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ABSTRACT 

(Distribution Limitation Statement B) 

A   successful computational and experimental procedure has been 

developed for predicting shock-induced damage in brittle and ductile 

materials.  This procedure results in the determination of two material 

functions namely, the nucleation rate and the growth rate for microscopii 

voids, which eventually coalesce to form fracture.  These nucleation and 

growth rate material functions are dependent on stress, temperature, ami 

time.  During this project we have measured the stress and time dependence 

of these functions at room temperature for 1145 AI, OFHC copper, and Armco 

iron.  Additional but less complete data have been obtained for 2024-T81 

Al, high purity Al, high purity iron, and Los Alamos Scientific Laboratory 

(LASL) graphite. 

The dependence of the growth rate functions on other material prop- 

erties has been found in some detail for ductile aluminum and copper and 

for brittle Armco iron. A comparable understanding of the measured nu- 

cleation rate functions has not yet been attained. 

In addition to the progress listed above, the following new contri- 

butions have been made during the course of the project: 

• Development of a computer code, BABS 2, which converts observed 

crack surface distributions to crack volume distributions, and 

which shows promise of wide application. 

• Development of computer subroutines DFRACT and BFRACT which, 

together with SRI PUFF, allow the computation of stress waves 

in materials that undergo ductile fracture by void growth or 

brittle fracture by crack growth. 

• Development of the computer code VOID, which computes void 

growth and collapse in two space dimensions. Modifications 

of the code are already in use at Stanford Research Institute 

in applications ranging from cavitation in liquid propellants 

iii 
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to prediction of  impact damage  in human  heads.    This finite 
element  code  includes  a new method for  computing momentum 
transfer and utilizes  a multidimensional  stress relaxation 
model. 

• Development of an experimental technique, using a tapered 
projectile head, for obtaining incipient damage data from 
a  single  impact experiment. 

• Development  of constitutive relations  for damaged material. 
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SECTION  I 

INTRODUCTION 

Dynamic  fracture by  plane (or nearly plane)   stress waves  is an 

important  response mode  in reentry vehicles  exposed  to  intense bursts 

of radiation.     This  response mode  is  important  for reentry vehicle  sur- 

vivability  studies  and  also for Anti-Ballistic  Missile   (ABM)   fratricide 

studies because   it  occurs  at   relatively  low  fluence.     It  may  also be 

important  in neavy  damage studies  because it   can   affect  the momentum 

distribution in  the vehicle wall.     The present  program has been motivated 

by  the  reentry  vehicle   survivability problem;   however,   the results  apply 

to the other two problems as well.     Dynamic  fracture  caused by stress 

waves  is  also  important   in  other  applications,   such as  in fragmentation 

weapons  and lightweight  ceramic  armor. 

The need  for understanding dynamic fracture  is  particularly  impor- 

tant  for radiation  spectra  for which laboratory  simulation methods are 

inadequate.     With  such  an understanding,   it will  be  possible  to produce 

a critical damage curve giving the fluence needed  to produce  fracture as 

a function of  spectrum.    Such a capability  is  important  in planning nu- 

clear weapons  effects  tests  and  in interpreting  and generalizing the test 

results.    An example of the successful application of the present  fracture 

work in interpreting nuclear Jest results  is  given  in Volume Two of 

reference 1. 

The goal  of our work has been to predict  in detail  the microscopic 

damage induced  in ductile and brittle materials  by  known shock-loading 

histories.    This has  to a great extent been reached;   the degree to 
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which successful predictions can now be made is discussed in detail in 

this report. 

Dynamic fracture by stress waves differs from static fracture in 

that t he duration of the stress causing fracture is very short--often 

a microsecond or less. It has been s hown in this program that under such 

short duration loads the fracture process can be described by the nuclea

tion and growth of voids or cracks, which ultimately coalesce to produce 

fracture. The approach has been to use plane impacts to determine ex

perimentally the stress-dependent nucleation rates and growth rates for 

internal damage. These f unctions govern the development of damage and, 

hence, of fracture and can be used with arbitrary stress histories (as 

observed, for example, in the radiation environment ) to predict the extent 

and location of damage. 

The nucleation rate and growth rate functions are determined from 

experiments using known stress histories (from flying plates, forexample). 

The stress history is calculated using a PUFF code with appropriate con

stitutive relations. Unmodified constitutive relations for the material 

can be used t o calculate the stress history for small amounts of damage. 

However, for even moderate damage levels the effect of the damage on the 

stress history is significar.t, and a modified equation of state is used 

that treats the material as a porous solid consisting of damaged regions 

and undamaged regions. 

After loading by a known pulse, the specimen is sectioned normal to 

the damage plane; this shows the intersection of the damage with the plane 

of the section. In ductile fracture the internal damage appears as spher

ical voids, and in brittle fracture it appears as plane cracks. An im

portant aspect of the analysis is determination of the volume distribu

tion of damage from such surface observations. 

2 



Thus,   with  this  approach,   the main components  in developing a method 

for predicting fracture by  stress waves are: 

• To load dynamically  and to  recover  specimens. 

• To achieve experimental control  so  that  the damage  can be 
stopped  in different  stages of growth. 

• To describe  quantitatively   the size  and  the spatial distribu- 
tion of damage  in  the  volume of  the material. 

• To specify  the macroscopic  stress  and  the  stress  duration at 
any  location  in  the  specimen under conditions   of nucleation and 
growth of damage. 

The  nucleation rate  and  growth rate functions can be determined 

completely by  combining  the  information gained in  the   steps above.     How- 

ever,   theoretical work  in  the  nucleation and growth processes  has  made 

it possible to obtain estimates of  these  functions  for materials other 

than those tested. 

During the course of  this project we have studied dynamic  ductile 

fracture  in aluminum,   aluminum alloys,   and  copper,   and dynamic  brittle 

fracture  in iron and  graphite.     In this report we  first summarize our 

conclusions and recommendations in Section  II and  then describe the main 

features of our work on ductile fracture (Section III)  and on brittle 

fracture  (Section IV).     In addition,   in a series  of ten appendices  we 

describe in detail  our experimental techniques (Appendices   I and II), 

our mathematical models  related to growth of damage (Appendices   III   through 

Vl),   and  the computer codes  that were developed  for this  program (Appendices 

V and VII  through x).     These codes calculate void growth  in two dimensions, 

stress wave propagation  in partially  fractured material .and the statisti- 

cal transformation of void surface distributions  to void volume distribu- 

tions. 
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SECTION   II 

CONCLUSIONS  AND  RECOMMENDATIONS 

A successful experimental   and computational procedure  has  been 

developed for predicting  shock-induced damage   in brittle   and ductile 

materials.     This  procedure  results  in  the  determination  of   two material 

functions,   namely,   the nucleation rate and  the growth  rate  for micro- 

scopic  voids  and cracks,   which  eventually coalesce  to  form  fracture. 

These nucleation and growth  rate material  functions  are  dependent on 

stress,   temperature,   and   time.     During this project  we  have  measured  the 

stress   and   time dependence  of   these  functions   at  room  temperature  for 

1145 Al,   OFHC copper,   and  Annco  iron.     Additional  but   less  complete data 

have been obtained for 2024-T81 Al,   high purity Al,   high  purity  iron, 

and LASL graphite. 

Although the nucleation and growth rate  functions  for damage  in 

brittle  and ductile materials  are valid material properties,   it  is desir- 

able  to understand their dependence on other microscopic  material   proper- 

ties because damage predictionfe  could then be  made for  other,   similar 

materials.     We have been  largely successful  in gaining  such an under- 

standing of  the growth rate  functions for the ductile  and  brittle metals 

studied.     A comparable understanding of   the measured nucleation rate 

functions has not yet  been  attained,   although several  promising avenues 

of  research are evident. 

In Table I we list the materials studied during the course of our 

dynamic fracture work and the varying levels of analysis completed for 

each material. 
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In the course of the project, computer codes were written to calcu- 

late stress histories in fracturing brittle and ductile materials.  In 

addition, several auxiliary computer codes were developed that show 

promise of wldr application.  One uf these codes, BABS2, converts ob- 

served crack surface distributions to crack volume distributions.  Another 

of these codes, VOID, computes void growth and collapse in two space 

dimensions.  Modifications of this code are alreaav in use at Stanford 

Research Institute (SRI) in applications ranging from cavitation in liquid 

propellants to prediction of impact damage in human heads.  This code has, 

of course, direct application to wave propagation in porous materials. 

4 

Productive areas of future research include the following: 

• Metals: 

- Study the dependence of the damage nucleation rate on other 

microscopic material properties in ductile and brittle metals. 

- Extend the study to obtain the nucleation and growth rate 

functions for other metals of interest.  (This is currently 

being done for beryllium under contract to the Air Force 

Weapons Laboratory. ) 

- Correlate results of dynamic and static tests to find the 

values of the nucleation and growth rate functions over a 

wide range of loading rates.  This is a possible approach to 

the problem of determining fracture toughnesses (K  ) of ductile 

materials. 

• Composites:  Apply the procedure for measuring nucleation and 

growth rate functions to composite materials such as the new 

carbon-carbon heat shield materials. 

• Graphite:  The preliminary work performed at SRI and elsewhere 

on the dynamic fracture of graphite indicates that the fracturing 

behavior of this brittle material is strongly dependent on micro- 

structure and porosity.  This dependence could be profitably in- 

vestigated further using the techniques developed in this program. 

• Correlation of underground nuclear test data:  In reference 1 it 

was shown that the fracture model developed in this project was 

able to predict correctly the location and extent of shuck damage 
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in a metal sample exposed to radiation deposition in an under- 

ground nuclear test.  It would appear fruitful to extend this 

work to fracture data that have been gathered in past under- 
ground nuclear tests.  These data need further analysis coordinated 

with computations made with the fracture model developed on this 

program to provide a reliable predictio.: of damage under radiation 

deposition. 
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SECTION III 

DUCTILE FRACTURE 

In this section we will discuss the work performed on the metals 

that exhibited ductile fracture by nucleatlon and growth of spherical 

voids under dynamic loading. 

We will first present an overview of our -oproach to the ductile 

fracture problem and will then describe in detail our experimental 

observations and our methods of data t ilvsis.  This will be followed 

by a discussion of the stress history calculations and illustrations of 

the results of these computations. We will next describe simplified 

damage criteria that can be used to predict approximate levels of damage 

in shock-loaded samples. Finally, a summary of the results of our ductile 

fracture work will be given. 

1.   DUCTILE FRACTURE MECHANISMS 

The term "ductile fracture" implies failure or fracture occurring 

after large plastic deformation.  This is not wholly accurate since cleav- 

age or brittle failure can also occur after substantial plastic deformation 

in some materials. Ductile fracture under quasi-static conditions is com- 

monly characterized by failure described as cup-and-cone, following the 

formation of a neck in the sample after significant deformation.  This 

classic form of failure (cup-and-cone) results from a complex process 

arising from the stress distribution experienced in a uniaxial tensile 

test and the work-hardening characteristics of the material being tested. 
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Three general modes of ductile fracture are classified by the macro- 

scopic form of the fractured sample, as shown In Fig. 1.  The first, the 

cup-and-cone, is the classic type; it is observed in ductile materials 

having an average work-hardening and a relatively high inclusion or 

imperfection content.  The second is a double cup-and-cone that is observed 

in Inctile materials with an average work-hardening and a low inclusion 

The third, planar, is characteristic of high-strength materials 

a high inclusion content and a low work-hardening rate. 

MN««^fcw«*W*^i^« 

(b) (c) 

GA-7456-20 

FIGURE  1       MODES OF  DUCTILE  FRACTURE: 

(a) Double cup-and-cone; 
(b) Cup-and-cone; 
(c) Planar. 

-    • 

The formation of these macroscopic structures is dependent on micro- 

scopic fracture mechanisms and the development of the neck. Necking 

occurs when the increase in tensile stress due to the reduction in cross- 

sectional area resulting from plnstic deformation cannot be supported by 

the concurrent strain hardi       ice v  neck is formed a triaxial stress 

state occurs in the neck r       ause of its nonuniformity. This 

stress state is important in L.untrolling the fracture characteristics. 

Metallographic examination of sections of the neck region in deformed 

metals has shown that in the early stages of necking only slip is occurring. 
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Upon  larger deformation small voids  are observed  that grow and 

coalesce  into cracks  leading to failure.     The nucleation and growth  of 

these voids   is directly related to the  triaxial  stress  state  in  the necked 

region.     These pores  form at small  inclusions or particles of  a second 

phase  in  the material.     This has  been substantiated for copper of varying 

purity,  aluminum,   iron,   and various  iron alloys. 

Electron micrographs of replicas  taken from the fracture surfaces  of 

ductile metals have shown  that  they are covered with dimples varying  in 

diameter from a few microns  to over 100 \i.      These   dimples often  contain 

inclusions  indicating that voids were nucleated at  inclusions.    The areas 

showirg  this  simple  structure in Figure  1  are the flat regions.     The  cone 

areas result  from rapid shear occurring after  the  central regions have 

failed. 

Of  the materials  studied here  1145 Al,   pure Al,  and OFHC copper 

represent  low-strength ductile materials  that exhibit failure modes  (a)  or 

(b)   shown  in Figure 1  because they have  a high strain-hardening rate  and 

are of commercial  purity,  containing few microscopically observable  in- 

clusions.     The 2024-T81  aluminum exhibits  failure by mode (c) of Figure 1 

because of  its high  strength,  low strain hardening,  and high  inclusion 

content. 

The observations  above on static fracture of ductile materials  are 

pertinent  to  the understanding dynamic  fracture.     Under plate impact  load- 

ing,   one-dimensional  strain conditions  are  imposed on  the material.     In 

this  state large triaxial  tensile stresses  develop during loading.     Then, 

depending on  the mechanisms  for nucleation,   voids may nucleate and  grow 

upon plate  impact  induced  tensile  loading. 

Nucleation mechanisms can be separated into two classes, atomic and 

microscopic.     In both  cases  the mechanisms  are directly related to  the 

deviation of a material from a perfect  lattice.    Further,  almost all 
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mechanisms are based on dislocation motion; those that occur at the 

lowest stresses are associated with microscopic imperfections including 

precipitates and inclusions. Subsequent growth of voids after nucleation 

is necessary for failure to occur.  In plate impact dynamic fracture tests, 

large triaxial tensile stresses of 5 to 20 times the yield strength may 

occur.  These stresses generate very high rates of deformation about the 

void, especially in low strength materials such as commercially pure 

aluminum and other ductile metals.  The result is that very rapid growth 

of the voids occurs, and short time durations (0.01 to 1.0 ^sec) of 

tensile stress loading are sufficient  for development of observable 

damage.  Void growth mechanisms have not been investigated from an 

atomic or microscopic viewpoint, however.  Descriptions based on 

continuum mechanics concepts and idealized material behavior are 

available (Ref. 2).  These descriptions have been used In the develop- 

ment of models (Refs. 3, 4) for ductile failure by void growth and 

coalescence under static conditions.  Such models predict strains 

rather larger than those observed experimentally but give the correct 

dependence of strain to fracture on void concentration in materials 

studied.  The essential result is that at high void densities the 

material has the lowest ductility (strain to fr        Therefore, high 

inclusion or precipitate content will act to he strain to 

fracture by providing nucleation sites for voii      d generalization 

is pertinent to the behavior of ductile materials under dynamic con- 

ditions since the degree of damage sustained will be a strong function 

of the number of available nucleation sites. 

It has been shown in quasi-static tests (Ref. 5) that the higher 

the purity of a metal (aluminum), the lower the tendency for void for- 

mation, and the more likely fully ductile failure will be observed. 

Similar work (Ref. 6) has also demonstrated that at very low temperatures 

voids will form in materials in which void formation is not observed at 

11 
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room temperature. This indicates that some new nucleation mechanism be- 

comes operative at low temperatures or that the higher stress necessary 

for low-temperature deformation is sufficient to activate sites not ac- 

cessible at lower stresses.  This is pertinent to the results on pure Al. 

The distribution of inclusions is also important since specific 

regions of high inclusion density can act as crack propagators,  Inhomo- 

geneous inclusion distributions are commonly observed in forged, extruded, 

drawn, and rolled stock, where material flow during forming defines the 

inclusion distribution. The structures formed are termed stringers and 

have a marked effect on the fracture characteristics of ductile materials. 

12 
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2.       DUCTILE   FRACTURE MODEL 

a.       Nature  of the Model 

Observations of  fracture damage  in  several grades of aluminum 

led us to the  formulation of  the present  theoretical model  for ductile 

fracture.     The model provides  for the nucleation of voids  as  a  function 

of  tensile stress   level,   for growth of the   voids under  tensile  loading, 

and for the relaxation of  stress and reduction of strength as a function 

of the developing damage.     The growth and  stress relaxation aspects of 

the model are based on material viscosity,   yield strength,   bulk modulus, 

and other material properties.     Because of  this dependence on standard 

material properties,  we believe that this  fracture model will be appli- 

cable to fracture in the whole class of ductile materials.     This belief 

has been justified by  the results with copper. 

The ductile fracture model differs  greatly  from other fracture 

models,   such as  that of Tuler and Butcher (Ref.  7),   the tensile impulse 

model,  or the ultimate strength model.    The main differences are; 

• The amount of damage is computed as a function of time and 
position in the sample;   t' impler models  indicate only 
whether the sample has I T give the  impact conditions 

causing some arbitrary d              level. 

• The equation of state is modified to account  for damage; 
hence,  the stress is relaxed  from the value  it would have 
in undamaged material.     In the  simpler models  the stress 
is unaffected by damage. 

la addition,   because our fracture model can be related to material prop- 

erties,  it is more likely to lead to an understanding of the nature of 

ductile fracture. 

The ductile fracture model was developed primarily from a study 

of partially  fractured samples of 1145 aluminum.    Thin target plates of 

the aluminum were subjected to planar Impacts with thinner aluminum flyer 
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plates. After the impact the target plate was sectioned and mechanically 

polished (see Figure 2 for a sample), r evealing t he presence of nearly 

spherical voids. The voids were c ounted, noting the numbe r of each size 

as a function of depth into the target. This count on the surface was 

t hen transformed to a volume distribution through a statistical trans

formation similar to Scheil's method. A series of distribu t ions obtained 

at six dep ths in an a luminum targe t is shown in Figur e 3. The ordinate 

is the cumulative number o f voids larger t han a given radius . Zone FOl 

i s at the expected spall plane. The size of voids and total number of 

voids decre ase with increasing distance away f rom the spall plane. 

The stress histories computed for points in the aluminum targets 

near the incipient spall plane indicated , as shown in Figure 4, that a 

compressive pul se was followed by a tensile pulse. The tensile pulse was 

initially approximated as a square pulse characte rized by a peak stress 

and a duration of st r ess . From these da ta the nucleation rate and growth 

rate were dete rmined as described in the following sections. These rates 

were combined with constitutive relations for damaged material to produce 

the complete model. 

b. Nucleation Rate 

Nucleation of voids in the aluminum appeared to occur by the 

decohesion of aluminum from hard inclusions distributed through the mate

rial. 

The nucleation rate used in our quantification of the damage 

and in the wave propagation calculations is actually an "observation" 

rate, the rate at which voids reach an observable size. The nucleation 

rate was determ ned for specimens with low damage by noting the correla

tion between the number of voids and the duration of stress as shown in 

Figure 5. A comparison of the curves in Figure 5 for either Shot 847 
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FIGURE 2      DAMAGE OBSERVED IN 1145 ALUMINUM  FOR A CONSTANT SHOT 
GEOMETRY (i.e., TIME AT STRESS! FOR INCREASING IMPACT 
VELOCITIES (i.e., STRESS).   More voids and larger sizes result from 
increasing impact velocities.   Projectile thickness is 0.093 in., sample 
thickness is 0.25 in. 
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n 
or Shot 849 with the bottom curve indicates a linear relation between 

concentration of voids and duration of the stress.  A plot of concentra- 

tion versus duration gave the nucleation rate for each stress level. 

For shots with high damage (high enough that the stress history 

was seriously altered by the damage), an initial estimate of nucleation 

rate was made from stress histories computed with no damage permitted. 

Then wave propagation calculations with damage were made, and the nuclea- 

tion parameters were varied until a reasonable correlation with the ex- 

perimental damage was obtained, 

c.   Growth Rate and Growth Threshold 

The voids appeared to increase in size with time at peak stress 

and to retain their spherical shape. The void distributions in Figure 3 

show that the larger voids are associated with the longer durations of 

peak stress.  Because the whole distribution appears to shift as a func- 

tion of stress duration, the series of distributions can be visualized 

as a historical sequence at one location. Considered in this way, the 

curves provide a growth rate when we consider the rate of change of the 

radius of a particular void.  For example, consider the void that is 

number 1 million when ranked by size, i.e., N = 10 .  Under our assump- 

tions, this void will remain number 1 million throughout the loading. 

A plot of successive radii of this void as a function of time, as shown 

in Figure 6, yields the growth velocity for the imposed stress level. 

From these plots the radius was found to have the form 

R = R exp (At) 
0 

(1) 

;:- 

or, by differentiating, 

R = AR 
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FIGURE 6     VOID RADIUS AT CONSTANT VOID CONCENTRATION, PLOTTED 
AS A FUNCTION OF  TIME AT STRESS 
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where 

R = 

R = 

A = 

the radius 

the initial void radius 

the velocity of growth 

a growth parameter 

This growth law is exactly that expected for a slowly growing void in a 

substance in which growth is controlled by viscous forces (Refs. 2,3, 4 

and Appendix III), The solutions for viscous void growth show that A 

should have the form 

A = 
411 

where 

p    =    the average (tensile)  pressure at a large distance from the 
void 

p      =    a threshold pressure 
0 

T\    =    the material shear viscosity 

The experimental results  in aluminum at low damage  indicated  that  the 

linear relationship between A and pressure in Eq.   (3)   is  correct.     We 

conclude that,   for void growth,   two material parameters of  interest are 

the material viscosity  and  threshold  stress. 

The threshold pressure is  that pressure at which  significant 

flow can occur in the vicinity  of the void.     Hence the  threshold  is 

related  to the yield  strength.     For pressures above  the  threshold,   the 

flow is  limited by   viscosity   rather than by the material yield  strength. 

21 
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d.       Constitutive Relations 

The stress-strain relations for a material undergoing damage 

differ from those for undamaged material. The decreased elastic stiff- 

ness of material with voids has been studied by MacKenzie (Ref. 5), by 

Buch and Goldschmidt (Ref. 6), and by many others. More general equa- 

tions of state for porous material were developed by Herrmann (Ref. 8) 

and by Seaman and Linde  (Ref.   9). 

In the current development  the  stress was divided into a pres- 

sure and a deviator stress,  and constitutive  relations were derived for 

each component.     Thus the developing void damage alters  the bulk modulus, 

shear modulus,   and yield strength.     As   the  stress  reduces with  increasing 

damage,   recompression waves proceed away  from the regions of damage. 

These  recompressions  lead to reduced damage  in adjacent  areas and hence 

to a marked peak of damage at one point,     (in low-damage experiments 

large areas of nearly uniform damage are  found;   at high damage,   an area 

of maximum damage,   the incipient spall  plane,is clearly defined.)    The 

recompression waves lead to a compressive hump,  or spall  signal,  on stress 

histories,   similar to those observed experimentally. 
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3.        EXPERIMENTAL OBSERVATIONS 

In this section observations of dynamic fracture of  1145 Al,   high 

purity   (99.999 percent) Al,   2024-T81 Al,   and dead  soft OFHC  copper 

will  be described.     Samples  of   the  same material were  impacted  at  sev- 

eral different velocities  in  tests using  the experimental   techniques 

described  in Appendix II.     Symmetric shot design was used   to ensure 

as  accurate a stress calculation  as possible.     Shot geometry  (i.e., 

flyer  and sample  thicknesses)  was varied  to vary the time at  stress, 

and   tapered   flyers were used  so  that wide ranges  of  the  time-at-stress 

damage  threshold plane could be  studied  in a single experiment  (see 

Appendix  l). 

Two types of data were obtained  from these experiments.     First, 

metallographic observations of  the damage were made by sectioning  the 

recovered samples on planes parallel  to the direction of  shock propa- 

gation passing through the  center of  the sample and by observing  tne   fracture 

surfaces,   using  the scanning electron microscope.     These  observations were 

used  to determine damage  thresholds and damage level and   to investigate 

mechanisms for nucleation of damage.     Quantitative analyses of  the 

observed damage discussed  in a following section,  were also made.     In 

this  section metallographic  results pertinent to nucleation,   growth, 

and  coalescence of damage are discussed. 

Second,   experiments   instrumented using manganin piezoresistive 

gages  mounted   in polymethylmethacrylate       (PMMA)  on the  back  surface 

of  the  samples were used to measure  the imposed stress history.     The 

techniques used  are described  in detail  in Appendix II.     The manganin 

stress gage records obtained by  this  technique are indicative of dama 

formed  in the material directly  in front of the gage element caused by 

the modification of the tensile  stress history resulting  from  the 

incomplete stress release at  the  sample-PMMA interface. 
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a.     1145 Aluminum 

The  aluminum was received   as  2-in.-thick plates 24  in.   X 24  in. 

and was  tested   in the  fully annealed,   0-temper  state.     Metallographic 

examination of   the  1145 Al  revealed  an elongated grain structure expected 

for a  rolled material.     Observations of etched   1145 Al  at higher magni- 

fications  showed   this  material  to have  a  structure  interpretable  as 

resulting  from a recovery rather +han a full  recrystallization anneal. 

The effect  of   this on  the fracture behavior  is  unknown,   and   the  informa- 

tion  is  given  only  to characterize  the  initial   state of  this material. 

Typical  compositions  for  these materials  are  shown below. 

1145 Al" 
Material (max % wt) 

Si| 
Fel 

0.55 

Cu 0.05 

Mn 0.05 

The impurity levels are consistent with the mechanical properties 

observed.     The solubilities of  silicon and  iron in aluminum are smaller 

thn icentrations shown,  and  formation  of Fe-Si  inclusions  is 

ex iese will have large effects on the fracture characteristics 

but a-  the limit of optical resolution  in size. 

Uniaxial  tensile tests were made on 1145 aluminum.     The 0,2 per- 

cent offset yield strength of this material was observed  to be 4500 psi, 

in agreement with handbook values.     At  the higher strain rates a yield 

plateau is  seen that was reproducible in several  tests.     This  is  not 

expected but may be the result of the apparent incomplete anneal  this 

*    Minimum 99.45 percent aluminum. 
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material received. Double cup-and-cone fractures were observed with 

114 5 a luminum as well as a very high reduction in area. The Knoop 

hardness (15-g load) was 25 for the as-received material. 

Ni ne recovery experiment s were per f ormed on 1145 Al. Four of 

these were tapered flyer experiments (see Appendix I ) , three were 

i nstrumented with a manganin pressure transducer dire ctly behind the 

t arget sample , and two were at a temperature o f 400° C. The experi

mental method is described in Appendices I and II, a nd the experimental 

details and damage levels observed at 50X on metallographically prepared 

section a re given in Table II. Damage observed in these samples is 

described in ~he following. Several of the micrographs are taken 

from samples i mpacted under Contract F29601-68-C-0118 f or the Air 

Force Special Weapons Center, tit~ed Dynamic Fracture Criteria of 

Homogeneous Materials which ran from 8 May 1968 through 15 July 1970. 

Damage in the form of individually nucleated spherica l voids 

that grow and coalesce to induce fai lure, observed in 1145 Al f or a 

single shot geometry ( i.e., time at stress), was shown earlier in 

Figure 2 f or increasing impact velocities ( i.e., stress ) . The stra igh t 

lines observed are fiducial marks used in the qua nti tative analysis 

described in a later section. Three characteristics are appare nt from 

these pic t ures. First, the damage observed has a circular cross section 

in the plane of view. These cross sections are , in fact, sections 

through spherical voids. This was proved by sectioning the samples 

normal to the direction of shock propagation. Circular cross sections 

were observed in this case also, showing that the voids are spherical. 

Second, there is a size distribution of voids within regions with the 

same shock history, which suggests that nucleation occurs throughout 

the loading time. Third, at higher damage levels it is the interaction 

of the growing voids that leadR to the formation of large defects and 

finally to fracture. 
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a size distribution is generally consistent with a nucleation and growth 

concept.     The coalescence of voids;   is also consistent with the  failure 

mode  in a  standard  tensile test.     We can conclude,   therefore,   that 

observations  of damage produced in  1145 aluminum under  impact conditions 

are consistent with observations on quasi-static tensile  test samples. 

In the 1145 A] experiments, damage  levels varying from  incipient 

to intermediate were observed  in a single  tapered  flyer experiment 

(Shot  S4)   as shown in Figures 7a through 7d.     Tha damage  in Figure  7a 

Is  the result of   a  10.8 kbar tensile  stress  pulse of  approximately  0. ;M  (j,sec, 

a fairly high damage.     Further,   the damage is produced by essentially 

midplane spall  conditions (i.e.,   the projectile is half  the sample 

thickness).     The damage in Figure 7b was generated in 0.29 |isec,   in 

Figure 7c  in0.23|isec,  and  in Figure 7d  in 0.17 fisec.     The variation 

in the damage  level  and distribution with  time at constant stress  is 

very well demonstrated in this experiment. 

These observations complement  those given in Figure 2  in  that 

they  represent  a  time-at-stress variation at  constant stress rather 

than a stress  level  variation for nominally constant time at stress. 

The comparability of the two sets of observations demonstrates the 

applicability of tapered flyers. 

The results obtained in the  impact  tests on samples at 400 C 

were consistent with the observations presented above.     Scanning electron 

microscope studies of full fracture surfaces of Shot S34 were made. 

These  showed  that failure occurred by void  coalescence and  that random 

nucleation was  the mode of void formation.     No correlation with inclusion 

content was possible because of contamination of the fracture surface 

during recovery.    Typical results are shown in Figures 8a and 8b.     These 

figures of the broken surfaces show that void coalescence occurred 
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(«)    t = 0.34/isec 

(b)    t = 0.29/Isec 

(c)    t = 0.23 Msec 

(d)    t ~ 0.17 ^sec 

FIGURE  7      MICROGRAPHS OF  DAMAGE  ACHIEVED  IN A 
SINGLE  TAPERED  FLYER SHOT ON   1145 
ALUMINUM  (Shot 84).    Demonstrates the depen- 
dence of  the damage level on  the time at constant 
stress. 
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FIGURE 8     MICROGRAPHS OF  1145 ALUMINUM SAMPLES 
IMPACTED AT 400oC (Shot S34) 
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over the whole surface to cause failure.     The separation was by knife- 

edge fracture in  the material  surrounding the voids.     The three- 

dimensional nature of the damage is illustrated  in Figure 8b,  in which 

one can see through one void  to deeper voids.     This  suggests that,   in 

the vicinity of  the plane of separation,   the material  is honeycombed 

with voids.    These amply verify the previously described results and 

show a surface roughness  that demonstrates the distribution of voids 

away from the fracture plane as shown in Figures 7 and  8.     Further, 

there was no correlation of the damage structure with the grain size 

or with grain boundaries in the material.     These results will be con- 

trasted with those for 99.999 percent pure Al  later. 

Full  fracture occurred at 400°C at an impact velocity of 

0.171 mm/M-sec,  whereas at room temperature full  fracture was  not 

observed until an impact velocity of approximately 0.244 mm/|isec was 

achieved.     Further,   as shown in Figure 9,   the damage levels resulting 

from impacts at velocities  of 0.145 mm/nsec at room  temperature and 

400 C are different,   with higher damage occurring at 400oC.     These 

differences indicate in a quantitative manner  the effect of temperature 

on  the dynamic fracture threshold of  1145 Al.     It is  likely that  this 

results from a decrease in  the yield strength with temperature, which 

lowers  the threshold  stress for void  nucleation. 

The general result here is  that at temperatures about 75 per- 

cent of the absolute melting temperature a large decrease in the fracture 

strength of 1145 Al occurs.    Also,  the fracture morphology remains the 

same,  indicating that the mechanisms are the same but that physical 

properties are changing to produce a lower damage threshold. 
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(b)      1145 ALUMINUM AT ROOM TEMPERATURE; 477 ft/sac - 0.145 mm/jJsec 

FIGURE 9      MICROGRAPHS OF 1145 ALUMINUM SAMPLES 
IMPACTED AT ROOM  TEMPERATURE AND 
400oC.    Impact velocity = 0.145 mm//Js*c. 
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b.       High Purity Aluminum 

The dynamic fracture study of high purity aluminum (HP Al) 

was designed  to investigate  the effects of sample purity on  the nuclea- 

tion of voids and the subsequent failure process.     This was  intended 

to ascertain the effects  of  inclusion content,  and possibly of material 

structure,   on the fracture process.     The basic premise was  that the 

increased purity would decrease the frequency of nucleation and possibly 

raise the stress threshold  for nucleation.     The structure of  the mate- 

rial studied was large equiaxial grain size,  ~ 3 mm.     It  was  in the 

dead soft annealc 1 state,   having been annealed at a temperature of 

500 C for 6 hours in an inert atmosphere. 

Four recovery experiments were performed on HP Al.     The experi- 

mental details are described  in Table III  along with a description 

of damage observed at 50X  on metallographically prepared  sections. 

Scanning electron microscope studies of fracturu surfaces were also 

carried  out. 

Table III 

SUMMARY OF DYNAMIC  FLYER EXPERIMENTS  IN 99.999% PURE  ALUMINUM 

Impact Projectile 
Shot Velocity Sample (1145 Al) 

No. (mm/iisec) 

0,168 

(mm) 

6.313 

(mm) Comments 

S30 2.35 Intermediate 

S31a 0.166 6.313 3.156 to 1,578 Incipient to 
intermediate 

S32 0.184 6.313 2.35 Full  separation 

S43 0.136 6.313 2.27 No damage 

Tapered flyer shots designed  so that the time at stress was varied 
over a wide range for a constant stress experiment. 
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First,   it  is  necessary  to note  that the  impact  velocity at 

which damage was not  observed was 0.136 nim/|isec for  the high purity 

aluminum.     In the  1145 Al   the damage threshold was  observed  to be,  for 

experiments of  identical  geometry,   0.129 mm/|isec.     Therefore,   a material 

of higher yield strength exhibited a lower damage  threshold stress.     The 

threshold  stresses,   in these cases,   for unbounded  void growth are con- 

siderably different  and can be estimated  from the  known yield  strengths 

of  these materials and  the rate dependence of the  yield  strength. 

In the growth equation tor voids the threshold  stress for void 

growth is  taken to be 

=    o. (1  +in g) v 3Y 
(4) 

where 

E  is the Young's modulus,   and Y the yield strength.     (See Appendix IV) 

For 1145 Al,   the predicted  threshold stress  is approximately  3 kbar, 

whereas for HP Al  the  threshold  stress is 2.0 kbar.     Therefore,   the 

stress necessary for  void  nucleation may be controlling in the develop- 

ment of damage in the HP Al. 

Since we observe voids when a  size of  1.0 M- is attained,  it 

is possible that the size attained in the experiments may be smaller 

than that  in 1145 Al  since the initial nucleation  size is smaller.    The 

major result is that either the growth,   the initial size,   or the thres- 

hold stress for void nucleation is determining the behavior of the HP Al. 

At present it is not possible to determine which of  these is controlling. 

In all likelihood,  a smaller void nucleation size Is present in this 

material and the growth time to observation is longer.     It is also 

likely that nucleation stress may be larger leading to a higher threshold. 
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Observation on Shot S31 shows that the damage structure differs 

greatly from that observed in the 1145 Al. This is shown in Figure 10. 

The voids are very definitely arranged in an ordered manner, indicating 

an ordered nucleation size distribution.  These rowc of voids (as planes) 

are essentially parallel to the plane of first tension.  Also, for any 

given area of the specimen, the spacing of voids appears to be uniform; 

in Figure 10 this is approximately 40 H,  Another characteristic is that 

the voids are not of uniform size for any one group. This shows either 

that the line of voids is skew to the surface of polish or that they are 

nucleated at different times and the line of voids is parallel to the 

polish surface.  Whatever the significance of the appearance of the 

voids on the surface in terms of their size distribution, it is their 

spatial distribution that is important.  This spatial distribution leads 

to a failure mode that probably occurs in a systematic manner because 

of the correlations between adjacent voids.  This is also seen in the 

fully fractured sample (Shot S2) and shown in Figure 11.  Fracture has 

obviously occurred by coalescence of the voids in the correlated struc- 

ture shown in the surface distribution, forming a failure plane.  The 

concentration of voids away from this fracture plane is low, indicating 

that this ordered nucleation of voids has a large effect on the fracture 

process. 

At low magnifications the fracture surface definitely shows 

the ordered structure implied from the previous two figures.  Figure 12a 

is an SEM micrograph of the fracture surface of Shot S32.  The center 

of the sample lies at the lower right hand corner of the picture, and 

the damage structure indicates a rough planar surface.  A fracture 

surface observed on 1145 Al is shown in Figure 12a and shows a much more 

random void nucleation structure than that seen in Figure 12b for HP Al. 
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FIGURE 10   SHOCK DAMAGE IN HIGH PURITY ALUMINUM 
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FIGURE   11    FULL SEPARATION  IN  HIGH  PURITY ALUMINUM 
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FIGURE 12    COMPARISON OF  FRACTURE SURFACES FOR 1145 AND HIGH 
PURITY ALUMINUM 
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The degree of surface roughness is seen in Figure 13, which 

is a stereo pair of the fracture surface on Shot S32 (HP Al).  This 

micrograph also shows the ordered structure of the voids on a given 

fracture plane.  This is better demonstrated in Figure 14, which shows 

a higher magnification view of the same area.  Nucleation at what 

appears to be an inclusion is also shown in this micrograph (Figure 14). 

This indicates that even in high purity aluminum heterogeneous nucleation 

sites are present. 

FIGURE 13 STEREO PAIR OF THE FRACTURE SURFACE OF HIGH PURITY ALUMINUM 
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SK 

FIGURE  14    NUCi-EATION SITES AND STRUCTURE  AT JOINING 
OF VOIDS.    Knife-edge failure around voids. 

c. 2024-T81 Aluminum 

The stock used in this study was received in the form of 

rolled plates 24 inches X 24 inches X 1.1 inches, and samples were 

prepared with the expected damage plane parallel to the rolling plane 

of the plates. The 2024 aluminum is an age-hardening alloy having 

the typical composition given below. 
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Mat< 

IM 

Zn 
Mn 
Mg 
Cr 

2024-T81 Aluminum 
(wt   %) 

3.8   to  4.9 
0.5 
0.5 
0.25 
0.3   to  0.9 
1.2   to   1.8 
0. 10 

The Si, Fe, Mn, and Mg form basically insoluble inclusions that act 

as strengthening agents.  These inclusions also torm into stringer 

planes during rolling and, in this form, have a large effect on the 

fracture chara9teristics of this material. 

The designation, T81, describes the fabrication history of 

this material, and indicates, according to ASTM standards, that it 

has been solution heat treated, cold worked, and then artlfically aged. 

High strength and improved corrosion properties are achieved by this 

thermomechanical sequence. 

The as-received 2024 Al showed an elongated grain structure, 

indicating that the material was heavily rolled before solution treatment 

and artificial aging.  Inclusions are observed that lie parallel to the 

planes of the grains in the form of stringers.  These stringers are 

regions of weakness in the material and are preferred sites for failure 

initiation and propagation. 

The dynamic fracture of 2024-T81 aluminum was also studied and 

recovery experiments were carried out. The details of these experiments 

are presented in Table IV. 
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Table IV 

SUMMARY OF DYNAMIC FLYER PLATE EXPERIMENTS  IN 2024-T81 ALUMINUM 

Impact 
Shot Velocity Sample Projectile 

No. (mm/lAsec) 

0.133 

(mm) 

3.156 

(mm) Comments 

S6a 1.578 to 0.789 Inclusion cracking 

S7a 0.161 1.578 0.789 to 0.394 Inclusion cracking 

S10a 0.153 3.156 1.578 to 0.789 Inclusion cracking 

S29b 0.233 1.578 0.568 Inclusion cracking 

a    Tapered flyer shots designed so  that the time at stress was 
varied over a wide range for a constant stress experiment. 

b    Instrumented with a manganin pressure transducer directly 
behind the sample. 

The damage produced in the 2024-T81 aluminum differs from 

that found in the 1145 aluminum and the HP aluminum in that it is very 

localized and in the form of ductile cracks.    These damage structures 

are shown in Figure 15 for three samples,   impacted at velocities of 

343,  474,   and 660 fps.    Fractures are nucleated in thi 'orial by 

cracking of  the inclusions as shown in Figure 16.     T re also 

shows that cracks propagate along the stringer planes. is is the 

damage mechanism observed in similar aluminum alloys tested under 

quasi-static conditions at room temperature. 
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SHOT 881 
IMPACT VELOCITY - 343 fps 

SHOT 877 
IMPACT VELOCITY - 475 fps 

SHOT 825 
IMPACT VELOCITY - 660 fps 

FIGURE   15        DAMAGE  IN  THE  FORM OF  DUCTILE CRACKS THAT FOLLOW STRINGER PLANES 
AS A FUNCTION OF  IMPACT VELCUTY  (stress)  AT CONSTANT SAMPLE PRO- 
JECTILE  GEOMETRY (time at stress)  FOR  2024-T81   ALUMINUM 
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These experiments show that failure is a function of the 

inclusion distribution, as well as of the intrinsic properties of this 

alloy.  This is consistent with the observations of butcher (Ref. lo), 

who determined the incipient spall thresholds for 6061-T6 aluminum 

samples oriented so that the stringer planes were parallel to, at a 

45 angle to, and normal to the spall plane.  Damage was observed at. 

the same stress level for all sample orientations.  The morphology 

of the fractures was identical to the morphology of the stringers of 

inclusions (i.e., parallel to the spall plane when the stringers were 

parallel to the spall plane and normal to the spall plane when the 

stringers were normal to the spall plane). 

Butcher also observed that the damage produced is less con- 

nected in samples oriented at 90°.  Therefore, a larger amount of 

plastic deformation (shear between cracks lying on the spall plane) 

of the material is necessary before fracture can occur in this orien- 

tation.  The sample oriented at 90 should therefore have a higher full- 

spall stress than a sample oriented at 0 , since more energy must be 

expended in plastic deformation.  This behavior is in agreement with 

the observed variation with respect to the rolling direction of Kj^, 

the plane strain fracture toughness (Ref. ll), in several forged 

aluminum alloys. The toughness is largest parallel to the rolling 

direction for sheet or the extrusion direction for extruded shapes. 

It is lowest normal to the rolling plane of sheet and in the direction 

of the smallest dimension in extruded stock.  These directions correspond 

to the 0 and 90 orientations of the stringer planes, respectively. 

This simple correlation indicates that it may be jjossible to make at 
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least qualitative conclusions about the spall fracture characteristics 

of a material from fracture toughness data, particularly for high- 

strength materials. 

One can also describe the fracture characteristics of 2024- 

T81 aluminum as localized ductile fracture. Voids are nucleated at 

the large inclusions contained in stringer planes.  These interact 

with other closely spaced inclusions to nucleate new voids.  Fracture 

or damage development is therefore localized because the nuclei are 

ordered within the material.  Thus, despite superficial brittle appear- 

ances, the cracks are of a ductile type. 

The primary conclusion of this work is that the incipient 

spall threshold observed for 2024-T81 Al is determined not only by 

the matrix itself but also by the inclusions.  If the inclusions were 

removed, substantially higher spall stresses would be observed. 

d.   OFHC Copper 

A total of eight symmetric impact experiments were carried 

out, using the 2-1/2-inch-diameter-barrel light gas gun to investigate 

the dynamic fracture of ductile OFHC copper. The details of these ex- 

periments are given in Table V. 

Three tapered flyer experiments were carried out, as indi- 

cated in Table V. Damage developed in these experiments as shown in 

Figure 17. 

