AD NUMBER

AD904368

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; JUL 1972. Other requests shall be referred to Naval Ship Research and Development Center, Bethesda, MD 20034.

AUTHORITY

NSRDC ltr, 2 Jan 1975

THIS PAGE IS UNCLASSIFIED

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

ń,

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED,

NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesdo, Maryland 20034

USS EDENTON (ATS-1) TACTICAL AND MANEUVERING

TRIAL RESULTS

Charles W. Tate, Sr .

by

DISTRIBUTION LIMITED TO U.S. GOVERNMENT AGENCIES ONLY **TEE**

OTHER REQUESTS MUST BE REFERRED TO THE HEAD. SHIP PERFORMANCE DEPARTMENT, CODE 15.

> SHIP PERFORMANCE DEPARTMENT RESEARCH AND DEVELOPMENT REPORT

JULY 1972

Report 3961

3

OCT 25 1972

i fining

DEPARTMENT OF THE NAVY NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER Bethesda, Md. 20034

USS EDENTON (ATS-1) TACTICAL AND MANEUVERING TRIAL RESULTS

by

Charles W. Tate, Sr.

THE DISTRIBUTION LIMITED TO U.S. GOVERNMENT AGENCIES ONLY OTHER REQUESTS MUST BE REFERRED TO SHIP PERFORMANCE DEPARTMENT, CODE 15.

JULY 1972

Report 3961

.

TABLE OF CONTENTS

Pa	ige
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
SHIP CHARACTERISTICS AND TRIAL CONDITIONS	2
TURNING CIRCLES	2
ACCELERATION RUN	6
DECELERATION RUNS	6
SPIRAL MANEUVERS	19
SWINGING TESTS	19
ASTERN CONTROLLABILITY TESTS	29
COMPARISON	32
CONCLUSIONS	32
APPENDIX A - DIAGRAM SHOWING MEASUREMENTS USED TO DESCRIBE A TURNING CIRCLE MANEUVER	34

ii

UNCLASSIFIED

一日日の大学の大学の「日日のため」

LIST OF FIGURES

D	а	a	0
۲	a	ч	e

Figure	1 -	Ship Appendages	4
Figure	2 -	Advance, Transfer and Tactical Diameter Using Right Rudder Angles at Various Approach Speeds	7
Figure	3 -	Curves of Change of Heading Against Time, Nominal Approach Speed 5.5 Knots	9
Figure	4 -	Curves of Change of Heading Against Time, Nominal Approach Speed 11.0 Knots	10
Figure	5 -	Curves of Change of Heading Against Time, Nominal Approach Speed 17 Knots	11
Figure	6 -	Machinery Data Recorded During the Full Power Turning Circle Using 45 Degrees Right Rudder	12
Figure	7 -	Acceleration Run - Dead in the Water to Full Power Ahead	13
Figure	8 -	Machinery Data Recorded During the Acceleration Run from Dead in the Water to Full Power Ahead	15
Figure	9 -	Deceleration Run - Half Power Ahead to Half Power Astern, Approach Speed 14.6 Knots	16
Figure	10-	Deceleration Run - Half Power Ahead to Full Power Astern, Approach Speed 14.1 Knots	17
Figure	11-	Deceleration Run - Full Power Ahead to Full Power Astern, Approach Speed 16.1 Knots	18
Figure	12-	Machinery Data Recorded During the Deceleration Run from Half Power Ahead to Half Power Astern, Approach Speed <u>14.6</u> Knots.	20
Figure	13-	Machinery Data Recorded During the Deceleration Run from Half Power Ahead to Full Power Astern, Approach Speed 14.1 Knots	21

