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PREFACE

"Regularity of Turbulent Flow in Smooth Pipes™ is
probably the earliest thorough experimental and analytical
treatment of turbulence in smooth pipes, and is still con-
sldered one of the best sources of turbulence data available.

The translation of this technical article was
undertaken for the purpose of comparing values of turbulent
velocities appearing herein with those determined by means of
a constant temperature hot wire anemometer at the Project
SQUID.Oombustion Laboratory, Purdue University. Sinee Nikur-
adse‘has been extensively quoted in treatises on turbulent
flow, agd since his turbulence data have been previously used
in combustion studies, it was felt that this article would pro-
vide the best possible comparison for the present hot wire
anemometer studies.

' The decision to publish this work was made when the
translation was partially completed and it became evident that
the material contained in the study was of such value as to
merit a wider distribution. The report is thus published in
full in order that other investigators in the fields of fluid

flow and combustion may have the benefit of this translation,

H.J.B.
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Introduction

The existing experimental knowledge of turbulent flow, which has
been the object of numerous investigations, has still not been
sufficient to produce a satisfactory foundation for the theory of
turbulence. The older investigations, which were primarily directed
toward the laws of flow resistance in tubes, could satisfy neither
the theoretical nor the practical worker. The results of these
researches were not clearly arranged for a long time, since they were
not referred to the physically correct parameter, the Reynolds*
Number Reé , In many cases it was not congidered that the veloocity
distribution develops its stable form in a tube only after a long
distance., H, Blasius (1) succeeded in organizing the experimental
data of the flow in smooth tubes from the viewpoint of similarity.
He obtained an empirical formula, which in a region of Reynolds'
Numbers up to about Re = L%Q_ = 100 (103) ( T » a&erage
velooity, d = tube diameter, v = kinematic viscosity) fairly
accurately reproduces the regularity of the flow resistance. JFor
the formulation of his resistance formula Blasius used the investi-
gations of Saph and Schoder (2) who worked with water and measured
the pressure loss in 15 drawn brass tubes of diameter d = 2.77 mm.
%o 53.1 mm. in the region of Reynolds' Numbers between 1.4 (103) and
104 (103), Blasius found for laminar flow the formula

and for turbulent flow
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( N\ = the resistance coefficient). The investigations of Saph and

Schoder show that the transition of laminar flow into turbulent flow
oacurs at about the Reynolds' Number (critical Reynolds' Number)

Re - 2000. The transition region lies between the Reynolds' Numbers
2000 and 3000, Besides the investigations with water by Saph and
Schoder, Blasius used for the formulation of his similarity law the
investigatiops of Nusselt (3), who studied the pressure loss for tLhe
flow of compressed air in a tube of diameter d = 2,201 cm, If the
resistance coefficient is calculated from these investigations and
plotted in relation to the Reynolds' Number, one obtel ns the same
results as were obtained from the ihvestigations of Saph and Schoder.
The Nusselt values, which lie in the region of Reynolds' Numbers of
6 (103) to about 150 (103) are in good agreement with the resistance
formula of Blasius. In this way the similarity for different fluids,
water and air, is confirmed. In addition Blasius used the studies
of Lang, which were made in a copper tube of d = 6 mm and at
Reynolds® Numbers up to Re = 326 (102). The investigations were
aimed at formulating a comparison between high velocities in small
tubes on the one hand and small velocities in large tubes on the other
hand. This comparison has led %o a very satisfactory confirmation of

the similarity law.
After the formulation of the similarity law, ombeck(l) set

himself the task of determining the similarity of the resistance
coefficieng in relation to Reynolds' Numb;r from the investigations
of air in a large range of Reynolds' Numbers, and thus to check the
formula of Blasius. The studies were carried out in circular tubes,
which were made of different materials and had different diameters

( d - 2,004 cm to d = lO'cm,), and reached to a Reynolds' Number

of about 450 (103). From these investigations Ombeck obtalned a
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3.
formula similar to that of Blasius, but with a very small deviation;

this small deviation, as Ombeck himself explains, is due to the un-
certainty in the determination of the kinematic viscosity. Considering
this circumstance he found good agreement with the Blasius formula

up to a Reynolds' Number Re = 100 (103).
Stanton and Pannell (5), in order to recheck the similarity

law, have performed extensive investigations with water and air at
different égmperétures in circular tubes with different dlameters

( d =0.361 em to d - 12.62 cm ), The investigations were in the
region of Reynolds' Numbers from 2.2 (103) to 430 (103),  The results
of these studies have confirmed the similarity law in all respects; up
to a Reynolds' Number of 100‘(103) the experimental points lie on the

Blasius curve. From this point on one obbrves with increasing

Reynolds' Numbers an increasing deviation upwards from the Blasius

curve., Lees-(é) has taken as the basis for the formulation of his
empirical formula of the resistance law the results of Stanton and

Pannell and found

= 0.61C4
A= C.OC714 4 -é?js

Jakob and Erk (7) ecarried out experiments with water on the
pressure drop in relation to the quantity of flow in drawn brass
tubes of diemeters d - 7 cm and 10 cm in the range of Reynolds'
Numbers between 86 (103) and 462 (103). Within a scattering of the
experimental points of about 1%, these studies confirmed the above
mentioned measurements of Stanton and Pannell, Jakob and Erk
deduced from their own experiments a resistance formula which
agrees almost exactly with that of Lees.

0f the more recent experiments on the resistance law, those by

Hermann (8) in a still greater range of Reynolds' Numbers should be
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mentioned; Eermann carried out his experiments with water in a ocopper
tube ot diameter d - 5 cm and a brass tube of d = 6.8 cm in a

range of Reynolds' Numbers between 20 (103) and 1900 (10°) and "running
lengths" (length of undisturbed flow between entrance to the tube and
point of measurement) between 44 and 300 tube diameters. He investi-
gated the relation between the resistance coefficient and the Reynolds'
Number and found for short running lengths and small Reynolds' Numbers
good agreement with the resistance law which Stanton and Pannell,

Jakob and Erk, and others had established earlier. Hermann observed

a running length effect ( a decrease in resistance coefficient with
running length) in a tube 3bo dieameters long; moreover he obtained

with inoreasing Reynolds' Numbems an inorease in the running length
required to insure fully developed flow. The experimental results

show that a length of 100 d 1s to be regarded approximately as the
running length required to insure fully developed flow. From these
experiments Hermann deduced a formula for the resistance law which is
analogous to that of Lees. In conclusion he gives a table which permits
the calculation of the resistance coefficient for any running length
beiween 44 and 300 tube dlameters. L, Schiller (9), under whose
direction germann worked, reported on the above mentioned results in
1929 at the "Kongress flUr Aerodynamik und verwandte Gebiete™ in Aachen
during whioch it turned outlthat these resistance coefficients, wﬁieh
were above the highest Reynolds' Numbers reached by Stanton and Pannell
and Jakob and Erk, lay considerably higher than those found in GBttingen,
The higher resistance showed, obviously, that Hermann had had a rotation
in his tube which brought with it an increase in resistance. This fact
induced L. ?randtl (10) to suggest that a device be oconstructed at the

entrance to smooth out the flow, and that the measurements be thus



repeated. The re-measurements resulted,as Schiller reported in a
supplement to the publication of hisAachen presentation, in the con-
clusion that an effect of running length no longer exists after 125
diameters, and that with a sharp entrance after a length of 50 diameters
no effect of length can be observed - which agreed with the findings of
the Gottingen group. It should still be mentioned here that unpublished
extensive measurements of the running length made in Gsttingen result
ih the conclusion that even with rounded entrances, the effeot of
running length is no longerpresent after 50 diameters.

The experiments of,Stanton(ll) are among the first good studies
of the velocity distribution of turbulent flow in circular tubes., The
measurements were made with air in tubes of 500 cm. length and diameters
-d = 4.93 om. and d =7.4 cm. and extend over the range of Reynolds'
Numbers between 1, (193) and 60 (103). The data on the pressure gradient,
from which the veloeity distributions were taken,are missing. A further

measurement of this kind has been carried out by the author(lz)with

water in a circular tube of 2.8 om. diameter at a Reynolds'Number of
about 180 (103). In addition, there exist also measurements of the
velocity distributions in channels and tubes with cross sections other
than circular, which bear no relation to this work,

From the works mentioned above one sees that the experimental
findings are insufficient for the clarification of the turbulence
problem, On this basis, we at thtingen set ourselves the task of
broadening the existing investigations in two directions; on the one
hand to extend the experiments to very high Reynolds' Numbers, and on
the other hand in addition to the determination of the resistance law,
also to clarify the relation between the velocity distributions and the
Reynolds' Number of which a knowledge 1s of great importance for the




exploration of turbulent flow. We have carried out a great number of
experiments on the velocity distributions and pressure loss in smooth
tubes with the greatest possible accuracy and in as large a range of
Reynolds' Numbers as possible. By appropriate evaluation we have
succeeded in showing:

1. What regular relation exists between the resistance and the
velocity distribution;

2. By what formulas the resistance law and the law for the velocity
distribution may be expressed;

3. What regularities result for the exchange quantity and Prandtl‘'s
mixing length.

‘In these investigations free use has been made of the theoretical
conclusions of Karman's similarity considerations‘lB). The experiments
have confirmed very well these conclusions above the limit at whioh the
influence of viscosity on the turbulent processes disappears.

The experiments(lh) were carried out in the years 1928-29 at the
‘Kaiser Wilhelm-Institute rﬁr Strgmungsrorschung directed by Prof. Dr.
L, Prandtl. The theoretical processing of the experimental results
could not be brought to a conclusion until the summer of 1931. The

experimental installation and apparatus are set up in the laboratories

of the Kaiser Wilhelm-Institute far Strgmungsforsohung.

To my most honorable chief, Herr Prof, Dr. L. Prandtl, who
continually assisted me with his valuable counsel, may I also at this

time express my heartfelt thanks.




J
o
o
1
1
§

BN ARV 4 OB FLO T

-
!

s
F SRR N R )

;,
E-
}h

& ,
LRI S Y

I. [Experimentation

Part 1, E;gerimentalﬂAgpg;atus
For the investigation of the turbulent flow processes in eircular

tubes, three different experimental installations were used.

(a) For small Reynolds* Numbers of about 3 (103) to 60 (10?), the
overflow from a tank fed by a water conduit was used.

(b) For larger Reynolds' Numbers, up to about 1400 (103), the
water was circulated by means of a centrifugal pump,

(¢) For reaching still higher Reynolds®' Numbers, up to about
2500 (103), the water stored in the water tank was
e jected with compressed air.

(d) In the last two installations, the Reynolds*' Number was
raised still further by an inocrease in the temperature
of the water, by _which in the third case the highest value
of Re = 3300 (103) could be reached. |

,(a): Since it is very difficult to produce a completely constant head

at small discharges with a centrifugal pump alone, as is required at

small Reynolds* Numbers, the following arrangement was made. The water

flows from the water system through the feed pipe 2zl (see Figure 1)
into the open water tank wk. On opening the flow-off cock ah, the
water rises in the standpipe str to the same height as in the water
tank wk., Since the feed pipe delivers a somewhat greater amount of
water than flows out through the test pipe vr, the surplus water was
disposed of through the standpipe str t o the collector basin ft from
whioch it was further led off through the down-pipe fr, so that a con-
stant head was maintained. In order to get a uniform water flow in the
test pipe, a flow straightener gl was constructed in the cylindrical
portion of the outlet of the water tank wk. This was meant to .do away

with the great eddying which was produced by the water flowing into

the water tank and which was carried over into the test pipe.

Through the conical portion of the outlet the water was accelerated,

.resulting in a further smoothing of the flow. The water

o7 L TR oy 2o B T




was then brought to the entrance of the test pipe through a tube zr of
25 em diameter and 250 c¢m length., Test pipes of the following dimen-

sions were used (Table 1 ):
Table 1
.Dimensions of the Test Pipe

—

3 (Y
3 = L

d 1 111 1g x x/d Designation
mn | R L

1y
om  ofh . mm mm_ omm

- .

