UNCLASSIFIED

AD NUMBER

AD894118

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; Feb 1972. Other requests shall be referred to Air Force Materials Lab., Wright-Patterson AFB, OH 45433.

AUTHORITY

AFWAL ltr, 1 Dec 1980

THIS PAGE IS UNCLASSIFIED

COATINGS FOR LIGHTNING PROTECTION OF STRUCTURAL REINFORCED PLASTICS

R. O. Brick C. H. King J. T. Quinlivan

400

5X.)

TECHNICAL REPORT AFML TR-70-303 PART II

Distribution limited to U.S. Government agencies only (test and evaluation). February 1972. Other requests for this document must be referred to Air Force Materials Laboratory, Nonmetallic Materials Division, Elastoners and Coatings Branch, AFML/LNE, Wright-Patterson AFE, Ohio 45433.

Air Force Materials Laboratory Nonmetallic Materials Division Air Force System Command Weight-Patterson Air Force Base, Ohio

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way, supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

	nons, contractua	l
ACCESSION IN	7	
657	WHITE SECTION	
100	STAT SECTION 2	
BHANNSUNCET		
UNITIFICATIO	I	
:		
BIETRIBETTE	AVANANILITY CODES	
	statt and on SPECIAL	
1 99-1.	ATAL DE E	
'		2
	5 5	

QY COATINGS FOR LIGHTNING PROTECTION OF STRUCTURAL REINFORCED PLASTICS

R. O. Brick C. H. King J. T. Quinlivan

Distribution limited to U.S. Government agencies only (test and evaluation). February 1972. Other requests for this document must be referred to Air Force Materials Laboratory, Nonmetallic Materials Division, Elastomer and Coatings Branch, AFML/LNE, Wright-Patterson AFB, Ohio 45433.

FOREWORD

This report describes work accomplished under contract F33615-71-C-1198, "Development of Coatings for the Lightning Protection of Structural Reinforced Plastics." This contract was administered under the direction of the Elastomers and Coatings Branch, Nonmetallic Materials Division of the Air Force Materials Laboratory, Fright-Patterson Air Force Base, Ohio. Mr. James H. Weaver was the project monitor. This effort was a continuation of research initiated under contract F33615-69-C-1512, "Coatings for the Lightning Protection of Structural Reinforced Plastics."

The program was performed by the Electrodynamics Technology and the Structures Technology-Materials organizations of the Commercial Airplane Group The Boeing Company. Key personnel associated with the program and their respective areas of responsibility were:

> R. W. Sutton R. O. Brick C. H. King J. T. Quinlivan

Program manager Technical leader Electrodynamics Materials

1

ii

This report was submitted by the authors on January 17 1972.

This report has been reviewed and is approved.

W. P. JOHNSON, Chief Elastomers and Coatings Branch Nonmetallic Materials Division Air Force Materials Laboratory

ABSTRACT

Coatings and coating systems developed for protecting boron-filament- and graphitefiber-reinforced plastic composites from structural damage by lightning strikes were investigated and developed. These coatings are 6-mil-thick aluminum foil, 200 by 200 mesh aluminum wire fabric, 120 by 120 mesh aluminum wire fabric, and a coating containing aluminized glass filaments. These coatings all use a continuous-metal member as the protective element (e.g., metal foil, woven wire fabric, or metailized glass filaments). Each of these was found capable of preventing mechanical damage to the composite at the 100-kA test level. Very local and minor damage was frequently, but not always, detected after 200-kA testing. None of the coatings could fully protect the composites from damage due to the high-coulomb component of the artificial lightning stroke.

With but one exception, the coatings investigated were relatively unaffected by normal aircraft environments. Their electrodynamic properties were measured and assessed.

(IV BLANK)

CONTENTS

A STATE OF A

								•	•				age
10	INTRODUCTION												
1.0		•	•	••	•	•••	•	•	•	•	٠	•	1
2.0	COATING DEVELOPMENT			•••	•								3
	2.1 Reinforced Plastic Substrates		•	• •									3
	2.1.1 Filament and Fiber Reinforcemen	t.						•			•	•	3
	2.1.2 Test Panels		•						•				3
	2.2 Coatings												5
	2.2.1 Metal Foils							÷.					5
	2.2.2 Wire Fabrics.												5
·	2.2.3 Silver-Pigmented Resin		• • • • • • • • •		-	•			·				7
	2.2.4 Metal Fiber Lavers		•	•••	•	•	•		••••				7
	2.2.5 Aluminized Glass Filaments	•••	•	•••	•	•	• •	•	•	•	•	•	7
	2.2.6 Miscellaneous Materials	•. •	•	•••	•	•	•••	•	•	•	•	•	ģ
	2 3' Environmental Tests	• •	٠	•••	•	•	•••	•	•	•	•	•	Q
		•••	•	•••	• •	•	•••	•	•	•	•	•	,
30	LIGHTNING TESTS												11
0.0	31 Lightning Test Annaratus	•••	•	• •	•	•	•••	•	•	•	•	•	11
	3.7 High Current Generator	•••	•	•••	•	•	• •	÷	•	•	•	•	11
	3.2 The Component Generator	• •	•	• •	•	•	•••	•	•	•	•	•	11.
	5.5 Two-component denerator	•••	•	•••	٠	•	• . •	•	•	•	• .	•	19
40	ELECTRODYNAMIC EFFECTS												17
	41 Triboelectric Charging	••	•	• •	•	•	• •	•	•	•	•	•	17
	4.7 Flectromagnetic Shielding	•••	•	• •	•	,•	• •	•	•	•	•	•	22
	4.2 Electromagnetic Penetration	•••	•	• •	100	•	• •	•	•	•	•	•	27
	4.4 Antenna Ground Plane Requirements	•••	•	• •	•	•	• •	• •	•	•	•	•	21
	4.5 Flectrical System Ground Return	•.•	•	• •	•	•	• •	• •	٠	•	•	•	22
		•••	•		•	•	•	•	•	•	. •	•	55
5.0	LIGHTNING TEST RESULTS												35
••••	5.1 High-Current Tests		•	•••	•	•	•	•••	·	•	•	•	35
	5.2 High-Coulomb Tests	• •	•	•	•	•	•	•••	•	•	•	•	41
	5.3 Boeing-McDonnell Douglas Lightning Te	· ·	•	• •	•	•	•	• •	•	•	•	•	<u> </u>
	5.5 Boong MeDomich Douglas Lightning To	313.	•	• •	•	٠	•	• •	•	•	٠	•	
60	CONCLUSIONS												51
0.0		• •	•	• •	•	•	•	• •	•	•	•	•	J1
ÅPI	PENDIX-Test Panel Summary												52
	LADIA-103(I allei Summary	• •	•••	•	•	٠	•	• •	•	•	•		22
ישס	FEDENCES					•							76
- R C													

, **V**

\

FIGURES

Page

	나라는 물건 승규는 물건 이 가 있는 것이 있는 것이 가지 않는 것이 가지 않는 것이 있는 것이 가 많은 것이 없는 것이 같은 것이 있다.	
1	Tensile Test Specimen	
2	Aluminized Glass Filament	
3	Laboratory Test Setup	
° 4 -	Schematic Diagram of the High-Current Test Setup.	
5	Schematic Diagram of Modified Test Setup	-
6	Oscilloscope Traces	
7	Schematic Diagram of Two-Component Generator	
8	High-Current, High-Coulomb Oscillograph Traces	
9	Schematic of Triboelectric Charging Equipment	
10	Triboelectric Charging Test Setup	
11 -	Equivalent Circuit of the Streamer Discharge	
12	Pulse Waveforms of Panels Subjected to Triboelectric Charging	
13	Streamer Discharges Produced on Panels 298 and 364	
14	Low-Frequency Shielding Effectiveness Equipment Setup	
15	Shielding Effectiveness of Panels 308, 310, 338, 340, and 342	
16	Shielding Effectiveness of Panels 296, 509, 510, 511, and 512	
17	Shielding Effectiveness of Panels 292, 306, 500, 513, and 514	
18	Measured and Theoretical Shielding Effectiveness	
19	Loop Configuration for Electromagnetic Penetration Test	
20	Pickup Loop Shown From Within Faraday Cage	
21	Boron-Filament-Reinforced Epoxy Laminate Coated With 200 by 200	
	Mesh Aluminum Wire Fabric After Exposure to 200 kA	
22	Painted Graphite-Fiber-Reinforced Epoxy Laminate Coated With 200	
	by 200 Mesh Aluminum Wire Fabric After Exposure to 190 kA	
23	Aluminized, Glass-Coated, Graphite-Epoxy Laminates After	
	Exposure to High-Current Tests	
24	Aluminized, Glass-Coated, Graphite-Epoxy and Boron-Epoxy	
	Laminates After Exposure to 3% Salt Spray for 30 Days;	
	Graphite-Epoxy Laminate Displays Coating Corrosion	
25	Aluminum-Wire-Fabric-Coated, Boron-Filament-Reinforced	
	Epoxy After Exposure to 232 C	
26	Damage Versus Coulombs Transferred for 200 by 200 Mesh,	
	Aluminum-Wire-Fabric-Coated, Boron-Filament-Reinforced	
	Laminates	
27	Boeing-McDonnell Douglas Test Panels After fligh-Current Testing 46	
28	Boeing-McDonnell Douglas Test Panels After High-Coulomb Testing 47	
29	Backside Damage to Panels BR14 and BR14C	
30	Damage to Panel BR14 Prior to Boeing Tests	

No.

vi

TABLES

Da

110.		rage
1	Results of Electromagnetic Penetration Tests	. 29
2	Shielding Effectiveness Before and After Electromagnetic	
	Penetration Tests (dB)	. 32
3	Residual Flexural Properties of Aluminum-Fabric-Coated Laminates	. 44
4	High-Current Test Parameters	. 45
5	High-Coulomb Test Parameters	. 45
A-1	Panel Identification Code	. 54
A-2	General Description of Test Panels	. 55
A-3	Mechanical Properties of Unexposed Laminates	. 67
A-4	Residual Mechanical Properties of Exposed Laminates	. 68
A-5	Residual Mechanical Properties of Boeing-McDonnell Douglas	· ·
	Test Laminates	. 73

vii

No.

1.0 INTRODUCTION

Boron-filament- and graphite-fiber-reinforced plastics present new problems to the design engineer concerned with lightning protection. Techniques employed to protect conventional aluminum aircraft and their dielectric components are not directly applicable to advanced composite structures. The conductive, tungsten-rich core of the boron filament and the inherent conductivity of the graphite fiber render their reinforced plastics dielectrically inhomogeneous. As a result, these plastics require some form of lightning protection.

Investigations under contract F33615-69-C-1612 resulted in development of several exterior surface coatings that can prevent catastrophic lightning damage to advanced composites (Ref. 1). The most efficient (i.e., minimum weight) coatings use a metal wire fabric as the current-conducting member. Other coating systems investigated include metal foils, sprayed aluminum, and conductive paints. Lightning protection can also be provided by surface coatings that have very high dielectric breakdown strengths. Such coatings require appropriately spaced metal bars or strips to divert the electrical currents.

The effective use of any of these coatings requires an awareness of their impact on all aircraft systems to ensure that economy and operational performance are not compromised. To achieve this end, an Air Force Materials Laboratory program was instituted to develop and further study effective lightning protection coatings. The goals of this program were:

- Develop successful coating systems of optimum weight, cost, repairability, and manufacturing ease
- Investigate the effects of a wide range of adverse environments on the lightningprotective qualities of the coatings and develop the necessary modifications to improve coating performance
- Investigate the electrodynamic properties of the coatings and assess their impact on aircraft systems operation

 Investigate new coating concepts that will reduce the weight or cost of satisfactory protective coatings

To implement these objectives, selected coating systems were applied to boron-filamentand/or graphite-fiber-reinforced epoxy laminates. The electrical parameters of the coating were measured; the coated panels were exposed to the required adverse environments (if any) and subjected to artificial lightning discharges. The performance of the coating system was determined by visual damage analysis, microscopy, and the residual mechanical properties of the composite. Successful coating systems were subjected to lightning restrikes to provide additional data and greater confidence levels for the coating systems.

2.0 COATING DEVELOPMENT

2.1 REINFORCED PLASTIC SUBSTRATES

2.1.1 Filament and Fiber Reinforcement

The boron filaments were manufactured by the Hamilton Standard Division of United Aircraft Corporation, Windsor Locks, Connecticut. The filaments were impregnated with a high-temperature epoxy resin by the Minnesota Mining and Manufacturing Co., St. Paul, Minnesota, and marketed under the designation "Scotchply" SP-272. Two forms of impregnated tape were used; one employed a style 104 glass scrim carrier, the other did not.

The graphite fibers were manufactured by the Union Carbide Corporation, New York, New York. The Thornel 50S graphite yarn was impregnated with WRD 1004, an epoxy resin, by the Research and Development Division, Whittaker Corporation, San Diego, California. Thornel 50 fibers were impregnated with BP 907 epoxy resin (American Cyanamid Corporation, Wallingford, Connecticut) by the Chemstrand Research Center, Durham, North Carolina.

Epoxy-resin-impregnated style 181 E-glass fabric was used as the control material. This material, Narmco 551-181, was manufactured by the Narmco Materials Division, Whittaker Corporation, Costa Mesa, California.

2.1.2 Test Panels

The test panels varied in size from 6- by 12-in. to 12- by 12-in.

The boron-filament- and graphite-fiber-reinforced laminates consisted of several plies in an alternating 0°-90° orientation. The boron-filament-reinforced laminates were constructed symmetrically about the center ply, with the glass carrier fabric (if any) providing the outer surfaces. Generally, the laminates were five plies thick. A few 14-ply laminates were prepared for special testing, e.g., electromagnetic shielding determinations and the joint Boeing-McDonnell Douglas lightning test.

The glass-fabric-reinforced control panels were constructed of 13 plies of style 181 E-glass fabric.

Unidirectional and bidirectional laminates were specially fabricated for control tensile test data. The specimen drawing is shown in Figure 1. The unidirectional laminates were seven plies and the bidirectional laminates were five plies. The doublers were prepared from four plies of Narmeo 551-181 and were bonded to laminates using an oven cure (90 min at 260° F) under vacuum bag pressure. Surface preparation of the laminate included scouring with Scotch-brite followed by an MEK wipe.

The laminate plate with the four bonded doubler strips is cut into 1/2-in.-wide specimens using a diamond cutoff wheel and surface grinding techniques. An earlier specimen design using a 9-in.-long test specimen was discarded as it was not representative of the 12-in.-long lightning test specimens.

NOTE:

4

When material containing scrim is used, panel is to be balanced at 3 plies scrim up and 4 plies scrim down with fiber-fiber contact in approximately center of panel.

12 IN. MINIMUM

WININUT

The boron-filament-reinforced and Thornel 50-fiber-reinforced composites were autoclave cured per Boeing material specification (BMS) 8-131G (Ref. 2). This schedule requires 30 min at 180° to 190° F and at 280° to 290° F, followed by a 1-hr cure at 350° to 360° F, all under full vacuum and 50 psi pressure. The part is heated at 3° to 12° F/min and cooled at -3° to -5° F/min. No postcure is required.

The Thornei 50S/1004 high-modulus composites were cured per instructions provided by Whittaker. The schedule includes heating at 3° F/min to 275° F and holding at this temperature for 30 min. Upon completion of the hold period, 75 psi is applied, the vacuum bag is vented, and the part is heated at 6° F/min to 350° F. The part is held at this temperature for 150 min. The parts were cooled at -3° F/min under pressure.

The glass fabric control panels were cured per BMS 8-79K (Ref. 3), i.e., 90 min at 250° F under 50 psi, vented.

2.2 COATINGS

2.2.1 Metal Foils

Aluminum foil 1 and 6 mils thick was obtained from the Alcoa Company, Pittsburgh, Pennsylvania. The foil was integrally bonded to the outer surface of the composite.

A two-ply foil coating was prepared by perforating the aluminum. The perforations were approximately 1/16 in. in diameter and spaced 1/4 in. apart. A single ply of 104 glass serim cloth impregnated with BP 907 was sandwiched between the piecer of aluminum and the assembly was integrally bonded to the laminate.

2.2.2 Wire Fabrics

Woven wire fabric was purchased from Pacific Wire Products Company, Seattle, Washington. The pertinent fabric parameters are as follows:

Fabric	Mesh Density	Wire Diameter (in.)
Aluminum	60 x 60	0.008
Aluminum	120 x 120	0.004
Aluminum	200 x 200	0.0021
Copper	100 x 100	0.0045

These fabrics were integrally bonded to the composite substrates during laminate manufacture.

It was necessary to add resin to the laminates to ensure proper resin flow and encapsulation of the fabric. This was accomplished either by impregnating the fabric with BP 907 laminating dispersion or by adding sufficient unsupported BP 907 adhesive film. Additional resin was not necessary for proper part manufacture with Thornel 50S/1004 when the 200 by 200 mesh fabric was used. Sufficient resin flowed from the composite into the mesh to encapsulate the coating fully and provided a smooth exterior panel surface.

The proper layup procedure for integral bonding is to apply the coating to the tool side of the part as described below. The actual cure may have to be adjusted according to panel thickness and the heat-up capability of the fabricator's equipment. This procedure was derived for 5- to 14-ply laminates.

Autoclave layup procedure is as follows:

- Lay up the resin-impregnated wire fabric against a release material that is against the tool plate. In the case where an adhesive film was used, the adhesive was laid against the release material and the fabric laid on the adhesive film.
- Lay up the high-modulus material against the wire fabric. When material containing scrim is used, the scrim cloth is to be down against the wire fabric.
- Continue until all plies are laid up.
- Locate a boundary support around the periphery of the layup. Gap between the panel and support should not exceed 1/2 in.
- Cover the layup with a separator fabric or film.
- Locate several plies of bleeder fabric over the separator sheet, but do not overlap the boundary supports. General rule: use one ply of bleeder per two plies of laminate.
- Cover the entire layup with three plies of style 120 glass fabric, then cover with vacuum bag.
- Cure in autoclave.

Materials used in these studies as separator films included perforated and nonperforated FEP (E. I. du Pont de Nemours and Company, Wilmington, Delaware). Boundary material was cork. Bleeder fabric was a nonwoven acrylic (CW 1850, West Coast Paper Company, Seattle, Washington). Titanium tools were used throughout.

It is necessary to lay up these parts with the fabric on the tool side since the positioning of bleeder material over the wire fabric will cause resin starvation of the latter because of the greater wicking action of bleeder fabrics.

Knitted wire fabrics were obtained from the Metex Corporation, Edison, New Jersey. The fabric employed was of 13 by 24 mesh density and a double-stranded 0.004-in.-diameter aluminum wire. This fabric was also integrally bonded to the laminates during manufacture. One ply of BP 907-impregnated, style 104 cloth was added to these laminates to provide additional resin for mesh bonding.

2.2.3 Silver-Pigmented Resin

Style 181 E-glass fabric was impregnated with a silver-filled epoxy resin by Epoxy Technology, Inc., Watertown, Massachusetts. This fabric forms the outer ply of panels and is incorporated as such during laminate manufacture. The silver-filled resin is marketed as EPO-TEK 410 LV. The manufacturer claims a volume resistivity of 0.001 to 0.003 ohm-cm for this product. Another Epoxy Technology product, EPO-TEK 417, was screened as an electrically conductive epoxy coating. This material, a paste, was applied by means of a doctor blade. The manufacturer claims a volume resistivity of 0.00005 to 0.00007 ohm-cm for this material.

Hysol conductive coating K9-4239, a sprayable material with a volume resistivity of 0.002 ohm-cm, was also screened as a protective coating.

2.2.4 Metal Fiber Layers

Metal fibers obtained from the Filaments group, Fiberfil Division, Rexall Chemical Company, Evansville, Indiana, were screened as an electrically conductive coating. The fibers, approximately 0.005 by 0.005 by 0.125 in., were aluminum. Coatings containing 0.04 and 0.08 lb of metal fiber per square foot were prepared by sprinkling the necessary quantity of fibers onto a single ply of BP 907-impregnated, style 104 scrim cloth. The layers were integrally bonded to the high-modulus composites.