The second

「あいいましてん」

			raye
Figure	14-	Machinery Data Recorded During the Deceleration Run from Full Power Ahead to Half Power Astern, Nominal Approach Speed 17 Knots	22
Figure	15-	Machinery Data Recorded During the Deceleration Run from Full Power Ahead to Full Power Astern, Approach Speed 16.1 Knots	23
Figure	16-	Ahead Spiral Maneuver - Nominal Approach Speed 11.0 Knots	24
Figure	17-	Change of Heading versus Time Recorded During Swinging Maneuvers Using Bow Thruster Only at Various Ship Speeds	27
Figure	18-	Change of Heading versus Time Recorded During Swinging Maneuvers Using Main Engines Only at Various Initial Ship Speeds	28
Figure	19-	Change of Heading versus Time Recorded During Swinging Maneuvers Using Bow Thruster and Main Engines at Initial Ship Speeds of 0 and 3 Knots	30
Figure	20-	Ships Heading versus Time Recorded During Astern Controllability Maneuver, Using Bow Thruster at a Ship Speed of 5 Knots Astern	31
		LIST OF TABLES	
Table 1	1 - :	Ship and Propeller Characteristics	3
Table 2	2 - 1	Trial Conditions	5
Table 3	3 - (Observed Tactical Data Corrected for Drift	8
Table 4	4 – ž	Acceleration and Deceleration Data Summary	14
Table 5	5 – 1	List of Swinging Tests	26

iv

UNCLASSIFIED

ABSTRACT

This report contains the results of tactical trials conducted on USS EDENTON (ATS-1). The trials consisted of turning circles, acceleration, deceleration, spiral, swinging tests and astern controllability tests conducted at a displacement of 3,200 tons and 0 degrees trim angle. Measurements were made to determine tactical diameters, stopping distances, directional stability, controllability, and maneuvering characteristics. The results show EDENTON has normal turning characteristics, and the ship is directionally stable when operating at 11 knots. The bow thruster is effective in maneuvering the ship when operating at speeds from dead in the water to 6 knots.

ADMINISTRATIVE INFORMATION

The trials of USS EDENTON (ATS-1), reported herein were conducted in accordance with Naval Ship Engineering Center trial agenda letter ATS-1 Cl/9080, Ser 82-6144G of 3 May 1971 endorsed by Naval Ship Systems Command letter Ser 4504-391.A4 of 18 May 1971. The scope of the trials as outlined in the trial agenda was reduced by oral instructions from NAVSHIPSYSCOM and NAVSHIPENGCEN. The trial items deleted from the original agenda are listed in Naval Ship Research and Development Center Message 161508Z of June 1971.

INTRODUCTION

USS EDENTON (ATS-1) is a diesel-powered ocean salvage towing ship equipped with two controllable pitch propellers. It is the first of its class. EDENTON was built by Brooke Marine Ltd., Lowestoft, England. Tactical and maneuvering trials were conducted off Kent Island, Maryland, during the period of 26 to 28 July 1971 by personnel of Naval Ship Research and Development Center with the assistance of ship force personnel. The objectives of these trials included the determination of tactical diameters and related parameters, rate of change of heading, speed in turns, and direction and magnitude of maximum angle of heel during turning circle maneuvers. Further objectives were to investigate the directional stability characteristics and determine if the ship as built fulfills the design requirements, to obtain performance data for use of forces afloat, and to obtain data which can be used in the design of future ships.

UNCLASSIFIEI

SHIP CHARACTERISTICS AND TRIAL CONDITIONS

USS EDENTON (ATS-1) was designed for major towage and salvage work. The ship is equipped with two controllable pitch propellers. It also has a controllable pitch bow thruster to aid in maneuvering. The motor driving the bow thruster propeller is rated at 308 horsepower. Table 1 is a list of the principal ship and propeller characteristics. During a drydock period (7 to 16 July 1971), the underbody of EDENTON was painted with the standard Navy vinyl resin paint system and the propellers were cleaned. Photographs of the ship appendages are shown in Figure 1.

Tactical trials were conducted as near full load displacement and 0 degree trim angle as possible. The displacement maintained during the trials was 3200 tons. During the trial period sea and weather conditions were favorable and had no adverse effect on the conduct of the trials. The trials were conducted in accordance with procedures outlined in the Naval Ship Systems Command Technical Manual, Chapter 9080. Pertinent data concerning conditions during the trials are listed in Table 2.