10 550 500 500 450 2000 200 vrl
20 1330 500 500 170 2500 125 vr2
30 1960 500 500 40 3000 100 vrj3
50 3300 1000 1000 70 6000 120 vry,
100 4000 1500 1000 550 7050 70,5 vrs

d = inner diameter of the tube; lg = ™running length®;

11 = length of measuring section I: 11y = length of measuring
section II: 1, = exit length; x = total length; x/d = relative
total length.,

Lo . " & 0y (e o) e a . .
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In order to obtain a smooth inflow to the test plpe, the feed pipe

zr was tapered conically to the diameter of the test pipe for all
experiments., In the experiments using overflow as the source of
water a sharp-edged constriction was used in this tapered section

al (Figure'ﬁs, which was meant to assure turbulent flow even at the
smallest Reynolds' Numbers studied, about Re = 15 (103), Shortly
before the tapering section, at the highest point in the feed pipe,
an alr venting valve eh was fitted. The test pipe with the veloocity
measuring apparatus was mounted on two trucks which permitted a con-
venient motion, pending the rebullding. The trucks ran on rails on
the side wall of the reservoir vk. Longitudinally in the truck lay
an optical bar, on which stood the rider which carried the test pipe
and made adjJustment of the pipe in the horizontal direction possible.
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At the end of the test pipe was a velocity measuring apparatus, which
is further described below. Under this in the reservoir vk stood the

e G
wlelalalaan o

a3

-
measuring tank mb (Figure }).

(b): For the experiments with circulation (Figure 2) the water was
% taken from the reservoir vk and forced into the water tank wk by a

centrifugal pump kp, which was driven by a driving motor am (capacity

T IR S ————

14 kw., R,P.M, - variable between 1120 and 1900 revolutions per

minute). From here it came back again to the reservoir vk through 1

“ AR

the test pipe vr. The starter an of the driving motor and the gate

B T T N S

valve sbl, which was inserted between the centrifugal pump kp and the

water tank wk, served as a coarse regulation., The fine regulation

IS 8 s

took place at the throttle valve dv on the velocity measuring
apparatus (Figure fﬁ. .The centrifugal pump was capable of holding a

2 ad REA st o r oA R " " A » =

pressure of about 2 atm on the air above the water level in the tank wk,
Generally, a water head of 500 cm was maintained (Dimensions of the
tank wk: Height 6500 mm, Diemeter 1500 mm). The experimental arrange-

ment Jjust described made it possiﬁle to produce water flow up to about

L S LN .'.‘.‘n'.;

o=

Fe = 1000 (103) at ordinary temperatures. The test section was the

same as for the first arrangement described.

T

i (¢): The compressed air setup consisted of a compressor which was

capable of producing a gauge pressure of about 10 atm. in the com-

s S IR L FIEY T ETS -8 - " aa By 7§ CW T g wr

pressed air tank dk (Figure 1), The compressed air tank was connected

—

IR c T IRTIN E B e e R L el T T SRR,

with the water tank wk through an‘Arca regulator a; the regulator,

=L

which is further described below, kept the pressure constant as water
left the water tank wk. Since the time of flow was limited (shortest

duration about 45 sec), the tripping valve sh was controlled by com-

-‘ » 7' ] [ »
S ST AN

pressed air. About 0.1 sec. was required for opening or closing.

P

o L.
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In order to prevent a vacuum from occuxring in the test section on
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closing the tripping valve, the check valve sv, which is situated at
the highest point in the entrance tube zr between the tripping valve
and the test section, assures equalization with the outside air
pressure, Since in these experiments measurements were made in a free
Jet, the velocity measuring apparatus gm was in the open, and a rec-
tangular standpipe sr was fitted on it. The free jet was intercepted
by the jet collector st, which was mounted on a third truck, and then
led back through guides and the quieting chamber br to the reservoir.
The inlet pipe zr in these experiments had a length of only 1500 mm,
due to lack of space.

(d): In order to reach still higher Reynolds' Numbers, the kinematie
viscosity v*= %@ of the water was decreased by increasing the
temperature. The same method was also applied to some of the measure-
ments with the circulation setup, since the carrying out of the ex-
periments with this setup required much less time and effort than the
last experimental apparatus. The water was heated in a tank with
steam, The tank delivered about 1.1 liter/sec., of water at 40°C.

By decreasing the amount delivered, the water temperature could be
increased to about'95°G; which, because of the cooling in the test
apparatus, corresponded to a temperature of about 4L0OC in the test
pipe. The tank was situated on the wall of the hydraulics laboratory
and opened into the reservoir vk through a hose zf. As a result of
the increase in the temperature of the water, the Reynolds' Number
amounted to Re = 1400 (103) in the second setup, .and Re = 3240
,(103) in the tﬁird setup. The general picture of the setups for (c)
and (d) 1s shown in Figure 3.
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Part 2. Measuring Apparatus
(a): Velocity Measuring Apparatus with Throttling and Swivel
‘Outlet. T " e ‘ Y o

The velocity measuring apparatus consisted of the housing m,
the cover d, the spindles sp and su, the sliding carriage schl, and
the movable pitot tube pt. The housing had windows f on both sides

for observation purposes. In the center was a wall w, which was meant

s v v e oaoa e

to prevent the reverss flow of fluld into the measuring chamber. The ;

i
cover 4 was screwed tightly to the housing, in order that it could be :

made easily waterproof. A valve e was fitted on the cover far ventingj

LN .

For the motion of the pltot tube, the spindles sp and su were
provided, which at the same time carriled the sliding carriage schl.
The spindle sp had a screw of 1 mm lead and moved the carriage in the
horizontal direction; it was turned from the outside and was sealed
with a stuffing box. The movement of the spindle sp was recorded on
a micrometer scale zw. In this way one could conveniently read off

the displacement of .1 mm with the forward and backward motion of the

L "o " 2" g A A T, "N @ 8" a4 8T % s -mEm By, g af i |

carriage; the pitot tube was moved, at the same time, in the same
direction. )

The perpendicular mgtion of the pitot tube holder ph was
accomplished with thespiﬁéib‘su, which had no screw, only a slot. :

By rotation of the spindle, the screw wheels were rotated. The screw ﬂ

r

tube holder up and down; the holder was kept from rotating by the side.

[

wheel z had an internal screw with a 1 mm lead and screwed the pitot
guides fl. The movement was recorded on the scale 2w, in the same way.
as for the spindle sp.

The total pressure to be measured was transmitted through the

&
could be fitted, and then through the hose s to the outside. Since

pitot tube holder ph, on which pitot tubes pt of different diameter ?
ed

[
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the velocity distributions were taken 0.1 to 0.2 mm after the exit
end of the test pipe, the static pressure also had to be measured
in this exact cross section; therefore, a hole scht of about O.u .m.
diameter was bored in the flange of the test pipe. This hole was
about 2 mm from the edge of the Jet. The pressure here was essen-
tially equal to that at the jet edge.

In order that the different quantities of flow could be finely
regulated, a throttle valve dv was fitted on the velocity measuring
apparatus (Figure 4). The position of the throttling cone dk was
adjusted by the screw srspu(Figure §3 with its measuring scale msk,

The swivel outlet sch served to quickly conduct the fluld into
the measuring tank for mass flow measurement and then to dlrect 1t
away agaln quickly. 4 ball bearing k1 made possible a very quick
swiveling.

The velocity measuring apparatus, the throttling apparatus,
and the swivel outlet were mounted together and were situated on

the truck wg (Figure XS, which moved in the lengthwise direction

° on the already mentioned tracks on the reservoir,

PO
¢

(b): Measuging‘Tagk

fofléhe discharge measurements a cylindrical measuring tank
mb (Figure 5) with a capacity of 700 liters with a diameter of 1000mm ;
and height of 900 mm was used; it could be moved under the swivel ;
outlet sech., In the bottom of the measuring tank was an outlet fitted E
with the valve ab, Ahead of the valve a water level gauge glass ws "
with millimeter divisions was arranged for reading off the height of

the water level in the tank. The measuring tank stood on four screw

feet sf; in order that it could be adjusted to horizontal. On the
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surface of the water in the measuring tank floated a perforated

aoa e 2" - 1T e e s

wooden board, which damped the oscillations of the water surface,

thus decreasing the time required to meke a reading. For the

B A

measurement of smaller quanﬁities a smiliar measuring tank of
178 mm diameter and 700 mm height was used. For the accurate
determination of the measuring tank diameter, the relation between
the water level in the gauge glass and water quantities previously

determined by weighing (about 10 kg) was established.

(¢): Micromanometer

The reading accuracy of ordinary water manometers was nat
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sufficient for the small pressure differences ocourring, A setup
had to be produced which gave the required reading accuracy, and
at the same time was useable at higher pressures. The problem
was solved for the measurement of pressures from 0.02 mm to 500
mmn as follows, On a horizontal glass tube with three valves hl’
h,, and h3_(rigure 6) two glass tubes were fused, one between each
two valves. Between the two upper ends of these tubes a T-plece
with 120° leg angles was so fused that one leg extended vertically
upward. This end of the.T-piece was closed with the valve h5° The
valve hh in another leg of theiT-piece permitted breaking the
connection between the two glass tubes. The free ends a, and 8,
of the glass tubes were closed with pinch clamps.

When this instrument was to be used as a water manometer, the
two pressure leads were connected at &; and aj, and the valves h,,
hz, and hb were opened. When the instrument was to be used as a

mercury manometer, the pressure leads were connected at a3'and 8y,

.and h3 was opened., For checking the zero point during operation

h3 was opened for the water manometer and hh for the mercury mano-
meter. The region in which readings were made had a length of about

500 mm, The increase in measuring accuracy was obtained with reading
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microscopes mi. On a massive brass base plate was mounted a four;
edged precision tube, on which the two slides sl were arranged to
mofe. Each slide carried a reading microscope mi with cross halrs.
The motion was accomplished with a pinion and rack. The engage-
able and disengageable worm drive sn (Figure 7) made possible an
accurate fine adjustment. The lower sliding carriage carried the

measuring scale m with millimeter divisions; the upper carriage

carried the vernier n divided in fiftieths. In front of the vérnier-

a swiveled mggnirying glass lu was used. Illumination was given. by
the lamp la (Figure 6), which was mounted to move behind the milk
glass plate mg. The zone of the meniscus to be observed was
darkened by the adjustable scrgens bl (Figure 7), so that it con-
trasted with the 1lluminated milk glass., The manometer was placed
exactly vertical by means of adjusting sorews and bubble levels
(Figure 6).
(@): Arca Regulator

The Arca‘regulator (Figure 8), a gift of the "Arca Regler" Co.,
A.G, Berlin, W9, held the desired pressure constant iln the water
tank, The operation is as follows:  Connection is made to the
water distribution system with wl., A branch line leads to the
throttle valve dr, which regulates the quantity of flow. The
water acts on the piston ko and flows through the line 1, to the
disk valve tv, which closes when the pressure in the water tank
is high and opens when it is low. The spring sf permits the ad-
justment of a definite pressure before starting the experiments.
The diaphram bellows mb transmits the pressure to the disk valve
tv by means of the lever h, If the pressure in the water tank falls
off, the disk valve is opened. In this way the flow in 1, is re-

leased; the water in the line 1, is no longer dammed up; the piston
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ko is forced upward by means of the piston spring kf, and with it

the control piston sk. This now frees the water path below the piston
hk. The water pressure now 1lifts this piston hk and thus raises the
regulating valve rv, by which the compressed air tank dk is connected
to the water tank wk., When the pressure in the water tank wk again
reaches the correct pressure then this pressure acts through the
pressure line dl1 on the bellows mb, and the disk valve tv closes.

In this way the pressure on the piston ko is increased, and the

piston is forced downward. Then the water flow from the supply line
Wl under the piston hk 1s again obstructed and the flow off wa is
opened. The spring hf forces the regulating valve rv closed. By
connecting the bellows mb to the water tank below the water line,
rather than to the air space above the water level, the water pressure
at the outlet port is held constant during the outflow independent of
the water colunn height in the tank.

(e): Tripping Valve (15)

The tripping valve (Figure 9) was operated by compressed air at
about 3 atmospheres and could be opened or closed in a time of about
0.1 to 0.2 seconds. The operation in opening or closing this valve is
as follows:

By rotation of the control wheel sr a small valve ha is first
opened by a cam, which allows compressed air to pass through the line
1 to the under side of the piston hk. This piston is raised and with
it the cone k up to the stop schr, which was adjustable. Now the
seating surfaces of the cone k are free, and the cone is rotated by
the rotating piston drk. The compressed air is introduced to the
control piston sk from the supply line le and fills the chambers ka

(see section A-A)., If the control wheel sr, and at the same time the
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% ° control piston sk, are turned by an electric or manual drive, the

j slots at ¢ and 4 open, the compressed air flows through the slot ¢

| into the chambers ku and forces the rotating piston drk downward and
with it the cone k of the valve. The air in the chambers ko escapes
to the atmosphere through the slot 4. When the cone k and the ro-
tating piston drk turn through 90°, the small valve ha closes and
thus cuts off the alr to the under side of piston hk. This piston
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v together with the cone is then forced dpwnward by the adjustable spring:

i

}!
]

» f. The closing operation is accomplished by the backwards rotation of

the control wheel sr through the same procedure but in reversed order,

EOT O R S0 S L

In order to prevent the cone k from osclllating, oll damping was
provided (Section B-B), The damping piston dmk was joined solidly to
g the rotating piston drk. The chambers kd were filled with oil, and

the inlets e were connected with the pipelines r and the gate valves

»'14 ]

sch. Upon rotation of the damping piston the oil was forced back

through the tubes r and more or less throttled by the adjustment of ;

LI S

the ggte valves sch. At the instant when the damping piston dmk closed
off the ports e, the oll was completely cut off except for leakage.

s e S

. By means of this oil cushion a sudden stop was prevented.

