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1. INTRODUCTION

This final report presents the results of a 12-month study of adaptive

filters for AMTI radar. The results are applicable to several types of

radars, including .J and AEW systems. Adaptive systems, and adaptive filters

in particular, sense the existing noise field and optimize a set of system

parameters.. In an adaptive filter, the filter weights and transfer functions

are adjusted to maximize the output signal-to-clutter (plus receiver noise).

ratio.

The clutter spectrum in an AMTI radar is a function of several variables

inclueG.-g scan angle, radar velocity, antenna pattern, and angular distribu-

tion of clutter. Rain backscatter is an important component of clutter in

higher frequency radars. Its location, mean radial velocity, and velocity

spread due to wind shear are not generally known a priori. An adaptive

filter senses all of these clutter properties and optimizes the filter re-

sponse for detection of targets with a selected radial velocity. In most

cases, a bank of adaptive filters will be required to cover the target

doppler spectrum. The theory of adaptive filtering is discussed in Section 2

of this report.

During this study, a computer program was developed for the investigation

of both the steady-state response and transient performance of adaptive AMTI

filters. Provisions for both ground clutter and rain 'clutter were included.

A variety of parameters are variables in this program, including: radar

velocity, scan angle, target radial velocity, adaptive loop parameters, number

of pulses processed coherently, and rain clutter properties (magnitude relative
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to ground clutter, mean radial velocity, and spectral width). A large

number of sample cases were run to develop some insight into the performance

of adaptive filters and to uncover problem areas. Selected results are pre-

sented in Section 3 of this report.

The suitability of adaptive filters for future AMTI radars depends both

on the performance of adaptive systems and on their complexity. Methods of

reducing the complexity of adaptive control loops for filters (or adaptive

array antennas) were also investigated during this study. A technique for

reducing significantly the complexity of digital adaptive filters is discussed

in Section 4 and in Appendix B of this report.

Suggested areas for further research on adaptive filters and conclusions

of this study are presented in Section 5. A simplified and more accurate

method of computing the control loop noise power in adaptive filters is con-

tained in Appendix C.



3.

2. ADAPTIVE FILTERS

Consider an airborne coherent pulsed radar designed to detect moving

targets in a clutter background. Let V denote a column vector of the consecu-

tive received signals from one range cell,. VT = (vl,v2 ,...,vK), where vn is
th

the complex video for the n sample and T denotes the transpose. An NTI

filter output is obtained by forming the weighted sum of these v, WTVN where
n'T

W is a column vector of complex weights w . The filter response is determinedn

by the w , which are chosen to maximize the output signal-to-interference

ratio (S/C).

The interference (clutter plus receiver noise) power in the output is

C =ElJWe = I%4 (1)I

where I is the covariance matrix of the interference process with elements

M E v *v (2)

Both clutter and receiver noise (but not signal) are included in the computa-

tion of the covariance matrix. In these equations, * denotes the complex

conjugate and E the expectation or average. The output voltage samples vn

and weights wn are complex quantities retaining both phase and amplitude

information.

In designing a filter, some assumption must be made a priori concerning

the target doppler frequency. Consider the case where a separate filter is

synthesized for each of a set of target doppler frequencies, analogous to a

-... F;
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filter bank. Let S denote a column vector of signal phases for the K con-

iý 2i i(K-l)ý
secutive samples, S 7 (l,ei•, ,...,e Ai)*A signal of amplitude A

received from a target with doppler frequency f is represented by AS, with

= 27fT, where T is the pulse repetition period. The corresponding signal

voltage at the filter output is AW S and the output S/C ratio is
I T

S W 2

A ,(3)
* WTMW

In most cases of interest, the interference processes are Gaussian.

The optimum detection algorithm for these cases is to form a maximum S/C

filter and compare the signal amplitude at this filter output with a detec-

tion threshold . The filter which maximizes S/C has weights propor-

tional to

W CIS* (4)

An adaptive filter will now be described which senses the interference spectrum

or covariance matrix M1 and generates a weight vector that approaches Eq. (4).

A K-pulse adaptive filter is implemented with K separate adaptive control

loops, each generating one complex weight Wn, as illustrated in Figure 1. To

cover all range cells in a pulsed radar, K-1 delay lines are required, each

with a delay equal to the pulse repetition period. The operations indicated

in Figure 1, and in the control loops illustrated in Figure 2, can be performed

with either analog or digital circuitry. The control loops are identical

except for the steering signals Sn, which are matched to the desired signal

U.
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Figure 2. Adaptive Control Loop

doppler frequency. With low-pass filters employed as integrators in

Figure 1, satisfying the equation

S+u - z (5)

n n n

nn

the weight vector satisfies the equation [2]

W + ( +I/G)W= S (6)
G

where I is the identity matrix. When the gain G is large (relative to the

elgenvalues of M), the weights approach the steady-state solution of Eq. (4).

The theory of adaptive filters is closely analogous, to the theory of

adaptive array antennas, which is detailed in (2]. Since the covariance matrix

/J



M is Hermitian, the transient response of the system can be computed in

normal coordinates. The effect of control loop noise in these systems has

also been analyzed. [2] A simplified and more exact derivation of the con-

trol loop noise equation is contained in Appendix C.
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3. AIAT PERFORMANCE OF ADAPTIVE FILTERS

The basic criterion of performance used is the S/C (signal-to-clutter)

ratio. Specifically we have set the input or unfiltered S/C ratio to one;

hence our S/C ratio is actually the ratio of the output to the input S/C ratios.

Some authors term this the MTI gain or improvement factor. The loop noise is

not included in these calculations; however, it does not significantly affect

them.