TURNING CIRCLES

Fourteen 540-degree turning circles were conducted at various approach speeds and rudder angle settings. However, data reported herein consists of ten turning circles. The two left turn check tests are not included since the results of these turns agreed with corresponding right turns. Two right turning circles (15 degrees rudder at full power and 45 degrees rudder at 11 knots) are omitted because the data could not be analyzed with normal consistency.

Data were obtained from two shore stations and shipboard instrumentation during these maneuvers. The two shore stations, located 2460.5 yards apart, sighted on the mainmast of the ship. The mainmast was located 5.75 feet forward of amidship. Radio communication from ship to shore was established to coordinate the data-taking sequence of each run, and bearings were recorded at predetermined change of heading increments. By means of triangulation of bearings taken from the two shore stations the path and speed of the ship were determined. Change of heading was determined by means of a digital recorder electrically connected to the ship's gyro-compass circuit. Angle of heel data were obtained from the ship's inclinometer.

UNCLASSIFIED

TABLE 1 - SHIP AND PROPELLER CHARACTERISTICS

Ship Characteristics

282.67
264
50
2
2
4
Outboard
11.75
14.14
0.24
103.4
47.34
41.31

TABLE 2 - TRIAL CONDITIONS

Displacement, tons	3,200					
Draft						
Forward, feet-inches Aft, feet-inches	15-5 15-5					
Days out of Drydock	10-12					
Water Temperature, degrees F	77					
Water Specific Gravity 1.0063						
Air Temperature, degrees F 72-88						
Sea Conditions, Beaufort Scale	2-3					
True Wind Velocity, knots	4-10					
True Wind Direction, degrees	000-000					

The results of the turning circle trials, referred to the mainmast, are presented graphically in Figure 2. This figure shows advance, transfer, and tactical diameter plotted against ship speed. A diagram in Appendix A shows the definition of these terms. The curves are extrapolated in the areas where data points are missing, and these areas are shown as dashed lines. A tabulation of tactical data is presented in Table 3. These data have been corrected for drift due to wind and current. Figures 3, 4, and 5 are faired change of heading curves plotted against time for the tactical turns. During the full power, 45-degree right rudder turning circle shaft torque and RPM data were recorded and are shown plotted against time in Figure 6.

The results of the turning circles for EDENTON indicate normal turning characteristics in that advance, transfer, and tactical diameter increase with increasing speed and decrease with increasing rudder angle.

ACCELERATION RUN

One acceleration run was conducted from dead in the water to full power ahead. During this run the two shore stations tracked the ship to determine its speed and reach. These data, plotted against time, are shown in Figure 7. The speed and reach data have been corrected for drift due to wind and current. The results reveal that the ship accelerated from dead in the water to 16 knots in 160 seconds over a distance of 960 yards. During the last minute of the run the ship reached a speed of 16.15 knots while traveling an additional distance of 535 yards. Figure 8 presents the machinery data recorded on board the ship during this maneuver. Data pertinent to the conduct of the acceleration run are listed in Table 4.

DECELERATION RUNS

Four deceleration runs were made at various operating conditions: half power ahead to half power astern, half power ahead to full power astern, full power ahead to half power astern, and full power ahead to full power astern. The ahead and astern power designations for these runs represent requested propulsion plant operating conditions rather than measured values. The rudder was used in an attempt to keep the ship on the proper heading during these runs. The **tracking** results of the deceleration runs are presented in Figures 9, 10 and 11 which show speed, reach, and ship path plotted against time. The speed and reach data for the deceleration run conducted from full

*Values represent the change from the average heel angle recorded on the approach to each ::un.