The damage was very similar to that in aluminum, and the 

void nucleation and growth behavior is discussed later. A further 

discussion of the behavior of copper is found in reference 1, where 

it is shown that the damage levels produced in the tapered flyer shots 

of Table V were successfully predicted before the experiments by extrap- 

olating the results for aluminum. 
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Table V 

SUMMARY OF DYNAMIC FLYER PLATE EXPERIMENTS IN OFHC COPPER 

Impact 

Shot Velocity Sample Projectile 

No. (min/(isec) 

0.0269 

(mm) 

6.313 

(mm) Comments 

S12a 3 156 to 1.578 Incipient to 

Intermediate 

damage 

S13a 0.0883 3.156 1 578 to 0,789 Incipient to 

intermediate 

S14c 

S17c 

S21b 

S23c 

S24b 

S27l 

0.119 

0.0984 

0.129 

0.121 

0.1585 

0.128 

1.578 

6.313 

3.156 

6.313 

1.587 

3.175 

0.789 to 0.394 

2.275 

1. 138 

2.275 

0.622 

1.143 

Incipient to 

intermediate 

Intermediate 

damage 

Intermediate 

damage 

Intermediate 

damage 

Intermediate 

damage 

Intermediate 

damage 

a Tapered flyer shots designed so that the time at stress was 

varied over a wide range for a constant stress experiment. 
b Instrumented with a manganin pressure transducer directly 

behind the sample. 
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FIGURE 17   DAMAGE OBSERVED IN THREE TAPERED FLYER EXPERIMENTS 

ON OFHC COPPER 
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4.        QUANTIFYING THE  DAMAGE 

To predict  shock-induced microscopic damage  in ductile  and brittle 

materials,   we must   first   define   what   we mean by  damage.      Previous   inves- 

tigators have usually been  content   to describe  shock damage qualitatively 

as   "incipient  spall,"  "heavy  spall,"  and  the  like.     However,   a more de- 

tailed  description of  damage  is  needed  if  we  are  to build  a  predictive 

model   that   is good for damage  levels  ranging from the presence of   a   few 

voids  or microcracks to  levels  that   cause  appreciable  loss  of   structural 

strength.     The methoü that  we use  is  described  in  a previous   report  by 

Barbee  et  al.   (Ref.   12)   and  reviewed  briefly  in  the following paragraphs. 

In our experiments the  impact-loaded material  samples  are discs  that, 

except   for a region near the  outer  rim,   have experienced  uniaxial   strain 

only.     These  shocked samples  are   sectioned parallel  to  the direction of 

impact,   lapped,   and polished.     As  explpined earlier,   in  a typical   impact 

experiment  all elements of the  samples have experienced  the  same peak 

tensile  stress,   but  the  stress  duration varies with distance   into   the 

sample   in the direction of   impact,   as  shown  in Figure  18,     The plane of 

polish  of a  sectioned sample  is  divided   into zones  several microns  wide 

and parallel   to the  free  surfaces,   as  shown  in Figure  19,     Each  zone  is 

assumed to have experienced a  different  constant  stress   duration.     Photo- 

graphic enlargements (lOOX)   of   the polish plane  are made.     It  usually 

requires five to ten photographs  to cover the entire plane of polish of 

a  sample.     The microscopic damage  in  the ductile metals   is  in  the   form 

of  spherical  voids that intersect  the plane of polish as  circular  holes. 

Each photograph is placed on a Telereadex machine,  and the  locations and 

apparent  diameters of every hole   in each  zone are  recorded on punched 

cards. 
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FIGURE 18 STRESS WAVE POSITION IN AN IMPACT SPECIMEN AND THE 
DERIVED DURATION OF THE PEAK TENSILE STRESS FOR A 
SIMPLE SQUARE WAVE WITH AN ELASTIC PRECURSOR 
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FIGURE  19        PHOTOMICROGRAPHS RULED INTO ZONES FOR COUNTING 
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Thus,   for each  zone (and corresponding  stress duration)   a distribution 

is   obtained,   giving the number density of holes per unit  area  of  surface 

in  the plane of polish as  a   function  of  apparent  hole diameter.      In  short, 

we  describe  the microscopic  damage with statistical  distribution  func- 

tions.     This  is  a fruitful   approach  because  it eliminates  the  difficult 

problem  of analyzing  individual   void  behavior and provides  a   link  between 

the   discrete microscopic damage  and  continuum mechanics.     The  same  general 

approach   is used  in the kinetic  theory of  gases,   in dislocation  dynamics, 

and   in many other  fields of   study where a   large number of   interacting 

objects  must  bo  investigated. 

Thus,   for each  zone we  obtain  a   surface  size distribution  count 

N (o,  t) ,  where N.(a,  t)   is  the  number of  voids  intersecting a unit  area 

of  polish plane with hole  radii   between r    and r       ,   and where a  refers H H i i+l' 
to  the peak tensile  stress  and t   is  the stress duration  corresponding to 

the   given zone.     This surface distribution,  however,   is  not  the distri- 

bution of  interest.     We really want   to know the size distribution  of 

voids per unit  volume  in the material,   that   is,  what  is  the  volume  dis- 

tribution of  voids that,  when the material  is  intersected  by a plane of 

polish,   results  in the observed  surface distribution?    This  statistical 

question has arisen in various other  guises over the years,  and  standard 

statistical procedures have been developed  for mapping  such  surface  dis- 

tributions into volume distributions.     This question is  reviewed   in the 

previous  report by Barbee et  al.   (Ref.   12),  and a  computer program,  BABS  1, 

which was developed by SRI   for the Air Force Weapons Laboratory to perform 

this operation,  is described in that  report. 

An extension and generalization of BABS 1 has been developed  to handle 

the much more difficult case of brittle cracks.     It is discussed  later 

in  this  report and described  in detail  in Appendices IX and X. 
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Examples of an observed surface count size distribution and the 

corresponding computed volume count size distribution are shown in 

Figures 20 and 21, The bounds in Fig. 21 are probable error limits on 

given mean values. 

1 
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A F03 
A F05 
D F07 

10' 

1.0 2.0 3.0 

RADIUS,  R — cm 

4.0 5.0 x lO"3 

GA-8678 74 

FIGURE 20 SURFACE DISTRIBUTIONS OF VOIDS ON THE 
FREE SURFACE SIDE OF THE SPALL PLANE 

IN OFHC COPPER:    SHOT S24 
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1 

2.0 3.0 

RADIUS,  R  —  cm 

FIGURE  21 VOLUME DISTRIBUTION OF  VOIDS ON THE 
FREE SURFACE SIDE OF  THE SPALL PLANE 
IN OFHC COPPER:    SHOT S24 
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5.   WAVE PROPAGATION CALCULATIONS AND COMPARISON WITH DATA 

The equations used for nucleation and growth of voids and the con- 

stitutive relations for damaged material are derived in this section. 

These equations are then used in wave propagation calculations to compute 

the damage in impacts of aluminum and copper plates.  The correlations of 

computed and observed damage are shown. 

a.   Nucleation Rate 

The experimentally obtained nucleation rate of voids appears 

to have the following form 

N = n exp 
CM   P 

P - P 
1*2.) 
1  ' 

where 

p   = threshold (tensile) pressure for nucleation 
nO 

li , p   = constants 
0  1 

This form of nucleation function is consistent with static results in 

which no voids appear for stresses less than the yield or ultimate strength. 

The voids are assumed to be nucleated with various initial radii. 

The assumed distribution is 

pfR)  = 
AN 
— exp 
R 
n 

-R/R, (6, 

where 

P(R)     =    the concentration of voids  at  the  radius R  (number/cm^) 
3 

AN    =    the  total number nucleated/cm 

R       =    a parameter of  the nucleation distribution 
n 
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The nucleated  number,   AN   ,   larger  than a radius  R   is 
g 

AN   (R)     =     f    p(R)dR 
or 0 

AN exp   (-R/R   ) 
n 

The nucleated  volume  of voids  is found by multiplying the volume of each 

void by  the  number of   voids having   that  radius 

AV = T J R P^dR   =  - — J    R   e xp   (-R/R   )dR 
n 

8nANR 

b.       Void Growth 

Void growth is assumed to follow the simple viscous law 

R  = 
(p - Pc 

K 5 AR (9) 

where 

p, p  =  (tensile) pressure and threshold pressure 

T] = material viscosity 

This form for the growth relation was observed in the experimental data 

for aluminum.  According to the dynamic analysis of Appendix III, the 

viscous law is accurate within 5 percent up to a radius of 

0.32T] 

cr p(P 
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For aluminum  in  the  stress range  tested .and  with T)  = 200 poise,   the 

limiting  radius   is  about  10 microns.    For larger  radii,   inertia effects 

become important  and  the growth  velocity  is   less   than  that  given by 

Eq.   (9). 

In a planar impact,   the stress  field  is not   rnherically sym- 

metric as  it  is   in   the  analysis  that led   to  the  viscous growth  law, 

Eq.   (9).     Our macroscopic stress field more  closely resembles a one- 

dimensional   flow.     The  two-dimensional  calculations of Appendix V show 

that  the viscous  growth  law is  also valid  for   the  case of one-dimensional 

flow. 

The   threshold pressure for growth  is  the pressure at  which 

yielding hroughout  the  region near  the  void.     According to the 

static, y   symmetric  calculations  of   Appendix  IV,   the  threshold 

stress  is   i to five times the yield strength.     However,   in one- 

dimensional  flow without  voids,   overall yielding occurs at  the lower 

stress of 

CTy = (f^;)Y 11 

where 

a      =    the Hugoniot  elastic  limit, 
y 

v    =    Poisson's  ratio, 

Y    -    the yield  strength. 

For U = 1/3,  a    i8  twice the yield strength.     Therefore,   the threshold 

nressure.  p    equals a    - 2Y/3 and thus Is only  slightly  larger than the 
0 y 

yield strength.     The value of Y used  in the estimate of  threshold  should 

be increased both for dynamic effects and for the work hardening that 

may occur during the preceding compresslve pulse. 
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The material viscosity used in the growth equation must pertain 

to the stress levels, loading rates, and temperatures that occur during 

the void growth.  Since the stress levels and Loading rates are similar 

to those in shock fronts, data on shock front thicknesses may be  Ub^"1 co 

estimate the viscosity.  Appendix VI contains an analysis of viscosity- 

governed shock front thickness to aid in the estimate.  It should be noted 

that the viscosities apparent in the shock front are one or two orders 

of magnitude less than those obtained by other methods. 

In our analysis of growth and nucleation of voids as part of 

the one-dimensional wave-propagation calculations, it is assumed that the 

void size distribution law, 

N (R)  = N  exp (-R/R ) 
g        0 1 

112 

holds at all times.  This assumption is consistent with the equation for 

growth or nucleation but not for the combination.  To investigate the 

compatibility of this assumption with the growth law, let N (R) = N (-R/R ) 

at t =0.  Then, allow some growth to occur at a constant stress  The new- 

radii are obtained by integrating Eq. (9) 

R'; t) Re U 13) 

whe re 

R' = the radius at the current time 

the radius at t = 0 

The new distribution  function   is  determined  from Eq.   (12)   by  inserting 

the new values  of   radius   and   solving for R     from  the  condition  that 

N'(R')  = N  (R),   that   is,   that   the  numbers have not  changed, 
g g 
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N I ( R I) 
g 

At 
N exp ( -Re / R ) 

0 1 

= N ( R ) 
g 

Solving for R , we find that 
1 

R = R e 
1 10 

N
0 

exp ( -R/ R
10

) 

At 

( 14 ~ 

( 15 ) 

Hence , the radius parameter is independent of R and grows at the same rate 

a s other radii. Therefore, the new distribution has the same form as the 

old. In fact, it can be shown that for any distribution of the form 

N 
g 

= 

the dist ribution function and parameters a after growth are the s ame 
n 

as the function and par~1e ters before growth, and R
1 

i s altered as in 

Eq. ( 15 ) . 

If only nucleation occurs, it is clear that the di s t 1·ibution 

function does not change with time; only N varies with time: 
0 

N ( R,t ) = N ( t ) exp ( -R/ R ) 
g 0 10 

Now consider that both nucleation and growth occur under a 

square wave of duration t. Then a number of voids nucleated at time T 

in the time increment dT and with a distribution 

dN ( R,t) = NdT exp ( -R/ R ) 
g 10 
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will  grow  to 

dN  (R,t) 
g 

A(t-T)   , 
NdT  exp   [-R/[R

10
e -U 

19 

at  time  t.     (N is  the constant  nucleation  rate.)    The  total  distribution 

of   voids   is obtained by  summing  all   the   increments  dN     nucleated  between 
g 

0   and   t, 

t x'i-i) 
N   (R)t)     =     N J     exp   [-R/CR^   ^ 1idT 

g b 

20 

and 

With  the substitutions 

K       -A(t-T 
P     =      e 

Rio 

N       =    Nt 
Ü 

in Eq.   (20),   the exponential   integral  (Ei)   form  is  obtained: 

N   (R,t, 
_S  

N0(t) At 
Ei - e"At + Ei - r- Rio       /       \   Rio/ 

(21) 

The Ei  functions  are  evaluated  from standard   tables. 

The preceding distribution can bo  compared  with   that  obtained 

with  a constant  distribution.     The  number nucleated   is   simply N  t  as 

above.     The relative  volume nucleated  at  time T  is,   from Eq.   (8), 

60 

-Ci uL^. 
j^g^y.^'iiLLdJilL.T'"-1---'-^''-''"''! 

•   —   - 



dV 
vr 

8TTN dn-R 
0       10 

(22) 

At   time t,   this  volume  is 

dV =    8TTN dr 
vr 0 

R    e 
10 

A(t-T) 
23 

The total volume is found by summing from 0 to t, 

V =    8TT 
vr /Xv *A(ti 'SrrN R 

0  10      ,   3At 
dT   .   !-ir-J (e -   1 124) 

But if the distribution is not altered,, then 

N  = Nt exp (-R/R ) 
g 2 

[25) 

and the volume is 8nN tR  according to Eq. (8).  Equating this expression 

for volume to Eq. (24) allows R to be evaluated. 

R   = R 
2     1 

3At 
11/3 

3At 
(26) 

A comparison of the distributions obtained with Eqs. (21) and (26) is 

shown in Figure 22.  Evidently the distribution of Eq. (21) shows a lesser 

number of voids at intermediate radii but more at the large radii. 

The change in shape of the distribution does not alter the 

accuracy of the volume calculation. Each nucleated distribution of voids 

retains its distribution during growth as noted earlier, and its volume 
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n 
is represented correctly by Eq, (23). Hence, the total volume given by 

Eq. (24) must be correct. Therefore, we conclude that the present pro- 

cedure has the following properties: 

• The total number of voids is correctly represented. 

• The void volume is correct within the limits of the viscous 

growth law. 

• The distribution of the form of Eq. (12) [or Eq. (25)] with 

the radius parameter of 

K 
1/3 

(27. 

only crudely indicates the general shape of the actual dis- 

tribution. 

The present nucleation and growth procedure is adequate for our purposes. 

c.   Constitutive Relations 

The presence of voids alters the constitutive relations of the 

material.  As usual, these relations have been separated into equations 

for pressure and deviator stress.  In the formulation we assumed that the 

average pressure is proportional to the change in specific volume of the 

solid material, i.e.. 

P   = P  - K —- 
s    . Os     V 

28' 

where 

P , P  = pressures before and after the time increment 
Os  s 

K = the bulk modulus 

V  = the specific volume of the solid 
s 
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The specific volume of the solid, V , is obtained by subtracting the 
s 

specific  void   volume  from   the  gross   specific   volume.     Equation   v28i   is 

the  usual  mechanical   pressure-volume   relation   appropriate   for   low  pres- 

sures.     The   average  pressure   in   the   solid,   P   ,    Is   related   to   the   average 
s 

pressure on a gross section through the ratio of the solid area to the 

gross area of a section.  This ratio of areas was assumed to be related 

to the relative void volume, V U, where 
v 

v 

D 

the specific volume of voids 

the gross density 

The average pressure on the gross section was then presumed to bo 

p   =    P   (1  - a V    D 
a     s     c rO 0 

(29; 

where ry is a constant.  When Eq. (28) is expressed in terms of average 
c 

pressures on the gross section, it becomes 

1 - o- V D 
c v 

1 - O V D 
c vO 0 

V  - V 
s   sO 

sO 

(30) 

where   the  subscript  0  refers  to   the  values  at   the beginning  of   a   time 

increment.     Equation  (30)  was  compared with  the   results  of   the   two- 

dimensional  calculations   in Appendix V;   the equation   fits  those   results 

very  well   for an a    oi   about  2.0, 

The deviator stress was   assumed   to be  a function of   the  overall 

distortion of  the  material   and   to  follow a  viscoplastic  law  as   follows: 
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where 

b,cr' 

= 

4 b,V 

3 ~ v 

2 

3 

cr' = the deviator stress 

~ the shear modulus 

V = the gross specific volume 

Y the yield strength 

~ = the material viscosity 

f), t the time in~rement 

v 
2 s 

cr' <- Y 
3 v 

(elastic ) 

( viscoplas tic ) 

In Eq. ( 31 ) the yield strength is reduced gradually as the void volume 

( 31 ) 

increases. Also the viscous contribution ( second term of the second equa

tion) is reduced as the void volume increases. The latter reduction fac

tor was derived from the results in Appendix V. Equation ( 31 ) i s f elt 

to be a reasonable form for the deviator stress, but more detailed cal-

culations, such as those in Appendix V, have not been completed to verify 

it fully. 

The preceding constitutive relations form a mechanical equation 

of state; temperature and internal energy are neglected. Initially this 

was assumed to be adequate. However, as shown in some of our two-

dimensional calculations, internal energies can become large at the void 

boundary under these high loading rates. The following approximate 

analysis indicates that melting probably occurs at the free surface of 
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the void.  The strain rate in the circumferential direction at the 

void surface, e , is 

1 dR 

R dt 
(32) 

Then,   for  no   volume  change   in   the  material   at   the   free   surface,   the 

radial   strain   is  g     = -2e   •     The  deviator   stresses   in   the circumferen- 
r 9 

tial   and   radial   directions   (a'     and  a')   are  obtained   in  Appendix  V  under 
9 r 

the  assumption that   there   is no volume  change. 

./     _    _ Y  + 2Tlef 

- Y  -  4T1C (33; 

Since the radial stress is zero at the surface, the local pressure, p , 
J6 

must be the negative of a'-  Therefore, the circumferential stress is 
r 

=   p^ + ao Y  + 6Tle (34 

An expression  for internal  energy  at   the  surface of  the  void 

is obtained  from 

E    =   J 2aeeedt    =    2 ; (Y  + 6Tlee)e9dt 35 

We note  that 

1 dR 
R dt 

P  -  P, 

471 
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according to Eq. (9), where R is the void radius.  With a square wave 

tensile pulse, the internal energy is then 

E  = 2[Y+^(p-po)] 
P - P, 

4T1 
At 36 

In aluminum, with a yield of 1 kbar, applied pressure of 10 kbar, p of 

2 kbar, T] of 200 poise, and At of 0.4 p,sec, the internal energy is 

10 
4 X 10  erg/gm.  The internal energy needed to cause complete melting 

10 
in aluminum is about 10  erg/gm.  Hence, it appears likely that some 

melting occurs at the void surface, at least for impacts causing inter- 

mediate to high damage.  The preceding analysis of melting has not yet 

been completed or implemented In any fracturing calculations. 

The mechanical constitutive relations, together with the growth 

and nucleation laws, are incorporated into a subroutine called DFRACT and 

procedures for inserting it into finite-difference (PUFF-type) computer 

codes are given in Appendix VII. 

d.  Wave Propagation Results 

From the wave propagation calculations we obtain stress his- 

tories at selected points, void concentrations (number/cm ),   and relative 

void volumes.  Since each of these three can be obtained at any depth 

into the target, we can determine the variation of void concentration 

or volume as a function of position.  The following discussion shows 

such variations of damage in 1145 aluminum and OFHC copper. 

Calculations for 1145 aluminum are reported In references 1 

and 12.  These computations were repeated with the Improved nucleation 

function (exponential, instead of linear) and with the equation of state 

modified to reflect the VOID calculations of Appendix V. The impacts 
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in aluminum, which were all uninstrumented, are listed in Table VI.  The 

parameters used in the impact calculations are listed in Table VII.  The 

damage distributions (void concentration and void volume as a function 

of depth) are shown in Figures 23 to 27.  These calculated distributions 

are considerably closer to the experimental ones than those exhibited 

previously.  The void concentration is represented fairly well by the 

computations at all impact levels; the major lilference is that the com- 

puted dist -ibutions are steeper than the experimental ones.  Only Shot 873 

shows poor correlation between computed and experimental concentrations. 

The void voluine distributions are satisfactory at low damage levels but 

are too low at high damage.  These values have shallower slopes on either 

side of the spall plane than the experimental data, especially at high 

damage.  This difference in slope is an indication that the damage at 

the spall plane is not having a sufficient effect on the nearby stress 

fields.  It appears, therefore, that the current fracturing procedure is 

not able to correctly compute relative void volume above a few percent. 

The two copper impacts that were studied in detail are listed 

in Table VIII and the fracturing parameters used in the corresponding 

calculations are in Table VII.  The experimental and con.puted damage 

distributions are compared in Figures 28 and 29.  The compi'ted void 

volumes for these impacts are too low at the spall plane and on the free 

surface side (on the right) of the spall plane, and they are too high on 

the impact side.  All these differences come from the same source:  under- 

production of void volume.  In the experiment and calculations, the damage 

occurs first at the spall plane and to the right of it.  The high damage 

reduces the tensile stresses propagating to the left and therefore re- 

duces the damage on the left of the spall plane.  Unfortunately, the two 

targets selected for study both contain fairly high damage, although it 

is evident now that lower-damage targets would give more assistance in 

model development. 
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Table VI 

IMPACT CONDITIONS FOR EXPERIMENTS IN 1145 ALUMINUM 

Flyer 

Shot Thickness Velocity Target Thic kness Impact Stress 

Number (cm) _ 

0.236 

(cm/sec) (cm) (kbar) 

847 1.289 X 104 0.635 10.0 

873 0.236 1.32 x 104 0.617 10.3 

849 0.236 1.426 x 104 0.635 11.0 

872 0.236 1.542 X 104 0.635 12.0 

939 0 .114 1.856 X 104 0.318 14.3 

Table VII 

DUCTILE FRACTURE PARAMETERS FOR 1145 ALUMINUM AND OFHC COPPER 

Pa] "ameter Units 

Tl (3/4T1) 
cm 

dyn-sec 

Tl 
dyn-sec 

'im^ 

T2 V 2 
dyn/cm 

T3 («o) cm 

T4 
'"o' 

no. 

cm3-sec 

T5 ("no' 
dyn/cm2 

Description 

T6 (pjj    dyn/cm5 

Growth parameter 

Material viscosity 

Growth threshold 

Nucleation void radius 

Nucleation coefficient 

Nucleation threshold 

Nucleation parameter 

Al 

(1145; 

-0.01 

75 

Cu 

^OFHC) 

-0.01 

75 

-4 X 109   -5 X 109 

1 X 10"4   1 X 10"4 

3 X 109   2.8 X 1Ü12 

-3 X 1.09  -5 X 109 

-4 X 108  -2 X 109 
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Table VIII 

IMPACT CONDITIONS FOR  EXPERIMENTS   IN OFHC  COPPER 

F Iyer Target 

Thickness 

(cm) 

Backing 

Plate 

PMMA . 

PMMA 

Impact 

Shot 

Number 

Thickness 

(cm) 

Velocity 

(cm/sec) 

1.585 X 104 

1.286 x 104 

Stress 

(kbar) 

S24 

527 

0,0622 

0.1143 

0.1587 

0.3175 

f 29.3 

23.7 
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For the copper impacts, manganin gages irt blocks of PMMA were 

placed behind the targets.  The gage records and computed stress histories 

are given in Figures 30 and 31.  The Hugoniot equation-of-state parameters 

of Walsh et al. (Ref. 13) was used for copper, and the data of Barker and 

Hollenbach (Ref. 14) were used for PMMA.  The peak compressive stress is 

not well-represented by the calculations, indicating that the Hugoniots of 

one or both materials are not correct in the relevant stress range.  The 

spall signal, the hump following the main compression pulse, is of the 

correct amplitude in both figures but arrives much too early.  This later 

arrival of the experimental spall signal may indicate either that the 

actual damage develops more slowly than expected or that the propagation 

velocity is lower than that given by the calculations. 

Several calculations were made with different fracture parameters 

to get the best correlation with experimental damage distributions and 

stress records.  We noted that the computed amplitude of the spall signal 

was larger for calculations showing higher damage.  The variation of the 

stress minimum preceding the spall peak was also studied.  This minimum 

also increased with damage.  An increase in the growth threshold decreased 

the difference between the minimum and the spall peak. 

It should be noted that the viscosity given in Table VII is 

75 poise for both aluminum and cor     1 though previous estimates were 

based on viscosities of about 20        We believe that 200 poise is 

about right for both materials at w , iow damage levels.  The lower value 

of viscosity used here reflects our attempt to reach intermediate and 

high damage levels.  At such levels, the viscosity may be reduced sharply 

by the internal energy or heating associated with void growth (see pre- 

ceding subsection). Considering this hypothesized heating effect, the 

value of viscosity used here represents some average of the range of 

viscosities actually governing growth. 
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The  present  computational  procedure  for ductile  fracture  appears 

to provide the  following results: 

• The  stress history  is fairly well  represented,   indicating 
that  some gross  features  of   the  damage  are  correct, 

• Void volume  and  void concentration are correctly given for 
low damage. 

• The  void  volume  is  underestimated  at high damage. 

Besides providing these direct   results  for  prediction of   fracture,   the 

procedure has helped  to  indicate  the kinds  of  nucleation  functions  that 

fit the data and  the need for a new physical  mechanism to handle high 

damage. 
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6. SIMPLIFIED DAMAGE CRITERIA 

In the previous subsection we described our method for predicting 

the detailed damage distribution functions caused by known stress his

tories. These detailed damage distribution unctions must form the in

put for future detailed calculations of the effect of s hock damage on 

structural properties. However, for some cases these distribution f unc 

tions are unnecessarily detailed; simpler rule-of-thumb descriptions of 

the expected levels of damage may be sufficient for many practical ap

plications. 

In this subsection we discuss two such simplified damage criteria 

for ductile metals: a void growth criterion a nd a void volume criterion. 

For the void growth criterion , we assume that a certain change in void 

radius is characteristic of a given damage l evel. The stress history 

necessary to cause this void growth is then calculated and used to ex

plain already available data or to design new experiments . For the void 

volume criterion, a specific volume of voids is assumed to be character

istic o f a given damage level. Under "this assumption, the stress his tory 

necessary to generate this volume of voids is calculated from a knowl e dge 

of the growth characteristics of voids and the nucleation rate of voids 

in the material of interest. The void grow\.h criterion requires that 

the material viscosity ~ and the threshold stress for void growth must 

be known so that the stress-time history required to cause a specified 

void growth can be predicted. All the information required by the growth 

criterion is also necessary for the void volume criterion. In addition, 

the stress and time dependence of the nucleation rate must be known. It 

is not possible, at the present time, to make~ priori predictions o f 

the stress and time dependence of the nucleation rate, as it is inhere'ntly 

dependent on material structure and initial defect distribution. There

fore, this inf ormation can at present be derived only from experiments. 
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Several generalizations can be made, though, concerning this nucleation 

rate.  First, it is stress dependent, increasing with increasing stress. 

Second, it may or may not be time dependent.  Third, it may be control- 

ling if a sufficient number of nucleation sites are available.  There- 

fore, because of a lack of information concerning the void nucleation 

rates, the void volume criterion is the less desirable of the two. 

a.  Void Growth Criterion 

This method is based on Eq. (9) which, upon integration, states 

R = R exp (At) 
0 

(37,' 

where 

P - P, 

4^ 

The general criterion  is  that a void must  reach a certain size R    after a 

pressure of magnitude  p    has been applied for a time  t.     For  the case of 

a nonsquare tensile wave,   this equation becomes 

R    =    R    exp 
0 

[    A(t)dt 
0 

(38) 

where 

; 
0 

A(t)dt    = 
/(^)-. 
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Therefore, only pressures larger than p will contribute to the growth, 

and the effects of time-dependent loading, such as a simple exponentially 

attenuating wave, can be determined. 

The method of application is to select a reasonable ratio of 

the void final radius to the void initial radius. The initial radius of 

the void is empirically determined and tnkon as the limit of resolution 

of the observational technique (~ 1        ).    This size for R is 
0 

chosen because experiments on 1145 A       own that consistent results 

are obtained through this assumption.  li may be thai    •ostructural ob- 

servations in other materials as to the size of in mid allow 

an estimation of R for those materials.  The final       is typically 

taken to have a value such that the logarithm of the ratio (R/R ) is an 

integer.  The ratio taken for copper and aluminum is typically 7.4, which 

has a natural logarithm of two.  For the case of a simple square wave, 

the parameters necessary to evaluate the growth function are best de- 

scribed by examining the growth equation in which the expression for A 

has been included: 

(p - P0)t = 47] J&n(R/Ro) (39) 

The tensile stress and time at stress cannot be measured di- 

rectly and must therefore be calculated, most simply by applying SRI PUFF 

and by allowing no fracturing.  The tensile stress history is then di- 

rectly available for use in these calculations.  The stress histories 

sufficient to produce a given damage level can be specified by applica- 

tion of Eq. (39) if the material viscosity and the threshold stress are 

known, assuming a value for £n(R/R ). 

The material viscosity can be estimated in several ways and can 

also be inferred directly from shock experiments.  It is necessary first 
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to understand the nature of the viscosity and its relation to material 

properties. 

Metals deform by the motion of dislocations . At high strain 

rates this motion is typically linear viscous over a wide range of stres s . 

The observed relationship is 

where 

( cr - cr ) = T)y 
0 

cr = the applied uniaxial stress 

threshold stress for linear viscous behavior 

T) = the material viscosity 

y plastic strain rate 

In general 

where 

p = the 
m 

.... 
b = the 

v 
D = the 

p bV (cr) 
m D 

density o f mo bile dislo cations 

dislocatio n Burger's vector 

dislocatio n velocity 

(40 ) 

(41 ) 

The dislocation velo city is related to the applied stress by 

(42) 
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where  B is  the  viscous drag coefficient for  individual  dislocation irotion. 

Manipulation of Eqs.   (41)  and   (42)  gives  the material  viscosity as 

Tl    = 
B 

P b 
m 

(43) 

Therefore, the two variables for defining the material viscosity are the 

viscous drag coefficient for dislocations B and the mobile dislocation 

density p . 
m 

The values of B vary from material to material and can be ex- 

perimentally measured. The techniques usually applied are (l) etch stress 

pulse method (Ref. 15) and (2) internal friction measurements (Ref. 16). 

The stress pulse method is most direct, although it requires the assump- 

tion of small dislocation inertia and uniform motion during the time of 

stress application.  Internal friction measurements require detailed in- 

terpretation based on dislocation damping induced losses, the density of 

moving dislocation, and other material parameters.  The first is most 

likely to give measurements of the most significance. 

A third technique is to evaluate the stress dependence of the 

strain rate using the split Hopkinson bar (Refs. 17, 18). The major 

problem in this technique is that detailed analysis is necessary to deter- 

mine the strain rate dependence of the yield stress. Further, experi- 

mental difficulties in the high strain rate region limit the accuracy of 

this technique. 

These methods of analyses allow us to determine an upper bound 

on the material viscosity. However, a complete ignorance of the density 

of mobile dislocations precludes an accurate determination of the material 
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viscosity from a knowledge of   the   viscous drag coefficient B,     There are 

also questions  concerning using   the  values observed at  low  stresses  for 

the  coefficient  B at  high  stresses,   i.e.,   relativistic effects. 

Probably   the best method  that can be  used  to determine experi- 

mentally the mechanical  viscosity of material  under  shock conditions   is 

the  measurement of   shock from   thicknesses of   steady  state  shock waves 

(Refs.   19,   20).     Recent advances   in measurement   techniques   make  this method 

attractive  (Refs.   21,   22).     An  analysis for  the  relationship of  shock 

front  thickness and material   viscosity has  been carried out  on  this  pro- 

gram;   the details  are presented   in Appendix VI.     Several  methods can be 

used   to obtain  the  desired  stress histories.     They  vary from   interpreta- 

tion of  surface motion observed   by optical  or electrical  methods,  or both, 

to  piezoelectric  or piezoresistive  stress  gage measurements.     Measure- 

ments of  surface motion are,   to  a major extent,   more accurate  representa- 

tions of  the  shock profile,   since  they have  inherently better   time reso- 

lution than either piezoelectric  or piezoresistive  stress gage measure- 

ments,   because  surface motion measurements  are  not  limited by  the  size  oJ 

the   sensing element  but detect  only a  small  portion of  tne  sample  sur- 

face. 

In general,   high material  viscosity results  in broad   steady 

state  shock waves.     Therefore,   less accurate measurement  techniques can 

lead  to reasonable measurements  for high-viscosity materials,   which  in- 

clude  iron,   tungsten,  and molybdenum.     Materials  such as aluminum and 

copper have much  smaller viscosities,  and meaningful data can  be derived 

only  from measurements made using high-resolution  techniques. 

To determine the  threshold stress necessary to initiate and 

maintain void growth,   a solution has been derived for the quasi-static 

growth of a void  in a zero strength,  viscous medium and  in an elastic. 
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perfectly plastic medium.     The detailed calculations are presented  in 

Appendices  III,   IV,   and V. 

The  results of  the  stat.'c clastic,   perfectly, plastic  solutinn 

(Appendix  IV)   show that yielding  starts around a  void  when the  shear 

stress resulting  from  hydrostatic  tension at  large distances  from  the  void 

reaches  the  yield   stress.     The  stress  needed  to  continue growth  increases 

to a limiting  value  as  the plastic zone  formed about  the  void reaches a 

limiting ratio with respect  to  the void radius.     As long as this stress 

is applied,   void  growth can occur. 

The dynamic analysis of a void in  viscous material  (Appendix III) 

shows that  viscous   stresses dominate over  the  small void radius range 

(l  to  10 ji)  and  that  a threshold  stress  such as   that derivable from   simple 

elastic-plastic models  is  valid  for void growth. 

The  elastic-plastic  solution  for  the external,   spherically  sym- 

metric,   hydrostatic  tensile  stress necessary to maintain void growth  is 

2 
a     =   - Y 

0 3 
I -   Zn (44) 

where 

Y    =    the  uniaxial yield stress 

(i    =    the  shear modulus 

K    =    bulk modulus for the material of   interest. 

The yield strength Y includes several components: 

• The quasi-static yield strength of   the material. 

• The increase in the quasi-static yield strength caused by 
strain hardening occurring during the prestraining of the 
material by the compression phase of shock loading. 
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The  increase   in  the yield  strength necessary   to account   for 
the effect of   strain  rate on   the   transition   to  linear  vis- 
cous behavior. 

This  calculation of   the   thresho'.d   stress  is accurate  only  for 

materials   in which  the  tensile  stress  field   is nearly hydrostatic.     As 

discussed   in  the previous  section  (ill,   5),   under conditions of macro- 

scopic   uniaxial   strain,   a  lower threshold  stress about equal   to  2\ may 

be appropritite.     Irrespective of  this,   the growth equation will   hold  with 

a modified   threshold  stress,   even  for materials  in which a nonhydrostatic 

tensile   stress   field   is present. 

b.        Void   Volume Criterion 

The  simple  equation describing   the  development of  void   volume 

in a   sample during dynamic  tensile  loading   (particularly at low  damage 

levels)   is,   from Eq.   (24) 

8TTn R3     , 
0   10 |   3At 

3A 

As pi'eviously stated, this criterion requires the a priori knowledge of 

the stress and time dependences of the void nucleation rates.  These are 

available only from experiments.  Therefore, at the present time, this 

criterion appears to be the less desirable of the two describe''. 

The void radius criterion can be related to the specific void 

growth criterion by assuming an average void radius that is characteristic 

of a given damage level. This average void radius is given as 

R = 

1/3 
(45) 
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where N is the total number of voids and V  the void volume resulting 
t vr 

from a specific loading history.  It is likely that this quantity is a 

more reasonable parameter to choose than that used in the simple growth 

criterion in the determination of a damage criterion.  It has the compli- 

cation, however, that at present it  requires a detailed analysis of the 

damage distribution so that the volume of voids and the total number of 

voids can be determined.  If an ability to predict nucleation rates can 

be developed for this criterion, the average void radius will probably 

be more reasonable, since it will allow estimates of full separation to 

be made on the basis of void coalesence considerations. 

c.  Example of the Use of Simplified Damage Criteria:  OFHC Copper 

The simplified predictive technique discussed above was actually 

used to predict damage levels in OFHC copper before our copper experi- 

ments were performed.  It was assumed that copper would fracture in a 

manner similar to aluminum, and our experience with 1145 aluminum was 

used to help select the fracture parameters for the predictions.  This 

successful effort is described in the following paragraphs. 

The two parameters necessary for damage prediction are the 

material viscosity T] and the stress threshold for void growth a .  The 

material viscosity measured by various techniques and the viscous drag 

coefficients on individual dislocations in aluminum and copper are given 

in Table IX. 

The viscosity of copper is seen to vary by over a factor of 60 

depending on the method of measurement, although the viscous damping co- 

efficient varies by only a factor of two.  Analysis of shock front widths 

indicates that the viscosity should be less than 600 poise, since the 

rise time of the shock wave fronts analyzed was determined primarily by 

the characteristics of the measurement technique.  The aluminum viscosity 

Is also seen to vary over a factor of 60, depending on the method of 

measurement.  The Kolsky thin wafer technique appears to give values larger 
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than those  from other  techniques by over an  order of magnitude.     The 

value of   the material   viscosity  is therefore   best  determined  from  thn 

most consistent   set  of measurements,   the etch-stress  pulse  technique   for 

measuring  B,   the  viscous drag coefficient of  dislocations.     A  law of 

common states was assumed  to apply and   the ratio  of  the  viscosity of 

copper to   that  of  aluminum was assumed   to be  equal   to   that of   their   vis- 

cous drag  coefficients  for dislocation motion.     This  ratio was used  with 

the  viscosity  for aluminum determined  from  the  void  growth constants 

to  estimate   the   viscosity of copper under  shock conditions. 

Table   IX 

MECHANICAL VISCOSITIES OF COPPER AND ALUMINUM AT  HIGH  STRAIN RATES 

Viscous 
Drag  on 

Material 1 Hsloca- 

Viscosity Exper t ions Experimental 

Material (poise] Teci 

Kolsky Liiui 1 

(poise) 

-4 
.7 X 10 

Technique 

Copper 3.7 X io4 Etch-stress 

wafer (Ref. 23) pulse (Refs. 24 , 25) 

1.15 X io3 Hopkinson Bar 

(Ref. 26) 

7 .5 
-5 

X 10 Acoustical 

attenuation 

(Ref. 20) 

<6 X io2 Shock front 

thickness 

Aluminum 1.1 X io4 Kolsky 

thin wafer 

(Refs. 17,18) 

2 .5 

2 

-4 
X 10 

-3 
X 10 

Etch-stress 

pulse 

(Ref. 27) 

Internal 

friction 

(Re:.. 28) 

6061 1.8-4.8 X 10 Shock front 

T6 thickness 

1145 Al 
2 

3.6 X 10 Void growth 

(Ref. 12) 
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The ratio of these quantities  for aluminum and copper  is 

B(Cu) 
B(AI) 

1.7   X  10 

2.5   X  10 
=    0.68 

Therefore,   the viscosity of  copper under  shock conditions   is approximately 

0.6 to 0.7 of that of aluminum and  is therefore estimated as T](Cu) "^ 250 poise, 

The  threshold  stress a    can be calculated by using Eq.   (44)  and 

the correct valued  for the uniaxial  yield  stress Y.     The  static yield 

strength for OFHC copper   is  approximately  7000 psi   (~0.5  kbar).     The  in- 

crease  in yield strength necessary to account for  the  strain rate effect 

in reaching the viscous  threshold  is of the order of 0.5 kbar.     Further, 

from the work of Grace  (Ref.   2u),   the  increase  in static yield  strength 

due  to  shock compression hardness  is approximately  1.5  kbar per  100 kbar 

peak compression pressure   for  stresses up to 100 kbar.     Therefore,  assum- 

ing a  typical compressive  stress of 20 kbar,   the yield  strength to be used 

with Eq.   (44)  is  1.3  kbar.     The resulting  threshold  stress   is 6.5 kbar. 

Table X gives  the   results of calculations based on this criterion 
9 2 

assuming a threshold stress of 6.5  X 10    dynes cm    and material viscosities 

of 200 and 250 poise  for  times at stress of 0.5,   0.25,   and 0.125 |j,sec. 

The experiments  to  be described were designed on  the basis of 

the  stresses and  times at  stress shown in Table X,  and  some of  the results 

were  shown in Fig.   17. 
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Table X 

PREDICTED DAMAGE THRESHOLD CONDITIONS  FOR OFHC COPPER 

Time   at  Stress 
(sec) 

5 X  10 -7 

2.5 X   10"7 

1.25 X  10~7 

Stress   (kbar)  for 
T] a  200 poise 

11.2 
14.4 
20.8 

Stress   (kbar)   for 
T\ =  250 poise 

12.0 
16.0 
21.0 

R/R are 4.4, 3.4, and 3.1 for the damage shown 

The times at stress for the regions shown in Figures 17(a), 17(b), 

and 17(c) are 0.32 (isec, 0.64 ^sec, and 1.2 (i,sec, respectively.  Using 

these times at stress and calculated values of tensile stress, we cal- 

culated the damage level factor ^n R/R« to be 4.8, 3.9, and 3.2 for the 

experiments shown in Figures 17(a), 17(b), and 17(c), respectively.  Ex- 

amination of the micrographs shows that the experlmtncal values of ^n 

i-        17(a), 17(b), 

and 17(c), respectively.  The agreement with the excellent on 

this basis and shows that a range of damage levels u. .unenable to pre- 

diction. 

A further verification of the predictions has been gained by de- 

tailed analysis of Shot S24 (sample thickness 1,578 mm, projectile thick- 

ness 0,619 mm, impact velocity 0.158 mm/iisec), which was instrumented 

with back surface manganin piezoresistance pressure transducer mounted 

in PMMA.  Interpretation of this analysis indicates that the peak tensile 

stress imposed on the sample was 17.5 kbar. The derived growth constant, 

A, was 1.08 X 107 sec"1 for the volume analysis and 1,07 X 107 sec"1 for 

the radii analyses procedures. The growth constant is given as A = 

(a - ao)/4Tl.  A viscosity of approximately 260 poise Is predicted when the 

tensile stress Is assumed as 17.5 kbar and the threshold stress as 6.5 kbar, 
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in agreement with the original value chosen.  The observed void nucleation 

rate is of the order of 4 X 10^ (cm sec)  , a value similar to those 

observed in 1145 aluminum. 

The experimental results and their consistency with the dynamic 

fracture criterion indicate that other fracture data on OFHC copper should 

be explainable in terms of this model.  In the description of the cal- 

culation of the threshold stress for the formation of damage in a mate- 

rial under the action of a dynamic tensile load, it was stated that the 

effects of strain hardening during the compressive phase of the shock 

process must be included.  The method shown was to include this as an 

increase in the yield stress used in the calculation of the stress neces- 

sary to cause unbounded void growth.  This method of accounting for the 

effects of strain hardening resulting from shock loading can also be 

used to evaluate the influence of cold working on material before shock 

loading.  This is best demonstrated by considering the dynamic fracture 

thresholds observed in 3/4 hard OFHC copper (Ref. 26).  The static yield 
3 

stress at a strain rate of 10 /sec in this material was reported as 3 kbar. 

Further, at this hardness level, essentially no increase in the yield 

strength resulting from the compressive phase of shock loading is expected. 

From Eq. (44) the threshold stress is calculated to be 13.5 kbar, assuming 

a yield stress of 3 kbar.  Dynamic fracture thresholds can then be cal- 

culated from the growth criterion, assuming a viscosity of 200 poise if 

the times at stress are shown.  The times at stress are defined by the 

ratio of the projectile-to-target thicknesses as well as by the absolute 

value of the target thickness.  In this material, the magnitude of the 

elastic precursor was about 3 kbar, and it is necessary to consider only 

the duration of the tensile plastic wave unaffected by the elastic pre- 

cursor rarefactions.  The results of such calculations are presented in 

Table XI and compared with the reported results. The general agreement 

is excellent; the greatest error is apparent at the shorter times at stress. 
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Table XI 

PREDICTED AND EXPERIMENTALLY OBSERVED DAMAGE THRESHOLD CONDITIONS 
FOR 3 / 4 HARD OFHC COPPER 

Time at Stress 
(sec) 

7 . X 10-7 

3.5 X 10-7 

1.2 X 10-7 

Experimental 

Damage Threshold 
(kbar tension) 

15.5 

18.5 
23 

Calculated 
Damage Threshold 

(kbar tens ion) 

15-16 
19-20 

24-25 

The main result o f this discus i n is that the apparent disagreement in 

the dynamic fracture threshold conditions observed for these two samples 

of OFHC copper is resolved by the understanding of the influence of s tr a i1 

hardening on the hydrostatic tensile threshold stress for unbounded void 

gro,th . Further, the fact that dynamic fracture thresholds observed by 

separate investigators have been correlated through a simple theory i s 

unique. 