2.2.5 Alumininized Glass Filaments

Aluminized glass filaments were obtained from the Lundy Technical Center. Lundy Electronics and Systems, Inc., Pompano Beach, Florida. The filaments were furnished on commercial textile cones containing 20-filament strands. Two types of material were obtained. In one, all 20 filaments were metallized; in the other, only 7 (of 20) were metallized. The filament consists of a metal thread bonded to a glass thread, as shown in Figure 2. Each thread is approximately 0.5 mil diameter. The filament uses the aluminum thread for electrical conductivity and the glass thread for mechanical strength.

Unidirectional layers of aluminized glass filaments were prepared by two procedures:

- The filaments were wound onto a single layer of BP 907-impregnated, style 104 glass cloth (224 strands per inch).
- The filaments were wet wound, impregnating them with BP 907 epoxy resin (448 strands per inch).

Using the partially metallized strands, the two layers contained 1550 and 3100 conductive filaments per inch, respectively. The scrim-containing layer has a cured thickness of 3.6 mils per ply, of which approximately 1 mil is the scrim cloth. A single ply weighs 3.4 lb/100 sq ft. The wet-wound layer is nearly 4 mils thick when cured and weighs 5.3 lb/100 sq ft. No fabrication difficulties were encountered with this material.

Figure 2. Aluminized Glass Filament (X 900)

The fully metallized strands were prepared by wort-winding techniques only. These layers contained 4480 or 8960 conductive filaments per liss inch. The cured layers were approximately 2.3 and 3.6 mils thick and weighed 2.2 and 3.6 lb/100 sq ft/ply, respectively. The different cure schedules for boron and graphite did not change these properties.

Unidirectional layers of copper wires prepare by the first procedure mentioned above were employed for control studies.

2.2.6 Miscellaneous Materials

8

Kapton film was obtained from E. I. du Pont de Nemours and Company, Wilmington, Delaware.

Style 104 glass scrim cloth impregnated with BP 907 epoxy resin, liquid BP 907 laminating resin, and unsupported BP 907 adhesive film were obtained from the American Cyanamide Corporation, Bloomingdale Dept., Havre de Grace, Maryland.

Nylon fabric was a standard peel ply material used in reinforced plastic manufacture. The material served as a bleeder and release agent and with but one exception (panel 298-299) was removed from the part surface after cure.

Primer coating for environmental paint coatings was P-158, a product manufactured by Andrew Brown Company, Los Angeles, and qualified to MIL-P-7962B. The lacquer topcoat was qualified to MIL-L-19537C and manufactured by the same company. The materials were applied per specification, except that the pretreatment coating MIL-C-8514 was not applied.

2.3 ENVIRONMENTAL TESTS

- Coated and uncoated boron-filament- and graphite-fiber-reinforced laminates were exposed to the following environments:

- 140° F and 100% relative humidity
- Salt spray (3% NaCl)

Immersion in hydraulic fluid (Skydrol 500A)

- Immersion in jet fuel (JP-4)
- Weather-O-Meter (FED-STD-141, method 6152)

Upon completion of these exposures, the samples were removed and subjected to artificial lightning discharges to determine if the environmental exposure altered the protective qualities of the coatings. In general, the coatings were not visibly altered by any of these environments, and all tests except salt spray were discontinued after 30 days' exposure.

9

(10 BLANK)

3.0 LIGHTNING TESTS

3.1 LIGHTNING TEST APPARATUS

Past studies have shown that the damage introduced by a natural lightning stroke is composed primarily of two parts: a high-current component, which produces mechanical and electromagnetic damage, and a high-coulomb component, which causes thermal and electrical heating damage. The high-current discharge is usually a crest current with a peak amplitude from 10 to 200 kA and a pulse duration of up to approximately 50 μ s. A high-coulomb component is usually a long-duration, low-amplitude current component (a few hundred milliseconds' to a few seconds' duration and from less than a hundred amperes to a few thousand amperes).

All aspects or properties of natural lightning cannot be simulated in the laboratory due to limited space and energy available as well as the lack of a complete understanding of a lightning stroke: however, for the present study, a test discharge with the following requisite characteristics was used:

- A high-current component rising from zero to a crest value of 200 kA in 10 μ s and a pulse duration of 20 μ s with ±50% tolerance on time
- A MIL-A-9094C, type-C, high-coulomb, transfer discharge with total charge transfer equal to or exceeding 200 coulombs in 2 sec or less

For the initial study phase of the development and formulation of coatings suitable for lightning protection of composite structures capable of surviving aircraft environments, a high-current component rising from zero to a crest value of 100 kA is 10 μ s and a pulse duration of 20 μ s with ±50% on time was used. Application of this moderately severe stroke not only screened coating candidates for further study, but also aided development of protective coatings for areas requiring only secondary protection such as the zone II or 111 areas of an airplane (Ref. 4).

The laboratory test setup is shown in Figure 3. The test panel was clamped to an 18- by 18-in, phenolic panel that was bolted to the Faraday cage and was electrically isolated from the cage except for the ground strap clamped to one end of the panel. This configuration ensured that the discharge current passed through the maximum available coating surface of a test panel. A 1/4-in, diameter tungsten probe was used to direct the discharge to the test panel and a 1/4-in, gap was maintained between the probe and the panel.

The Faraday cage, a metallic box to provide electromagnetic shielding, was used not only to hold the test panel during the discharge, but also to house test equipment for the electromagnetic penetration measurement task discussed in section 4.3.

3.2 HIGH-CURRENT GENERATOR

The energy source used to generate a 100-kA crest was provided by a $42 \,\mu\text{F}$ capacitor bank with a positive-grounded power supply, i.e., the discharge probe injected discharging electrons toward the test panel to simulate a more severe damage situation than that of a

positive probe, should the system have a negative-grounded power supply. The capacitor bank normally produced an underdamped oscillatory discharge. The required single-pulse discharge was produced by shunting or diverting the discharge current parallel to the test panel immediately after the first half cycle of the oscillatory discharge. This effectively impressed a singlepulsed discharge on the panel even though the capacitor bank continued to discharge in an oscillatory manner. Referring to Figure 4, the capacitor bank was discharged through the test panel in an oscillatory condition by closing switch S_1 .

However, at the moment the first half cycle of the discharge was completed, switch S_2 was closed. This shunted the current away from the test panel and to ground via a parallel circuit. The discharge current was measured by a high-current shunt made by The Boeing Company. The output of this shunt was connected to a Tektronix 549 storage oscilloscope, which allows photographic records of the discharge current to be made.

The diverting switch S_2 , a Generel Electric 27207 ignitron tube, was turned on by a high-voltage pulse at a predetermined time. Ideally, closing the diverting switch should have shunted the discharge current and stopped all current flow through the test item. However, since both the ignitron tube and the test panel have finite impedances, the current was shared between them. Although the impedance of the parallel diversion circuit was low enough to give the simulated lightning discharge the desired unipolar characteristics, it could not be used to trigger high-coulomb discharges and would not reliably work at 200-kA discharge levels.

An improved switching technique was developed with Boeing research funds. It not only gives reliable 200-kA discharges and can be used as a unipolar trigger for high-coulomb discharges, but also prevents current flow after the initial unipolar pulse. The schematic diagram of the laboratory setup is shown in Figure 5. This setup differed from the one previously used

13

and a start of the start of the

in that the shunting ignitron switch was replaced by a series fuse. The initial current surge from the capacitors caused the fuse to fail. This opened the circuit and prevented current flow after the first half cycle. Through a unique design, very little series inductance was introduced into the discharge circuit by adding the fuse. The design also prevented formation of a plasma arc that, in many fuse-type switches, provides a current path after the first half cycle and results in a damped oscillatory waveform.

Oscillograph displays obtained during the testing of protective coatings for both 100and 200-kA discharges are shown in Figure 6. Some oscillograph traces obtained using the ignitron switch are also displayed, for comparison. Note that the coatings on the test samples are low impedance and present the most difficult condition for obtaining a unipolar discharge. The fuse switch was used on all tests performed after September 1, 1971.

3.3 TWO-COMPONENT GENERATOR

A block diagram of a two-component lightning generator is shown in Figure 7. The highcurrent component generator first established an arc between the discharge probe and the test item; the high-coulomb component generator then followed on by discharging a dc component through the established ionized channel to the test panel. The charged high-voltage capacitor bank was isolated electrically from the battery bank by switch S_1 : these highcurrent and high-coulomb components were isolated transiently from each other by the isolation coil. The total discharge was terminated by opening switch S_T .

Two 430-V battery carts were used for the required high-coulomb component. Each steel cart measured 73 by 49 in. and was 50 in. high, had 36 automotive batteries (12 V), and a total weight of about 2200 lb. With a series connection, the system was capable of discharging a de level up to 700 A and maintaining an arc with a gap of up to a half inch.

Prior to September 1, an oscillatory system was used, instead of the diverting discharge system, with the same $2-\mu$ F capacitor bank. This was necessary because the high-coulomb component currents from the battery bank would otherwise have flowed through both the diversion switch and the discharge path; the excessive dc current that flowed through the diversion switch would not only have degraded the available testing energy, but also would have greatly reduced the lifetime or damaged the ignitron tube. The extra coulomb value provided by the additional discharge from the capacitor bank was less than 1% of the total amount of the two-component stroke.

The development of a series fuse switch allowed high-coulomb discharges to be triggered with a unipolar high-current discharge. This was possible because the associated circuit of the discharge generator with the series fuse had no shunting components. Figure 8 shows the oscillograph displays of the high-current trigger and the high-coulomb discharge obtained in testing panel 475-GP84-AF05C-0000. All high-coulomb discharges made after September 1, 1971, were triggered with a unipolar discharge.

436-BR94-A105N-0000 PEAK CURRENT-109 KA

458-GP73-AC03C-AR04Z PEAK CURRENT-196KA

.

and the second second

• . .

4.0 ELECTRODYNAMIC EFFECTS

4.1 TRIBOELECTRIC CHARGING

Triboelectric charging results from an imbalance of charge that occurs when two materials are separated. This will occur on an aircraft if the surface is exposed to atmospheric aerosols and hydrometeors. The amount of charge produced is a function of aerosol concentration, aircraft speed, type of material, and surface condition. All materials, whether dielectric or conductor, are subject to triboelectric charging. The problem of radio noise occurs when the charge is accumulating at a rate faster than it can leak off through the resistivity of the material. The charge will accumulate until a potential equal to the breakdown strength of the surrounding at nosphere is reached and a radio-noise-producing streamer is produced. (Radio noise may also be produced when the total charge accumulation on an aircraft due to triboelectric charges on its frontal surfaces raises the aircraft potential to the point where discharges occur from its extremities; however, this is beyond the scope of this discussion.)

The problem is not how the charge is produced, but rather if it is stored on the surface. Structures that consist of thin dielectrics over conducting materials will store charge. However, because the maximum storage potential is limited by the voltage breakdown strength of the dielectric, maximum energy and the resulting radio noise are much reduced compared to radome-like structures. This is the case with the coatings recommended for use on composite structures in this report.

Coated panels were placed in a high-velocity stream of Wonda flour particles and subjected to triboelectric charging. Figure 9 is a diagram of the equipment setup. The sample was mounted 3-1/2 in. above an aluminum ground plane on polyfoam pedestals. The grounding ring, made from copper tape, was placed around the periphery of the sample to collect charge. The charge collector was connected to ground through a 10,000-ohm resistor. Voltage waveforms were displayed on a Tektronix 585 oscilloscope using a 10 to 1 voltage divider probe across the 10,000-ohm resistor. A photograph of the equipment is shown in Figure 10.

When the charge accumulation on the surface of the dielectric reached a potential equal to or greater than the breakdown potential of air, a discharge occurred to the collector ring. The charge then leaked off through the 10,000-ohm resistor. An equivalent circuit of the discharge is shown in Figure 11. The streamer discharge is represented as a transfer of charge from a low-capacitance region on the dielectric (C_s) through the resistance of the streamer (R_s) to the equivalent capacitance of the collector ring (C_d) and oscilloscope. The charge eventually reaches ground through the resistor (R_d). The effective capacitance of the charge on the dielectric is thought to be less than 1 $\mu\mu$ F. The equivalent resistance of the streamer discharge is 5000 ohms (Ref. 5).

The mechanism of the discharge was different when the dielectric surface was a thin film of nonconducting material bonded over a conducting material. In this case, the surface charge accumulated until the potential was great enough to puncture the dielectric film. Surface potentials are naturally less than those produced on solid dielectrics. The voltage at the 10.000-ohm resistor was less, since the capacitance of the collector ring and conducting material was greater than the capacitance of the collector ring alone.

Figure 10. Triboelectric Charging Test Setup

Figure 11. Equivalent Circuit of the Streamer Discharge

Panels 292 through 311, 324 and 325, and 336 and 343 have been tested for static charge accumulation. Only the following panels displayed signs of charging activity:

Panel			•	P dB	eak No (400	oise, kHz)	·
298-GP58-NY040	C-AR08X	· · ·			.90	·	
364-GP31-KF010	C-0000		a contra anon	<u> </u>	35		·
304-BR23-AR082	X-0000				10		
308-BR27-00000	-0000				10		
324-BR41-KF010	C-0000	•		•	70		
390-TF01-00000-	-0000	1			- 80		

Figure 12 illustrates the maximum waveforms obtained for these panels. Figure 13 shows the streamers produced on panels with nonconductive surface coatings of nylonfabric-impregnated epoxy (a) and Kapton film (b).

(a) 298-FG58-NY04C-AR08X

Figure 13. Streamer Discharges Produced on Panels 298 and 364

The relative radio noise was measured by connecting the input of a Stoddart NM-20 radio interference frequency intensity meter, tuned to 400 kHz, to the 10,000-ohm resistor with a 10 $\mu\mu$ F capacitor. The peak intensity in decibels above set noise caused by the static discharge is recorded above.

Panels 500 and 509 through 514 were also subjected to static charge accumulation tests. These panels were representative of the coating systems recommended for advanced composite materials. These panels did not display any signs of charging activity.

Uncoated, boron-filament-reinforced epoxy laminates are subject to triboelectric charging; however, the magnitude of the effect observed was minor compared to that produced on a low-loss dielectric such as Teflon. No charging effects were observed on uncoated, graphite-fiber-reinforced epoxy laminates. A 1-mil coating of Kapton film over either highmodulus composite presented a surface subject to an objectionable level of triboelectric charging.

The triboelectric charging measurements indicated that it is inadvisable to use thin films of dielectric materials over conductive composites. This is especially true for areas where particle impact would be prevalent (nose radomes, leading edges, etc.). Streamers across dielectric films are not only a possible source of radio interference, but also puncture the film allowing possible coating degradation.

Conductive coatings relieve high-modulus composites of their charging tendencies. The acceptable charging characteristics observed with these coated composites were due to the low-volume resistivity of the coating. The coatings did not charge to sufficient potential to support a streamer discharge capable of causing radio interference.

4.2 ELECTROMAGNETIC SHIELDING

The H-field shielding effectiveness of 12- by 12-in. coated and uncoated test panels was measured at both high and low frequencies. Figure 14 shows the test equipment used for the 1- to 1000-kHz shielding effectiveness measurement. It consisted of coaxial transmitting and

receiving coils 4 in. apart, with axes perpendicular to the plane of the test panels. The coils were constructed using 20 turns of no. 22 copper wire on a 3/4-in.-diameter, 1/2-in.-long bobbin. A nonmetallic structure was used to mount the coils and test panels. The transmitting coil was excited with a suitable oscillator and power amplifier (Hewlett-Packard 200DC or 606A); the receiving coil was connected by RG 55/U cable to the 50-ohm input of an appropriate electromagnetic interference (EMI) instrument (Electrometrics EMC-10 or Stoddart NM-12T or NM-25T).

After the operator had established the lack of extraneous coupling, the test procedure was to establish a reference reading at the desired frequency on the EMI instrument with the test panel absent. Then the panel was inserted (center on coil axis) and a new reading determined. The difference in readings (in decibels) represented the magnetic shielding of the test panel at that coil spacing. The shielding effectiveness of several panels is plotted on Figures 15 through 17.

The procedure was extended to higher frequencies by using a shielded coil and a much closer coil spacing. The basic change in the equipment was the use of one-turn, shielded coils spaced 0.4 in. apart. The coils were 3/4 in. in diameter and constructed from 1/8-in.- diameter, solid-shield, copper coaxial cable. Shielding was necessary to eliminate the electric field coupling between coils that exists at the higher frequencies. The closer coil spacing minimized magnetic coupling around the edge of the test panel and also provided an adequate dynamic range for the measurement. The test procedure was similar to that of the low-frequency measurements. The relative H-field shielding effectiveness obtained at the high frequencies is shown in Figures 15 through 17.

The results of the electromagnetic shielding measurements were verified by theoretical analysis. The relative dc conductivity of a 1-mil aluminum panel and two uncoated graphite panels was measured using standard procedures. This was accomplished by passing a known current through a narrow strip (approximately 1/4 in. wide and 12 in. long) cut from the center of the panels and measuring the voltage developed across a pair of independent electrodes located a known distance apart along the strip. These measurements yielded a relative conductivity of 0.543 for the 1-mil aluminum panel, 0.000382 for the 14-ply graphite panel, and 0.000417 for the 5-ply graphite panel.

Theoretical values for shielding effectiveness were obtained using the following equation, which can be derived by the transmission-line approach (Ref. 6):

$$S_{H} = A + R + B (dB)$$
$$A = 131 t \sqrt{\mu_{R} \sigma_{R} f}$$

$$R = 20 \log_{10} \frac{|1+k|^2}{4|k|}$$

$$B = 20 \log_{10} \left| 1 - \left(\frac{k-1}{k+1}\right)^2 10^{-0.10A} e^{-j0.23A} \right|$$

Figure 16. Shielding Effectiveness of Panels 296, 509, 510, 511, and 512

.

26.

ŗ

where

 $k = (1+j) |ZW| 1.915 \times 10^6 \sqrt{\sigma_R / f\mu_R}$ $\frac{W}{f} = 7.9 \times 10^{-6} r$ = frequency, Hz = shield thickness, meters r = loop-to-loop distance, meters R' = permeability of shield material relative to vacuum

 $\sigma_{\rm R}$ = conductivity of shield material relative to copper

Figure 18 shows the measured shielding effectiveness and the theoretical shielding effectiveness for the aluminum and graphite panels. The agreement between the measured values and the theoretical values validates the results of the shielding measurements. This confirms the obvious conclusion that the uncoated composites have little or no shielding effectiveness. The uncoated, boron-filament-reinforced control panel displayed no shielding at frequencies less than 10 MHz. The uncoated, graphite-fiber-reinforced panel displayed some shielding at all frequencies. Woven wire fabric coatings provided a degree of shielding, but not as much as that observed in comparable densities of aluminum foil. Within the mesh densities investigated, the heavier wire diameters appeared to be the more efficient. None of the coatings provided the degree of shielding achieved with thin-metal panels (0.020-in.-thick aluminum).

Careful consideration of the shielding effectiveness displayed by the curves revealed an inconsistency in the measurements conducted on panels of similar construction. For instance, the shielding effectiveness measured on panels 510 and 296, both graphite panels using the same protective coating, differed by as much as 25 dB at some frequencies. A similar discrepancy is displayed by the data of panels 500 and 513. Also, it is curious that the boron panel coated with aluminized glass fiber, panel 514, showed better shielding effectiveness at low frequencies than graphite panel 511 with the same coating. The variance in shielding effectiveness of panels of similar construction may have been due to a difference in the amount of contact between the conductive elements of the coating. This possibility is discussed further in section 4.3.

