

altitude. All take-offs are according to the design requirements ident-

ified in Paragraph 4. Fuel consumed during start-up, warm-up, and take-

of f is based on all engines operating for one minute at maximum take-of f

power and five minutes at maximum continuous power.

3. DEPLOYMENT MISSION

The deployment or ferry mission is illustrated in Figure 1b.
Desired payload is 38,200 lbs. This mission is flown after the alrcraft

has beey sized for the empioyment mission and Is used to determine the

useful payload available. Aircraft hold time is 30 minutes and the load

factor, Lf, is reduced from 3.0 as used in the primary mission, to 2.5.
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Optimum Optimum
Cruise Crulse
Altitude Altitude
Yake - of f Lond/ Take~off
Midpoint
500 N.M. -y 500 NM,—
a. Primary Missjon
Optimum
Cruise
Altitudea
Climb
Toke ~ of f
2600 N.M,

b. Ferry Mission

(Both Missions Flown At Standard Day Conditions)

Figure 1. Hedium STOL fransport Missions
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4. TAKE-OFF REQUIREMENTS

Primary mission take-off requirements are illustrated in Figure
2. All four engines are used at maximum power during take-off. A runway
length of 2000 ft. was utilized with the first 500 ft. arbitrarily assumed
as being unavailable for use during take-off in order to provide a safety
margin for uncertainties. The 50 ft. obstacle was placed 1000 ft. from
the end of the runway. These assumptions result in a total take-off
distance requ:rerent of 2500 ft. to clear a 50 ft. obstacle, with a
maximum of 1500 ft. being available for ground roll. All take-off con-
ditions are at 250G ft. alvitude, 93.3°F day environment, and maximum
aircraft gross weight. The propulsion systems are sized by the take-off

requirement,

5. CRUISE SPEED REQUIREMENTS

ROC requirements state that the speed capability of this airciaft
must be sufficient to insure theater arrival at or before that of strateuic
airlifi in order to provide timely airlift support to air and ground
forces. An altitude cruise speed of at least Mach 0.75 is specified.

All cruise flight segments in the study were therefore flown at a speed
of Mach 0.75.

easgr ot v oy A = 4 i a
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SECTION 1t

AIRCRAFT CHARACTERISTICS

1. VEHICLE DESCRIPTION

The basic aircraft configuration selected for use in the study
is shown in Figure 3. It is a moderately swept wing, tee-tail design,
powered by four pod mounted turbofan engines. The engine nacelles are
mounted in close proximity to the fuselage to minimize engine out control
problems. High 1ift capability is achieved through the use of an ex-

ternally blown flap arrangement.

2. AERODYMAMIC CHARACTERISTICS
a. Take-off

The use of externally blown flaps results in the take-off lift
coefficient becoming a function of engine gross thrust coefficient as
well as angle of attack. Figure 4 shows the aerodynamic take-off charac-
teristics as functions of iastalled gross thrust coefficient and angle of
attack. All lift coefficieits used in the mission program were reduced
according to the following relationships to account for the preliminary
nature of the data used and to provide margin for potential alrcraft

stability and control problems.

CL = CL Obtained from Figure &4
curve
C . CL Used in Hission Program
core.
FOR 0 ¢ ¢ < 4.5
' curve
C « 0.95 & ¢
corr. curve
FOR 4.5 < ¢ < CL
curve max
¢ = 95 - .05 (CLcypye - 4.5)
corr,
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A completa discussion of the take-off program is given in Reference 1.

b. Cruise

Cruise performance assessment was accomplished by means of the
mission analysis program described in Reference 2. The assumed 1ift and
- drag characteristics as a function of Mach number and angle of attack
are illustrated in Figures 5 and 6. These characteristics'wereiassumed
constant and were not corrected for Reynu:il's number effects as the air-

craft wing loading was varied.

3. AIRCRAFT WEIGHT AND SCALING

Figure 7 shows the variation of basic aircraft operating weight
empty (OWE), installed propulsion system weight, and wing weight as
functions of aircraft take-off wing loading. As indicated, significant
changes in take-off wing loading result in only a small variation in air-
craft operating weight empty. Selection of wing loading will result in
establishing an operating weight empty for the baseline aircraft. This

process is described in Paragraph 4.