The void growth criterion presented in this report c a n b e directl 

related to other phenomenological models for dynamic fracture . All pre-

vious moJels were relevant only to the material studied, and any constant s 

were characteristic of only one material. Using the void growth criterion, 

the constants in these other models can be directly related to the materi a l 

viscosity ~ , the threshold stress for void growth, and the damage parameter 

(i.e., the ratio of final to initial voids radii). 

The ability to predict the damageina material with some accuracy 

when the applied stress history is known implies that observation of 

given damage level should allow an estimate of the local tensile stress 

history to be made. Such an estimate would be only of an integrated 

nature. For the case of the viscous void growth, the model described 
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here, a tensile impulse could be estimated. This could provide a check 

on any stress gaging of the samples a nd would be an extremely stable 

measuring device. 

7. SU~WARY OF DUCTILE FRACTURE 

The results of a study 0f the dynamic fracture of ductile metals have 

been reported. They include the development of techniques for quantita

tively measur ing the nucleation a nd growth rates of v oids (the observed 

damage mode) and for finding their dependence o n stress, time, material 

viscosity, and yield strength. These results were used to formulate a 

model describing the fracture process in ductile metals in which the 

effects of damage on the local stress are considered. A simple damage 

threshold criterion based on the v oid growth mech a nism was also formulated 

and predic tions were made f or OFHC copper. Experimenta l data were in 

agreement with these predictions, verifyi ng the model. 

The basic result has been the demonstration of a capability for pre

dicting damage levels a nd distributions for an arbitrary stress history. 

We have shown that t he correlation o f predicted damage with experimentally 

observed damage is good, but not exact. The uncert ainty is believed to 

be related to the model used to include the effect of developing damage 

on the local stress. Even with this error the results are very encouraging 

since at no previous time has such agreement been obtained. 

96 



SECTION IV 

BRITTLE  FRACTURE 

In this section we discuss  the work  performed  on  the  materials 

that,   under dynamic  conditions,   fracture by nucleatlon  and  growth 

of brittle microcracks.     We discuss our experimental  observations and 

our methods of  analysis,   followed by a description of  our  stress history 

calculations and of  the  results  of  these  computations.     Finally,   a sum- 

mary  of our results and conclusions regarding dynamic  brittle  fracture 

is given. 

1. BRITTLE FRACTURE MODEL 

a.  Nature of the Model 

The brittle fracture model was patterned after the ductile 

model and based on observations of damage in Armco iron.  An example of 

this damage is shown for a tapered flyer experiment in Figure 32. The 

sections are from four positions across the target parallel to the im- 

pact plane and show, in descending order, the effect of impacts with 

increasing flyer thickness.  The tapered flyer induces the same peak 

tensile stress at the (expected) spall plane ail across the target, but 

the duration of that stress varies as described in Appendix I,  These 

nominal durations of the peak tensile stress are listed in the figure. 

Clearly the number and length of cracks appear to increase with duration 

of loading. These observations indicate that nncleation and growth of 

cracks must be Included in a model to represent the damage correctly. 

A quantitative picture of the damage is obtained by counting the surface 

tion and sorting into groups by crack length and angle with 
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respect to the direction of impact.  A statistical transformation of the 

observed cracks, similar to that of Kaechele and Tetelman (Ref. 30), is 

i i     3 
made to determine the volume distribution of cracks (number/cm in each 

length and angle group). These distributions In angle, length, and posi- 

tion in the target, as well as stress gage records, should be simulated 

approximately hy the fracture model.  Because of the wealth of Information 

provided by the crack distributions, a model that fits these distributions 

must have considerable fidelity to the actual processes occurring. 

The model provides for the nucleation of cracks as a function 

of stress level, for the growth of the cracks while the stress intensity 

factor exceeds the fracture toughness, and for the relaxation of stress 

as a function of the developing damage.  The growth and stress relaxation 

aspects are based on classical fracture mechanics and fracture dynamics. 

The material information required for using the model to calcu- 

late fracture includes fracture toughness, an initial crack size, limiting 

growth velocity, and nucleation rate parameters. The output from the 

calculation includes number and size of cracks as a function of position 

in the damaged target, and stress histories at any point in the target. 

This output is somewhat more detailed than that for ductile fracture, 

because the crack size distribution is not forced to fit a particular 

analytical form.  The distribution is given in ten increments.  As in 

the ductile fracture calculations, the computed x'esults indicate a plane 

of very high damage with regions of lesser damage on either side. 

b.  Nucleation Rate 

As with ductile fracture, experimentally obtained numbers of 

nuclei refer to observed cracks. Hence, some permanent set (plastic flow) 

must occur, and the crack length and opening must be large enough for 

detection. Generally our observable crack length is a few microns.  In 
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Armco iron the nucleated cracks appear to be randomly or homogeneously 

located; a homogeneous model has been used for nucleation. Also the 

orientation of the cracks with respect to the plane of impact appears to 

be random, but for simplicity, our initial brittle fracture model considers 

all cracks parallel to the plane of impact. The nucleation size is not 

known but is presumed to be about 1 micron. 

The nucleation rate could not be obtained directly from the 

observed damage as it could for incipient ductile fractures. The effect 

of damage on the stress was so great that the stress histories could not 

be approximated as square waves for any cases considered. Hence, for 

our calculations of brittle fracture, a very strong interaction exists 

between the nucleation and the other factors governing the stress history. 

c. Growth Rate  and Growth Threshold 

The growth of cracks as a function of  stress  level has  been 

treated  for many years by workers in  fracture mechanics  and fracture 

dynamics,   such as Griffith (Ref.   3l),   Irwin (Ref.   32), Mott (Ref.   33), 

Sneddon (Ref.   34),  Dulaney and Brace (Ref.   35),  Neuber (Ref.   36),   and 

Barenblatt  (Ref.   37).    Where applicable,  their work has  been used to 

develop  the  growth model.     Growth is presumed to occur when the stress 

intensity factor K    reaches the critical  value or fracture toughness 

K    .     In turn, K      determines the critical  or threshold  stress  for any 
IC IC 

crack length.    The velocity of growth for  stresses above the critical 

level  is presumed to be a function of  stress and to reach a limiting 

value for high stresses. 

We  assume that the crack is penny-shaped,   in an elastic stress field, 

and  its  opening is given by Sneddon's  analysis (Ref.   34)   for a unidirec- 

tional tensile field.    Clearly we are neglecting the orientation of the 

cracks,   the Interaction of adjacent cracks,  and the occurrence of 
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considerable plastic flow at these high stresses. We h a ve also selected 

the simple relation of Mott ( Ref. 33) for velocity, although that relati on 

is known to be approximate even for planar ( not penny-shaped ) c r acks. In 

spite of these shnrtcomings, the f unctional relationships a r e expected 

to have the correct form. The computed crack growth (exhibited later) 

shows reasonable agreement with the observed crack sizes. 

Constitutive Relations 

The pre sence of cracks in the material causes some change in 

the stress-strain or constitutive relations. The propagation of waves 

through the part ly fractured material depends entirely on these consti

tutive relations. Therefore, to perform strP.SS propagation calculations 

that proceed through fracturing, constitutive relations must be developed . 

The current cons titutive relat i ons have been separatect into 

re lations for press ure and deviator stress. They are continuous wi th 

the relations for undamaged material and very similar to those for ductile 

fracture. The primary mechanism for stress reduction in our model is the 

elastic opening of the cracks. This crack volume permits the specific 

volume of the remaining solid tc reduce and thus reduces the stress in 

the solid. Within each one-dimensional cell of the SRI PUFF computer 

code, a state of static equilibrium is presumed, Hence, cracks may send 

recompression waves to adjacent cells, but they are in a state of equi

librium with the material in their own cell. This static requirement may 

be serious if growth velocities approach wave velocities but is probably 

unimportant for the crack velocities in Armco iron ( 1/20 of longitudinal 

sound speed). 
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2.   EXPERIMENTAL PHASE 

The dynamic fracture of brittle solids must include investigations 

of several types of materials if a generalized understanding ,  the frac- 

ture process is to be gained.  Further, truly brittle solids, if they can 

be reproducibly manufactured, have the possibility of being used as stan- 

dards since their fracture behavior is generally well understood under 

quasi-static conditions.  Therefore, in this study of brittle materials 

fractured under dynamic conditions two classes of materials were investi- 

gated. 

The first material is an Isotropie graphite specially prepared by 

Los Alamos Scientific Laboratory (LASL).  This material is unique in that 

the grain size, grain orientation, and material properties are extremely 

reproducible from sample to sample and from manufacturing batch to manu- 

, , 3, 
facturing batch.  This high density graphite (p ^ 1.79 gm/cm j is Isotropie 

and uniformly porous on a macroscopic scale.  It exhibits nearly ideal 

brittle behavior, which is strongly affected by the material microstruc- 

ture. 

The  second material  is Armco iron,   a classic rate-dependent,  body- 

centered,   cubic metal exhibiting a ductile-brittle transition with both 

decreasing temperature and increasing strain rate.     This material  is  of 

interest because its  fracture mode is  typical  of most high strength mate- 

rials exhibiting a ductile-brittle transition. 

In this section we give a short description of the experimental ob- 

servations  for the above materials.     Detailed descriptions of  the experi- 

mental  techniques arc given in Appendices  I and  II. 
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The experimental program 'oisisted of two main elements: 

• Instrumented and uninstrumented impact experiments to produce 

known stress histories in samples under conditions of uniaxial 

strain. 

• Metallurgical examination of impacted specimens. 

Both procedures are the same for the brittle materials as for the pre- 

viously described ductile materials. 

a.   Graphite 

(1) Objective 

The dynamic fracture of the LASL high density graphite was 

studied experimentally.  The purpose of this work was to define the dy- 

namic fracture characteristics of this material under plate impact condi- 

tions so that comparison could be made with results attained by other 

dynamic loading methods. The program consisted of the components given 

in the introduction (Section l) which are necessary to carry out a dynamic 

fracture study. 

The first step in this process is to develop methods for 

recovering samples in a condition suitable for analysis. New recovery 

methods had to be developed for this material because of its low strength; 

these will be described first. The second step is to calculate relevant 

stress histories for the material. This requires a knowledge of the dy- 

namic equation of state, which was not available for graphite. Therefore, 

static uniaxial strain compression tests were carried out to define an 

equation of state to be used as an initial estimate of the dynamic equa- 

tion of state. These results are discussed with other data Including 

sound velocities, density, and yield strength. The third step is to 

characterize the damage metallographlcally.  The results of the fracture 

experiments are presented, and the observed fracture structures are 
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described. A discussion of these results and the relation to standard 

experimental techniques for measuring high rate fracture behavior are 

then discussed.  The results are then summarized and possible future 

work deSffrlbed. 

(2)  Recovery System 

Graphite is, in tension, a low strength material exhibit- 

ing essentially completely brittle behavior.  Typical strengths in tension 

are 2 to 2.5 X 103 psi (0.14 to 0.17 kbar) for ATJ graphite, which has a 

density of 1.73 gm/cm .  The flexural strength of this material, which is 

often used as a measure of impact sf-ength, is from 3.5 to 4.0 X 10 psi 

(0.24 to 0.28 kbar). Compressive strengths in uniaxial strain loading are about 

8.5 X 10 psi (0.59 kbar),  nd the crush strength is approximately twice 

that. Since all these strengths are low, extreme care is necessary in the 

design of the recovery system used in dynamic fracture experiments. 

Two specific recovery systems were used.  In each the sample 

was mounted in the manner described in Appendix II, and the energy absorb- 

ing recovery system (EARS) was used. The two systems of sample mounting 

were designed to provide added strength and proper impedance matching to 

the graphite.  In the first system the graphite sample, a disc 0.250-inch 

thick by 1.5-inch diameter, was mounted in a tapered poly methyl- 

methacrylate (PMMA) ring using a thin layer of C-7 epoxy.  PMMA was chosen 

since the impedance match at low stresses is good and its fracture strength 

is approximately 1 kbar, which is over twice that of the graphite. This 

sample assembly was then sandwiched between two 0.0625-inch-thick PMMA 

discs to provide support during recovery. The whole assembly was then 

press fit into a PMMA plate so that the sample was ejected into the EARS 

following impact.  In this system the sample was Impacted by a 0.1875- 

inch-thick PMMA projectile, the rear surface of which was free so that 
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full stress release was achieved. Four shots were carried out using this 

technique . The system was modified after three shots because parting o f 

the PM~~ cover was observed, and the graphite sampl e prove d to be e asily 

recoverable at the low impact velocities u sed (less than 100 fps ) . 

The second system was similar to that described above in 

that the sample and its mounting ring were identical. No covers were 

placed on the sample, and it was mounted in a 0.250-inch-thick PM~ plat e 

in a taper ed hole allowing ejection and recov e ry. The pro jectiles wer 

g raphi te in this system. They we r e designed to allow r ecov e ry o f the 

projec t ile heads intact. The projectile heads experience only compres 

sive loading a nd can be examined to determine the effects of t he compres 

s ive phase during sho ck loading. 

In almost all cases the samples were r ecovere d in tact with 

no obviou surface damage. The few cases where s urface damage was ob

serv e d occurred at high impact velocities, i.e., at high tensile st r esses 

whe r e full separation was observed. Thi s breakup of t he sample occurred 

in a manner d ef ined by the grain st ruc t ure of the material and might b 

expected during a ny full dynamic fracture occurre nce . 

(3 ) Quasi-static ~easurement of S t ress Volume Path 

Quasi-static, one-dimensional, compression tests were per

formed on samples of the porous LASL graphite. The purpose of these test 

was to measure a loading isotherm and unloading and reloading curves fo r 

this material. It was hoped that these measured curves would aid in the 

formation of constitutive relations for de s cribing the behavior of the 

porous materials in the "partially compacted region," particularly just 

above the " elastic" limit where accurate dynamic measureme nts are diffi

cult t o obtain and are not avai l able for this material. A ma j or question 

of interest was whether the quasi-stat i c pressure-volume ( P-V ) da t a could 
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be used to approximate the dynamic data in the "partial compaction" 

region, despite the drastic differences in loading rate. 

The testing apparatus, shown schematically in Figure 33, 

was made of high strength steel and the capacity limited to about 10 kbar. 

The porous samples used were 1 inch in diameter and either 1-inch or 1/2- 

inch long.  They were inserted in the die inside a 1-mil-thick sleeve of 

indium—the indium being required for lubrication to reduce wall fric- 

tion.  Pressure was applied with a hydraulic jack acting on the plunger 

above the sample. Tests were performed by loading to a certain pressure 

and reading the length of the plungers and sample with a gage recording 

to 0.0001 inch.  Then the pressure was released until the gage reading 

began to change.  The "true" pressure was then taken as the average of 

the upper and lower pressures.  This double-reading procedure was used 

to reduce errors associated with friction between the sample and the 

body of the die. 

MANDREL 

SAMPLE 

FIGURE 33 

M-MM-42 

CUTAWAY VIEW OF QUASI-STATIC COMPRESSION DEVICE 
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To determine both the loading isotherm and the unload

reload behavior, two testing plans were adopted. In the first, the load

ing was increased monotonically to 6 kbar. In the second plan, the load

ing proceeded nly to some fraction of 6 kbar and then the sample was 

unloaded and r eloaded to a higher pressure. This load-unload cycle was 

repeated until 6 kbar was reached. 

Compres s ion of the sample was deduced from the recordea 

overall shortening of the combination of the sample and two plunge r s . 

In determining the total volume change of the ample, an allowance wa s 

also made for the lateral expansion of the die. This lateral expansion 

( which necessitated a small correction to the longitudinal volume change ) 

was deduced from calibration tests with lead as a sample with a known 

compress ion isotherm. 

The loading, unloading, and reloading curves obtained are 

s hown in Figure 34. 

( 4 ) Elast ic Constants from Acoustic Velocity Measurements 

Acoustic velocity measurements were made with s ampl es of 

th e LASL graphite to determine the elastic constants of the material s at 

nominally zero stress levels. The tests were conducted by transmitting 

longitudinal (compressional) and shear pulses through thin s pecimens and 

measuring the t rans tt times. These transit times were then used to com

pute Young's modulus E and Poisson's ratio v for each material. 

The equations used to determine the elastic constants are 

the usual ones for linearly elastic, homogeneous, isotropic materials. 

The samples did not qualify as isotropic on a microscopic scale because 

of thei r porosity. However, with the assumption of macroscopic isotropy 

we can compute longitudinal and shear acoustic velocities CL and c
8 

from 
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the travel times of the waves through the samples.  These sound velocities 

are related to the elastic constants as follows: 

(1 - v) 
(1 - 2v)(l + v) 

1/2 
46 

E    1 
p 2(1 + v) 

1/2 

47 

where 

p = the material density 

Equations (46) and (47) can be solved for E and v, obtaining 

(C /C )  - 2 
L S' 

2(C /C )  - 2 
48 

E  = 2(1 + v)C p 
s 

» 

(1 - 2v)(l + v)  2 
i,  = * ; -*-~t  C p 

(1 - V)     LH 
50) 

The measured acoustic velocities  and  the elastic  constants derived  there- 

from are exhibited   in Table XII. 

Two  features are apparent  in these  resulV.     First, 

Poisson's ratio  is  decreased by compressing to a  pressure of 6  kbar and 

is  essentially zero  after compre.S3ion and release.     Second,  \oung's mod- 

ulus  is halved,   indicating a decrease in the effective strength of the 
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material.  Since the samples are only 85 percent of full density, the 

measured modulus is only an effective modulus reflecting the effects of 

porosity.  Hence, it is likely that fracturing on the basal plane cf the 

graphite occurs and leads to a large decrease in the strength upon sub- 

sequent loading, and also causes a decrease in the measured shear and 

longitudinal wave velocities. 

(5)  Comparison of Static and Dynamic Loading Curves 

If the response of graphite is rate-independent, it should 

be possible to get good agreement between the statically measured loading 

curves and dynamically measured curves.  Little information is currently 

available for dynamic measurements of LASL graphite.  However, Lockheed 

Missiles and Space Company has made some of its data for ATJ-S graphite 

available to us.  Figure 35 compares the SRI static data witli Lockheed's 

Hugoniot data.  The initial densities are different, but if the SRI curve 

were displaced to the same initial density as the Lockheed material, good 

agreement would result.  In addition, a loading curve from shot 844 on 

3 ,      , 
1,76 gm/cm graphite by Charest (Ref. 38) is shown.  The curve, which we 

obtained from a Lagranglan analysis of records from two embedded manganin 

gages, show good correspondence with our static data.  If the SRI static 

curve is assumed to define a Hugoniot curve, the data can be presented in 

the form of a shock velocity-particle velocity curve, or alternatively, as 

a stress-particle velocity curve.  This has been done, and the results are 

shown in Figures 36 and 37.  We have also recently received dynamic Hugoniot 

data for LASL graphite generated by J. A. Charest at EG&G Inc., and these 

data are also in good agreement with the SRI static results. This good 

agreement with the dynamic data indicates that the graphite behaves in 

a rate-independent manner and that static uniaxial strain compressive 

tests are useful in predicting Hugoniot curves for this material and 

other similar materials. 
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FIGURE 35        COMPARISON OF STATIC AND DYNAMIC COMPRESSION CURVES FOR 
SEVERAL GRAPHITES 
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(6)     Dynamic Fracturing Experiments 

Twelve  recovery  shots were  fired on the SRI  2-1/2-inch 

diameter light  gas  gun.     These   shots  are summarized  in Table XIII. 

Metallographic  examination of  the  as-received  LASL graphite 

revealed  that   the microstructure  consisted  of  large,   roughly   spherical 

grains  (~l-mm diameter),   which   in   turn consisted  of  smaller grains 

(~0.1-mm diameter).     The  smaller grains consisted  of crystallograpliically 

oriented material.     However,   since  the orientations  of the smaller grains 

varied randomly,the material  can be considered  Isotropie on   the  scale of 

the  larger grains. 

The microcracks  observed in  the dynamically  loaded  samples 

traveled mostly on  the boundaries  between  the  larger grains.      In  the cases 

in  which  the  cracks  traversed  a   large grain,   the   fracture path   followed 

the   smaller grain boundaries.     Figure 38  shows  micrographs  of   intermediate 

damage in Shot S36;   note that  the  fracture  path  lies mostly  between the 

large grains.     Figure 38(c)  shows  a crack that  lies on the boundaries 

between the  smaller grains.     In  this sample no  separation occurred,   and 

the   sample appeared undamaged before sectioning.     However,  X-ray  radio- 

graphs of the unsectioned  sample  revealed  the presence and  location ol 

the damage.     Figure 39 shows  the X-ray picture of the shock damage  in 

Shot S36,  and Figure 40 shows  a  similar X-ray  radiograph of  the heavier 

damage in Shot S49. 

At high damage levels, where complete separation occurs, 

the main mode of damage is decohesion of the large grains. This can be 

seen in Figure 41,  which shows  the recovered specimen from Shot 835. 

The other extreme,,   incipient damage,   is  shown  in Figure 42, 

where a  few  incipient cracks may  be discerned on the  large grain boundaries. 

i 
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FIGURE 38        INTERMEDIATE DAMAGE  IN  LASL GRAPHITE:    SHOT S36 

117 

'- - -    r^mL       j^y 



•^1 

FIGURE 39 INTERMEDIATE  DAMAGE  IN  LASL  GRAPHITE:     RADIOGRAPH OF SAMPLE 
FROM SHOT S36 

FIGURE 40        HEAVY  DAMAGE  IN  LASL GRAPHITE:    RADIOGRAPH OF SAMPLE FROM 
SHOT S49 
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FIGURE 41        FULL SEPARATION OF LASL GRAPHITE:    SHOT S35 
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FIGURE 42 LIGHT  DAMAGE  IN  LASL GRAPHITE:    SHOT S41 

(?)    Effects  of  Precompression 

As mentioned  earlier,   the graphite projectile heads had 

experienced only compression,   and  thus  served as   ideal  samples  for study 

of the effects of the compressive phase of the loading history.     Unfor- 

mately,  we were not  able  to complete a metallurgical  study of these 

ojectile heads during the course of the projeci;.     A measurement of 

.^ound velocity in such a projectile head was made,   and  the result was 

listed  in Table XII.     It  is  seen that  shock compression  to about 0.3 kbar, 

followed by unloading  to zero stress,  had the effect of  reducing the 

longitudinal sound speed   by about 17 percent.    This  indicates  that dy- 

namic precompression to levels well below the compressive yield point 

nevertheless caused  irreversible changes in the microstructure. 
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More work is obviously needed to clarify the effects of 

compression on this material. Any future work should clearly include 

detailed examination of the graphite projectile heads from these shots. 

(8) Stress History Calculations 

The loading and unloading paths shown in Figure 34 were 

used as the basis of the dynamic equation of state of the LASL graphite, 

and were incorporated in SWAP (Ref. 12 ) computer runs to calculate th e 

stress histories in the graphite targets. For the shots in which PMMA 

covers were not used on the graphite targets, the calculations are espe

cially simple because the peak compressive stress in the graphite was 

less than the compressive strength, and the graphite was assumed to be 

linearly elastic upon loading and unloading. As usual, the stress his

tories varied with depth into the target. However, the damage consisted 

of a limited number of large cracks near the plane of first tension; i t 

was thus not easily characterized by means of the distribution functions 

used successfully for Armco iron. Therefore, we have, for the present, 

limited ourselves to characterizing the damage in the usual qualitative 

way, i.e., the damage is referred to as incipient, intermediate, heavy, 

and the like. Correspondingly, we have simplified the results of the 

stress history calculations by listing only the peak tensile stress and 

the stress duration of the plane of first tension. These data werelisted 

in Table XIII . T3e information in Tab~e XIII is partially reproduced in 

Figure 43, which shows isodamage curves plotted in the space defined by 

the peak tensile stress and the stress duration. The points furthest to 

the right in Figure 43 correspond to the PMMA-covered shots in Table XIII 

in which thP. compressive phase exceeded the compressive strength and pre

sumably weakened the graphite. 
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(9)     Interpretscion of Results 

The nature of  the  shock damage in graphite  (relatively 

few,   long cracks) made it unproductive  to apply  the statistical approach 

that was used  for Armco iron to determine the growth of damage.     However, 

the brittle nature of the damage and  the apparent  rate-independence of 

the  loading curves suggest  tha^  the Griffith-Irwin criterion  (Refs.   31, 

32)   for  initiation and growth of damage should apply.    This criterion, 

for a penny-shaped crack,  can be written as 

(51) 

where cr    is  the externally  applied critical  fracture stress needed in plane 
F 

strain loading to cause an  incipient crack of radius R to propagate,  pro- 

viding the  apparent  surface energy during crack formation is  given by "YC. 
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Inspection of the as-received material shows that many 

voids about 10  cm in diameter exist between the grains,  (See Fig- 

-3 
ure 38c.)  If the incipient crack size is thus chosen to be about 10  cm, 

E assumed to be about 1011 dyn/cm (see Table XII), and v taken to be 
c 

the theoretical  surface energy of graphite,   or about  120 erg/cm    for the 

basal plane  (Ref.   39),   then the order of magnitude of  the critical  stress 

can be calculated   from Eq.   (5l)   to be 

er    ~ 0.1  kbar 
F 

which is consistent with tne results shown in Figure 43, as well as being 

in the neighborhood of the static uniaxial stress tensile strength 

(0.14 to 0.17 kbar). 

The tentative conclusion is that crack nucleation in a 

very brittle material such as graphite may be expected to show little 

rate dependence, and the standard Griffith-Irwin (i.e., fracture tough- 

ness) criterion may be used to predict the stress at which growth of 

microcracks is initiated. The growth phase, however, will naturally be 

time dependent; the cracks will grow to greater sizes if the stress dura- 

tion is increased. 

A primitive model that fits the meager data currently avail- 

able is the following.  Assume that microcracks are activated, as discussed 

above, at a threshold stress CTQ of about 0.1 kbar in accordance with the 

Griffith-Irwin fracture toughness criterion.  Assume further that a mea- 

sure of damage is the average crack length given by the average crack 

velocity times the tensile stress duration.  If we further assume that 

the average crack velocity is a linear function of excess stress a - UQ 

the damage should be proportional to the excess impulse (a - cO*' where 

t is the tensile stress duration.  Examination of the incipient damage 
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curve in Figure 43 shows that this curve is indeed well describe d by 

t he formula 

where 

= 0.1 kbar 

( cr - cr ) t = 0.5 kbar-~sec 
0 

(52) 

A more s ophi s ticate d mode l of crack nucl e ation and growth, 

such as that used for Armco iron and discussed in de t ail in Appe ndix VIII, 

could of course be used. However, the experiment al results are currently 

too meager t o justify such a procedure. 

An interesting feature of the above simple model is tha t 

it predicts that the damage nucleation t h r e shold stress is a function 

of pore size and sugges ts that t he porosity o f the graphite is import ant 

in determining the resistance of the ma t erial t o shock damage. 

The preceding discussion has bee n directed to explaining 

the damage t hreshold conditions. In the following, the full separation 

or fracture conditions will be considere d on an energy basis. In the 

case of graphite i t has been found that the dynamic fracture behavior 

measured by standard notched bar tests can be cor r e lated with static bend 

rupture t e sts. For ATJ graphite the elastic energy density in the surface 

element in a bend rupture test necessary to cause full fracture is about 

4 X 107 erg/ cm3 ." In our tests, if we assume the volume change can be 

correlated with elastic strain, the elastic strain energy density under 

conditions for full fracture is about 2 X 107 erg/cm
3

. As it is diffi-

cult to ascertain the exac t s tress and strain in tension under dynamic 

conditions, this correlation is very encouraging. The inference of this 

correlation is that, for materials that are both brittle and essentially 

rate-independent, dynamic fracture behavior can be approximated by cor-

relation with the results of static tests. 
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1 

Armco  Iron 

The dynamic  fracture of brittle materials occurs by  the  nuclea- 

tion and growth of damage  in the  form of planar cracks.     In Armco iron, 

dynamic  fracture occurs   in a brittle-ductile sequence.     First, brittle 

cleavage cracks are  nucleated    and    traverse individual  grains,  being 

arrested at grain boundaries.    Second cracks coalesce by ductile mecha- 

nisms through the extension of  ligaments between non-coplanar cracks.     Tins 

sequence of events  allows  the  formation of a high damage  level at rela- 

tively   low stresses   in  the   form of brittle cracks.     Much  higher stresses 

are necessary  for full  separation of the material.     These observations 

can be described by  three  steps,   each of which may be considered separately. 

These are:     (l)  crack nucleation—brittle,   (2)  crack growth—brittle,  and 

(3)   crack coalescense—ductile.     We    will   discuss   these physical phenomena 

in  the  following. 

Again,  as with  the ductile dynamic fracture  investigation,   the 

intent of this  investigation of brittle dynamic  fracture  is  to determine 

the  stress and tine dependences of crack nucleation and growth rates to 

develop a description of  the  fracture process.     First,   a  specimen is 

shocked with a known stress history and recovered.     Next,   the damage is 

described quantitatively at  a position in  the specimen shocked  to a known 

stress for a specific  length of time.     The nucleation frequency and growth 

rates at a specific  stress  are then extracted from a comparison of crack 

density and size distributions at  specimen locations  shocked to the  same 

stress for different  times.     Thus  to make this approach work for a spe- 

cific brittle material,  we must be able to:     (l)   load dynamically and 

recover specimens,  (2) achieve an experimental control so that the cracks 

can be stopped in different  stages of growth,  (3)  describe  the size and 

spatial distributions of cracks quantitatively,  and  (4)   specify the macro- 

scopic stress and time at  stress experienced at any  location in the speci- 

men assuming either no damage formation or nucleation and growth of damage. 
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It is important to note any correlations that exist between 

specific material properties and the experimentally determined nucleation 

and growth laws. Such correlations are useful as guides for predicting 

the behavior of similar materials. 

A total of seven symmetric impact experiments were carried out 

using the 2-1/2-inch-barrel-diameter light gas gun to investigate the 

dynamic fracture of Armco iron. The objectives of these experiments were 

to gain insight into the sequence of events leading to the brittle frac

ture of Armco iron, to define the important parameters in this sequence, 

and to measure fracture signals resulting from the dynamic fractureprocess. 

To meet these objectives, five of the experiments were tapered flyer shots 

(See Appendix I ) . This was done so that the development of damage at 

constant stress could be observed over a continuous range of l evelscaused 

by the variation of time at stress with position in the sample. Further, 

since brittle crack growt h rates are extremely large, a continuous obser

vation of the damage as a function of time at stress is necessary so that 

cracks can be observed at different stages of growth. The remaining two 

experiments were instrumented with back surface manganin piezoresistive 

stress gages to record fracture signals. The details of these experiments 

are presented in Table XIV. 

Figure 44 shows the damage observed in a 6.313-mm-thick sample 

impacted with a flyer projectile varying in thickness from 3.156 mm to 

1.578 mm at a velocity of 0.103 mm/~sec (Shot S1). The time at stress 

for this experiment varied from 0.74 ~sec at the thick end of the projec

tile to 0.26 ~sec at the thin end. Figu1·e 44 shows a region at stress 

for approximately 0.34 ~sec. A low crack density is seen in which most 

of the cracks are smaller than one grain diameter. Also, the residual 

crack opening displacement is small, indicating that very little plastic 

deformation occurred at the crack tip. At a shorter time at stress, the 
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Table XIV 

SUMMARY OF DYNAMIC FLYER  IMPACT EXPERIMENTS  FOR ARMCO   IRON 

Shot 

No. 

a SI 

S2a 

SG" 

S8d 

sir 

S25c 

S26c 

Impact 
Velocity Sample Projectile 

(mm/|isec) (mm) 

6.313 

(mm) Comments 

0.1033 3.156  to  1.578 Incipient  to 
intermediate 

damage 

0.0905 6.313 3.156   to 1.578 Incipient to 

intermediate 

0.135 3.156 1.578   to 0.789 No damage 

0.190 1.578 0.789  to 0.394 Heavy   damage 

0.154 3.156 1.578   to 0.789 Incipient to 

intermediate 
damage 

0.196 3.156 1.138 Intermediate 
damage 

0.236 1.578 0.568 Intermediate 
damage 

a    Tapered flyer shots  designed so  that  the  time at  stress was 
varied over a wide range  for a constant  stress  experiment. 

b     Instrumented with a maneanln pressure transducer directly 
behind  the sample. 
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crack density was essentially zero (i.e., one or two cracks were observed 

in the micrograph), and no cracks were longer than 50 microns.  This in- 

dicates that no r.iacroscopic crack growth occurred at the stress achieved 

in this experiment, approximately 11 kbar tension.  Hence, an incubation 

time for cracks has been observed which is, at a stress of 10 kbar, ap- 

proximately 0.15 to 0.2 |isec.  This incubation time is certainly stress 

dependent, decreasing as the applied stress is increased.  This stress 

dependent incubation time therefore defines the no-damage threshold :or 

the dynamic fracture of Armco iron.  It is likely that similar behavior 

will be observed in other brittle metals and nonmetals. Figure 44, which 

is a micrograph .of a region at stress for approximately 0.45 asec, shows 

a broader damage zone, a higher crack density and wid-ir crack opening 

displacements than those sho^n in Figure 44a. Similar changes, partic- 

ularly witn respect to the crack opening displacement, are seen to occur 

with further increases in the time at stress in Figure 44c (0.55 M'Sec) 

and in Figure 44d (0.67 lisec). These observations allow construction of 

a mechanistic model to describe the fracture procese In brittle metals, 

such as Armco iron. 

In Armco iron and other brittle body-centered cubic materials, 

dynamic fracture at room temperature occurs by the nucleation and growth 

of brittle cleavage cracks along intragranular or intergranular paths. 

Intergranular fracture can be affected by concentration of oxygen, phos- 

phorous, or other embrittling constituents at grain boundaries leading to 

a local increase in yield stress and, possibly, a lowering of the local 

surface energy. This lowering of the local surface energy allows cracks 

to propagate preferentially along grain boundaries. Little plastic de- 

formation occurs during intergranualar fracture, since the grain boundaries 

form a continuous path through the material for the growth of cracks and 

coplanarity is therefore not necessary. 
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The cracks observed in Armco iron, however, wore mnstlv trans- 

granular, and thus are in all likelihood initiated by microscopic plastic 

deformation.  Several models for the dependence ol crack nucleatlon on 

plastic deformation have been proposed.  The one most discussed is the 

dislocation pile-up (Refs. 40 and 33).  In this mode], a stress concen- 

tration results from the impingement of an array of coplanar dislocations 

on an impenetrable barrier such as a grain boundary or a hard Inclusion. 

Also, twin interactions may also nucleate cracks (Ref. 41) because of 

the large stress fields at the tip of a twin.  In any case, such mecha- 

nisms are stress and time dependent, since the development of the stress 

concentration is both stress and time dependent.  In the case of disloca- 

tions, it is probably the stress and time dependence of the dislocation 

mobility that is controlling. 

The propagation of these cracks, once nucleated, is basically 

a brittle process.  It is unlikely that appreciahlo plastic deformation 

occurs at the crack tips during this phase of crack growth.  The velocity 

of►these cracks is undoubtedly large, approaching the limiting velocity 

for crack growth (i.e., approximately 0.3 of the shear wave velocity). 

Because of the orientation dependence of the crack plane [i.e., the 

cleavage plane in iron is the (l00) plane], the growth o( cracks in ad- 

jacent grains in a coplanar manner is not likely.  Therefore, a single 

crack is effectively stopped at a grain boundary and is limited to a 

single grain diameter in length.  Full failure jan occur only by linking 

these cracks through formation of brittle cracks or by ductile mechanisms. 

The mechanism observed is ductile failure of the ligaments connecting Lhe 

cracks. 

Another series of experiments were carried out to investigate 

the effects of the shock induced damage on the residual strength of Armco 

iron.  In these experiments cylindrical samples 0.25-in. in diameter were 
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spark machined from the damaged samples with the plane of damage normal 

to the cylinder axis.  They were then friction gripped at the ends and 

-5 
pulled in tension at a crosshead speed of 2.1 X 10  cm/sec. The 

engineering stress-strain behavior observed is shown in Figure 45 along 

with the behavior of as-received material. 

Four points are apparent from these results.  First, the yield 

strength and ultimate tensile strength are equal for the damage samples 

and are greatly reduced as shown in Figure 46.  Second, the apparent 

strain to fracture is greatly reduced.  Third the apparent modulus de- 

creases with increasing impact velocity.  Fourth, and most important, 

the onset of damage results in a drastic decrease in strength, indicat- 

ing that for brittle materials the damage threshold essentially defines 

the useful limit of the material. 

The first three of these effects are consistent with the in- 

creasing damage with increasing impact velocity.  The higher the damage 

level, the lower the effective strength in the damage zone, hence the 

lower yield strength. The higher the damage in the damage zone, the 

lower the effective modulus due to both stress concentration and reduc- 

tion of effective load bearing area.  Also, the higher the damage, the 

less the work necessary to cause full failure, and the strain to failure 

decreases. 

The fourth point is very important as it gives information 

necessary for engineering decisions.  The drastic decrease in strength 

at the onset of damage indicates that this value (threshold damage level 

strength) is effectively an upper design limit for application of such 

materials. Therefore, such data are absolutely necessary for engineering 

design and for an understanding of the mechanisms leading to the forma- 

tion of damage (i.e., nucleation) primary to evaluation of new materials 

and to improvemencs in the uses of old materials. 
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EFFECT OF DAMAGE ON THE ULTIMATE TENSILE STRENGTH AND THE YIELD 

STRENGTH OF ARMCO IRON 

c.   99.99 Percent Pure Iron 

The dynamic fracture of 99.99 percent pure iron was also ex- 

perimentally investigated.  Four impact experiments were carried out 

using the 2-1/2-in.-barrel-diameter light gas gun.  The details of 

these experiments are listed in Table XV.  These experiments required 

the use of Armco iron projectile heads because of the high cost of high 

purity material. Two types of experiments were carried out.  First, 

uniform thickness projectile heads were used to study both damage forma- 

tion and full separation of this material.  Second, a tapered flyer ex- 

periment was carried out to examine, in one experiment, the general 
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Table XV 

SUMMARY OF DYNAMIC FLYER PLATO EXPERIMENTS 

FOR 99.99% PURE IRON 

Impact 

Shot Velocity Sample Projectile 

No. (mm/|J,sec) 

0.093 

(mm) 

2.96 

(mm) Comments 

S37 1.16 No damage 

S38a 0.161 2.98 1.16 to 0.58 Heavy to light damage 

S44 0.103 2.78 1 .16 Light damage 

S45 0.245 3.00 1.16 Full separation 

Tapered flyer shots designed so that the tir.o at stress was 

varied over a wide range for a constant stress experiment. 

nature of the damage development process.  These data are next discussed 

and correlated with observations made on Arrnco iron. 

The data in Table XV show that the damage threshold for the 

pure iron occurred at an Impact velocity of 0.10 mm/|J.sec, which can bo 

compared with the results shown in Table XIV for Arrnco iron.  The threshold 

impact velocity in a nearly equivalent experiment was above 0,135 mm/|isoc. 

Therefore the damage threshold characteristics vary widely for these 

materials and reflect, undoubtedly, the yield behavior.  Further, since 

the high purity ivon has a damage threshold impact velocity-that is less 

than that for Arrnco iron, it is likely that the crack nucleation threshold 

is controlled by the plastic flow of the material.  This is the conclusion 

in spite of the stress risers and inclusions present in the Armco iron, 

which should be active as crack nucleation sites.  Therefore, mechanisms 

associated with the intrinsic material characteristics, rather than the 

inclusion content, seem to be controlling the damage nucleation. 
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Crack distributions observed at  threshold and  intermediate 

damage  levels  are shown in Figures  47  and  48.     The observed crack dis- 

tributions  are broad,   but nearly identical to those  observed in Armco 

iron.     In Figure 48 a  single  large grain  is  observed,   somewhat removed 

from the region of maximum damage containing essentially  isolated cracks. 

These cracks  are  apparently  not associated with grain boundaries or other 

observable metallographic  features.    Therefore,  nucleation probably oc- 

curred  in a currently unknown manner that  is  an inherent property of the 

iron itself,   and  not of the  impurity content. 

GP-e678- 

E 47        THRESHOLD DAMAGE  IN 99.99% PURE  IRON 
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FIGURE 48 INTERMEDIATE DAMAGE IN 99.99% PURE IRON 

Scanning electron microscope micrographs of the fully frac-

tured sample are shown in Figure 49. This figure shows, first, the 

cleavage facets within individual grains and, second, the plastic re-

sponse leading to full failure following the formation of the cleavage 

planes. Specifically, nucleation sites are observed near the sample 

center in Figure 49{b). This is the center of the so-called river pat-

tern observed there. 
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FIGURE 49        DETAILS OF FRACTURE SURFACE 
IN 99.99% PURE IRON 

137 

II     !..  ■^.■F*|.!M.*Mn m« «urn n iiiiiw.ii'r---' 

_   /^^ ~/^ 



r^ 
3.  QUANTIFYING THE DAMAGE 

The statistical treatment of the observed damage in brittle materials 

followed the same general approach as that described for ductile materials 

in Section III, 4,  In brittle materials, however, the microscope damage 

manifests itself as brittle microcracks instead of spherical voids. 

These cracks vary in size, width, and orientation with respect to the axis 

of principal stress.  Therefore, the statistical treatment of the observed 

damage in brittle materials must account for more variables than were 

necessary for the ductile damage. 

As in the case of ductile materials, the shock-loaded specimen is 

sectioned, lapped, and polished so that the plane of polish contains the 

axis of principal stress.  The microcracks intersect the plane of polish 

with varying apparent lengths, widths, and angles to the axis of principal 

stress.  (See Figure 44 for example) The observed parameters are defined 

as follows: 

x , z - location of the apparent center of the crack in the plane 

of polish, z is the direction of the major stress, and x 

is normal to z and in the plane of polish. The origin of 

coordinates is arbitrary and is chosen for convenience, 

a(z) -    peak tensile stress experienced at position z; a is 

assumed independent of x. 

t(z)  = duration of peak tensile stress a(z) at position z.  The 

experiments utilized stress-time histories that were 

approximately square waves; hence a and t determine the 

tensile stress history, 

a =    angle between the normal to the trace of the crack in the 

plane of polish and the z axis. 

c    = half the length of the crack trace in the plane of polish. 
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w    = width of the crack trace in the plane of polish. 

Photographic enlargements of the polish planes are made for each sample, 

and the polish plane is divided into zones corresponding to different 

stress durations.  The Telereadex machine is used to aid in counting the 

cracks and in recording on punched cards the positions of the cracked 

ends, center, and sides.  A small computer program is used to convert 

these numbers to the de'ired values of crack center position, crack 

width crack length, and crack orientation.  Thus, the values of x, z, 

w, c, and Ot  for each crack are recorded.  Since a stress wave analysis 

is used to calculate a(z,t) for each experiment, the resulting data can 

be expressed as a distribution function 

N (Or, c, w, x, z, CT, t) 

where N is 1ae number of observed cracks per unit area in the polish 

plane in the intervals between a  and a +  Aor, c and c + Ac, w and w + Aw, 

z and z + Az, x and x + Ax, a and a + Aa, and t and t + At. 

As in the ductile analysis, however, the distribution of actual 

interest is the volume distribution of cracks that was present before 

the polish plane »as  interposed in the material.  Specifically, we wish 

to ascertain p (9. 5> R, W, x, z, x, a, t), where cp is the angle that 

the normal to the actual crack surface makes with the z axis, 9 is the 

angle by which the normal to the crack plane is rotated around the z 

axis, R is the true crack radius (assuming circular cracks), W is the 

true crack opening displacement, (x,y,z) is the location of the crack 

center (y points into the plane of polish), and a and t specify, as 

before, the tensile stress history (See Figure 50). p is then the number 

of cracks per unit volume In the appropriate intervals of cp, 3, R, W, 

y, z, x, CT, and t. 
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XZ PLANE IS PLANE OF POLISH 

a-b IS APPARENT CRACK LENGTH = 2c 

ANGLE Q IS APPARENT CRACK ORIENTATION 

• CIRCULAR CRACKS 

• ALL 0     EOUALLY PROBABLE 

FIGURE 50 

GA-8678-16 

CIRCULAR CRACK INTERSECTING THE PLANE OF POLISH 

The main statistical problem is thus to transform the observed 

surface distribution N into the desired volume distribution p.  The 

procedure for doing this in the ductile case was incorporated into the 

computer program BABS 1 described earlier (Ref. 12), What is needed is 

thus a more comprehensive form of BABS to perform the same function for 

brittle damage.  The procedure for doing this was worked out and in- 

corporated into a computer program called BABS 2. The method is similar 

to that developed by Kaechele and Tetelman (Ref. 30) but is appreciably 

more complex since Kaechele and Tetelman did not treat the crack size or 
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width distribution. Complete descriptions of the analysis and the com- 

puter program are given in Appendices IX and X.  To make the treatment 

tractable, the following simplifications were made: 

• The cracks were assumed to be penny-shaped. 