Part 3. Experiments

(a): Mass Flow Measurements.

& Mass flow measurements up to a Reynolds' Number Re =z 300 (10%)

were made with the measuring tank. Since there was no certainty that

the measuring tank was accurately cylindrical, it had to be oalibrated°§
Previously weighed quantities of water were put in the tank, and the
. “ water height in the gaugze glass was read off., The calibration showed -
that the diameter was constant over the whole tank. The oross section;,

of the large measuring tank amounted to A = 7850 cm®, and that of the
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small tank A = 248 cm?, For every measurement the lowest height in

the gauge glass was read before the run and the higher level after
the run., The readings were taken with perfectly quiet water and
with a mirror, in order to prevent parallax, This method of reading
r.ade possible an accuracy of 0.1 to 0.2 mm. The water could be con-
ducted into the measuring bottle in about 0.1 to 0.2 second by the
ewivcl outlet, The duration of the run in the measuring tank was
deﬁermined with a hand stopwatch., The stopwatch had been tested as
to 1ts timing and had 1/10 second divisions. The swivel outlet oould
then be turned back with equal speed. The duration of the runs was
between 100 and 600 seconds, If we assume that a run of 100 sec. is
measured aoourafely to 0.2 sec, and furthermore,that the water height
in the gauge glags 1s read accurately to 0.2 mm.,then the error in
the flow measurement in the most unfavorable case amounts to 0.3%.
This error reduges to 0.05% with a run of 600 sec. The largest error
in mass flow results in an error in the average velocity u of 0.13%.
The mass flows were determined as the average of several observations
(4 to 6) and two different run times.

(b): Temperature Measurements

In general the temperature was measured with a thermometer at
the discharse. In order to be certaln that the water in the tube had
the same temperature as at the discharge, the temperature of the water
flowing out through the air vent eh (Figure ﬁS was also measured,
These two temperatures were always found to agree., The thermometer
was calibrated, and.was divided 1n tenths of a degree. Thus about
1/20 to 1/30 of a degree could be estimated, which resulted in an
error in kinematie viscosity of 0.05% to 0.08%. At the higher

temperatures the.érror in kinematic viscosity is still smaller. The
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measurements were undertaken at temperatures of 9° to 38°C. At

usual water temperatures constancy of temperature was easily main-

' . tained; at higher temperatures, however there was some dirfioulty.
As previously megtioned,,the higher temperatures reached were such
that the water flowing out of the tank into the reservolr vk (500 to‘
800 om3/seo) was at 80° to 90°C, By preliminary tests the quantity
and temperature of this water necessary to obtain a definite temperg-
tqre of the water in the test section during tpe duration of the test
was found. Corresponding to the 1niet,‘cooled water flowed out
through the outlet af (Figure 1) at the lowest point in the reservoir

. vk,

(c¢): Determination of the Tube Radius,

in
If one calculates the pressure gradient -qi in the stagnation
i 2 '

pressure of the average velocity §=P-g— sthen one obtalns the
.dimensionless coeffioient \ ,which is designated as the resistance

coefficient.

d 4

2
m r5
x oQ?

2
I
q

=
3 h ol
8

where p 1s the density of the water
@ is the volume of flow per unit time
r 1s the tube radius.

From this formula it is seen that the resistance coefficient X\

which is to be determined from our experiments, is proportional to

the fifth power of the radius. Therefore, this radius must necessarily
be determined with the greatest possible accuracy. The tube radius

was determined from the weight of water which completely filled the
test pipe and the length of the section. The weighing'was accomplished
with an acocuracy of * 0.01%. The 1ength could be measured accurately
- to 0.2 mm, which corresponds to an error of * 0,007%. If one now cal-

culates the error of the weight and the tube length for the most un-
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b favorable case, the error in the tube radius r becomes about 0.01%.
3 This error is insignificant for the determination of the resistance

coefficient X\ .
(d): Statio Pressure Measurements

The measurement of static pressure was made under the assumption |

. U LI B )
EARL R LS Y

that the static pressure is equal everywhsre in the cross section of

measurement, Since the static pressure can be measured quite accurately
with well constructed wall taps if the wall is parallel to the direotioni
of flow, the measurements of pressuré drop were so undertaken. At each
ocross section where measurements were to be made four holes were drilled

in the test pipe, which were Jjoined by a ring-shaped equalizing chamber

e-a o P ¥
« 1 8 .
b DRI B0

ak (Figure 10)., The connection to a manometer could be made by means

of a tap tu and hose lines, The other leg of the manometer was con-

PR A

nected in the same way with the next eross section of measurement. In

this way the pressufo drop over a length 1 was measured, Very often a

L
¥R R

suction or pressure effect entered through the pressure tap holes,

e SRCE
oy e
RS04

&
which were not perfect., (Raised promontorlies give a suction effeot

and cavities give a pressure effeqt).‘ In order to get a reading of

% the pressure drop free of error, the most favorable form of the

”3 . pressure tap hqle was sought and the sharp-edged form was established
‘; as such. Also in érder to determine the influence of the hole size,

;3 holes of 0.5 mm dlameter were first used and then gradually they were
)

* 1qoreased to 1.2 mm diameter. In every case it was found that 1n the

< reg;on investigated the size of thé holes had no effect on the preasure

indications,

In produc;ng the sharp~edged hole, an accurately measured brass
pin was fitted tightly in the tube at the hole position. In this way
severe burr ro;mation and bulging was prevented. By after-polishing
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with fine emery paper_backed by a wooden cylindrical blook, the last
5 burring was easily removed. By way of test, one section of tube con-
{: taining a hole was cut out and examined with a microscope of 50 fold
: magnification. No burr could be seen,

Before attaching the equalizing chamber the holes were 1individ-
ually inspected for their quality. Each two holes were connected
Ey aoross a micromanometer. The testing was then undertaken at the
greatest obtainable quantity of flow in order to make any errors
present as large as possible. In cases where such errors qppeared
the tube was repolished.

In addition the pressure differences over two measuring sections
1l and‘l2 were measured. The pressure drop data were then only con-
sidered correct 1if equal pressure differences were found with equal
’%ﬁ lengths of the two measuring sections. In order to neutralize any

error in the equality of the pressure differences, the tube was re-

=y

versed with respect to the direotion of flow. Then the same presaure
difference had to be indicated at equal Reynolds' Numbers.

2. - =
"\.'\\.‘;:-,‘ :

In order to obtain greater accuracy of the pfessure gradient

necessary for analysis, successively longer measuring sections were

| i
4
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taken, as can be seen fram Table 1. The lengths of the measuring sec-
tions were determined accurately to 0.2 mm. The preesﬁre.dirrerenooa
2 up to 50 om of water or me oury were measured with a micromanometer

of the type previously described. Greater pressure differences were

& obtained with an ordinary mercury U-manometer of 250 cm height.

(e): Yelooity Measurements .

The measurements of velocity were carried out by comparing the
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stagnation pressure of the pitot tube wiih the static presaure of the
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pressure tap, which was situated in the measuring cross section 2 mm
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from the edge of the Jet, so that the manometer indicated directly
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the dynamic preasure. The velocity was calculated with the formula

u=44,3vV'h cm/sec. (1)

vyhere h 1is the measured dynamic pressure head 1_.n om, of walter , and
U 41s the v'g;ooity in om/sec.

"_I‘his formula is obtained from the Bernqulli equation, which can
be derived from the Euler motion equation for frictionless fluids sub-
Jected only to grefﬁty by integration along a streamline., The

Bernoulll equation then assumes the fallowing form

p v
Pt 7

“where H is the elevation of the point considered above a statiaonary

+ H = Constant (2)

specified horizontal plane,
By multiplying the Bernoulli equation by the density p one

obtains the pressure equation
2
u 4
P pz trH"R (3)

If external forces (gravity) are excluded (since H in our cases
has ;he same value at both probe openings), then the preasure equatiqn

becomes

2

Py is the value of the largest pressure which builds up in the
mouth of the pitot tube. It corresponds to the velooity zero and 1is
called the total pressure; p 1is the static pressure. If one
designates P, ~P=hy (with y = specific weight

and h = height of the water column), then one obtains from Eq. (4)

...........



or with p= 3

u=V2gh =44 3V'h cm/sec

The velocity distribution was measured with a pitot tube 0.1 to
0.2 onm behind the exit oross section of the test section. The reli-
ability of the measurement at this distance behind the exit cross
seotion was determined from comparison with the velocity distributions
whioh were measured 2 and 5 mm before the exit cross seoction (Figure
11). A subsequent measurement of the velooities at different Reynolds*
Numbers on the tube axis at the exit and at the same time 20d
before the exit gave equal values. The measurements were therefore
undertaken behind the exit oross section in order to avoid disturbing
the pressure pattern, and also, more important, because only in this
way could the velocity be measured up to the immediate vicinity of
the wa;l.

Since the knowledge of the static pressure at the measuring
cross seotion was very important for the measurement of the velocity
distribution, this comparison measurement was carried out with a
probe which was bullt into the tip of the pitot tube., In order to
eliminate as far as possible the influence of the pitot tube holder
on the static pressure, a casing vkl (Figure f% with a symmetriocal
profile was so arranged that the probe was situated on the axis of
symmetry of the profile. 'The side ports of the probe were situated
in the measuring cross section. The probe was connected across a

manometer with a pressure tap in the wall which lay exactly in the




measuring crosa section. Since a pressure difference was not

established in the manometer, it could be concluded that the static
pressure outside the Jet was equal to that at the probe. Therefore
it was considered legitimate to measure the static pressure for
veloocity measurements with the pressure tap in the flange. Further-
more a value of %% (where x is the tube length and d the tube di-

ameter) was sought by velocity measurements in a tube of 5 om diameter

and 500 om original length, such that the velocity distributions ap-
peared independent of the tube length. For this purpose velocity
distributions were undertaken at a Reynolds' Number Re = 900 (10%)
and-ﬁ-= 100, 65, and 40, which were obtained by cutting off the tube
to these lengths., At all of these values the velocity distribution
had already become independent of the tube length., Since in the main
portion of the experiments the shortest running length:é-was equal to
50, distance need not be investigated further. This result is re-
produced in dimensionless representation in Figure 12.

Pitot tubes of 0,21 mm and 0,30 mm inside diameter and 30 mm length,
4 which were made conical on the basis of flow principles, were used for
the measurement of the velooity distribution. InzFigure 13 is shown
the situation with the pitot tubes at the edge of the test pipe. In
this position the indications from the pitot tube do not correspond
to the prava;ling dynemic pressure at that point. This is explained
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by the fact that only a portion of the pitot tube opening is in the

water stream, and the other portion lies outside the stream, so that
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the water entering the opening flows out again sideways. However,

~

since the accurate knowledge of the dynamic pressure is also of

importance near the wall, a method was developed by which a correction
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ocould be made to the velocity measurements in this region. PFor this
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purpose the velocity distribution was measured with three pitot tubes
of different inner diameters, namely 0.3, 0.582, and 1.045 mm, at one
and the same Reynolds' Number. By extrapolation these measurements
served to define the veloolty distribution which one would have
measured with a pitot tube of zero diameter. In ¥Figure 13 the distance
from the wall is plotted as the abscissa and the veloclty as the
ordinate. If one draws a straight 1line through points of equal velocit)
(parallel to the abscissa axis) and plots the corresponding inner
diemeter of the pitot tubes as a vertical distance at each individual
point, then a curve may be drawn through the end points of these
distances, which by extrapolation gives an intersection with the
straight lines. These intersections are points of a new curve which
expresses the velocity distribution which one would obtaln with a pitot
tube of zero inner dlameter. When the pitot tube oPQning lies
campletely in the water stream, then, as Figure 13 shows, no cor;ection
is required.