As the various parametric engines are installed on the basic
aircraft, the aircraft must be resized to account for differences in
individual engine performance (fuel consumption), size, and welght.
Discussions with alrcraft manufacturers resuited in the definition of a
A take-of f gross weight factor of 1.87 to account for these differences.
The application of this factor results in & total take-off gross weight
reduction of 1.87 pounds for every pound of weight removed from the
propulsion system and/or fue! load. This factor rema:ns constant for the
range of take-off gross weights being considered in this study. Appendix
| presents a general ocutline of the alrcraft and engire sizing technique.

L. AIRCRAFT WING LOADING SELECTION

Having established the aircraft configuration and aerodynamics;
plus the requirements imposed by the missions, only the alrcraft wing
loading and thrust loading remain unspecified.

9
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2.6-4=
, Mach No.
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0.75
T 0.70
0.60
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Figure 5. LIft Characteristics
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A preliminary analysis was conducted to determine a represent-
ative value for aircraft wing loading. This value was then fixed for a!ll
parametric engine evaluations. Since this study is concerned only with
the relative effect of advanced engine technology un aircraft take-off
gross weight, the selecticn of a fixed wing loading .hould not impose any
significant compromises on the relative effect of advanced technology
engines. However, it is probable that complete optimizatvion of the air-
cra't and propulsion syster characteristics would result in greater re-

lative advantasges for aiicraft using advanced technology engines.

The preliminary analysis was carried out using contractor study
engine bulletins. The characteristics of eack engine are listed in Table
' Flots of aircraft thrust/weight (T/W) versus aircraft wing 'oading
and take-off distance were genercied using the take-off computer program
described in Reference 1. Figures 8 and 9 depict the results of the
analysis for a contractor test engine No. 1. Several primary mission runs
were made at various w:ng loadings for each test engine. The mission
analysis program u.2d to make these runs is described in Reference 2.

“he results of this work are shown in Figure 1C.

r take-off wing loading of 97.5 Ibs/f!2 was selected as the best
compramise beiwzen overall mission performance and aircraft stability

and conirol requiremeni: Lt take-off.

13
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SECTION 1V

PROPULSION

1. INTRODUCTION

The engines evaluated in the parametric study were dual spool
turbofans having fixed primary and fan duct nozzies. see Table (1. All
engines were initially sized for a sea level, hot day airflow of 390
1bs/sec, and were flat rated to sea level, 90°F conditions. Noise con-
straints were not considered during the study since the Air Force has not
established requirements in this area. When firm noise criteria or re-
quirements have been identified a reassessment should be undertaken to
determine the effect on engine cycle selection and overail aircraft per-
formance and weight. Two propulsion technology state-of-the-art levels
were considered in the study and the range of cycle parameters investi-

gated for each technology level are listed below:

Baseline Advanced
Technology Technology
Max. Turbine Rotor Inlet 2450° 2650°, 2850°, 3050°
Temperature (°F)
Bypass Ratio (BPR) 3.5 - 7.5 L.5 -11.5
Cverall Pressure Ratio (OPR) 20 - 28 23 - 34

2. PROPULS!ON TECHNOLOGY DEFINITION

a. Baseline Technology

This technology level is represéntative of turbofan engines that
could complete model qualification tests (MQT) in the 1974-1975 time
period. A maximum turbine inlet temperature (TIT) of 2450°F was selected
as being appropriate for this level of technoloéy.

17
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This technology level is currently being investigated by air-
frame and engine contractors to determine representative engine/airframe
designs., For this reason a complete study of thls technology level was
not conducted. Rather, a few representative baseline engine designs were
developed and a base point design selected which is in general agreement
with current contractor work. This approach was implemented to insure
that baseline and advanced technolegy engines could be evolved and evalu-

ated on a consistent and comparable basis.

b. Advanced Technology

This technology level was established to represent turbofan
engines that woulu initiate engineering development in the late 1975 to
1976 time period with completion of Model Qualification Tests (MQT) in
the 1979-1980 time period. Composite materials, improved high-strength/
temperature alloys, and higher stage loading rotating components would be
utilized in these engines. Based on projected trends, maximum turbine
inlet temperatures between 2650°F and 3050°F were defined as being

feasible for this level of technology at varying degrees of risk.

3. CYCLE COMPONENT EFFICIENCIES AND LOSSES

The range of component efficiencies and pressure losses used to
compute engine performance for both the baseline and advanced technology
engine is listed in Table 111. {identical aerodynamic component perform-
ance was used for both levels of technology based on the assumption that,
for the mission being studied, advanced technclogy should be utilized to
reduce overall engine weight and dimensions rather than attempting to
significantly improve engine performance. This Is expected to resuit in
the use of higher tip speed/higher lcaded rotating components which have

efficiency levels that are comparabie to current technclogy components.