• The distributions were assumed to be independent of 9 (the angle of 

rotation around the direction of principal stress). 

• The distributions were assumed to be independent of x and y. 

(This is, in fact, an experimental condition if the material is 

reasonably homogeneous.) 

• The crack length and crack width distributions were handled 

separately', i.e., we may solve either for p (cp, R, z, a, t) 

or for p (9, W, z, a, t). 

Once the volume distributions p (9i R or W, z, a, t) are obtained, 

the nucleation and growth functions are found from the relations: 

öt 
= nucleation rate 

Ü,l^,cp,0 

where Ro is the incipient crack radius, and 

ÖR ÖW 
■r— and  Tr- 
at öt 

p,cp,z,a,t p,cp,z,a,t 

= growth rates 

Examples of the observed brittle crack surface distribution in the 

plane of polish and the corresponding computed volume distribution are 

given in Figures 51 and 52, where we show our results for Axmco  iron shot 

number S25.  Another example is given in the next subsection.  In addition, 

examples of computations performed on assumed test distributions are given 

in Appendix IX, where a complete description of the statistical analysis 

procedures is also given. 
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MIDPOINT OF ZONE 
FROM IMPACT SURFACE 

O Zone 1 
(I Zone 2 
• Zone 3 
O Zone 4 
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© Zone 7 
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0.15533 cm 
0.12819 cm 

FIGURE 51 

0.010 

RADIUS, R - 

CUMULATIVE CRACK SURFACE CONCENTRATION  FOR 
ARMCO IRON:    SHOT S25 
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FIGURE 52 

0.010 

RADIUS — cm 

COMPUTED CUMULATIVE CRACK VOLUME CONCEN- 
TRATION FOR ARMCO IRON:    SHOT S25 
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4.       WAVE   PROPAGATION CALCULATIONS AND  COMPARISON WITH DATA 

The  equations   used  for  nucleation   and  growth  of  cracks  and the 

constitutive  relations  for  damaged material   are   derived  in   this  section, 

These equations   were  used   in wave  propagation calculations  to compute 

the damage  from  impacts  in Armco iron   plates. 

a.        Nucleation  Kate 

The  nucleation rate was  assumed  to have  the   form 

o - o 
N     =    n     expI 

0      l \       a 
nOl 

(55) 

where 

a  = a threshold stress for nucleation 
nO 

n , a = constants 
0  1 

Tliis nucleation rate is similar to that derived from the ductile frac- 

ture experimental data.  The form also resembles the form given by 

Zhurkov (Ref. 42) for rate of breakage of atomic bonds. 

All the cracks are assumed to be nucleated at the same radius 

(half-length) and to lie in a plane perpendicular to the direction of 

propagation.  A radius of about one micron was chosen for our calculations, 

b.   Crack Growth 

Traditional fracture mechanics has been called upon to deter- 

mine whether growth occurs under a given tensile stress.  According to 

Sneddon (Ref. 34), the critical crack radius for a penny-shaped crack 

in a one-directional, elastic, tensile field is 
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R*     = 
TTEy 

4o2(l-  v2) 

TTK 

4a 
2 

(56) 

where 

E = the elastic modulus 

Y = the surface energy 

a = the one-directional tensile  stress applied at infinity 

v = Poisson's ratio 

K = the plane strain fracture toughness  in the opening mode. 

If  the crack radius  is less than R*,   no growth occurs.     If the  radius 

is  larger,  growth is  presumed to occur with a velocity given by the 

relation of  Dulaney and Brace (Ref.   35)  for the  propagation of  a planar 

crack in elastic material. 

V 
c R* 

V " R 
t 

R > R* (57) 

where 

V = the  growth velocity 
c 

V = the terminal velocity 

R = the crack radius 

c.       Constitutive Relations 

The form of the constitutive relations for material with 

voids was used also for material with cracks.    These relations provide 

for separate expressions for pressure and devlator stress.     Instead of 
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a void volume, the damage is measured by the total volume of the cracks, 

This volume is computed from the expression of Irwin (Ref. 32) for the 

volume of a penny-shaped crack in an elastic medium 

v = 

3 
4TTR O 

3E 

Because no plastic flow is provided for in this expression, the volume 

so obtained is a lower-bound estimate of the actual volume.  Because 

the crack volume is elastic, it becomes zero when tensile stresses are 

removed.  Plastic flow at the crack tips can be included in our calcula- 

tions in a straightforward manner, and this may be done in future work. 

A more complete description of the constitutive relations is presented 

in Section III 5c and in Appendix VIII. 

d.  Wave Propagation Results 

From the wave propagation calculations we obtain stress his- 

tories at selected points, total crack concentrations (,number/cm ), 

number of cracks at each crack radius (a size distribution), and rela- 

tive crack volume.  Since each of these can be obtained at any depth 

in the target, we can study the variation of crack concentration or 

volume as a function of position. 

The calculations made for Armco iron are based on the fracture 

parameters listed in Table XVI and the shot conditions in Table XVII. 

Note that the fracture toughness, threshold stress for nucleation, and 

nucleation radius are coordinated so that growth begins at tie  nuclea- 
4 

tion stress level. The limiting velocity is only 3 x 10 cm/sec, or 

about 5 percent of longitudinal sound speed; this low velocity probably 

indicates that considerable plastic flow is occurring at the crack tip 

during propagation. 
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Table XVI 

BRITTLE FRACTURE PARAMETERS 

Parameter Units 

Tl(Vt) cm/sec 

T2(KIc) 
.  ,  3/2 
dyn/cm 

T3 cm 

T4(n0) 
no. 
3 , 

cm /sec 

T5(anO) 
, 2 

dyn/cm 

T6(ai) 
,    2 

dyn/cm 

Description 

Limiting crack velocity 

Fracture toughness 

Nucleation crack radius 

Nucleation rate coefficient 

Nucleation threshold 

Nucleation parameter 

Armco Iron 

3 X 10 

3.4 X 10 

1 X 10 

1 X 10 

-3 X 10 

-9.5 X 10 

13 

Table XVII 

IMPACT CONDITIONS FOR EXPERIMENTS IN ARMCO IRON 

Fly er Target 

Thickness 

Impact 

Stress Shot Thickness Velocity Backing 

Number (cm) (cm/sec) (cm) (kbar) Material 

886 0.236 
3 

9.15 X 10 0.635 18.5 none 

S25 0.1138 1.96 X 104 0.3156 38.3 PMMA 
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The observed and computed damage are compared in Figures 53 

to 56. The observed distributions appear to be essentially linear on 

the semilog scale.  They depart from linearity only for small cracks; 

this departure may be caused by our inability to see very small cracks 

that close after the passage of the tensile wave. The computed dis- 

tributions are not linear, and they tend to have less slope than the 

observed distributions.  Since the observed damage curves are nearly 

parallel to each other, there is little tendency for adjacent curves 

to cross. However, the computed curves have dissimilar slopes and do 

cross in some instances. These observations indicate that some changes 

are probably needed in the nucleation and growth functions and that it 

would be desirable to nucleate a distribution of cracks, rather than a 

single size crack. 

The comparison of observed and computed damage should be made 

on the basis of the portion of the distribution that contributes most 

strongly to stress and modulus reduction. According to Eq. (58), the 

total crack volume is proportional to number times radius cubed.  If 

this volume is the correct measure of damage, then the maximum contri- 

bution to damage is from a central portion of the distribution; at the 

large radius end there are too few cracks and at the small radius end, 

individual volumes are too small. Hence, it is this central portion of 

the distribution curves that should be matched.  An attempt to compare 

crack concentrations in this middle range is shown in Figures 57 and 58. 

The observed distributions show a considerably sharper peak at the spall 

plane than the computed distributions; this indicates that insufficient 

damage is accounted for in the computations. Higher damage might be 

produced by: 

•  Increasing the volume of each crack (by permitting 

plastic deformation) . 

148 

7——-*—^- 

- ^- -^. 



~n 
108 

10" 

MIDPOINT OF ZCNE  FROM 

IMPACT INTERFACE 

0  Zone 1 0.483 cm 

9   Zone 2 0.445 cm 

•   Zone 3 0.407 cm 

0   Zone 4 0.369 cm 

S  Zone 5 0.331  cm 

1 
0.005 0.010 

RADIUS — cm 

0.015 0020 

GA-8678-67 

FIGURE 53        CRACK SIZE DISTRIBUTIONS IN ZONES NEAR THE 
SPALL PLANE IN ARMCO IRON:    SHOT 886 
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FIGURE 54 COMPUTED CRACK SIZE  DISTRIBUTIONS  FOR 
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FIGURE 55        CRACK SIZE DISTRIBUTIONS IN ZONES NEAR THE SPALL 

PLANE  IN ARMCO IRON:    SHOT S25 
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• Providing for interaction of cracks and thereby an in- 

crease in the effect on stress reduction, 

• Modifying the constitutive relations to show more stress 

reduction for a given crack volume. 

All these three are possible mechanisms for improving the fracture cal- 

culations. 

A stress record was obtained from a manganin gage in a block 

of PMMA behind the Armco iron target on Shot S25. This record is com- 

pared in Figure 59 with stress histories from two computations.  The 

poor comparison of the compressive pulses indicates possible inaccuracy 

7.0 

6.0 

5.0   — 

4.0   — 

COMPUTATION 111 D 

EXPERIMENTAL RECORD 

85 
f 3.0 

2 0 

1.0 

COMPUTATION 
111 E 

0.6 1.0 

TIME AFTER IMPACT — microseconds 
1.5 

GA-8678-73 

FIGURE 59 COMPARISON OF STRESS RECORD FROM MANGANIN 
GAGE WITH THE COMPUTED STRESS HISTORY FOR 
ARMCO IRON:    SHOT S25 

155 

t?zsst 



^^ m  J ■ 

in the equation of state of the Armco iron and also in that of the PMMA. 

The region of interest in the figure is the so-called "spall signal," 

the hump following the main compressive pulse.  Although the computed 

damage from the two calculations shown was similar, the stress histories 

appear different.  Furthermore, these histories appear to bracket the 

experimental record, suggesting that with a few more trials good agree- 

ment could be obtained between computed and experimental stresses. 

The foregoing initial results with the brittle fracture cal- 

culations have been encouraging.  They give some hope of providing a 

means for gaining a detailed understanding of nucleation and growth. 

The nucleation function appears to have an appropriate form. 

A study of the computed distributions has already led to more 

understanding of the nucleation and growth process.  In our trial cal- 

culations it was noticed that the shape of the distribution was at least 

somewhat dependent on the shape of the rising portion of the tensile 

wave.  New groups of cracks are nucleated at each time increment after 

the fnrashold stress is exceeded. Thus the number of all the larger 

cracks is determined early in the fracture process. The subsequent 

stress l.Ai>*ory  merely allows the cracks to grow. To make the crack size 

distribution less dependent on the rise of the stress wave, it may be 

advisable to allow for nucleation of a distribution of cracks. Thus 

at each time step, cracks of various sizes would be nucleated. 

A residual crack volume associated with plastic flow about 

the crack should be provided in the calculations. This will require a 

minor change in the present volume formula and the addition of an array 

to store the residual crack opening. 

From the comparisons of computed and experimental results, 

we conclude that an acceptable initial model has been developed.  Modi- 

fications to the model—nucleation of a distribution of cracks, computation 
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of  the  contribution of  plastic  flow  to crack volume,  and  Improvements 

in  the  constitutive relations—will   lead to more accurate results. 

5.        SUMMARY OF BRITTLE  FRACTURE 

The  results  of  a study of  the  dynamic  fracture of  brittle materials 

have been  presented.     As  described   in the  introouction,   the main  compo- 

nents  of   this  approach are: 

• To  load dynamically and recover usable  specimens. 

• To achieve experimental control   so that damage  can be 
arrested  in different  stages  of  growth. 

• To measure quantitatively  the  size  and  spatial  distribution 
of  damage  in the volume of   the material. 

• To specify the macroscopic stress and its duration at any 
point in the sample under conditions of damage nucleation 

and growth. 

• To use the results of these steps to develop a dynamic 
fracture model that includes the effects of developing 

damage on the  local stress  states. 

The  first two of  these steps have  been fully developed and  applied 

to Armco iron and  LASL graphite. The  third  step has been developed  to 

the state where it can be  applied to the brittle metals  in which  statis- 

tical  distributions of cracks are formed.     Step four has been attempted, 

but  the results are considered as only  a  first  approximation  and   further 

work  is necessary.    Step five has alao been carried through and a com- 

puter  program developed  (BFRACT), which yields  prediction of brittle 

damage which can be compared with experimental  results. 

The basic result of  this effort  is  that a predictive capability 

for the dynamic fracture of brittle materials has been developed  and 

compared with experiment.     The agreement between theory  and experiment 

is encouraging,  but further work is  necessary before a fully verified 
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I 
model is formulated.  The primary problem, at present, is in describing 

the effects of developing damage on the local stress and the subsequently 

formed damage.  Further, more complete data on the dependence of the nu- 

cleation and growth functions on material properties are necessary before 

any systematic evaluation of the important material parameters can be 

developed. 
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APPENDIX I 

TAPERED FLYER TECHNIQUE 

The study of the dynamic fracture of metals has shown that the 

damage level achieved in a given material is a function of both the 

tensile stress and its time duration.  This is best seen in Fipjure 60, 

which is a schematic representation of the time dependence of ibe  stress 

threshold for dynamic fracture. 

THRESHOLD DAMAGE CURVE 

DAMAGE 

X     '■NO DAMAGE 

X 

IA) 

TIME   AT STRESS 
GA  86 78  9 

FIGURE 60        SCHEMATIC CURVE SHOWING THE TIME  DEPENDENCE 
OF THE STRESS FOR THRESHOLD DAMAGE.    Region A 
shows the number of experiments necessary to define a 
damage threshold if standard techniques are used.    Region B 
shows that in a single experiment using a tapered flyer, the 
no-damage to damage transition can be spanned in a single 
experiment. 
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The points at (A) in this figure are representative of the typical n 

for determining dynamic fracture thresholds.  Each point represents . 

separate experiment in which each sample must be sectioned and examined 

to determine whether fracture occurred.  As one might suspect, the 

probability of achieving a given level of damage in an exploratory 

investigation is small.  The line at (B) represents the conditions that 

can be achieved in a single experiment using a tapered projectile with a 

planar impact, a technique proposed by Butcher, et al (Ref. 59).  The time 

at stress is controlled by the variation in the projectile theckness with 

position, resulting in a continuous variation in damage across the sample. 

There are two problems in the use of this technique.  First, 

reflection of a dilational shock wave at non-nornal incidence from a 

planar surface causes the formation of a shear wave.  The magnitude of 

this shear wave is small at small angles and has little or no effect on 

the experimental result if the yield strength of the material is large 

enough.  This is apparently the case for all the material studied in 

this work.  The second problem is that the magnitude of the principal 

stress is decreased upon reflection from a tilted surface.  This effect 

is also small for small-tilt angles and has no effect in the experiments 

carried out on this program. 

Figure 61 shows the time at stress in an Armco iron sample 6.313 mm 

thick, impacted with a projectile varying in thickness from 3.156 mm to 

1.578 mm. The time at stress varies from approximately 0.74 n,sec at the 

thick end of the projectile to approximately 0.26 ^sec at the thin end 

of the projectile. The damage produced in such an experiment is shown 

in Figure 62.  The damage plane is seen to follow the plane of maximum 

time at stress and to increase with increasing time at stress.  As is 

obvious, essentially any damage level can be observed by this method, 

and accurate damage curves can be determined. 
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TIME 
AT STRESS 
—ßsec 

PROJECTILE  -  3.175 mm thick 

0 2 4 6 8 

DISTANCE FROM IMPACT SURFACE — mm 

-PROJECTILE       0 159 mm thick 

GA  8678   10 

FIGURE 61 TIME AT STRESS AS A FUNCTION OF  POSITION  IN  A SAMPLE  IMPACTED WITH  A 
TAPERED FLYER:    SHOT SI.    The time at stress is vertical; the position in the 
sample thickness is given on the horizontal axis.    The position across the sample is given 
by the third axis. 
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0.6313 mm 

FIGURE 62 DAMAGE  OBSERVED  IN SHOT SI, A TAPERED FLYER 
SHOT ON ARMCO IRON 
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APPENDIX   II 

OTHER EXPERIMENTAL  TECHNIQUES 

Spallation  experiments were  performed on   the   selected materials   in 

the as-received  condition.     Projectile and  target  plates of   each material 

were usually machined out  of   large  samples   (~48  in.   v ~48  in.   y ~l-l/2   in.) 

obtained  from  suppliers.     Care was  taken during machining  to prevent  lo- 

cal  heating from occurring  in  the  specimens.     Projectile plates were 

commonly  2-7/16-in.-diameter  flat  plates  of  different   thicknesses  and 

with a  surface  finish of 0.0002-in.   rms  and  parallel  to within 0.0005  in. 

Flatness  and  parallelism of  targets were maintained  to 0.0005  in.     The 

experimental  arrangement   is  shown  in Figure  63.     The usable  target  area 

for  spall  observations  equals   the projectile  area  less  the  area  influ- 

enced by edge  effects. 

The experiments were designed in such a way that  the projectile was 

stopped at  Impact.     This  eliminated any  secondary  impacts that might  have 

occurred between the target plate and the ensuing projectile.     (Secon- 

dary impacts of  the target  specimen are undesirable since they might  alter 

the damage caused by the primary  impact.)    The average tilt  at  impact 

using the experimental  system shown in Figure 63 was 750 pxad,  as deter- 

mined by a  set  of  tilt pins  installed  in each target  plate. 

To minimize the edge effects and  to facilitate the recovery of  the 

target  specimen,  we used a tapered plug design.     For uninstrumented  re- 

covery experiments the center region (covering an area of 1-1/2 in. 

diameter) of    the 4-in.-diameter target plate was cut  out at  an angle 

of about  8P  with the normal  in  such a way that  the smaller diameter was 

on the  impact   side of the target   (Figure 63).     Only  the outer portion or 
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retaining ring was kept, and a new tapered plug was machined to fit 

precisely into the center of the retaining ring (see Figure 64). Two 

configurations were used for instrumented recovery experiments. In the 

earlier recovery experiments the 4-in.-diameter target pla te contained a 

1-in.-diameter tapered plug on one side of its center and a manganin-in

* C7-epoxy pressure transducer on optical prism on the other (see Figure 64). 

During the shock experiment only t he plug was recovered for subsequent 

me ta ll0graphic observations. For later experiments it was realized that 

the ~ tress record should correspond with the damage in the plug. Theref ore 

the manganin-in-C7-epoxy gage was mounted directly behind the ! ~ -in-di ameter 

plug. 

For those experiments instrumented with the manganin pressure trans-

ducer, a manganin-in-C7-epoxy gage was mounted to the back of the 4-in.-

diameter target plate. The manganin wire element (~.6(l) was situated 

approximately 0.080 in. from the target-plate/ C7-epoxy interface. Since 

the Hugoniots of the target plate materials and the C7 epoxy are known, 

t he shock wave profile at the target-C7 interface can be obtained from 

that recorded by the manganin-in-C7 gage behind the target. However, 

the effect of wave interactions must be taken into consideration if t he 

exact wave shape at the target-C7 interface is to be obtained. For the 

present study, it was found that the manganin-in-C7 gage could detect 

reliably the spall signal originating within the target plate. 

All samples recovere~ from these dynamic flyer plate experiments 

were sectioned in half. One of the exposed surfaces was then ground to 

remove the layer of material influenced by the sectioning process. The 

surface was polished and in some cases chemically etched with suitable 

etchants and then examined at various magnifications from 8X to lOOOX. 

* Trademark, Acrylic resin produced by Du Pont. 

165 



REAR VIE'V 5IDE VIEW 

(a) 

(b) 

FIGURE 64 

MANGANIN PRESSURE 
TRANSDUCER 

(OR OPTICÄL PRISM) d. 
' 

s 

t 

GA-7456-3 

1LATE  ASSEMBLY SHOWING TAPERED SPECIMEN 

iaj Instrumented assembly; (b) Uninstrumented assembly. 
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APPENDIX III 

DYNAMIC SPHERICAL BUBBLE GROWTH 

As a guide in measuring the growth rate of voids in ductile material 

undergoing fracture, a study was made of the growth of a bubble in a 

spherically-symmetric stress field. The material is assumed to be 

viscous above the yield strength, elastic below. First, a general 

equation for bubble growth is derived. Then this equation is .·olved 

approximately in R('veral ranges of R, the bubble radius. A numerical 

solution i s then i troduced for the full range of R. These numerical 

results lead to appropriate forms for the growth rate relationship. 

1. DERIVATION OF DIFFERENTIAL EQUATION GOVERNING GROWTH 

The equation for the expansion of a cavity in a plastic-viscous 

material is derived by the method of Poritsky (Ref. 43). At the boundary 

o f the cavity the radial stress is 

where 

p = 

y = . 

a ., = 
r 

2 
-P v + 2TJe 

3 r 

pressure (positive in compression) 

yield str~ngth (positive in tension) 

(59) 

e = the radi~l strain rate and is equal to the plastic strain 
r 

rate by assumption.i· '· 

TJ = the coJ~ficient of viscosity 

Here we have assumed that sufficient deformation has occurred that the 

yield strength was exceeded. 
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In Poritsky's approach the equations of motion are reduced to an 

equation at the cavity boundary.  Therefore, the behavior of the entire 

flow field must be represented by the behavior at this boundary.  For this 

reason the threshold pressure 2Y/3 should be reinterpreted.  This 

threshold is the pressure at which yielding occurs.  True, it does occur 

at the boundary at 2Y/3 but not throughout the material surrounding the 

void (See Appendix IV for the threshold pressure in spherical flow). 

Therefore, the threshold pressure is taken here as p  which is a 

function of the yield strength.  Equation (59) is then 

n 

o       =     _p _ p    +  2Tle 
r 0 r (59') 

According to Poritsky's  derivation. 

-2^ (60) 

Then 

a      =    -p - p    - 411 — 
r 0 R 

(61) 

However,   since there is no internal pressure in the bubble, 

p    =     -p    - 4T| - (62) 

This expression for p is then inserted in the general expression for 

void growth, 
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p    K«     ..   3-2    s 
- = —  +RR +-(R)  +   
p    p 2       Rp 

(63) 

where 

0  = surface tension 

the pressure at infinity 

Equation (63) was obtained from a comparison of Eq. (6) of Bornhorst and 

Hatsopoulos (Ref. 44) with Eqs. (23) and (25) of Poritsky.  With the 

value of p from Eq. (62) in Eq. (63), the growth equation becomes 

K  ^  •   3   .2  2CT
S    

T-P0 
fe + -2R + ü(R)  +— = -Ü- 

PR R p 
(64) 

where T, the applied tension, has replaced -p .  For discussion and 
CO 

the numerical solution, the differential equation is rewritten as 

.2 
K + BR + DR  = C (65) 

where 

B = 

C = 

4T] 

R 
P 

T - Pr 2a 

PR 

D = — 
3 
2R 

For consistency with the assumptions used in setting up the equation, 

T cannot be allowed to decrease below p for tensile loading.  For 
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smaller tensile loads, the behavior is elastic and therefore not accounted 

for in our basic differential equation.  To account for compressive 

loading, the sign of the yield strength must be changed, and T must 

again exceed p . 
0 

2.  ANALYTICAL SOLUTION FOR SMALL RADIUS 

•2 
For small radii, the inertia! terms, U  and R , may be approximated. 

The growth rate R is expanded in a series in R as follows 

R = A +AR + AR  ... 
0   1    2 

Then the inertia! terms are derived from the expansion. 

(66) 

R    =     (A     +   2A R   .    .   . )   R 
1 2 

•2 2 
R       =     (A     +AR+AR     ...)R 

0 1 2 

Then  let  A =   (T -  p )/4ll and   the R is given by Eq.   (64)   as 

1  + T?r(A    +  2A R   ...)   + ^J R(A    +  A R   ...) 
41)       1 2 87] 0 1 

A    +  AR 
0 

When R is   replaced  by its expansion in R,   and  coefficients  of  each  term 

in R equated  to zero,   the  coefficients  are  determined  as   follows: 

2T1 

A r A 
87]     0 
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T]    0  1 

^(AA    UAS 
4T]       0 2       2     1 (67) 

3p 
A       =-—  (AA+AA) 

4 211        0  3 12 

A^    =    -IE   (A A    +AA    +iA2) 
5 4T1\04 13       22/ 

Usually the surface  tension will  provide a  very  small  effect   so  that onl' 

odd  powers of R will  contribute  significantly.     If we neglect  A  ,   these 

terms  are 

A.     =    A 

5p     2 
- -?; A 

8T1 

35    a      3 
T2    -2" 

From these coefficients we can estimate the point where the growth rate 

can no longer be approximated by A + A R.  That point will occur when 

r = A^T = -8TiAR 

is  no longer negligible.    Then  the critical radius  is 
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1.6rTl     6.4rTl' 

er     pA P(T - po) 
(68) 

Then R   is about 5 microns for aluminum for which T] = 200 poise, 

3 
p = 2.7 gm/cm , T = 10 kbar, p = 2 kbar, and r = 0.02. 

3.  ANALYTICAL SOLUTION FOR LARGE RADIUS 

Equation (64) can also be solved for large R by treating the viscous 

term approximately.  The equation becomes 

3.2 
ft + — R 

2R 

T - P 
0  4T1 

PR PR 
(69) 

Multiply each term by 2R ft, and combine the first t\ 

— (R R ) 
dt 

T - D 
2 H0   2 •   ST]   -2 
 3R R i R R 
3 p P 

Then we seek a solution of the form 

a   a 
D    !   2 

R = p + r + -2 
R 

(70) 

where 

T - p 
2     0 

3   P 
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For the integration of Eq. (69), replace one of the R values of the last 

3 
term by the series, Eq. (70).  Then integrate and divide by R obtaining 

k2  = 32. HE . Üi . 8Tla2 
PR 2 3 

PR PR 

In R 

The  terms   in this  series  are  compared  with  those  in   the  square  of 

Eq.   (70)   to evaluate a     and   a   . 

Then 

2Tj 

P 

2 

ßp 

The  alternating signs   suggest  an  exponential  series   that may be  approxi- 

mated as 

R     =    0  e 
■2Tl/(pRß) 

(71) 

2       2   2   2 
Comparison of  the  third  term   in  the exponential,   2T1  /(p  R  ß   ),   with  the 

second term  indicates   the range  of  validity of  this   solution.     Let   tliu 

ratio of  successive terms be as  before.     Then 

2       2  2  2 
2T1 /(p R ß  ) J\_ 

r    "        2Tl/(pRß) '     PR8 

Thus  the critical  radius  is,    for  r = 0.02 
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R 
er     0.02pß 

(72) 

For the aluminum with Tj = 200 poise, T = 10 kbar, p    - 2  kbar, 

Y = 3 kbar, the minimum radius should be about 800 microns.  Actuallyi 

as demonstrated later, Eq. (71) appears to be correct down to about 

100 microns. 

4.  NUMERICAL SOLUTION 

Returning to Eq. (65), we rewrite it as 

dV 

DV + BV - C 

-dt (73) 

where V replaces R.  This equation will now be integrated analytically 

for a short time increment At in which the radius will undergo only a 

slight change. 

(B + 6) C e 
0 

■6At 
6 - B 

-6At 
20(1 - C e    ) 

0 

(74) 

where 

2DV + B - 6 
0 

'0 '  2DV + B + 6 
0 

6 =  (B + 4CD)1 
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and V     is  the  velocity at   the  beginning of  the  time  increment.     The 

velocity  is  evaluated  at  the end  of   the  increment  so that   the  appropriate 

radius   to use  in evaluating A,   B,   and D is  the final  radius.     Since  the 

final   radius  depends on the velocity,   the coefficients  and   the  velocity 

are  determined  by iteration. 

A small  time-share computer program was written to  integrate Eq. 

(73).      It  was   found  that  three or  four iterations  were  required   to  make 

successive  velocities  agree  to  0.1  percent  and  that   time   increments  must 

be  controlled  so that  the  radius  does  not   increase more  than  10  percent 

in each  step.     With these controls   the velocity and  radius  were  computed 

to  0.02  percent, 

A sample of the  velocity computations   is shown in Figure  65  for 

aluminum at  10 kbar.     The  results  of   the analytical  expressions,   Eqs, 

(67)   and   (70)   are shown for  comparison. 

H 

x 10b 

10 

!     6 

CC     4 
> 

10' 

ALUMINUM  DATA 

Density =  2.7 gm/cm3 

Viscosity  = 200 poise 

Yield = 3 kbar 

O Solution for Small  Radius 

0  Solution for  Large Radius 

R — microns 
GA-867B-30 

FIGURE 65        GROWTH VELOCITY OF A VOID AS A FUNCTION OF VOID RADIUS: 
COMPARISON OF NUMERICAL AND ANALYTICAL RESULTS FOR A 
TENSILE STRESS OF  10 kbar 
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A series of computations at different stress levels led to the 

curves in Figure 66.  Here it is apparent thai at small R the velocity 

is linearly related to R.  Because of the general appearance of the 
2 

curves, they were fitted with a parabola of the form V = A R + A R . 
12 

It was found that both A and A were linear in stress so that the 
1     2 

velocity is related to stress as 

V =  (a R + a R") (T - p ) 
12 0 

(75) 

where  a    and  a     are  functions  of  viscosity and  density only.   This  form 

appears to be  appropriate  for some  range of   radius beyond  the  solution 

for  small   radius   (Eq.   67),     The upper limit  of applicability was  not 

investigated. 
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FIGURE 66        RELATIONSHIP BETWEEN VELOCITY AND VOID RADIUS AS A FUNCTION 
OF STRESS LEVEL 
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NOMENCLATURE FOR APPENDIX III 

A 

A 
i 

B 

C 

C 

(l  - ^ Y)/4T1,   1/sec 

1-i 
coefficients   in  an expansion for R,   cm       /sec 

/   2 4Tl/pR   ,   1/sec 

/ 2    \   / 2 2 
(T - rYJ/pR   -  2a /pR   ,   cm/sec 

(2DV     + B  -   6)/(2DV     + B  + 6) v       0 0 

n        3/2R,   1/cm 

R   radius of void, cm 

2 
T   applied tension, dyn/cm 

V velocity of void growth, cm/sec 

V initial velocity of void growth, cm/sec 

2 
V yield strength, dyn/cm 

a.       coefficients   in expansions  for R 

e radial   strain  rate,   1/sec 
r 

2 
p   pressure, dyn/cm 

n   threshold pressure, dyn/cnr 
0 

2 
p   pressure at infinity, dyn/cm 
oo 

r   ratio of successive terms in expansion for R 

ll/2 
0   [2/3 * (T - I Y 

9      1/2 
[B     + 4CD)   , 1/ 

p I   , a loading parameter, cm/sec 

2 
sec 
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T]   material viscosity, dyn-sec/cm' 

p   density, gm/cm 

a   radial stress, dyn/cm" 
r 

o   surface tension, dyn/cm 
s 
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APPENDIX IV 

STATIC SPHERICAL GROWTH OF VOIDS 

To aid in understanding the fracture of ductile materials by void 

growth, a brief investigation was made of the growth  of a spherical 

cavity in a spherically symmetric tensile field.  By a reversal of the 

sign of loading, the solution describes the collapse of voids in a porous 

material in a compressive field.  This appendix provides an estimate of 

the threshold stress for rapid growth of voids in tension, and stress- 

volume paths for porous material in tension or compression. 

The stress-strain relationship of a material containing spherical 

voids has been recognized as important in estimating the behavior of 

porous material, although the pores may only roughly approximate spheres. 

The decreased elastic stiffness of material with voids has been studied 

by MacKenzie (Ref. 5), by Hashin (Ref. 45), and by many others.  The 

growth of the void in plastic material has been considered by Hill 

(Ref. 46).  Recently it was realized (Refs. 4 and 12) that ductile ma- 

terials fail by a process of void growth; hence they behave as porous 

materials during fracturing. 

Three static analyses are conducted to study the behavior of porous 

material:  (l) void growth under external tension, (2) void collapse 

under external compression, and (3) void growth under Internal pressure. 

For all three analyses, the material is assumed to be elastic and per- 

fectly plastic, the loading is quasi-static, and the geometry is spheri- 

cally symmetric. 
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1. EXTERNAL TENSION PROBLEM 

An external tension is gradually applied symmetrically to a medium 

with a spherical void of initial radius a
0

. Before yielding begins, 

there is some displacement of the void boundary. This void displacement 

is derived from the general elastic expression ( Ref. 47) for displace-

ment u at any radius. 

u = 

where 

+ 
3 

r 
i 

cro external applied stress ( positive in tension) 

cr . internal stress 
1 

r = internal radius 
i 

K,~ = bulk and shear moduli of the solid material 

( 76 ) 

Then at r = a, u is da, and Eq. ( 76) is rewritten on a differential basi s . 

a 
diJ (_!_ + _!_) 

0 3K 41J. 

da 
= r 

dcr 
3K 0 

where r = 1 + 3K/ ( 4~). On integrating, this expression becomes 

a = 

( 77 ) 

( 78 ) 

Yielding first occurs at the void surface and then continues outward 

with increasing load; the phenomena are similar to those following loading 
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with an internal pressure.  In the elastic region (r > c, c = elastic- 

plastic interface as in Figure 67), the radial and circumferential stresses 

are 

3     3 . 3     3. 
a      =    a c /r     + a (1  - c /r (79) 

1 3     3       1. 3     3. 
a      =    --ac/r     +-ari(2+c/rj 

2     c 2     0 
'79' 

where a    is  the   radial   stress   at   r = c, 
c 

ELASTIC REGION 

Or    '     0„ 

ELASTIC-PLASTIC  BOUNDARY 

VOID  SURFACE GA-8678-32A 

FIGURE 67        GEOMETRY AND NOMENCLATURE  C0R SPHERICAL  VOID 

For yielding to occur  at  r  = c,   it  is necessary that  a    - a    = Y and 
9 r 

hence  that 

a      =    CT„ - r Y c 0      3 
(80) 

Evidently n    = 2Y/3 at  first    yielding   when a    = a    =0.     In  the plastic 
0 c        a 

region,   the equation of equilibrium for the radial direction  is 

182 

-   S        -^- 1   mm   mt  m 



9a 
r 

9r 
=     2 

2Y 
r 

(81 

The  integral  of  this  expression leads  to 

a      =    2Y in 
r (;) 

(82; 

2Y  .en 
(;) 

+ Y 83 

where  a  is  the current   void raa-us.     Equating Eqs.   (80)  and   (82) to find 

the  radial  stress  on  the elastic-plastic  boundary,   we  find  a relation 

between  a    and variables  in the plastic zone 

ao     =    -Y+2Y£n 
(;) 

84 

Determination  of   the motion of  the void  surface  requires  a solution 

of displacements   in  the plastic  and elastic  regions.     From  the elastic 

solution   [Eqs.   (76)   and   (80)], theoutward displacement   in   the elastic 

region is 

V       YcJ 

u   =  1F + —1 
G^r 

(85 

The displacements  in  the plastic  region,   and hence  of  the  void surface, 

are determined  in  two steps,   following the method of Hill   (Ref.   46). 

First a relation  is  found between the displacement  at  any  point  in the 

plastic  region and  the displacement of  the void  boundary.     Differential 

motion is considered  so that  large deformations  can be  followed.    Let 
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a differential displacement at any po 

motion of the void. 

int, du, be proportional to da, the 

du  = vda 
(86) 

Following Hill (Ref. 46), this 

lating compressibility and 
where v is a proportionality factor 

relation is inserted into the expression re 

average stress.  The three principal strains and stresses are: 

de  = — (du) 
r    or 

$1 
9r 

da 
(87) 

d6„  = de 6     cp 

du 
r 

vda 
r 

(88) 

da 

9ar    3ar 
  da + — dr 
^a      ^r 

'aa     ha \ 
_j: + v-^ da 

i ^a    9r / 
89, 

da„ la - (-Xv^U (90) 

With these values 
for stress and strain the compressibility relation is: 

9r  r    3K^a  Zr j \ r 
2a„ (91) 

„hen Eqs. (82) and (83) are inS,rt.d in .,. OD, the foUowin. dlfrenen- 

tial equation for v is found: 
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^+   (2-36)^    =    -^ 
or r a 

92 

where  6   = 2Y/3K. 

With  the condition that v = 1  at  r  = a,   the  solution of  Eq.   (92)   is 

v    = 
2-36 

1 - f>\aj      1 -  6 \r| 
(93; 

The second step in deriving ehe expression for displacement through- 

out the plastic region (a ^ r ^ c) is to express that displacement as a 

function of the applied stress, the motion of the elastic-plastic boundary, 

and the radius, as follows: 

du = 7— da + — dc + — dr = dr 
30   0  ac     dr 

94 

At r = c, this expression is derived from Eq. (85 

c      Y     / 0 
du  = dr  = v da = — da + — dc + I — 

c      c     c      3K  0  2^,     \3K 
— I dr 
3p, /  c 

(95 

Then dr , the particle motion at r = c, is replaced by v da; v  is deter 
c c    c 

mined from Eq. (94) and c is eliminated with the aid of Eq. (84).  The 

differential of c is also found from Eq. (84) 

dc = (da + — der I 
2Y  0/ 

exp 
_0 1 
2Y ' 3 

(96) 

j 

v 
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For convenience  the stress  variable  rr    is  replaced by   a where 

a   = 
3a 

2Y 
97 

Then Eqs.   (84)   and (96)  become 

CV 
c    =     ae 

/3 

do    =     (da + - dal e ' 

(84') 

(96') 

With these values for c, dc, and a,   Eq. (95) becomes, after some re- 
arranging 

da 
a 

i 6r(l - 6)ea(l-0)dc. 
3 

- {a +   3  -   2r) 

(98) 

r - - (a + r) 
3 v    ' 

a(i~5) 

where f = 1 + 3K/(4p,).  Equation (98) can be integrated approximately 

by neglecting the variations of the a's  which are not in the arguments 

of tne exponentials.  Because each of these a's is multiplied by 6, a 

small number, this approximate integration is satisfactory.  To simplify 

the algebra of the integration, replace the denominator of the integrand 

on the right side of Eq. (98) by B - Ce0^    .  Then the integrated form 

is 

in  a 

Ja 

3 
& 

r - ;("+r) 
B Ce 

a(l-6) 

a 

(99) 
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Let F be the coefficient of the logarithm.  Then 

B - Ce 
a2(l-6) 

-iF 

B  - Ce 
^(1-6) 

100) 

where 

F    =  
3 ■[3 - 6(1 + a/r)] 

C    =    6 

1 - - (1 + a/V) 

I (»+ i 
B   =    l - I (a + 3 - 2r) 

Equation   (100)   provides  a relation  between  steps   in  stress a  and steps 

in   the  void   radius during plastic  flow.     The  displacement  of   the void 

boundary  at  the  point of   initial  yielding  is  found from Eq.   (76) for 

O    = 2Y/3 

a       =    ao exp  [2nf/(9K)] a    exp  (6173) flOl 

The complete  solution  for  the motion of   the void boundary   is  obtained 

from  the use of  Eq,   (101) once  and then Eq.   (lOO) for a large  number of 

steps  in stress,     A void growth curve for aluminum calculated  from these 

equations  is shown in Figure 68 for  a yield strength of 2 kbar.     In addi- 

tion,   the trajectories of  the elastic-plastic  bounoary  and  several   initial 

radii  are shown.     There appears  to be very little growth of  the  void until 

the  stress  reaches four or five  times  the yield strength.     The  response 

is  reminiscent of  an elastic-perfectly-plastic  stress-strain curve.     The 
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LU 
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K 

0 

VOID RADIUS 

ELASTIC-PLASTIC 
BOUNDARY 

RADIUS AT 50% 
SOLID DENSITY 

4 6 

RELATIVE LOCATION - r/a. 

8 10 

GA-8678-84A 

FIGURE 68        TRAJECTORY OF  THE  VOID  RADIUS, ELASTIC-PLASTIC 
BOUNDARY, AND SELECTED  RADII   FOR  TENSILE  LOADING 

WHERE YIELD =  2 kbar 

stress  for which  the  void  radius  becomes   infinite   is  found  by  equating 

the  numerator of Eq.   (lOO)  to zero,   that   is, 

B     =    Ce 
a (1-6) 

m 
(102) 

or, 

1        „     B 

m 1-6 C 1-6 
+ 3 - 2r) 

103 

1-6 
Hn   (J'6) in:)' 
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Because  B and C are weak functions of  o   ,   Eq.   (103)   is  solved  iteratively 
m 

for oi  .     The limiting stress is then 
m 

- Y{a   + i; 
o   m 

(104) 

The limiting stress for aluminum is graphed in Figure 69 as a function 

of the yield strength.  If a stress larger than the limiting stress is 

applied, the response will be dynamic.  The void size will be limited by 

rate -'ependent mechanisms:  viscosity, stress relaxation, inertia. 

In a porous material under tension or compression, the flow around 

the void is not spherically symmetric.  However, we expect thai the hulk 

0.5   1.0   1.5    2.0   2.5   3.0 

YIELD STRENGTH, Y — kbar 

3.5    4.0 

GA-8678 85A 

FIGURE 69        RELATIONSHIP BETWEEN FLOW STRESS AND YIELD 
STRENGTH IN TENSION 
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modulus  for  the  spherically  symmetric problem varies qualitatively 

similarly  to  the  bulk modulus  for the porous material.     To determine 

the gross  bulk modulus  for  a porous material,   we  selected   for  study  a 

sphere  of  material  containing  a spherical   void,   that   is,   a  sphere of 

known porosity.     Then  the  coordinates of   the   sphere  of  material  and  the 

void were  followed during  the  loading calculations   to determine the  vari- 

ation of  the bulk modulus.     The bulk modulus,   defined as  the ratio of 

the change   in  stress  to  the volumetric  strain,   decreases when yielding 

occurs  around  the void;   therefore the modulus  is  a  function of yield 

strength.     The modulus  also varies  as  the   void  grows  or diminishes  and 

varies  with  porosity. 

The displacements of  the radii  r were  found  from the  following 

three equations,   which were derived earlier: 

Elastic  at  r  and  a: 

3 
rda        a da 

, o      0 
du    =      +   

3K 2 
4p,r 

105) 

Elastic  at  r,   plastic at  a; 

rda 2, 
0      Yc dc 

du     =       +   
3K „2 

2p,r 
(106) 

Plastic  at   r  and  a: 

du    =    - 
l-6a      1-6'r/ 

2-36 
da (107 

rhe motion   nf   these   selected   radii   were   followed during the loading 

call lilul i on In ,   c,   da    are   known 
0 
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A sample  of  the trajectories of  the  radii  is  shown  in Figure 68  for 

a yield  strength of 2 kbar and an applied  tensile  stress.     The  initial 

radii  are  the  radii  of  spheres with an   initial  gross  density of 50%,   60%, 

70%,   80%,   90%,   and 95% of   the  solid.     Evidently very   little displacement 

of  the  radii  occurs until   the flow stress  of  four  to  five  times  the  yield 

is  reached.     Then the  flow  is unlimited.     Figure  70,   the  stress-specific- 

volume plot   for the same calculation as  Figure 68,   shows  a similar  result. 

The  variations of  bulk modulus with  stress  are  shown in Figure  71 

f   r  a yield  strength of  2  kbar.     This  clearly  shows   the  rapid drop   in 

modulus  that  accompanies yielding,   although this change  is not nearly  so 

apparent   in Figure 68.     The  clastic values  of bulk modulus  at  zero  stress 

12 

10 

CO (/) 
DC 

05 

2   — 

2 3 
SPECIFIC VOLUME relative units 

5 6 

GA-8678-86A 

FIGURE 70        RELATION BETWEEN STRESS AND SPECIFIC VOLUME FOR 
POROUS MATERIAL UNDER TENSION WHERE YIELD = 2 kbar 
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VARIATION OF BULK MUDULUS WITH TENSILE LOAD 
ON A POROUS MATERI AL 

may be compared with the results of MacKenzie (Ref. 5 ), and of Hashin 

( Ref . 45 ) . The present result, derived with the aid of Eq. ( 105 ) is simply 

3 3 
where a / r is 

cubic terms in 

K 
g 

the porosity. 

porosity ) 

K 
g 

= 

= 

K 

MacKenzie's relation is ( negl e cting 

3 3 
K( l - a / r ) 

1 + 3Ka3/ ( 4JJ.T3 ) 
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r 

Hashin1 s expression also reduces to Eq. (109).  Evidently the result of 

our spherical calculation is fairly similar to that from these more com- 

plete elastic analyses.  Equations (108) and (109) are compared in 

Figure 72. 

in 
D 
_J 

Q 
O 

CO 

ui     0.2 

0.4 

FIGURE 72 

MacKENZIE'S^ 
EQUATION 

0.2 0.4 
POROSITY 

0.6 
3/r3 flJ/r 

0.8 1 0 

GA-8678-88A 

VARIATION OF ELASTIC BULK MODULUS 
FROM MACKENZIE'S EQUATION AND THE 
PRESENT RESULTS 
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2.  EXTERNAL COMPRESSION PROBLEM 

The compression of a void under an external compressive stress field 

is obtained from the tensile solution.  The only change required is a 

change in the sign of V, and hence of 5.  Then, Eqs. (79), 1,82), (83), 

and (84) give the stress field, Eq. (93) the displacement field, and 

Eqs. (lOO) and (101) the expressions for void diminution.  For the com- 

pression problem there is no upper limit of stress as in the tensile prob- 

1 em. 