For this case the measured velocity curves meet with the

theoretical curve at point A, (i- 1,2,3), The distance of point
. 1 y

from the wall 1s also equal to the inner diameter r, (1= 1,2,3) of the

openigg of the pitot tube used for measurement. In order to determine |
the correction for any arbitrary pitot tube opening, one draws a
vertical line through the point A, (corresponding to the given ri) to
the absoisga axis (dashed in Figure 13) and determines the distances
y* and y" of this line from two points on the theoretical and the
measured curves (respectively) which correspond to equal velocities.

In this way pairs of values are obtalned for different Reynolda‘
.Numbera, which pairs are reproduced in dimensionless form in Figure 14.

If one has measured a velocity distribution and wants to adjust it in




the vicinity of the wall to the velocity distribution one would have
obtained with a pitot tube opening of zero inner diameter, then one
uses this figure (Figure 14), displacing the velocities which are
measured at the distance y" to the corresponding distances y'.

In order to estab;ish the percent error in the quantity of flow,
which was obtained by integration of the uncorrected velocity
distributions, the measured velocities, which were obtalned by
measurement with different pitot tube openings, were plotted in
Pigure 15 in relation to the square of the distance from the tube axis,ﬁ
and the quantity of flow was calculated by graphical integration. The '
ocorrected velocity distribution is repregented by Curve 1 in this
figure. Curves 2, 3, and 4 correspond to the velocity distributions
which were obtained by measurement with pitot tube openings 4 z 0.3 mm,;
0,582 mm, and 1.05h_mm. The table of numbers in Figure 15 shows that :
the quantity of flow for the corrected veloclity distribution amounts
to Q, = 1256 em3/sec. One also sees that with decreasing pitot tube
opeﬁing the graphically determined volume rate of flow decreases toward%
the measured volume rate of flow (which agrees with that determined
graphically from the corrected curve), The velocity distributions
represented in Figure 15 were measured in a tube with a dlameter d = 20%
Similar experiments were made in tubes with diameters d = 3cm, 4 = 5om,f
and 4 = 10 cm, and the results are shown in Figure 16. Here the
dimensionless pltot tube opening %1/d, which is formed by dividing the
diameter of the pitot tube tip by the pipe diameter, is plotted as the ;

absolssa, and the percent error in the volume rate of flow 100 (Qagg) Ei

is plotted as the ordinate. This diagram permits the error ocourring

at a definite ratio d4 to be specified.
T :




Part L, Carrying Qut tgevpxper%mqnts
Oarrying out the tests with the overflow setup was very simple
since the constancy of volume rate of flow was automatically taken care :
qr. When one wanted to undertake the measurements of the veloc ity .
distribution, he placed the throttling cone dk (Figure 54) of the
velocity measuring apparatus at a definite position which corresponded
to the desired volume rate of flow (the relation between the volume
‘ rate of flow and the position of the throttle in the velocity measur;ng‘
o apparatus was known from preliminary tests)., Then one passed through
the water supply line into the water tank just enough water to glve
a very small overflow. With the micromenometer I, whioh served to
measure the pressure drop, and micromanometer II, which served to
measure the velocities, tested as to the correctness of their
indioatiqns,.one determined the tube axis by velocity measurements,
the axls then being considered as the reference point for the actual
measurements. Then the measurements were begun, consisting of, besidesg
i

the veloolty measurements, the measurements of pressure drop,

temperature, and the volume rate of flow.

The experiments with circulating water were more difficult inas-
muoch as current fluctuations in the electrical circuit caused
variation in the speed of the driving motor and thus variation in the
rate of flow in the test pipe. Therefore it was necessary to hold

the pressure drop constant with the fine regulation of the throttling

S - OO § MO T
o -

cone dk.
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Carrying out the measurements with the forced flow setup was

o
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. accomplished by first breaking the connection between the water tank

wk (Figure 1) and the compressed alr tank dk, .and then letting the

-
I

.j

compressed air, which was in the water tank from the preceding

-,
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experiment, esacape through the safety valve kav of the water tank.,
While the compressed air in the compressed air tank dk was brought up
to pressure (about 10 atm. in all measurements) by means of a
.campressor, the connection between the centrifugal pump kp and the
water tank wk was made, and the tank filled with water to a definite
height, In the meantime the exit cross section of the test pipe

was sealed off with oll paper, which was placed between the flange af
the test plpe and & ring flange adjusted to the tube cross section,
and now with the aid of a by-pass on the tripping valve sh, the

feed tube zr and the test pipe vr were filled with water. The air
existing in the feed pipe (zr) could escape through the opened check
valve sv. Now the connection between the compressed air tank dk

and the water tank wk was remade through the Arca-Regulator, which
was previously adjusted to a definite pressure. In this way the
preparation was completed, and the actual experiment could begin.
TThe tripping valve was opened at a sign from the manometer observer;
the o0ll paper was torn by the water pressure. After the flow became
stabilized at constant conditions, the observer determined the 1imit
of the manometer heights by means of the sliders which were maie
easily movable on the legs of the manometers (Figure 3). The
tripping valve remained open until the water level in the water tenk
had fallen to about 4Q to 50 cm. above the exit cross section.

‘Then the manometers were read, and the preparations for the next

test could be started.
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N il. Evaluation of the Experiments

Part;; - Veloocity Distribution
e Z DA R A

/

The velocity distributions have been measured in tubes of 1, 2,

3, 5, and 10 cm diameter from small Reynolds' Nos. (Re = 4°L03) to the
largest Reynolds' No. studied by us 3240(203). As 1is obvious from the

further evaluation of velocity distribution, a more accurate knowledge

1=Ne BT
PR Py S0

of the veloocity distribut;on 1s important not only in the vicinity of

the wall, where a steep velocity gradignt e;ists, but also near the

- center of the tube, where only a small velocity gradient is produced.
Therefore, the points of measurement near the wall and near the

tube center are chosen especially close together (the velocity

distribution across the tube radius contains altogether 18 measured

points), The velocity distribution was symmetric and showed either

none or only a small difference for points equally distant from the

tube a;is on each side of the center. About 150 velocity profiles

?é have been measured, from which, however, only 16 profiles have been

' used for the ecomplete analysis. On account of the complete symmetry

3 .0f the profiles only one half of the profile has been used in the

analysis. The numerical values of these 16 velocity profiles across

the tube radius are tabulated in Table 2. In order to obtain the

velocity distributions at the smallest possible Reynolds® Nos., the

entrance to the tube of 10 mm diameter 1is covered centrally with

a plate which has an opening of 6 mm diameter. The plate produced

a violent eddying at the entrance, so that at a Reynolds' No, of

Re = AJIOB, the turbulent flow was already fully developed. Only

the three smallest Reynolds' No., were measured with this arrangement,

In order to follow the variation in the form of the velooity dis-
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29,
tridbutions in relation to Reynolds' No,, the velociti distributions
are made dimensionless in such a way that the local velocities are
referred to the meximum velaoities and the oorré'apanding distances
from the wall are referred to the tube radius. Thus, we obtain the
- relation

b= 1(%) | | (6)

which is represented in Figure 17 for six profiles from Re = 4‘103)
to .32) ."1033'. This representation shows .v.:.qj‘:_‘ye-l-'blearly that the
nloou;* distribution becomes fuller witafl'i.;?".‘ﬁz“oraqsing Reynolds'

Nos. This feot leads us to the conclusion that with very large

: Reynoldl' Nos. the region 1nriuenood by viscosity becomes vanishingly
' smalle In Flgure 18 the .vo’ld‘city dist:ibut_tonn are plotted with %—
as the ordinate, log %d_ as the’ absquu, and the dimensionless
distance from the wall _;y_ as the puaﬁetor. The velocities ,ng_
oorrospondiné to a partiocular distance fram the wall % are joined
with a curve which is designated by the % value belonging to it.
This diagram shows that a marked scattering appears for the velocities
near the wall, If one wishes to obtain a dihens!Onleaa_ velocity
ﬁqtribution within the measured region, he needs only to select the
ourve of -E- ve, %’ ' for the given Reynolds' No. In order to prove
hpw ‘far the veloocity distridutions as mea.suréd by us agree with those
obtained by ather ilavestigators, let us make the following comparisons: 5

:The most reliable measurement of velocity distribution
up until this time 1s that of T, E; Stanton (16); £1rst, bveceuse he
has undertakean the measurements with a very fine pitot tube of 6.33 mm
diameter, and second, because he had a sufficiently long, straight
.t,nt.uction, x=72d (x = tube length, d = tube diameter = 7.4 om),
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so that his measurements were taken in a rezion in which velocity

distribution no longer changes. A comparison of our measured results
with those of Stanton appeared all the more necessary, since Stanton
has measured the velocity distribution shortly before (2 to 3 7 )

the exit end of the test section, while our measured cross section
was 0.1 to 0,2 mm. after the exit end., For this reason the velocity
distributions, which belong to approximately equal Reynolds' Nos.,
are plotted in such a way that the ratio of the local velocities u
to the maximum velocity U are taken as a function of the dimensionless
distance from the wall %" o The measurements of Stanton are under-
taken at Reynolds' Nos. of Re = 37.6¢10%, 56°10°, and 89.3°10°.

Our measurements glve good agreement with those of Stanton at about
the same Reynolds' Nos. Figure 19 shows a comparison of the velocity
distribution of Stanton at Re = 56+10 with ours at Re = 59107, In
this connection the following should be noted: data on the average
velooity U and the kinematic viscosity v are absent in Stanton's
work. We have determined from Stanton's data the average velccity

4 = 1235 om/sec from the mass flow, which is obtained by integration
of the velocity distribution. Sipce the measurements by Stanton are
carried out with air, in which the variation of kinematie viscosity
with temperature is very small, we have taken the kinematic viscosity
at an average laboratory temperature of 18°C,

Por very large Reynoids' Nos. it seemed useful to us to call
upon the velocity distributions measured by Bazin (17! for comparison,
The test section in Bazin's apparatus measures about x = 754 ( d =
80 om) in length, Data on the temperature and the-average velocity
in Bazin's work are also unavailable. For this reason ths average

velocity § = 164.9 cm/sec has been cbtained from his data by us,




again by integration of the velocity distribution. Bazin's measure-

ments were carried out in free humid alr in which temperature
variations of 100 to 20° occurred. Indeed, the kinematic viscosity

in this temperature region is very dependent on the temperature; on
the other hand, the variation of velocity distribution with Reynolds®
No. at such very large . Reynolds*' Nos. as occur here is very small, On
the basis of these consideratiods we have set the kinematic viscosity
at 1590 ( v = 0,0113 cm?/sec).

Figure 19 also shows a comparison of Bazin's velocity distribution
with ours. Except for the last points measured by Bazin in the
vicinity of the wall, good agreement is shown by the velocity distri-
butions at apprbximately equal Reynolds' Nos.

Part 2 - The Power Rule

Prandtl (18) has concluded from the Blasius resistance law thet
the velocity u in the vicinity of the wall in a turbulent atreem
varies with the |/7 power of the distance from the wall; that is,

u=ay’ (7)
where ¢ 1s a constant for any one velocity profile. The calculation

can be carried out as follows: In the formula for the resistance

coefficient

_dp 2d (8)

)\_.___._..

dx pu?
we replace the pressure gradient %%"by the shearing stress at the
wall. The equilibrium condition for a fluid cylinder with radius r
and length dx gives

dp . 27

dx = r

(9)
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.and thus
- 2T° 2
X H r i Pl—‘-z (8&)
T )‘Uz
From this it follows that T° =g .+ If we intrcduce the Blasius
& , -_I/
value A= O.ZI5(Re; for the resistance zoefficlent N , we
obtain
5 ~1/4

To _ _2(0 r

. K > (10)
or

T, _1/4 -1/4 1/4

- KTy (10a)

where K 1s same number. ?he solution of this equation for u gives
/7 7
i s K(R) (=) (11)

According to the Prandtl hypothesis, neither the tube radius nor the
velocity at the center should be directly propcrtional to the wall
friction, but the wall friction should first of all be determined by
the velocity distribution in the vicinity.or the wall,

If the ratio of the average velocity to the maximum velocity 1s

taken as constant, it follows from Equation (11) that

» 4/7 rn/7 .
N

This relation can be rewritten in the desired form if we put y for

.r and substitute the u corresponding to a certain y for U :

4/7 VA4

u=K'(38) (B (13)

Since the velocity distribution 1s measured at constant values of
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, We get from Equation (13)

i :"')'1.:{‘;

u = constant y'”

or uzay”’ (14)
As oan be easily further proved, Equation (11), that is, the Blasius
1aw; 1s also fulfilled by the velocity distribution of Eq. (13). This
resistance law, \;* O.3|6(Re-)'/4 , according to which the resist-
ance ooerriqient is inversely proportional to the fourth root of the
Reynolds® No., s valid up to Re x 100+10%, Since this Blasius
resistance law was the basis for the derivation of the 1/7 pawer rule,
we cannot expect the power rule to be valid for Re above this 1limit,
In' the valid region of the Blasius resistance law the slope of the
log A =~ curve is equal to 1/4. For high Reynolds' Nos, this slope
beoomes smaller gnd decreases in the range investiéated by us almost
to 1/6. If we take, for example, A proportional to (f‘?e-)'/s , the
method of calculation described above gives u=a y'/9 » That means
that the exponent n:=|/7 decreased to I/8 ;l/9 , etc., with
increasing Reynolds' ItIos, At Re = 3240o103 the exponent is about

n:1/10 , The vaﬂation of the exponent with increasing Re thusg
becomes smaller and smaller. Of course, such a power law with a

variable exponent can only be considered as an approximate formula.