19
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TABLE 111

Fan Efficiency Range
Comprescor Efficiency Range
Comhustor Efficiency
Hligh Pressure Turbine Efficiency Range
Low Pressure Turbire Efficiency Range
Combusior Pressure Drop 2450°F Engines
2650°F Engines
2850°F Engines |
3050%F Engines
Fan-Compressor O\ P/P
" Fan Duct A P/P
- Gas Generator Duct NP/P
Fan Nozzle Velocity Coefficient

Gas Generator Nozzle Velocity Coefficient

DESIGN POINT COMPONENT-EFFICIENCY AND PRESSURE
LOSSE@ FOR BASELINE AND ADVANCED TECHNOLOGY ENGINES

0.851

0.851
0.985
0.875
0.915
0.048
0.053
0.058
0.073
0.010
0.015
0.00%
0.997

0.997

to 0.860

1o 0.858

to 0.878

to 0.920
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4. TURBINE COGL!NG AIRFLOW

For the baseline technology engines, chargeable turbine cooling
airflow was set at 9% of compressor discharge airflow. This value appears
to be consistent with proposed industry state-of-the-art engine configu-
rations operating with similar turbine inlet temperatures. For the ad-
vanced technology engines, it was assumed that the use of improved high
temperature alloys and advanced cooling techniques would allow turbine
inlet temperatures to be increased by 200°F to 2650°F without increasing
the required chargeable turbine cooling airflow. As turbine inlet temper-
ature is increased above the 2650°F value, required turbine cooling air-
flow increases linearly at the rate of 1% for each 100°F increase. This

rate represents an average of various contractor predictions in this area.

5. ENGINE PERFORMANCE

Uninstalled and installed performance for each engine cycle was
generated using the SMOTE off-design point matching program (Reference 3)
and a subsonic turbofan, nacelle installation program (Reference 4).
Component maps, based on contractor test data, were utilized to compute
performance for all engines. Accessory horsepower extraction and customer
bleed effects were not conslidered, since requirements for these items are
not avallable and it Is estimated they would have only a small relative

effect on the engine techrnology comparison.

A preliminary investigation was conducted to define optimum fan
pressure ratios, based on minimum cruise SFC, for each of the advanced
technology engine configurations, Results of the Investigations are
shown In Figures 11 through 3.

Uninstalled performance data for each engine was then generated
at the take-off, climb, cruise and hold conditions. The thrust, $FC, and
ai%flow cutput was then adjusted for installation effects based on a
short duct nacelle arrangement and using the procedures descrided in
Appendix l!.
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6. PROPULSION SYSTEM WEIGHT-AND SCALING

Accurate methods of estimating the uninstalled weight of advanced
technology engines are not well developed, except through the use of
layout or design drawings. The latter technique is normally not suitable

for use in a parametric design study.

To overcome this situation three base engine thrust/weight levels
were selected for each turbine inlet temperature, and the effect of engine
thrust/weight variation was assessed for both the primary employment and
ferry deployment missions. The selected base engine thrust/weight levels

for each turbine inlet temperature are listed below:

Turbine Inlet Temperature Base Engine Thrust/Weight
2450°F 5.5, 6.5, 7.5
2650°F 7.0, 8.0, 9.0
2850°F 8.0, 9.0, 10.2
3050°F 9.0, 10.0, 11,0

The base thrust/weight levels were adjusted for the effects of
bypass ratio ana overall pressure ratio, at a turbine inlet temperature,
by means of the curves depicted in Figure 14 through 17. The trends

established in these figures were derived from Reference 5.

After the base engine thrust/weight has been adjusted, each

engine was scaled, as required, according to the following relationship:

1) = I_‘)‘ X (TB_E_E )o.z
Y1 /scaLED VigRer TSCALED

&
&
i
2
B
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Figure 14. Variation of Thrust/Weight Ratio with Bypass Ratio and
Overall Pressure Ratio at 2450°F Turbine Inlet Temperature
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Figure i5. Variation of Thrust/Weight »3tio with Bypass Ratic and
Overall Prossurs Ratlo at 2650°F Turbine !nle: lemperature
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Figure 16. Variation of Thrust/Weight Ratio with Bypass Ratio and
Overall Pressure Ratio at 2850°F Turbine Inlet Tempgrature
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Where:
TREF - Based on a sea level, hot day airflow at 390 lbs/sec.
wl - Installed propulsion system weight.
TSLALED - Installed thrust required by aircraft.
NOTE: The above relationship is based on the following
equation:
W T 1.2
'REF - (}555 )
w' SCALED
SCALED