Trajectories of the void boundary, elastic-plas^ic boundary and 

selected radii are shown in Figure 73. 

25 

20 

UJ 

C/5 

15   — 

10 - 

5   - 

FIGURE 73 
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RADIUS            \ 
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1        1 

ELASTIC-            1 
PLASTIC            1 

/BOUNDARY 

I        I                I 
0.5 10 1.5 2.0 2.5 3.0 

RELATIVE  LOCATION — r/a„ 

3.5 4.0 

CA-8678-89A 

TRAJECTORIES OF THE VOID  RADIUS, tLASTIC-PLASTIC 
BOUNDARY, AND SELECTED  RADII  FOR A POROUS MATERIAL 
UNDER COMPRESSION WHERE YIELD = 2 kbar 

194 

.—/„ 



As expected, there is little motion of the points until the material 

at the point becomes plastic. The curves for c, the elastic-plastic 

boundary, appear to reach an asymptote as stress increases. This indi- 

cates that when the stress has reached a level such that the void has 

essentially disappeared, a small sphere of yielded :naterial remains. 

The compression of a void is of interest in analyzing the behavior 

of a porous material.  Therefore, the computed results are depicted as 

specific volume versus stress in Figure 74.  It may be noted that sig- 

nificant decreases in volume do not occur until the stress reaches sev- 

eral times the yield of the material.  Then the volume decrease is 

gradual, as in the tensile case. These stress-volume curves are similar 

to those observed in the dynamic and static compression of porous mate- 

rials (Ref. 5). The variation of bulk modulus for this same problem is 

8 
w 
tr 

25 

20 

15 

10 

PERCENT OF 

SOLID DENSITY 

95 

90 

1.0 1.2 1.4 1.6 1.8 
SPECIFIC VOLUME — relative units 

GA-8678-90A 

FIGURE 74 STRESS VERSUS SPECIFIC VOLUME FOR POROUS 
MATERIALS UNDERGOING COMPRESSION WHERE 
YIELD = 2 kbar 
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shown in Figure 75.  The curves start at elastic values given by Eq. (108), 

drop rapidly as yielding begins, then increase again to the bulk modulus 

of the solid.  From zero up to two or three times the yield strength, 

these compressive moduli follow paths very similar to those obtained in 

tension (Figure 71). 

3.   COMPARISON OF INTERNAL PRESSURE AND EXTERNAL TENSION SOLUTIONS 

The solution to the problem of internal pressure in a void is very 

similar to that for uniform tension outside the void.  The internal 

pressure case is presented here for comparison.  The solution procedure 

follows that for external tension up to the definition of v: 

du = v de :iio) 

800 

— BULK MODULUS OF SOLID 

STRESS, o0 — kbar 
GA-8678-91A 

FIGURE 75        VARIATION OF  BULK MODULUS DURING COMPRESSIVE 
LOADING ON MATERIALS WITH  VARIOUS POROSITIES 
WHERE YIELD = 2 kbar 
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Here, v is the propor t ionality factor between du and de instead of be

tween du and da, as before. The expressions corresponding to Eqs. ( 91 ) 

and ( 92 ) are evaluated as before, replacing a by c. The constant of 

integration for Eq. (92 ) is determined at r = c using the fact from Hill 

( Ref. 46) that 

and that 

in the elastic material 

the value of v is 

v = 

u = 

ou/ oc 
1 - ou/ or 

3 
y c 

61J. 2 
r 

( 111 ) 

( 112 ) 

[as in Eq. (85 ) , with cr
0 

= 0]. Then at r = c 

v = 
c 

6( r - 1) 
2 

1 1- 3 6( r - 1 ) 

( 113 ) 

and the integral of the equation corresponding to E~. (85 ) is 

v = 

where 

6 

1 - 6 

r. = 
l. 

r - .! 6( r - 1) 
3 
2 

1 +- 6( r - 1) 
3 
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and is appr'Kimatel v equal to V,   because 6 is very small.  Ic', v = du/dc 

be evaluated at r - a and eliminate dc and c with the aid of Eqs. {84') 

and (94').  The result is 

da 

a 

i[- 1 +  r e 
ail- 

tia 

brMl-6) (11 aj 

The   integral  of  Eq.   (115)   is 

5{a -a ) 
2    l   L 

1   -   6r e 
-2(l-5) 

-1/3 

yi-') (116) 

This   result   is   very   similar   to   Eq.   (100)   derived   for external   tension. 

The  differences  are   in small   terms  of   the order of   5.     As   for   the   tensile 

case,   a   limiting  stress   is   reached  for which  the numerator   in Eq.   (116) 

becomes   zero.     This   limit   is 

-^M5r.) 

1 - 
In - 

6r 1 - Ml 
i +^ 6{r- i) 

(117) 

irhich   is  evidently  very nearly   the  same  limit obtained   in Eq.   (103). 
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4. SUMMARY 

Expressions relating the stat ~ . void si ze to the applied stresse s 

were obtained for e ternal tensile and compressive stres s e s and f or in

ternal pressure. The external tension case, corresponding to the probl em 

of fracture of ductile materials by void growth, showed small radial 

g rowth until a critical stress of four or five times the yield stren~ t h 

was reached. Then the expansion was infinite. Thus a threshold stress 

for void growth was obtained. 

For external compression, corresponding to the compaction of a 

porous ductile material, the volume char.ge was slight unti 1 the s tress 

was s vera l times the yield stress. Then the volume decreased gradually 

wi t h increasing stress. The collapse of the void l ef t behind a sphere 

of yielded ma t e rial. 

The void growth under an inte rnal pressure gave results that were 

similar, but not identical wi t t he results for an external tension. 

The s t r e ss-volume paths and bulk moduli obtained are expected t o 

i ndicate qualitatively the correct constitutive relations to use f or 

r ea l po rous materials. 
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NOMENCLATURE   FOR  APPENDIX   IV 

B 

C 

F 

K 

Y 

i - ^ (a + 3 - 2r; 

6[r - f (a + r)] 

-[3 - 6(1  + o//T)] 

bulk modulus, dyn/cm 

yield strength, dyn/cm 

;i void radiu:  cm 

a void   radius  at  first  yielding,   cm 
y 

a initial void radius, cm 
0 

a void radius at beginning of integration step, cm 

a void radius at current applied stress, cm 
2 

c radius of elastic-plastic boundary, cm 

r radius 

r internal   radius,   cm 

u radial   particle velocity,   cm/sec 

v proportionality  factor between velocity of  any point and  the 
velocity  of  the void  surface 

r      i + SK/^ 

0/ 

a 

(3a /2Y)  - 1,   dimensionless   applied stress 

dimensionless  stress  to cause  infinite  void  radius 
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a. 
i 

2Y/3K,   dimenslonless  yield  strength 

2 
shear modulus,   dyn/cm 

r 

radial   stress  at elastic-plastic  boundary,   dyn/cm 

,     2 
internal   radial   stress,   dyn/cm 

2 
stress  to cause  infinite void  radius,   dyn/cm 

2 
external   radial  tension,   dyn/cm 

2 
radial stress, dyn/cm 

circumferential stress, dyn/cm 
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Appendix V 

TWO-DIMENSIONAL VOID GROWTH CALCULATIONS:  VOID 

1.   INTRODUCTION 

The following calculations were made to guide in constructing con- 

stitutive relations for material containing voids.  The material was 

idealized as an elastic-viscous-plastic material initially containing a 

uniform spacing of spherical voids.  The "typical" element used in the 

computations was a cylinder with height equal to diameter and containing 

a spherical void.  The cylindrical boundaries are fixed in radial position, 

whereas the planar boundaries move along the cylindrical rvis to provide 

the forcing. 

The computations were conducted with a computer program termed VOID, 

a special-purpose, finite-element, wave propagation code based on work 

of Wilkins (Ref. 48).  The program is listed in this Appendix together 

with flow charts, sample input decks and sample printout.  Special 

features that were added to Wilkin's development are documented below. 

The cell layout, which is described first, was constructed to fit the 

current problem - an external cylindrical boundary and an internal 

spherical boundary - with high fidelity and to permit large cell distortions 

The momentum conservation relations were modified to be better suited 

to the axisymmetric problem dealt with here.  Calculations using the 

traditional form of Wilkins (Ref. 48) led to an excessive void growth 

along the axis of symmetry.  Therefore, the momentum conservation rela- 

tions are rederived here to be exact within the constraints of the finite 

element approximation. To provide accurately for the viscous void growth, 
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a fairly complete stress relaxation and strain hardening constitutive 

relation for multidimensional problems was incorporated into the program. 

This relation augments the Mie-Gruneisen equation of state already in 

the pi·<>gram. To ensure stability in the calculations, a general stabil-

ity criterion was developed for multidimensional problems with arbitrarily 

complex equations of state. In addition, the strain computation was 

rederived to ascertain that its accuracy was consistent with that of the 

memen t um calculations. 

The purpose of the calculations was to provide stress-strain relations 

for material with voids and to determine the growth pattern of the void. 

Particular results expected were: 

• Relation of growth velocity to average applied stress a nd 

material viscosity. 

• Effect of a threshold stress on void growth, 

• Relation of average pressure on the cell boundaries to the 

average specific volume of the solid material, 

• Relation of average deviator stress to average axial strain 
and viscosity. 

• Eccentricity of the void as it grows. 

The average stresses mentioned above were found by averaging over the 

cylindrical or planar faces; the average axial strain was computed from 

the motion of the planar faces. In addition to the above results, we 

expected some insight into the problem from the listing of microscopic 

stresses near the void. 

The computer runs made are described briefly, their output summarized, 

and constitutive relations are constructed from the results. 
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FIGURE  76        CELL LAYOUT FOR  AXISYMMETRIC VOID PROBLEM 
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where 

R = the radius with subscripts k and j ( k varies from 1 at the 

outer boundary to the maximum at the void surface, j jncreases 

from the axis of symmetry) 

R the initial radius of the void 
a 

R the radius to the external boundary along the axis of symmetry 
b 

NR = the number of cells in the radial direction 

A slight modification of Eq. ( 119 ) is used to lay out the radii along 

other j rows, 

R 
k,j 

= ·k-l,j (.b 
R 

a 
s e c ( j 

R 
a 

sec( j )

k/N 

- 1 ) t:.cp R 

- 1) t:.cp R )

1/N 

( 120) 

where t:.cp is the uniform angular spa cing between j rows. For the compu-

tations an orthogonal Eulerian grid is used to locate all the coordinates. 

The origin of coordinates is on the axis of symmetry as shown in Figure 76, 

The x axis lies on th e axis of symmetry and is positive towards the right, 

The y a xis is positive upward in the figure. The x and y values of the 

radial coordinate points given by Eq. ( 120) are: 

X 
k,j 

R cos(j - 1) t:.cp 
k,j = 

( 121) 

206 





in the radial direction and elongate in the angular direction;   therefore, 

it would be  appropriate to choose N    somewhat  larger than indicated by 

Eq.   (124). 

The loading is provided by moving the  left planar boundary at a 

constant  velocity,   thus  applying an approximately constant  axial   strain 

rate to the  cylinder. 
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3.  MOMENTUM CONSERVATION 

In deriving momentum conservation relations it is possible to use 

either a discretization of the differential equations of momentum con- 

servation or to consider force balances around a finite element.  In 

the following derivation the second point, of view, using the finite 

element, is followed.  Therefore the steps in the calculation are to 

isolate a volume element for which the acceleration and velocity are 

computed, to compute the forces acting on that element, and to compute 

the mass of the element. 

Two types of cell^ are defined for the wave propagation calculation. 

Both are shown in Figure 77, which contains a grid of coordinate points. 

COORDINATE POINTS 

CELL FOR 
STRESS COMPUTATIONS 

CELL  FOR 
MOMENTUM 
COMPUTATIONS 

QA-8678-3S 

FIGURE 77        TYPES OF CELLS FOR STRESS AND MOMENTUM 
COMPUTATIONS 
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Cell A is the natural cell surrounded by four coordinate points.  This 

is the cell for which the strains and stresses, which are homogeneous 

throughout each cell, are computed.  The momentum computation determines 

the velocity of the coordinate points.  For these calculations cell B, 

containing the mass around a coordinate point, is used.  The calculations 

are broken into four portions corresponding to the parts lying in each 

of the surrounding stress cells.  One typical portion is shown in 

Figure 78 with the nomenclature and sign convention that are used in 

the derivation. 

FIGURE 78   STRESS AND COORDINATE NOMENCLATURE FOR A CELL 

The configuration of the shaded element is defined in such a way 

that the x and y coordinates of the point 0 are averages of the coordi- 

nates at the four corners of the stress cell. An end view is also 

shown in Figure 78 as a reminder of the three-dimensional character of 
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the element. The areas of the shaded element on which stresses act in 

the x and y directions are as follows: 

A 
yy 

= 

A 
XX 

= 
d8 

(y -4 . :? (

y2 + y4 
y )---

4 2 

\ 

+ y3) 

x2: x3)- ('3: Y4 
+ Y~(o 

(125) 

The area in the x-y plane on which the circumferential stress acts is 

broken into two portions A
0 

and A
3 

as shown in Figure 78. These portion3 

and the total are: 

A 
0 

1 = -[(2x - X )(y - y
4

) + X (y + y - 2y ) 
8 0 3 2 23 4 0 

1 
A = -[x (y - y ) + X (y - y ) + X (y - y )) 

3 842 3 34 2 23 4 

A = A +A 
xy 0 3 

(127) 

(128) 

(129) 

Equations (127) and (128) are derived by s i mplifying the usual general 

relations for the area of a triangle, 

The forces in the x and y directions applied to the small mass 

represented by the shaded area in Figure 78 are determined by multiplying 

the stresses shown in Figure 78 times the areas in Eqs. (125), (126), 

and (129). The expressions for the forces are: 
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F   = T A  + T A 
x     xy yy   xx xx (130) 

and 

F  =TA  +TA  - T  A dQ 
y   yy yy  xy xx  69 xy 

(131) 

The preceding relations for areas and forces are valid for any configura- 

tion with the mass element centered at point 3; therefore, these equations 

can be used for all four mass elements surrounding any coordinate point. 

The mass of the small element is determined by multiplying the 

average density of thi  cell shown in Figure 78 times the volume of the 

element.  The mass is as follows: 

dB 
M =  p— A I y + y + 

0\ 0   3 

v + y ' 
2   '4 /y2 + y4     \ 

+ A3-T- + 2V3 
(132) 

Newton's law is applied to obtain the change in velocity at the coordi- 

nate point 1, considering force and mass contributions from four elements 

around the point. 

Au = 
1 = 1 xi 

E M 
i=l i 

(133) 

where Au is the change in velocity in the.x direction over the time 

increment At.  The foregoing procedure is in the VOID computer program. 
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n 
4.        STRAIN COMPUTATION 

The  strain computations in the two-dimensional  wave  propagation  program 

are based on the assumption  that  the strains are uniform   throughout   each 

cell of  type A shown  in Figure 77.    The computations are constructed  to 

meet  the  following consistency requirements. 

e + s 
x   y 

M 
A 

(134) 

AV 
x   y   6     V 

(135) 

where 

e , e , e 
x  y  Ö 

changes in the strain that occur during a time incre- 
ment 

M = change in the cell areas in the x-y plane 

AV = change in the volume of the cell 

To ensure that compatibility of strains is enforced, we assume a 

velocity field, rather than a strain field. Strains that are uniform 

throughout a cell are produced by the following linearly varying velocity 

field. 

u = u + u x + u y 
0   x    y' 

(136) 

v + v x + v y 
0   x    y 

(137) 

. 
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The strain rates corresponding to these velocities are; 

e  ^ — = u 
X       OX        X 

(138) J 

dy 
=  V (139) 

öv  du 
öx  dy xy    " - ' >-- 

V  + u 
x   y 

(140) 

(jj 

xy 
= i(^-|y\ = i(v - u) 

2\äx  by f 2  x   y' 
(141) 

The  velocity  fields of Eqs.   (l36)  and   (137) can be determined for any 

triangle  if  the  velocities at  the  coordinate points are known.     Consider 

for example  the   triangle  in Figure  79 with coordinates 1,   2,   and  3  and 

GA-8678-40 

FIGURE 79        QUADRILATERAL  ELEMENT PRODUCED FROM TWO 
TRIANGLES 
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"n 
velocities in the ;: direction of u , u , and u . The velocity field param- 

eters u„, u , and u can then be determined from the followinc three 
0  x      y 

equations: 

u      =    u    +ux    +uy 
1 0 x 1 y'l 

u    + u x    + u y 
0 x 2 y^Z 

(142) 

u      =    u    +ux    +uy 
3 0x3 y 3 

th , 
where the x ■/     are coordinates of the i  point at some (as yet undeter- 

i i 

mined) time.  Solution of Eqs. (142) gives the following results for u 
x 

and u : 

(U1 - U2) (yi - y3) ' (U1 ' U3) (yi ' y2) 

2A 
(143) 

(u - u ) (x - x ) - (u - u ) (x    X / v 1   2   1   3     1   3;  1   a 
2A 

' Ht) 

where A,   the  area of  the triangle 123  shown  in Figure 79,   is 

M     '', ■ *t> ^ - yj- ^ - x3) (yi- y2) (145) 
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Similarly the strain in the y direction can be determined. 

(V1 - V2) (yi - y3) : (V1 " V3) (yi - y2) 

2A 
(146) 

(v - v ) (x - x ) - (v - v ) (x v 1   2; ^ 1   3     1   3^ v 1 
2A 

(147) 

The next step is to specify x , y  in Eqs. (143) through (l47) in 
i   i 

such a way that Eq. (l34) is satisfied.  This calculation is performed 

in two steps; first the requirements are satisfied for each of the two 

triangles shown in Figure 78 and then the computation is made for the 

whole quadrilateral.  To meet the requirement for triangle 123, the area 

A of Eq. (l45) is taken as the average of the areas at the beginning and 

end of the time increment, that is, 

1, 0   1. 
A = -(A + A ) 

2        ' 
(148) 

A compatible form for the strain rate in the x direction is given by 

A
0 0   A

1
 

1 
A u  + A u 

x      x 
0   I 

A + A 

(149) 

where values with a superscript 0 are computed with initial values oi 

x and y, and values with a superscript 1 are evaluated with final values 

of x and y.  These final values of coordinates are 
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x + u At 
i   i 

y  + v At 
i   i 

(150) 

When we substitute A from Eq. (148), the strains from Eq. (149), and AA 
10      ,   , 

equal A - A ; Eq. (134; now becomes an identity. 

The extension of the result above to the full quadrilateral is ac- 

complished, using the following definition of a strain rate 

0 0 ]   1 0  0 11 
Au      +Au       +Au       +Au 

1 Ix 1   Ix 2  2x 2  2x 
(» 1 0 1 

A    + A     + A    + A 
112 2 

(i5i; 

where subscript 1 refers to the triangle 123 and subscript 2 to the other 

triangle in Figure 79.  For satisfying Eq. (l34) the area A is now taken 

as one-half the denominator in Eq. (l5l), that is, the average of the 

areas at the beginning and end of the time increment. 

For use in the computer program, it is advantageous to simplify 

Eq. (l5l) as much as possible.  After considerable algebra and the aid of 

Eqs. (l43), (l44), (l45), (146), and (147), the following results are ob- 

tained 

u 
13 

m 
V24 " U24 

m 
yi3 

0   1 
A + A 

m m 
V 
24 

X 
13 V13 

X 
24 

A0 + A
1 

(152) 

(153) 
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xy 

m m m m 
ux      -ux      +vy       -vy 

24   13 13  24 13   24 24   13 
0 1 

A     + A 
(154) 

ID 

m m m m 
ux      -ux       +vy       -vy 

13   24 24  13 13   24 24J13 
xy /   0 1N 2(A    + A   ) 

(155) 

where  the doubly   subscripted  velocities  and  coordinates have   the  following 

meaning 

u =    u    -  u 
ij i j 

(156) 

mil 
x =     x    + —u At -   x    - —u  At 
lj i       2   i .1       2  j 

(157) 

The requirement given by Eq, (135) is met somewhat more readily in 

the computer program.  The values of e and e  are first determined from 
x     y 

Eqs,   (l52)  and   (153),   and   the volume change   is  determined by calculations 

of   the volume before and  after a  time  step according  to Eq.   (132).     Then 

only  e     is  unknown   in Eq.   (l35),   and  that equation  is used   to determine 
B 

the  strain  in the  circumferential direction;   hence  the  requirement of 

Eq.   (l35)   is  satisfied exactly. 
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5.        STRESS  RELAXATION MODEL 

A general  two-dimensional model  for  stress  relaxation has been devel- 

oped  including the effects of work hardening,   incremental plasticity, 

loading  and unloading.     The model was  devised  to correspond  to  the  normal 

concepts  of  viscosity  that are used   in simpler situations.     In  the devel- 

opment below,   first  the  correspondence between  the stress  relaxation 

model  and  a simple viscous model   is  established  in a  very simple  geometry. 

Then in preparation for  the two-dimensional geometry,   relations are 

derived  for equivaleiit  values of  shear  stress and  plastic shear strain 

which represent the  stress and  strain  tensors.     A strain-hardening 

model  developed by Wilkins  (Ref.   49)  is  introduced.     Then the full  cal- 

culational  procedure for  two-dimensional  problems i° described. 

a.       Comparison of  Stress-Relaxation a'id Viscosity Models 

The normal  relation between shear stress  T  and shear strain 

Y for a  viscosity model of an elastic-plfstic solid  is: 

T     =    HY 
2 

=    i + T* T^ 
2 (158) 

where 

M. = the shear modulus 

T| = the coefficient of viscosity 

Y s the yield strength 
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For stresses less than the yield strength the behavior is elastic. 

Above the yield strain the stress has both a plastic and a viscous 

component. 

The stress  relaxation model corresponding to the preceding 

viscous model is: 

T    =   ^Y 

=    M-Y - 

Y 

T  -  2 

2 

T  S (159) 

For  stresses less  than yielding,   this model is also elastic.     For 

stresses above yielding,  a time constant T provides for a gradual re- 

turn of the shear  stress  to the yield value.     To examine further the 

correspondence between the two models,   we integrate the equation for 

stress relaxation above yielding  for  the case  in which the shear strain 

rate is a constant.     The result is 

1 

1 

T   =   - + Tp/y (l 
-(t-At)/TN e J (160) 

where 

T = the time from the beginning of loading 

At -    the time at which the shear stress reaches the yield point 
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The second part of Eq. (158) is equal to Eq. (l60) for large times if 

The response of the viscous and stress relaxation models to a constant 

shear strain rate is shown in Figure 80. Evidently the viscous model 

has a somewhat unrealistic response in the vicinity of the yield point. 

For large times the stress relaxation model and the viscous model have 

the same behavior.  From these observations we may conclude that if 

transient behavior and rapidly varying strain rates are to be dealt 

with, a stress relaxation model is required.  If the times of interest 

are large with respect to the relaxation time and transient phenomena 

are not of importance, the viscous model is adequate. 

To determine the type of model required for the two-dimensional 

calculations, it was necessary to consider the relaxation times antici- 

pated for copper and for aluminum and to estimate the computational time 

increments for the void growth problem.  For both copper and aluminum 

the relaxation times were about 1 nanosecond.  The computational time 

increments anticipated for a void of 1 micron radius is about one-tenth 

of a nanosecond or loss.  Hence, the transient behavior will be of great 

importance, and i\  is necessary then to use the stress relaxation model. 

b.  Strain Hardening 

A strain-hardening model should permit the yield strength to in- 

crease whenever the stress exceeds yielding.  The yield strength should 

increase as a function of the total plastic strain; it should not in- 

crease indefinitely but should approach an asymptotic value for large 

plastic strains. Such an asymptotic strain-hardening function has been 

determined experimentally by Grace (Ref. 29) for ÜFHC copper.  These 

requirements are met by the strain-hardening model of Wilkins (Ref. 49). 
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FIGURE 80        RESPONSE OF VISCOUS AND STRESS RELAXATION MODELS TO 
A CONSTANT SHEAR STRAIN  RATE FOR THE CASE T = At 
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The form of Wilkins' strain-hardening relation is 

Y = Y  + 
o 

P 
Y M 

1 + bY 

(162) 

where 

Y  = the initial yield strength 
o 

Y   = the plastic strain 

M  = the strain hardening modulus for small plastic strains 

For large plastic strains the yield strength approaches Y + M/b.  In 
o 

this equation the absolute value of the plastic strain is used so that 

strain hardening occurs under compressive or tensile loads. 

c. Effective Values of Stress and Strain 

The preceding sections dealt with a single stress quantity 

and a single strain quantity.  For extension of these relations to the 

two-dimensional problem it is necessary to introduce new variables for 

stress and strain that in some way represent the shearing stress and 

shearing strain in the material.  The choice for stress is the von Mises 

stress, which is closely related to the yield criterion of von Mises 

(see Hill,Ref. 46). 

=VH(tvv 2   .      v2 
+ (a - a ) + ("3 - °A (163) 
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r 

where 

o
1

, o , o = the three principal stresses 
2 3 

o = the effective stress 

By ~his definition, in a uniaxial tension experiment in which o and 
2 

o are zero, o is the applied tensile stress. According to the von 
3 

Mises criterion, which will be used here , yielding occurs when o is 

equal to the yield strength. An alternate form for Eq. (163) which 

does not require that the principal stresses be known, is 

o 

where 

o' = a deviator stress 

t 2 2 
+0 +2 ( T 

z yz 

2 
+ T 

zx 

For any problem in which o = o , it can be shown that 
2 3 

o = o
1 

- o
2 

= 3cr/2 and T = (0'~ 0'~) / 2 = 3cr/4 

Therefore 

o = 2T 

o' 
1 

4 = T 
3 
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Equation (166) is useful in transforming from the one-dimensional models 

of the preceding sections to the multidimensional case. 

Common definitions for the effective shear strain follow the 

same form as Eq. (163). 

where 

e 
' 1 

y 
a 

e · 
2'' 

y 
a 

a 

e 

= 

= the effective shear 

= a constant 

= principal strains 
3 

( 167 ) 

strain 

The value of ~ is determined ~ch a way that Y is the actual maximum 
a 

shear strain in any situation in which e = e . In such a case the 
2 3 

derivation of Timoshenko (Ref. 50, p. 223) shows that the maximum shear 

strain is ,· 

y = € - € 
1 2 

( 168 ) 

Therefore,~ should bel/~. We wrll use this relation for increments 

of plastic strain. Hence, 

P P 2 P P..2 P P 2 
(d€ - d& ) + (d& - d& ) + (d& - d& ) 

1 2 2 3 3 1 

(169 ) 
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where 

p 
dY = the effective plastic strain 

Because the sum of the plastic strains is zero , Eq. ( 169 ) has the 

alternate form 

( 170 ) 

Somewhat different defini t ions of effective plastic stra in 

have been used by other investigators. Hill ( Ref. 46) used a = -127'3; 
in t his way Hill' s effective strain -P d€ is equal to the axi a l strain 

in simple tension . Wilkins ( Ref . 49) used a = 2/3. Evidently the 

value o f a is arbitrary and can be selected to fit the particular 

compu tat ions in mind . 

p p 
For any case in which d€ = d€ , 

2 3 

p 
then d€ 

1 

2 

p 
d € and 

p 
dY 

3 p = d€ 
2 1 

2 1 

( 171 ) 

! his e quation is needed in the transformation from the one-dimensional 

to the mul t idimensional case. 

Because the principal strains are generally unknown, it is 

expedient to put Eq. ( 170) into a form using any orthogonal strains. 

For the axisymmetric condition 

p 
dY 

p 2 1 p 2 
( d€ ) + - (dY ) 

3 2 xy 

where the third (circumferential ) direction is always a direction of 

principal strain. 
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d.  Two-Dimenslonal Model for Stress Relaxation 

The multidimensional stress relaxation model has the form of 

Eq. (l59) but also incorporates the general plasticity formulation of 

Hill (Ref. 46).  In Hill's analysis the plastic strain increment is 

given as 

de 
ij 

3a da 
U 
2a H 

(173; 

where H,   a plastic modulus,   is 

H    = 
da 3da 
- P P 

de 2dY 
(174) 

P - P 
since dy      = 3/2  •  de       (Eq.   (171)). 

Elimination of H from Eqs.   (173)  and (174)  gives 

de 

ij 
=     Q 

ij 

dY 

(175) 

In an equilibrium situation a is equal to the yield strength.  Then, 

during stress relaxation, the amount by which the deviator stress exceeds 

its equilibrium value is 

excess deviator = 0". 
U 

de 

P dYP 
(176) 
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where o    is the yield strength.     The elastic relation between strain 

and  stresses from reference 46  is 

da 

de 
ij 

Z   de 
i=l 

JJ 
11 2(i ,177) 

where  the  terms on the lefthand  side equal  the strain deviator 

6 =    the Kronecker delta 
ij 

M*    =    the shear modulus 

Equations  (176)  and  (177) are assembled into an equation of  the form 

of Eq.    (159)  as  follows: 

de. 
ij 

da 
ij 

dt 
=    2\x 

'de 
ij 

I dt 
ij 

de 
ii 

dt   , 

a p     P 
ij -        dY (178) 

To verify  that this equation has  the correct form,  we may simplify  it 

to the one-dimensional problem: 

/ /      2 da „de       a y 

dt 3      dt T 
(179) 
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The viscous equation corresponding to Eq. (178) is 

cr   = a 
ij 

de P 
ij 

p  p 
dY 

'de 
+ 2T1 

0    de \ 
ij   ij v  ü 

dt dt 
(180: 

which is in agreement with the forms of Rouse (Ref. 251, p. 203) and 

Prager (Ref. 52). 

Equation (178) has been constructed to provide for differential 

changes in the deviator stress.  However, under some circumstances it 

may be necessary to account for large time increments. Therefore, 

Eq. (l78) is integrated to produce the following equation: 

a       =   a        + 
ij    ijO 

de 
a   + a 
ijO   P 

ij 
rde 

dY 

+ 2T ij 
dt 

ij 
de 

11 

dt J 
(l-e-^O^) 

(181) 

where 

cr   = the deviator stress at the end of the time increment 
ij 

ijO 
= the deviator stress at the beginning of the increment 

t  = the time at the beginning of the increment 

For the integration, the strain rate is taken as constant through the 

time increment. This form of the equation is usable if the ratio 

P    P 
de  / dy can be estimated.  This estimate is made with the aid of 

Eq. (l75) using elastic estimates for o  and Q 
ij 
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The calculational procedure used in the program has the follow- 

ing steps:  first, compute the increments in the deviator stresses from 

an elastic calculation, then compute a from the elastic deviators. 

Using Eq. (175) to estimate the ratio of plastic strains, compute a 

second estimate of the deviator stress from Eq. (l8l).  From these 

second estimates of deviator stress, recompute o  and also compute 
P     P 

dY and de .  Compute the new value of yield strength a        Then repeat 
ij P 

the calculation of Eq. (l8l) for the third estimate of the deviator 

stress.  We assumed that this double iteration would provide sufficient 

accuracy in the deviator stresses. 
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6.   STABILITY CRITERION FOR TWO-DIMENSIONAL CALCULATIONS 

For one-dimensional hydrodynamic calculations a fairly full invtH 

tigation of stability of the computations has been undertaken by Richtmyei 

and Morton (Ref. 53) and by Herrmann, et al. (Ref. 84),  WllkliiH (llil. (Hj 

has outlined a procedure for establishing the stability ot  cflloulattun« 

in two dimensions. However, a further development is required for n 

situation in which real material viscosity is included in one- or two- 

dimensional calculations. 

This new concept for stability is based on the hypothesis that all 

forms of stability depend simply on an effective sound speed.  The addi- 

tion of artificial viscosity or other types of viscosity tend to require 

shorter time steps in the calculations because they increase the effective 

sound speed.  This effective sound speed is related to an effective mod- 

ulus for the material as follows: 

2  A  ' — Aa 
AP + Q   3   i 

M  =  r-1 + r- 
e      Ay       Ay 

y   ei " sy 

(182) 

where 

AP = the change in pressure at a given cell during the 

current time increment 

Aa' 
i 
= the change in deviator stress 

Q = the artificial viscous atrcH« 

Ay 
= the relative change in volume 

th 
the strain in the i  direction 
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First a calculation   is made  for   (he one-dimensional problem  to com- 

pare the  results from the hypothesis above with that of  the more usual 

approach followed by Herrmann,   et al.   (Ref.   54).     The  linear and qua- 

(linllr  forms for the artificial  viscosity are 

Q    =    CLAXC- + 
2/1 ap\2 

% [-9 Tt) (183) 

where 

C .C = coefficients of the linear and quadratic terms for 
L Q 

artificial viscosity 

AX = cell thickness 

C = sound speed for elastic waves 

p = density 

t = time. 

This expression is used only if Q is positive, that is, for compression; 

Q is set to 0 for rarefaction waves. Equation (183) is transformed by 

using the identities relating density and specific volume, and the fol- 

lowing equation describing mass conservation 

1 3p 
p 9t 

du 

3x 
(184) 

Equation (183) then takes the following form in which the absolute value 

sign is used with the change in particle velocity so that Q will be posi- 

tive in compression. 

AV  AX r 21 . 1     -, 
Q =  "TpTt[cQ|Aul + cic] (185) 
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where 

At =   the  time  increment used  in  the computations 

V =  the specific volume. 

From Eq.   (185),   a modulus can be defined  as  in Eq.   (182),   that   is, 

Q 
AV 
V 

P —  Tc   | Au | + C C ] 
At       Q1      ' 1 

(186) 

Then the effective sound speed,  which will  govern stability of   the cal- 

culations,   is  from Eqs.   (182)  and  (186) 

c2 
M 

e 

P 

2      A       ' — Aa 
AP Q 3       i 

+  T~   + AV AV -p —       - p —       p K   V V (ei   -   3v) 

M ~  U 
K      _2      3_ 
P P   +     P 

(187a) 

187b. 

2        /   2|4    | N   AX 
C    +    C    Au    + C C) -=^ v   Q1      ' 1   /   At 

(187c) 

where 

\i =  shear modulus 

C B  the usual sound speed based on  these modulii 

For stable calculations,   the Courant-Friedrichs-Lewy condition as 

follows  is used to determine the  time  increment permitted 
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AX (iss: 

where C is usually interpreted to be the local sound speed, but here it 

will be taken as the effective sound speed C given by Eq. (187).  In- 

sertion of Eq. (187) into Eq. (188) gives 

At 
Ax 
-2 
C 

Ax' 
2  / 2|A !     „x AX 

C + (CQ|Au| + C^) — 
(189) 

When this quadratic is solved for the time increment, the criterion is 

found to be 

At = ^ 
C 

/^2 Au     \ 
-  C — + C I 

\ Q C    l) 
Au 

■■) 
+ C I  + 1 :i9o) 

This expression  is   identical with that found on page 73  of  reference  54. 

Hence the new concept does appear to give  the correct stability criterion 

for one-dimensional  flow. 

For multidimensional  problems,   the  last term  in Eq,   (l87a)   is  taken 

as  the maximum of  the  values  in the three principal  directions.    An al- 

ternate,   and simpler,   course  is  to use  the last  term from Eq.   (187b) 

with |i equal  to  the  largest shear modulus.    Then the  effective sound 

speed  is 

4ii 
-2 AP + Q max 
c     =    :—   +  

Av 3P (191) 

This criterion Is sufficiently general for the stress relaxation problem. 
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7.   RESULTS OF VOID GROWTH COMPUTATIONS 

Three computations were made and analyzed to assist in defining 

constitutive relations ior material : with voids and to indicate the 

shape of the void.  Variables in the three calculations are given in 

Table XVIII.  The only difference between calculations 4 and 5 was that 

work hardening was permitted in 4, varying the yield strength from 1 to 

4 kbar.  In all three problems the boundary velocity was constant, 

leading to a constant engineering strain rate on the cylinder.  During 

loading the stress initially rises rapidly in  response to the strain. 

Then, as the void growth begins to account for larger proportions of the 

applied strain, the stress reaches a peak (as shown in Figure 81) and 

then declines.  The peak stress listed in Tatle XVIII is the force acting 

on the planar face of the cylinder divided by the area of that face. 

A comparison of calculations 4 and 5 shows the effec* strong 

work hardening. Comparison of runs 5 and 8 gives some imi ion of 

the effect of relative void volume. 

TABLE XVIII 

VOID GROWTH COMPUTATIONS 

0        final      cyl 
No.     (i^) (n) 

4 1.0      1.75 

5 1.0      1.68 

8      1.0      2.68 

(a  ) V /v 
1 max    Yield      Duration      v    0 

(\x)     (10 /sec)     (kbar)       (kbar)       (p,sec)       (pet) 

3 2.67 22.5 1 to 4 0.047 2.6% 

3 2.67 20.3 1 0.052 2.6 

10 0.80 33.6 1 0.045 0.067 
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a.  Void Shape Changes 

The voids appear to grow in a stable manner under the tensile 

loading and to maintain an approximately spherical shape.  An indica- 

tion of the growth pattern is shown in Figure 82; the void surface is 

a smooth curve at all times, and the trajectories of the coordinate 

points are nearly radial from the center of the void.  The eccentricity 

that does appear in the three calculations is shown in Figure 83, along 

with the eccentricity of the loading.  The eccentricity of both loading 

2 - 
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o 
z 
o 
< 1 h- 
Uj o z 
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« 
5 

N FIXED CYLINDRICAL BOUNDARY 

FIXED PLANE OF SYMMETRY ^ 
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~ /   /   yS   sx^*"     \ 
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COORDINATE POINT -7       /   ^C.       /    f         VOID              j 
/       /        f^yi    /              BOUNDARY 
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/ /  /^f^V      VOID 
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FIGURE 82        SUCCES?;\/E VOID SURFACES DURING CALCULATION 4 
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FIGURE 83   ECCENTRICITY OF THE VOID AND OF THE LOADING 

and void increases with growth for the two large void volume cases (4 and 

5).  For the third case, the change in loading and void eccentricity is 

almost negligible.  For the two with marked eccentricity, the stress 

eccentricity is double or triple the void eccentricity.  This result 

contrasts with Berg's analysis (Ref. 2) of growth of a circular void in 

a plate under plane stress; the two eccentricities were equal in his 

case.  We also note that there i=5 less eccentricity for case 4, with the 

larger yield strength. 
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b.    Pressure-Volume Curves 

The VOID calculations were  intended to supply an equation of 

state for use  in a one-dimensional code such as  SRI   PUFF.     Such an 

equation of state  is a   relation between the average  stresses on a gross 

section and the specific volume of the solid material   (or gross  specific 

volume,   or other macroscopic strain quantity).     As  usual,   these stresses 

were separated into a pressure term and a deviator  stress term,   each 

being an average over the  gross section. 

For estimation purposes,   we assumed that  the pressure-volume 

relation for  the material with voids  had the form 

ay 
vl 

1 - av 
vO 

=    K 

v  ,   -  v „ si sO 

i (Vsl  + Vso) 

(192) 

where 

and    P      =    average pressures acting on gross  sections 
at  the end and beginning of a   time  increment 

V        and    V „ 
vl vO 

relative void volumes at   the  end and beginning 

of the time  increment 

V   and V „ 
si       sO 

specific volumes of the solid material at 

either end of the time increment 

K =  the bulk modulus of the solid material 

a = a constant 

To evaluate the appropriateness of Eq. (192). vr.  plotted the average 

pressures as a function of the specific volume of the solid for the three 

runs, as shown in Figures 84, 85, and 86.  In each case the computed 
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FIGURE 86        PRESSURE-VOLUME RELATION  FROM CALCULATION 8 
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curves approximate the pressure-volume relation for the solid at small 

void volumes. As the void volume increases, there is greater deviation. 

The data in Figures 84 and 85 were used in Eq. (192) to find values of Q , 

The results, shown in Figure 87, indicate that a = ~2 during most of 

the growth process. Therefore, in the SRI PUFF calculations we use 

Eq . (192) and a = 2 for the pressure portion of the equation of state. 

c. Deviator Stress 

The deviator stress was also obtained from the three calcu-

lations. These stresses are given as a function of relative void vol-

ume in Figures 88, 89, and 90, To organize this information, we pre-

sumed that the deviator stress has form 

where 

~ = 

s = 

v = v 

T = 

~ = 

I 
cr = 

the shear modulus 

a constant ~4) 

the relative void 

~~ . a relaxation 

4 
- ~ (1 
3 

volume 

time 

~)6V 
v v 

the coefficient of viscosity 

T 

2 
3 

y 

(193) 

Thus, the elastic modulus is reduced as a function of void volume while 

the second term on the right allows for stress relaxation. This equation 

describes the results in Figures 88 and 89 fairly well with a ~oefficient 

of viscosity of 250 poise, i.e., the one used in the microscopic calcu

lations. The differences between Figures 88 and 89 are readily explained 

243 



'      ■■ ■-^■' r^w—^- vm 

10 20 
PRESSURE — kbar 

30 

GA-8678-48 

I 

FIGURE 87        VARIATION OF a FROM COMPUTATIONS 4 AND 5 

244 

^^L 



FIGURE 88 
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by the work hardening permitted in calculation 4.  The results of Fig- 

ure 90 do not fit the form of Eq. (193).  This difference has not been 

explained but indicates that the functional form of the deviator stress 

is more complex than Eq. (193),  Currently an Integrated form of Eq. (193) 

is used in the ductile fracture routine for the deviator stress calcu- 

lations. 

d.  Void Growth Rate 

According to the spherically symmetric solution and to Berg's 

plane strain solution (Ref, 2), the growth rate of a void in a viscous 

material is given by 

(194) 
4T| 

where 

P = the pressure in the spherical case and the average 

of the two applied stresses in the planar case 

T] = the viscosity 

p  = a threshold pressure 
0 

The growth rate results from the VOID calculations, shown in Fig- 

ures 91-93, generally follow the form of Eq. (194). The slight t 

in the points is probably caused by oscillations.  For case 4, wl 

work hardening was permitted, the initial value of p  is about zeru, 

whereas it is 3 kbar on thr unloading branch of the curve in Figure 91. 

For calculation 5, the threshold pressure is between 0 and 0.3 kbar. 

For case 8, the threshold appears to be about 1 kbar.  The velocity 

relationships tend to curve upward, exhibiting a somewhat smaller 
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FIGURE 93   VOID GROWTH VELOCITY AS A FUNCTION OF PRESSURF 
FROM CALCULATION 8 

viscosity than the 250 poise used.  For calculation 5, T\  from Eq. (194) 

is 225 poise; T] is 200 poise for calculation 8,  This upward curva- 

ture and the variation of V\  from the value used in VOID may have been 

caused by tho excessive cell distortion that occurred during all cal- 

culations, but especially during 8. 

A comparison of the foregoing VOID results with the earlier 

results of Berg (Ref. 2) and the spherically symmetric void calculations 

of Appendix III suggests that Eq. (194) should be used with T] as the 
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value of the material viscosity and p as 2Y/ 3. These values are used 
0 

in the ductile fracture calculations. 

e. Summary 

In the VOID calculations, the voids tend to retain a shape 

that is more spherically symmetric than the applied stress field. The 

computed form of the void is very smooth, showing no evidence of local 

instabilities or other problems, although the adjacent cells undergo 

very large deforr.1ations. 

Stress-volume relations for the damag~d material can be con-

structed by considering the pressure and deviatoric stress response of 

the solid p~ase only. 

The vi scous growth relation derived for s i mpler geoll!fl tries 

appears to hold for this mtcroscopically one-d imensional flow a lso. The 

threshold stress for growth is sma ll, of the order ~ f the yield strength. 
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8. LISTING OF THE VOID PROGRAM 

In the following pages the VOID program and its two subroutines, 

SWEEPV and SCRIBE, are listed with their flow charts.  Next i^ a set of 

input decks and some sample printout.  The program was written for the 

CDC 6400 at SRI in Fortran IV.  The memory required is about 100,000 octal 

words. 