Another important criterion is the rate of convergence of the adaptive

loops. To characterize this factor we h-ve investigated the mean S/C ratio

as a function of the number of independent samples, subject to the constraint

that the time constant of the loops is chosen to give a constant loop noise

factor (n = 0.1). The expected ILLual output undcr clutter conditions con-

sists of two factors--one due to clutter and the other due to random varia-

tions in the filter weights (loop noise). The noise factor, J, is the ratio

of the output due to loop noise to the output due to the clutter when the

system has reached steady state. (For mcre detail see Appendices A and C.)

The initial value of the weights has been chosen to be GS . This is indepen-

dent ot the clutter spectrum, optimum when only receiver noise is present,

and is considered a reasonable design when the clutter Is unknown.

There are many parameters which affect the performance of an adaptive

system. We have chosen to keep some fixed (e.g., the antenna pattern) and

have normalized others (see below). To depict the effect of all of these

parameters., we have chosen a b3seline set of values and then (for the most

part) investigated the effect of varying just one of these parameters at one

time.



The radar backscatter from rain has been modeled as a gaussian-shaped

spectrum, its mean, variance, and power relative to the ground clutter being

parameters. In the case of rain, the initial weights were not only chosen

to be GS , but in some cases set equal to the mean steady-state value obtained

under the corresponding no-rain condition. This latter initial value has

been termed "rain onset." Interestingly (for the cases considered), only a

slight improvement in the transient response takes place by using the latter

initial values.

The maximum MTI gain shown in these curves is roughly 60 dB. This gain

is limited by the sidelobe clutter spectrum. A sidelobe lcvel of 29.6 dB,

with a Dolph-Tschebycheff antenna pattern, was assumed in thb model. The

corresponding two-way sidelobe gain is roughly 60 dB below the maximum main

beam antenna gain. This sidelobe level is representative of existing radar

systems. Also, roughly 50 dB of MTI gain is adequate in most AMTI radars.

In practice, the performance of an AMTI radar would typically be limited to

50 to 60 dB MTI gain by receiver noise. By assuming a lower sidelobe level,

better MTI gain could be attributed to the adaptive filters. However, this

would not be representative of typical radars.

3.1 PARAMETERS

VR- mean rain velocity (relative to ground)

V - target velocity (relative to ground)
T

Vp platform velocity (relative to ground)

A wavelength

- pulse repetition frequency.
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3.1.1 Antenna Pattern (Remains fixed throughout the plots
depicted herein)

A Dolph-Tschebycheff design with elements spaced at X/2. Identical

receive and transmit patterns and zero gain in the reverse half-circle.

NEL = 30 = number of elements

SDLB = 29.6 dB = ratio of main beam peak to any sidelobe peak

BEAM(DEC) = 4.1 beamwidth (in degrees) between 3 dB points.

3.1.2 Ground Clutter (Assumes independent gaussian stationary
spatially homogeneous scatterers--
clutter spectrum being caused by the
moving radar platform)

NSC = 100 = number of equally spaced scatterers (over 1800) assumed
in computing the covariance M

NP = 2,5,10,20 - number of pulses in the filter

ALFA = a = 1,2,10 = nornalized platform velocity 2Vp /Xfr

SCAN = 4 = 0(11.25)900,450 = scan angle = angle between platform
velocity and beam center (see Figure 3).

3.1.3 Rain Clutter (A gaussian-shaped spectrum)

RNM = 1 = 0.1 = normalized mean = 2VR /Xf

RNS = a = 0.01,0.05,0.1 = normalized standard deviation

RNP = p = 1,10 = ratio of total rain power to total clutter power.

The total input power (rain + ground) is normalized
to one.

3.1.4 Loop (Applebaum Array--see Figures 1 and 2)

3 6=GAIN = G = 10,10 ,l0 = loop gain

ETA = = 0.1 = noise factor = ratio of the output due to random
variations in the weights to the output due to the
clutter in the steady state. This and the gain
determine the time constant of the loops.
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3.1.5 Signal (Normalized to unit power, point source)

BETA = = 0(0.1)0.9,0.4 = normalized target velocity (relative to
ground)

= 2VT /Xf modulo 1

GA1NA = y = (tcosi+p ) modulo 1 = design normalized doppler frequency
for the filter.

3.2 TYPES OF PLOTS

3.2.1 Transient Response

The S/C ratio (or MTI gain) is depicted vs. the number of independent

samples. The initial value of the weights is chosen to be GS (where S

is the steering signal which is independent of the clutter), which is

considered a reasonable design when the clutter is unknown. The response

at this initial value is shown by a small dash. Both the steady-state and

optimum performance are depicted as straight lines. Due to the high base-

line gain of 10 on most plots, the steady state and optimum merge into a

single line. Since the noise factor, T1, is kept fixed, these plots show the

convergence rate of the loops at the same relative loop noise level. Please

note the logarithmic "number of samples" scale.

3.2.2 Transient Response (Rain Onset)

Same as "Transient Response" except that the initial value of the weights

is chosen to be the mean steady-state value for the corresponding no-rain

condition. The small dash indicates the response at this initial value.

Another small dash labeled "NO RAIN SS" is the steady-state response under

the corresponding no-rain condition.
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3.2.3 Clutter Spectrum

The "folded" (due to the pulse repetition frequency, fr spectrum of

the clutter is depicted. When rain is present, it includes the contribution

to the spectrum by the rain. It is normalized to unity (0 dB) total power.

3.2.4 Spectra-Filter, Clutter

Depicts two folded spectra on the same grid. One is the spectral re-

sponse of the filter formed by the weights (easily distinguishable since it

has one less peak than the number of pulses). It is normalized to 0 dB at

the desired design frequency of y. The other is the clutter spectrum as spe-

cified above.

3.2.5 Optimum Performance

Depicts the optimum S/C ratio (MTI gain) vs. the normalized target

velocity (s). A number of curves are shown at various scan angles, I.

3.3 DISCUSSION OF PERFORMANCE

Very good steady-state performance (S/C ratio in the 50 to 60 dB range)

is obtainable for all but extreme parameter values (just what these extreme

values are is discernible from the detailed discussion below).