Installation weight factors were computed from the equations
shown in Table tV. All the installation factors are based on either

installed enqgine airflow or thrust.
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TABLE IV

PROPULSION SYSTEM INSTALLATION WEIGHT FACTORS

Abr Induciion Systceun oy o= L0Y70 Vo

Starier W = 0070 D

Thrust Reverser:

Baseline Enging Wy = L0400 I

cchnology Ingine W, = .035 .
Adv. Technology Ingine ¥ 0330 thLS
Gearbox, pods, oll tonk, ete. WT = 60F
shere:
by 2 Weight
LY P . .
SLS = Alrflos (sea level static)
Y = Thrust (sca levei static)

Note: Nacelle, prlon and support weighils were considered 1o be

a part of the aircraft operating espty weight (owe)
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SECTION V

MISSION ANALYSIS RESULTS

1. BASELINE TECHNOLOGY ENGINE/AIRCRAFT SELECTION

In order to conduct a consistent comparative assessment of base-
line versus advanced engine technology it was necessary to first define
an aircraft configuration incorporating a baseline technology engine. As
previously mentioned, the i:tent was not to conduct a complete parametric
optimization for this technology ltevel, but only to define a representa-
tive engine/aircraft configuration., The baseline technology engines
listed in Table Il were investigated for both the primary employment and
ferry deployment missions. Table V presents a summary of the aircraft
and engine thrust size characteristics for the various base engine thrust/
weight ratios considered and Table V| summarizes the resulting aircraft

take-off gross weight characteristics.

From Table VI it can be seen that the lowest aircraft take-off
gross weights are achieved with engine configurations having the highest
uninstalled base thrust/weight ratio considerad (7.5:1); and engine
overall pressure ratios and bypass ratios in the area of 20:1 and 4.5:)

respectively.

Qualification, within the 1974-75 time period, of a turbofan
engine having thrust, cycle and uninstalled thrust/weight characteristics
within the range described above is considered feasible based on tech-
nology currently being demonstrated by the AFAPL's Advanced Turbline
Engine Gas Generator and Advanced Propulsion System Integration develop-

ment programs. However, the development of such an engine will require

that an aggressive development program be undertaken. The characteristics
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of the selected baseline technology engine/aircraft combination ora

listed beiow:
SELECTED BASELINE TECHNQLOGY ENGINE/AIRFRAME
Maximum Turbine Inlet Temperature 2450°F
Overall Pressure Ratio 20
Bypass Ratio k.5
Aircraft Take-0ff Gross Weight 132,500 1bs.
Bare Engine T/W 7.5

All advanced technology configurations were compared to the base-

line design in terms of relative take-off gross weight (TOGW).

Relative TOGW = TOGW (Advanced Technology)
132,500 1bs (Baseline Technology)

2. ADVANCED ENGINE TECHNOLOGY

Table VII presents a summary of the aircraft and engine thrust
size characteristics for the advanced technology engine configurations
investigated during the study. Figure 18 is a carpet plot showing the
aircraft gross welght characteristics as a function of various engine
parameters. The relative effects of advanced engine technology on air-
craft gross weight are shown in Figures 19 and 20. Figure 19 presents
relative aircraft take-off gross weight versus bypass ratio, for engine
configurations with an overall pressure ratic of 23, This figure also
shows the evfect of base engine thrust/weight. As shown, engine thrust/
waight ratio has a significant effect on aircraft gross weight while
variations In bypass ratio have only a minor effect. Section |l, para-
graph 3, previously Indicated the sensitivity of ailrcraft gross weight
to changes in propulsion weight and/or fuel foad. The relative flatness
of the gross weight versus bypass ratlo curve, in general, results from
a canceilation of the Improved SFC characteristics of the higher bypass

ratio cycles by the lower thrust/weight ratio associated with these
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engines. At a constant bypass ratio of 8.5, Figure 20 presents the
effect of varying overall engine pressure ratio, turbine inlet temnpera-
ture and base engine thrust/weight ratio. Results indicate that moderate
overall pressure ratios provide the lowest aircraft gross weight; however,
as turbine inlet temperature is increased, for this bypass ratio, the
improved performance characteristics of the higher pressure ratio cycles
tend to counteract the engine w:ight increases, resulting in a negligible