4.3 ELECTROMAGNETIC PENETRATION

The electromagnetic penetration of electrical energy through the coating systems was measured by applying a 40-kA discharge to the center of a 12- by 12-in. panel mounted in the opening of the Faraday cage and sensing the penetrating field with an orthogonal loop. The bond between the panel and the Faraday cage was ensured by clamping a 1-in.-wide braid in the periphery between the face of the Faraday cage and the panel. The panel at the contact area was lightly sanded to expose the conductive elements of the coating. The pickup loop was made with 13 turns of 1/16-in. rigid copper coaxial cable bent to form a toroid. The outer conductor of the coaxial cable was used to provide shielding of the electric field. A

 2^{\prime}

Figure 18. Measured and Theoretical Shielding Effectiveness

MANTE A . A.

small circumferential cut at the midpoint of the shield prevented shorting the magnetic field. The center conductors at the ends of the loop were fed to the inputs of a differential amplifier through shielded twinax cable. The pickup loop was placed on the inside of the Faraday cage 3/8 in. from the back of the panel directly behind the point of arc attachment.

Preliminary tests were performed to verify the shielding of the Faraday cage by using aluminum test panels 0.063 in. thick. Testing also indicated that the shielding capability of the panel was greatly impaired if the discharge was of such a magnitude that a hole was produced in the coating. Therefore, discharges of less than 50 kA were used since repeated testing of each panel was necessary to obtain the required data. Because 1-mil aluminum foil would puncture at these levels, 10-mil aluminum was used as the standard for comparison.

The loop configuration and its orientation with respect to the discharge probe located the axis of the individual turns orthogonal to the induced current flow (Fig. 19). The configuration also made any effects due to norsymmetry of the current flow from the arc attachment point to ground negligible. A photo of the loop from within the Faraday cage is shown in Figure 20.

Panels 500 and 509 through 514 were tested for electromagnetic penetration along with a 10-mil aluminum control sample. A 40-kA discharge was applied to the center of each panel. An oscillating discharge was used since it made the interpretation of the data simpler. The voltage pulses received on the loop were recorded on a storage oscilloscope. The current through the shunt was also recorded on a storage oscilloscope to ensure that the current level applied to the coated panels was the same as that applied to the control panel. The peak voltage obtained for each panel is given in Table 1.

	Electromagne	tic penetration	Shielding effectiveness (dB at 33 kHz)					
Panel	Relative voltage	Relative dB	Obtained before penetration tests	Obtained after penetration tests				
10-mil aluminum control	0.1	28	28	28				
500-BR28-AR08X-FG04	0.5	14	10.5	NA				
509-GP96-AR04Z-0000	1.2	6.5	8	· · · 9				
510-GP97-AR08X-0000	0.8	10	13	12.5				
511-GP98-A105N-0000	0.3	18.5	3	9.5				
512-GR32-AR04Z-0000	1.3	6	10	9				
513-BR33-AR08X-0000	0.4	16	7	12				
514-BR34-A105N-0000	0.5	14	7	9				

Table 1. Results of Electromagnetic Penetration Tests

Since the test discharge had a $30-\mu$ s period, the data should agree with the shielding effectiveness, section 4.2, obtained at 33 kHz. The shielding effectiveness of the 10-mil aluminum control panel was measured and found to be 28 dB at 33 kHz. These data were used to establish a relation between the electromagnetic penetration measurements and the effective shielding measurements by equating the 0.1 V obtained for the 10-mil aluminum panel in the penetration tests with the 28 dB measured for shielding effectiveness of the 10-mil aluminum panel at 33 kHz. The penetration in dB relative to the control panel is given in Table 1. Table 1 also shows the shielding effectiveness of the panels measured before the electromagnetic penetration tests were conducted.

In general, the results of the electromagnetic penetration measurements were comparable to the data obtained by the shielding effectiveness measurements. However, three panels, 511, 513, and 514, show gross error. It was suspected that some physical change may have taken place in the structure of the panels as a result of the discharges. The panels were therefore remeasured for shielding effectiveness at 33 kHz. These data are also presented in Table 1.

The data clearly show that a change in the structure of the coating has taken place. The change of the panels was further explored by remeasuring the panels with the high-frequency shielding measurement set up at 0.2 and 4.0 MHz. The close spacing of the coils used in this equipment setup enabled the shielding effectiveness to be measured over small areas of the panel and allowed investigation of the shielding effectiveness at and near the arc attachment point. These measurements indicated that the two or three 40-kA discharges applied to the coated panels during the electromagnetic penetration test fused the separate conducting elements together and increased the shielding effectiveness in some areas and, by melting, broke the continuity of some elements and reduced shielding effectiveness at the arc attachment point. As indicated in section 4.2, coatings made from identical materials and procedures varied greatly in their shielding effectiveness. Some of the woven wire fabrics appeared to have electrical connections at the wire crossings while, at other areas, the wire crossings may have been insulated by resin. The shielding effectiveness of coatings that indicated good wireto-wire contact were not greatly affected by the penetration discharges except for possibly a slight degradation at the arc attachment point due to the breaking of wires. On the other hand, the shielding effectiveness of coatings that indicated poor wire-to-wire contact was improved by the penetration discharges since the current pulse created more wire-to-wire contact. The same effect was also noted in the aluminized-glass-coated panels.

Table 2 gives the shielding effectiveness before and after the penetration tests at 0.2 and 4.0 MHz. The shielding effectiveness measurements taken after the penetration tests were conducted at two locations, one directly over the arc attachment point and the other over an area where the fusing current of the penetration discharge caused the maximum shielding effectiveness.

4.4 ANTENNA GROUND PLANE REQUIREMENTS

Some applications of composite materials may require that the coating system act as the ground plane of an antenna system. It is therefore necessary to consider the effect a coating system would have on the antenna properties when it is the ground plane.

The resistive losses in the ground plane of an antenna adds to the total impedance of the antenna and, thereby, lowers its efficiency. If the power loss in the ground plane is excessive,

			At 0.2 MHz			At 4.0 MHz	
		Before	After discharge	s were applied	Before	After discharge	s were applied
Partel		discharges were applied	Measured at arc attachment point	Measured at maximum shielding area	discharges were applied	Measured at arc attachment point	Measured at maximum shielding area
500-BR28-AR08X-FG04		œ	6	11	58	23	3
509-GP36-AR04Z-0000		ç	6.5	63	11	3	57
510-GP97-AR08X-0000		13	12	13	Ŕ	g	ĝ
511-GP98-A105N-0000		8	G	8	1 <u>0</u>	20.5	90
512-BR22-AR04Z-0000		8-19 	6.5	10	8	33	32
613-BR33-AR08X-C000	, V	2	8	13	~	5 8	8
E: 4-BR34-A105N-0000		e	(2	9.6	%	38

Table 2. Shielding Effectiveness Before and After Electromagnetic Penetration Tests (dB)

the heat generated could cause degradation to the coating system. In general, the resistive losses in an antenna assembly lowers the Q of the antenna and makes the impedance matching problem simpler-naturally with an associated loss of efficiency. Reradiation interference due to excitation of inhomogeneous or discontinuous ground planes need not be considered since the discontinuities in the coating systems recommended herein (i.e., fabrics and meshes) are very small compared to a wavelength at the highest frequencies considered.

The losses in an antenna system due to a ground plane constructed of resistive material is first examined by using a quarter-wave monopole as an example of an electrically long antenna. Current flowing radially outward from the base of the antenna on the ground plane is equal to the current into the base of the monopole. The current density decreases rapidly as the distance from the base of the monopole antenna increases. Therefore, the maximum current density and, hence, the maximum loss due to 1²R heating occurs adjacent to the monopole. The radius of the base mount will be a factor in the losses of the antenna system since larger base mounts eliminate heating losses in the coating material replaced by the mount.

At frequencies above 10 MHz, the skin depth is less than the thickness of the proposed coating systems and contains more than enough aluminum to make an adequate ground plane. Contact to the surfaces of the woven wire coatings is accomplished easily by removing the surface resin with light sanding and making a faying surface contact. The aluminized glass fiber coating will require more care in obtaining a good contact with the antenna system since layers running perpendicular to each other are isolated by resin. Extra effort will be required to ensure that the antenna ground contacts at least the outer two layers of aluminized glass.

At lower frequencies, the recommended coating systems may not provide adequate conduction for many typical transmitting antenna installations. This will be especially true when the notch techniques employed require high-current densities at and around the antenna feed point. These antennas are often limited by their efficiencies, and additional losses due to a coating system with a thickness less than that of the skin depth would result in unacceptable losses. This type of antenna on a composite structure would perhaps require a copper or aluminum inlay in areas of high current concentration.

4.5 ELECTRICAL SYSTEM GROUND RETURN

The ground return for an electrical system must have a current-carrying capacity equal to that of the feeder system. As an example, consider an aluminum wire AWG size 8 with a current-carrying capability of 60 A in free air (based on MIL-W-5088). This wire has a cross section of 16,510 circular mils. An equivalent cross section of coating would be required if this wire was used to feed a system that used the coating as the ground return. Coating AR04Z, using 2-mil wire with 200 wires per inch, has a cross-section area of 800 circular mils per linear inch; therefore, a grounding lug with a circumference of nearly 21 in. would be required.

5.0 LIGHTNING TEST RESULTS

Tests of coated composite panels are of two types: high-current tests and high-coulomb tests. Information on each test performed is given in abstracted form in appendix Tables A-1 and A-2. The test pulse employed for high-current testing nominally reached the peak value in 11 to $12 \mu s$ and had a duration at 22 to $24 \mu s$ as shown in Figure 6.

The tensile strength tests are summarized in table A-4. Each laminate, identified by its three-digit code number, was cut into 10 or 11 coupons 0.5 in. wide, as described in Figure 1. The specimen suffixes (1 through 10 or 11) are sequential from left to right looking at the coated surface of the panel. Therefore, specimens with suffixes 5 and 6 represent those taken from the center of the panel where the simulated lightning discharge was directed. These are the specimens that would be expected to be damaged the most. Specimens 1 and 10 or 11, taken from the edges of the panel farthest from the electrical discharge, would be expected to be damaged the least.

5.1 HIGH-CURRENT TESTS

Unprotected boron-filament- and graphite-fiber-reinforced plastics are severely damaged by high-current flow through the reinforcement. In boron-filament-reinforced plastics, the current causes the filaments to crack and break. This can result in the total loss of useful mechanical strength. Peak currents as low as 40 kA have totally destroyed the strength and rigidity of 6- by 12-in., five-ply laminates. Larger laminates may not be totally destroyed at this current level but suffer significant reductions in strength. In graphite-fiber-reinforced plastics. Joule heating of the fiber causes resin pyrolysis and, eventually, fiber destruction by a mechanical whipping action (Ref. 7). The damage is less widespread than that of comparable boron composites, however. In both composites, the damage is not limited to the arc contact zone but travels toward electrical ground.

In contrast to these reinforced plastics, metal structure of comparable strength and stiffness is not so susceptible to damage by high-current discharges. Typical results of these tests are zones of melted metal at the arc contact point. The damage generally does not extend beyond this zone. Metal foils are thus a logical protective coating for boron-filament- or graphite-fiber-reinforced plastics. Typically, high-current tests of thick aluminum foil coated plastics causes an area of the foil to be vaporized, but no damage to the reinforced plastic. Thin foils, i.e., five mils or less, are less satisfactory because scorching of the resin matrix and current penetration into the reinforcing fibers or filaments can occur.

Since boron-filament-reinforced plastics may undergo severe mechanical damage due to high-current flow through the filaments with little or no visible damage to the composite, it is necessary to measure residual mechanical properties to fully evaluate the coating effectiveness. Such tests have found 6-mil-thick aluminum foil to fully protect both boron-filamentand graphite-fiber-reinforced plastics from discharges as high as 194 kA. Damage to the foil consists of a small vaporized area centered in a larger area of foil that has been melted. The residual tensile strength directly under the vaporized spot is the same as that of the remainder of the composite. The residual tensile modulus of the boron-filament-reinforced laminate was lowest at the spot location, but it was within the standard deviation of all the points for that

laminate (panel 472). Thin aluminum foils, e.g., 1 to 3 mils thick, can protect comparable laminates from lesser discharge levels but not from 200-kA peak current levels. Overcoatings of paint impair coating performance. Six-mil-thick aluminum foils topcoated with an acrylic paint appear to concentrate the damage in a small area. Examination of the composite under this area indicates minor damage at that point. This phenomenon was more clearly illustrated in the study of metal fabric coatings.

Metal wire fabrics have been found to provide excellent protection from simulated highcurrent lightning tests (Ref. 1). The fabrics possess the hand and drape necessary for use as an overlay on complex contoured parts. Additionally, the composite matrix fully encapsulates the fabric and protects it from the environment. A wide range of tests have found aluminum wire fabrics very resistant to environmental exposures including prolonged (90-day) salt spray; 30-day immersion in jet fuel, hydraulic fluid, or boiling water; Weather-O-Meter testing (FED-STD-141, method 6152); or prolonged exposure to hot, humid (140° F, 100% relative humidity) conditions. Environmentally exposed laminates were found to be unchanged when compared with unexposed controls and performed equally well when subject to high-current discharge. In this regard, these coatings outperform others since most other coatings are susceptible to corrosion as determined by salt spray exposure. This is particularly true of unprotected metal foils which suffer extreme corrosion. Resin encapsulated wire fabrics are protected from the corrosive action of this environment by the resin. Since bare metal is not exposed to the environment, corrosion is retarded.

Aluminum wire fabrics are the lightest, state-of-the-art lightning protective coatings. For 200 by 200 mesh woven aluminum wire fabric, the area density is 0.019 lb/sq ft. A 120 by 120 mesh fabric has an area density of 0.042 lb/sq ft. These weights are increased to 0.036 and 0.072 lb/sq ft, respectively, if one accounts for the resin required for encapsulation of the fabric. Some weight saving is possible by employing calendered wire cloth. This serves to reduce the thickness of the cloth by flattening the intersections of the wires. Weight savings occur because less resin is required to encapsulate the flattened mesh. As a point of reference, 6-mil-thick aluminum foil has an area weight of 0.084 lb/sq ft. The weights of environment-ally protective topcoats or adhesive required for bonding the foil (or fabric) must be added to these figures.

The outstanding performance of wire fabrics as lightning protective coatings is due to their use of the skin effect for electrical conduction. The skin area of a 200 by 200 mesh wire fabric, using a 0.0021-in.-diameter wire, is over 200 times that of the area actually coated by the fabrics. Consequently, the fabric is highly efficient in conducting electricity away from the arc contact zone. This fabric has been found capable of withstanding successive 100-kA discharges at the same location with little visible damage to the fabric and no reduction in the mechanical strength of the coated laminate (panel 427). At the 200-kA level, some damage to the coated boron laminate is detectable. The residual tensile strength of coupons taken directly under the arc contact zone is typically only 80% of the panel average (panel BR5, Fig. 21). The residual tensile strengths of graphite-fiber-reinforced coupons at the damage zone were 85%, 84%, 71% and 89% of the undamaged values. Of these, only the lowest was statistically significant.

Figure 21. Boron-Filament-Reinforced Epoxy Laminate Coated With 200 by 200 Mesh Aluminum Wire Fabric After Exposure to 200 kA

This coating system can be improved by incorporating a single ply of a glass fabric between the coating and the composite. In the case studied, one ply of style 120 glass fabric prevented mechanical damage of the boron-filament-reinforced laminate, although the graphite-fiber-reinforced laminate was damaged at the arc contact zone (panels 498 and 389, respectively). Damage to the graphite laminate was restricted to a 1/2-in.-wide zone. The tensile test coupons adjacent to this location maintained their full, unexposed tensile strength.

Overlays of paint are deleterious to lightning protective coatings. The paint confines the electrical energy to a smaller surface area permitting a greater amount of electrical energy to penetrate into the composite. At the 100-kA test current level, this is evidenced by an increase in the amount of damage to the coating, i.e., a greater amount of wire is vaporized or melted. However, composite residual tensile strengths are unchanged, indicating excellent coating performance (panel 454). At the 200-kA test current level, the damage is more severe. With graphite-fiber-reinforced composites, damage at the arc contact zone is visible as exposed resin-free graphite fibers. These are visible in Figure 22. Three different tests of two different laminates (panels 458 and GR5C) have found the damage limited to the 1/2- to 1-in.-wide arc contact zone. With boron-filament-reinforced laminates, the residual tensile strength at the arc contact zone is only 20% of the control value, while those 1/2 in. to either side of this point were but 50% of the control. The residual strength returns to the control value within the next half inch. Consequently, the damage zone is limited to a 1-1/2- to 2-in.-wide area for boron laminates (panel BR5C).

Figure 22. Painted Graphite-Fiber-Reinforced Epoxy Laminate Coated With 200 x 200 Mesh Aluminum Wire Fabric After Exposure to 190 kA

Heavier, 120 by 120 mesh aluminum wire fabric also provides an excellent level of lightning protection. Residual mechanical properties indicate no loss of strength due to highcurrent exposure subsequent to prolonged salt spray exposure. Additionally, exposure to 180- to 200-kA test current levels prevented damage at the arc contact zone. In the case of panel 452, collision of the discharge probe with the laminate during test caused extensive damage. This was borne out by subsequent mechanical testing. Panel 453 was also damaged mechanically but only at the collision point. In this case, the arc contact zone maintained 50% of the control tensile strength. Since the test coupon had a preexisting, 1/4-in.-long crack, it can be concluded that little electrical damage was introduced into the composite.

Both painted and unpainted graphite-fiber-reinforced laminates coated with this fabric were damaged at the arc contact area. Residual tensile strengths were only 10-20,000 psi in this region, compared with 70-75,000 psi control values. This damage was confined to a 1/2-in.-wide zone of the composite and was due to resin pyrolysis. It must be concluded that current penetration into the reinforcing fibers was not totally prevented.

The concept of electrically conductive coatings using fine wires as the current-carrying member has been extended through the use of aluminized glass. Unidirectional layers consisting of several thousand conducting members per lineal inch can be fabricated using current filament winding technology. Model studies used copper wires as the conductive filament. These studies found it necessary to use at least two orthogonal layers to provide good lightning protection (panels 391-399, 407-410). The fact that the wires were electrically insulated from one another did not prevent the coatings from performing satisfactorily. These findings were confirmed with aluminized glass coatings.

Optimum coatings of aluminized glass used two layers of fibers. The fibers in each layer were aligned in one direction only, and it is necessary that the fibers in one layer be orthogonal to those of the other layer. Excellent results were obtained with coatings containing 4500 aluminized filaments per lineal inch per ply. Two-ply coatings satisfactorily protected boron-filament-reinforced composites from current levels as high as 180- to 190 kA (panel 478). None of the coupons cut near the arc contact zone had lost mechanical strength or stiffness. Four plies of filaments performed equally well with boron-filament-reinforced composites and were required to completely protect graphite-fiber-reinforced composites where two-ply coatings worked well but did nct prevent some loss of tensile strength at the arc contact zone. For example, the contact zone had a tensile strength of 14 ksi in panel 505, while the remainder of the panel averaged 59 ksi. Some typical results with this type of coating are shown in Figure 23.

Aluminized glass filaments provide excellent high-current protection for boron-filamentreinforced plastics. Coating area weights of 0.040 lb/sq ft (including resin) are easily prepared and handled. This coating is less satisfactory for graphite-fiber-reinforced plastics since a heavier (0.080 lb/sq ft) coating weight appears to be required. Corrosion may be a problem with this aluminum-carbon galvanic couple since panels exposed to a 3% salt spray for 30 days underwent severe corrosion especially about the edges. Coatings applied to boron-fiberreinforced laminates did not undergo corrosion when exposed to similar conditions. These differences are illustrated in Figure 24.