Reasonable convergence rate of the loops is also obtainable for most

3 4parameter values, i.e., in about 10 to 10 samples the mean response is with-

in a few decibels of the steady state which is negligibly close to ths optimum.

This is for a noise factor of 0.1; hence the additional degradation of per-

formance due to random fluctuations in the weights at this point is negligible.

Since the mean weights during adaptation are not equal to the steady-

state weights,. the loops form a biased estimate of the weights. This causes

S 7j.
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rather slow convergence in some cases. The staircase-like convergence of

the mean response (even on a logarithmic scale) indicates that there are long.•

intervals of sampling when no significant improvement in the mean response

takes place (whether the variance of the weights at this time is being sig-

nificantly reduced has not yet been investigated). For example, for the

baseline case (Figure 4) from 100 to 1000 samples, there is only. about a

2 dB improvement.

For some extreme cases (very heavy rain) (Figure 44), the mean response*

even diverges (after almost achieving the steady-state value) to a value

even less than the initial value (after about 30,000 samples) before again

converging to the steady-state. This occurs when the average magnitude of

the initial weights differs widely from the magnitude of the steady-state

"weights. The steady-state weights, MI S *, tend to be large when the rovari-

ance matrix contains one or more very small eigenvalues. It might be prefer-

able to have an unbiased estimator, i.e., one in which the mean magnitudes

of the weights would always be comparable to the steady-state weights. In

this case the effect of additional samples would be to adjust the relative

magnitudes and phases of the weights, which would improve the response.

Such estimators can be found--the problem is that they markedly increase

the complexity of the calculations.

It is felt that better estimators than the investigated loops are pos-

"sible; however, probably at an increased complexity. The investigated loops

do however give a sufficiently good performance that is probably satisfactory

for many applications. The simplicity of the loops then makes them a good

overall design for some systems.

*1
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3.3.1 Base Line

The base line has those parameter values which are underlined in Sec-

tion 3. Figure 4 shows the mean transient response with its characteristic

staircase-like (even with a logarithmic abscissa) approach to the steady-

4state value. About 10 samples are seen to be required to complete adapta-

tion. The duration of one sample is the radar (compressed) pulse length,

typically around 1 microsecond.

Figures 5 through 10 show the filter response (of the mean value of the

weights) as adaptation takes place. The clutter spectrum is superimposed on

all of these figures. Initially (samples = 0) no specific attempt at sup-

pressing the broad peak of the clutter spectrum is evident. As the number of

samples increases, two.main effects are discernible. The lobe peaks of the

filter in the region of the clutter spectrum maximum are decreasing and more

filter lobes are being squeezed into the extent of the clutter lobe (from 2

to 4 lobes). The main filter lobe which includes the selected target doppler

frequency also widens a bit. This is believed to be a necessary consequence

of narrowing the other lobes. A very slight shift in the peak of the main

filter lobe may also be noted. This effect is more pronounced under more

extreme conditions (e.g., see Figure 51).

/.
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3.3.2 Opt imum. Performance

Figure 11 investigates the variation of performance with target doppler

velocity (ý) and scan angle (Q)). The optimum S/C ratio is shown. However,

6for a loop gain of 10 this is practically (within 0.1 dB) the same as the

steady-state performance.

As expected, performance drops sharply as the target doppler approaches,

"0 (or 1) since in this limiting case the target is spatially stationary (cr

appears so due to the doppler ambiguity). It is interesting to note that

performance in this case is worst at 0 scan angle. This occurs because the

platform motion clutter spectrum becomes more spread out with increasing scan

angle (see Figures 12 throucjh 16), thus making discrimination possible.

However, as the target doppler moves away from 0 (or 1), this same increased

clutter spread causes decreased performance since it is more difficult to

place a broad null in tne filter spectrum. The erratic behavior of the per-

formance with scan angle in the target doppler midrange is believed to be

due to the relative difficulty of achieving specific separations between the

filter main peak aad predominant broad null. In the midrange of target

doppler the adapted performance is seen to be relatively insensitive to scan

angle, showing that the adaptation manages to compensate Zor the disparate

clutter spectra (Figures 12 to 16).

I
4t
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3.3.3 Variation with Scan Angle

3.3.3.1 Clutter Spectra. Figures 12 through 16 depict the variation

of the clutter spectrum with scan angle. Two main effects are to be noted.

The primary peak broadens with increasing scan angle and the location of

this peak moves towards decreasing normalized doppler frequency, making two

complete circuits for the 90* variation in the scan angle. These two cir-

cuits are specifically due to a being 2.- The spike at 0 (or 1) is due to a

being an integer which is also the cause of the spike and the main lobe

being superimposed at 0 scan angle (refer to Appendix A, Equation 7).

3.3.3.2 Transient Response. Figures 17, 18, 4., and 19 show the tran-

sient response variation with scan angle. Note that at 00 scan angle the

initial filter does extremely well since the clutter spectrum has only a very

narrow peak; however, considerable samples are required to improve upon it

since the loops find it difficult to place a very deep null at this specific

point. However, even at a slight scan angle (11.250), the initial filter is

seen to be rather poor and rapid improvement ensues under adaptation. At 900

the initial response is even worse, yet the adapted response is only slightly

worse that at 0* scan angle. With increasing scan angle, the transient

response becomes more and more step-like.

IA
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3.3.4 Variation with Target Velocity (•)

(Figures 20, 21, 4, 22, and 23) It is interesting to note that,

though the steady-state performance changes significantly with target doppler

(as discussed above), the number of samples required to achiLve this steady-

state response remains essentially 104 samples. A more and more pronounced

staircase-like transient response is evident with worsening steady-state

performance.