increase in aircraft weight,

Figure 21 presents the effect of a +5%4 change in engine cruise
SFC on aircraft weight ~ - the primary mission. Figure 22 presents a
summary of the relative aircraft take-off gross weight of the optimum
engine cycle configurations for each of the turbine inlet temperatures
and base engine thrust/weight ratios considered. In essence, this figure
can be used to show the effect of engine thrust/weight ratio on aircraft
gross weight. Significant relative gross weight reductions are cbtained
as turbine ‘nlet temperature and base engine thrust/weight ratios are
increased for the levels shown in the figurc. Figure 23 shows the re-
lationship, for the optimum cycle configurations, of base engine thrust/
weight to actual engine uninstailed tnrust/weight after corrections for
bypass ratio, overall pressure ratio ard engine scaling have been taken

into account.

3. PAYLOAD SIZING FOR THE FERRY MISSION

Figu-¢ 2k pravides a comparison of payload weight fraction as a
funcilion of turbine inlet temperature and base engine thrust/weight.
All the ferry systems depicted meet or slightly exceed the 35,000 pound
payload requiremant. Kowuver, the higher turbine inlet temperature
desfgns with a corresponding increase in engine thrust/weight produce a

more effective aircraft in terms of ability to carry paylcad.

42
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I, SUMMARY 0OF RESULTS

Results of this analysis indicate that for the aircraft and
mission considered, aircraft gross weight reductions on the order of 107
can be obtained through the application of advanced propulsion technology.
Engine thrust/weight, both uninstalled and installed, is clearly the most

important engine design parameter.

Engine configurations having moderate overall cycle pressure

ratios, from 20 tc 28, provided the Iightest weight aircraft.

Variations in cruise SFC had only a secondary effect on aircraft
weight. Sensitivity investigations of + 5% variation in cruise SFC re-

sulted in only a 1 to 1.5% change in take-off gross weight.

Bypass ratins between 3.5 and II.S; at various turbine inlet
temperatures, were considered during the study. Over this range and at
any given turbine inlet temperature the maximum aircraft gross weight
variation was only two percent. The relative insensitivity of this
parameter indicates that if, at a later daté, design constraints such as
noise abatement or the influence of fan airflow toward improving flap
effectiveness becomes increasingly importank, engine bypass ratio could

be selected so as to favor a particular desjgn condition without sign-

ificantly affecting aircraft weight.

The ferry mission requirements wer?'met or slightly exceeded by

all the engine/airframe configurations basea on reducing the allowable

load factor from 3.0 to 2.65.

)
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SECTION VI

RECOMMENDAT IONS

The study conclusions indicate that, on < parametric basis, signif-
icant potential exists for reducing aircraft grosxz weight through the
application of advanced propulsion technology. This :echnoiogy could be
available for aircraft having projected 10C dates in the eariy 1980 time
period. As the first step in easuring that Lhe required technology Le-
comes available in a timely manner, it is recommended that & propulsion
system design analysis be conducted. Having established engine thrust/
weight as the most important engine parameter, the principal objective
of this analysis should be the definition of turbofan propulsion systen
installations which offer maximum uninstalled and installed thrust/weight
characteristics without requiring significant compromises in overall
performance. Definition of engine configurations havi..q moderate overal!
pressure ratios and uninstalled thrust/weight ratios of at least 9:f are
desired. Strong consideration shculd be given toward improving the
technology associated with the engine iow pressure section (fan, fan
turbine, fan static structure), -ince these compuoants currently comprise
55 to 65 percent of the basic weight of high bypass ratic turbofans. In
addition, utiiization of gas generators having high stage loading rotating
components and high maximum turbine inlet temperature capability will
minimize thé size and weight associated with this section, thereby im-
proving the thrust/weiaht ratio of the overall engine. During the
analysis, the effect of noise abatement on engine performance and weight
should be assessed and considearation given to reducing engine noisc
levels through the use of modified design techniques, engine derating
procedures, and/or the utilization of accoustical treatment. Details of
the most desirable overall engine and individual component design, per-

formance and weight characteristics should be established during the

anatysis.
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APPENDIX |

GENERAL QUTLINE OF AITRCRAFT AND ENGINE WEIGHT SIZiNG TECHNIQUE

From the work described in Section IV, both the aircraft take-
off thrust/weight and weight fraction are known for each parametric engine
configuration. The physical size of the sircraft and tie propulsion
system are coupled by the expressions on the tollowing page. These
equations require that the weichi of the aircrart and propulsion system
be determined simultzneously; to accomplish this, an iterative procedure

was formulaied and computerized.