Additional tests have shown that aluminized-glass-fiber coalings can protect honeycomb sandwich panels from extensive damage by high-current discharges. At the 100-kA test level, no damage to either boron-filament-reinforced or graphite-fiber-reinforced face sheets was discernible. At the 200-kA test level, the five-ply face sheets were punctured and damaged in 3/4- by 3/4-in, areas. Sections of the panels taken from the damaged area indicated no damage to the aluminum honeycomb core except at the puncture, where the core was crushed. No evidence of electrical burning damage was found in either the honeycomb core or the face sheets. Microscopic investigation of the face sheet cross section found only mechanical damage at the puncture. Apparently the conductive coating and the conductive core prevented excessive current levels from penetrating into the reinforcing fibers or filaments.

These high-current tests and the residual tensile properties of exposed laminates have shown that excellent lightning protection systems can be based on continuous-metal foils, metal wire fabrics, and metallized glass fibers. Other developmental coatings have been sought, but, of these, only sprayed metal has promise (Ref. 1). Continued investigations of silver-pigmented paints has failed to find a system that performs satisfactorily. Excessive coating thicknesses were required to prevent damage to the substrates, even at the 100- to 120-kA test level. A 6-mil-thick coating with a weight of 0.09 lb/sq ft is required to prevent serious damage to boron-filament-reinforced laminates when exposed to a 99-kA test current (panel 309). Significant coating damage occurs even when this thickness is increased to 12 mils (panel 308) or when an insulating polyimide film underlayer is provided (panel 324). No protection was afforded to graphite-fiber-reinforced laminates unless the dielectric underlayer was provided. Replacement of the 1-mil-thick polyimide film with a 2-mil-thick, sprayable, polyurethane circuit board coating only enhanced damage to the substrates (panels 363 and 375). While these results varied some what depending upon the source of the actual materials used, the best performing silver-pigmented paint studied (Hysol K9-4239) is very heavy

compared with coatings using continuous-metal conductors. Furthermore, the poor results obtained at moderate current levels make it highly improbable that any of the systems studied would perform well at the 200-kA test level without imposing a serious weight penalty.

Other coatings in developmental stages have similar defects. Chopped metal fibers can be incorporated into a satisfactory but heavy coating. Dielectric coatings have performed well only when polyimide film underlayers were provided. Such underlayers present serious fabrication problems. In addition, these dielectric coatings also require metal strips to conduct the current to electrical ground and must be pin-hole free to prevent arcing to the reinforcing fibers. Such problems are not easily resolved.

5.2 HIGH-COULOMB TESTS

High-coulomb tests involve long-duration, high-temperature areas that can cause severeburning damage, although this type of damage is frequently quite localized. Nevertheless, no coating can withstand an extremely high coulomb test when the arc is confined to a small surface area. The coatings burn away almost immediately, and the arc will attach itself to the conductive panel. Damage then propagates toward electrical ground.

In a series of tests designed to illustrate this phenomenon, several 0.080-in.-thick aluminum plates were subjected to high-coulomb tests. It was found that a 209-C transfer could melt a 3/4-in.-diameter zone of the plate. Tests at lower coulomb levels indicate that the volume of metal melted is directly proportional to the level of coulombs transferred. The type of damage observed with metal plate is also dependent upon the curtent-time parameters employed. A series of tests at the 100-C transfer level illustrate this point. Low-amperage (23.3 A), long-time (4.35 sec) arcs cause only flash marks on the metal surface. Conversely, high-amperage (392 A), short-time (0.25 sec) arcs melt a 1/2-in.-diameter hole through the plate. Intermediate-amperage (87 A), intermediate-time (1.16 sec) arcs melt areas through the plate but do not cause holes to be formed. These results illustrate Joule heating damage. The heat in calories developed in a circuit by an electrical current is proportional to the square of the current but only linear with time.

For the constant-coulomb transfer tests described above, and assuming constant electrical resistance, the ratios of the heat developed would be 1:4:16, the last representing the high-current, short-time test. In view of these results, it is apparent that a protective coating of reasonable thickness will prevent damage to the substrate only if the discharge is a moderate number of amperes or if the electric arc is forced to dissipate its energy over a large surface. This might occur in the zone II and III regions of an aircraft where the lightning stroke is swept along the surface by the flow of air (Ref. 4). Areas of the aircraft where the stroke continues to make contact with the same point, such as appears to be the case with trailing edge attachments (Ref. 8), will not be as well protected.

In view of the above, it is not surprising that metal-foil-coated plastics are damaged by high-coulomb discharges. Six-mil-thick aluminum foil was burned away and a 1/2-in.-diameter hole burned through the boron-filament-reinforced laminates. The residual tensile strengths indicate no strength at all in a 1-in.-diameter zone. The next 1/2 in. was only 30% of undamaged strength, and the remainder of the laminate was undamaged (panel 474).

The graphite-fiber-reinforced laminate was less extensively damaged. The discharge destroyed a 1-1/8-in.-diameter area of the outer ply of fibers, lesser amounts of the next two plies, but pyrolyzed the resin in the remaining plies. The damage zone had no residual strength, while one of the adjacent coupons appears undamaged. The other coupon was 38% of the undamaged panel average. Overcoatings of paint lessened coating performance, as nearly comparable, i.e., 1-1/2-in.-diameter damage zones were observed at only half the coulomb transfer level (panels 360 and 374).

High-coulomb tests of wire-fabric-coated laminates yielded two types of results: those in which the arc attached at only one point on the surface and those where it did not. In the latter instances, little or no damage to the substrates was observed. The "wandering" of the arc was unpredictable but occurred most frequently with coated boron-filament-reinforced plastics. Coulomb transfers as high as 140 C were achieved (panel 457). A coating of 200 by 200 mesh aluminum wire fabric with an underlayer of epoxy-resin-impregnated, style 120, glass fabric produced arc wandering at a test level of 232 C. The result for boron is shown in Figure 25. Residual tensile tests of this laminate (panel 499) found no damage, nor was damage observed when the substrate was graphite (panel 389, coulomb transfer 176 C). The average tensile strength was 40,300 psi. The lower-than-normal average tensile strength was due to misorienting the fibers of the laminate; only two of six plies were in the 0^o direction. The presence of the glass fabric insulating layer greatly improved the performance of this coating system.

When the arc did not wander on the coating surface, burning damage to the coating and the composite substrate occurred. Furthermore, the damage to five-ply boron laminates appears to be linear with the number of coulombs transferred. Figure 26 shows the relationship between the size of the hole and the test level in coulombs for 200 by 200 mesh, aluminum wire fabric coated, boron-filament-reinforced laminates. The area damaged increases linearly with an increase in the test level. Residual mechanical properties of the laminates indicate the damage was restricted to the visible burn areas. Generally, the boundaries of the burn zone were quite sharp.

That localized damage does occur with high-coulomb tests was proven with flexural strength tests of two 14-ply laminates coated with 200 by 200 mesh aluminum wire fabric. The data are given in Table 3. For these tests, the laminates were cut into five 1-in.-wide strips, labeled -1 to -5 such that -1 and -5 were the edge strips, -3 was the center, etc. Each strip was then cut into two parts with the parts nearest electrical ground labeled -6 through -10. Thus, -3 and -8 were cut from the center, -5 and -10 from the right edge, etc. The coupons were tested per ASTM D790, with a 32-to-1 span-to-depth ratio.

The test data show reduction of strength in the graphite-fiber-reinforced laminate only at the burn center. Even between the burn center and electrical ground no damage was detectable. The boron-filament-reinforced laminate was undamaged as the arc wandered across the surface, burning the coating of all specimens except -6 and -7.

Very similar behavior was observed with aluminized, glass-fiber-coated laminates. If the arc wandered, little or no damage occurred. If the arc attached to the reinforcing filaments, severe damage occurred. A 200-C transfer test to a two-ply coating (4960 conductive filaments per inch) burned a 1-in-diameter hole through the boron-filament-reinforced laminate and caused mechanical damage in a 2-1/2-in-diameter area. Yet, a 180-C transfer test to a

Figure 26. Damage Versus Coulombs Transferred for 200 by 200 Mesh, Aluminum-Wire-Fabric-Coated, Boron-Filament-Reinforced Laminates

and the second second

Bo (1	ron reinforcem 40-C test level	ent)	Gra ()	phite reinforce 206-C test leve	ement i)
Specimen	Flexural strength (ksi)	Flexural modulus (psi x 10 ⁶)	Specimen	Flexural strength (xsi)	Flexural modelus (psi x 10 ⁶)
323-1*	88.2	11.3	446-1	63.4	13.7
-2*	97.8	12.7	-2	64.3	13.8
-3*	87.9	11.6	-3*	43.3	11.5
- 4*	97.1	11.6	-4	69.7	14.1
-5*	93.1	11.7	-5	64.8	13.5
-6	87.5	11.8	-6	60.5	13.6
-7	93.0	12.1	.7	64.7	14.1
-8*	82.6	11.1	-8	59.8	14.0
-9*	91.1	12.1	-9	62.2	14.2
-10*	87.9	<u>11.8</u>	-10	68.8	14.4
Avg	90.6	11.8	Avg	62.2	13.7

Table 3. Residual Flexural Properties of Aluminum-Fabric-Coated Laminates

*Visible damage to coating

44

similarly coated graphite-fiber-reinforced laminate (panel 506) caused no damage as the arc wandered on the panel surface. This series of tests indicates that localized damage caused by the high-coulomb component of the lightning stroke will occur unless the arc wanders or sweeps across the test surface.

5.3 BOEING-McDONNELL DOUGLAS LIGHTNING TESTS

A series of special laminates were coated with 200 by 200 mesh, aluminum wire fabric and subjected to separate lightning tests by Boeing and McDonnell Douglas (Ref. 9). Both painted and unpainted 12- by 12-in. laminates were tested. The lettering code is:

BR	=	boron-filament-reinforced e	роху
GR	= .	graphite-fiber-reinforced epo	oxy
5	.	five plies	
14	#	fourteen plies	· · ·
 С		painted	

The laminates were tested in one quadrant by McDonnell Douglas, returned to Boeing, and tested in the diagonally opposite quadrant. The waveforms for these tests were very similar to those shown in Figure 8, i.e., the high-current peak value was reached within $12 \,\mu s$ and the pulse duration was $24 \,\mu s$. When the test included a high-coulomb discharge, the longduration arc was established during the high-current test and continued after the initial highcurrent discharge was complete. After simulated lightning testing, the residual tensile properties of the laminates were determined. These data are presented in appendix Table A-5. The laminates were oriented such that the first quadrant tested fell in the region of coupons 1-11; the second (Boeing test) quadrant fell in the range of coupons 12-22. The data for the high-current tests are given in Table 4, and the panels are shown in Figure 27. Visually the panels appear damaged equally by each of the two discharges. In fact, the measured damaged areas of the coating were only slightly larger for the McDonnell Douglas tests. The graphite-fiber-reinforced laminates also displayed more evidence of resin pyrolysis. This is probably due to the larger coulomb values for the McDonnell Douglas tests

	McDonne	Il Douglas	Boei	ing
Panel	Peak current (kA)	Coulombs transferred	Peak current (kA)	Coulombs transferred
BR5	200	3.80	194	2.35
BR5C	184	3.65	184	2.26
GR5	170	3.60	194	2.42
GR5C	180	3.70	189	2.40

Table 4. High-Current Test Parameters

(Table 4). The uncoated graphite laminate displayed no loss of mechanical properties after either test. The painted graphite laminate was less damaged by the Boeing test, reflecting the observed difference in resin scorching. The paint on this panel was 4 mils thick. No distinction between the two test facilities was observed with the boron-filament-reinforced laminates. However, the painted boron-filament-reinforced panel was much more severely damaged than the unpainted panel. The residual tensile strength of the painted panel at the damage zones fell to approximately 25% of original strength; the unpainted laminate maintained 75% of original strength at the damage center. The paint on this panel was 7 mils thick.

High-coulomb tests were directed at thicker, 14-ply laminates. The pertinent test data are given in Table 5. The panels are shown in Figure 28.

	McDonne	HI Douglas	Boei	ing
Panel	Initiation peek current (kA)	Coulombs transferred	Initiation peak current (kA)	Coulombs transferred
BR14	213	190	213 84	33 , 174
BR14C	200	136	217 88	30 196
GR14	216	310	<u>217</u> 80	
GR14C	209	920	220	230

Table 5. High-Coulomb Test Parameters

Panel BR14 was extensively damaged by the McDonnell Douglas test, and a 1/2-in.diameter hole was burned in the panel. The first Boeing test was a 33-C transfer with no panel damage. A second test (174-C transfer) caused extensive panel damage over a 3/4-in.-wide, 10-in.-long section. Panel BR14C was also punctured by the McDonnell Douglas test. A 30-C test by Boeing caused no damage, but a 196-C transfer burned a 1/4-in.-diameter hole through the panel. Visible damage from both discharges extended 2 in. boyond the holes.

Figure 28. Boeing-McDonnell Douglas Test Panels After High-Coulomb Testing

<u>84</u>

•

47

Figure 30. Damage to Panel BR14 Prior to Boeing Tests

Backside damage to these panels is shown in Figure 29. It can be seen that the hot-spot zones were considerably larger than the holes. Additionally, the repeated testing of the laminates appeared to enhance the damage in the already weakened areas.

Figure 30 illustrates the edge damage near the hole of panel BR14 before the Boeing tests. This same area was pitted and burned after these tests (see Fig. 29). Mechanical testing showed the damage to be 2-1/2 in. wide at the Boeing test zone but more extensive (3-1/2 to 6 in.) at the McDonnell Douglas test zone. The greater damage at the latter location is due in part to the Boeing tests.

Tensile tests of the painted laminates indicate 2-in.-wide damaged areas at each test zone. Damage did propagate from the arc attachment point to electrical ground. The damage appeared to skip a portion of the panel and burn a zone near the center of the panel as well.

The graphite-fiber-reinforced panels were less extensively damaged than the boronfilament-reinforced panels. Panel GP14 maintained 50% of its original tensile strength at the center of the burns. The damage at each burn was limited to two tensile coupons or about 1 in. in width. Damage to GP14C included three tensile coupons or about 1-1/2 in. of panel width. Even at the center of the 920-C discharge, the laminate had a residual tensile strength of 21,000 psi. Differences between residual tensile strengths were as expected due to the different test levels applied to the graphite-fiber-reinforced laminates.

> 45 (30 BLANK

6.0 CONCLUSIONS

- 1) Electric current flow in boron-filament- and graphite-fiber-reinforced plastic composites can cause catastrophic damage. This damage is due to filament breakage or cracking in the case of boron but mostly resin pyrolysis and attendant explosive delamination with graphite.
- 2) Several lightweight coatings can protect the composites from the high-current component of an artificial lightning stroke. These coatings are: 6-mil-thick aluminum foil, 200 by 200 mesh aluminum wire fabric, 120 by 120 mesh aluminum wire fabric, and a coating containing aluminized glass filaments. These coatings can withstand restrikes at the 100-kA test level with no coating repair required. At the 200-kA test level, the 200 by 200 mesh fabric allowed limited damage to the boron composites while the other coatings did not. Only the metal foil coating prevented damage to graphite composites at this test level.
- 3) Overlays of paint were deleterious to the performance of all coatings. Damage to the composites occurred at the 200-kA test level. Aluminum foil and 200 by 200 mesh wire fabric were the better performing systems under this test condition.
- 4) The wire fabric coatings were resistant to normal aircraft environments. Corrosion, as determined by 3% salt spray, was the least with these coatings. Metal foils had poor resistance to salt spray. Aluminized glass coatings performed poorly on graphite composites, although little corrosion occurred on boron composites.
- 5) None of the coatings fully protected the composites from high-coulomb damage. Some tests with wire-fabric and aluminized-glass coatings resulted in the arc wandering on the coating surface. When this occurred, no damage to the composite was observed.
- 6) The damage induced in test laminates by the two different test facilities appears comparable for comparable test levels. Existing damage areas appear to be further damaged by successive simulated lightning tests, even when the additional discharges are directed to undamaged portions of the test panel.
- 7) The wire-fabric, metal-foil, and aluminized-glass coatings have no triboelectric charging tendencies unless covered with a dielectric material. The coatings have little electromagnetic shielding effectiveness.

APPENDIX TEST PANEL SUMMARY

A numbering system is employed for test panel identification and retrieval. The system consists of sixteen characters in four fields:

XXX-XXXX-XXXX-XXXX

The fields designate the test serial number, the panel identification, the coating description, and the undercoating identification, respectively. An optional fifth field indicates environmental exposure prior to test.

The first field is a three-digit number unique to each simulated lightning discharge, e.g., 184.

The second field consists of two letters followed by two digits. The letters describe the nature of the panel substrate, while the digits serialize the particular substrate, e.g., BR01 refers to the first boron-filament-reinforced epoxy laminate.

The third field, the coating description, utilizes five characters. The first two are letters which designate the coating, e.g., AF designates aluminum foil. Next, two digits give the total thickness in mils of the coating. This number does not include the undercoating in the thickness calculation. The last character is a letter which describes particulars of the coating, such as the mesh count for a fabric or the degree of surface coverage by a foil. Thus, the designation AF01C represents an aluminum foil coating. 1 mil thick, which provides complete surface coverage to one exposed face of the substrate.

The fourth field characterizes the undercoating. The two letters designate the undercoating and are followed by two digits which give the thickness in mils. For example, KF01 designates Kapton film 1 mil thick.

Two additional characters have been added to this numbering system to indicate exposure to hostile environments prior to lightning test. These characters follow the fourth field and are preceded by a slash.

The characters used in the numbering system are defined in Table A-1. Table A-2 summarizes the panels examined. The panels are numbered from 292 to avoid confusion with panels described in reference 1. Tables A-3 and A-4 summarize the tensile test results. Table A-5 summarizes the Boeing-McDonnell Douglas test panels.

Table A-1. Panel Identification Code

First Field: Test Serial Number

A three-digit number unique to each lightning discharge

Second Field: Panel Composition

- AL Aluminum sheet
- BR Boron-filament-reinforced epoxy
- GP Graphite-fiber-reinforced epoxy
- FG Style 181 glass fabric reinforced epoxy
- TF Teflon sheet

Third Field: Coating Description

- AC Acrylic nitrocellulose paint
- AD Knitted aluminum wire mesh
- AF Aluminum foil
- AG Aluminized glass, 1500 conductive filaments per inch per ply

AH - Aluminized glass, 3100 conductive filaments per inch per ply

- Al Aluminized glass, 4480 conductive filoments per inch per ply
- AJ Aluminized glass, 8960 conductive filaments per inch per ply
- AL Sandwich of style 104 glass scrim cloth between perforated aluminum foil

1

as the day of

. .