I,p
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3.3.5 Variation with Number of Pulses

(Figures 24, 25, 4, and 26) With increasing, number of pulses, the

variety of filters possible increases rapidly, so it is not surprising that

the steady-state 'performance improves. However, the complexity of the system

also increases markedly so that by 20 pulses the additional gain in performance

probably does not warrant the increased complexity.

/ i2 /
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3.3.6 Vairiation with Platform Velocity (a)

(Figures 27, 4, and 28) Small a is seen to give better steady-state

4
performance. However, it is to be noted that after 10 samples, essentially

the same performance results for a = 1 and a = 2. Since a = 2 Vp/Xfr, small a

requires a low platform velocity, high pulse repetition rate, or a long

wavelength. These parameters are usually decided on the basis of other

"system requirements than filter performance, e.g., the PRF may be selected

to avoid second-time-around returns and range ambiguities.



44

- 0 j

Ea C

cxl

a) C

w -. 1cu u

C3

09 Oh 0



f.4

c- o

c - I-0

CJ L.L

c; c.:'i- i

it C3 i- tD
c it IliI ~I L

ll - t- 1
C-d F--') .

10 U'

90 _ U

C3



46

3.3.7 Variation with Loop Gain

(Figures 29, 30, and 4) Note that the time constant of the loops is

changed so as to maintain a constant nioise factor (0) of 0.1. It is seen

that low loop gain causes a steady-state performance considerably less than

the optimum performance. The transient response is identical for the various

gaiiis except that with lower gain the asymptote is reached sooner. At low

"loop gains, the weights approach values ([4I+(I/G)]-s*) which are different

than the optimum (M-]S*). This bias in the steady-state solution is negligi-

ble when 1/G is small compared to the smallest eigenvalue of M.
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i

3.3.8 Rain Base Line

(Figures 31 through 36) A gaussian-shaped rain spectrum with mean of

0.1, standard deviation of 0.05, and with total power equal to the total

clutter power is added to-the baseline clutter spectrum. Note that the total

power is then normalized to One so that the S/C ratio depicted is still the

ratio of output to input S/C ratio (MTI gain). In practice, there would be

an increase in total clutter power so that the input S/C ratio would decrease.

Thus to maintain the output S/C ratio, the MTI gain would actually have to

increase. Specifically, with a relative rain power of one, the MTI gain

would have to increase 3 dB to main-ain the output S/C ratio at the pre-rain

level.

Some improvement (about 4 dB maximum) in transient response results from

initializing the weights at the pre-rain steady-state values (Figure 32).

However, as the number of samples increases, this improvement diminishes and

disappears before the steady state is approached. The baseline rain is

rather severe (compare Figures 5 and 33); hence the adaptation is governed

mostly by the rain--not the ground clutter.

Note in particular that even for this relatively severe rain the adapted

MTI gain is essentially the same as for the no-rain case. As shown below,

for lighter rains the MTI gain may actually improve.

Figures 33 through 36 show the filter spectra during adaptation; the

clutter (rain and ground) spectrum is superimposed to show how the filter

nulls out the broad clutter spectrum peak.
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3.3.9 Rain at 00 Scan Angle

(Figures 37 through 40) The broadness of the rain spectrum (compare

Figures 12 and 38) can clearly be seen in this case. Of particular interest

is the tremendous drop in performance when the initial filter is used (recall

that in the no-rain case at 0 scan angle, the initial filter was very good,

as shown in Figure 17). There is a slight (2 dB) drop in the MTI gain at

steady state.
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3.3.10 Increased Rain Power

(Figures 31, 37, 41, and 42) Increasing the rain power relative to

the clutter power has the curious effect of increasing the adapted MTI gain.

Note however that the input S/C ratio would now drop 11 dB; hence the output ,

S/C ratio would actually be worse. Figures 31 and 41 show the comparison at

450 scan angle; Figures 37 and 42 illustrate the effect of increasing rain

clutter power at 0* scan angle.
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3.3.11 Variation with Rain Spectral Width

(Figures 31 and 43 through 51) When the rain spectral width is reduced

to 0.01, the MTI gain increases by about 2 dB over the no-rain case, which is

almost enough to compensate the 3 dB drop in input S/C ratio. Thus the effect

of this narrow spectrum rain is almost compensated for by adaptation and the

actual output S/C ratio drops only 1 dB.

Under extreme rain spectral width (RINS = 0.1), a very curious phenomenon

occurs in the mean transient response. Adi•.tation proceeds reasonably well

until 4000 samples (Figure 44), but thereafter it diverges most significantly

before converging again. Setting the initial weights to their no-rain steady-

state mean values (Figure 45), though having a slightly better initial per-

formance and achieving the final steady-state value a little sooner, also has

a more serious interim drop in performance. Of particular note is that after

30,000 (after initial weights of GS ), the performance is worse than initially.

Figures 46 through 51 show the filter response during adaptation for

this extreme rain case. The dip in performance is seen to be due to a large

filter lobe at other than the design frequency, y. This is believed to be

caused by the relative changes caused in the transformed weights (see Appendix

A) as each transformed weight in succession (determined by its corresponding

eigenvalue) approaches its asymptotic value. The latter is also believed to

be the cause of the staircase-like transient response. We have not yet

found a simple way of compensating for this effect.

/
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4. SIMPLIFICATION OF ADAPTIVE FILTERS

The complexity of adaptive filters which are implemented digitally

depends strongly on the number of bits required at various points in the

system. Both the data storage requirements and the amount of. computation

depend on number of bits. Under earlier contracts, TSC has investigated

the effects of quantization noise at various points in the adaptive control

loops. These studies were performed for adaptive array antennas, but the

results apply directly to the closely analogous case of adaptive filters.

It was found by introducing the effects of quantization in an adaptive array

simulation that a single bit (one bit in-phase, one bit quadrature) is suffi-
*I

cient at the v input to the cross-correlator (see Figure 2). An analysisn"

of this simplification was performed under this contract which verifies the

simulation results. This analysis appeared in the July 1972 issue of IEEE

Trans. AES, and was included in the interim report[ 8 ] on this contract.