This procedure is based on the arbitrary selectior of an engine
thrust size and the apolication of Equations (1) and (2) (o determine
the accuracy of this selection. The procedure is repeated in a systematic
manner until there is satisfectory agreement petween the selected thrust

and the required aivcraft thrust, T A generai outline of the

scaled’
procedure is givan below,

1

b. In order to solve the simultaneous Equations (1) and {Z) an instalind

propuision system weight must he known.
2. Tn determine the installed propulsion system weight, an arbitrary
tharusl size is chosen.

3. The installed thrust/weight for the parametric enging of interest i

next determined by means of the following considerations:

a. A basic thrustiweight 1w 5. 'ectet devending un Lurbine inlet
temperasturg.  Adjusiments are then made for OFR and BPR by mecns of

Figures 1h through 7.

b. The thrust/weight is next adjusted for scaling eftects wivich
is based on the ratio of the assuimed (hrust size and the basic thrust

5ize appearing in Table V.

]
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c. Finally, an adjustment is made to account for installation

weights, see Table V.

L. The installed propulsion system weight may be determined from the

assumed thrust level and the installed thrust/weight computed above.

5. Equations (1} and (2) are then solved for Tscaled using the installed

propuision system weight.

6. |If the arbitrary thrust size is not in agreement with T a new

scaled’
thrust level must be assumed and the process repeated until agreement is

reached.

7. When the proper thrust size has been determined, the TOGW can be

computed from Equation (1).
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APPENDIX |1

INSTALLED PERFORMANCE PROCEDURES

1. MHACELLE SELECTION

A short duct nacelle configuration with an annular conic gas
generator nozzle installation was selected because of its low installa-

tion losses and lighter weight. See Figure 25.

2. PARAMETRIC ENGINE DIMENSIONS AND SIZING

A reference engine, defined below, wiose performance and dimen-
sions were known, was utilized as the base for sizing the parametric

engines.

Core Engine Noce'le

52.1 30% mgx

Fan Nacelle
78.4

Fan L/
(Ref. Eng) = 1.54
Core Engine Nacelle L/0
{Ref. £ng) = 1,278
Net ThrUSt(Ref. Eng) - *lk?l pQUﬂdS

r = radlus in inches

52
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The procedure used to size the parametric engine was as follows:

a. The parametric engines were sized to the sea level static

thrust of the reference engine.

b A = Net Thrust
’ Air Flow SLS Hot Day
T.0. Ref Eng

Net Thrust
Air Flow SLS Hot Day

T.0. Parametric
Engine

Then: Max Dia Fan Cow! - A (Max Dia of Ref Engine) = B

2

¢c. Core Engine Nacelle
Gas Generator Base = RA) (Ref £ng )] [Fan Nozzle ] )
Jiameter L Fan Noz Dia /|- [Area Parametric| (A”)
Engine - =C
T
d. Longth of fan cowl =] (L ) Fan cowl
LZDMaxi Ref Eng | x DMax Parametric Eng = D

Fan cowl

Length of core = ((L ) 1

eng nacelle DBase

0

Ref eng cure| x [(Gas Generator Dia)]a £
- eng nacelle

f. Area of free stream = A = (WA Ref Eng (R) (Tg)
v, (Ps) (a)?

- parametric engine nozzle "
g. Area of gas producer nozzle exit | exit area based on ref- | (A)" = Ag
" | erence engine SLS
Hot Day 1.0, HA

r Parametric engine fan nozzle
. Area of fan nozzle exit area =) exit area based on reference |[(A)° = A28
| engine SLS Hot Day T.0. W

A
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i. Area of core engine nacelle = 7T (() \/6/22 + (E)Z

j. Area of fan cowl = T (6) (D)

3. INSTALLED PERFORMANCE

A CD 7 (Engine Nacelle form plus fan cowl friction drag coef-
ficient) of 0.0185 was used to compute installed performance of all
parametric engines. This value appeared reasonable based on available
test data. Subsonic inlet additive drag was considered offset by lip
suction forces, (Reference 6). installed performance was computed using
a subsonic turbofan installation program, (Reference 4). An additional
0.7% loss was added for pylon drag at the cruise flight condition. Pylon
drag at other flight conditions was calculated based on "g'* ratio times
0.7%. Interference (engine nacelle/aircraft interface) losses were .
neglected. Installation losses for the parametric engines are shown in

Figure 26.

5%
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