The VOID program, as presented, is a special purpose program and 

therefore will not have wide application.  However, it may serve as the 

basis of a more general two-dimensional code or of other special purpose 

codes. 

The input cards and variables are as follows: 

Card 1:  Free field format, heading only. 

Card 2:  Control variables.  Format is A10, 110, A10, 110. 

IMAX is the maximum number of cycles permitted. 

NMTRLS is the number of materials. 

Card 3:  Characteristics of the calculations.  Format is 4(A10, E10.3). 

DELTAT is the maximum time step, sec. 

SMAX is the uniform one-dimensional stress used in the initializa- 

tion, dyn/cm  (positive in tension). 

XD(2) is the velocity of the plane of forcing, cm/sec. 

TS is the stop time of the calculation, sec. 

Card 4:  Print controls.  Format 3(A10f HO). 

IPRINT is the modular number of cycles at which a complete list- 

ing is given of positions and stresses. 

NJED is the number of historical listings requested. 

KPRINT is not used. 
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Card  5:     Historical  print  controls.     Format A10,   7(l6,   12,   12), 

JEDT  is  a  number associated with  a variable  for which a   histor- 
ical   listing is  desired.     The correspondence between JEDT and 
the variable is  spelled  out   in SWEEPV  following  location 660, 
The  location number is  670   + JEDT, 

JEDK  is  the K coordinate of   the desired  variable. 

JEDJ  is  the J coordinate  of  the desired  variable. 

Up  to 60 values of  the  JEDs  may  be used   so  that   several   cards 
may  be required. 

Cards 7 

and 8: 

Card 6:  First material card.  Format 3A10, E10,3, MO, A8, 12. 

AMAT is the material name. 

RHO is the density, gm/cm . 

NYAM is an indicator for yield behavior: 

0 no yield strength 

1 perfect  plasticity 

2 viscous,  work hardening. 

Equation of  state  parameters.     Format 4(A10>  E10.3). 

CA,   CB,  CC are parameters  of  the hydrostat  (dyn/cm  ):     P = 
CA-li  + CB'M.2   + CC'M,3. 

EQSTE  is not  implemented. 

EQSTG is  the Gruneisen  ratio. 

EQSTH  is  not   implemented. 

PMIN  is  the minimum pressure permitted,   dyn/cnr. 

YCC is  the yield  strength,   dyn/cm2. 

Card  8a:   Yield card,   required only   for NYAM ^ 0.     FORMAT   4(A10.3), 

For NYAM =  1,   YCC,   YCT,   and MU are used. 

For NYAM =2,   FB,   FM,  MU,   and ETA are used. 

YCC  is yield   in compression  (and tension  for 2nd  model). 

YCT  is yield   in tension,   dyn/cm2. 

MU  is  the shear modulus,   dyn/cm  . 
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FB is b,   a work-hardening parameter in Eq.   (162),   dimensionless, 

FM  is M,   a work-hardening modulus   in Eq.   (162),   dyn/cm   , 

ETA  is  the material  viscosity,   poise. 

Card 9:     Geometrical Layout.     Format  4(A10,  E10.3). 

RIN  is  the radius  of  the void,   cm. 

ROUT is  the  radius   of the cylinder,   cm. 

NRAD is  the  number  of cell  rings  in a radial direction. 

NTHETA  is  the tinmi>er of cells  in a circumferential direction  in 
any cell ring. 
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PkOiiRAM VO Jl)( lNPUT ,OUTPUT, rAPt: 5=1 NPUT, T APE6=0UTPUT, TAP E8= VU 10001() 
1 OUTPUT,TAPE~,T A PE3,PUNCHI VOI00020 

kEAL MU,MCON VOIOOOlO 
COMMON tA(~I,CBl~I,CCl~I,EQSTEl~I,E~STGl~I,EQSTHl~I,AMAJ(~l,MUI~ItVOIOOO~O 

c 

1 RHOl~I,VCCl41oYCTl41tMCONC4l,SCONI41,PMINI41,~PI~I 
2 ,FMI41,F8l41.EfAI4l 

COMMON IMAX,IPkiNT,ICVCLE,KlNJ,KMIO,KMN,KMX,JMXoiRMAX,IRT,KJ,JJ, 
1 KWf,ISJATE,IFLAG,J1oMIKR,IJHUNOo1fCUT,ORElJtURMIN,KCUT,LALPHA, 
2 NOIM 

C!lMMIJN NKEO,KPR INT tKEORI201oKHIC201 oNJEUoJEOR( 60I,JEUH 6Uit 
1 JEDKl60I,Jt:UJI60I,NSCKl~E,NJKtUoKEOITC1201 

COMMON Rl120I,SKI201oSJI601oXOKC201tVKC201 
CUHHON JHI21oKHC21,AREA121oOELXC21oUELV,XUI21,VCON,~wSQ,STRESS 
COM~UN TVHt,XOINT,~ELTN,OELTH,OELTH•,Ot:LTMIN,OI~CPTI101 
COMMON CAL Tl M 
CUMMON AXI~~t151, AXHl45o1~1,AXOHI45,15), IMA(45t151, 

1 AVC45 0 151, AYHI45 0 151,AVOH(45,1~1, AE(45t151, 
2 AAI45o151, AVI~5,151, API45o151t 
3 ASXX(45,151,ASVVl45tl51,ASXYC45,151,ASTTI~5,151, 
~ ATXX(~5,15),ATYV(\5o151,ATXVC45,151,AJTTI45,151, 

5 ASijARP(45,15IoAS8AR(~5o151oAVLI45,151 

c ••••••• READ AND PRINT INPUT DATA 
c 

JA=~5 $ KA=15 $ J6=K8=0 
111=770+l2*JA*KA 

100 00 101 1=1,111 
101 CAIJizO. 

PRINT 1000 
CALL SOATEIUISCPTC211 
OISC~Tl11=10H DATE= 
READ 1100,(01SCPTCll,1=3,10l 
If IEOF,51 102,103 

102 STOP 1lJ001 
103 PRINT llOO,CDISCPH 11,1=1,21 

PRINT 1100,CUISCPT111tl=3o101 
CALL SECUNDCTIMEOI 
REAU 1102oA1oiHAX,A2oNMTRLS 
PRI NT 110loA1olMAXoA2,NHTRLS 
CQSQz~. 

RtAO 110~oA1 1 UEl1AJ,A2,SMAXtAloX0(21tA4tTS 
PkiNT 110~oA1,0ELTAT,A?,SHAX,A3,XOllloA4,TS 
REAU 1103oA1oiPRINTtA2,NJEl),A3,K~R1NT 
PRINT 1103tA1o1PkiNT,A2,NJEO,Al,KPkiNT 
NJKI:U=NJEO 

120 If INJEO .EI.I. 01 GU TO 130 
N1= 1 

125 Nl=MINOIN1+6,NJEOI 
READ 112S,A1,(JtUTlli,JEOKIIItJI:OJillol~NloN21 
PRINT 112 5,A1,1JEOTIJI,JEOKIII 0 JtUJIJI,I =N1,Nll 
l F IN2 .EIJ. NJEDI GO TO 130 
Nl=N2+1 
Gll TO 125 

130 CONT INUt 
VCON=.666661*3.1416 
OU 150 M=loNMTRLS 
RE AD 1130,AMATIMloA1tA2oRHUIMioAJoA4oNVAH 
PRINT 1130,AMATIHI,A1 0 A2 0 RHOIHI,AloA~tNYAM 
READ 1104,A1,CAIMI,A2eC81MitAleEQSTE IHioA~,EQSTGIMI,A5eEQSTHIMit 

1 A6 0 CCIHI 0 A7,PMINIMI,A~,YCCIHI 
PRINT 110~,A1,CAI"I,A2oCBC"),Alo~QSJECMieA~,EQSTGC"I•A5tfQSTHI"It 

1 A6,CCI"I,A7,PMINIMI 0 A8 0 YC,IHI 
IF INVAI'I-11 l't0,13Sol37 

115 READ 1104tA1oYCC"oA2oYCTMeAl,MUI"I 
PRINT 110~tAl,VCCH,A2,YCTM,A3,"UIMI 
YCCIMI•0.666667*YCCM*YCC" 
VCTIHI=0.666667*YCTM*VCTN 
GU TO 1~0 
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VOJ00051J 
VUID0060 
VOI00070 
VOIUOO~O 
VOIU0090 
VOIOOlOu 
VOIOOllO 
VU IOV1lU 
vu 100130 
V0100140 
VOIU0150 
VUID0160 
VUlU0170 
VUID0180 
VOIU0190 
VUID0200 
vu 100210 
vo I D022l) 
VOIOOHO 
VUIOu24u 
VUID0250 
VOI004!60 
vu 100211) 
VUIU04!dU 
VOIOU290 
VOI00300 
VUJ0\1110 
YOIUOl20 
VUIUOJJI.i 
VUIUOHO 
VOIOO;j 5U 
VUI00360 
YOJU0370 
VUJOOJ80 
VUlUOJ'iO 
VOJOO'tOO 
vu JOu~tlO 
VOJD0420 
VUJ00431J 
VOIDlJ~40 

VOIOU450 
Vll100't60 
VOIOU470 
vu 1001t80 
VOIIJO't90 
VOID0500 
VOJ00510 
VUI00520 
VOIOUHO 
VUI00540 
VUl00~5U 
VOI00560 
VUI00570 
VUIUO!J80 
VOJ005'10 
VOJOUOOO 
VUJU0610 
VOJUU620 
VUI&J0610 
VOlU06'tO 
VOIU06~0 
ViJJ00660 
VUJOI)o70 
VOI00680 



137        RtAU   1104,Al.FüiMi.AZ.FNlNi.Ai.MUCM).A4>brA(M) VÜIUÜ64U 
PRINT   ll(H.AllFtt(Mi.A2,FMIM),A3,MU(M),A<»,ETA(H) VJIUÜ700 
JAKA-JA«KA                                                            • VUlÜÜ/lü 
IX)    13V   l=l,JAKA VQlüOUO 

139 ASBARPd MYCCCM) VUlUU7iU 
140 SPJM( = SaRT((CA{M)*1.33iJ33*MU(M) )/KHUlMI » VUiL)U/4U 
150 SCüN(M»=2.*MU(M) VUIÜOIW 
C VUIJ0 760 
c    ****** LAyour fux SPHERICAL VUIüS vüiuor/o 
C VUIUJ/Ov) 
600        READ   1160,Al«RlN,A<!,KUUr,A3iNKAU.A4,NTHt:TA \/Üi0074U 

NTHtTA=(tNTHtrA-l)/2J»2*2 VUIÜOduU 
PRINT 1160, Al,RiN,A2,RüUT,A3,MKAL),A4,iMrHtTA VÜlUOdlJ 
XDINT^O. VUlUUd2ü 

C                      SIGN   CONVbNTlUN   IS  NUW   PüSJUVt   IN   TtNSIJN VÜIOOdiO 
tME = -YCC(l )/(2.*MU(l)l VUlüüd4Ü 
SE=0.6667*YCC(l)-( ( CC( l) ♦tM£*tb«1))»bME ttAU ) I ♦£«£ VUIüObbj 
IF    (SMAX   .GT.   SE)   GO  TU  603 VOlüJabU 

C                     ELASTIC   ROUTE VUIUUK/J 
EMU=-SMAX/ICA(n*1.333*MU( 1)) VUIDudbU 
EMM=-SMAX/(CA(n*l. J33*MU( l)«(Cbl 1 ) ♦tMU*CC l l) ) »EMU ) VUIUÜd9J 
PMAX=-1(CC( lJ*tMM*Lb(l))*EMh*CA(l »»♦EMM VUIOtCVüU 
EMAX-0.3*SMAX«(l./(l.»EMM )~1. )/RHU I U VulUüVlU 
VMAX=l./((1.*£MM)*RHU(1J ! VUIJÜV2Ü 
ASBAR(1,1 l = i.3*(SMAX-PMAX) VU1U0930 
GÜ   TO   607 VU1UÜ94U 

C                     PLASTIC   ROUTE VJlUoVbJ 
605         EMÜ=-      ISMAX-0.6667*VCC( l»)/CAIl) VÜIU09ÖO 

EMM=-«SMAX-0.6667»YCC(l) »/ICA( !»♦tMO*(Cb(U*tMU*CC( 11 )i VOIUOV^O 
PMAX=-(JCC( l)*EMM*Ca(U)»LMM*CA( 1))*fcMM VÜ100903 
ASBAR(l,ll=YCC(U VÜ1UU99U 
VE = l./ni.*EMEI*RHÜj 1)1 VUIDIJOU 
VMAX=l./(( l.*EMM»*RHU(l) I VUlUlOlU 
EMAX=0.5*IS£*(VE-1./RHU(U »♦ ( SMAX*St)♦(VMAX-Vt)) VÜ10102U 

607        V=VMAX*RH0I1» VüIUlüSO 
SÜ=SMAX-PMAX VÜIU1Ü4Ü 
SU2«-.5*SO VOIOlUiJ 
PRINT   1607,SE.PMAX,EHE,EMOfEMM,VE.VMAX,EMAX VÜIJlObO 
RINCR=(RlN/ROUn**l l./FLUATINKAUH V0IU1Ü70 

C                      LAY   OUT   ALONG   AXIS  UF   SYMMETRY   AND   REFLECT ION   UUUNOAKY VOlUludU 
N=NTMETA«-1 VUIUloM 
KINT-=NRAÜ»1 VUIUllJJ 

C                         StT   COOKÜlNATES   CF   CCRNER   POINTS VUIUUIO 
AVIl,NI=AYHIl,N|sROUT VÜIU112J 
AX( lyNI=AXH( l,.M)=KÜUI VulÜlUÜ 
AX ( KlNI,l J=AXH(K1NT, U = RÜUT-R1N VUlUUtO 
AV(KINT,N»=AYH(KINT,NI=RIN VO101150 
AX(KINT,N)=AXH(KINT,N)=RüUT VUIU1160 

C LAYUUT   X   ANU  Y  ALONG  RIGHT   BOUNDARY   AND   X   UN  AXIS  ÜF   RuTAIlUN   V0luli7u 
RF*RüUT VUIUllÖO 
00   610   I=2,NRAÜ VU1U119Ü 
RF=KF*RINCR VUIÜ120U 
AX(I,N1=AXH(I,N)=RUUT VUIU1210 
AV( IIN»=AVH<I,N) = RF VU10122Ü 

610        AX( I. 1) = AXH(I, D'RUUT-Rt- VUI0123J 
IF   (IJBUNU   .EQ.   4)     GU TO   650 VUlul24ü 
THETA'3.14159265/12.«FLOATINTHETA)) VU1O1250 
NTH=NTHtTA/2*l VUIO1260 
00   630   J*2,NTH VU1U1270 
Nl»N*l-J VCIU12dO 
N2»N*2-J VUIU1290 
AYI 1. JI>AYH( 1, J) = RÜUT»TAN( ( J-n*THETA) VUI013JÜ 
AX<l,Nn=AXH(l,Nl)-«lüUT-AY(l,J) Vu 10 1310 
AXJl,J>=AXH(1,J1=0. VaiU132J 
AV( l,Nl)=A¥H( UNlMRüUf VUIU1330 
RlNCR»(HlN/RUUr*tUSf « J-U»TH£TA»)**( 1./NRA0I WU1U1340 
00   625  K=2,KINT VUIU1350 
AV(K.Nli-AYHlK,Nl)«AY(K-l,Nll*RiNCK Vo101360 
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625 
bV) 
650 

661 

663 

665 

667 

669 

AX(K,J)=AXH 
AY«KtJ»=AYH 
AX(K,N1)=AX 
AV(K,N2)=AV 
Al2*=0.5*lA 

I -AV(K-l,J 
A23*=0.5*(A 

I -AY<K,J-l 
AA(K,N2)=AA 
AVZlK,J)=Vt 

I ♦•A21*»(AY 
AV2«KiJ)=AV 
AVZ(K,N2I=V 

I      NIH-AY<K, 
AV£(K,N2)=A 
1MA(K,J)=IM 
ASBAKIK,J)s 
ASXX(K,JI=A 
ATXXU, JI*A 
ASYYtK,JI=A 
ATYY(K,J)=A 
APIK, JMAPt 
A£(K,J»=Afc( 
CUNTINJE 
CUNTINUE 
JMIl»=NlHtT 
KM(l»=KINT 
If   (INUIM   .E 
KMlü=KlNT*-i 
TYM£=0. 
ICYCLt=0 
DELTH= l.E-1 
OELTN=.5*llt 
KMAX-KINT 

(K,JI=R0UT-AV(KtNl) 
(K,J)=AY(K-1,J)»RINCK 
H(K,NU=ROUT-AY(K,Jl 
(K,JJ«V 
XtKiJ-n*lAY(K,JI-AYtK-ltJ»>-AX(K,J>*(AY(K, J-l) 
>)»AX(K-l,J)*iAY(K,J-l»-AY(K,J))) 
X(K,J-n*(AY(K-l,J)-AYtK-l,J-in*AX(K-l,J»*(AY(K-liJ- 
) )*AX(K-l,J-l)*lAY(K,J-U-AVtK-ltJn» 
(K,J) = A124*A23'» 
ONMA12^*(AY(Kf J-n*AY(K,J)*AY(K-liJI) 
(K-l,J-ll»AY(K,J-l)*AYtK-ltJ) )» 
ZtKiJ)/V 
CQN*(A12A*( AYlK,NU*AY{K,N2)*AY(K-l,NU»+A2i4»lAYlK-l 
N2)^AY(K-liN2))) 
VZ(K,N2)/V 
A(K>N2)=1 
ASl3AK(KtN2)°ASUAt<(l, I) 
SXX(K,N2)=SO 
rxX(KlN2)-SMAX 
SYY(K,N2>=ASTT(K,J)-ASrT(KiN2»»S0^ 
TYY(K,N2)«ATTT(Ki Jl = ATTTtK,N2)««-PMAX*Sü2 
K,N2)»   CMAX 
KiN2>«tHAX 

A*l 

U.   II   JMUin 

2 
urn 

PRINT   INITIAL   LAYOUT  HÖR   SPHCKICAL  PROBLEMS. 

PRINT   1000 
PRINT   1100f(UISl,PT(I),l*lf 101 
JMl-JMCl) 
PRINT   1603 
DU  661   J-1.JM1 
PRINT   160Ü«(AX(K,J),K°1IKINT) 
PRINT   1602 
00   663   J=ltJMl 
PRINT    1600,(AY1K,J),K=l,KlNT) 
PRINT   1602 
00   665   J«i i JM1 
PRINT    IbOO,IAV(K,J)fK*liKINTI 
PRINT   1602 
UO   667   JM.Jrtl 
PRINT    1600,tAAIK,JJ,K=liKlNT) 
PRINT    1602 
DO   669   J=l,JMl 
PRINT   1600,IAVZ(K,J),K>1,KIND 
PRINT    l60l,THtTA,NTHfcTA 
JHX*JM(1) 
IRT=JT=1 
KT=KMN-1 
CALL   SECONU(TIMNOM) 
CALIIM=TIMNUW-TIMtü 
PRINT   9999,   tALTIM 
XU2>XU(2I 

C ******* 

C 
CALL   SMEEPF  t-ürt  A  CALCOLATIONAL  CYCLE 

VUlUli70 
VOIOUdO 
VUIU1390 
VÜI01<»00 
VÜIUW10 
VUI01<»20 

1)VÜ1U1430 
VU101440 
VÜ1U1<»50 
VUIüUöü 
VÜlUU/O 
VUlOUdO 

, VU101490 
VUIÜ1500 
VOIOlslO 
VÜ101520 
V0IU1530 
VUIl)15<,0 
VUIÜ1550 
VÜIU156U 
VU1U1570 
VÜ1U15ÖJ 
V0IU1590 
VUI01600 
VOlUiölO 
VÜ101620 
V0I01630 
VUlUlb^O 
VülUlb50 
VÜIÜ166Ü 
VUID16/0 
VUIUlödÜ 
VÜIU1690 
VUI01700 
vuiuirio 
V01U172Ü 
VUIülfiO 
V01017<,0 
V0IO1750 
V0IU176J 
VUIU177Ü 
VUlül7ttü 
VÜIU1790 
VUlUlbÜU 
VOlUiölO 
V0101U20 
vuiuiöiu 
vuioiä<,o 
vuiulaio 
VUIU136Ü 
VOIUlä70 
vuiuiööo 
VUlÜiöVÜ 
VÜIU1900 
VU1D1910 
VQIU1920 
VU101930 
V0IU1940 
VUIU1950 
VU1U1960 
VÜ10 1970 
VUlÜl9tJ0 
VUIU1990 
t/UI02000 
V0IÜ2010 
VU102020 
Vülü20i0 
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.Nt. oi  uu ru iio 
316        IC¥CLE=ILYCLE»l 

IF     (MUÜ(lCVCLt,JPKlNI)*MUÜ(ICYCLt,KPKlNT» 
CALL   SbCUNOirMNUri) 
CALTIM=TIMNOW-IIMEO 
TVME«TVME*OELTH 
IF    (IcrCLt   .EU.   20ÜÜ)   miit'Q, 
IF    (ICYCLt   .EJ.   2200)   XU(2)=-XU2 
KMN=MAXO(KMN-l, 11 
IF    UMAX   .LT.   KMIU)   KMAX=KMAX* I 
CALL   SWttPV(KMN,KMAX,JMX,KA,JAJ 
Tü=TVME*l.E6 
IF   (NJEO   .LE.   0)   GO   TO   <*iQ 
0(1   <i25   I»l,NJED 
R(IJ=SJ(I» 
SJI 11 = 0. 
CONTINUE 

STOKE   STKESS  HISTURIES 
IF    (NJKEO   .ST.   0)   MKUt   U) 

EKROK  FINISH 
IF   (NSCKIUE   .GT.  0)   GO  TU   -JO 

*«***•* CHECK   FÜK   ENC  P!    CALCULATION   ANU   SET   NLXI    TIME   STEI» 

32i; 

J.10 
420 

*25 
430 
C 

ICVr-.E.TG.Iftl U.I^l.NJKEOi 

490 

iOO 

540 

5SU 
550 

1000 
1100 
1102 
1103 
1104 
1125 
1130 
1160 
1430 
1500 

1501 
1560 
1600 
16Ü1 
1602 
1603 
1607 

9999 

IF    (TVME   .GE.   TS)   GO  TO   50u 

IF   (IcrCLE   .GE.   IMAX»   GU  TO   500 
ÜELTHW = AMl NU UELTHh, DELTA!» 
DELTN=OELTH 
OELTH = AMINl (0.4*OELTHM|AMAXlU.2*OELTH.Ü.0 35*UELrHri)) 
0ELTN«.5»lüELTN*UtLTHI 
IF    (OELTH   .GT.   1.C-12I   GO  TQ   ilo 
CALL   SECONUITIMNOMI      $   CALTIM'TIMNUW-T IMEO 
PRINT    l500,TVMttTSiICVCLE,IMAX,L)ELTH,NSCRIrifc,CALriM 
PRINT   1501.NJEUtNJKEÜ 
NJEO-MINO(NJEO|60I 
IF    (NJEU   .LE.   Ü)   GO   TO  560 
DO   550   IM.NJED 
KEüITd )=JtOJ(I )*lOO»JtOK(l)HOOyO»JfcjT( 1) 
CONTINUE 
PRINT   1560iNJKEOtlCVCLE.lKEOIT( I) , I=l,NJKkUI 
CALL   SCRIBE   ITIMEU) 
GU   TO   100 
FORMAT   (1H1I 
FORMAT   (10A10) 
FORMAT   lAlOiUO.AlOi UOi 
FORMAT   l4(AlÜ,I10n 
FORMAT   l4(A10iElU.3n 
FURMAT   (AIO.TI16,12,121 ) 
FORMAT   (3A10,E1Ü.3.A10,A«, 12) 
FOKMATI2(A10,E10.3I.2(A1Q, 110)) 
FORMAT   II3,Ftl.6(UF9.3/lllX,liF4.i)) 
FORMAT   (/♦   STOP,   TVME  =»E10.3,»   TS=*tl0.3,*   Il,YCLt»*l5 ,♦   IMAX=   ♦ 

1      15,♦   UELTH«   »ElO^,*   NSCRIUE»   ♦13,♦   CALT IM^Elü. 3) 
(   •   VALUES  UF  NJEU=*I5,*   NJKtU=*I5) 
(♦   VOIU  -   NJKcÜ«*I3,« 
(lX,l5fcV.2) 

INITIAL  ANoLES, 

ICyCLE = *J3,*   KEU°*10110/(3iX, 1ÜI1U) ) 

THETA   =»,fclü.3,*        NTHETA=*,14) 

FORMAT 
FORMAT 
FORMAT 
FORMAT!/* 
FORMAT   I) 
FORMAT   !♦     LISTING UF   X,   V,   V,   A«   ANU   VZ*/) 
FORMAT«*   SE«*E10.3,*   PMAX»*E10.3,♦   MU=*3E10.i,*  V**2E1Ü.3, 

1     *   E-*,E10.3) 
FORMAT   I10H  CALTIM «   tE10.3) 
END 

VUIU204U 
VOIU2U50 
VU1Ü2U60 
VUIU20/0 
VU1Ü2J8Ü 
VUIU209U 
VÜ1U2100 
VÜIU2U0 
VUIU212Ü 
VUIÜ2130 
VÜ1U214Ü 
VUIU2liJ 
VUlU2loO 
VUID217J 
VÜIU216L» 
VÜIU2H0 
VU1Ü22U0 
VUlU2£iü 
VuIU222J 
VUIU2<:iO 
VÜIU224a 
VUlD22!ja 
VÜIU2260 
VÜ1U22/U 
VJlU22a0 
VÜ1U224U 
VUILJ230J 
VIJIU231U 
VÜIU2320 
VülütiiO 
VJ1U2 340 
VUlD23iO 
VÜ1U23O0 
VÜI023/0 
V0IU21Ö0 
VU1U2J9U 
VÜIU24JO 
VU1U241Ü 
V01U2420 
VUIÜ2430 
VUI024<»0 
VuiÜ24bO 
VUIU24öO 
VUIU2'*70 
Vülü2tö0 
VÜI0249U 
VU1U25ÜO 
t/Ulü2510 
vuiuas^u 
VÜI.'253Ü 
VÜIU2i>'.0 
VülU2i50 
V(J1U<:560 
VaiDZt>lO 
vuiu25ua 
V0ltJ2 3 9U 
VUIU^6U0 
VUlU26i0 
VÜIU2620 
VOID2630 
VUIU2640 

' 
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ProKram  VOID 

CReat)   Program Controls, A 
Material   Properties      J 

C Read   HadU,   Nfi)   N„ J 
Compute PMAX, EMAX, SI), 

VMAX 

Lay Out AX, AV Arrays 
Compute AA, AVZ 

Initialize IMA, ASBAR, 
ATXX, AP, AE 

(prin t   AX,    AY,   AV,   AA, AVZ] 

The  main   proKran   reads   input 
data,   lays   out    the   finite 
difference  Rrlri,   rails   SWEEPV 
at   each   time   step,   and   calls 
SCRIBE at   the end  of  a 
comput at ion. 

Input   data   controlling    t he 
lenRIh   of   the   romputat i on, 
print out   required,   nature   of 
the  compulation   and   number   of 
mater in Is   are   read.      For   each 
material,   J   cards   are   read   de- 
scnbinH   t he   equal ton   of   state. 
For  materials   with   strcnKth   and 
viscosity,   an   a.lditional   card 
Is   read. 

One additional card Riven the 
number of cells In ihe radial 
and  circumferential  dIrectIons. 

Compute   stresses,   energies,   and 
Sped fiC   volumes   assoil a ted   with 
an   initial   uni form  one-dImenslnna 
stress   state. 

The  Xf   Y  coordinates   of   all   cells, 
the   areas   of   the   eel Is   and   the 1 r 
volumes   arc   computed.      The  yield 
strength,    stresses   and   energies   of 
the  cells   are   Initialized   to   the 
one-dimensiona1   state  computed   1n 
the  previous   step. 

•Sot    ICYCLE,   TYME 

CALL  SCRIBE J 

Coll Subroutine SWEEPV for calculations 
of coordinates end stresses at the next 
tIme   increment . 

Write  on   tape   the ijuantitles   to  Iw 
listed   U historical   printouts  at 
the  toncluEIon   oi   the   colculat ion. 

Test   the  ending   criterln   based   on  number 
cycles,   dur»t i on of  computa t ion,   or 
presence   of   an   error   (NSCRIBE) 

Compute   the   Iime   increment   for   the 
next  computational   cycle. 

Call  subroutine  .SCRIBE   to  list   the 
stored   values   in  a historical 
printout. 

Return  to   100   to  read   the   next 
data dork. 

FLOW CHART OF PROGRAM VOID 
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10 

15 

i0 
32 

35 
-.0 

SUBKUUT1NE   SWEEPVJKMIN.KMAX, JMAX.KU,JUI 
HEAL   MU.MCON 
COMMUN   CA(4)lCÜ(4)fCC(4).EUSTkl4),EgbTG(4)fEUSTH('»),AHAT(4)lMU(4) 

1 KH0('«).YCC(<>).VCT(4),MC0N(4I.SCUN(4)>(>MIN(<»).SP('t) 
2 .FM(<») .FB(4)>ErA(4l 

COMMON    IM AX i IPK IN T , ICYCLt, K1NI ,K.M1 U ,K*N ,KMX , JMX, I KM AX, IKT , K T f JT , 
1 KHF ,ISTATt,lFLAC.,Jl,MlKK, IJBÜNÜ, 1FCUI , UKfcD ,UKMl N , KCUI ,L ALPHA , 
2 NÜIM 

COMHUN   NKbL),KPRlNT(KEüK(20) , KfcOC 2Ü» , NJ t L , J t ÜK ( 60 ) , J tuT i 6Ü I , 
1      JEQK.(60) .JEüJt 60), NSCRIiifc.N JK.tL),KtU 11(120 J 

COMMON   R(12 0),SK(20),SJ(60),XUK(<:ui,VKi 2üi 
COMMON   JH12),KM(2),ARtA(2),0tLX(2».UtLy,XÜ(2 I,VLUN,CUSa.STRbii 
COMMON   T\rME,XÜlNr,ÜELTN,OELIH,ÜELTHH,OtLTMiN,UISCPr( 10) 
COMMON   CALT IM 
COMMON AXI45,m, AXH(<,5,15),AXUHl4i,15) , IMAi 45 , lb ), 

AY(45,15), A¥H(45.15),AYÜH(45,13), Ak(45,l5), 
AA(45,15),      ^(45,15),     AP(45,15), 

.l5),ASXYI<»5,15),AäTT(<»5,15)f 

.l3l,ArxY(45,15),ATTTl45,15), 
l<,3.15).AVZI<)ä, 13) 

M(45,13> 
k(45,13i 

STT(45,i5l 
rrri45,i5) 

1 
2 
3 ASXX(45,l5), 
4 ATXX(45,13),^ 
3            ASbARP(<>3,15; 

DIMENSION X(45,l XHU5,15), XUH(43,13), 
1 Y(43,15), VHHSjli), YUM(*5,i5)f 
2 AI43,13). V(<>5,15)l P(43f15), 
3 SXXU3,15), SYYCS.li), SXY(45,13), 
4 TXXUöflSI, TYYUSilSii TXY(43,13), 
3                      St)AkP(45,15),        SbAK(45,15), VZ(43f13) 
ÜIMENSIUN SXIf3),SY(75) 
DIMENSION   CAPA( 13) ,U I ( 15 ) , SIGLI'M 1 3 ) fUAMI 13 . 15 I 
EQUIVALENCE   I AX , X ) , ( AXri.XH) . IAXUH, XUH) . ( IMA , M I , (AY , Y), ( AYH .YH) , 

1 ( AYüH,YOH).(At.E),(AA,A),IAV, V) . (AP , P),IASXX,SXX),(ASYY,SYY). 
2 (ASXY,SXY),(ASrT,STr),lATXX,TXX),(ATYY,TYV)i(ATXY,TXY), 
3 I ATTT,TrT),(ASÜAKP,$HARP),(ASUAK,$UAR) ,(AVZ,VZ) 

ÜVVMIN=Ü. 
UbLTH^UNH^XXH.jgNH^ELZ   ARE   JfcF INtJ   AT   HALF   STEP 
X,Y,SIKES!>,    E,    P,   SURTA,   AKEAXO  ARE   UEF 1NEU   AT  FULL   iTtf 
CL1N*0.5 
KE=KPR=JE=0 
IHEA0=KHEA0=1 
IR=l 
JM2=(JMAX*l)/2 
AISUM=AlCAPAS=AlttI$-U. 
IF   (ICYCLE   .ÜT.    1)   GO   TO   15 
TMASS=RriUI1 l«IX(l,JMX}«Y(l,JMX)»♦2-2./3.♦¥(K IN^ ,JMX )•♦3)/V(2,2J 
HAV(i=YUlNT , JMX) 
00   10   1=1,225 
GAMU )=0. 
TXXW=TYYW=TXYrt=Tnw=Eta=VH=PW=UUNh=SPSa = XUNH=YuNH=0. 
CONTINUE 
If   IMOOI ICYCLE, IPRINT)   .ES.   01   IHtAL)=2 
IF    (MOÜdCYCLE.KPRIN!)   .tO.   0)   KHtAÜ=2 
IF   INJEO   .tU.   0)   GO   TO  40 
IF   (JEOMJE + l)    .GE.   KMIN   .UK.   JE   .GE.   60)      GO   TO   33 
JE=je*l     i      GU   TO   32 
Jt=JE«-l 
CONTINUE 
OTSgM'l. 
SPMIN=l.E25 
UO   900   K<KMIN,KMAX 
KM I*   K-l 
KPl«   K*l 
00   800   J=1,JMAX 
JP1-   J*l 
JM1=   J-l 
IM<M(K,J) 
IF    )IR    .Nu.   1    .OK.   K   .NE. 
SX(Jt«XH<KMltJ)«XIKNltJl 
SY(JisYH(KHl,J)=YIKHl,J) 

KMIN)    GU   TO   200 

SMEPUOIO 
SMEP0Ü20 

,$MEP(i0 30 
SMEP0Ü4Ü 
SMEP0030 
SHEPU06Ü 
SWEPOOZO 
StoEPOüdO 
SMEPCOSU 

SWLPOIOJ 
SWkPUllü 
SriEPUUO 
SWEP0130 
SWEP014Ü 
SMEPÜ130 
SHEpo160 
SHEPU170 
SMEPUldO 
SMEPÜ190 
SMEPOZUO 

,SrfEP0210 
,SuEP022J 

SWkPa2 30 
,SMtP02<»ü 
,SrfEPci230 

SMbPa260 
SWEP0270 
iWEP02dO 
SMEPU29Ü 
$NEPU300 
SNEPUilü 
SrftP0320 
SMEPU330 
SMEPU340 
S*tPU330 
SWEPÜ360 
SNEP0370 
SMEPOidO 
SHEP039Ü 
SwEPO'.OO 
SWEP0410 
SNtPü42U 
SMtP04 30 
SMbP044J 
SWEPO^J 
SMEPO^bO 
SwtP0'»70 
SMbPü<>äU 
SMbP0490 
SMtPU50u 
SMEPU310 
SWEP0320 
SMEPU3J0 
SMEP034J 
SMEP0530 
SMEP036U 
SriEP037u 
SMEP03dO 
SWEP059Ü 
SWbPl)6üO 
SMEPÜ610 
SritP062Ü 
SWtP063U 
SHEP0640 
SMEPU630 
SMEP0660 
SHtP067ü 
SMEP06dO 
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c SWEPÜ690 
C   «****•«>                Fih,)    SIRfcSSES   ANÜ   MAbifcS   AKCUNU   V01NT   -K J- SwEP07üO 
C S»(cP0?lG 
200 FX  =  ev =  AMASS  =   Ü. SKEP0720 

DU   28Ü   1 = 1 I^I SWEPÜ7J0 
WJ   Tt)   ( 210,.:20,2 30,-^0)    I SrtEPU/40 

(,♦♦ 1=1,     UPPER   ^IGHT    (.UALSRANT SWEPU750 
210 If    (J    .EU.   JMAX    .UR.   K    .tU.   KMAX)   00   TO   200 SHEPU/öü 

XI    ~   X(KPl,JPl)       »               Yl   =   Y(KP1,JPU SWEPU7/0 
X2   =   XU.JPl)            $              V2S  =   y2   =   YIK.JPU SwEPü7ciO 
X3   =   X(X,J1                 S              Vi   =   Y(K,J) S*tPü790 
X-,   =   XlKPlrJ)             *               Y-i   =   YCKPl.JJ S^EPÜbÜU 
JJ   =   JP1                          »               KK   =   KPi S»t PÜ81U 
GO   TO   2 50 SH!.lJcd2U 

C** 1=2,      UPPtk   LLHT   UUAORANI SKEPüa3Ü 
220 If    (J   .Eg.    JMU    .UK.    (K    .EU.    1    .ANU.   J    .uE.   JM2)) GO   TO   2bO S^EPÜb4U 

IF   IK    .NE.    U   6Ü   TU   225 SwtPUd5ü 
C SPECIAL   ^XILKNAL   PKtSSüKt   OCUNJAKV S«tPutJ6ü 

FX   =   -STRESS   ♦    (Y(K,JPl)»*2   -   Y(K,J»**2)   /   t.   ♦   F) Si«tPC87U 
GO   TO  230 St«tPUBdÜ 

C NORMAL   PATH SrttPUd'JO 
225 XI   =   XIKMl.JPU       t               Yl    =   Y(KM1,JP1I SwtPLVUÜ 

X2   =   XlKMl.J»            t              Y2   «    MKM1,JJ irtcP091U 
X3   =   X(K,J)                  t               Y3   -   Y(K,J) St«tP0920 
X4   =    X(KfJPll             t                Y2S   «    Y4   =    YlK.JPl) iwtP093a 
JJ   =   JP1                          t               KK   =   K SHEPU940 
GO   TO   250 i>^tPjV5U 

O* 1=3,      LOHtR   LEFT   gUAORANT SntPU9öO 
230 IF    1J   .EU.   1    .UR.    (K   .EU.    1   .ANU.   J   .G..   JH2))   GU Tu   28u i»EPO9 70 

IF   (K   .NE.    1)   GU   TO   235 SutPÜSbü 
C SPECIAL   EXTERNAL   PRESSURE   BOUNDARY SwEPOV^u 

FX   =   -STRESS   »    (Y(K,J)**2  -   Y(K,JM1)**2I   /  4.   ♦   FX SKtPlOÜO 
GO   TU   280 inEPlUU 

23!) XI   =   X(KMI,JM1)       «               Yl   =   Y(KM1,J,M1) SriEPlii2ü 
X2   =   X(K,JM1)             »               Y<,S   =   Y2   =   VU.JMl) SWtPlüiO 
X3   =   X(K,,,)                  $               YJ   =   Y(K,J) SWfc0lU40 
XA   =   X(KM1,J)             t               Y4   =   YtKMl.J) SKt,, .050 
JJ   =   .1                               S               KK   =   K S«tPlÜ6ü 
GO   TO   2 5U SntPlU7u 

c** 1=4,      LOWER   RIOHT    gUAUKANT SWtPlOdO 
240 IF    (J    .EU.    1    .UR.   K    .tU.   KHAX)   uO   TJ   2d0 SWtPl09ü 

XI   =   X(KPl.JMl)       t               Yl   =   Y'tKPUJMI) S«EP110U 
X2   =   XlKPl.J)            t               Y2   =   YIKPl.J) iHEPlllO 
X3   =   X(K,J)                  t               Y3   =   Y(K,J) ShEPU2U 
X*   =   X(K,JMll            $               Y4S   =   Y-t   =    Y(K,JM1I SHEP113J 

JJ   =   J                               t               KK   =   KP1 SrtEP1..40 
L COMPUTE   AREAS,   FORCES   ANÜ   MASSES SutPli 5J 
250 YO   =   0.25   ♦   IYl*Y2*Y3*Y4)    t          XÜ   =   0.25   •   (Al ♦•X2t A3*X'.i SrtEFllbJ 

Y23   =   0.5   ♦   «Y2   ♦   Y3) SrfEPll.'Ü 
Y24   =   J.5   •   (V2   ♦   Y4I SutPllöJ 
*34  =   0.5  ♦   tV3   ♦   Y41 St.EPll90 
OY24   =   Y2  -   Y4 SxtPUOü 
AXX   =   ÜY24   ♦   1*24   ♦   Y3I   /   4. SHEP1210 
AYY    -    ( (Y23*VUl»l XÜ-U.5*IX2*X3I)   -   (YJ4tYC»♦{XU-0. 5*1X3+X4)))/2. Si4kPi22J 
A(                  »X0-X3)*DY24   ♦   2.*X2«(Y34-YÜI    ♦   2.*X4»(YÜ- Y23I S»tPU3Ü 

r2-Y3l   -   X3*UY24   ♦   X2*1Y3-Y4) StakP124Ll 
'5*IA0+A3) S»<LP1<:5ü 

^,JJ) SMEP1260 
AMASS   ♦   RHOlIMA)/V(KK,JJ)*(A0*lY24+Y3+YUl ♦ SHEP127U 

1                                  A3*<y24*2.*Y3))/24. SMEP12dü 
FX   =   FX   *   TXYIKK, JJ)»AYY   ♦    TXXIKK,JJ)»AXX S,*tP129o 
FY   =   FY   *   TYY(KK,JJI»AYY   ♦   TXY(KK,JJ)»AXX   -   IITIKK ,jj)*Axy SMtPlJUO 

280 CONTINUE SrttP1310 
C SMEP1320 
C   *******               CUMPUTfc   .NfcW   POSiriUNS   ANU   VtLJCirieS   AT   fUlNF   -K,J- SNEP133U 
c SWl:P134U 
300 XN   »    X(K,JI SMEP1350 

YN   =   Y(K,JI SMEP13bO 
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(Y2W.;>) 

:OMPUTE   Ntrt   AKEAS  FUR VELOCITY 
IF    ( J   .fcg.    JM( IKI I   Y2S   =   YN 
IF   (J   .ty.   II   Y^S   =   0. 
AREAXü   =    (Y^S^Y^S^^^YN)   ♦ 
IF   (J   .GT.   1)   Üü   TU   30 5 

2EK(J   THE   -Y-   VALUtS   ALUNO   Tht   LINES   UF    SYMMETRY. 
VNW=YUH=YüNH=ALFA=YOtF=0. 
(iU   TU   il<t 
CUNTINUt 
YUNH   =   0. 
IF   IJ   .GE.    JM2   .AND.   K   .EU«   D   Uü   TU   312 
YUNH   =   YUHIK.J)   ♦   ütLTN»FY/AMASS 
YNW   =   YN   ♦   YüNH*üELTH 
YNH   =   IYN*YNK)/2.0 
IF    (J   .Eg.    JMAXI    at  TU   320 
XUNH   =   XJHIK.JJ   «•   UELTN^FX/AMASS 
GO TO 325 
XUNH=XOINT 
XNW = XN«-XUNH*OELTH 
XNH  =   (XN   ♦XNW»/2.0 

C RUUIINE   FOR   CONSTANT   STRAIN 
IF   (J.G1.    1   .ANU.   K   .GT.   1)   GO   TO 
IF    IK   .GT.   U     GO   TU  33ü 
IF    IJ   .NE.    JM2I      GU  TU   60U 
X()A=XÜI2) 
XA=XN+XDA*OELTH 
XAH=.5*(XA»XN) 
UU   337   I=lfJM2 
SX( I 1=XA 
Xhl It Il=XAH 
XUHd.l )=XOA 

337       CONTINUE 
XNM=XA 
XNH=XAH 
XUNH~XÜA 
IF    IJ   .EU.    1 

305 

312 

314 

320 
3 2'3 

LN   CUTER 
340 

aUUNUARY 

.OR.   K   .Eg.   II      oO   TU   600 

COMPUTE   NEW   AREA  ANJ   VULUML   FOR   CtLL   -K,J- 

330 
C 

C 
340        Xl'XNW 

X2-SX(JI 
X3=XIKM1,JMI I 
X4=SXIJMll 
Yl=YNrt 
Y2=SYIJl 
Y3 = V(KM1,JM1 I 
Y^SYI JMll 
AN-AIKtJi 
VN=VIK,JI 
X42  =   X4-X2 
Y42   =   Y4-Y2 
A124«0.5«IX<»»IYl-Y2l-Xl*Y<t2*X2*(Y<t-Ylll 
A234=U.5»I X4*CY2-¥3I*X2*IY3-Y'H*X3»Y42 I 
AW=   AI2<>   ♦   A234 
AH=   0.5««AW+ANI 
SöRTA»ABSIXl-X2*X42*Yl-V3-V42l/4. 
VH»VCUN*(Al24»m*YUY2l*A23'»»IY3*Y4*Y2) |/VZ(K,JI 