It is shown that the estimated covariance matrix differs only by a scale

factor when this V input is represented by a single bit Der quadrature
n

component. This result permits a major simplification of adaptive filters.

Further study of this problem has shown that a single-bit representation
* V

of the v input to the cross-correlator can be used, i.e., one-bit representa-

tion of just one quadrature component. The analysis supporting this conclu-

sion is contained in Appendix B.

J
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5. SUGGESTED AREAS OF RESEARCH AND CONCLUSIONS

As discussed in Section 3 of this report, the Applebaum type of adap-

tive array gives very good performance for its relatively simple implementa-

tion. One way to obtain considerable improved performance would be to

estimate the covariance matrix directly, to invert it, and to calculate the

weights by VI = M-S*. This procedure is not as complex as it first appears

since the estimation and inversion only have to be done once for the whole

bank of filters (each filter requires its own set of loops), the different

filters being obtained by a matrix multiplication. The inversion of the

matrix would be the most complicated portion of this procedure. However,

the covariancc matrix has a peculiar nature (i.e., M is a function only ofmn

m-n--see Appendix A), which allows it to be inverted in a particularly

simple manner (see [6] and [7]). The promise of a considerable improvement

in performance at a modest increase in complexity makes this procedure worthy

of investigation.. Such an investigation may also shed some light on what

minor (in complexity) modifications of adaptive loops would yield the most

improvement in performance.

The sometimes aberrant behavior (i.e., temporary divergence of the S/C

ratio during adaptation) of the loops considered does raise the question of

whether variations of adaptive loops (e.g., the Widrow array) also exhibit

this behavior.

The effect of the loop noise on the S/C ratio has been determined for

t&i. steady-state condition; however, its transient variation during adapta-

tion remains to be investigated.

____ ___ ___ ___ ___ ___ ___ ___ ___ ____ ___ ___ ___ ___ ___ ___ ___ ___ ____ ___ ___ ___ ___ ___,.-~. ~ - -. I
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An important area for further research is AMTI radars with adaptivity

in both space and time, i.e., adaptive control of both the antenna pattern

and doppler filter response. One important optimization study in space-

time adaptive systems is related to the choice of degrees of freedom. For

example, a system with 12 degrees of freedom could use a single antenna

output with 12-pulse adaptive filtering, three separate antenna outputs on

four consecutive pulses, etc. Antenna outputs could be obtained from sub-

arrays or separate beams, e.g., sum and difference beams in a reflector

antenna with multiple feeds. Methods of speeding convergence in these

systems and of simplifying the implementation are important areas for study.

The results reported here show that adaptive filters can provide im-

portant improvements in A.MTI radars. One advantage of adaptive systems is

the ability to sense the presence of rain clutter and re-optimize the filter

response. The convergence rates of the adaptive filters are adequate for

some applications--the typical convergence times of 1000 to 104 samples

correspond to 1 to 10 milliseconds in a radar with a 1 microsecond comnressed

pulse length. The change in clutter due to antenna scan is usually small in

this time interval. In other cases, more rapid convergence may be required,

e.g., to follow changes in clutter spectrum with range.

I
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APPENDIX A

COMPUTATIONAL EQUATIONS

1.0 INTRODUCTION

The equations used in computing the clutter spectrum (ground and rain),

covariance matrix, filter weights (optimum, steady-state, and mean transient),

and the resulting S/C ratio are outlined in this Appendix. We consider the

azimuthal antenna pattern with sidelobes and homogeneous spatially stationary

clutter both in azimuth and range. We neglect considerations of the varia-

tion of antenna pattern due to radome and near field scatterers, clutter

inhonogeneities due to terrain type and ,incidence angle, elevation antenna

pattern, and depression angle. The coordinate system ir shown In Figure 3.

2.0 NORIU!LIZED PARAWETERS

It is convenient to measure the platform velocity VP, and the target

radial velocity (relative to ground), VT, in terms of the wavelength, X, and

the pulse repetition frequency, f

r

a -2 V /Xf
P r

0 " 2 VT/Xfr (mod 1)

a cos(ip) +0 (mod 1)

y is the target doppler frequency modulo the pulse repetition frequency.

'C

/
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3.0 EQUATTONS

3.1 P2NTE1NA GAIN

A Dolph-Tschebycheff antenna pattern (see Ref. 3) is used. The

two-I'ay antenna power pattern is given by (identical receive and transmit

patterns are assumed):

g(sin) G () = W T Z° C..- sin /TM(o) }4- 7

0 otherwise (1)

where

TI = Nth order Tschebycheff polynomial

11 NEL-1 = 29

NEL 30 number of elements

d = A/2 spacing between elements

Z°- 1.01 parameter determining sidelobe level and beamwidth

0

All cases considered herein use the same antenna pattern with parameter

values as shown above, which yield a main beam 3 dB width of 4.1 degrees and

a sidelobe level (ratio of mainbeam peak to any sidelobe peak) of 29.6 dB.

"7 " - -
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V.io ' sprtially stationary homogeneous clutter. The doppler

.rC CuOC '.u, to a stationary scatterer at angle 0 relative to the platform

,L ce i C 2g. 3) is

f = 2 V cose/x . (2)
d P

Ihow.,7ever, the doppler frequency "folds over" at the pulse repetition

fr-cqu(-ncy, f, hence

2 V coso
f d/f c CosO (modulo 1). (3)

r

The clutter spectral density is thus

s(f) df= i G4 (0-ýI) df. (4)
e 3 mod(ca cos0,l) f

Let n be an intcger, Arccos be the principal [O,r] inverse function. Then

S~)~ 4(ý) Idf df_ý (5)

4Arccos (f~22)~ *Arccos (f42) +i

f+n < -

a-C[- CI -
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T2 Then

sinO = 1 coslý - T2 sinf (for the 1st summation)

(6)

- , cosý + T sint (for the 2 nd summation)

2 2

Not i.qg that 1/oldf - i/'r1 for either summation and recalling that

4G (¢) = g(s-Jni) wL. obtain

S(f) = Z g(TI cosp - T2 sin4,)/aT1 + E g(-TI cosi,- T2 sinp)/cxT1  (7)

nf-N1 ncN 2

where

2 nt sinýp < fL!m <
1 !