%

A__.lso in the Blasius region, the |/7 power rule appears to be only an

sa

approximation, as the findings indicate. If we write the power rule
in the form
n : g
u=ay (15)
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the distance from the wall, we obtain the n value from the slope

of the curve. In Figure 20 the exponent I/ of the velocity is
plotted in relat;on to the distance from the wall for various
Reynolds' Nos. We see that in the region of smallest Reynolds' Nos.
the exponent has the value I/n:= 6§ at about he¢ = 4°103, From
about Re¢ = 104103 to 100-103, where the Blasius resistance law is
valid, we have |/n=7 , and at r:¢ s 321,00.103 the exponent increases
to i/n=10 ,

If we proceed from the assumption that a specific relation exists
between the shearing stress at the wall r, , the distance from the
wall y , and the velocity u , we can, as follows from Equation

(9). & (10),get the relation

y|
ik f(5%) (16)

s ‘ :
The quantity -Vl- is a kind of Reynolds® No., which is related to the :

distance from the wall y . If we expréss the velocity distribution
in the form of the Prandtl power rule, we obtain the relation

m
To _ (4 .
22 150 (17)
where [ 1s a dimensionless number which can be obtained fram the
measured velocity distribution in relation to the wall shearing

' n
stress belonging to it. In this relation m= ,—3—_—-; o If we take

the log of both sides of Equation (17) we get

T uy
Iog(-;l‘—j-z) =iogl -+ mlca (_-'U ) (18)
. =
If we get I0g (—E—E—z) from the measured velocity distribution
uy
and plot it in relation to Iog (-z,-'-) » Wwe can read off the

dimensionless constant [ from the ordinate at the point where



log (—E,;Z-) =0 » 88 soon as we have connected the points obtained
with a straight 1ine. The constant M, which appears as the exponent
of the dimensionless distance from the wall (Equation 15) and

corresponds to the exponent 1/4 1in the Blasius resistance law, ocan be
obtained from our experiments. By solving Equation (18) for m , we

get
log(-p%) —log¢

l0g(5Y)

The constants { obtained from the experiments and the exponent m

i (19)

ud
are plotted in Figure 21 in relation ta log G%ra o In Figure 22
m 1s plotted in relation to the exponent n ,

mggpt 3 - Uﬁ{versél.Yelocitx¥Dis§ribution ‘

In a new interpretation of his ldeas, Prandtl no longer uses any
power formulas as a basis, but proceeds only on the basis that the
velocity in the vicinity of the wall depends only on the physical
quantities which are valid in the vicinity of the wall ( 7, = shearing
stress at the wall, v = viscosity constant, p = density), while it
is independent of the distance from the opposite wall end of the
average or maximum velocity. Now we form, according to Frandtl (19),
from the shearing stress at the wall and the density p a quantity
characteristic of the friction condition, V*ﬂ/?gf » Which has the
dimension of a velocity., With this quantity a dimensionless velocity
may be formed in which we divide the local velocity u by v, ’

u
4 A » In the same way we form from the distance from the wall

X H
hi . y , the velooity v, , and the kinematic viscosity v= 7 y &

term something 1ike a Reynolds® No, -- a ™dimensionless distance from
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% the wall", 7 = — o Thus, we obtain in the vicinity of the wall
'g ) a universal velocity distribution ¢ ¢(ﬂ) o This relationship is
1: 1 represented in Figure 23 (Table 3). In this Figure the dimensionless
i velocities are shown for a range of Reynolds' Nos, (4-103 to 32h0o103).
% On account of the large range o;‘abscissas, n* v:y , three

- different scales are used. The indicated points are results of

% measurement,

;i. The universal velocity distribution becomes still more evident if,
{ instead of 7 , the quantity |0975 1s used as the abscissa, Figure 2.,
§ ‘ It 1s to be noted that within a slight scattering the experimental

'3 . points 1ie on a straight line. Upon closer examination it is seen

that the experimental points for a given Reynolds' No. do not lle
accurately on a straight line, but trace a systematic course above

ki and below it, Here it may be mentioned that the measured points

; reach to the tube center, while according to the Prandtl hypothesis

%‘ only points in the viecinity of the wall should lie on a smooth curve,
3 The latter is failrly well fulfilled. For 109(5) <Il.O 4in this case
-8 a systematic deviation from the straight line is distinguishable,

2 If we consider particularly points lying near the tube axis, we

}? g can represent the graphical straight line #1 in Figure 24 by the

~ equation

$=5.5+5.75l0gq (20)

é; With this equation we have calculated the % values belonging to a

g; series of ¢ values, and accordingly in Figure 23 we have drawn the

' ocurve passing through the experimental points.

%3 For further approximate calculations, however, it i s important

= . to favor the points near the wall, Straight line #2 passing through
o ——— — e
R N N R R T A,
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thease pointa 1s represented by the equation
¢: 554 -1 552l0gq (20a)

In laminar flow, if the veloecity . depends only on y , we have

for the shearing stress the expression

fo © 4 (%‘-;_ )o

where (_g(_;/o is the value of —i% at the wall, and ¢ 1is the
viscosity,
z, d
or du=z-t

By integration of this equation we get

. Tel
g
If we now put ro=pV.,f and u = pv , then we can write
E_:\Gy
Vi v
or ¢°1q

It is estimated that this relation 1s valid only up to =n =IO

as a result of the establishment of the turbulent mixing process.

This laminar range is shown in Figure 21 by the lower dotted curve.
= To

If we divide Equation (13) by AN and substitute ¢ for

Vx Y
3—* sy 7 Tfor : , and calculate the numerical factor, we get

/
$=5745"" (13a)

The ourve corresponding to this formula is shown dotted in
Figure 24, We see that the validity is limited in the range of
log 5 = 1.6 to 2.6,
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-------------



With this straight line rule we can calculate, with good approximation,

the velooclty distribution for any arbitrary Reynolds' No., given the
physical quantities =, , u=-;“ , and the tube rgd;us r « From

the equation of the straight line obtained, we can calculate the ¢
corresponding to various distances from the wall, and we can determine i
the local velocity u by multiplying by the velocity Vs, U- bV

F;om the dimensionless disfance n , wa can obtain the correspondigg

v r
‘

‘distances from the wall, v « Thus we obtain the velocity
distribution wu=f(y) for a definite Reynolds' No. In Figure 25
the velocity distributions obtained by this method are shown in
dimensionless representat;on. lTheso dimensionless velocity distri-
butions are shown for Reynolds' Nos., from Re = 105 to Re = 109, and
they show the variation in the form of the velocity distribution
with Reynolds* No,

0f course, it seems somewhat hazardous to calculate the velocity
in the center of the tube from a law which der;nes the velocity only
near the wall; however, the veloocity differences in the center pa;t
of the tube are generally not large. Moreover, the results shown
in Figure 24 do yield to this method. Of course, the values at the
center nevertheless become inaccurgte; the actual velocity distribution
show here a horizontal tangent which, contrary to the formula used,
shows a finite, if small, slope. This variation, however, makes
little difference for the volume of flow.

JM;a?art L = Mixingrpength and Exchaqga.Qpantitx
In laminar flow, if the veloaity u depends only on y , we have

the expression for the shearing stress

_ du (21)
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» where . = the viscosity constant. Likewise, in turbulent flow we get,
according to Boussinesq (21), for the apparent shearing stress caused

. by the turbulent impulse exchange

oy Q8 (22)

-

d

-~

- where i = the average (with respect to time), local value of the
velooity and A = the exchange quantity. The exchange quantity 1s not
el oox;stgnt but tar;es from point to point in the fluid. The essential
thing now is to bring A into relation with the velocity distribution.

For this purpose we imagine, according to Reynolds, the veloocity tp
By - be decomposed into an average (with respect to time) local value and

the fluctuations about this value. We say, therefore,

55
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where . and v ere instantaneous local velocities in the x and y

directions, and ' and v are local fluctuations of the x or y

Lt P
wh = A ‘.' .
IO AL IR

oomponent of the velocity. The velocity fluctuation causes an

e apparent stressed condition which is given by the following equations

255

4 e

. —i2 . ! . P2
o, > "pl, TTTpUV, o —pV (23)

% N %t
SN P e 3
*

'It is of importance now to express the velocity fluoctuations u and

‘3 v in terms of the ™main stream"™ U and V . This has been

", succesgfully done by Prandtl wifh ‘the following consideration. We

By assume for simplicity's sake, as in Equations 21 and 22, that the main
{j stream flows parallel ‘to tpe x-axis, and that velocity gradients are
_: . produced transverse to the main stream direction. For the turbulent
-:.’3i condition the length 1, which Prandtl designates as the mixing length,
¥ .is characteristic of the flow. The physical meaning of the mixing
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¥ L0,
3 length l 1s that in turbulent flow small masses of fluid possess
a characteristic motion, and consequently, move a certain distance

| transverse to the direction of flow before they are mixed with the
é new surroundings, Now 1f a small fluid mass, which originates at a
15 point with the velocity U , moves transverse to the main stream a
& distance | , its velocity differs from the average velocity of the
i new point in close approximation to the amount 1 %%-o Therefore,
¥ we have for the shearing stress, according to Equation 23, and if we
% take the proportionality constant in with the still unknown 1 ’

du
dy

di
dy

3 et (26)

By putting "absolute value™ signs on one factor and not on the other,
it is assured that r c¢hanges sign with %3- . By comparison of this
'% Prandtl statement for the shearing stress with Equation (22), we find

& for A the formula

s Aspl?

—d,-”;'l (27)

< This Prandtl statement, which gives a thorough physical analysis
. of turbulent flow, has led to an accurate calculation of the turbulent
flow in many cases. For flow in circular tubes, satisfactory
regularities can be found by means of this equation, If we divide

Equation 22 by the density, we get

r . A du

p o dy

If we now put é}= € , where ¢ represents a kinematic measure of the

turbulent impulse exchange, we get

aaaaaaaaaa
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or

. du
: €--I . QU (28)
f P dy

‘5 Thus, we get the kinematic exchange quantity by dividing the
"kinematic shearing stress"™ 7}- by the differential quotient of the
- veloocity f%% » The magnitude of this differential quotient across
'the tube radius 1s obtained graphically from the measured velocity

‘ distribution. Since the quantity g—:— and 3 * 5, S

(derivation as in Equation 9), both tend to zero on approaching the
tube axis, the determination of the impulse exchange quantity in this

.

L region is inaccurate. Therefore, measured points for the determination

of the veloalty distribution on the tube axis were taken closer

YAy

together. In order to draw a velocity curve fram the measured values

Tee .
~q .0 Gt~
y W Y W DAY b

of the velocity whioh gives a smooth course of the g%- values, the

differential quotients are formed from the measured points and these

b
o2
flaa

L are then connected by a smooth curve., From this curve the curve of
- the velocity distribution is now determined at small distances from
the tube center. By this method it was possible to calculate more
o accurately the € values in the neighborhood of the tube axis. In
j ‘ this way the values in the measured range of Reynolds' Nos. (from

. 4+103 to 324,0°103) were obtained for the above mentioned 16 velocity

-% profiles, and théy are again given in Table 4., In order to make the
E distribution of the € values across the tube radius comparable for

o all ranges of Reynolds' Nos., they were divided by V.r (since €

has the dimension of velocity times length), where v*=v/jgl and

?£ thus has the dimensions of a velocity. The corresponding conditions

4

.....................................
.................................................................