0.9P	8 .6 P	258	116	294	8.2	17.1	45 ⁰ R
1.1P	9.4P	296	127	291	8.6	17.5	35 ⁰ R
0.6P	8.7P	352	158	327	11.9	16.9	25 ⁰ R
0.2P	4.0P	290	122	270	6.5	11.1	35 ⁰ R
0.6₽	3.8P	338	140	291	7.6	11.3	25 ⁰ R
0.55	4.1P	486	231	385	8.6	11.0	15 ⁰ R
0.4S	1.3P	224	92	220	6 • 6	5.4	45° R
0.55	1.3P	267	108	251	ω • υ	5.4	35 ⁰ R
0.88	1.8P	324	137	276	3.7	5.5	25° R
1.2P	.2P	450	222	365	4.2	5.4	15° R
Average Angle of Heel on the Approach	Ma ximum* Angle of Heel Degrees	Tactical Diameter Yards	Transfer Yards	Advance Yard s	Speed in turn Knots	Approach Speed Knots	Rudder Angle Degrees
	DRIFT	RECTED FOR	CAL DATA COI	ERVED TACTI	BLE 3 - OBS	TA	

UNCLASSIFIED

.

UNCLASSIFIED

Lance Ma.

Figure 3 - Curves of Change of Heading Against Time, ominel Approach Speed 5.5 Knots

6.12

Figure 5 - Curves of Change of Heading Against Time, Nominal Approach Speed 17 Knots

Figure 6 - Machinery Data Recorded During the Full Power Turning Circle Using 45 Degrees Right Rudder

Figure 7 - Acceleration Run - Dead in the Water to Full Power Ahead

and the second and the second s

UNCLASSIFIED

100

Ì

TABLE 4 - ACCELERATION AND DECELERATION DATA SUMMARY

Acceleration Run

Approach Speed Knots	Approach RPM Port/STBD	Duration of Run Sec	Ahead Power	Maximum Speed Knots	Distance Traveled Ya r ds
0	0	220	Full	16.15	1495

Deceleration Run

Approach Speed Knots	Approach RPM Port/STBD	Duration of Run Sec	Ahead Powe r	Astern Power	Reach Ya rds
14.6	120/120	80	Half	Half	325
14.1	120.3/120.3	70	Half	Full	280
16.1	150.4/150.2	67	Full	Full	29 0

Figure 8 - Machinery Data Recorded During the Acceleration Pun From Dead in the Water to Full Power Ahead

.

Astern, Approach Speed 14.6 Knots

N.

1. C. C. C.

- do Eduin

.

12000-

power ahead to half power astern have not been plotted because the data were erratic and did not yield meaningful results. The reach data shown on the curves were determined by projecting the ships path to the corrected base course. The reach is the distance the ship travels from execute time to the time it becomes dead in the water as measured along the base course. The total distance traveled by the ship may be determined from the actual path of the ship as shown in Figures 9, 10 and 11. Table 4 presents information regarding measurements derived from these maneuvers. Measurements of RPM, torque, propeller pitch, and ahead and astern servo motor pressures were recorded during the deceleration runs. Figures 12 through 15 present the results of these recordings plotted against time for each shaft. The port shaft is indicated by dashed lines and the starboard shaft is indicated by solid lines.

SPIRAL MANEUVERS

A spiral maneuver was conducted at 11 knots ahead. An astern spiral was attempted at 2/3 astern, but the ship failed to respond to rudder movement and the astern spiral was discontinued.

The ahead spiral maneuver was started after the ship was steady on course at the scheduled speed; throttle settings were not changed during the run. At execute the rudder was moved to 15 degrees right and held until the rate of change of heading became constant. The rudder was then eased to 10 degrees right and held until the rate of change of heading was again constant. This procedure was repeated for subsequent rudder angles of 7°R, 5°R, 2°R, 0°, 2°L, 5°L, 7°L, $10^{\circ}L$, $15^{\circ}L$, and back to $15^{\circ}R$ in the reverse order.

The results of the spiral maneuver are plotted as rate of change of heading versus rudder angle in Figure 16. At 11 knots EDENTON is directionally stable as indicated in Figure 16.

SWINGING TESTS

The main purpose of these tests was to determine the turning rates when using the bow thruster and to demonstrate the capability of the bow thruster to initiate, maintain, and reverse swings. Turning moments were created by using the bow thruster only, the main propulsion engines only, and a combination of both so that a comparison of the turning rates could be made.