NI = n - siný _ f4_n _<I

f+nT2  2

g(sin4) is defined in Eq. 1.
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3.3 G.O','" CUTTIT CO,..,>AIC

th

Lot N be the nur.'hber of pulses to be processed coherently. The n

pulse voltage return from a scatterer at angle 0 is given by (normalized

to the fir,<t pulse):

a e i2ra(n-') coS0G2 (6-0) (8)n

The contribution of this clutter element to the'clutter covariance is given by:

TAA11C A A (9)

where A is column vector of the a
n

Thus I- m. n) =f 1r(-~csG 2(6ý)

1i27(n-l)acos0 2
x e G (G-ýp) dO

-i2wr(m-n)cacos0
* 4 (o-0) e do (10)

Since C (G ) 4 (-,), GG() - 0 for I'I> ir/2

r/2 -1 r( -)a o 1 7 (m-)ccos (t )

G (mn) -fG4(P) e + e do (11)
0
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The preceding integral is approximated by a sum of NSC/2 equally spaced

angics cvcr the region (0,-/2). This matrix is scaled so that the diagonal

teru:s (which are all equal) have the value of which corresponds to unity

input clutter pot:er. Note that the covariance matrix is really only a

function of m-n.

3.4 PAiN CI U'LT.P, SP CT, c M

Following 1nthansoti [Ref. 4], we assume that the rain spectrum is

Caussian. It is again convenient to introduce normalized parameters for

the mean rain velocity (relntive to ground), VR, and the standard deviation

of the spectrum (mainly due to wind shear effects), aR' Thus let

S= RN. = 2 V /R fr

=RNS =2 oR/Xf

Due to platform motion, the normalized mean relative to the radar is

p + acosi. The rain clutter spectrum (normalized to unit power) is hence

1 -(f-u-ccosp) 2/2a2

SR(f) -- e (12)

The above analysis ignores the "fold over" of the doppler frequency due

to the pulse repetition frequency, however, it is an excellent approxima-

tion as long as a is say less than 0.1.

/
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3.5 rP TN CLUTTER COVARIAI;CE

The rain clutter correlation function is the inverse Fourier trans-

form of its spectrum, i.e,.

R(t) ,=•9-ISR(f), f SR(f) eJ2fdf . (13)

From Reference 5

2 2Se-at2 7" e ,- /4

s-atl

hence,

j21T(V+acost))fr¶ -2(7of T)2
R(*) e r e r , (14)

and the clutter covariance nzatrix is

j2i (j+acos4)(m-n) -2(7o (m-n))
MR(m,n) e e (15)

3.6 COMBINING RAIN ATM GROUTID CLUTTER

Let p RNP be the ratio of the total rain power to the total ground

power. The rain and ground covariances and spectra have been normalized

to unit power. Bence, since the rain and ground clutter are assumed

statistically independent, the total covariance (also normalized to unit

power) is given by
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It(m,n) = i %G(mn) + . MR(m,n) (16)

-ote again that all the covariances are really only functions of m-n.

The total spectrmn is given by

S(f) I S M + P S . (17)s~)=I+-- SGf J+P

3.7 OPTIYr! .ILTER

As has been shown in Section 2 of this report, the weights for an

optinum filter are gven by (or proportional to):

W =M- S (18)

, -i2n(acosP + a ) (n-l)
where S (n) e . (19)

Since the eigenvalues and eigenvectors of M will be required for the

analysis of the transient behavior we obtained the optimum weights by a

different computational procedure. We compute Q and A such that A is

diagonal, Q Q = I, and

Q- HQ A (20)

-1 *T * -l*
W =Q A Q S -H S "(21)

Note that since A is diagonal, the computation of A-1 is trivial.
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3.8 FI .'E1 RES I'"SE

S(f) = e W(n) (22)
n~1

The spectral response is normalized to 0 dB at f = Y which is the

obser-cd doppler frequency of a target with a normalized radial velocity

8 relative to, ground.

3.9 OPTT!•JN S/C RATIO

The optimum S/C Ratio has been shown to be#

T -l*S/C =S M S (23)

Again since certain routines and items will be needed for the transient

analyses, we used the equivalent computational formula

* , A-l * A-l *

W T s 5T w s T s T s
wT A w s A-1 AA- s

T

*- T- T* M-lT -s=S 7 Q Q S STM S

where W Qw
* ,

S Qs . (24)

7 - 27777
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3.10 LOOP "'OTIS FACTOR

It has been sho,.nm (when the loop noise is small) that the total noise

in the filter output is increased by the following factor due to control.

loop noise. This equation is derived in Appendix C.

C 1 + r T (25)

where G control loop gain

At = time between independent samples

T control loop time constant

T = Trace of the covarlance matrix (Trace (M))
r

3.11 MEAN TRANSIENT VEIGHTS

It has been shown that the mean transient transformed weights. are

given by#

w(t) = e : + *
nno X + /G (AX + /1G)

where w - initial transformed weights w
no

.W-Qw -
S - Q s (26)

A - elements of A
n

#See Ref. 2.