- AR -- Woven aluminum wire fabric
- AW Aluminum metal fibers
- CR Woven copper wire fabric
- CW Unidirectional copper wires
- CZ Woven bronze wire fabric
- IP Intumescent paint
- NY Epoxy-resin-impregnated nylon fabric
- SG -- Silver-filled, epoxy-resin-impregnated, style 181 glass fabric
- C 100% surface coverage by coating
- J = 13-by-24 mesh of double-stranded wire
- N Bidirectional filament orientation
- P Metal strip along panel edge
- Q Unidirectional filament orientation
- U ~ 100-by 100 mesh
- W 60 by 60 mesh
- X 120 by 120 mesh
- 2 200 by 200 mesh

Fourth Field: Undercoating Description

- AI Aluminized glass
- AR Woven aluminum wire fabric
- KF Kapton film
- PU Polyurethane paint
- ALCO- Aluminum honeycomb core

Fifth Field (optional) Environmental Exposure

- BW Boiling water
- JP Immersion in jet fuel
- RH 100% relative humidity at 140° F
- SD Emmersion in hydraulic fluid
- SS 3% salt spray
- WM Weather O Meter

Table A.2. General Description of Test Panels

ä. .

first costal restriction	Test Danel	[: uating	Test discharge	Remarks
				(also have been a supervised by the second
292 GP12 AD082 0000	Graphite	Aluminin wire mesh	95 k A	Coating damage (4 in fear in write meth and neidminiation more methods)
293 GPT1 AD08J 0000 BW	Graphite	Alimmum with meth	78 K.A	Panel knifed in water 20 hr. discharge penetrated coaling and caused limited defami nation and damage to substrate
794 F G56 A D081 0000 BW	F divergease	Aluminum wire mesh	15 LA	Panel bouted in water 20 hr. discharge partially destroyed coating between arc attachment point and electrical ground, no damage to substrate
295 F G57 A D08J 0000	F iberglass	Aluminative mean	81 kA	Discharge partiality destroyerd coating tectween arc attachment point and electrical ground no clamage to substrate
246 GP14 AR08X (000	Graphite	Aluminum wire faltrii	129 4.4	$1_{\rm eff}$ in of fatyre removed at arc attachment point, no damage to substrate
297 GP15 AR08X 0000 BW	Graphite	Aluminum wire fabric	124 4.4	Panel builed in water 20 hr. discharge caused wire vaporization at arc attachment boint in damage to substrate
248 F (58 N Y OHC A R OB	Fubergiass	Aluminum wire fabric	105 44	Discharge provinced a 14 in dia hole in fabric coating, no damage to substrate
299 F (559 NY 04C AR08 BIN	F. therglass	Alumium with faling	99 H A	Panel kvilert in water 20 hr. discharge removed wire fativic from % sq. in area. no damage tis suthstrate
TO CP16 AROBX F GOM	Graphite	Aluminum wire fabri	205 MA	Discharge daimagert it a in dia area of coating no damage to substrate
301 (5P17 AR08 4 6 (504	Graphite	Alloningin with fabric	224 C	A 66 kA discharge triggerer a 224 C discharge at a 210 A dc current for 107 sec. It destroyed a 1.18 in dia area of coating and burned a 1 in dia crater in substrate
302 GF :8 00000 0000	Graphite	Jucoated	95 k.A	Discharge detaminated about 6 sq in of twelf face and produced a 1 in crack on the back side
303 GP 19 00000 0000 B %	Graphite	Uncoated	93 t A	Panel boiled in water 70 hr. discharge delaminated about 6 sq.in. of the panel face and producted a "+ sq.in. hnle through panel
TOW HR 23 A ROBY (DOD)	Horon	Aluminum wite laber	A 4 601	Coating removed at discharge point no other damage visible
305 BR24 AR08× (1000)	80.00	Aluminum wire tatici	34 (A 100 kA disk harge triggered a 34 C discharge at a 75 A do current for 0.2 sec. minor damage to coating no damage to substrate
306, BP 25 A (1081) COO(1	B	Aluminian wire reeds	H5 Ł A	Write coalong destroyed twilween arc attachment point and electrical ground, no damage to substrate
30 / B.R.M. AD0BJ 0000 BM		A long of A the Web	5 4 4 J	Parier twiltert in water 20 hr. whe chating damaged between and attachment point and electrical ground substrate sustained a 2 in crack
DOOL 21 SE SA DOOL	B (1,1,1)	זייושנן יישיוילי	V 1 0/1	Muderate damage to coaling to damage to substrate
0000 28 28 28 2000	Borow	Sulare parts	A 1 6	Considerable damage for or storig no damage to substrate
110 F C 640 S F 066C 20000	F star-glass	Silver port	11 NA	Duck harge severely dainaged criating no damage to substrate
	f itmedias	Silver paint	A N A /	Discritation severely italisaded coating ino damage to substrate
112 HE 29 00000 0100	1	Unic atro	1514	Discharge rauseria a in hole through panel, and seriously weakened panel
HE (0000) (00000) (01 HH 1 (1	Hum	Use o Hai	47.4	Parter exponent to 100 P.H. at 140°F. For 30 days, disubarge produced a "2 in dia Inder through parter
CERNIARCEN CIRCH FIL	1	All on each war fide	10414	Panel tested with two discharges, the lisst with a peak current of 109 kA, produced in damage to controp or substrate the second, directed to the same spot, with a peak control of 105 kA, removed some controp at an and strated point, but produced no
				damage to substrate

ز

Table & 2 Continued

1	Test parer	Brithin 1	Test -lise harder	Remarks
HIP HIT'S ANDRE CODO HI		Alismin in with falme	M 1 M	Paciel explored to a 100°, RH at 140°F for 30 days, some coaling removed at alc attachment print in damage to substrate
J16 HH 11 A HOHX 0000 55	Harvey	Aliston in wire false	610 F A	Period exponent to 3 is sets spray 90 itarys minor coating demage no damage to substrate
317 BR 14 AHONK 0000 SS	B	אוואיוש איור ואיוש	A I I I	Penel aupy section 3 usual syray 61 days, minor coating damage no damage to substrate
318 HR J5 AROBX 0000 55	G 0101	Alamanan wee fales	109 hA	Panel exponent to 3% sait spray 30 days, slight removal of coating at arc attachment point no damage to substrate
319 8 A 36 A A 08 K 0000 S()		Aluminum wite taken	108 + 4	Paver immersed in hydrikaulic fluid 30 days slight removal of coating at arc attachment point no damage to substrate
370 BR3 / AR08 x 0000 JP		Alumin wit falmi	104 4.4	Panel soak ed in JP 4 jet fue! 30 days, minor removal of coating at arc attachment point. Pu damage to substrate
371 BR 36 AR064 0000 WW	B Cr (Yr)	Atomicium writ falwe	10° + A	Penel existence in Weather O Meter 30 days slight removal of coating at arc attachment point in 274amage to substrate
372 BR 39 AR 06% 0000	B	Aluminum with fallow	203 4.4	Courting slightly damagets in 1.4 in dia area no damage to substrate
323 8 R 40 A R 06 X 0000	50	Aliminian with faller	90 C	A 96 kA rhychwarth regenred a 140 C rhychwarge at a 136 A do current for 1 03 sec. it pronkuowit ymait pit marks on criating in 3 by 4 in arra, slight daniage of substrate at some pit focations.
324 BR41 SE 06C KF 01	Boro 1	Silver (Mint	AA 80	Moderate damage to coating no damage to substrate
325 BR42 ACO3P KF01	с. С. С. С	Acryla clairs	151 44	Discharge vaporized 8 in of alum, um strips on each side of panel mechanical forces at discharge prote caused two 14 in cracks in boron panel at arc attachment point, no electrical damage to substrate.
376 F G62 AD06J 0000 RH	F. itsergians	Aluminum wile mesh	87 L A	Panal exposed in 100°c RH at 140°F for 30 days, coating wires distroyed between arc stlachment point and electrical ground, no damage to substrate
327 F G63 AU06U 0000 SS	F itme gians	Atumicium write mesh	87 LA	Panel exposed to 3"s self spray for 30 days, wries across face of panel between arc sitachment point and electrical ground partially destroyed, no damage to substrate
328 F G64 A D08J 0000 WM	f -brights	Aluminum & le meth	82 F A	Panel exposed in Wealher O Meter for 30 days, wires between arc attachment point and electrical ground partially destroyed no damage to substrate
329 F G65 A DORU 0000 SD	f ibrigians	Aluminum a relitabl	1244	Panel immerced in hydraulic fluid for 30 days, discharge partially destroyed wires between arc attachment point and electrical ground, no damage to substrate
330 F G65 5 G00C 0000	Filmques	Silver univergnated falws	1544	About 3 kg in of coating removed at and attachment point, coating also burned and particity separated from panel face ino damage to substrate
331 F G67 SG08C 0000 RH	Filergian	Silver impregnated fateri	4 9	Pavel exponsed to 100% RM at 140% F for 3.) days, roating defaminated from panel, no demage to withitiate
332 F G68 5608C 0000 SS	Filmques	Sitien unitregnated fatien	85 k.A	Panel exported to a 31% kalt spray for 30 days discharge delaminated coating from panel face no damage to substrate
333 F G69 S G08C 0000: SD	Filmgan	Silver mijregnated falme	6/ + 4	Panel immersed in hydraulic fluid for 30 days idischarge removed most of coating from panel fixer no idamage to substrate
334 F G 70 S G 08C 0700 JP	Filmque	Silver or prepreted faller	83 LA	Penel soak ed in 19 4 set fuel 30 days, discharge delaminated coating along panel edges, no damage to sutstrate
335 F G / 1 S G 08C 0000 WM	Filmylass	siten inspregnated false	4 1 1	Privel exposed in Weather O Meter 30 days discharge removed all coating from oanel face between arcialtainment point and ground no damage to substrate.

1

•

Table A 2 - Continued

P

2

Test serial number	Test panel	Coating	Test discharge	Remarks
	d			Panel technic is water 70 hr. discharios caused stight metring of coating at arc attach
336 BH43 (, H09U UCU BW	BOION	CODDEL WILL HOULD		rainer tourist in water som stranderes som anderes anderes anderes anderes anderes anderes anderes anderes ander
337 BR44 CR09U 0000	Boran	Cupper wire fabric	1:1 4.4	Coating slightly damaged at arc attachment point, no damage to substrate
338 8P45 AR 16W 0000 BW	Baron	Autominum wire fabric	109 kA	Panel tooled in water 20 hr no damage to substrate or write fahric
339 BR46 AR16W 0000	Boron	Aluminum wire tabric	111 KA	Discharge caused slight damage to coating at arc attachment paint, no damage to substrate
340 BR47 AL 03C 0000	Boron	Aluminum foils	105 kA	Discharge removed 1 sq in of outer aluminum foil, no damage to inner foil or substrate
341 BR48 AL03C 0000/3W	Baron	Aluminum toits	106 kA	Panel boiled in water 20 hr. discharge removed about 1 sq. in. of outer aluminum foil : no damage to inner foil or substrate
342 BR49 AF01C 0000	Boron	Aluminum foil	105 kA	Discharge removed about 3 squin of aluminum foul at arc attachment point, no damage to substrate
343 8R50 AF01C 0000 BW	Boron	Aleminum toil	103 kA	Discharge removed about 3 sq in of aluminum foil at arc attachment point, no damage to substrate
344 BR38.AC03P KF01	Boron	Acrylic paint	154 kA	8 try 8 in panel with copper tape along each edge parallel to induced current flow. discharge destroyed by 4 try 4 in section
345 GP20 00000 0000/RH	Graphite	Uncoated	83 kA	Panel exposed to 100°s RH at 140°F for 30 days, discharge sevarely damaged an area of about 6 sq. in: on panel face, damage visible on area of about % sq. in: on panel backside
346 GP21 00000 0000	Graphite	Uncoated	87 kA	Discharge severety damaged an area of about 6 sq in, on panel face. ¹ /4 in crack was visible on backside
347 GP22 SE12C 0000	Graphite	Silver pariat	124 kA	Discharge removed an 8 sq in larea of coating, substrate resin destroyed in a 1%-in idia area, defaminating outer plies in this zone
348 GP23 AR08X 0000	Graphite	Aluminum wire fabric	108 C	A 100 kA discharge triggered a 108 C discharge at a 240 A dc current for 0.45 sec , an area of coating 21á by 1 in was vaporized, a 1 in idia crater was burned into substrate
349 GP24 AR08X 0000/SS	Graphite	Aluminum wire fabric	103 kA	Panel exposed to 3% salt spray 30 days, no damage by discharge to panel or coating
350 GP25 AR08X 0000	Graphite	Aluminum wire fabric	185 C	A 100 kA discharge triggered a 185 C discharge at a 220 A do current for 0.84 sec. a 1% in dia area of wire fabric was vaporized. severe damage to substrate
351 GP26 AR08X 0000/SD	Graphite	Atuminum wire fabric	112 kA	Panel immersed in hydraulic fluid 30 days, no damage by discharge to coating or panel
352 GP27 AR08X-0000/JP	Graphite	Aluminum wire fabric	104 ; A	Panel soaked in JP 4 jet fuel 30 days, discharge removed some coaring at contact point. No damage to wire fairric or substrate
353 GP28.AR08X 0000/WM	Graphite	Ali minum wire fabric	10 4 kA	Panel exposed in Weather O Meter 30 days, discharge caused slight damage to wire fabric at arc attachment point, no damage to substrate
354 GP 29 AR 08X 0000/SS	Graphite	Aluminum wire tabric	107 KA	Panel exposed to 3°s salt spray 6.1 days, a 'k-in-square of wire fabric was delaminated from substrate and substrate slightly damiged at arc attachment point.
355.GP30 AR08X-0000/SS	Graphite	Aluminum wire fabric	105 4 A	Panel exposed to 3°s salt spray 90 days, no damage to substrate
356 BR51-00000-0000	Beron	Uncoated	49 kA	Entire panel badly damaged by discharge
357 BR52 00000 0000	Boron	Uncoated	104 KA	Entire panel badiy damaged by discharge
358 BR53 AJ09N 0000/SS	Baron	Aluminized glass	102 KA	Layers priepted 0° and 90° punel exposed to 3°°, salt spray 30 days coating damaged in 5/8 in dia area, no damage to sithstrate
359 BR54 AI09N 0000/SS	Boron	Alumini, ed glass	209 k.A	Lavers oriented: 45°, parel exposed to 3° sait sprav 30 days, outer laver of coating badly delaminated from 1° in the discharge area, no damage to substrate

.

57

.

Ć

Table A 2-Continued

Test serial number	Test panel	Coating	Test discharge	Remarks
360 BR55 AC03C AF06	Buron	Aluminum foil	105 C	A 97 kA discharge triggered a 105 C discharge at a 195 A do current for 0.54 kec. coating melted in 2% by 1% in area, substrate badly damaged in 1, by % in area.
361 BR56 AC03C AF06	Boron	Aluminum foit	209 k.A	Coating vaporized in 1/2, by 3/8 in area, no damage to substrate
362 BR57 SE12C KF01	Boron	Silver paint	95 k.A	Discharge darkened coaling and damaged substrate
363 BR58 SE12C PU02	Borun	Silver paint	93 k.A	Oischarge removed coating from six 3/16 in idia areas and marte two 1/8 in. holes itrough substrate
364.GP31 SE06C KF01	Graphite	Silver paint	109 k.A	Coating damaged at all attachment point and electrical ground, no damage to whatrate
365 GP32-AC03P KF01	Graphite	Acrylic paint	93 KA	Substrate punctured and damaged
366 GP33 00000 0000	Graphite	Uncoated	98 k A	About 4 sq in of panel hadly scorched and delaminated, but panel was not punctured
367 GP34 00000 0000	Graphite	Uncoaled	187 KA	About 6 sq in. of panel badly scorched and delaminated, but panel was not punctured
368.GP36.AJ09N 0000/SS	Graphite	Aluminized glass	104 KA	Layers oriented 0° and 90° panel exposed to 3° salt spray 30 days. coating damaged
369.GP36.A109N 0000/SS	Graphite	Aluminized glass	206 k A	in % in file discharge area, no damage to substrate, some corrosion of coating. Layers oriented 45° and 45° panel exposed to 3% sait spray 30 days outer coating layer delaminated in 1% in file discharge area, no damage to substrate, coating corrosion
370.GP37.IPUMC A114	Graphite	Aluminized glass	105 C	Layers oriented 0° 90° 90° and 0° a 95 kA discharge triggered a 105 C discharge at a 187. A do current for 0.56 sec. coating was vaporized in ½ in dia area; a ½ in dia crater was burned in substrate
371 CP38-AC03C-AF06	Graphite	Aluminum foil	203 kA	Coating melted in 7/16 by 5/16 in. area, no damage to substrate
372.8R59.SE04.KF01	Boron	Silver paint	98 kA	Discharge damaged substrate
373.BR60.A105C.0000	Boron	Aluminized glass	105 C	Layers oriented -45° and +45° a 91.kA discharge triggered a 105-C discharge at a 180-A do current for 0.565 sec. discharge made a 1/8-by 3/16.in, hole through coating into substrate, slightly dumaging substrate; arc wandered over large area of panel causing only slight damage to coating
374.GP39.AC03C.AF06	Graphite	Aluminum foil	109 C	A 98.kA discharge triggered a 109.C discharge at a 195.A do current for 0.56 sec. coating was melted in 1 in dia area, a 1-in dia crater was burned in substrate
375 GP40.SE12C.PU02	Graphite	Silver paint	88 k.A	Elischarge removed coating and outer plies of substrate in three areas, $k_{\rm b}$ by 2, 3/8 by 1 k, and 7 k by 1 in , substrate severely damaged
376 BR61 SE04C KF01	Boron	Sriver paint	10C kA	Discharge severely damaged panel and made a $1/16$ by $\%$ in, hole through substrate
377.8R62 A105C 0000	Boron	Aluminized glass	200 C	Layers oriented 45° and +45° a 93 kA discharge triggered a 200-C discharge at a 192-A dc current for 1.04 sec. discharge badly damaged panel in a 2 by 1-in. area 2-nd made a 1 in. dia hole through substrate
378 GP41 SE04C PU02	Graphite	Silver paint	89 k.A	Discharge severely damaged coating and substrate
379 GP42-SE04C 0000	Graphite	Siiver paint	88 kA	Discharge removed coaring from 1% in, dia area, substrate damaged in % in dia area
380 GF43 AF01C 0000'SS	Graphite	Ateminum foil	81 kA	Pinel exposed to 3% salt spray 30 days, which caused severe corroyion of coating: discharge removed remainder of coating and broke substrate into three pieces
381 GP44 AF01C-0000	Graphite	Aluminum foil	111 kA	Discharge removed about 3 sq in of aluminum foil, no demage to substrate
382 BR63-SE06C 0000	Bcron	Silver paint	62 kA	Discharge damaged coating and made a 3/16 by K in hole through substrate

;

•

a .

.