19

UNCLASSIFIED

Run From Half Power Ahead to Full Power Astern, Approach Speed 14.1 Knots

Figure 15 - Machinery Data Recorded During the Deceleration Run From Full Power Ahead to Full Power Astern, Approach Speed 16.1 Knots

Same

Ten swinging maneuvers were conducted with the ship at 3200 tons displacement and 0 degrees trim angle. The draft of the ship was 15 feet - 5 inches, and the bow thruster tunnel was submerged 6 feet - 9 inches. The tests were conducted in water having an average depth of 113 feet. Wind and current were negligible and had no adverse effect on the operation of the ship during the maneuvers.

The tests were conducted with the ship dead in the water and underway at various speeds with the rudder held at 0 degrees. A turning moment was applied initially for a period of 240 seconds to swing the ship, then the turning moment was reversed for 480 seconds. The turning moment was reversed again and held 240 seconds. Full bow thruster power, as indicated by the bridge control unit, was applied when the bow thruster was used. When the main engines were used, full ahead power was ordered on one shaft and full astern power was ordered on the other shaft to create the turning moments. Table 5 is a list of the swinging tests and the corresponding figure numbers used to present the results.

Figure 17 presents the results of swinging tests using the bow thruster only with the ship operating at speeds of 0, 3, 6, and 8 These curves show that the bow thruster can be used to swing knots. the ship and to reverse the direction of swing when the ship is dead in the water and underway at speeds up to 6 knots. The effectiveness of the bow thruster is reduced considerably when the ship is operating at 8 knots. The 8-knot curve of Figure 17 shows that during the first 240 seconds of the run, the heading changed about 45 degrees. During the next 480 seconds, the heading was reversed with the thruster, and the ship swung at a steady rate of approximately 0.6 degrees per second. After the third execute of the thruster at 720 seconds, the rate of change of heading was reduced, but the ship continued to swing in the same direction during the last 240 seconds of the maneuver. The shape of the curve, however, indicates that a course reversal would have been accomplished had the thruster power been applied for a longer period of time.

The results of swinging tests using propulsion engine reversals to create the swinging moment are shown in Figure 18. These tests were run at the same initial ship speeds as the bow thruster tests. A comparison of Figures 17 and 18 shows that at 0 knots, a slightly higher turning rate was obtained with the main engines between 240 and 720 seconds as compared to that when using the bow thruster. During the initial swing (0-240 seconds) and the final swing

UNCLASSIFIED

TABLE 5 - LIST OF SWINGING TESTS

figure No.	Speed Knots	Rud der Angl e	Thruster* Power	STBD Engine	Port Engine	Time of Swing-ar
17	o	o	FP-Stbd FP-Port FP-Stbd	Stopped Stopped Stopped	S topp ed S topp ed S topp ed	2490 4490 2410
18	0	o	000	Full Astern Full Ahead Full Astern	Full Ahead Full Astern Full Ahead	0000 999 999 999 999 999 999 999 999 99
19	o	o	FP-Stbd FP-Port FP-Stbd	Full Astern Full Abead Full Astern (Approach	Full Ahead Full Astern Full Ahead EPM)	((-)-(-) -17-(0)-17 -01-17-(0)
17	m	0	FP-Stbd FP-Port FP-Stbd	64 Shaft	×d c.	000 404 04
17	φ	0	FP-Stbd FP-Port FP-Stbd	67 Shaft	ک α:	000 100 100 100 100 100
17	ω	0	FP-Stbd FP-Port FP-Stbd	69 Shaft	X.d %	น ก () ทุก) () ทุก) ()
18	m	0	000	Full Astern Full Ahead Full Astern	Full Ahead Full Astern Full Ahead	い 4 い 4 0 4 い 0 0
18	Q	0	000	Full Astern Full Ahead Full Astern	Full Ahead Full Astern Full Ahead	000 100 100 100 100 100 100 100 100 100
18	α	o	000	Full Astern Full Ahead Full Astern	Full Ahead Full Astern Full Ahead	0 0 0 1 - 1 7 - 1 7 - 1
19	m	o	FP-S tbd FP-Port FP-S tbd	Full Astern Full Ahead Full Astern	Full Ahead Full Astern Full Ahead	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

*Stbd indicates thrust to move bow to the right; port indicates thrust to move bow to the left.