77i



We define n = C - 1 = (At) as the loop noise factor. Then the mean

transient weights are

n* ~~-(.Xn + /G) T•-- + sn

n ()-- Sn e r + (27)
n - n 0

where i = the number of independent samples, spaced At apart

G = control loop gain (determined by allowable steady-state

degradation from optimum performance)

T trace of covariance matrix (total clutter power in all N
r

pulses)

loop noise factor (was shown to be 0.1)

3.12 MPAN TRAk`JTEDT RESFO'SE

We have calculated the mean transient response using

SC wT S ST W

siwT AT

where w are the mean transient transformed weights. This neglects the

effect of loop noise on the S/C ratio, however, loop noise is by design

(choice of noise factor ) quite small so the above approximation is close.

As show•i in Appendix C, the 2nd order transient moment of the weights

is required to determine this loop noise, which can be determined by an



12

iterative procedure. For the steady-state a direct solution has been found

(i.e., the noise factor) but no simple solution for the transient loop

noise has yet been found.

J4



APPENDIX B

GENERAL EFFFCT OF ENVELOPE NORMALIZATION IN
ADAPTIVE ARAY CONTROL LOOPS

G. W. Lank

INT.OI)UCTION

The properties of an adaptive array antenna, including transient

response rate and control loop noise, depend on the intensity of the exter-

nal. noise field. The dependence can be reduced by a general envelope

normalization. This can be done without degrading the performance of the

adaptive array. Special cases of the normalization are envelope limiting,

considered in [41, and one-bit digitization of the real and imaginary parts

of the signal frcm which the envelopes are formed, considered in [5].

Another important special case is one-bit digitization of the imaginary

part of the signal from which the envelopes are formed while the real part

is set to zero.

DISCUSS ION

Adaptive array antennas have been discussed in [1], [2], and [3] by,

respectively, UWidrow, Applebaum, and Brennan, et al. In [4], by Brennan

and Reed, it is shown that envelope limiting in the control loops reduces

the effects of varying noise Intensity without degrading array performance.

In [5], by Lank and Brennan, this is also shown to be true when one-bit

digitization of the real and imaginary parts of the signal from which the
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envelope is obtained is performed instead of envelope limiting. It will be

so., that the results of [4] and [5] are special cases of a general en-

velope normalization to be defined.

Another important special case of the general result is to digitize to

one bit the imaginary part of the signal from which the envelope is obtained

while setting the real part to zero. This eliminates one-half the multipli-

cations in the concrol loop (as well as eliminating the storage of the real

part of the signal from wh. h the envelope is formed in some adaptive systems).

The loops considered are those analyzed in [3] and [4].

th ,
Let v = the complex video input to the m array element, v = the

complex conjugate of vm, and f(vm) the function of the envelope applied to

tile control loops.

As a direct consequence of the results of [3], the average value of the

transient response of the loops as well as the steady-state PMIS noise are

only dependent on the covariance matrix

A Tn E [f(v1)v1) (1)

This is true, aýv;suming the loop time constants are long compared to the

correlation times of vn and the steady-state RIMS noise is small.

Let

JOin,
(2)

Then asssure

f(v,) f . O (3)
in (\Rn'I
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Thiun (3) issu.x-cs that the function of th. envelope applied to the

loc,'1, i s only a function of H tence it is a general normalization in

that f (v) is indopendent of R .

References [4] and [5] can be considered'special cases of (3). In [4],

f(V = g = e. , (4)

while in [5],

1 -j , 0 -< '/

m

( [ -J~m -l-j P I[2 - m < 7r C
f~v) ~ e ] l+j $ • m < 3T1"/2

•,14"j , 3rr/2 K 0 m < 211

As in [4] and [5], we shall calculate the covariance mntrix in (1) for

the case where v is a zero mean complex stationary Gaussian process.n

The joint probability density of Rm, 4m' R' n is given as in [41 by

R R2 4R 2 -2pR R cos(- .- i))
m R Rn n 2. in n m (,)

P4(R4 n , n n 4 2 exp2 (6)

" f E{*v: } . E{2 I,1 ; EVv} 20 2, i' =h

Jl{v,,} 0 ,
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... n:.o,,, the elemeiLnts of the covariance natrix A are

jd g(e n)Rne CP(m, (7

1d dR dRn " n I)'• id (7)

0 0 0 0

Let C, - - q in (7). Then, using (6) and the periodicity of the

coaina function, (7) bccones

An 2'T '; n) d4m (8) r

U|,m ~ ~ , 27s n (-

0

where

S 277 2 2+!'2

0 mn f li 2ir4 (-p 2 ) , 2CV2 (_p 2 ) .
0 0 0

(9)

In [4], pLin is obtained (see Eqs. (8) to (13) inclusive of [4]), as

LM I*mn (io.

Thus, substituting (10) into-(8), one obtains

A mn gl M 2 dc, (11')

0

A~s in [4] and [5], the eiements of the covariance matrix A differ from

tlj,' (1-4l•nt!; of 11 only by a co-,mon factor wh.'- is proportional to 1/0. Thus



the t-rinsi ent response will be independent of a and the performance will not

be dogra~(*d as a result of a general envelope normalization as specified by

f(v) in (3).

If the particular cases of (4) and (5) are substituted into (11) for

g (C!., then the 'results in [41 and [5] for A are obtained.

"Consider tlu- following case:

-j,0 < •m z
m

* _je) i.e., Im v > 0

f(v) (e (12)

i.e., Ira v < 0
m

Substituting (12)•into (11), one has

mn

Equation (12) corresponds to digitizing the imaginary part of v to
m

one bit While setting the real part of v to zero.m

t

)

I.
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APPE:NDIX C

MEA21 STEADY STATE OUTPUT CLUTTER - APPLEBAIPU ARRAY

in an adaptive filter or array, the weights are a stochastic process.

Expressions for the steady state mean and covariance of the weights are

derived. From these an explicit relationship for the mean steady state

output clutter is calculated. An iterative solution to the mean transient

output clutter is inherent in the method.