03 = i i . R e e T B e i - Y
R ) s o B s e



.....
--------

of the wall are referred to the tube radius. The relationship

SR

31' 1s represented in Figures 26 and 27. If we consider this relation in
53 | :Flgure 26, we see that the }ﬁ%r values decrease with increasing

e~ Reynolds*' Nos. to a constant value, which in this figure is shown as
| a dotted curve, In Figure 27 the 'Vf? values are recorded far

o Reynalds' Nos., greater than 100-1Q3° They glve, except for a certain
s scattering of points, a curve whi;h is independent of Reynolds'
:Number. This curve oorrespohds to the dotted eurve in Figure 26,

The dot-dash curve of Figure 27, which represents the »ny values

g in the neighborhood of the tube axis, is found by extrapolation., It
i1s characteristic for the course of these values, that the exchange
quantity at the wall is zero, since no exchange can occur here ;

with increasinmg distance from the wall -—57 increases quickly and

= Y
é; almost linearly and reaches a maximum at y-= é%— o« On approaching
2?’ the tube axis 'VfF falls agein to a very small value. At the sharp
-lan rise in the neighborhood of the wall, one observes considerable

z% scattering of the -sz values, just as 1in the neighbqrhood of the
oo tube axis. That 1s explained by a strong influence of viscosity

i which exists in thequighborhood'or phe wall,
-',: From € = % = 12—3% ,» 1t is evident that the
gg::ﬂ mixing 19ﬁg§h
e 1 = - (30)

23 du
\L" ‘ dy

The variation of the mixing 1eng§h across the tube radius has been
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: 43,
caloculated according to this formula for different Reynolds* Numbers,

and 1t has been tabulated in Table 5, The relation between mixing
length 1 and distance fram the wall y appears in the dimensionless

r r

mixing length in the immediate vicinity cof the wall (up to about

y

- = .07) increases from zero almost linearly. Karman expresses

representation -—1— = f(i) in Figures 28 and 29. We see that the

" this linear increase as | =xy , where y 4is the distance fram

the wall, and x 18 a proportionality constant; this constant has the
value x w 0.38 (Figure 29) for Re = 100+103 (Figure 28), Above the
value % = 0,07 the mixing length climbs less steeply and xieaches
at the tube axis a fixed value, about —];— = 0,14 (Figure 29), In

this figure the values of the dimensionless mixing length are

recorded for the five Reynolds! Numbers Re = J.O5<>1.O-3 to 32h0°103:
they give the same curve, within a very small scattering, From this

diagram we recognize that with further incregses in Reynolds® Number,

_the values of the dimensionless mixing length —}—~ for a definite

dimensionless wall distance —X— do nct decrease further, It 1is
seen, therefore, that for the Reynolds® Numbers given in Figure 29,
the influence of viscosity is no longez; present, Below Re w
100°103 we ohserve, as a result of the influence of viscosity, a

change in the dimensionless mixing length % with Reynolds' Number,

-and, in faot, -}- increases with deoreasing Reynolds' Nﬁmben
‘Thus, we obtain, for different Reynolds" Numbers in Figﬁre 28,
different —}- curves. The relation —},— as a function of {— 5

as it 1s shown in Figure 29, can be given again by the

following interpolation formula from Karman:

1 .01a-0.08 (- -’—)2—0.06(z - 1)4 (31a)

r

r r
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-i out of which can be obtained:

3

3 X [%‘y—]m;o.clo

1 Bearing in mind the viscosity, we obtaln a dimensionally correct

) statement for the relation between mixing length and wall distance
by the following consideration. The flow relations are, cf course,

defined bylthe physical quantities 1, ,p,pn, @and y alone. From these

;.

quantities the already mentioned dimensionless quantities LR AyAL

v H

_ v.;y can be formed. So, for the mixing length oxfe
| obtains the statement:

i 1=yf(VT*!)=yf(,,) (32)

We can concelve of 19 * ‘Y%y‘ as a (of course, variable)

Reynolds' No, in the neightorhood of the wall. The function f 1is

to be obtained empirically. Since

. [T du
v, = /-Fm =1 —dyl (33)

e Y

Qi . . s (34)
o dy 1 y f(q) )
. or by integration:
7Y
: Ny Va dy (35)
. ‘ : y f(n)

Dk &

Thls formula clearly Joins the velocity distribution with the
resistance law. The lower 1limit of the integral, which is here
designated as y, , with a sufficlently accurate formula for f(',,)

7 in the neighborhood of the wall assumed, is to be set equal to zero

o S

.....



..................

in a smooth tube, and equal to a length characteristic of the
roughness in a rough tube. The determination of the f - function

results from the measured velocity distribution with which one first

LS T TR

caloulates 1 and then plots —}—= f(n) « This relation appears
in Figure 30 (Table 6) on a logarithmic scale, Each of the curves
running from top to bottom exrresses a definite Reynolds' No. which
o3 is noted as a parameter. The highest points on the curves are in
the immediate vicinity of the wall. The curves running from left

to right connect points of equal -%— value, The diagram shows
further that for a definite ~¥» curve above a Reynolds' No, of
100°103, the log-%— values are equally great for all Reynolds*
numbers. The equality of these values gives new evidence that in
this range or'Reynoldsf Nos., disregarding the immediate vicinity of

the wall, no effect of viscosity 1s present,

\

Part

- g;milargg,qcoqside;gt;onq
Recently Karman has succeeded in proving the Prandtl mixing
length rule from a different viewpoint.
55 ' We can make, at present, two different basic assumptions about
E . the character of the relationship between turbulent atresses and the
flowing field, We can assume that the turbulent stresses can only
bl be explained by an "integral law™ of the whole flowing field with
its edge conditions, or that the'turbuleqt stresses at a given point
are continually determined by the behavior of the adjacent environment
33 and thus by a "differential law", For the stresses produced by
: molecular motion, and thus laminar flow, 1t 1s a well-known case of
a differential law; the laminar stresses can be expressed by the

u{

?% velooity gradients at the point in question and the constant of
i .
:
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- points in the flow field. Since the consideration is valid only for

‘derivation, that the secondary motion, in a coordinate system, which

- Since y 1s now to change similarly upon transition tc a different

.............................
------

...........
....................

internal frioction, as follows:

- du

Karman has proved the assumption of a differential law for
turbulent stresses., In order that such an equation can exist, the
secondary motion must not have a large spatial dimension, as far as

it 1s ooherent, and further, it must flow similarly at individual

large Reynolds' Nos., we can generally also neglect the influence of
viscosity.,
The mathematical formulation is now simple. Karman now makes

the requisite assumption which is conditioned for the following

takes part in the main motion of the observed point,is stationary.
The total motion is two-dimensional, the main motion U in the x
direction being dependent only on the transverse coordimte y . We
let the origin of the coordinate system introduced above synchronize
with the points under consideration so that the main velocity in the
vicinity of the observed point

U=u.y +(—g-3)y2+ ...... (37)

The total flow function ¥ becomes, with ¥ as the flow function of
the secondary motion,
Uoy* | Yoy’

Yixy)= 5= 4+ == +...... + yix,y) (38)

point, it changes here only by a factor A , which is a measure of

the intensity of the fluctuation motion, and a measure of length 1

...........
»
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47.
for the spatlal dimensions of the flow field;..that is, therefore, if

we set
x=1¢, y=lyq , y=Af ) (39)

If one eliminastes the pressure p from the Euler differential

should be independent of the choice of points investigated.

equations for a two-dimensional, stationary, frictionless stream,

Qu . Bu __ I ap dv . Qv 1 9p
i T iy P o Yax YV P By

in which we differentiate the first equation with respect to y and

the second with respect to x , and then introduce the flow functilon

by
] ] \ !
u=U+u=—.a-\Z- and V:V:__,_@I’
dy x
where u' and V' represent the velocity components of the secondary

motion, we obtain:

Q¥ Aoy 3d¥,
3y ox 0 (40)

0x 0Oy
where 41 1s the Laplacean operator

z 2
. Sk )
3 Oy?

After introduction of the above statement (38) we obtain in the ~

immediate surrcundings of the point under oonéideration

Sy+2w) o4y Oy . By ddy
(on‘ray) M B U, — —67--—5‘/———-0 (41)

and in the dimensionless quantities f , ¢ , and y

A 34t 8 0 w A
EY: 1 3¢ Vet e

.~':t_,‘?1,r, QE a,,)

2
S (3r.0a0 91 a0\,
n 9§




where the differentiation of f is now referred to the new variables
, 1 § and 7. The prime on U means simply differentiation with
x'; | respect to y . In order that f be independent of the point considered,
and therefore of A, 1, U, and Up , the coefficient of this
{ differential equation for f must be constant, After division of
. Equation (42) by %i we obtain
! | . ;
2 2038 -ug (398 - 3340 (1)
“J‘ - Also these must be truet
N ;
*':,‘ ULl = constant U:%. = constant
3 or
\] Ue A'\LE , U: ~~ % ( ™ means proportional)
2
or
J . v, U:,s 2, 1
e g oo A~ U:?‘\'I Uo (k)
i’:\ | The following very obvioua derivation by Bitz (25) can also
‘»}' | be given for this result:
. The velocity fluctuations of theé U component of a definite
: region of the main stream with thé average velocity U, occurs in
such a way that particles from the neighboring regions penetrate the
;"4 region U, with smaller or greater velocity, as a result of the .
’ turbulent cross motion, and they retain their original velocity in
doing so. These particles originate in regions which are removed
2 from the considered region by the distance 1 , so their velocity
& 18 U,+1,Us, , and the velocity fluctuation of the u-
3
:.,fl?t-i';.;-:.;.;-.;-f:-.;:-,;:._;:‘.;i.fftﬁ.;::{f'-?f-‘.{fl:}ff:}:ifizlﬂii';ilﬁf?}:{;i:::i:f:fgi.}‘:é‘*:}‘{;f;i:;255;3.1::..‘;.-_ A SN P R 20



' ‘ component in the region Uo therefore equals
T u= +1, U . (45)

We can continue in this line of thought. Besides their velocity
U,+1,U, , the particles also carry with them in the transverse

motion their average rotation

L=rotU=U

]

l;0='rot U= U'o is the average rotation in the considered
region U, , and J° cot1,§; =§Oi1,U<',' is the
average rotation in the region - 1,.. removed, The rotation of the
partiocles arriving ja the region U, by the transverse motion thus
differs from the average rotation existing there by the amount

L — =L, Ug . These particles therefore form a system
of right- and left-turning eddies, and we can concelve of the
Iturbulent soattering of velocities as a field of these eddies. If

1, 1s the average distance of the right- and left-turning
;-partioles, then their diameter is proportional to 1, . For the

. 'flow veloclty v = v' Dbetween two eddies one then obtains

ER V(L =) LU (46)

On account of the prescribed similarity of the turbulent
fluotuating motion, u must be proportional to v, and 1, ™1, ,
¥ so that instead of 1, and 1, , we can introduce a common measure

of length 1L . Consequently, we have from (45) and (46)

1, ~1¥u,
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2 or L _Q%_

e Uo

o (47)

[ in agreement with Karman's result.

fé We had previously for the turbulent shearing stress = the
relation r=—puV

where U and v' are the components of the velocity fluctuation.

LR RN

4 5
N

4

' Therefore: - ﬂ.ﬂ_ _ A:_.@Lif_

e

8 . of  df

1N or r=p'on5'€—°-5-n-
(48)

since f 1s independent of X and y , we have confirmed the Prandtl

relation for mixing length:

o
LKy CARE P

S 8- 8 0

21dU [
- plh—y‘ (49)

.8
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s s et
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¥
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In addition, we obtain an explicit formula for

i

< qa
N dy
- L= xgg (50)
8 - dy
with a universal dimensionless constant x .
I:: About the validity of the above consideratlon we can say
-‘.j. at the outset that it ends when elther u' or V" disappears, since

T then ¥V in the region surrounding the considered point can no longer

be approached as in the above noted disturbance equation (41).