17. 17. 15.

Figure 17 - Change of Heading versus Time Recorded During Swinging Maneuvers Using Bow Thruster Only at Various Ship Speeds

「うちんないたい」と

Figure 18 - Change of Heading versus Time Recorded During Swinging Maneuvers Using Main Engines Only at Various Initial Ship Speeds

(720-960 seconds) a slightly higher turning rate was measured when using the thruster. During the maneuvers at approach speeds of 3, 6 and 8 knots, the main engines produced faster turning rates than the thruster.

The results of swinging tests using both the bow thruster and the main engines are shown in Figure 19. These tests were conducted with the ship dead in the water and operating at 3 knots. The data obtained for the combined mode of operation indicate that this is the most effective of the methods tested for creating a swinging moment, particularly when the ship is dead in the water. With the ship operating at 3 knots the use of the bow thruster with the main engines produces slightly higher turning rates than those recorded when only the main engines were used.

ASTERN CONTROLLABILITY TESTS

Astern controllability tests were conducted at the same displacement, trim, water depth, and sea and weather conditions as the swinging tests. One maneuver was conducted by alternately applying full power to the bow thruster to provide a turning moment while the ship was moving astern at 5 knots. The rudder was held at zero degrees during this maneuver. Thruster power was applied until the ship heading changed 20 degrees off the base course. The thruster was then reversed and held until the heading changed 20 degrees on the opposite side of the base course. Thruster operation was continued in this manner until three course reversals were completed. The results of this maneuver are presented in Figure 20 which shows ship heading plotted against time. This figure shows that the bow thruster is capable of producing course changes when operating at 5 knots astern. It is interesting to note that the amount of cvershoot when operating astern is much greater then when operating ahead at speeds up to 6 knots.

Another astern maneuver was attempted at the same speed using 35 degrees rudder in lieu of the bow thruster to control the ship. The ship did not respond to 35 degrees rudder, so a 45-degree rudder maneuver was attempted. The ship appeared to respond to rudder movement at the beginning of the maneuver, but the run had to be terminated due to insufficient maneuvering area.

Figure 20 - Ships Heading versus Time Recorded During Astern Controllability Maneuver, Using Bow Thruster at a Ship Speed of 5 Knots Astern

COMPARISON

The Center has tested no other ships of a similar design that can be compared with USS EDENTON (ATS-1). Such design differences as hull form, rudder area, propeller characteristics, displacement, and propulsion plant distinguish EDENTON from previous designs of the same utility.

CONCLUSIONS

The results of these trials indicate normal response patterns, and the data reported herein are considered to be valid and representative of the ATS-1 Class. On the basis of these trials, the following conclusions may be drawn concerning the turning and maneuvering characteristics of EDENTON.

1. The results of the turning circles for EDENTON indicate normal turning characteristics in that advance, transfer and tactical diameters increase with increasing speed and decrease with increasing rudder angle. The data are considered valid, and the left turning circles which are not reported herein, were consistent with the right turning circles conducted at the same speeds and rudder angles.

2. EDENTON accelerated from dead in the water to 16 knots in 160 seconds over a distance of 960 yards.

3. The astern stopping pattern is consistent with what would be expected in that the stopping distance is shorter when ordering full power astern than when half power astern was ordered.

4. EDENTON is found to be directionally stable at 11 knots.

5. The bow thruster is capable of generating course changes when operating at speeds up to 6 knots ahead; its effectiveness at 8 knots is reduced considerably. The ship can be controlled with the bow thruster when operating at 5 knots astern. In general, the main engines were more effective in swinging the ship than the bow thruster except when the ship is dead in the water. At zero speed the bow thruster is about as effective as the main engines in creating turning moments. As would be expected, the highest turning rates were recorded when both the main engines and the bow thruster were used to generate the turning moments.