355       VH«   0.5   *1V«*VNI 
OELVH  =   VM   -   VN 
IF    lABSIUELVH)   .LT.   1.E-8I   UELVH=0. 
DfcLVV   «   DELVH   /   VH 
'•»'JV = ÜELVV   /  ÜELTH 

«•«i*««« COMPOTE   STRAINS AT  HALF-TINE  STEP   UACK 

9   ECUN  « 0.5»DtLTH/AH 
XHli   ■ XNH   -XHUMl.JMl) 
XH42   ■ XHIK.JMll-XHIKMltJI 

SMEP1370 
SMEP138Ü 
SMEPU40 
SWEP140Ü 
SMEPU1Ü 
SMEPU2Ü 
SMEPU30 
SwEPU^O 
SUEP14 50 
SMEPUÖO 
SriEP1470 
SMtPUUO 
SWEPK90 
SkLP1500 
SMEP1510 
SWcPl520 
SWEP153Ü 
SHEP1540 
SMEP1550 
SWEPi560 
SWEP1570 
SMEP15äO 
SWEP1540 
SMEPlöUO 
SWEPlblO 
SMEPlb20 
SMEPlbJO 
SwEPlo^O 
SMEPlb50 
SWEP1660 
SXEPlbfO 
SMEPlöbO 
SMEP1640 
SMEPirOO 
SWEPl/lU 
SMEPU20 
ShEP173U 
SMEP1740 
SHtP1750 
SMEPWbO 
SrttP177y 
SXEP1780 
SHEP1790 
SMtPlbOO 
SWEPlblO 
StaEPld20 
S^EHldiU 
SWEPlblO 
SMEPlä50 
SMEPlbbO 
SMEPIU70 
StiEPlbbO 
SWEPlblO 
S^EPiyoo 
SNEPISIIO 

SWEP1920 
SMt.P1930 
SWEP1V4Ü 
Si<EP1950 
StaEP1460 
SMEP1970 

SMEPlVbO 
SMEP1990 
SMEP20U0 
SMEP20iO 
SWEP2Ü20 
StaEP20 30 
SMEP2ü4g 
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*** 
W Wim 

421 
22 

23 

24 
425 

YH13   =   YNH    -YHdm.JMH 
VH42   =    YH(K, JMI)-YH(KM1,J) 
XDH1J=   XÜNH   -   XÜH(KM1,JM1» 
XÜH42=    XOH(K,JMl)    -   XUH    (KMl.Jl 
YÜH13=   YUNH   -   YUHUfH, JMl) 
Y0H42=   YUHIK.JMI)   -YOH(KMltJ) 
fcXXH   =    tt0N»(XÜH42*YHl3-Yri42*XL)H13) 
fcYYH   =-tCaN*( YL)H42*XHl3-XH4i:*Y0Hl3) 
EXYH   =    tCÜN*« YÜH42*YHl3-YH42*YüHiJ-XUH'»£*XHl 3   «•XH42*XüHUi 
fcTTH   =   UELVV   -EXXH-bYYH 

******* COMPUTE   ÜEVtATüK   STRESSES   Af   t'ritjfcNT   TIME 

SCUNC  =   ÜELVV/3.0 
SXXN     =   SXXIK.JI 
SYYN     =   SYY(KtJ) 
SXYN     =   SXY(K,J) 
EN =   EIK.J) 
ALFA   =   U.5*£LON*lYÜH42*YHl3-YH42»Y;JH13*XÜH42»XH13-XH-t2*Xüril3) 
ALFA   =   -   ALFA 
bETA  «   2»SXYN*ALFA 
SXXW   =   SXXN   ♦SCUN( I.1)«(EXXH-icUNC) ♦ÖLfA 
SYYW   =   SYYN   ♦SCUMlM)*(EYYH-SCüNCI-ÜErA 
SXYW   =   SXYN   ♦MU( IM)*EXYH+( SYYN-SXXN)»ALFA 
SFTW  =   STTIK.JI »SCUNClM)*(ETrH-SCUNC) 
IF    (ETA(IM)*FM( IM»    .uT.    0.)      GÜ   Tu   4!>0 

RUHTE FÜR PERFECT PLASTICITY 
IF (YCT(IM) .Eg. 0.) GU TO 49J 
CY = I. 
IF    lYCT(IM)   .tU.   YCUIHH      GO   TU   LH 

IF    (AbSISXXrtl    .Lf.   AüS(SYYW))    oü   TU   421 
SCUNC   =   SXXrt 
GO   TO   22 
SCUNC   =   SYYW 
IF    (AdSISTTWI    .&T.    AüSISLUNOI      SCUNC   =   SlTh 

(SCÜNC    .LT.   Ü.) 
=   YCC(IM) 
TO   42 5 

YCT(IM) 

C 
C 
450 

460 
C 

AUS« SCUNC)) 
23f24 IF 

YC 
GO 
YC 
SJNW=SXXW*SXXW4-SYYw*SYYw*STTW*STTW+2.*SXYw»SXVw 
IF    (SJNk   -   YC   .LE.   Ü.)    ÜÜ   TU   49Ü 
CY 
SXXW 
SYYW 
STTW 
SXYW 
GU   TU 

=    SUHTIYC    /   SJNW) 
= CY 
' CY 
' CY 
■■ CY 
490 

SXXW 
SYYW 
STTM 

SXYW 

RUUTt   FUR   ViiCUUS   wORK-HARUENING 
SBPW^SbARPIK, JJ 
SJNW=1.5*( SXXW*SXXW*SYYw*SYYW*STTw*STTW+2.*SXYW*SXYwJ 
SE)M = SgKT(SJNW) 
CUMPARE   UtVIATuK    (SOW)   WITH   YlELUISüAKP) 
IF    (SÜW   .LE.   SUPM   .ANU.    S6AK(K,j)    .LE.   SÜPw)   GU   TU   490 
IF   (SÜW   .EU.   SHAKU.J))   GU   TU   490 
IF    ISI1AK(K,J)    .GT.    SdPW)    GU   TU   46U 

SET   SXXN,   ETC.    TO   VALUES  AT   YIELÜ 
SSR=(SbPW-StiAR(K,J) )/(SdW-SüAKU,Jl) 
SXXN=SXXN*(SXXW-SXXN)*SSR 
SYYN=SYYN+(SYYw-SYYN)»SSR 
SXYN=SXYN«-ISXVW-SXYN)*SSR 
STTN=STT1K,J) + I STTW-STT(K,J) )»SSK 
CONTINUE 

FIRST   CYCLE   TU   COMPUTE   OtVIATUk 
DTP=OELTH»(ArtAXl(SbPW,SbW)-AMAXUSbPW,SUAR(K, J) ) ) / t StJW-SöAK ( K, J) ) 
ALF=DTf*MU(IM)/EIA(|M) 

SWLP2Ü!>Ü 
SWEP2Ü6Ü 
SwEP20 10 
iWLP2übO 
SWEP2U90 
SwEP21uO 
SwtP2llu 
SKEP2I20 
SwtP2130 
SWEP2140 
SWEP215U 
SwEP21oJ 
SWtP2l7Ü 
SWEP21bJ 
SWEP2190 
S«EP22Ü0 
SwEPJ2lü 
SWEP222U 
SWEP2230 
SWEP2240 
SWEP22bO 
SwEP22oO 
SWEP22/0 
-.wEP22dü 
iWLP2290 
SWEP230J 
SWEP2JIU 
S*tP<;32ü 
SWEP2J30 
SnEP23tJ 
SWEP2iJÜ 
i«tP236Ü 
iwEP237j 
bWEP23dO 
S<»tP<;39ü 
swEP24aü 
SWEP24iJ 
SWtP242J 
SWEP243a 
SwtP2440 
SWl:P2450 
SH£P246ü 

SWEP247Ü 
b«EP24du 
SWEP2490 
SwtP25üü 
SWEP2t)lu 
SnEP252U 
SWLP2P3J 

SWEP2540 
SWEP255J 
SwtP2büÜ 
SWEP2570 
SMEP25äü 
SWEP25yO 
SWEP2oOu 
SwtP2blU 
SWEP262J 
SWCP26J0 
SWEP26 40 
S.«Li>2obU 
SWtP26oj 
ShEPtWü 
S»»EP2iao 
Sucr^övo 
SWEP2700 
SWEP271J 
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490 

BfcT=ALF/(l.*0.5*ALFI 
SXXAsSXXN+C-SXXN + SöPW'SXXW/Sbrt^^.^ETAdMMIEXXH-SCONC) /ÜfcLIH)*iitT 
SY¥A=SY\rN»(-SYVM*SttPW*SYyw/SbU+2.*tTAUM)*(cyVH-SCUNC»/JtLTH)*aeT 
SXYA=SXVN*(-SXVN*SBPH*SXVW/SBW+ETA(IM)♦EXYH/üELTH)•ötT 
STTA=STTNM-STTN*SbPW*STTW/SBh*2.*ETA(mMETTri-SCÜNU/ÜtLTH)*lJfcT 
SBA=SURT(l .^♦lSXXA»SXXA+SYYA*SYYA+STrA*STTA«-2.*bXYA*SXYAJ ) 

COMPUTE   FACTüK   RELATINÜ   PLASIIl,   TU   TÜTAL   STRAIN   -  cYH 
CYM=ISUW-SBA)/(SBh-SUAK(K.JII 
UOA=SUKT(l.S*(EXXH*EXXHtEYYri«tYyH*trTH«tTTH«-.b*bXyn*tXYH))*CYM 

I        »l.t-lO 
ADJUST   YIELD   STKtSS   FQK  WÜKK   HAKutNINÜ 
GAHW-GAMIK«JI«AdS(JGA) 
SB(>W=l.AM«*FM(IM)/t l. + Fbt lrt)*l,AMWJ   ♦   YLCliM) 

SECUNO  CYCLE   TO  CUMPUTt   UtVIATUK 
DTP=UELTH*(AMAXl(bBPki.SBM)-AMAXl(SBPM.SbAK(K.J): )/(SbM-SbAK(K.Jil 
ALF=DTP*MU( lM)/bTAl1H) 
BET=ALF/(l.♦O.S^ALF) 
SXXW=SXXN*l-SXXN«-SbPW*CYM*tXXH/UiiA*2.*tTA(lM)*(tXXri-SCÜNC»/UtLTH> 

I      *&kJ 
SYYW=SYYN< (-SYYN*SBPb*CYM«EYYH/UGA + 2.»ETA(!«)♦(tYYH-SCÜ^CI/ütLTH» 

1     «BET 
STTM = STlN*(-STTN*SöPW*CYM*ETlH/ÜGA*2.*tTA(IMI*(tITH-SCiJ.*:i/tl£LTH) 

I     »BET 
SXYW^SXYN+l-SXYN^.S^SBPW^CYM^EXYH/UGA+ETAdMJ^EXYH/UtLlHI^BET 
Sbb=SgKT(l .5»»SXXW*SXXW*SYYW«SYYH*bTTW*STTW + 2.»SXYW#SXYw)) 
CYMa=lSbM-SBB»/(SbW-SttAR(K,J)J 
OGA*UGA*CYM/CYMiJ 
6AH(KtJ»«GAM(K,J»*ABS(UGAI 
SHARP (K,J) = ÜAM(K,J)*FM( IH) / I 1.+Fb ( IM I «GAH( K . J) ) «-YCC ( 1H ) 
SUARIKfJ)=SBB 
CONTINUE 

•♦♦♦♦♦» COMHUTt   0>    Pt   E   ANJ   TCTAL   STKESSES   AT   PKESENT    TIMc 

ARTIFICIAL   VISCOSITY   CUMPUTATiUN 
QQNH   =  -KHü(IM)/VH*VDOV*(CäSÜ»AUSIAH)*VüOV-LLIN*SUKTA»SPIIMH 

3082   CONTINUE 
OISTOKT1UNAL   STRAIN  ENbrtGY 

0ELZ*.5*VH»USXXW*SXXN)*£XXH*( SYYW*SYYN) ♦EYYH+( ST Tta*ST T (Ki JD* 
I     ETTH*lSXYW*SXVN»«tXYHI/RHO(IM) 

PRESSURE   CALCULATION   AND   ENERGY  CALCULATION 
ECON-tl.-VWI/Vfc« 
PHUG »  -ECON«(CA( IM)«ECON*(Cu( IiiUECUN«CC(lM) I) 
PM   »   (PHUG*(l.-EQST(>(IMI*ECÜN/2.>-EiJSTG( IM)/VM*I I LN*ücl.£ l«HHU( IM1 

I     -UgNH*UELVH))/(I.^EUSTGIIM)/VM*UtLVH) 
IF   (PM   .GT.   PMIN(IM)>   WRITE   »dilOÜ<.J   PM ilK, ICYLLE t T YNEf Ji K 
PH   •   Ar'lNKPH.PMlMi |MI I 
EW   =   tN*ütLZ*(PW*Ut|NHI*ü£LVH/RHUlIM) 

FIND  TOTAL STRESSES   AT   PRESENT   TIME. 
»   «JUNH 
♦   GUNH 

Pw 
PW 

TXXW  ■   SXXM 
TYYH  ■  SYYW 
TXY«<*SXYW 
TTT*  =   STTW   ♦   PH 

COitPUTE   SUUNU 
EMUUULi=0. 
IF    IDELVH   .tQ.   0 

♦   JUNH 
SPEED 

I 

560 
C 

GU  TO   b60 
EMUDULI   •   -PW/ECUN   »   gg.Nri/OELV^   t   SCONIIMt 
SPSU'AMAXl(CAI IM»»SCCN(IM),EMUÜULl)»VH/Rhü( IM) 

CHECK   FOR   PINIMUM   UELTH   AT   HALF   TIME  STEP   AMtADICritCK   FUR   STABILITY) 
OTSU»AMINl( (I Yl-Y3»*»2»Ul-X3l »«I/^ .,« Y42*V*2*X42»X42» /2. , 

1 .25*im-Y2-Y3*YO«'*2HXl-X2-Xi*X«»)»«2)f 
2 .2'i*((Vl*y2-Y3-Y4l*«2*IXl*X2-X3-X4l»»2l»/SPSU 

IF    (UTSg   .GE.   OTSQM)   GO   TO  600 
KT«K     »     JT=J      t      IRT=IR 
DTSQM«UTSU 
IF    (OTSgM   .Lb.   0)   GO   TO   450 

SHEP2720 
SMEP27iÜ 
SwtP2K0 
SMEP2750 
SMEP2i,60 
SMEP27fO 
SMEP27BO 
SMEP274U 
SMEP2dOO 
St<£P2t)10 
SWEP2tl2ü 
SMEP2BiO 
S*£P2d4l) 
SMEP2Ut>ü 
SMEP2B60 
SwEP2d7ü 
SriEP2BäU 
SMEP2tlSU 
SKEP2^U0 

SMEP2ViJ 
SMEP2'J2a 
SWEP2930 
SMEP2440 
SMEP24t>0 
S*tP296ü 
SWt?2Sl70 
SMEP29äO 
Si<EP2'm 
SMEPiOOO 
ii»tPiOlü 
SMEPJ020 
SiitPJ03ü 
SMEP3040 
SMEP30!>a 
SMt.P3Ci60 
SwtP3ü70 
SMEP30B0 
SWEP309U 
SwEPJlJu 
SWEP3110 
SWEPiUO 
SM£P3U0 
<ribP31<tü 
SHEPiläO 
SMEP31bO 
SMEP3170 
SHtP31dU 
SWEP319U 
SMEP3200 
SHEP3210 
SWEP322g 
SHEP32iO 
SMEP3240 
StaEP32bj 
SMEP3260 
SWkP3270 
SMkP.-!2B0 
SrtEPl29U 
SMUPiiOO 
SHkP33lg 
SMEP3320 
SMEPJ33U 
SMtP3340 
SMtP33^0 
SMEP3360 
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c S«tP3370 
C   •***•**                MA.IÜR   PRINTUUT SW£P33ao 
c SWtPJ390 
600 GO   ID   (615,605,010,630)    IHEAÜ SwEPJ4o0 
605 IF    (IK   .tul.    11   WRITE    (B.lJOO)    JtVCLt ,IYMt,ÜLLfH,lKl ,M ,JT.CALTIM SwtP3410 

l,KMIN,KMAX,KREL),KCUr SrttP3420 
610 MRU      (8,1002)    IR,K,XNW,VNW 

iHfe/J=4 
GÜ   TU  640 

SWt.P343U 
S«EP3440 
SWLP34J0 

615 GU   TU   (640,020,625,630)   KHtAO SwtP34bü 
620 IF   (IR   .EU.    1)   WRITE   (8,1000)    ICYLLt, T VME ,UL L TH , 1 K T ,M ,JT ,LALriM SWEP3470 

1,KM1N,KMAX,KKEU,KCUT SwEPJ4dU 
625 KHEAD=3 SWEH349U 

IF   (K   .Nt.   Ktü(KPR)    .UR.    IR   .N£.   KEüR(KHK))   GU   Tu 640 SWEP350J 
KHEAÜ=4 SwtP35ld 
KPR=KPR*1 S^LP352u 
WHITE    (8,1002)    iR,K,XNW,YNW S*»tP3510 
GO   TO   640 SWbP3540 

6 30 WRITE   (8,1003)  j.xNk.YNw.Txxw.fYYw, rxyw,mw,bw,vw 
1,XDNH,VDNH 

IF    (J   .Nt.    JM(lKl)   GU   TU   b40 
IHEAO-MAXOI IHEAÜ-1,1) 
KHEAD=MAXO(KHEAü-l ,1 i 

,PW, gg^H.iPjg S«LPi^50 
SWtP3560 
i«bP35/0 
SwEP35bO 
SrttP3590 

C AVERAGE   RADIUS   ANU   VELUCIIY,   LATERAL   STRESS Sw£P3oJÜ 
640 IF   (K   .Nt.   2   .UK.   J   .LE.   JM2)   GC   TC  b43 

IF   (J   .GT.    JM2»l)   GU   TO   641 
SLAT-VVUIuW-U. 

SWcPlblJ 
S«(bP3b20 
S«cPJO30 

641 SLAT=SLAr*TYYW*(X2-X3) 
IF    (J    .tQ.    JMAX)    SLAT=SLAT/(X(KINT,JMAX)-XA) 

S»«tP3b40 
SwbP3ö50 

643 IF    (K    .NE.   KINT)   GU   Tu   b47 
VVJIUW=VVUIUW*(X1-X4)*(Y1*»2*Y1*Y4*Y4*»2I 
IF    (J    .EU.    1)   VVUIÜM=0. 
IF    1J   .LT.    JMAX)   uU   TÜ   647 
IF    (ICYCLE    .01.   1)   GÜ   TU   645 

ShtP3obLl 
SwtP36/J 
SwbKJbdJ 
SWfcP3bV0 
SntP3/0J 

VVA=2./3.«( .5»(X(KINT,JMAX)-XlMNTf i)*Y(KlNr, JMAX) i )♦♦ 3/VVÜlüi« SwtP3nj 
VVt=(1.5*AbS(VVA))♦♦(!./3. ) SWfcP3720 
YSg=Y(l,JMAX)**2 SwEP373d 
PRINT   I645,m,VVC SrttPJ740 

1645 FURMAT   (♦   VVA=*E10.3,«   VVC=*E10.3) SHEP3/5ü 

645 VT = YSQ*(X(K INT,JMAX)-XA) 
VV=:VVA*VVOIÜW 
VS=(VT-VV)/TMASS 
VBAR^VT/TMASS 
RLLV=VV/VT 
RAVGW=VVC*(ArfS(VVUIOW))♦♦(l./l.) 
VAVG=(KAVGW-KAVG)/ü£LTH 
RAVGaRAVGW 
SUHST=Ü. 
DO  646   JJ=2,JM2 

SwbP3760 
SWEP37/0 
SWtP37dO 
Sw£P3?90 
S«tP3dÜ0 
S*bP3älJ 
iKtP3d20 
S«tP3ä30 
SWLP3d4J 
SwEP3d30 

646 SUMST=(SXX(2,JJ)*P(2,JJ))«(Y(l,JJ)**2-Y(l,JJ-l)»«2 <SUMST S«tP3d60 
STRESS=SUMST/Y(1,JM2)»*2 .«EP3d/U 
PAVG=(STRtSS+2.*SLAr)/3. SwEP3ddO 
SUAVG=STRfcSS-PAVG SrtEP3d90 

647 CONTINUE SWEP390a 
660 IF    (K.NE.JbUKI Jt)    .UK.    J.NE. JEOJ( JE)    .UK.    1K.NE.JLUUJ t))L>U   Tj   70 JSWEP391-' 

JEDTYPE=JtUT(JE) SWbPJ92d 
GO   TO   (671,672,673,674,6/5,676,677,678,674,680,681 ta2 ,6b3,68<*, SWEP393J 

1     685,686,687,688,68S,690,691,692,693,641,695)   JtOTYHt iWtPJ440 
671 SJIJEI   =   (SXXW+PW)*l.C-9         t           JE   =   JE   ♦   1        » GU TU   660 ShEP395ü 
672 SJ(JE)   =   (SYY^+PWI*l.t-9        t          Jt   =   JE   ♦   1        > GU IU  öoü iW£P396d 
673 $J(J£)=   SXVW          »l.E-9        S      JE=JE*1      »     GU   TO  66Ü SWEP397Ü 
674 SJ(JE)   =   (STTW»PW)*l.fc-V         i           Jt   «  Jt   ♦   I        » 01) TU   b6U SWEP49dO 
675 SJ(JE)=   SXXW          »l.t-V        $      JE'Jt+l      %     GU   fU  660 SWEP3990 
676 SJ(JE)*   SYYW          •l.B-9         t      JE=Jt*l     t     GÜ   TU   660 iW£('4uOJ 
677 SJIJE)»   STTW         n.t-9        t     J£ = Jt+l     $     GO   TO 06Ü swLP4oia 
678 SJ(JE)=   PW               ♦l.t-V        »     JE=JE*1     »     GO   TU  660 SWfcP4u2U 
67V SJ(Jt)=   j'JNH          »l.E-V        i      Jt=JE*l      »     GU   TO  660 SNEP4030 
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680 SJ(Jhl=SURTITXYW»rxYta*.2i»lTXXW-TYYW»** 2)*l.t- -9 
JE=JE*l $   GU   TO 660 

681 SJ(Jt»=STRESS »l.E-9        » Jt=»JE*l GU   TU 660 
602 SJ(JE)=SLAT »l.b-9        $ Jt=Jfc*l GO   IU 060 
683 SJ(Jtl=HAVG »l.E-9        % Jt=JE*l GU   TO 660 
6 84 SJ1JE)=SÜAVG ♦l.E-9        $ Jb=J£*l GO   IU 66 ü 
685 SJ(Jfc)=VAVG ♦l.fc-5         i JE=JE*1 GU   TO 66Ü 
'R6 SJl Jt)=RAVl, ♦l.fc*4        » Jt^JE»! GO   TO 66 0 
6o? SJ(Jtl=VS Jt=Jt*l GO   TO 660 
688 SJUEMVUAR Jt=Jt*l GO   TO 660 
68V SJlJt)=RtLV J£=Jfc*l GO   IU aoO 
b-iO Sj(Jbl= saw*i E -9      1      Jt = JE«-l      $      GO 10 66Ü 
691 SJ<Jfc)=SbPW*l L -9      »      JE=Jt*l      i     GU TU 660 
6^ SJUEI^X^W ♦l.E*4         t Jt=jL*l GU   TO 660 
693 SJ(JE)=YNW ♦l,t*4         S JL=JE*l GO   TU 66 0 
69A SJ(JE)=xüNH»l E -5      »     JE=JE ♦ I      $     GU TU 660 
695 SJ<Jt)=YüNH*l. E- -5     $     Jt=JE ♦ l      $     GU ru 660 
700 
C 
C   ♦♦< 
C 

CONflNUt 

■♦»♦♦                TKANSPtR   Nfc«   VALUtb   TO  ARRAY i 

720 

IK   (K   .EU.    1)   GO   TO   720 
X(KMl,J)=    SX(J| 
YUMl.J»   =SY(J) 
SX(J)*XNW 
SY(J)=YNW 
XH(KIJ) «XtNH 
XUH(K,JI=X0NH 
YH(K,JI=Yl^H 
YOH(K,JJ=YDNH 
IF    (J   .EU.    I    .UK 
AUiJI   ■   AM 
ViK.J)    a   VM 

K    .fcU.    It   GU   TO   dOO 

C 
800 

C 

810 

EU.J) = 
SXXSK,J) 
SYY(K,J) 
SXY(KfJ) 
STTU.JI 
TXXIK.J) 
TYYtK.J» 
TXY(KtJI 
TTTIK,Jl 

tNU   CF 

PW 
tri 
= SXXW 
= SYYM 
= SXYhl 
= STTW 
= TXXW 
= TYYW 
= TXYrt 
= TTTW 

J   LUÜP 
CUiMTINUb 
IF   IK   .Hi..   KMAX) 

AOO   IH   HOT I UN 
GO   TU   900 
UK   t'KUJbtTILb   FUR  NüNAtTIVE   CtLLS 

IF   ( lR.E0.2.ANt).K.LT.KM(2).AN0.K.LT.KCUT )   810,450 
ECON   «   XNM-XlKtJMAX) 
TCUN   =   XNH-XHU,Jf4AX» 
KKK»MlN0(KHI2)tKCUTI 
OU   840   IK   »   KPlfKKK 
JJ4«JM(2I 
00  830   J=1,JJJ 
XllKtJt   *   X(U,J)*bCUN 
XHIUiJI-   XHUK.JKTCUN 

830 CONTINUE 
840 CONTINUE 
850 CONTINUE 

OU   4004   J*1|JMAX 
XU.IAX.J)   =SX(J) 
YIKHAX.JI    'SYU) 

4004 CONIINUb 
C ENO   UF   K  LUOP 
900 CONTINUE 

OLLTHW^SUKTIOrSCMJ 
RETURN 

SMEP4Ü40 
SriEP4u50 
SwcP4060 
SMbP4070 
SMEP40dO 
SriEP4090 
SNbP4100 
SMbP411U 
SWEP4U0 
SMEP413Ü 
SNbP4l40 
SMtP4l5u 
SMEP41Ö0 
SMEP4U0 
SMbP41äO 
SwbP4l90 
SMbP42J0 
SMbP42l0 
SWEP4220 
SHbP4230 
SnbP4240 
SriEP4250 
SWEP426Ü 
SHbP4270 
SMEP42 80 
SnbP4290 
SMbP4i00 
SMbP4jlJ 
SMbP4J<:0 
SriEP43iO 
SwbP4340 
S»£P4350 
SrtbP43oO 
S(ilCP4370 
SriEP438J 
ii<tP4i9u 
SWEP4400 
SMbP441J 
SMbP4420 
S*EP443u 
S»<tP4440 
SMkP445U 
S«lbP44bJ 
SMbP44?U 
SMEP44dO 
SMbP4490 
S>«EP450u 
SWEP4510 
SMEP432a 
SMbP45iO 
SWEP4540 
SMtP4550 
SMEP4560 
SWUP457Ü 
SMEP45U0 
SWEP4590 
SMbP4600 
SMtf4610 
SMEP4620 
SMbP4630 
StafcP464ü 
$MEP465Ü 
SWbP4660 
$MEP4b70 
SribP4680 
SHbP469Ü 
SWbP4700 
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950 

C 
C 
100Ü 

NSLKILJ 

PKIM 
1       SXYW 

ftfcTUHN 

E = l 
lybo.KTtjr,iKr,vw, ut 
t bTFKtVXXW,VYYhfVXYW 
Y'^,Y3,V4tXl,X2,X3,X4 

U,l:M,PW,rxXM, 

»Y'i^, X<.2 

iyYw,rxyn,nrw,iXArt,jyYi., 
tfCtLVV 

t-OkMAT 
1AND JT 

10ÜI FORMAT 
\0QZ fOKMAT 

110.3,1 
1 /♦ 
«! T 
3DNH 

FÜKMAT 
FÜKMAT 

It*,    J= 
FUKMAT 

1 »   LIE 
2 *   V = 
2      *     Y 

LM) 

100 3 
1004 

1950 

J13HÜ#** 
= »3I<(,», 

( ISriülNT 
(*      Kfcjl 

JX,*X,Y    I 
J 

TFM 
YUNH*I 

( 15, 13t 1 
(•      PKLi 

♦13,*,   K= 
(♦       tKKü 

LZ=nio.3 

"♦'»clO^, 

♦ ICYLLt^l't 
CALTIM=«tlJ 
LKFACt=CUL. 
an *\t,*, K 
N CM, bTRES 

X 
LW 

0.3J 
SUKt =»tlO. 
♦12, 20X,* 
R FINISH AT 
,♦ L=»tlU.J 
♦ üTSO=*blü 

X = *',L1U. 

♦LlO.i,»    IKI.KT, ,»   rYMt=*tl0.3,*   UfcLTH 
.3,*   KMiN,KMAX,KRtL),K(,J 
,UI 
-i,.)L.*l'.,lÜX,*X( J = n=*t 10.3,»,    Y(J=1 )=• 
S   IN   L)Yi-i/CM2*, 

Y TXXk« TYYrt JXYh*, • 
VH PW uQNH iPSu 

3,*,    1K=»I2,*, 
 «j 

K=*I j,*   J^*I3 
,♦   P=*fclO.3,* 
.3,*   SPSw=*L10 
3,*   Y42=*L10.3 

ILYCLt = »i 1,»,    TYMt 

,» IK=*I3 
I=»4tl0.3 
.3,* UELV 
,♦   X42=*fc 

,/♦   \/-*cl0.3, 
,/♦   i=*',LlÜ.J, 
V = ♦(. 1 J . 3 / 
U.i» 

bhtPt/lü 

intP't/Jü 

i«LP47oO 
SwtP^Z/vJ 
iwtP'i/öo 
SWtP'i/^J 
SWEP4Ö00 

ShtP4ö2U 
iHEPtöiÜ 

XiWtP^B'fO 
iwtP^öSO 
irttP^aöj 

♦t U .JbHfcP'.ö/O 
brtCPAdöü 
SrttP^d'JQ 
b«cP4S00 
SwEPs-y lu 
iKtP'tSf^U 
SUEP^^Jü 
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Subroutine SWEEPV The routine computes positions and 
stresses of ail cells at each call. 
It is called by VOID at each time 
step. 

Initialize 

Begin Loops Over 
K and J 

Initialize print variables for each 
cycle and initialize TMASS and GAM 
on first cycle. 

Begin loops to compute new positions 
and stresses for each (K, J) value. 

Compute FX, FY, AMASS 
For each coordinate point compute 
the stresses and masses of adjacent 
cells. 

Compute XDNH, X, YDNH, Y 

I Compulb AW, n 

Compute the new coordinate velocities 
and positions from conservation of 
momentum. 

Compute new area and volume of the 
cell IK, I) 

Compute EXXH, EYYII, . 

Compute SXXW, SYYW 

T 

Compute  strains during  time   increment 

Compute elastic deviator  stresses. 

Test  for  type of yielding model   to 
use.     If  viscous,   work-hardening  is 
used,   then go to 450. 

Perfect plasticity route for computa- 
tion of yielded deviator  stresses. 
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Rosot SXXN, etc. 

Test cloviator stresses for yielding. 

Reset SXXN to devlator stress at 
yielding. 

fomputP SXXA, etc. 
Compute first estimate of 
yielded devlators. 

Compute DGA, GAMW 

Compute SXXW, ... 

Reset GAM, SHARP, SBAR 

T 

Compute yyNii, PW, EW 

Compute TXXW , .... 

1 
Compute SPSQ, DTSQ 

Compute firsi estimate of plastic 
strain. 

Compute second and final values 
of devlator stresses. 

Compute plastic strain and yield 
strength. 

Compute the artificial viscous 
stress, pressure and energy. 

Compute total mechanical stresses. 

Compute the square of sound speed 
and the square of the permitted 
time step. 

600 
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Printout 

Store SJ 

Iset  SX,    SY,   XH,   XDH   ...,     | 
A.V.P.E,   SXX,    ...,   TXX   ...| 

f 

End  of K,   J Loops          ! 

Compute DELTHW 

\ 

RETURN 

Print coordinate positions and 
stresses if required by the print 
controls. 

Store computed quantities in the 
SJ array as required by the JED 
input cards. The SJ array is stored 
on tape after each computation cycle. 

Reset the array variables with the 
local variables. 

The permitted time step for the next 
cycle is computed from the smallest 
value of DTSQ. 
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SUÖKUUTINE    SCklllEC TIMfcU) 
REAL   MU.MCUN SCKdüÜ2j 

bO 

100 

lab 

137 

10ÜU 

noc 
9999 

COMMUN   CA(<») ,Cai<tJ iCCl*) tEgSTE(4l .tvJSTüUl.tWÜHl'») ,AMA U 4) , Mü( f ) .ScKtiCUiU 
1     RHÜ(4) ,YCC(^)f YcTl^JtMCUNC»! »SCLiNC») .H^ira^l .SPt-t) SLKbOO'HJ 
i      ,FMt4»,Fö(4l,ETAi4J SCKBÜObO 

CUMMÜN   IMAX, IPKINT,1LYCLE,KIMf,KMlü,KMN,KMX, JHX,1KMAX,iKl ,KT,JT, SCKbOÜoO 
1 KWF, ISIATE.lFLAli, Jl fMIRKiIJBUMJ, IFCÜI , CKtO.UKel IN ,Kl,UT ,L ALPHA , SLRBOO Aü 
2 NOIM SCRbOJdü 

CDMMÜiM   NKt(j,KPK l.MT ,KtL)it( <;u) ,M:0(^Ü),NJLU.JtOK( 60 ) , J cüf ( 60 » , SLKäOU^O 
1      JEOKlöOI t JkUJtöO) .NSCKIäk.NJKEUrKtLiITI 120) SCKBJlOü 

COMMON   «( 1201 tSK(20) ,SJ(6Ü),XUM20J|VM20) SLRBOUÜ 
COMMUN   JM(2 ) ,K1M(2) ,AKtA( 2) ,ÜtLX(21 ,0LLY,XU(2) , VCUN .CUbw i iTRE bb SLHBÜ120 
CUMMÜN   IYMttXUlNT,UtLTN,ÜELTH,OtLTH»«,DtLIMIN,ÜliCPI (lül SCRbÜl JJ 
COMMON   CALTIM SCKBUUO 
COMMON   AXi4b,lS),   AXH( <ii5i 151 »AXUHI^S riöl »   IMACfäflb), bLRüUl^J 

1 AY(^bflj|,   AYHCtb.lSI , AYÜHCS, 15) ,      At<45t15»i SCRBUio'J 
2 AA<45,15), AV(45,15), APIAb.lä), SLRBUI/Ü 

J ASXXI'ib.l'J) .AbYYCtb.lb) , ASXY1 Ab, 15) .Aim'ib, li), SCRbOlÖÜ 
-V AIKXCiS, 15) .ATYYCb, 15) ,ATXY(Ab, 151 ,ArTT(45,lb) , SLkBOUÜ 
5             AbbARPUb.lb) .ASBAKCfbilb) »AVZUb, 15) SLRBU2UÜ 

COMMON   01SC( 16) ,S( 10,5bO),TlM( 5'J0),IN0( 7) SCRBa2lÜ 
OIMtNSION    IA(24) SLKb022U 
FWUlVALbNCE    ( I A,UIbCPT(J ) ) SLKB02JU 
DIMENSION   SM>( 12a),SHN( 120),SMXJ{1U),SMNJ(10),bMXK( l),brtNK(i) SCKbu240 
REW1N0   4 SCRt)02aO 
NSCRIdt=Nl=l Si,RU026ü 
N2^MINCINl*   9,NJKtU) SLRbü2/U 
00    IUO   NP=l,ICYLLt bl.RbO<;dU 
REAU   (Al   N,T, (k(lJ ,I = 1,NJKE0) SCKBO290 
IF    (MU0(N,50)    .t(..    11   WklTL   ( 8, 1000 )   U I SCP T , NbCkl bt, (Kt 01 T ( l ) , 1 =Nl SCRbOJÜO 

l   ,N2) SI.KB0310 
ii,Rd0i2ü 
SCKBÜJ30 
StRBOi^U 
bcRBü35Ü 
SCkb036J 
SCRbÜJ70 
SCRBa3dO 
bCRbo3V0 
StKbOAÜO 

NSCkIdt=*i3,* SIRcbS hlSTüklES, - flMt IN MIcKSCkbOA10 
lüStCS, STRESS IN KbAR, VELULITY IN MM/MICkUSEtt VOLUME IN Cc/ÜKAM»SCRB0A20 
2/* INIEOLR CUUE RUMOKOJ WHtKE K = kEliluN, N=TYPt - 1 = TXX, 2=IYY, 3Sl-RbOA30 
3 = TXY,    '»=TTr,    5 = SXX,5=SYY,    7=Srrt    d=Pw,    S^ug,    10=IXYC*/* SCKBUA40 
40«   NORÜK   WHEHE   N=TYPt   -   0=AVERAGE   STRESS,    l=AVtkAüE    SPECIFIC   VULUMSCRBOAbJ 

WRITE    (b.llUO)    N,T,(K(I),1=N1,N2) 
REW1N0   4 
Nl = N2«'l 
NSCRIuE=NSCRlbE+l 
IF    (N2    .LT.   NJKEO»    üü   TU   50 
CALL   SECüNOITIMNUW» 
CALTIM=TIMNük<-TIMtU 
PRINT   9999,    CALTIM 
RETURN 
FORMAT    IIHI.IOAIO/* 

bF,    2=AVERAoE   PARTICLE   y/tLUCITY,      R^REOIüN,      K = K-KUH*//» 
6ME*10112/) 

FORMAT    ( 15,Fl 1.6, ICF12.5) 
FOPMAT    (1ÜH   CALTIM   =   ,E10.3) 
ENO 

N TlStRbUAüO 
ScRBOA^O 
SCRdbAdO 
SCRduA'JO 
Sl-Rb05ÜO 

J 

1 

SUBROUTINE SCRIBE 
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^1 

Subroutine  SCRIBE 

Rewind  Tape 4 

0 
NSCRIBE = Nl = 1 

N2 * MINCKNl + 9, NJKED) 

• 

I D0    LOOP   :   1  TO ICYCLE 

c 
c 
c 

Read   N,   T,   R(     ) 

PRINT Heading 

PRINT N, T, R(  ) 3 
END of LOOP 

Nl = N2 
NSCRIBE ■ NSCRIBE + 1 

The routine provides a historical 
listing of all variables requested 
in the JED input cards.  The routine 
is called by VOID at the end of the 
computation. 

Rewind the tape containing the 
stored historical arrays, SJ. 

The work of this routine is performed 
in two loops.  The outer loop provides 
for printing N, time and 10 variables 
at a time.  The inner loop runs over 
ICYCLE, the number of cycles, and makes 
the historical listing of the variables, 

FLOW CHART OF SUBROUTINE SCRIBE 

273 

"rrjr- ■.ij-i»iii.a»u!iiu 

- ^ am^tt ^h*. 



■^ W   f I i 

1 

IDtNT   =   'iV,    SIART   WiTH   1-b   STRtSS   SIAFE,    iMtN   APPLY   LÜNiTÄHl   bFkAin 
IMAX 
UfcLTAI = 
IPRINT = 
JEU   = 

1.0 
3000 NMIKLS 

SMAX = 
50 NJtU = 

1 
JUUt + C'J   Xi)(^) = 

JO   KPKIM 
1 
3 

to 
IZ 
18 

^ 2 
2 7 

!) 7 
5 7 

CUPPER   OFHC 

5 
20 

3 
13 
H 

KHU   = 

2 J 
22 

1 
14 

?3 

3 
1 
3 

15 

J 
2U 
16 

luoüu 
1    2 3 

5 2 
5 / 
D 7 

IS    ^ 

1 
20 

2 
2 3 

1 . JvjuE-Oü 

I 
5 

11 
17 

CA = 
fcQSTH = 
FB = 
R1N = 

U<f07E*l,2  CQ= 
.25 
7.0 

cc = 

l.COOE-O'«   i.COl   = 

a. 
2.671ttl2 twblt   = 
2.335L*12 PM1N   = 
0. MO   = 
3.000t-Oit NKAir   = 

NYAM=        <: 
5.25ot*lü LUSlb   = 
1.0oOt»ll rci,   = 
5. IrtüLtlI LI A   = 

t NlHLIA   - 

2.04 
1 .Üö0t*ü^ 
2oO. 

o 

IDENT   =    8V,    LONG   RON   wlfH   UONiTANI    VtLULIIV,    1    fL    I/L10   ANi)    U    MU   LY L 
IMAX   = 2500   NMIRLS   « 
UELTAI  =      1.0 SMJX   = 
IPRINI   = 50   NJtU   = 
JEO   = 22    7   I 11    7 

17   7   5 Id   7 
COPPER   OFHC RHU   « 
CA  = l.'i07E + 12   Cb = 
EÜSIH   = .25 CC   = 
Fb  = 7.0 FM   - 
RIN   = 1.ÜÜ0E-04   RCUT   = 

I 
UOOOL+09   AUl2) = 

10   KPRIM    = 
5 13   7   5 14/5 
5 H   7   5 

ö.-<3 
2.ö71Ltl2    tJoIL    = 
2.335t*12   PMIN   = 
0. MO   = 
l.OOüc-03   iNRAÜ   = 

- d U J . I i 
lUuOO 

15    7    3 16    I   5 

I . JOOt-ub 

23   7   5 

NVAM=        c 
5.250L+10 cySlu   = 
l.OOOt+ll YCC   = 
5.180t*U tl A   = 

6 ;\1HLIA 

c.04 
1 .0OUfc*OV 
2 50. 