Test serial number	Test panel	Coating	Test discharge	Remarks
383 BR64 SE 1 2C 0000	Boron	Silver paint	89 k.A	Discharge damaged coating and made a '4 in dia hole through substrate
384 GP45 SE12C-0000	Graphite	Silver paint	116 kA	No damage to coating, substrate severely weakened
385 GP46 SE06C 0000	Graphite	Sitver paint	105 kA	Coating and substrate severely damaged
386 GP47 AI 18N 0000	Graphite	Aluminized glass	209 k A	Eight lavers orrented Offand 90° 14 in dia area of coating damaged, nu damage to substrate
387 GP48 AR08X 0000	Graphite	Aluminum wire fabric	2 96 i	A 83 kA discharge triggered a 196 C discharge with a 189 A do current for 1 04 sec coating destroyed in 1 1/16 in dia area, a 1 in dia crater furmed in substrate
388 GP49 AR042 FG04	Graphite	Aluminum wire fabric	200 k.A	Costing damaged in 1% in dia cloverleal pattern, first ply of substrate sustained damage in 1/8 in dia area.
389 GP50 AR042 F G04	Graphite	Aluminum wire fabric	176 C	A 91 kA discharge triggered a 176.C discharge at a 169 A dc current for 1 04 sec. about 1 sq in, of coating severely burned by discharge, the high current arc wandered over a 5- by 6 in arca of pane! causing moderate damage to coating. no damage to substrate
390 TF01 00000 0000	Tetion sheet	None		Panel used for triboelectric charging studies chily
391 8R65 CW070 0000	Boron	6.3 mil. Formvar coated, copper wires	43 KA	Wire layer oriented 90° with 126 wires per inch, discharge severely damaged about 1 sq in of both coating and substrate at arc attachment point.
392 BR66 CW07Q 0000	B oron	6 3-mil, Formvar coated, copper wires	102 kA	While layer oriented parallel to induced current path with 126 wires per inch, discharge damaged about 14 sq. in: of both coating and substrate at arc attachment point, a 1% in: strip of copper wire coating was vaporized from arc attachment point to ground
393 BR67 CW06N 0000	Bornn	2.5 mil, Formvar coated, copper wires	115 kA	Wire layers oriented Off and 90 th with 350 wires per inch. discharge caused random damage to coating, substrate slightly damaged at ar. attachment point.
394 BR68-CW06N-0000	Boron	2 5 mil, Formvar coated, copper wires	106 k.A	"Nires oriented 90° and 0° with 350 wires per inch, clischsige damaged most of wire in a 1 in strip from arc attachment point to electrical ground, substrate damage over 14 sq in area
395 BR69 CW050 0000	Boron	5 mil uncoated copper wires	11944	Wres priented parallel to induced current path with 80 wres per inch, wres slightly ilamaged at arc. attachment point, no damage to substration
396 BR 70 CW050-0000	Boron	5-mil uncoated copper wires	120 kA	Wards oriented parallel to induced current path with 16.0 will sper inch. 3 or 4 wires broken at all attachment point, no demage to substrate
397 BR 71 CW020 0000	Boron	1 4-mil, Formvar coated, copper wire	10i kA	"Nires oriented paratiel to induced current path with 530 wires per inch, a 1"s in wide strip of coating hadly damaged between arc attachment point and electrical ground
398 BR 72 CW040 0000	Baron	1 4.mil, Formvar coated, copper wire	106 k A	Two layers of write oriented parallel to induced current path with 530 wires per inch in each layer a 1 in wide strip of copper write coating was removed between arc attachment point and electrical ground
399 BR 73 CW04N 0000	Boron	1.4 mil. Formvar coated, copper wire	√ ۲ 86	"Mires oriented OP and 90° with 530 wires per inch, moderate damage to coating at arc attarhment point ino damage to substrate
400 BR /4 AG08N 0000	Boron	Alum:ni2ed glass	70 KA	Layers oriented 90° and 0° both layers of aiuminized glass filaments damaged, small hole in substrate
401 BR 75 AH040 0000	Boron	Aluminized glass	73 kA	Layer oriented 90° discharge badly damaged panel making 2 tri. crack and six holes, inorderate coating (damage shows that panel carried most of current

Table A-2--Continued

59

1

ł

Table A.2 - Continued

<u>,</u>

Test serial number	Test panel	Coating	Test discharge	Remarks
402 BR /6 AGONO 0000	Boron	Aluminized diass	56 kA	Laver oriented beraitet to induced current path, discharge removed most of coating
			}	and badly damaged substrate
403 BR 77 AH08N 0000	Beron	Aluminized glass	109 k.A	Layers oriented 0° and 90° discharge removed abour 1 sq in $ 0 $ outer (0°) ply at and attachment point. No damage to underlayer or substrate
404 BR 78 AH040 0000	Boron	Atuminised glass	78 k.A	Layer oriented parallel to induced current path, discharge caused severe damage to coating and substrate
405 CP51 AG(40 0000	Graphite	Aluminized glass	105 kA	Layer oriented parallel to infuced current path, discharge removed about 1 sq in of coating at arc attachment point, no damage to substrate
406 GP52 AH040 0000	Graphite	Atuminized glass	78 kA	Layer oriented peraitel to induced current path, discharge removed about 6 sq in of coating, substrate showed 11%, and 1% in cracks
407 BR 79 C W050 0000	Boron	5 mil uncoated copper wires	56 kA	Wire layer oriented 90° with 160 wires per inchi, both coating and substrate severely damaged
408 B R BO C W050 0000	ßoron	5 mil uncoated copper wires	75 4.4	Wire layer oriented 90° with 80 wires per inch, both coating and panel severely damaged
409 BRB1 CW030 0000	B G	2.5 mil. Formvar coarted. copper wires	59 k.A	Wire layer or writed 90° with 350 wires per inch, both costing and substrate severely demaged
410 BRB2 CW020 0000	Boron	1.4 mil. Formver coated copper wires	52 kA	Wire layer or whited 90 th with 530 wires per inch, discharge caused excessive damage to both costing and panel
411 GP53 AH11N 9000	Graphite	Aiuminized glass	108 LA	Lavers oriented 0° 90°, and 0° discharge removed about 1 sq in of outer layer and sughtly demaged middle layer, no damage to inner layer or substrate
412 GP54 AH110 0000	Graphite	Aluminized glass	108 kA	Three layers oriented parallel to induced current path, slight damage was caused to outer layers in diamage to substrate
413 GP55 AH 15N 0000	Graphite	Aluminited glass	108 4 4	Layers were oriented 0° 90° 90° and 0° dracharge removed about 1 sq in of outer layer and "s sq in of next layer, no demage to inner layers or substrate
414 GP56 AH07N 0000	Graphite	Aluminized glass	108 4 4	Lavers oriented 0° and 90°, discharge removed 1, sq in of outer laver, inner laver signity demaged no damage to substrate
415 BA83 AG12N 0000	er on	Atumized glam	8 F V	Lavers or rented 0° 90° 90° and 0° discharge removed about 4 sq in of outer laver, coating determinated over 5 by 6 in area no demage to substrate
0000 OLIHY 4848 914	Boron	Aluminized glass	108 F.A	Layers oriented 0° 90° and 0° discharge caused very little demage to costing, no demage to tubstrate
417 BR85 AH11N 0000	Baron	Aluminised gives	V 1 601	Layers or rented 0° 90°, and 0° discharge removed about 1 sq. in of outer layer. next layer vightly demaged no damage to substrate
418 BR66 AC03C 0000	56 96 9	Acryle pant	85 k A	B by B in panel with copper tape along each edge parallel to induced current flow, discharge severely weakened 3'1 in dia panel area, copper diverter strips appeared in carry tome current.
419 BR8/ AROAZ 0000	Horon	Aluminum wire fabric	7 9 C	A 100 that discharge triggered a 79 C discharge at a 180 A do oursent for 0.44 acc. a 1 in dia area of wrie fahric destroyed at and attachment point, no damage to substrate
4.70 BR88 AR042 0000	CC X3	Aluminum wife fals i	7 388 C	A 100 k.A. discharge triggered a 298 C discharge at a 200 A. dc current for 1.44 sec. coulting and substrate badit damaget a 1 in dia hole burned through panel, boron filaments between hole and electrical ground badity damaged

. ,•

Teble A-2--Continued

RDAZ 0000 RDAZ 0000 PDAC ARDA RDAZ 0000 LRDAZ 0000 LRDAZ 0000	Baran Graphite Graphite Graphite Graphite Baran Baran	Aluminum wire fabric Aluminum wire fabric Aluminum wire fabric Aluminum wire fabric Aluminum wire fabric Aluminum wire fabric	138 C 186 LA 186 LA 186 LA 209 LA 209 LA 209 LA 112 LA 112 LA 112 LA	A 100 kA discharge triggered a 136 C discharge at a 150 A discurrent for 0.92 esc. a 3 by 4 in area of both coating and substrate backy demaged, % in dis hole burned through panel. Panel severely demaged by mechanical forces produced by the discharge due to marinequate panel minuting procedure. Parel severely demaged by mechanical forces produced by discharge due to inadequate panel minuting procedure. A 100 kA discharge triggered a 213 C discharge at a 245 A dis current for 0.87 esc. at 18 bits is conting vasious regered a 213 C discharge with a 189 A dis current for 0.52 esc. are labled conting vasious end of the area 1.1.3 in dis crater burned into unstruct. A 4 discharge triggered a 98 C discharge with a 189 A dis current for 0.52 esc. custing destroyed in 1% by 1% in area 1% by 7 B in crater burned in substrate Costing demaget in 1% by 1% in area and destroyed in 7, by % in area, no diamage in orbitrate. Panel substrate Laver oriented parallel to induced current path, coating demaged over % by 1% in the accord No diamage to substrate.
	Graphite Graphite Graphite Graphite Boron Boron Boron Boron	Aluminized glass Aluminized glass Aluminized glass Aluminized glass Aluminized glass Aluminized glass Aluminized glass Aluminized glass Aluminized glass Aluminized glass	108 kA 111 kA 110 kA 110 kA 198 kA 112 kA 112 kA 112 kA 112 kA 112 kA	 L. es oriented 0° and 90° coating damaged over ½ in, dia area, no damage to substrate. Layers priented 90° and 90° discharge caused slight damage to coating at arc attachment point no damage to substrate. Layers oriented 0° and 90° no damage to substrate, but conting slightly marred tayers parallel to induced current path. coating damaged over ½ by 1% in area, slight damage to substrate, but coating slightly marred tayers parallel to induced current path. coating damaged over ½ by 1% in eas. slight damage to substrate at arc attachment point. Layer oriented 0° and 90° discharge damaged coating damaged over ½ by 1% in eas. slight damage to substrate at arc attachment point. Layer oriented 0° and 90° discharge damaged coating in 1 in. dia area, no damage to substrate. Layer oriented 0° and 90° coating damaged in % in. dia area, no damage to substrate tayers oriented 0° and 45° coating damaged in % in. dia area, no damage to substrate tayers oriented 0° and 90°. coating damaged in % in. dia area, no damage to substrate tayers oriented 0° and 90°. coating damaged in % in. dia area, no damage to substrate tayers oriented 45° and 45°, coating damaged in % in. dia area, no damage to substrate tayers oriented 45° and 45°, coating damaged in % in. dia area, no damage to substrate tayers oriented 0° and 90°. coating damaged in % in. dia area, no damage to substrate tayers oriented 0° and 90°. coating damaged in % in. dia area, no damage to substrate tayers oriented 0° and 45°. coating damaged in % in. dia area, no damage to substrate tayers oriented 0° and 45°. coating damaged in % in. dia area, no damage to substrate tayers oriented 0° and 45°. coating damaged in % in. dia area, no damage to substrate tayers oriented 0° and 45°. coating damaged in % in. dia area, no damage to substrate tayers oriented 0° and 45°. coating damaged in % in. dia area, no damage to substrate tayers oriented 0° substrate area ord eace area area area area coating varie tayers wire damage ta

61

Table A: 2-Continued

ख ‴⊺

۱

Í

•..:

Test seriel number	Test panel	Coating	Test discharge	Remarks
442 GP68 A R08X 0000	Graphite	Aluminum wire fabric	101 C	A 710-kA discharge triggered a 101-C discharge at a 23 A dc current for 4.35 sec. wire fabric coating vaporized over 1%-in-dia area, 1-in-dia crater burned into substrate
443 GP69 AR 08X 0000	Graphite	Aluminum wire fabric	ပ 86	A 110-A discharge triggered a 98-C discharge at a 390-A do current for 0.25 sec. wire fabric coating vaporized over 1 in dia area; 1 in dia crater burned into substrate
444 GP 70. AC03C. AR08	Graphite	Aluminum wire fabric	199 kA	Wire fabric coating severely damaged in an area 2 by 1% in . substrate damaged in % in -bit area
445.GP71.AR08X-0000	Graphite	Aluminum wire fabric	186 kA	Wire fabric coating severely damaged in area 2% by 3 in , substrate damaged in ¼ in. dia area
446-GP72 AR042-0000	Graphite	Aluminum wire fabric	206 C	A 500 kA discharge triggered a 206 C discharge at a 184 A dc current for 1.12 sec, wire fabric coating vaporized over 1.1/8-in. dia aria. 1-in. dia crater burned into substrate
447-8R99 AR042-0000	Boron	Aluminum wire fabric	29 C	A 90.kA discharge triggered a 29.C discherge at a 120.A dc current for 0.24 sec, no demage to coating or substrate
448.8 R00 A R08X 0000	Boron	Aluminum wire fabric	ວ 98	A 110-kA discharge trippered an 86-C discharge at a 75-A dc current for 1.14 sec. wire fabric coating severely damaged over area 1 by 2 in.; 3/8-india hole burned through substrate
449-BR01 AR08X 0000	Boron	Aluminum wire fabric	2.4 C	A 110-kA discharge triggered a 2.4-C discharge at a 24-A dc current for 0.1 sec; no damage to substrate
450 BR02 AR08X 0000	Boron	Aluminum wire fabric	85 C	A 110-kA discharge triggered an 85-C discharge at a 352-A do current for 0.24 sec; some wire coating vaporized in random faction over area 2 by 3 in., no damage to substrate
451-BR03-AC03C-AR08	Boron	Aluminum wire fabric	196 kA	Small crack in substrate caused by mechanical collision of discharge probe with substrate, no electrical damage
452 BRG4.AR08X 0000	Boron	Aluminum wire fabric	191 kA	Panel severely damaged by mechanical forces produced by discharge due to improper panel mountiling procedure
453 BR05-AC03C-AR08	Boron	Aluminum wire fabric	186 I.A	Discharge removed 40% of acrylic paint between arc attachment point and ground, some wire fabric coating visporized at arc attachment point, no damage to substrate except for small crack caused by collision of probe with substrate
454 BRUG ACO3C AROM	Boron	Aluminum wire fabric	110 kA	Discharge removed a 1-by 1-init square of acrylic paint, no damage to conting or substrate
455.BR07.AU03C.ARG4	Born.	Aluminum wire fabric	0 20 20	A 110-k4 discherge triggered a 50-C discherge at a 49-A do current for 1.00 sec; wire fabric coating and substrate severely damaged in ½-by 4-in, area; 3/8-in, hole burnad through substrate
456 BROB ACODC AR04	Boron	Aluminum wire fabric	92 C	A 90 kA discharge triggered a 92-C discharge at a 90-A dic current for 1.02 sec; wire fabric coating and substrate severety damaged in area % by 3 in.; 3/8. by 5/8-in. hole burned through substrate
457 BRUBACO3C ARON	Boron	Aluminum wire fabric	140 C	A 90 k A discherge triggered a 140-C discherge at a 135-A dc current for 1.04 sec. acrylic paint and metal removed from coating in random justiern; no damage to substrate
458 GP / 3 AC03C AR04	Graphite	Aluminum wire fabric	196 k.A	Wire fabric costing vaporized in 1-in. dia area, substrate moderatoly dam age d in % in dia area

- - 441

•

4

1

-6
- S
Ē
-
- C
ā
~~
U
- 1
<u>الا ا</u>
· • ·
ব
- ^
. 6
- 6
3.

Test seriel number	Test panel	Costing	Test discharge	Remarks
459 GP14 ACO3C AROM	Graphite	Aluminum wire fabri	0 8	A 30 kA discharge traggered a 186.C discharge at a 184.A dc current for 1.01 sec. while fabric costing vaporized from 1.1/8-in ide area, 1in, dis crater burned in substrate
460 GP 75 ACO3C AROM	Graphite	Atuminum wire fabric	(Characteristics of discharge uncertain due to instrumentation failure, wire febric coating veconized from area 2/8 by 5/8 in , autostrate damaged at arc attactiment point
461 GP76 AC03C AR04	Grephite	Aluminum wire fabric	ບ %	A 110 kA discharge triggered a 56 0 discharge ut a 54 A do current for 104 Mor. some wire fabric conting vigorized and 1 by 548 vir crater burned into substrate
462 GP77 AC03C AR04	Graphite	Alumirum wire fabric	1 00 C	A 50.4A bischerge tragered a 100-C decharge at a 100-A dc current for 1 sec. come wire fabric costing vaporized and 5/8 m dia crater burned into substrate
463 BR 10 AC03C AI 14	Boron	Aluminized glass	128 KA	Levers oriented 0° 90°, 90° and 0° discharge damaged 1 in dia area of costing and whiter
464 BR11 ACODC A114	Boron	Aluminized gass	196 kA	Levers or sented 0° 90° 90° 0° discharge removed most of coating between arc stactiment point and ground. Boron panel seriously wreak thed
465 BR12 ACOJC A114	le or on	Aleminized glass	23C	Levers intented 0°, 90°, 90°, and 0°, a 110 k.A. discharge trippered a 2.3.C. Hischarge at a 39.4. do current tor 6.06 sec. costing damaged over area 1.by 1°s in no damage to substrate
466 BR13 AC03C A114	Boron	Aluminized glass	9 7 C	Leyers oriented 0° 30° 90° and 1° a 90 kA discharge irrigge id a 97.C discharge at a 90 A discurrent for 1.08 and coating and substrate damigrad over area 2% by 3 in and a % in dia hole burned through substrate
467 GP78 AC03C A114	Graphite	Aluminited glass	A1911	Levers oriented 0° 90° 50° and 0° coating renoved from % in idia area, no ternage to substrate
468 GP 79 AC03C A114	Graphite	Aluminized glass	17544	Layes oriented 0° 90°, 90°, and 0° dividiaise damageo ocering over 1-m-via area, email crack in substrate at arc attachment point caused by collision of probe with substrate
469 GPB0 ACOTC A114	Graphite	Aluminized glass	55 C	Levers or ented 0° 90° and 0° a 110 k.A. discharge tragered a 55-C dracherge at a 53 A.dc current for 1.04 sec. coating vaporized in 1:an dia area, 3/16 in:dia hote burned through panel
410 GPE1 ACO3C A114	Gr aphile	Aluminized glass	5 82	Lavers oriented 0°, 90° 90° and 0°, a 90 kA discharge traggered a 106-C discharge at a 96 A dc current for 1.1 kec, costing vaporized from 1 in. dia area, 1%-in -dia crater burned into substrate
471 GP82 ACOJC 4114	Graphite	Aluminized glass	о 66	Levers oriented 0°, 90°, 90°, ond 0°, a 90 k.A. discherge traggered a 199-C discherge at a 184 A do current for 1.085 sec, coating removed from 1.1/8 in dia area. Tim.idia crater burned into substrate
472 BR14 AF 06C 0000	Boron	Aluminum foil	194 4.4	Discharge vaporized 3/8 in this area of coating, no damage to substrate
473 GP83 AF DBC 0000	Graphite	Aluminum foit	152 kA	Discharge vaporized % in dia area of costing, no damage to sufficiente
474 BR15 AF 06C 0000	Koro	Aluminem fait	203 C	A 97 kA discharge treggered a 203 C discharge at a 195-A do current for 1.04 sec. coating metted in 2 in dia area, substrate severety diamaged in same area, 3/8 by 3: in hole burned through panel
475 GPB4 AF 06C 0000	Græphite	Atuminum foil	216 C	A 96 kA dracherge triggered a 216 C discherge at a 202 A do current for 1.07 sec. coaling meted from 1.3/8 in dia area, 1.1/8-in dia crater burned in substrate
4.76 GP85 AL150N 0000	Graphite	Aluminized gass	189 k.A	Layers or rented 45°, 45°, 45°, and 4 45°, coating damage confined to %- by 14m. eres, no damage to substrate

t

١

t

Table A.2-Continued

. 1

Þ

Å.

lest serial number	Test panel	Costing	Test discharge	Remarks
477 GPRS AIDSN 0000	Graphite	Aluminized glass	186 kA	Layers oriented +45° and 45°, coating damage confined to ½ by ½ in area, minor damage to substrate at contact point
478 BR39 AI05N 0000	Boron	Aluminized glass	187 kA	Layers oriented +45° and 45°, costing damage limited to % in dia area, no damage to substrate
479 BR16 ALTON 0000	Boron	Aluminized glass	187 kA	Layers oriented +45°, -45°, and -45°, coating damage limited to % in. dia area, no damage to substrate
480 BR 17 AIDON ALCO	Boran	Aluminized glass	200 k A	Layers oriented 0 th 90 th 90 th and 0 th conting vaporized in % in cdia area, substrate sustained a crack and other minor damage in the %-in-idia area.
481-BR18-A109N-ALCO	Born	Aluminized glass	100 KA	Layers oriented 0°, 90°, 90°, and 0°, no damage to substrate or coating
482 8P19 A109N ALCO	Boron	Aluminized plass	22 C	Layers oriented 0° 90° 90° and 0° a 94 kA discharge triggered a 22 C discharge at a 55.A do current for 0.4 sec, about twenty 0.05 in i dia pock marks on coating, no damage to substrate
483 BR 20 A109N ALCO	Boron	Aluminized glass	85 C	L syers oriented 0° 90° 90° and 0° a 94 kA discharge triggered an 85-C discharge at an 88 A dc current for 0.96 sec, about fifty 0.3 in dia pock marks on coating: substrate slightly damaged
484 GPB7 A109N ALCO	Graphite	Aluminized glass	200 k A	Layers oriented 0° 90° 90° and 0° discharge made 3/8 in. dia hole through coating and substrate
485 GP88 A109N ALCO	Graphite	Aluminized glass	103 kA	Layers oriented 0°, 90°, 90°, and 0°, no damage to coating or substrate
465 AL 01 -00000 0000	80 mit aluminum plate	None	209 C	A 100-kA discharge triggered a 209-C discharge at a 255-A dc current for 0.82 sec: % in: dia area melled through panel. Panel also tested in undamaged area with a second discharge of 100-kA which triggered a 110-C discharge at a 255-A dc current for 0.43 sec; %-in: dia area melted through the panel.
487.AL02.00000.0000	80-mil atuminum ptate	None	5	A 100 kA discharge triggered a 64 C discharge at a 255 A do current for 0.25 sec. 7, 16 in dia area metted through panel
488 A L 03-00000-0000	80-mil eluminum plate	Note	101 C	A 110-kA discharge triggered a 101-C discharge at a 87-A dc current for 1,16 sec; 7/16-india area metted through panel
489. A L 04. 00000-0000	80-mil atuminum plate	None	101 C	A 110-kA discharge triggered a 101-C discharge at a 23.3-A discharge triggered a 101-C discharge made tlash mark on surface but did not melt through panel
490-A.L.05-00000-0000	B0-mil aluminum plate	None	ပ 86	A 110-kA discharge triggered a 98-U discharge at a 392-A dc current for 0. 25 sec 3 in dia area metted through panel
491 BR21 AR04Z 0000	Boron	Aluminum wire fabric	110 kA	Coating slightly damaged in 1-in-dia area; no damage to substrate
492.BR22.AR04Z 0000	Borca	Aluminum wire fabric	ပ အီ	A 93 kA discharge triggered an BS-C discharge at a 168-A do current for 0.52 sec. high current arc traced random path on 3% by 4 in. area of coating, no damage to substrate
493 BR 23 AW 10C-0000	Boron	Meral fibers	85 kA	Discharge removed 60% of coating in a Silin, dia area, no damage to substrate