Neither can we clearly and quickly perceive that any other points are

distinguished from the point at which the differential quotient of

the main motion changes sign (at the center of the channel) so that

.............
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fluid #ats . lowerii veloclty exists on™ eaeh Hisflke: i omminiiy,

Naturally, the entire deliberation remains incomplete, sa long as

we have not produced really a solution of the above disturbance

- equation of the desired kind., |
i

o Derivation of the Velocity Distribution in Tubes and Channels
;i We can now caloulate easily the velocity distribution in a channel
;% or tube with formulas (49) and (50) for the shearing stress and the
:” mixing length; for the shearing stress in these cases is distributed
N linearly, so that we have, with 1, as the shearing stress at the

§ wall, y as the distance from the center of the tube, and r as the !
s tube radius,

oH - ¥y

.':1‘ T- To r

L]

On the other hand, according to Equations (49) and (50)

'ﬁ CHP4
.;_J . _L _ 1: dU\Z . xz dy
- F RS gy, T F /dfgﬂz
5 . dy*
o~ '

“n ey -

5 or

o I

: u'® Vi \/T

< with . /73

- (VA

fi These equations can be immediately integrated:
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il;.rc 0 is en integration ocdnstant,

| Ve . |
I =)

The integration oconstant 0 ia defined from the limit ing conditiona

or U=

on U',. Yor very large Reynolds* Noss % near the wall is very large
and approaches the laminar value S—L;- 1 ff— s which, on account of the

amall value of . , 1s very large, Without committing a gruf; error,

.we oan let the paint where %Lyj- ’booomes ;nrinite coincide with the

wall (ysr) o In this way we odbtain the integration constant
a:v/r , and

. A () |
p

and by integration over the 1imits O to y 4"

UAV-_U-_.;[I,,(_/,_V) +/-¥-_] (51)

According to this solntién, the mixing length increases linearly. fram

the wall, a faoct which may also be confirmed in the following simple
way, In this region the shearing stress is approaching wn , so that
here the equation ’

is valid, It follows that with y, as ths distance from the wall

=y uw - re=y
U [ ) _ XY,
-/ U’d"[u']r-y,',/ Wy,

r

where the integration constant can be set equal to zero, suﬁjoot to

1ater refidement (see seotion on the resistance law), since U’ at

the wall becomes very large in this case, Accordingly:

(8 L gt
.......
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U =—xv mi

3 as was asserted. In which region this relation is confirmed by

E . our experiments,follows from Figures 30 and 31.

3 : 53%{9?5990 Law
) Independent of this theory, Karman has given a satisfactory

" 4 explanation of the resistance law in smnoth and rough tubes.

For this consideration he assumes about the mixing path only

Cﬁ that 1t first inereases from the wall out( 1 -xy , where Y once
% more means the distance from the wall) and, moreover, it has a
. similar course in all tubes, independent of the wall conditions and
k)
i the viscasity.
-
\
N . —}-=x—¥-f(y77 with f=| forsmallyr—
> '
i or 1= x) f(—.)rl-)
A A zZone immediately next to the wall, where laminar flow is produced,
i , |
- must naturally be excluded from this relation. The equilibrium
= condition requires that
S du\ y
\.::' = e —= IS _ =
N T~ Al (dy) o -*>




..........
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- or on account of Equation (53)

5L . xy f()_:) - Y] | .

/

and if we integrate between the 1imits and , we obtain

ST
Umax— U = v, [l & . J
YARTRRD:
b - . y
- HEN -(r') (54)
5 ¥
R where § for all smooth tubes is the same function, The equation
:.-j U ___U 0
f‘h —ﬂ%ir— =f(%“) 1s ocomputed acecording to our experiments and

is reproduced in Table 7. This relation is represented in Figure
E%; | 31. The so0lid line in this figure is the velocity curve according
ié “ to Equation(51)with x = 0.36. The dotted curve is drawn through
the experimental points, We see that in the vicinity of the wall

e ¥ the calculated curve shows a deviation from the measured curve, This
f;i arises from the fact that the similarity considerations in thre
P < - vicinity of thé wall, where an influence of visccsity 1s present,

Qf, " are not fulfilled.

ﬂ&g The frietion or roughness on the inner surface has, according
2 to this, only an influence in the form of an edge condition, Karman
;ﬁ finds this for smooth tubes in the following way. In a narrow region
& of thickness § at the wall, the veloeity 1s determined only by the
93‘ viscosity, a faot which should immediately agree with the veloelity
A

e distribution calculated by the above formula with the help of mixing
- |

= length, This is naturally only a greatly simplified representation
s of the viscosity influence. 1 should, therefore, only be taken up
‘.E: <
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-
- to a value of x 8 . On the other hand § can depend only on the
| physical quantities in the vicinity of the wall, Ty 5 P s B
.. i acoording to the recognized train of thought, which according to
~. Prandtl and Karman leads to the velocity laws in the vicinity of the
Bt _a
L wall (1/7 power rule, etec,). Therefore, we place 8'7"'6*
where a again is a dimensionless constant independent of Reynolds'
No. In the leminar teglon T, = #g%' ; at the edge of the laminar
region we have, according to this, the velocity
7
. .9
U= X Ve
l y The velocity outside of the laminar region becomes

y

Since the principel velocity increase oceurs very near the wall, it is

sufficient ‘;tO carry out the integration with f(¥)= | o With
o that it becomes with new constants ¢ and B , approximately
: 5 3 : 2L [ DV 4 ]

Unox = X V& [C-'"'a?"f"]- XV |In 7 B (55)
':1: If we introduce the resistance numeral corresponding to the maximum
. veloocity
2

b y= -22 Ve
j-j.; p Umox
;5_?.; and the Reynolds' umber corresponding to 1t
r®
4 .- U r
.:;j: : Remox = ",',“
g
e e e T T S e i -
e e A e e e o Ry o P N S T Lo T
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then ‘f\lf =a+ x_l\'/"z‘ln(Remax‘/\P_.) (56)

(. : The values obtained by experiment for this equation are reproduced

in Table 8, and represented in Figure 32. J%f is plotted as the

s
o fet et
5 .8 8

5 ordinate and the common logarithm of Remq V¥ as the abscissa.
Since the similarity considerations are valid, strictly speaking,
only for frictionless fluids, and thus only such flows are in
question for comparison with the experiments in which the influence
of viscosity inside the tubes is very small, we have drawn a
fﬁ straight line (1) through those points at which practically no more
?g | influence of viscosity is present., Figure 32 shows that below

log (Rem VW) = 3.6 a deviation from the plotted straight line is
?3 present. This deviation increases with decreasing log (Rem, Vy) .
% This means that the influence of viscosity becomes stronger with
decreasing Reynolds' Nos. This straight line 1s reproduced by the
equation:

)\7 A+ B log (Repg V) (56a)

The constants &4 and & obtained from this figure are A = 4.75,

%ﬁ 1 B = 3,77. As the discussion above indicates, the equation of this
straight line is valid for all flows which are uninfluenced by
viscosity. Thus, we are justified in extrapolating the relation
o \7% ve. 10g (Remey V¥ ) to any large Rep,, -

X, We have drawn for the following approximate calculations a

ﬁ second straight line which particularly considers the points in

fﬂi the center region;

\/'—Tﬂ': 4,6 + 3,5C 10g (Remey VV) (56b)

----------------
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and second derivatives of the mainstream u=uly),

Similarity Consideration by Prandti
The basic principle of the Karman similarity consideration

represented completely above is the assumption of the geometrical

and mechanical similarity of the turbulent exchange mechanism,

By use of the hypathesis that the turbulent fluctuating motion at
different places in the main stream distinguished itself only by

a qugth and a time measure, Karman arrived at his universal velocity

distribution law for tube and channel fléw, By this, only the first

du day
dy gy o

were brought inte oconsideration, Prandtl(zé) maintains that one can
expect such a similarity of the secondary motion strictly speaking
only if the main motion also satisfies the same similarity., If

(1) and (?) are two polnts on the profile of the main flow, then one
has to vary upon transition from (1) to (2), y as the measure of
length and -&- as the measure of time ( y = distance from the axis of
symmetrf). The general velocity distribution uly) , which fulfills
the similarity considerations, that is, whose curve retraces itself
with variation in the y and u measures, 1s represented by the

equation gz ay"+ b

(57)

where @ and b are constants. We have already introduced the

?
quantity otharacteristic of turbulent flow V= /’l} (§,= Pv*)

The quantity v, defined in this way by the turbulent shearing

streas 7, , which Vv, has the dimension of a velocity, can be
regarded as a measure of the turbulent disturbance motion. On account
of the equality of two coordinate systems which move toward each

other with oconstant veloecity, the turbulent fluctuation velocity at

any point in the flow cannot depend on the veloeity u -of the main
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flow, but only on the value of the derivatives -g—‘—;— g —dd—‘jg g cccooee
T-.'i,ii at the point in question, and on the distance y of the point from

' I the axis of symmetry. On this account Prandtl makes the simple
statement, with thé, for the moment undefined, exponents p and q
V. X yp(d_U)q (58)

* dy
The only possible values for which this formula is dimens ionally

correct are P = 1 and 9 =« 1, so that we have
; = gy du
3 W= Mgy
‘-::.:
SN where X 1s a universal constant. As the simplest case Prandtl now

assumes T gz constant, and, therefore, V, = constant. Then we

can integrate the last equation and get
¥ Ve (ol
- us .*I In y + const, = —XL 'n(ﬁ) (59)
It may be said about the constant Y, , that it has the dimension
of a length. It 1s a measure of the thickness of the laminar region
=l present in the immediate vicinity of the wall. The only possible
" length which we can form from the characteristic constants of the
.'-'f ‘
Ay turbulent flow is L . We write, therefore:
*

y, = some number '\l/l: = m‘\l;—, (60)
Therefore, fram (59)
9 u== (In YV _ In m}
3 s ] (61)
oH or
‘:n'f U — I \/ —
s 1-_—{In.ll.;l. In m }
z and with

- -:-:—=4' and Yk,
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we have v=A+B Iny

The measurements glve

25

A= —FInm =55 B

I
4

Therefore, I
x=040 and m=9
The thickness of the laminar region 8 is of the order of

=L v
=9 N,

where nothing has yet been said about the numerical faotor still
to be added to Yy . Bquation(62)is as close to the equal expreasion
of the veloolty distribution, arrived at by Karman from his

similarity consideration, as can be expected.

The resistance number x:a;. —g- , already defined, has been
obtained as a function of Reynolds* No. over a large range, and is
plotted on a logarithmic scale 1n'figure 34 The recorded points
(Table 9) represent the valuea of log (1000 A ) from very small
Re of about 3° 03 to the upper limit, The measured values up ta
'Re = 100°103 (log Re = 5) agree very well with the Blasius formula
)‘= (%%'E' , Wwhich is represented in this Figure by the
curve 1., Abave this 1imit the measured A\ values deviate upward

more and more from the Blasius ocurve with inoreasing Re. Lees(27)
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...............................
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S_ has obtained a formula of the type
J ) A= 0.+ -b-;‘-
| Re
\ ,from the measurements of Stanton and Pannell, which reaches to a
o Reynolds® No. of 460°107 (log Re w 5.67)}
] namely, A= 0.0072+ %GL—%?- « Since our measured results
agree with those of Stanteon and Pahnell, they are also produced in
\‘ this range by Lees' formula. Outside of this range, our values
of )\ Jdeviate rroni the Lees' curve, which 1s designated with a
i 2 in Figure 34, As 1s evident fram this figure, this deviation
]’ . increases with 1nc;reasing Re. Recently Schiller and Hermann (28) |
on the basis of their and our measurements, have submitted,
acocording to the Lees statement A= 0 +F%ﬁ , the approximatae |
, ‘ formula |
y v= 000270+ 248!
- ol
o)
where Y= -3— and Re'=t—ri[' o Since it 1s generally customary
o . to refer the Reynolds' No, and the resistance number to the tube |
; e ! diemeter, we have recalculated the Schiller formula on this basis,
: L ‘This gives the formula l
e %2336 | (63)
*f which 1s represented in Figure 34 by the dot-dash curve 3, One l
- sees that Schiller's curve and that of Stanton and Pannell coincide
“J up to Re = 4.6910° (log Re = 5.67). From there on Schiller's
; ' ourve agress with the values measured by us to sbout Re= D;d' =
2 . -2.59106, or log Re = 6.4, From log Re = 6.4 up, Schiller's curve
i '
3

...........




deviates from our curve. This deviation becomes greater with
5] increasing Re . The deviation of the formulas of Lees and

{ Schiller-Hemmann fram the measured curve arises from the fact that

the formulas were caloulated directly from measurements, and

iﬂ therefore agree only so far as the experiments extended at that

time. We succeeded in obtaining an approximate formula in another
way, desoribed below, which joins the Blasius law at its upper limit,
and the validity of which appears certain up to a Reynolds*' No,

of Re - 1°108 (10g Re = 8.0). This formula is reproduced as

curve 4., It is seen that this curve at the upper limit (log

Re = 6.4) of the Schiller-Hermann curve branches off downward, and
- at Re = 10108 1t deviates more from Schiller's .curve than from

Lees!',

o The methods known up until now yield only formulas for the

regilons investigated experimentally, The representation of Karman
¢ 3
on page 56 nevertheless makes clear that a formula construeted equal

‘l‘.-‘ “ .l
E DR AR
PHA T VTN

e to the Karman formula is to be connected, namely:

| /= A+B log (Re/1") (64 )

lv. »
’ ,
B
St f il

The difference consists of the fact that Karman referred the

resistance and Reynolds' Numbers to the maximum velocity and the

tube radius, while we used the average velooity and the tube

.1 diameter, If we place \/_—!):— =y and log(Rev)\) = «x y then
.7 this formula takes the form
2 y = A+ Bx

In Figure 35 y: as a function of x := log(Re ) is

N A
iy 7
pPlotted according to measurements (Table 9). It gives the straight

line (1) and for A and B , the values A:=-08, B:=20 .
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The experimental results of other investigators are also plotted in
Figure 35, and in drawing the line through these points, little
welght was given the values of Ombeck, because these .experiments
carried out with alr are somewhat less certain on account of the

variation in volume of the air, From x=log Re \/x we

caloulated the values of Re\/\ , divided by-)!l-=‘/)‘ , and gob

the Reynolds No, Re , So we have obtained from the above equation
a relation for the resistance number in terms of Re
x=f(Re).