1.0 Sstocm Dcrcrir tion

i.1 Schematic

S.. .. + W ,V :'44

*IIV

Solid lines denote column vectors _

Fig. 1 - Applebaum Array (Filter)



2

1.2 Ec~uxtions

i * + [vvT + I/G]W= s* (1)G

V (when no signal is present) is a vector of zero mean complex

Gaussian stationary random variables with covariance

EV*VT = M. (2)

where E denotes the expectation or average.

Output = UT* VV •W (3)

Note that EWT* V*V TW # T* EV*VT EW unless the time constant of the

integrator, T, is chosen sufficiently large.

2.0 Difference Equation

Let At m time between samples of V, then (1) becomes

W so C~ [S* ._(V*VT + I/G)W] (5)tt+At t t t

3.0 Stendy-atnte mr an wol

Taking the expectation of (5), noting that since WV in determ, Ad by V

u~t-At It is statistically Independent of Vto
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W = s* -(lf+I/C)wT4 + T()t÷A t t .

In the steady state t+At W = W hence

(a + I/C)T =s*

- -1
W = (M/G)-I S* For.convergence: (A (-ii/G) <1. (1)

S22T

4.0 Output Clutter related to weicght statistics

T* TFrom (3) Output W V*V W

=. W*W*V 17. = V~V UW* (8)iijj i~ji 3 ij

Thus

E output i Nij Zj (9)iJ ii

where

z E WT*. (10)

hence E output Trace (MZ) - Trac[EjV*VT EiT (1)

Now let P be the diagonalizing rotation for the positive definite matrix

M, i.e.

p M ' A (12)



The trace is invariant to rotati ons hence

fE(Output)= Trace (P 1 P 1 P Z P~ 1  Trace(AP ZP N (13)

5.0 Stcaidy s tat.(, output

From. (5)

CA t C'Nt TF *(
w '++t W tA T ~ LS*S + (V*VT + I/G~w Jt*w (.VT + I/G)

-*1 ~t T* (V*VT + I/G) .-(V*v T + I/c)14t STl

+ *W~ (V*VT + I/G)wW W*T

+ wtS T ~w twJt* (VV + I/c)~ + 11tWtT 1)

Taking expectations, again noting that W is independent of V ,and using

the relationship (see Sectioni 7 of this appendix)

E~V *J1,WT V*VT MZ tM + 11 Trace(Z tM)

zt EW~ wTX Gt~t GCr [S*ST + MZ M + M Trace(Z M) + Z/G 2
t+:a t+ t +t T (T L

+ Z 14/C + MZ /G
t

S*W (M + ZIG) -(M + I/G)W ST TJ

+ S *W tT*-(M+ IG)Z t+VST -z t(M + I/G) (15)

+ z t
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In the steady state Z t+At Zt and Wt is given by (7). Hence

CAAt tT

S S + NI. + M Trace(Z',) + Z/G+ ZM/G + MZ/G

_ s~sT_ s*sT]

+ s'sT(ui+I/G)-1 + (11+I/G)-' S*ST

- (M+I/C)Z - Z(1+I/G) = 0 (16)

Next diagonalize as in (12) and (13). Let z = PZP 1

s* PS. (17)

Equation 16 has the following form after transformation

G-t [AzA+ zIG 2 + zA/G + Az/G] - (A+I/-)z - •+I

-G~ t s, - ATrace(Az) - s*sT(A+I/C)- 1 (A+I/G)-I s*sT (18)

Taking the i,1 component of this matrix equation we obtain

2T Trace (Az)

Z B /(,:+1/G)2+ (19)
1-- (Qi+1/G)T - .-ji-
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S AX/(A.+ 1/G)
•.Trae(Az) X =i + s GA Trace(Az) (20)

+11 2 2iis Gi2/(Xi+I/G)

E Output Trace'(Az) 22) i -

It is easi-ly shown that

•is S -T --

1 I W T* (22)

ji (x+1/C)
2

IHence

x 2
SE(OutPut) T4 *11 W I - I j (23)

6.0 Re¾'tionship to nrevious result

Suppose . << and G>>
Xmin

Then Equation 23 bec6mes

k k(output) =2T e
2"• iI C-At

---2T

2- ct(24)

S-which is the result obtained in Reference 1.
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7.0 Derivation of E V* VT W WT* V* VT

The following expression was used in Equation 15.

A = E V. V W V VV
ij k i m mWk k

A- E V V V V E 1m Wk since V and W are independent.
3m,k 3

Using Reference [2] E Vi V VV = E V V E V V +E V V E V V,

Thus

ijm.k "im n j Zm k + k ij " nm Zik

(M Z N)ij + MIj Trace M Z

or

A = N.ZM + M Trace (ZV) (25)

References for Appcndix C

[i] Brennan, Pugh, Reed/"Control Loop Noise in Adaptive Array Antennas"/

IEEE Transactions, AES, March 1971.

[2] I. S. Reed/"On a Moment Theorem for Complex Gaussian Processes"/

IEEE Transactions IT-8, April 1962.



DOCUmFNT CONTROL DATA - R & D

141 PORT !iL-.CUffIT eC IASSI lC Al 4014
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Naval Air Systems Commind
Washington, D.C. 20360
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Adaptive filterin$, is a technique for optimizing the doppler filter response
in an iNii (Ploving tarý'et indication) radar. In aiiborne .TI radars, the cluttcr
spectrum is contintially chanping and varies with scan angle, antenna pattern, and
angular distribution of the clutter intetvsity. Rain backscatter, if present, has
a doppler spectrum which depends on local wind velocity and wind shear. An adaptive
filter senses each of thiesei effects and adaptively controls the filter weights to
maximize the signal-to-clutter ratio in the filter output. Curves are presented
in this report which illustrate the performance of adaptive filters in AMTI radar.
The steady-state and transient response of adoptive filters, and performance in
rain, are included. Methods of simplifying adaptive filter control loops are
discussed.
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