\$

•

١,

Ċ

Table A.2-Continued

P

Test serial number SR 24 AW 20C 0000 Coba AW 10C 0000	Test panei Boron Grachite	Coating Metal fubers Metal fubers	Test discharge 90 kA 85 kA	Remarks Discharge delaminated coating from substrate at arc attachment point: no damoge to substrate Some damage to coating, no damage to substrate
AW2000000 A118N-0000 AR04Z F G 04	Graphite Boron Boron Boron	Metal fibers Aluminuzed glass Aluminum wire fabric Aluminum wire fabric	90 kA 52 C 197 kA 232 C	No damage to coating or substrate Eight layers oriented O° and 90° a 91-kA discharge triggered a 52.C discharge at a 137.A do current for 0.38 sec. 10 pits made in 1-by 2-in, area, the largest 5/16 by 3/16 in.; substrate damaged at some larger pit location Coating damaged in 1%-in.dia cloverleaf pattern, no damage to substrate A 97-kA discharge triggered a 232.C discharge at a 165.A do current for 1.41 suc high-current arc wandered over 5- by 7-in, area causing moderate damage to coating:
8 AR08X F G 04 9 AR08X F G 04 1 AC 03C 0000	Boron Boron Graphit	Aluminum wire fabric Aluminum wire fabric Acrylic paini	197 kA 175 C 100 kA	substrate uncommence Coating morterately damaged in 3/8-in-dia area; no damage to substrate Coating removed from 1/5-in-dia area; substrate damaged in same area coating removed from 1/5-in-dia area; substrate damaged in same area 8- by 8-in, panel with copper tape along each edge parallel to induced current flow; 6-scharge removed acrylic paint from 1- by 3-in, area; substrate damaged in a 1- by 3-in, area, detaminating outer three layers
30 A I 05N -0000 31 A I 05N -0000 31 A I 05N -0000	Boron Boron Graphite	Aluminized glass Aluminized glass Aluminized glass	194 kA 319 C 194 kA	Layers oriented and arreation substrate 2% by 1-5/8-in, area, no damage to substrate Layers oriented 45° and 45°, an 89-kA discharge triggered a 319-C discharge at a 188-A dic current for 1.70 sec; discharge made 1-in. dia hole through panel; severe damage to substrate Layers oriented -45° and +45°, coating damaged in 1.7/8. by 1%-in. area and Layers oriented -45° and +45°, coating damaged in 1.7/8. by 1%-in. area and
3 A105N 0000	Grachite Graphite	Atuminized glass Atuminum wire fabric	180 C 214 C	Levers oriented 45° and 445°, an 89-kA discharge triggered a 180-C discharge at a Levers oriented 45° and 445°, an 89-kA discharge triggered a 180-C discharge at a 168-A discurrent for 1.07 sec. ac wandered over most of panel surface causing moderate damage to coating. In diamage to substrate A 92 kA discharge triggered a 21A-C discharge at 2022 A discriment for 1.11 sec: A 92 kA discharge triggered a 21A-C discharge at 2022 A discriment for 1.11 sec: A 92 kA discharge triggered a 21A-C discharge at a 2022 A discriment for 1.10 sec.
95. A R.04.7. 0000 96. A R.04.7. 0000 97. A R.08.X. 00000 98. A I.05.N. 0000 32. A R.09.X. 0000 33. A R.09.X. 0000 34. A I.05.N. 0000	Giaphite Giaphite Giaphite Boron Boron	Aluminum wire fabric Aluminum wire fabric Aluminized glass Aluminum wire fabric Aluminum wire fabric Aluminum wire fabric	333 5 : : : : : : : : : : : : : : : : : : :	A 92 kA discharge triggereut state. 2016 of 11 kB in crater burned in substrate coating destroyed in 1 by 1% in area; 7/8 by 1.1/8 in crater burned in substrate Panel used for triboelectric charging and electromagnetic shielding studies Panel Panel Pa

	_	
	з.	
	-	
	-	
	-	
	-	
	r 7	
	-	
1	-	
	-	
	-	
· ``	_	
	i.	
- 0	۰.	
•		
	٠	
	-	
	٦	
	-	
	-	
	Π.	
	-	
•	1	

7

1

÷,

Test serial number	Test panel	Coating	Test discharge	Remarks
515 GP99 00000 ALCO	Graphire	Uncosted	214 C	An 87 kA discharge triggered a 214 C discharge at a 210 A dc current for 102 we. 1's in discrater buined in graphile, moderate damage over 2's in dia arca. A second test to 12 by 12 in sample was directed at an undamaged arra, discharge with a peak current of 192 kA severely damaged an area 5 by 2's in
516 BR35 00000 ALCO	B B	Uncoated	96 0	A 74 k A discharge triggered a 196 C discharge at a 185 A do current for 1 06 sectored damage extended over a 31 by 31 m area with adoitional weakening of the panel in 1 m wide strip from are attachment point to electrical ground A scond test to 12 by 12 m sample was directed at an undamaged area. (Inscharge A scond set to 149 k M made a 38 i i dia hole in center of 2 by 2% in cross shaped damage area.
517 GP00 C2042 0000	Graphite	Bronze wire fabric	96 I.A	Discharge damaged coating in 1.1/8 in dia cloverleaf pattern, no damage to substrate
518 GP01 CZ042 0000	Graphite	Bronze wire fabric	200 k A	Discharge damaged coaling in 2's in dia cloverius pattern coating completely removed from center of cloverleaf in 1 by 3/8 in area, substrate damaged at arc attachment point.
519 BR36 CZ042 0000	Boron	Bronze wire fabric	93 KA	Discharge damaget coating in a 1% by 1% in cloverleaf pattern - damage to substrate
520 BR37 CZ042 0000	Boron	Bronze wire fabric	189 k A	Discharge damaged costing in a 3, by 2° i. in cloverleaf pattern, substrate damaged in small alle at all altechment point.
-	-		-	

8.92

	Graphite			Boron	
Specimen	Tensile strength (ksi)	Tensile modulus (psi x 10 ⁶)	Specimen	Tensile strength (ksi)	Tensile modulus (psi x 10 ⁶)
	Un [;] sctional		Uni	directional 3-inch t	ape
1 2 3 4 5 6 avg	11: 107 119 127 120 <u>113</u> 117	16.8 18.1 16.9 20.4 18.0 <u>18.1</u> 18.0	1 2 3 4 5 avg	161 187 170 193 <u>174</u> 177	15.5 18 1 17 4 17 5 17 9 17 3
	Bidirectional	I,	Uni	directional 2-inch t	аре
1 2 3 4 5 6 avg	72.5 74.0 69.8 71.8 68.2 <u>76.1</u> 72.1	10.5 10.7 11.2 11.0 11.1 <u>11.0</u> 10.9	1 2 3 4 5 6 avg	189 191 199 184 190 <u>198</u> 192	197 148 159 151 144 <u>181</u> 163
Bidirec styl	ctional (0, 90, 0, 90, 0 e 120 glass fabric coa) with ting	Bidirectic style	nal (0, 90, 0, 0, 90 120 glass fabric coa	0) with iting
1 2 3 4 5 6 7 8 9 10 11 31	80.2 79.1 73.5 79.8 61.8 81.5 83.5 84.4 78.4 76.0 73.6 80.0		1 2 3 4 5 6 7 8 9 10 11 2vg	105 114 106 103 115 102 110 116 110 110 110 107 108	

.

Table A-3. Mechanical Properties of Unexposed Laminates

•

Specimen	Tensile strength (ksi)	Tensile modulus (pai x 10 ⁶)	Specimen	Tensile strength (ksi)	Tensile modulus (psi x 10 ⁶)
300 1	32.1	10.0	350-1	56.1	12.7
2	32.7	9.72	.2	52.7	11.0
3	35.0	10.6	-3	53.3	9.52
4'	29.0	9.84	-4	51.4	15.1
5'	34.2	10.0	·5*	21.8	2.63
6	34.3	9.49	-6*	NT	-NT
7	32.6	11.2	·7*	20.7	4.79
-8	28.5	9.37	-8	49.6	11.1
9	31.5	11.0	.9	47.3	11.4
10	31 5	10.1	-10	48.9	10.5
11	30.0	111			
ng	32.0	10.2	avg	44.6	9.86
301 1	30 8	12.9	373-1	56.8	15,4
2	326	5.84	-2	55.8	13.9
3	34.0	9.92	.3	60.3	12.7
-4"	195	8.89	4	63.9	14.8
5'	12.4	12.0	-5	70.7	11.6
-6'	23 5	9.51	-6	65.2	13.1
7	32 7	10.0	7	63.6	12.4
8	30.8	9 80	8*	67.0	16.1
9 '	30.4	9 72	.9	68 6	12.5
10	32 5	1 107	10	68.5	12.9
11	33 5	9.98	-11	75.0	15.1
æg	29 3	10.2	avg	85.0	13.7
318 1	80 2	14 2	377-1	61.2	13.2
2	83 0	14 3	-2*	21.6	6.86
3	82 1	16 4	-3 *	-NT -	-NT -
4	879	14.9	-4*	-NT -	-NT-
5*	85.0	14 1	5*	5.44	3.37
6.	86.2	13.2	-6	50.7	10.4
7	89 5	13.8	.7	68.6	16.1
8	84 0	14 3	8	66.3	12.9
9	823	13.5	-9	64.6	13.5
10	88.0	14.4	-10	63.8	11.5
13	811	15.9	11	68.2	14.1
mg	84 5	14 5	₩g	52 3	113
348 :	52 6	12.2	388-1	39.3	11.8
2	49 0	10.5	2	39.8	13.3
3	570	110	3	38.8	9.86
4'	46 7	18.0	4	41.2	11.6
5*	367	14.2	-5	39.3	11.2
6.	44 5	10 2	-6'	40.7	12.9
7.	68 5	179	7*	22.6	7.07
8	50 7	8 75	8*	39 1	13.5
9	55 2	9.95	9	37.4	11.5
10	54 2	9 43	10	38.2	13.0
					1
			i ii i	38.0	13.4

1 16.64

erar Mar

· · • • ·

1.12

4

•

Ł

- 1

Table A-4. Residual Mechanical Properties of Exposed Laminates

The state of the coating

and the second second
Specimen	Tensile strength (ksi)	Tensile modulus (psi x 10 ⁶)	Specimen	Tansile strength (ksi)	Tensile modulus (pei x 10 ⁶)
369-1	40.9	11.2	439-1	84.0	17.6
-2	41.1	12.8	-2	80.1	15.3
•3*	42.9	13.5	-3	72.5	15.2
-4*	41.6	16.0	.4.	75.8	15.5
-5*	39.6	12.3	-5	78.0	14.5
-6*	40.5	12.4	-6	71.6	12.1
.7	39.3	13,6	.7	74.1	170
-8	40.5	11.9	-8	18.3	14.3
.9	38.7	11.1	-8	83.8	15.3
-10	38.9	11.0	-10	79.6	16 1
•11	39.7	10.1		76.5	15.0
avg	40.5	12.4	eny	70.4	15.0
426-1			444-1	68.4	194
·2	98.4	23.7	-2	67.4	24 7
.3	84.8	19.9	-3	74.2	190
-4*	75.9	27.4	-4	69.1	18.8
·5*	75.1	22.2	-5	55.2	231
·6•	63.2	16.3	-6°	20.5	7 15
.7*	79.9	18.2	.7*	75.2	21 1
-8	90.4	25.8	-8	68.1	216
.9	92.0	19.5	-9	70.6	176
-10	82.7	20.4	-10	59.6	10.3
avg	82.5	21.5	avg	62.8	18 9
427-1	83.4	16.3	445-1	70 9	18.9
-2	83.0	16.7	.2	62.0	18.5
.3	81.5	16.6	.3	73.6	18 9
-4	90.6	16.7	-4	77.0	20 0
-5*	83.5	16.3	-5	82.7	214
·6•	83.5	16.9	-6	10.3	1 76
.7	87.2	17.2	.7'	679	14 3
-8	79.0	16.7	-8	723	25.6
.9	81.6	16.0	.9	72.1	184
-10	/8.0	10.0	10	/5.0	225
· · · · · · · · · · · · · · · · · · ·	83.6	$\frac{17.3}{16.7}$		66.4	18.0
avy	00.0	10.7			
433-1	68.8	20 6	450-1	719	16.6
.2	68.6	20.0	-2	779	159
.3	79.4	16.0	•3	72.6	20 8
-4	79.2	16.5	4	78.0	131
.5	86.1	16.8	-5*	74.0	14.8
6	77.1	17.6	8	68 2	14.0
.7	76.0	18.0	7	651	177
8.	76.8	18.1	8	697	187
.9	81.3	16.9	.9	58.6	10/
-10	83.5	19.1	10		140
avg	77.7	18.0	avg	70.3	16 2

Par .

.

Table A-4. -Continued

Visible damage to coating

ľ

64

. . .

.

ſ

Spacimen	Tensile strength (ksi)	Tensile modulus (psi x 10 ⁸)	Specimen	Tensile strength (ksi)	Tensile modulus (psi x 10 ⁶)
452-1	77.8	15.4	457-1	70.5	17.2
-2	73.2	15.3	-2	62.3	16.6
-3	62.0	13.6	-3	81.5	19.1
-4*	58.6	17.4	-4	83.4	15.2
·5*	-NT	NT	-5	87.8	16.0
-6*	-NT-	-NT	-6°	86.0	14.1
·7*	23.6	5.86	.7*	91.5	18.9
-8	82.8	12.0	-8*	83.6	19.1
-9	75.0	15.0	-9	92.1	18.1
.19	81.6	13.2	-10	92.2	18.3
-11	84.9	<u>16.5</u>	-11	80.9	<u>17.1</u>
₽vg	68.8	13.8	avg	83.0	17.2
453-1	39.7	15.6	458-1	65.6	19.7
.2	45.0	18.0	.2	80.4	16.9
-3	33.1	16.5	.3	76.0	20.3
-4	44.0	16.2	.4	71.9	16.2
.5	44.7	18.3	-5	83.1	20.8
-0	18.6	12.2	.6	55.5	17,8
./	41.3	19.1	./	/4.8	19.3
-8	39.1	14.2	8.	78.5	26.8
-10	30.3	14.0	e. 10	/0.) 96 5	10,1
.11	27.4	12.0	1	00.5	10.1
avg	36.2	15.7	avg	75.1	19.4
454 -1	95.4	20.9	459-1	81.9	20.0
-2	94.9	22.5	·2	78.8	27.5
-3	88.2	20.7	-3	86.4	18.6
-4	87.3	18.4	4	31.4	20.5
5	93.6	22.1	-5*	~NT-	-NT-
·6`	79.3	15.3	-6*	52.7	20.4
-7	101.	18.4	.7	82.6	20.6
-8	89.3	17.3	-8	75.6	19.2
.g	92.6	18.9	.9	81.5	16.6
10	93.0	187	-10	83.1	18.8
ı ت ويتد	<u>88.0</u> 91,1	19.8	evê	72.7	20.2
456 1	86.5	18.2	461-1	82.0	18.5
2	80.9	17.6	-2	73.0	17.6
3.	43.5	11.6	.3	80.6	20.7
4	59.9	17.4	4	68.6	17,7
5*	45.5	12.7	.5*	42.0	13.4
6'	-NT -	-NT -	-6	B1.3	21.6
, •	62 6	14.6	-7	80.8	18.1
8	69.3	17.4	-8	79.5	20.0
9	78.2	15.5	-9	79.1	15.6
:0	75.8	17.4	.10	70.4	18.3
11*	<u>69 9</u>	18.6			' [
#+g	67.2	16.1	avg	73 .7	18,1

\$ 100

:::

1

4

•

.

•)

Table A-4. - Continued

f a site e stamage to coeting

Specimen	Tensile strength	Tensile modulus	Specimen	Tensile strength	Tensile modulus
	(ksi)	(psi x 10 ⁶)		(ksi)	(psi x 10 ⁶)
472-1	116.	20.4	476-1	54.8	15.8
·2	103,	19.6	-2	51,1	15.7
-3	97.5	19.6	-3	50.1	12.5
-4	105.	20.2	-4	47.6	6.80
·5*	114.	19.8	5*	40.4	12.8
·6*	105.	15.5	-6	37.4	11,1
-7*	107.	16.6	.7	56.1	12.7
-8*	106.	18.2	-8	50.4	10.8
-9	108.	22.1	-9	44.8	16.0
-10	95.5 97.8	20.0	- 10	39.8	8.09
avg	105.0	19.3	avg	47.3	12.2
473-1	87.9	21.5	477-1	53.3	14.6
.2	89.3	18.8	-2	58.3	9.00
-3	92.2	20.9	-3	64.2	17.9
-4	89.3	18.9	-4	63.0	9.52
-5*	113,	27.1	-5	54.3	9.79
-6*	97.6	21.8	·6*	25.6	11.0
-7•	96.5	21.4	-7	61.3	18.1
-8	97.7	24.2	-8	56.2	11.5
.9	85.7	20.0	.9	56.2	13.8
-10	88.9	<u>19.6</u>	-10	<u>63.4</u>	<u>16.9</u>
avg	93.8	21.4	avg	55.6	13.2
474-1*	105,	19.8	478-1	86.9	15.9
·2*	108.	19.6	.2	82.6	15.8
-3*	103.	20.5	-3	84.4	17.1
.4*	31.6	8.15	-4	87.9	14.6
-5*	-NT	-NT-	-5	83.3	14.5
-6*	-NT-	-NT-	-6	80.6	14.3
-7*	33.1	2.72	.7	96.0	15.9
·8*	100.	11.6	-8	85.4	16.0
.9*	101.	15.4	.9	77.6	16.7
-10	109.	20.1	-10	86.2	13.7
-11	<u>111.</u>	<u>19.6</u>	-11	79.6	15.8
avg	89.1	15.3	avg	83.7	15.5
475-1	95.6	20.9	47 <u>9</u> -1	69.2	12.7
-2	112,	22.6	-2	72.5	12.7
-3	88.8	20.6	-3	64 .0	13.4
.4	93.7	21.4	-4	65.1	13.2
.5	95.4	19,1	-5	68.5	13.0
.6	-NT	-NT-	-6	62.9	11.2
.7*	37.0	14.4	-7	64.2	12.5
-8	98.4	23.7	-8	72.9	10.4
.g	104.0	21.6	9	69.2	12.0
-10	96.3	22.1	-10	72.1	13 5
avg	91.2	20.7	-11 avg	68.6 68.1	<u>12.6</u> 12.5

Table A-4.-Continued

*Visible damage to coating

71

Э

Specimen	Tensile strength (ksi)	Tensile modulus (psi x 10 ⁶)	Specimen	Tensile strength (ksi)	Tensila modulus (psi x 10 ⁶)
498-1	91.6	22.4	505 1	55.4	16.7
-2	99.5	19.7	-2	61.2	16.3
-3	91.4	19.7	-3	61.8	17.1
-4	80.3	26.4	-4	59.9	14.6
·5	93.1	23.7	-5	61.5	15.9
·6	92.2	19.6	-6	56.0	15.0
.7	91.7	19.2	.7*	14.2	13.7
-8	96.6	26.9	-8*	49.4	12.9
-9	88.9	23.5	.9	63.0	19.7
-10	99.7	19.9	-10	60.3	18.5
-11	93.7	19.5	.11	60.9	18.9
avg	92.6	21.9	avg	54.9	16.3
499 1	101.	23.2	506 -1	61.6	19.0
·2	88.3	19.8	-2	56.1	21.5
-3	97.3	22.0	-3	54.0	24.4
-4*	96.1	16.5	-4	64.4	21.3
-5*	90.9	19.0	-5	61.8	19.4
6	94.5	19.1	-6	62.5	17.7
-7	93.5	24.1	.7	64.0	22.6
-8	101.	19.1	-8	57.7	20.6
.9	87.6	21.7	.9	59.4	19.9
-10	94.7	22.9	-10	61.1	22.7
-11	86.7	19.7	-11	61.2	17.4
avg	93.8	20.6	avg	60.3	20.6

.)