6. EDENTON did not respond to the 5-knot backing controllability test after applying 35° rudder. When backing at 5 knots and applying 45° rudder EDENTON appeared to respond, however the maneuver was not completed because of limited operating area.

an Trees

34

***** • •

٠

INITIAL DISTRIBUTION

Copies

- Barana and and and

2	CNO
1	CINCLANTFLT
1	CINCPACFLT
1	CHNAVMAT
2	COMSERVLANT
2	COMSERVPAC
6	NAVSHIPSYSCOM 2-Technical Library Branch (SHIPS 2052) 2-Scientific Documentation Division (SHIPS 2051) 1-Oceanographic Mine Patrol and Special Purpose Ship Acqusition Project Office (PMS 391) 1-Combatant Support Ship Logistic Division (SHIPS 427)
1	NISC
9	NAVSEC 1-Ship Concept Design Division (SEC 6110) 1-Hull Division (SEC 6120) 2-Technical Library Branch (SEC 6034) 1-Hull Form and Fluid Dynamic Branch (SEC 6136) 1-Propulsion System Analysis Branch (SEC 6144) 1-Internal Combustion and Gas Turbine Engine Branch (SEC 6146) 1-Propeller Shafting and Bearing Branch (SEC 6148) 1-Control Systems Section (SEC 6152F)
1	CO USS EDENTON (ATS-1)
1	CO USS BEAUFORT (ATS-2)
1	PCO BRUNSWICH (ATS-3)
2	DDC

UNCLASSIFIED

5.0

CENTER DISTRIBUTION

Code	15 ((W.E. Cummins)
Code	152	(R. Wermter)
Code	1502	(G. Stuntz)
Code	1524	(C.J. Wilson)
Code	156	(J.B. Hadler)
Code	154	(W.B. Morgan)
Code	1536	(P.C.Clawson)
Cođe	15 36	(C.W. Tate, Sr.)

UNCLASSIFIED

-

with:

Same Sun

,

*

Sciently Classification			
COUMENT CONTROL DATA + N & D Security classification of title, body of abstract and indexing annotation must be intered when the overall report (classified)			
1. Stor NATING ACTIVITY (Corporate author)		20. REPORT SECURITY CLASSIFICATION	
Naval Shin Research and Development Center		UNCLASSIFIED	
Ravar Ship Research and Development Center		26. GROUP	
Bechesda, Md. 20034			
I RECRET FILT			
USS EDENTON (ATS-1) Tactical and Maneuvering Trial Results			
DESCRIPTIVE NOTES (Type of report and inclusive dates) Research and Development			
* AUTHORISI (First name, middle initial, last name)			
Charles W. Tate, Sr.			
G REPORT DATE July 1972	78. TOTAL NO O	FPAGES	75 NO OF REES
	41	41 -	
THE CONTRACT OF GRANT NO	98, ORIGINATOR'S REPORT NUMBER(S)		
	3961		
¢ .	90 OTHER REPORT NOISI (Any other numbers that may be assigned this report)		
d			-E
10 DISTRIBUTION STATEMENT			
Distribution limited to U.S. Government Agencies only;			
Performance Department Codd 15			
11 SUPPLEMENTARY NOTES	12 SPONSORING MILITARY ACTIVITY		
	Naval Ship Engineering Center		
13 ABSTRACT			
This report contains the results of tactical trials conducted			
on USS EDENTON (ATS-1). The trials consisted of turning circles, ac-			
celeration, deceleration, spiral, swinging tests and astern control-			
lability tests conducted at a displacement of 3.200 tons and 0 degrees			
trim angle Measurements were made to determine tactical diameters.			
stopping distances directional stability controllability and			
management and the second static show EDENTON has normal			
turning characteristics, and the chin is directionally stable when			
turning characteristics, and the ship is directionally stable when			
operating at 11 knots. The bow chruster is effective in maneuvering			
the ship when operating at speeds from dead in the water to 6 knots.			

UNCLASSIFIED Security Classification to Mariasania.

11: 21