One can expect with a certain probability that we may alnso

extrapolate this formula to a somewhat greater range, i1f not to
Re=Q0 , as we can the Karman formula,

The relation )=f(Re) 1is shown in Figure 36, as it results
when we extrapolate it to large Re (to Re = 1°108) from the
constants A and B defined from measurements. _

We can now use this representation in a eimi;gg:ﬂ!y to obtain &
convenient approximate formula for A , as Lees, Schiller, and
Hjermann have done on the basis of thelr experiments. The range
of Reynolds*® Nos,covered by this new formula will begin where the
Blasius formula '1eaves off., We will set the end of the region
constant at Re = 10108.

From curve 4 of Figure 34 we find for the constants of the
approximate r.ormuia

A= 0+'§

the values

as=s 0,0032 b= 0,221 N= 0,237;

0 h T ST E A
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i? the equation therefore becomes
& A=00032 + 255 — (65)

&% ‘ In order to prove the validity of the formulas given above by
ié Blasius, Lees, Schiller, Hermann,and us, the relationJ=; (log ReJ_—-)
] is calculated and plotted according to the corresponding
'gg formula in Figure 37, The recorded points are calculated from

E values messured by us. Below log (Re\/_;_ ) = 3,7 the values of
\/=')‘= 1ie below these straight lines. This is explained by the

i& ] fact that the influence of viscosity at these Reynolds' Nos,

%ﬁ { becomes considerable. Above this set limit the influence of
fi viscosity 1s negligible, and the experimental points lie on the

?ﬁ straight 1ine, OCurve 1, calculated from Blasius' formula below

J log (Reyx )= 4.0 _(which means Reynolds' No. is about 40!10-3 )

‘ deviates from ocurve 4; above this Reynolds"' Nc;. to about log (Rey/T_ )=
Zﬂ ( Re = about 100¢103) curve 3 colnoides with ourve L
:' Continuing to higher Reynolds* No.; curve 1 deviates considerably

; r upward from curve 4. In addiﬁion, curve 1, in aegreement with
;35 earlier work, shows that the Blasius law is only valid to(Rey\ ) =5.|
:% J ( Re = 100°103), Ourves 2 and 3 are calculated according

to the formula of Lees and Schiller and they deviate from the
straight lines at log (Rey) )= 4.7  ( Re = about 4.5107)
end  log(Reyx )=5.25 (Re = about 1,9-106) respectively.

If we record the resistance value in curve 4 for Reynolds' Nos.
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greater than l"108, then a corresponding deviation also occurs
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line (2, rigure 35) is drawn with the equation

=-0.55 + 1.95log (Rey'\ )

!
7y

Part/zr-‘Relgtion-?etween the Ayegggg and §h?lMa§;ggm’Vq;qpity
,(9) ffof. Pranéél has suggested that the éarﬁ;n resiéééﬁée
law (Equation 56b) can be joined with our Equation (64b) with the
help of Equation (54):

According to the Karman representation Equation (54) is

U-u

vx f('ﬁl)

From this relation the average velocity U can be obtalned
L 2
by platting 1%fL as a function of (-%L) and using graphical

integration, so that one obtains

U=t = o number = 3
By carrying out the integration B8 1is ziven as 4.03. With the help
of this relation we get the connection between the Karman resistance
law and ours, as follows: From the Karman Equation (56b) it

follqws, i1f we place

Remox= S ®ad/fy = 1.4i4 -

V= A+Blog [1.414 (%))

% = A'+Blog (ZF)
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In an analogous way we obtain from our resistance law, Equation (64b),

if we place
: Re =22l and |}\-2828 -
s za+blog [2.828(%0)]
or _3:*=°l+b|oq(vu_*f) (68)

‘Relation (66) now requires that the constants B and b in
Equations (67) and (68) agree. We can employ this relation in order
to get the best value of B=b by equalization between the
different dlagrems. The curve #2 already mentioned in the figures
is based on this equalization, The best value of B:=b 1is thus

given as 5.52, Therefore, we find further

A =5.87 : -1.555
and from these
A= 6.68 a'= 2.63

Upon introduction of these values and subtraction of Equation (68)
from (67) i1t follows then that

U-0 . 4.08 (69)

in gaod agreement with the earlier result. In Figure 38 the

experimental vlaues of %%, and J%; are plotted in relation to

Yol The two straight lines through these points are parallel,

v [ ]
and the difference between the two funotions amounts to, on the
average, L4.03, as was predlocted above.

The equation for the universal velocity distribution Y=

¢, +C,logn should from theoretical principles be in harmony with
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66.
,_, Equations (67) and (68), if we put the straight 1ine V= V(1)
:J ] only through points near the wall, since C; should = b
Actuall
i« .' Y y=584+ 552 log 1

is in good agreement with the experimental points near the wall.

To the value 5.52 there corresponds a value of the Karmen universal

N constant

2.3025 __

% x= == = 0,417

¥ 5.52

E:;E ] (v) By division of Equation (67) and (68), -5— results as a |
20 r

. function of v; , and also as a function of Reynolds' Number,
- which can be expressed by _v%r__ , for it 1is

ot

LA — =

2 2Ur _ 2T ! v "y

2% Re=S5"L = &Y., %" — 2(2828)(=%)—

¥ v v v 1 4 /

xS - &

/-JT— , however, can be expressed by means of Equation (64a)

2 also by -l . In Figure 39 the relation so obtained:

“'J - -

o u — ud

! -G' — f( v )

_:, is represented for Re = 3°103 to 1°108 by the solid curve. In
:’: ] addition the experimental points by Stanton and Pannell and us are
g plotted here (Table 9). In the range in which laminar flow 1is

o G

Y developing T‘j_z 05 « The upper 1limit of laminar flow occurs at
.;‘_'::'
f:: log Re = 3.1, corresponding to a Re = 12.6°103. We see that the
measured points deviate from the calculated curve up to Re= 200103
.:.:J‘

'z (log Re = 5.4); they are connected by the "dashed curve. This

',llg. deviation is explained by the influence of viscosity, which the
N ] formula does not reproduce. On continuing above Re = 200°103,

" : '

I the agreement is fairly good. The results of measurements by
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67.

Stanton and Pannell agree very well with ours up to log Re = 4.2,
Above this 1imit an almost constant deviation occurs, This deviation
is assuredly caused by the method of measurement. We have under-
taken further measurements at different Reynolds' Numbers 20 1

before the entrance cross section; the same values as our earlier

measurements have resulted.

Summary
The objective of this work was to investigate the regularities

of the turbulent flow in smooth tubes over the largest possible

range of Reynolds' Numbers. For this purpose an experimental set up
was constructed which made it possible for us to obtain turbulent
flow of water in circular tubes up to a Reynolda' Number of 32h0°103,
By evaluation of the measured velooity distributions and the

pressure gradients, the following were established:

1, The form of the velocity distribution varies with Reynolds'
Number, and, in fact, the velocity distribution becomes fuller and
fuller with inocreasing Reynolds' Numbers, The comparison of the
veloclty distributions of Bazin.and of Stanton with ours gives good
agreement, ]

2. The exponent n in the Prandtl Power Law ( u:= ay" i
where y = distance from wall) has the constant vaiue n = 1/7‘in
the Blasius range of resistance up to Re = 100103, At very small
Reynolds' Numbers, the exponent is greater than 1/7. Above a
Reynolds*' Number of 100103 we observe a decrease in the exponent
N with increasing Re , At the largest Re = 3240103, the
exponent reaches the value n = 1/10, By forming suitable dimension-

less ratios from the quantities characteristic of the turbulent
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flow in the vieinity of the wall, 1, = .shearing stress at the
wall, v = kinematic viscosity, p = density, a velocity
distribution law valid in the viocinity of the wall for all Reynolds‘
‘Numbers is obtained

Vv (1;)
in which

For sufficiently large values of 7 (above 7 = 10) it is
sufficiently accurate to state
vy = A+Blogng
( A and B are universal constants),

3, The turbulent exchange quantity was determined in re_lation
to the distance from the wall, The dimensionless ratio -V:_"- in
relation to Ty shows that above a Reynolds® Number, Re = 100:10> .
the distribution of the exchange quantity aéross the cross seotion
is independent of the Reynolds' Number. Below this Reynolds‘
.Number this distribution is cldsély dependent on the Reynoldé*
Number., For the Prandtl mixing length, which is related to the
turbulent 1mpulse exchange, we have learned that the ratio % for
each point in the cross sectlon decreases with inoreasing Reynolds'
Number. When Re exceeds the value 100-103 the dimensionless
mixing length distribution ]r‘— = f( —g—) becomes independent of
Reynolds* Number. This independence indlcates that above this
Reynolds* Nmbar an influenoe of viscosity is no longer present.

L. The measured velocity distributions and the resistance law
are campared with the distribution oaloulaﬁed by Karman on the basis

of his similarity consideration, and in the region of large Reynolds'
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Mumbers where the influence of viscosity is not present, theéy are
found to be in good agreement.

In connection with theé Prandtl similarity consideration, new
deliberations by Prandtl and Betz are given.

56 .If A= :_: . ,%—g-g » the tube resistance number,
then the Blasius resistance formula Ag* 9%% 1s confirmed up
to Re-:= IOO); IO'3 For larger Reynolds' Numbers the following formula
results |

X = 0.0032 +%:%',,—

In connection with the resistance formulas of Prandtl and
ourselves, relations between the average velocity U and the maximum

velocity U are determined, which demonstrate new correlations among
the different formulas,

----------
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Fig. 1. Experimental Setup

2zl feed pipe br gquieting chamber
B wk water tank 8v check velve
dk compressed eir tenk vr test pipe

sb, gate valve between wk and kp  gm  velocity measuring epparatus

sb, gate valve between wk end zr 57 stendpipe
a2t jet collector

skv safety velve for weter tank

sh tripping velve a Arca regulator
' str stendpipe kp centrifugal pump
2! fr downpipe am driving motor
ks ft collector basin vk reservoir
k3 ah flow-off valve en motor starter
h drain velve zf hose
4 gl flow straightener af flow off
b zr  entrence pipe gws mercury mancmeter
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Fig, 2, View of the Experimentel Setup
with Circuletion of the Weter
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‘ Fig. 3. View of the Setup for
L - Forced Flow Experiments

p ' de pressure inlet Q@ , Qm, mercury menomneters

wnm weter menometer

k.
k ) Fig. 4. The Large Velocity Messuring
1 Apparatus with Throttle and Swivel Outlet
i % m housing srsp screw
L! d cover dk throttling cone
sp,su spindles msk measuring scale
schl sliding carriage Kl bell beerings
= Pt pitot tube av throttle velve
F ph pitot tube holder w wall
A f window e venting velve
P "] P& line connection for totel pressure k) casing for the pitot tube holder
| 2  screw wheel sch swivel outlet
f1l guides zw, . 2w, sceles
s hose =

scht hose connection
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Closeup of the Micramenometer

Bys By, By, By, Bg  valves

a1, 82, a3, .h

mi
bl
&r
e
la
sl
m

sn
n

lu
eg
af

pressure lead connections

reeding mieroscope

ad justable screen

glass tubes

milk gless plate

lamp

slides

measuring scale

worm drive

vernicr scale

swiveled magnifying gless

driving wheel for coerse adjustment
driving wheel for fine ad justment



Fig. 8. Arcs Regulator

Wl  spply line hk piston
1, water line sf apring
h lever
12 water line tv  disk valve
md diaphragm bellows
dr throttle dl pressure line
:: piston v flow off
piston spring
¥ 3 Y regulating valve
sk contral piston

Fig. 9. The Tripping Valve

sr control wheel

ha valve

k cone
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ku, ko compressed air chamber
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hk piston
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iisasuring Seotion
for the Measurement of the
Static Pressure
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