Table A-4.--Concluded

*Visible damage to coating

Note: All panels except the following were of 0, 90, 0, 90, 0 orientation.

a) 0°, 90°, 0°, 0°, 90°, 0°-426, 454, 472, 473, 474, 475, 498, 499

b) 0°, 90°, 0°, 90°, 0°, 90°-373 377, 505, 506

c) 90°, 0°, 90°, 90°, 90°, 90°, 200, 301, 368, 389, 453

Specimen	Tensile strength (ksi)	Tensile modulus (psi x 10 ⁶)	Specimen	Tensile strength (ksi)	Tensile modulus (psi x 10 ⁶)
885.1	75.8	22.3	BB5C-1	70.0	13.1
.2	79.1	18.4	.2	87.5	17.2
- 1	83.0	20.8	.3	77.6	20.0
.4	78.1	17.4	.4	38.6	20.7
.5*	73.6	16.1	.5	81.1	16.3
-6•	74.4	16.3	.6*	70.5	17.3
.7*	69.6	16.3	.7*	39.7	18.8
-8*	61.3	15.4	.8*	16.3	10.6
.9*	73.7	16.4	.g•	34.1	13.0
.10	80.1	18.6	-10*	56.6	22.0
-11	84.5	18.2	-11*	37.3	17.2
12	78.9	21.9	12*	10.7	3.61
·13*	79.6	19.2	13*	62.3	18.6
-14*	64.1	17.3	-14*	62.3	15.3
-15*	58.6	17.4	-15	82.4	18,1
-16	82.7	18.4	-16	73.2	15.2
-17	72.4	15.8	-17	70.6	17.4
-18	75.7	20.8	-18	72.4	18.3
-19	86.2	22.2	-19	73.1	17.2
·20	79.2	18.1	-20	83.2	19.1
·21	84.0	19.1	-21	86.9	18.7
-22	81.2	18.9	-22	87.7	19.2
GR5-1	65.8	20.9	GR5C-1	60.6	17.3
-2	45.1	20.4	-2	66.3	20.2
-3	64.3	14.7	-3	66.3	22.0
-4	67.8	20.6	-4	63.8	22.8
-5	61.8	18.7	.5	67.3	18.7
-6	61.4	19.7	·6*	65.5	20.5
-7*	62.6	20.8	•7*	58.2	19.4
-8*	6ປ.7	21.4	·8*	37.9	16.4
-9*	59.0	20 .0	.9*	59.6	18.0
-10	61.1	21.6	-10	64.2	19.9
-11	60.5	18.2	-11	57.4	21.2
-12	62.8	20.7	-12	63.0	20.4
-13	56.3	18.3	-13	59 .8	19.0
-14	62.3	18.9	-14 *	58.2	21.7
-15	53.9	20.3	-15 *	7.36	2.41
-16	55.6	21.9	-16*	34.8	18.6
-17	61.1	20.9	-17	63.5	22.8
-18	61.1	21.6	-18	64.6	21.8
-19	55.6	23.5	-19	61.7	20.4
-20	54.2	19.1	-20	68.3	22.7
·21	63.9	18.2	•21	63.6	17.5
·22	63 .3	18.7	-22	62.5	20.9

Table A-5. Residual Mechanical Properties of Boeing-McDonnell Douglas Test Laminates

-

*Visible damage to coating or composite

149

Specimen	Tensile strength (ksi)	Tensile modulus (psi x 10 ⁶)	Specimen	Tensile strength (ksi)	Tensile modulus (psi x 10 ⁶)
BR14-1 -2 -3 -5 -6* -7* -8* -9* -10* -11 -12 -13 -14* -15* -16* -17 -18	57.5 63.4 77.7 79.8 49.4 52.3 27.3 NT 50.9 54.6 68.1 75.3 59.8 41.5 5.15 46.8 71.9 85.5	19.0 15.9 16.2 15.4 16.6 12.9 15.5 NT 14.9 15.2 16.1 18.3 14.0 13.0 3.69 14.2 15.8 15.3	BR14C-1 -2 -3 -4 -5 -6 -7 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18	90.8 91.6 85.1 96.7 66.8 50.0 NT 33.2 82.4 96.4 77.6 85.3 65.6 12.2 25.3 64.6 92.2 77.4	19.6 19.0 20.2 20.9 15.9 16.9 NT 9.35 16.2 17.4 16.4 17.6 14.7 1.97 7.67 16.6 16.5 18.6
-16 -19 -20 -21 -22	85.5 85.6 84.2 86.6	15.3 18.0 18.0 18.2 20.0	-18 -19 -20 -21	89.7 92.5 83.7	18.5 19.4 17.3
GP14-1 -2 -3 -4 -5 -5 -8 -7 -7 -8 -9 -10 -11 -12 -13 -13 -14 -15 -16 -17 -18 -19 -20	65.4 71.1 69.2 66.7 64.4 66.1 38.7 35.1 66.0 60.1 64.0 63.8 64.2 43.8 64.2 43.8 42.7 62.3 65.4 63.5 64.1 63.4	22.1 20.6 24.0 20.1 20.2 20.9 16.7 13.6 19.3 16.3 19.1 17.6 21.0 14.6 17.1 18.7 21.4 19.0 21.9 20.2	GP14C-1 -2 -3 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -15 -16 -17 -18 -19 -20	63.9 68.4 66.1 69.9 68.4 62.5 20.7 24.0 37.2 67.8 66.6 69.0 68.9 63.4 35.8 43.8 55.3 63.9 70.2 66.3	23.5 17.6 20.4 18.1 20.2 19.4 9.75 6.21 15.3 21.4 19.8 17.9 19.6 20.0 16.6 24.9 19.8 21.6 20.0 17.9

Table A-5.-Concluded

*Visible damage to coating or composite

£ .

7\$

REFERENCES

- 1. J. T. Quinlivan, C. J. Kuo, and R. O. Brick, Coarings for Lightning Protection of Structural Reinforced Plastics, AFML-TR-70-303, part 1, March 1971.
- 2. Boeing Material Specification BMS 8-131, "Epoxy-Resin-Impregnated Boron Monofilany at Materials."
- 3. Boeing Material Specification BMS 8-79, "Glass-Fabric-Preimpregnated Epoxy Resin Low-Temperature Curing."
- 4. R. O. Brick, A Method for Establishing Lightning-Resistance/Skin-Thickness Requirements for Aircraft, AFAL-TR-68-290, part II, May 1969.

5. L. Oh et al., Natural and Induced Electrical Effects on Integrated Antennas and Circuits at Frequencies to 10 GHz, AFAL-TR-69-210, September 1969.

6. A. Eckersley, "H-Field Shielding Effectiveness at Flame-Sprayed and Thin Solid Aluminum and Copper Sheets," *IEEE Transactions on Electromagnetic Compatibility*, vol. EMC-10, no. 1, March 1968.

7. A. P. Penton, J. L. Perry, and K. J. Lloyd, The Effects of High-Intensity Electrical Currents on Advanced Composite Materials, report U-4866, NASC, September 1970.

8. M. M. Newman, "Aircraft and Lightning," Thun lerstorm Electricity, ed. H. R. Byers, University of Chicago Press (1953), pp. 328-335.

 D. W. Clifford and E. H. Schulte, "A Lightning Simulation Facility for Aerospace Testing," paper presented at 10th National Conference on Environmental Effects on Aircraft and Propulsion Systems, Naval Air Propulsion Test Center, Trenton, New Jersey, May 1971.

1.1

	CONTROL DATA - R	Ł D	
Security classification of title, body of abornect and ind	exing annetation must be	entered when the	everall report is classified
The Boeing Company		Ila	-lestified
ommercial Airplane Group		24. SROUP	
seattle, Washington 98124	•		· · · · · · · · · · · · · · · · · · ·
COATINGS FOR LIGHTNING PROTECTION	OF STRUCTURA	L REINFOR	CED PLASTICS
Final Report 15 November 1970 to 15 Novem	ber 1971		
, Tronis (First name, middle mitiel, last name) P. O. Brick			
C. H. King J. T. Quinlivan	· ·	· · · · · · · · · · · · · · · · · · ·	······
PORT DATE	78. TOTAL HO.	OF PAGES	78. NO OF REFS
CNTRACT OR GRANT -0	/1		
F33615-71-C-1198	WE. CHISINATON		-
NAGJECT HO.	AFM	L-TR-70-30	3, PT II
7340			.*
Task 734007	St. OTHER REP		other numbers that may be a
	<u> </u>		
	Wright-Pa	tterson AFB	, Ohio 45433
ABT AC 1	Wright-Pa	tterson AFB	Ohio 45433
1037 A 4 C 7	Wright-Pa	tterson AFB	Ohio 45433
Coatings and coating systems develope reinforced plastic composites from structure developed. These coatings are 6-mil-thick al 120 by 120 mesh aluminum wire fabric, and These coatings all use a continuous-metal m woven wire fabric, or metallized glass filame mechanical damage to the composite at the frequently, but not always, detected after 2 tect the composites from damage due to the stroke.	Wright-Pa d for protecting bou al damage by lightni uminum foil, 200 b d a coating containin ember as the protect ents). Each of these 100-kA test level. V 00-kA testing. None chigh-coulomb com	tterson AFB ron-filament- ing strikes wo y 200 mesh a ng aluminize tive element was found c /ery local an e of the coat ponent of th	Ohio 45433 and graphite-fiber- ere investigated and aluminum wire fabric, d glass filaments. (e.g., metal foil, apable of preventing d minor damage was ings could fully pro- be artificial lightning
Coatings and coating systems develope reinforced plastic composites from structure developed. These coatings are 6-mil-thick al 120 by 120 mesh aluminum wire fabric, and These coatings all use a continuous-metal m woven wire fabric, or metallized glass filame mechanical damage to the composite at the frequently, but not always, detected after 2 teet the composites from damage due to the stroke. With but one exception, the coatings in craft environments. Their electrodynamic p	Wright-Pa d for protecting bou al damage by lightni uminum foil, 200 b d a coating containine ember as the protect ents). Each of these 100-kA test level. Non- entsher as the protect of these 100-kA testing. Non- entsher as the protect interval of these non-kA test level. Non- test level. Non- test level of these non-kA test level. Non- entsher as the protect interval of these non-kA test level. Non- entsher as the protect interval of these non-kA test level. Non- entsher as the protect interval of these non-kA test level. Non- entsher as the protect interval of these non-kA test level. Non- entsher as the protect interval of the non-kA test level. Non- entsher as the protect interval of the protect interval of the non-kA test level. Non- test level. Non- Non- Non- Non-	tterson AFB ron-filament- ing strikes way 200 mesh a ng aluminizer tive element was found ca /ery local and e of the coat ponent of the atively unaff ured and ass	Ohio 45433 and graphite-fiber- ere investigated and aluminum wire fabric, d glass filaments. (e.g., metal foil, apable of preventing d minor damage was ings could fully pro- ie artificial lightning ected by normal air- essed.
Coatings and coating systems develope reinforced plastic composites from structure developed. These coatings are 6-mil-thick al 120 by 120 mesh aluminum wire fabric, and These coatings all use a continuous-metal m woven wire fabric, or metallized glass filame mechanical damage to the composite at the frequently, but not always, detected after 2 tect the composites from damage due to the stroke. With but one exception, the coatings is craft environments. Their electrodynamic p	Wright-Pa d for protecting bor al damage by lightni uminum foil, 200 b d a coating containir ember as the protect ents). Each of these 100-kA test level. N 00-kA testing. Non- e high-coulomb com- nvestigated were rel roperties were meas	tterson AFB ron-filament- ing strikes we y 200 mesh a ng aluminizer tive element was found ca /ery local and e of the coat aponent of th atively unaff ared and ass	Ohio 45433 and graphite-fiber- re investigated and iluminum wire fabric, d glass filaments. (e.g., metal foil, apable of preventing d minor damage was ings could fully pro- be artificial lightning ected by normal air- essed.
Coatings and coating systems develope reinforced plastic composites from structure developed. These coatings are 6-mil-thick al 120 by 120 mesh aluminum wire fabric, and These coatings all use a continuous-metal m woven wire fabric, or metallized glass filame mechanical damage to the composite at the frequently, but not always, detected after 2 tect the composites from damage due to the stroke. With but one exception, the coatings in craft environments. Their electrodynamic p	Wright-Pa d for protecting bou al damage by lightni uminum foil, 200 b d a coating containine ember as the protect ents). Each of these 100-kA test level. Non- e high-coulomb com nvestigated were rel roperties were meas	tterson AFB. ron-filament- ing strikes we y 200 mesh a ng aluminized tive element was found ca /ery local and e of the coat iponent of the atively unaff	Ohio 45433 and graphite-fiber- re investigated and iluminum wire fabric, d glass filaments. (e.g., metal foil, apable of preventing d minor damage was ings could fully pro- be artificial lightning ected by normal air- essed.
Coatings and coating systems develope reinforced plastic composites from structure developed. These coatings are 6-mil-thick al 120 by 120 mesh aluminum wire fabric, and These coatings all use a continuous-metal m woven wire fabric, or metallized glass filame mechanical damage to the composite at the frequently, but not always, detected after 2 tect the composites from damage due to the stroke. With but one exception, the coatings in craft environments. Their electrodynamic p	Wright-Pa d for protecting bou al damage by lightni uminum foil, 200 b d a coating containine ember as the protect ents). Each of these 100-kA test level. Non- e high-coulomb com nivestigated were rel roperties were meas	tterson AFB. ron-filament- ing strikes way 200 mesh a ng aluminizer tive element was found ca /ery local and e of the coat ponent of the atively unaff ured and ass	Ohio 45433 and graphite-fiber- ere investigated and aluminum wire fabric, d glass filaments. (e.g., metal foil, apable of preventing d minor damage was ings could fully pro- ie artificial lightning ected by normal air- essed.
Coatings and coating systems develope reinforced plastic composites from structure developed. These coatings are 6-mil-thick al 120 by 120 mesh aluminum wire fabric, and These coatings all use a continuous-metal m woven wire fabric, or metallized glass filame mechanical damage to the composite at the frequently, but not always, detected after 2 tect the composites from damage due to the stroke. With but one exception, the coatings in craft environments. Their electrodynamic p	Wright-Pa d for protecting bou al damage by lightni uminum foil, 200 b d a coating containin ember as the protect ents). Each of these 100-kA test level. N 00-kA test level. N 00-kA testing. None high-coulomb com	tterson AFB. ron-filament- ing strikes way 200 mesh a ng aluminize tive element was found c /ery local and e of the coat aponent of th atively unaff ared and ass	Ohio 45433 and graphite-fiber- ere investigated and aluminum wire fabric, d glass filaments. (e.g., metal foil, apable of preventing d minor damage was ings could fully pro- be artificial lightning ected by normal air- essed.
Coatings and coating systems develope reinforced plastic composites from structure developed. These coatings are 6-mil-thick al 120 by 120 mesh aluminum wire fabric, and These coatings all use a continuous-metal m woven wire fabric, or metallized glass filame mechanical damage to the composite at the frequently, but not always, detected after 2 tect the composites from damage due to the stroke. With but one exception, the coatings is craft environments. Their electrodynamic p	Wright-Pa d for protecting bou al damage by lightni uminum foil, 200 b d a coating containir ember as the protect ents). Each of these 100-kA test level. Non- e high-coulomb com nvestigated were rel roperties were meas	tterson AFB ron-filament- ing strikes wo y 200 mesh a ng aluminizer tive element was found ca /ery local and e of the coat aponent of th atively unaff ared and ass	Ohio 45433 and graphite-fiber- re investigated and iluminum wire fabric, d glass filaments. (e.g., metal foil, apable of preventing d minor damage was ings could fully pro- be artificial lightning ected by normal air- essed.
Coatings and coating systems develope reinforced plastic composites from structure developed. These coatings are 6-mil-thick al 120 by 120 mesh aluminum wire fabric, and These coatings all use a continuous-metal m woven wire fabric, or metallized glass filame mechanical damage to the composite at the frequently, but not always, detected after 2 teet the composites from damage due to the stroke. With but one exception, the coatings in craft environments. Their electrodynamic p	Wright-Pa d for protecting bou al damage by lightni uminum foil, 200 b d a coating containing ember as the protect ents). Each of these 100-kA test level. Non- ents level. Non- control test level. Non- control test level. Non- control test level. Non- ents level. Non- control test level. Non- con- no- no- no-test level. Non- control test level.	tterson AFB. ron-filament- ing strikes wo y 200 mesh a ng aluminize- tive element was found ca /ery local and e of the coat ponent of the atively unaff ured and ass Unclassi Secu	Ohio 45433 and graphite-fiber- ere investigated and iluminum wire fabric, d glass filaments. (e.g., metal foil, apable of preventing d minor damage was ings could fully pro- ite artificial lightning ected by normal air- essed.
Coatings and coating systems develope reinforced plastic composites from structure developed. These coatings are 6-mil-thick al 120 by 120 mesh aluminum wire fabric, and These coatings all use a continuous-metal m woven wire fabric, or metallized glass filame mechanical damage to the composite at the frequently, but not always, detected after 2 tect the composites from damage due to the stroke. With but one exception, the coatings in craft environments. Their electrodynamic p	Wright-Pa d for protecting bou al damage by lightni uminum foil, 200 b d a coating containin ember as the protec- ents). Each of these 100-kA test level. N 00-kA test level. N 00-kA testing. Non- e high-coulomb com- nvestigated were rel roperties were meas	tterson AFB. ron-filament- ing strikes wo y 200 mesh a ng aluminizer tive element was found c /ery local and e of the coat ponent of th atively unaff ared and ass Unclassi Secu	Ohio 45433 and graphite-fiber- ere investigated and aluminum wire fabric, d glass filaments. (e.g., metal foil, apable of preventing d minor damage was ings could fully pro- ie artificial lightning ected by normal air- essed.

17: ...

.

÷.,

•	LINI		L 100		LINI	c
 REV #0805	ROLE	*7	ROLE	4 7	POLE	wT
Coatings Lightning protective systems Advanced filamentary composites Simulated lightning discharge						
				- / see af a		
		Uncl	assified			

•

•