4 

LISTING OF  TWO  INPUT DECKS  FOR THE  VOID PROGRAM 

274 

E^STüT ^ ■pü'ipwy-.-.; 



IOENT • ,y, LONG ~U~ WITH CONSTANT VELO:ITY, 1 NU VOID lNO 10 NU CYL, 
LISTING OF X, Y, V, A, l >O WI 

o. 
o. 
0. 
5,8&£-0it 
1,00E•03 

o. 
lt,1loE·Oit 
1,00£•03 
1.oor-o3 
1.ooE-o3 

o. 
o. 
o. 
o. 
o. 

o. 
o. 
D • 
o. 
o. 

o. 
0. 
D • 
o. 
o. 

s.ur-o• 
l.ZIE·O< 
3.57E·o• 
7.21E·O• 
1.00£-03 

o. 
2.7'1£•04 
&,lt3E•O< 
&. 7ZE· oc, 
&, UE·o• 

o. 
1.00E>OO 
1,00£>01 
1.00£+00 
1.00£+00 

o. 
1.12£-01 
1.&&£-07 
1,&&£•07 
1·12E·07 

o. 
1.21tE•1D 
&,23E•10 
a. 78£·10 
;,'I!IE·10 

5.3f>E•Oit 
5,1t8E·h 
s.a&E·o• 
~.13£-QC, 

1• 00£•03 

o. 
1,87~ -0it 

",11tE·Oit 
1t,5ZE•Oit 
c,,&ltE•Oit 

o. 
1oOOE•OO 
1.00£+00 
1.oor•oo 
1.00£+00 

o. 
5.11tE•O! 
1 .ur-oa 
7 .1'1£·05 
s.11tE-oa 

o. 
3. 83E•l1 
1o75E•10 
Z,50E·10 
1.85£-10 

&,81tE•Oit 
&,9&E•Oit 
7,31tE•Oit 
8,71tE·Oit 
1.oor-os 

o. 
1.ZE>E•Oit 
z.&f>E•O" 
3,01tE•h 
3o1&E•Oit 

o. 
1oOOE+OO 
1,00E+OO 
1oOOE+OO 
1oOOE+OO 

o. 
z.3&E-os 
J,l1E•O& 
3,11E·Oft 
2.3f>E-oe 

o. 
1,111::-11 
1t,91tE·l1 
7,10£•11 
;,r;r-u 

INITIAL ANGL~S, THETA • 3o'IZ7E•01 
CALTIN • 1.D10::-a1 
VVA• 3,1t&;E-01 ~WC• S,OitOE-01 

7, 85E·Oit 
7,'16E·Oit 
8,29E•Oit 
'1.15£-0C, 
1.ooE-o3 

o. 
&,1t7E•05 
1. 71E•Oit 
Z,Oit£-Oit 
Zo15E•Oit 

0. 
1oOOE+OO 
1oOOE+OO 
1.00E+OO 
1,00E+OO 

o. 
1.oar-oa 
1,11tE·O& 
1olltE•08 
1.a&E·D8 

o. 
3,&3E•1Z 
1.J9E-11 
Z, OZE•U 
1. 7&E·l1 

a,53E•Oit 
8,63E·Oit 
So'IOE•Oit 
'!, ltlE•Oit 
1oOOE·03 

o. 
5,6'1E-o5 
1.10E•Oit 
1, 37£-0it 
1olt7E•Oit 

o. 
1.00£+00 
1. OOE+OO 
1.oor•oo 
1.00£ +00 

0. 
lt,91tE•O'I 
5.au-o'l 
5, &lE•O'I 
lt,'lltE•O'I 

o. 
1.1ZE·12 
3.93£-12 
5,75E-1Z 
5.53£-12 

NTHEU • .. 

q,OOE•Oit 
'1, OSE·Oit 
'1, Z'IE• Olt 
9.&2E•Oit 
1. DOE· 03 

o. 
3, 83E•05 
r.on-os 
'!,21tE·05 
1. OOE•Oit 

o. 
1 DOE• 00 
1• OOE+OO 
1.ooE•oo 
1,DOE+OO 

o. 
z,zf>E-09 
2,51£•0'1 
z. 5lE•09 
Z.Zf>E-09 

o. 
3, ltltE·ll 
1• 11E-1Z 
1. MoE-12 
1• 7lE•12 

INITIAL LAYOUT FROM CALCULATION 8V 
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NOMENCLATURE FOR APPENDIX V 

A0,A1 

A   ,A 
0'   3 

areas at beginning and ending of a time increment, cm 

areas of triangles 0-23-34 and 3-23-34 in the x-y plane, 
cm2 

A,A 
xy 

A  ,A 
xx  yy 

C.C 

C ,C 
L' Q 

area of an element in the x-y plane, cm 

projected areas of an element in the x and y directions, 
resi,actively, cm2 

sound speed, cm/sec 

ef-ctive sound speed governing stability, cm/sec 

coefficients of linear and quadratic terms for artificial 
viscosity 

F ,F 
x y 

H 

J.J 

K 

K.k 

M 

M 
e 

N ,N 
R' cp 

p 

P,P 

forces in the x and y directions, dyn 

2 
a plastic modulus, dyn/ cm 

Lagrangian cell and coordinate index in direction normal 
to the radius of the void 

/  2 
bulk modulus, dyn/cm 

Lagrangian cell and coordinate index in radial direction 
of the void 

strain hardening modulus, dyn/cm or mass of a cell, gm 

/ 2 
effective modulus for sound speed calculations, dyn/cm 

numbers of cells in the radial and polar angle directions 

average pressure, dyn/cm 

2 
pressure, dyn/cm 
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Q 

R 

R 
\ 

R 
k,j 

xx' yy' e( 

xy 

v 

V 
s 

V 
v 

X.x 

Y 

Y,y 

Y 
0 

a 

b 

P0 

t 

u.v 

Acp 

a 

artificial viscous stress, dyn/cm 

radius of void, cm 

radius of cylinder, cm 

radial position of coordinate point (k,j), cm 

relaxation time, sec 

total mechanical stresses in the :?, y, and 9 directions, 
respectively, dyn/cm2 

/ 2 shear stress on the x-y plane, dyn/cm 

3 
volume of a cell, cm 

3 / specific volume of solid material, cm /g 

relative void volume 

position in direction of loading, cm 

2 
yield strength,   dyn/ cm 

radial position normal  to  loading direction,   cm 

initial  value of  yield strength 

a constant 

a constant  in the work hardening function 

/    2 threshold pressure for void growth,  dyn/cm 

time,   sec 

velocities in the x and y directions, cm/sec 

angular spacing between j rows 

a constant 

a constant 
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i^^B fg^m^wrT^m^ 

shear strain 

V 

V 

a 

P 
/ 

/ 

ij 

e ,e ,e 
1' 2' 3 

x y e 

P 

ijlfective shear strain 

plastic shear strain 

shear strain in the x-y plane 

Kronecker delta 

principal strains 

th 
plastic strain in the i   principal direction 

strains in x, y and 9 directions 

material viscosity, dyn-sec/cm 

coordinate in the circumferential direction 

shear modulus, dyn/cm 

3 
density, g/ cm 

effective stress, dyn/cm 

2 
deviator stress, dyn/ cm 

1'   2'   3 
principal   stresses,   dyn/c m 

a  ,e 

a ,a .a 
x y z 

T   ,T   ,T 
xy  yz xz 

x> 

components of the stress and plastic strain tensors 

/ 2 
stresses in the x, y and z directions, dyn/cm 

/ 2 
shear stress, dyn/cm 

/ 2 

shear stresses in x-y, y-z and x-?.  planes, dyn/cm 

rotation in the x-y plane 
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Appendix VI 

MATERIAL VISCOSITY  DERIVED  FROM THE 
STEADY-STATE  SHOCK FRONT 

The  viscosity of a material  is  a  basic macroscopic material property 

that governs phenomena' such as the rate of  void growth,  the shape of 

shock front profiles,the  rates of attenuation of precursor waves,   and 

hysteresis.     All  these manifestations  of viscosity do not  lead to the 

same'values of  viscosity because of  the  effects  of  differnnt.  loading rates 

and stress amplitudes.     In connection with a  study of the fracture of 

metals  by void growth,   it was found that the  growth rate was  related to 

the material   viscosity.     Thus,   if viscosity  is  known,   some  aspects  of 

fracture  can be  immediately predicted.     The  required  viscosity is  that 

appropriate to strains  and stresses  in excess of  the elastic  stress,  and 

to loading durations of the order of  tens or hundreds of nanoseconds. 

Plastic  shock front profiles are  known to be governed by the  amount 

of viscosity;   the  stresses are in the plastic range and the  rise  times 

are usually a few nanoseconds.    Therefore,   the  shape of the  shock  front 

profile  should  lead to appropriate  values of the viscosity. 

In the  following discussion the governing equations are introduced 

and solved to provide the shape of the shock front and the rise time as 

functions of  the  linear viscosity.     These  theoretical rise times are then 

compared with available experimental  values of  rise times to determine 

the value of  viscosity for several materials. 
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The Eulerian  equations   for  conservation  of  mass  and  monientum  control 

the  stress   rise  through the shock front: 

op 3p on 
— + u — +  p — 
bt      ax       ax 0 (mass) ( 195) 

2 
/ o11 3u \ 3P       ■!       ö u , . ,        . 

P(ä?+UÖX/     +äx~3^ —2     =     0 (momentum) (196) 
äX 

where 

o  = density 

t  - time 

u = particle   velocity 

X = fixed coordinate position 

P   - thermodynamic  stress  in direction  of propagation 

T\ = coefficient   of  linear viscosity 

Under   the   assumption  of  a   steady-state  profile,   these  equations   can be 

integrated   to provide   the   slope  of  the  stress-time   or  stress-distance 

profiles  and   also  the   complete profile.     The procedure used  here   is  to 

periorm one   integration to obtain the maximum  value  of the  slope of the 

particle velocity profile  (Bu/5x)        .     Then  the   shock front  thickness 
' ma x 

can be approximated  as  u /(3u/dx) where  u     is  the  final,   steady-state 
f       max       f 

value.  As a first step, the conservation equations are transformed to 

a coordinate system moving with the shock velocity U in the X direction. 

Then d/3t is replaced by -U h/hx,  where x = X - Ut, and h/hX  by b/'dx. 

Then 

,    . 3p    5u 
(u - U) — + o — 

3x ox 
or 

ox 
[(u - U)p]  = 0   (mass) 

197) 
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Ll^* 

p(u  - U)   — + r  T\   
dx 

=     0 (momentum) (198) 

Let  w = U  - u.     Then from Eq.   ( 197) 

pw    =    constant     =     p  U 
o 

(199) 

Equation (198)   becomes 

3w      ÖP       4 ^  o  w 
PU— + — +-T1—^ 

5x 
=     0 (200) 

Because   it   is   assumed   that   the   shock   front   is   steady  state,   we  can 

replace 9P/ox  by  expressions   in  w  and  p. 

3x Up/UJ - 201) 

Equation (20l) was obtained by setting c = 3P/3p and using Eq. (199) to 

evaluate p. With the aid of Eq. (20l), the momentum equation, (200), is 

written 

2 / 2\ 
4,Sw „   / c\9w 
- T^   +  p U   11 I — 
3    '       2       Po     \ 2/ äx 

Bx \       w   / 
=    0 (202) 

Because of the special  form of Eq.   (202),   a first  integration can be 

performed by  replacing äw/3x by z and 3 w/9x    by z9z/9w.     Then the slope 

z is given by 
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^ \   w
2/ 

( 203) 

or 

z     = 

3p  U 
o 

411 

( 204) 

It   is known that   the  shock   is  supersonic with  respect   to  the material 

ahead (w > c)   and   subsonic  with  respect  to the  material  behind  the  front 

(w < c).     Therefore w  = c  at  some point   along  the  shock   front.     According 

to Eq.   (203), Sz/Bw  is  zero   at  the point,   so z  reaches  an extremum fa 

max 

Eq. 

imum)   there.     The 
value   of w  at  that point  will   be  designated ^ 

The   value of   z is  obtainable 
from either  of  the   integrals: 

max 

max 

3p  U 
o 

4T1   j 

w 
rm 

( 205) 

max 

U-u. 

3p U 
o 

4T1 

I] 
2 

d\v (2C6) 

„„lc„ are obtained fro» EC  (204)  b, notlng th„ . = 0 at w - 0 a„0 at 

jarticle  velocity  following the 
w =   U ' '      '"    " u   . where 11 

f' f 
is  the  steady-state pt 

shock. 

284 

»IP—WWW—WWHWW 

- s     -^ •  



At  this  point   an  equation of  state  is   required  to evaluate  c  through 

the  shock.     The Murnaghan form was  chosen: 

P     =     A[(p/p   )Y  -   iJ 
o 

f 207) 

To evaluate  c,   it   is   assumed  that   the thermodynamic   stress P  follows  the 

Hugoniot path  during the shock. 

Actually the path  traverses  states with   somewhat  higher energies, 

and  the derivative  should be  along an isentrope  instead of on  the 

Hugoniot;  however,   this  approximation is  reasonable  except   for  very strong 

shocks.     Differentiating Eq.   (207)   by p  and  replacing  p  by w  leads to 

äP YA /U 

ap       p (;) 

Y-l 
(208) 

where  w    = U 
0 2   2 

Using the condition that w  = c , we obtain 
m 

(?) 
l/(Yfl)

IT(Y-l)/(Y+l) (209) 

The  shock velocity  is  obtained by combining  the Murnaghan equation with 

Eq.   (199)  and P     =  p U u   ,  where the subscript  f  refers to  the  final 
f o       f 

state.     Then 

T7Y- 

..[.-&•-)'] 
(210) 
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cyv« 

The  value of  c  from Eq.   (208)   can be placed  in Eqs.   (203)   and  (204)   to 

obtain 

3p   U 
o 

max 411 

3p   U 
o 

4T] 

AU7"1 /1 
U   -  w     + 

m P        IV Y| 
o      \U w 

m 

(211) 

AU 
U   -  u     -  w    +    

f m p 

Y-l 

lU   - u w 
f m  / J 

The  two expressions   for  z are equal.     The  shock  front   thickness   is 
max 

then defined to be 

and the rise time is 

Ax = (212) 
max 

At 
Uz 

(213) 
max 

By expanding the expressions for z   » u , and U in powers of P /A, we 

obtain an indication of the functional relationships. 

3A_j _f 
32T|\A , 

(V+ 1) 
V 

1 - 
2A 

(214) 
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1 

( 215 ) 

( 216) 

These expressions are accurate within a few percent for P /A les s than 
f 

1. Evidently the shock front thickness and rise time a r e linearly re-

lated to the coefficient of viscosity. 

Sample curves obtained from plotting Eq. (213) with the Murnaghan 

parameters for several materials are shown in Figures 9 4 and 95. The 

curves of Figure 95 have been plotted using a nondimensional shock front 

thickness parameter 6 t , which is indicated in Eq. (216), i.e., 
n 

6t 
n = 

3M 
32T] 

p ( 1 + y) 
f 

( 217) 

This second figure provides a sensitive measure of the viscosity when 

compared with experimental values of shock front thickness. 

As a further guide in comparing the experimental shock front thickness 

wi th these expressions for 6x and 6t, the shock front profile was obt a ined 

by evaluating particle velocity as a function of distance: 

du 
z = -~ = 

2 
3p u 

0 

4T] {- u 
-+ u 
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A 
2 

p u 
0 

( 218) 



,-10 

<l~ 

100 
STRESS — kbar 

FIGURE 94        SHOCK  FRONT THICKNESS AS A FUNCTION 
OF STRESS  LEVEL 
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-1 
z 
q 
z 
111 
5 
Q 

0.8 

MATERIAL 

- At 

- Mag 

- Lucite 

- Armco 

Ta 

Cu 

2.116x 10"   3.876 

1.452x 1011   2.956 

1.579x 1010 5.138 

3.179 x 1011   50 

3.615 x 1011   5.0 

3.120x 1011  4.625 

100 

STRESS — kbars 

200 

GA-8678 56 

FIGURE 95        NONDIMENSIONAL SHOCK FRONT THICKNESS AS A FUNCTION 
OF STRESS LEVEL 
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Equation (218) was Integrated iiumerically by the trapezoidal rule starting 

at u  = U - w and proceeding either up or down along the profile. 
m       m 

A  sample of  these wave  front   results   is  shown  in Figure 96.     On this 

nondimensional plot  it  is  clear  that  higher stress waves  tend  to rise 

faster with  the  bame material viscosity. 

POSITION, X —   cm x 10' 

FIGURE 96 

2.0 

GA-8678-57 

SHOCK  FRONT PROFILES AT SEVERAL STRESS LEVELS 
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NOMENCLATURE  FOR  APPENDIX VI 

/    2 
A coefficient  in the Murnaghan equation,  dyn/cm 

/     2 
P tiiermodynatnic  stress   in the direction of propagation,   dyn/cm 

U shock velocity 

X position,   cm 

c sound speed 

t time 

u particle  velocity,  cm/sec 

u final or  steady-state particle velocity,  cm/sec 

w U - u 

z 9w/3x 

At shock front rise time,   sec 

At nondimensional rise  time 
n 

AX shock front thickness,  cm 

V exponent  in Murnaghan equation of  state 

/    2 
1\ material  viscosity,   dyn-sec/cm 

/    3 p density,  gm/ctn 

/    3 p initial  density,  gm/cm 

4 

i 
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APPENDIX VII 

DUCTILE FRACTURE SUBROUTINE:  DFRACT 

The ductile fracture subroutine, DFRACT, and the equations contained 

in it are described in this appendix.  The present routine replaces the 

two previous routines, HFRACT and JFRACT.  This consolidation into one 

routine was dictated by a desire to make the routine readily usable in 

one-dimensional artificial viscosity wave propagation codes other than 

SRI PUFF.  This present routine con hp ernplnyed in rnrlps with either one- 

or two-step integration schemes. 

All the formal parameters of DFRACT must be input from the calling 

routine.  The output quantities are H3, S, P, NM, NT, and Y.   If a two- 

step integration scheme is employed, then NM, NT, and Y should be reset 

in DFRACT only for half step or full step calls, not for both. 

In SRI PUFF 5, common variables are used in the call statement at 

the half step, and local variables at the full step.  In this way, the 

corresponding actual parameters H(J,3), SHL, PHL, NEM, NET, and YHL—are 

reset only at the half step.  Note that H3 and JS are integers; all 

others are floating-point. 

1.  DERIVATION OF EQUATIONS FOR DUCTILE FRACTURE 

The critical damage parameters calculated in ductile fracture are 

the volume of voids and the number of voids.  At each time step both 

of the quantities are incremented as functions of the applied pressure. 

The incremental changes are described physically as nucleation of new 

voids and growth of existing voids. 
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Consider fi rHt the nucleat ion of a group of voids with dif f e rent 

sizes. Let p(R) be the concentra t ion r number at each radius R. Then 

the total number nuclea t ed (per unit vo lume ) is 6N 

CD 

6N = f p(R) dR 

0 

( 219) 

The nuclea ted volume of voids is f ound b y multipl ying the volume of each 

void by the number a t that radius: 

whe:re 

6V 
n 

CD 

:"f R3
p (R)dR = 

0 

3 
cR 6N 

:1 

a = a constan t depending on t he di str ibution p(R) 

R = a radius ~aramete r of the dist r ibution (R 
n n 

code) . 

(220) 

T
3 

in t he 

For example, if the nucleated distribution has a form simil ar to t he final 

(observed) distribution, the p(R) can be represented by 

p(R) 
- 6N 

= exp(- R/ R ) 
R n 

(221) 

n 

Then a= sn. Alternatively, if the voids a re all nucleat e d with the 

s ame radius R , then a= 4n/3. In the s ubsequent a nalysis it is found 
n 

convenient to assume that Eq. (221) describes the d istribution at a ll 

times. 
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The nucleation rate governing AN is assumed to have the following 

form 

AN 

At 
- T exp 

4 

nO 
(222) 

where 

T , T  =  nucleation parameters 
4'  6 

nO 
= T  in the code, a threshold pressure 

5 

At each time increment, the void volume is incremented by an amount 

DWG, a quantity with the dimensions of specific volume.  Since DWG 

and the void volume WO are dimensional, they do not automatically 

expand or contract with the gross specific volume; their expansion 

follows the growth and nucleation laws.  The increment in void volume 

is found by combining Eqs. (220) and (222). 

DWG 
n 

3 
aR  T 

n 4 

D 

P - P 
exp 

nO 
At (223) 

where we have divided by D, the gross density, so that DWG is the 
n 

volume change for a particular mass of material.  In the code, p is 

taken as the average of the pressures at either end of the time 

increment. 

The growth contribution to DWG is derived from the basic viscous 

law 

R  = AR 
P - P        T 

—TfrR   =  F/p-p
go\R (224) 
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^ 

where 

=    the time derivative of  radius,   a growth velocity 

p =    the threshold pressure   (p       = T    in the code) 
gO gU 2 

T]        =    the material viscosity 

T =    0,75/T1  is  the viscosity parameter used  In the code 

For a  time  increment   in which the pressure varies   linearly with  time, 

Eq.   (219)   can  be  integrated to provide  the  final  radius. 

R       =    R    exp 
1 0 

T      / P    + P 111      'o - V" (225) 

where 

p , p  = pressures at the end and beginning of the time increment 

R , R  = radii at either end of the time increment 
1'  0 

The volume of a void at the end of the increment is 

vl 

4   „3 4    „3 
=    - rrR    exp 

3       0       F H 'i 
2 

'0 

=    voexp '^m V At (226) 

where 

v , v  = volumes at the end and beginning of the time increment 

The change in volume for all voids is found by multiplying the volume of 

each void times the concentration p(R). 
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r 
DWG       =     V       -  V 

g vl vO 3D 

00 

4rr    /     3 I-' p(R)dR  -   V 
vO 

4TT   f 3     r /Pl + P0       \Ai ,   , 
—     /    R    exp T p       At   p(R )dR    - V 
3D     /       0       Hl_ l\       2 gO/    Jo      0 vO 

(227) 

which is obtained with the aid of Eq. (226).  The concentration p(R)ciR 

has been replaced by p(R )ciR  because the number of voids has liot 
0  0 

changed.  When the invariant terms are taken outside the integral and w«, 

recognize that 

vO 

4TT 

3 

00 

IT     /     3   ,      v -     /   R   p(R   )dR 
D    /     0       0       0 (228) 

then 

DWG      =    V     {exp 
g vO) H^ - '*h] (229) 

The combination of Eqs. (223) and (229) gives the total growth in the 

volume of voids. 

In the fracturing routine an iteration procedure is used to deter- 

mine the applied pressure.  First, two estimates of pressure (PJ and PK) 

are made, and the change in void volume DWG associated with each is 

calculated.  Then, from the equation of state, pressures PA and PB are 

computed based on the two values of DWG,  The four values of pressure 
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are used to make a new estimate of PJ.  The convergence criterion is a 

sufficiently small difference between PJ and PA. 

The first estimate of PJ is simply the pressure PO of the previous 

cycle.  The estimate of PK is the minimum ot three pressures: 

• The pressure based on no void volume change so that all volume 

change is taken in strain. 

• PG, the pressure that would cause void growth to absorb the 

entire volume change. 

• PN, the pressure that would cause nucleation to absorb the 

entire yolume change. 

The strain-based pressure is the usual one: 

AV 
PK =  PO - K — 

s 

(230) 

where 

K       =     the bulk modulus 

AV    =     the change  in gross  specific  volume 

V       =     the  specific volume of   the  solid material 
s 

For   the  growlli   based   pressu/p,   replace DWG    in Eq.   (229)  by LV and 
g 

solve for  p    = PG.     Then 

PG    = 
2    I   lLV i\       •. —r— Inl  ^    1 I   +   2p 

r At     Iv I 
1 \  v0 / 

go       0 
(231) 

Similarly the nucleation-based pressure  is derived  from Eq.   (223)  by 

replacing DWG    by AV and solving for p    = PN.     Then 
n 1 
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PN = 2T I 
6 

(D • AV \ 
zr-ir) + 2p nO (232) 

where 

Z  = aR T 
3      n 4 

The pressures PA and PB are average pressures on the grosa area of 

any cross section through the material.  Therefore they are derived 

from the specific volume of the solid and the ratio of the solid area to 

the gross area of the section.  This ratio is (1 - a V D), where a    is 
c v c 

a  constant.     Let  p       be  the pressure in  the  solid material.     Then 
a 

PA 
a l - a V D 

c  v 

p    - K 
'O V 

V    -  V 
s sO 

V    - V 
PO s sO 

—       K mm 
1  - a V    D 

c   vO 0 
(233) 

This form for the equation-of-state relation is verified by the two- 

dimensional code calculations of Appendix V.  In those results it was 

found that ot    should be about 2, 
c 

The deviator stress is computed from the following elastic-plastic- 

viscous relations 
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ASD     = 
4       AV 

^^0 

9      v 
!SD|  <- Y^ 1        3       V 

0 

2 411 AV 
- Y F    +      ■     .      F 
3 1       3  V At     2 

SD 

V 
^2 s 
ä - Y — 

3       V 
0 

(234) 

where 

Y 

V 
C 

T\ 

F. 

=  the yield strength 

= the gross specific volume 

=  the viscosity 

=  a thermal strength reduction factor, which is set to 1.0 in 

these calculations 

F  =  1 - 4V /V , a reduction factor derived from the results of 
2 v 0 

Appendix V 

In the code 4T1/3 is replaced by 1/T , and the change in density rather 

than change in specific volume is used in the viscous portion of the 

relations. 

In some cases the direct use of Eq. (2;53) leads to unstable itera- 

tions in the routine.  For small values of DWG (the usual condition), 

PA becomes less negative (smaller tensile value) with increasing DWG. 

But after some critical value of DWG, further increases can lead to a 

more tensile value of PA.  This reversed relationship between PA and 

DWG occurs for large values of V as the denominators in Eq. (233) 
v 

become  Important.     The critical value of DWG  is obtained by differen- 

tiating the coded form of  Eq,   (233)  with respect  to DWG.     Setting this 

derivative equal to zero,   we  find that  the extremum of  PA occurs  approxi- 

mately at 
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1  - a    (NM) 

DVVG
max 

=   2BCa (235> 
c 

where NM = V  D , the relative void volume at the beginning of the 
vO 0 

time increment.  To maintain stability in the iterations, it is then 

required that DWG never exceed DWG 
max 
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2. CODE CHANGES  TO ACCOMMODATE   FRACTURING 

The changes required in a wave propagation code to include the 

DFRACT routine are similar to those for BFRACT, the brittle fracture 

subroutin'..  The changes for both are described in Subsection 2 of the 

following appendix. 

3. LISTING AKD FLOW CHARTS FOR DFRACT 

The DFRACT subroutine and a flow chart are given on the following 

pages.  Next is a sam?)le input deck for an SRI PUFF calculation of ductile 

fracturing and some sample printout. 

The additional input data required for fracturing are included as 

the first six variables of the TSR(M,) array.  These six are used as 

Tl, T2, . . . T6 in the subroutine. They are described in the nomen- 

clature list with the subroutine and in the preceding derivation of 

equations. 
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c 
c PJ,   PK 
c PL 
c PA,   Ptl 
c PN,   PÜ 
c UVVG 
c NM 
c NT 
c Tl 
c T^ 
c Ji 
c Tb 
c T4,T6 
c 
c 

50 
c 
c 
c 
55 

NC=U        S        Ktü=l. 
*        OELV=l./UH-l./üüLU 

SUURUUT INE   OFK ALT 1 HI, S,P,NM, NT, UH,UULU,T 1,12,13,14^5,10,01 , tjSI 
I        fMUM,y,YD,F) 

TWU   tSTIrtAfLi   UF    PRtSSUKt 
STUKAGE   FÜK  PREVIOUS   ESTIMATE   ÜF   PRESSURE 
CUMPUVtU  PRESSURES,   BASED   ON   PJ   ANU   PK 
PRESSURES   ASSUCIATtU   KITH   NUCLEAIlJN  ANU   uKU^IH 
CHANGE    IN   VÜIU   VOLUME,   CM3/GM 
RELATIVE   VÜIU   VOLUME 
VOIU   DENSITY,   NU.1bER/Crt3 
^ROWTH   CONSTANT   =   i/(<i*ETA( 
GKUWTH   TMRtShOLU 
NUCLEATIUN   RADIOS 
JIM,I t »T IHN    t HH I Sh'H  i) 
l'4iUHI  III I I I I   /i 

NUOI       •       MM I J K.I 

REAL   NrttNTtMUM 
INTEGER   H3 
DATA   ALF,SMF/2.,1.88/ 
IF    (HJ   .EU.   6)    RETURN 
hJ=3        i YI=Y        i        PJ=PO=P        % 
vvu=NM/uoLn     »     vsu=i./t)OLa-vvü 
ÜVVGMAX=(l.-ALH^NMl/I^.+ALF^OHJ 
Z3 = B.*l.l4l6»T3**3*I<t 

C ESTIMATE  PK     BASED  ON   STRAIN,   GKUWTH,   AND   NUCLEATIUN 
PK=PU-EgSTCM*UELV/VSO 
IF   1ÜELV   .LE.   0.)   GU   TO   30 
PG=PL=PK 
IF    IVVÜ   .EU.   0.)   GÜ   TU   25 
PG=2./IU*UT)*ALüGI l.+OELV/VVOU2.»T2-PL; 

2 5 PN=2.*T6»ALÜG(DELV*DH/Z3/UT)«-2.*T5-P0, 
PK=AMAXl(PK,PG,PNI 

30 PN = AKINII0.5*( PK + PUI-T5,0..» 
IF   (PN   .LT.   0.1   PN=EXP(PN/T6> 
PG=AM|NUD.5*IPK*PU)-T2,0. ) 
DVVG=AMlNllOVVüMAX,VVU*(EXP(Tl*PG*ÜT)-l . ) + Z3*PN*DT/ÜH» 

C COMPUTE   STRESS   CURRESPONJING   TO   UVVG   AND   PK 
RVV=NM+l;VVG*ÜH 
RED=AMAXl(0.f1.-4,»RVV) 
PB=(p/(l.-ALF*NM)-2.»EJSTcM*ICtLV-DVVG ) /(2.♦VSU+UELV-DVVG» »♦ 

I (l.-ALF*RVV» 
CONTINUE 

BEGINNING  OF   ITERATION   LÜUP 
CUMPUTE   STRESS   CORRESPONDING   TU  UVVG   ANU   PJ 

PN=AMIN1I0.3*(PJ+Pül-T5f0.I 
IF   IPN   .LT.   0.)   PN=EXP1PN/T6) 
PG=AM1NII0.5*(PJ*P0I-T2,Ü.) 
0VVG=AHlNU0VVGMAXtVVO«(£XPITl*PG*UT»-l.)+Z3«PN*üT/üHI 
KVV=NM+OVVG»DH 
RED'AMAXUC, l.-4.»KVVI 
PA=(P/(l.-ALF*NMJ-2.*EUSrCM«IOtLV-OVVÜ)/I2.*VSOtüELV-üVVG))• 

1 ll.-ALF*RVV» 
SUH=S-P-AMAXUMUM*ll.-SMF*RVV),O.I*UELV»UH 
IF   (ABSISDH)   .LT.   Y*F»RtÜl   GO   TO   70 
YT = AMlNl(ABSISüH),(Y*YJ*At}SIOH-ÜULUI »»REU) 
SDH=SIGNIYT*F,SDH)-1.0/Tl«(l)H-DQLü»/UH/üT*RtD 

70 SA=PA*SDH 
PL = PJ 
Pj=(PK«PA-PB»PJ)/(PA-PlH-PK-PJ> 
NC=NC*l 

C TEST   FOR  COMPLETION  UF   ITEKATIUNS 
IF   INC   .GE.   101   GO  TU   30U 
IF    IAJSIPL-PAI    .LT.   1.E8)   GU   TO   300 
IF    lABSIPA-'J)    .GT.   ABSlPo-PJI»    GU   TU   55 
PÖ*PA       *       PKsPL        %       GU   TU   55 

CMUFR 
UFR mi 
OFR 00 3 J 
UFR 0040 
ÜFR 00 JO 
UFR ODöü 
DFR UU7D 
DFR UUdD 
UFR ^090 
OFR 0100 
OFR ouo 
OFR 0120 
OFR 0130 
OFR 0140 
DFK 0150 
DFR OloO 
UFR 0170 
OFR G1B0 
DFR Ü19Ü 
DFR Ü20U 
DFR 0210 
DFR 0220 
UFR UdiO 

DFR 02 40 
DFR 0250 
OFR U26D 
OFR 02 70 
DFR 0280 
UFR 0290 
DFR U300 
DFR 0310 
DFR 0320 
,iFR 0330 
DFR 0340 
DFR 0350 
DFR 0360 
OFR 0370 
DFR 03dü 
DFR 0390 
DFR 0400 
OFR 0410 
DFR 0420 
DFR 0430 
DFR 0440 
DFR 0450 
DFR 0460 
DFR 0470 
DFR 0480 
DFR 0490 
OFR 0500 
DFR 0510 
DFR 0523 
DFR 0530 
DFR 0540 
DFR 0550 
DFR 0560 
DFR 0570 
OFK 0580 
OFR 0590 
DFR 0600 
DFR 0610 
OFR 0620 
DFR U630 
DFR 064U 
ÜFR 0650 
DFR 0660 
UFR 06 70 

SUBROUTINE DFRACT 
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^ ■ * t w 

1 
L 

C 
1 i ■ 

c 
c 
400 

tNJINO   KOUriNC 
NM-UH*! VVU + OVVo) 
M   NT*nH/ÜÜLü*T4*PN*üT 
It    1NM   ,GT.   0.6/ALf)      GO   TO  Mu 
P=PA        »        S=SA 
Y=yr/Rtü 
RETUKN 

END  WITH   StfAKATIUN 
S=P=0.        t        Y=YT/KtD S        H3=6 
K£ TURN 
END 

OFS Ü6O0 
UfK Ub9U 
UFR 0/00 
Uf« 07 U 
üfK 0/^0 
OFK 0 7 30 
UFK 0/'»0 
ÜFR 07!>0 
OHK 076U 
OHK 0770 
LiFK 07aO 
UFH 0790 
üFrt odüO 

SUBROUTINE DFRACT (Concluded) 

I 
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DFRACT 

This routine provides  the  equation 
of  state for a ductile material 
undergoing fracture.     It  also 
provides  the void volume  and number 
of  voids. 

Initializing 

Estimate pressure based 
on strain,   growth, 

nucleation 
Set PK 

Set indicators; compute B , 
«3 

the nucleation void volume. 

Make estimates of new pressure, 
assuming that all  volume change is 
taken in strain,   or void  growth,   or 
nucleation.     The smallest  tensile 
value of these is PK. 

Set PJ  to pressure of  previous 
cycle. 

Compute void volume change based 
on the pressure estimate. 

Compute pressure associated 
with DWG and PK. 

Compute void volume change 
associated with PJ 

Compute pressure associated 
with DWG 

Compute a new estimate of PJ 
based on linear interpolations 
of PA and PB with PJ and PK. 

Test for convergence of PJ by 
comparing it with PA.     If 
unsatisfactory,   take closest of 
the two previous estimates as PK; 
then return to location 55 for 
another  iteration. 

Compute average stress and 
prtssure,  update the void 
volume and number,   and reset 
current yield strength. 

FLOW CHART FOR SUBROUTINE DFRACT 
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t NMTPLS'        2 MATFL ■ 1 UZERO ■ 1.856E*a* • ()••••• 

»UIWINUH fLYE« RHOS ■ 2.T00e.00 NSRM . 0 NVAM ■ 31 NPOR ■ 0 NCON ■  0 
EOSTC •  7.6Ö0E«!! EOSTO ■ l.S00E*12 EOSTE ■ 1.220E«11 EOSTa ■  2.0AOE*00 
EOSTM ■  2.5J0E-01 EOSTS • 0. EOSTN ■ •0. 
TEN4 •  -I.OIJOE»!! -0. •1.000E*00 
cosa •   ».OOOE.OO Cl • S.000E-02 •0. 
TO ■     2.06«E*09 MU ■ 3.000EMI •0. -0. 

ALUMINUM TAROET RHOS ■ 2.T00E*00 NSRM ■ 6 NYAM ■ 31 NPOR ■ B NCON ■  0 
EOSTC ■  7.600EM1 EOSTo ■ l.S00E*12 EOSTE • 1.220E«11 EOSTo ■  2.0*0E*00 
EOSTH ■  2.5Ö0E.01 EOSTS • 0. EOSTN • •0. 
TSKdl ■ •l,000E-02 T$R(2I ■ .♦,000E«09 TSRt3) ■  1.000E-0» TSRU) ■  3.a0BE*09 
TSI»(81» •3,0J0E»09 TSRUI- •*.0OOE*08 •0. -0. 
TEM* •  -l^BOE'lB •0. •i.oooE*eo 
cosq •  *,ogBE*oo Cl ■ S.OO0E.02 •0. 
YO ■     2.000E<09 MU ■ 3.000E*11 -0. •0. 

NLAYER ■        2 JHAT ■ 1   2 •0 -0  «0  -0 -0 •6  «o 
NZONES« 1       10 C'LLS IN 1.U0E-01 CM •0. •0. 
NZONES« 1       25 CELLS IN 3.1S0E-01 CM •0. -0. 

tOENT 8*7K  FRACTURE IN 11*5 AL. «23 FPS«  JULY 1971 
1 NTEDT«        0 WJED IT • 18 • 0 .0 
JEOTTS >   27  28 29  30 31   32 15 16  17  18 19 2a  21  22 

23  2* 25  26 
» MEOTH ■          um NEOIT ■ 20 NPERN 1 •         I •0 
7 STOPS        -0 JCYCS • ISO CKS ■ 3.000E«00 TS ■ 3,000E-I>6 
8 NMTRLS"        2 MATFL • 1 UZERO ■ 1.289E*0* •o»«»»» 

ALUMINUM PLYER RHOS ■ 2,700E«00 NSRM • 0 NYAM ■ 31 NPOR ■ n NCON ■ 0 
EOSTC ■  T.tfOEMl EOSTo • l.S00E>12 EOSTE ■ 1.220E>11 EOSTO ■  2.0*OE*00 
EOSTH •  2,8flOE-01 EOSTS - 0. EOSTN ■ -0. 
TENS •  .l.OQOE'll -0. -l.OOOf.OO 
COSO •   «.OfOEtOO Cl ■ S.OOOE.Oi -0, 
Yd «     2,000E*09 MU ■ 3.000EM! •0. •0. 

ALUMINUM TARGET RHOS ■ 2.700E*00 NSRM ■ 6 NYAM ■ 31 NPOR ■ 0 NCON ■  0 
EOSTC •  T.tjOEMl EOSTo ■ 1.500EM2 EOSTE ■ 1.220E*11 EOST« ■  2.040E*00 
EOSTN •  2.550E.01 EOSTS ■ 0. EOSTN • -0« 
TSRIll ■ •1.000E>02 TSR(2) • -A.0OOE*09 T8RI3) ■ •  l.OOOEoO* TSRU) ■  3.000E*«9 
TSR(SI> -3.0001*0« TSR(6»« •*.0O0E*08 •0. •0. 
TENS ■  •I.ZfOEMO •0. •1.000E*00 
COSO ■   *.0(0E«00 Ct ■ 5.000E.02 • 0. 
TO ■     2.000EO« MU ■ S.OOOE'll •0. -0. 

NLAVER ■        2 JMAT ■ I   2 -0  -0  -0  -0 -0 -6 «o -0 
NZONES- 1       10 CELLS IN 2.360E-01 CM -0. -0. 
NZONES» 1       25 CELLS IN ».350t-01 CM -0. •0. 

TWO INPUT DECKS FOR CURRENT VERSION OF SRI PUFF  FOR DUCTILE 
FRACTURE PROBLEMS 
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NOMENCLATURE  FOR APPENDIX  VII 

A 

D 

DH 

D0LD 

DT 

DWG 

EQSTCM 

Fl 

F2 

H3 

K 

MUM 

N 

NM 

NT 

P 

PA.PB 

(p-p     )/4r\,   growth  parameter,   1/sec 
gO 

gross  density,   gm/cm 

,    3 
current density,   gm/cm 

3 
density of   previous cycle,   gm/cm 

time  i-ncrement,   sec 

3 
change in void volume,  cm /gm 

o 
bulk modulus,   dyn/cm 

thermal  strength reduction  factor;   varying from  0 for  no 
strength to 1 for no reduction 

reduction factor based on void volume 

fracturing indicator = 2  in SRI  PUFF for no damage 
=  3   for partial damage 
=  6  for  full  spall 

o 
bulk modulus,  dyn/cm 

,    2 
shear wouilus,  dyn/cm 

number of voids,  number/cm 

relative void volume 

,    3 
number of  voids/cm 

,    2 
pressure,  dyn/cm 

pressure computed from the equation of  state 
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Ill» 'I' 

PJ.PK 

R 

R 
n 

S 

SDH 

Tl 

T2 

T3 

T4 

T5 

T6 

VSO 

WO 

V 
o 

V 
s 

V 
V 

Y 

YD 

P 

P a 

V 
no 

estimates of pressure 

void radius, cm 

a parameter in the nucleated distribution function, cm 

2 
stress (negative for tension) , dyn/cm 

deviator stress 

2 
coefficient of growth equation, cm /dyn/sec 

,  2 
threshold stress for growth, dyn/cm 

radius at nucleation, cm 

3 
nucleation rate coefficient, no./cm /sec 

, 3 
threshold stress for nucleation, dyn/cm 

2 
a nucleation factor, dyn/cm 

3/ 
solid volume, cm /gm 

3, 
void volume, cm /F;m 

3, 
gross specific volume, cm /gm 

3/ 
solid specific volume, cm /gm 

3 , 
specific volume of voids, cm /gm 

, 2 
yield strength, dyn/cm 

strain hardening modulus, defined so that the increase in 

yield is YD* | DH-D0LD | , dyn-cm/gm 

, 2 
pressure, dyn/cm 

, 2 
pressure in the solid material, dyn/cm 

, 2 
threshold pressure for growth, tiyn/cra 

2 
threshold pressure for nucleation, dyn/cm 
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time,   sec 

voluiae  of  a void,   cm i 
a constant 

a  constant 

T\ material  viscosity,   dyn-sec/cm 

,    2 
^ shear modulus,   dyn/cm 

4 
P(R) concentration of voids  at a radius  R,   number/cm 
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APPENDIX  VIII 

BRITTLE FRACTURE   SUBROUTINE:     BFRACT 

The  brittle  fracture  subroutine,  BFRACT,   and   the equations  contained 

in  it  are  described   in this appendix.     The  routine  provides a calculation 

of  stress,   as well  as  fracture damage,   for a given  internal energy and 

density;   hence,   the  routine contains  the  equation-of-state  relations   for 

a material   undergoing brittle fracture.     The   routine   is  intended   for  use 

in one-dimensional   artificial  viscosity  wave  propagation codes with either 

one-   or  two-step  integration  schemes.     In one-step codes,   the routine   is 

called at  each  cycle   for each cell   in which   fracturing has begun.      In 

two-step codes,   one of   the  steps   (preferably   the one   that  calculates   stress 

as a midcell  quantity)   should use  BFRACT  as   the equation  ol   state  during 

fracturing.     The other  step should  merely  take  the  average of  stresses   in 

adjacent cells  and not call BFRACT  for  a  stress calculation. 

All  the  formal  parameters of  BFRACT must  be   input  from the  calling 

routine.    The output quantities^among  these parameters  are H3,   S,   P,  NM, 

NT,   and Y,     (Note   that LS,   H3,   and  JS  are   integers;   the other parameters 

are  floating-point.)     In addition   to  these  parameters arc   two  largo arrays 

defined within   the  routine:     CL for  crack radii  and CN  for   numhi i 

cracks.     These   two arrays are printed out  on  calls  from EDI i      JJowing 

each TIME  EDIT  listing. 

DERIVATIONS  OF  EQUATIONS  FOR BRITTLE  FRACTURE 

At each call,   the  subroutine   is provided with a new density,   and 

it computes  stress and pressure and also  the  current extent of damage. 

Because  the damage and stress level  are  related nonlinearly,   the  stress 
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is determined through an iteration process.  First, a stress is estimated 

and the damage is computed.  From this damage, a stress is determined 

from the equation-of-state relations.  Then a new stress estimate is made. 

This process is repea,_d until the estimated and computed stresses arc 

sufficiently close. 

The damage is characterized by groups of penny-shaped cracks; each 

group has a concentration CN and a radius CL.  At each time increment, 

a new group may be nucleated and all current cracks may be permitted to 

grow (if the tensile stress is large enough). 

Nucleation is assumed to occur by the development of a number of 

new cracks of the same size.  The nucleation function has the same form 

as for ductile fracture 

, o - a 
AN /    nO 
—  = T exp 
At     4  K nO 

(236) 

where 

nO 

AN At  =  the nucleation rate 

T =  the stress, negative in tension 

Ih« nucleation threshold stress 

T , T , T  - nucleation parameters used in BFRACT 
4'  5  6 ' 

The form of Eq. (236) is justified a posteriori by the observation that 

the crack distributions computed with it compare fairly well with the 

observed. 

The growth of the brittle cracks is assumed to follow the relation 

of Dulaney and Brace (Ref. 35) for the propagation of a Griffith-type 

crack. 
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R 
1  

R 
R > R 

R S  R 

where 

V      =     the  current crack growth velocity 

V      =     the  terminal  velocity 

=     the  crack radius 

1 

237 

R      =     the  critical  crack radius 

According  to  Sneddon   (Ref.   34)   the critical  crack radius  lor a penny- 

shaped crack  is 

TTEY 
TTK 

IC 
2. 2, 

4o  (1 -  v   ) 40 

(238; 

where 

E    ss    the elastic modulus 

Y    =     the  surface energy 

n    s     the  nominal   applied   stress 

PiiiatHH' fi  M' 10 

IC 
= the fractuio liinnliin HH in the opening mode 

In BFRACT, for each damage calculation, the cracks in all groups are 

tested against the critical crack size.  For those cracks exceeding the 
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critical size, crack velocities are computed.  The new crack radii are 

obtained from a Simpson's rule integration oi the crack velocity over the 

time increment. 

At, 
CL  = CL + —(V  + 4V  + V i , 

1      0   6   cO    cm   cl 
(239; 

where 

CL, , CL 
1'  0 

the radii at the beginning and end of the 

increment At 

V , V , V   = velocities at the beginning, middle and end 
CO    Cm    Cl        .r ^.u 4- of the increment 

irom With  the aid of Eqs.   (237)  and  (238),   V       is computed  from  CT       V       fi 
cO 0   cl 

a , and V  from l/2(a + a ), where a ami 0. are »treSBUB at the begin- 
1 '     cm 0   1 0     1 

ning and end ul the lime increment. 

Only ten crack groups are provided in BFRACT for each cell.  If more 

groups are nucleated, these added groups are averaged into the tenth group, 

as follows 

CL(lO)    = 
CN(lO)   •   CL(10)    + CN     *   T 

CN(lO) + CN 
(240) 

CN(lO)     =       CN(lO)   + CN (241) 

where 

CN the number  in  the newly nucleated group 

the nucieation  radius 
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v mm 

The averaging in Eq. (240) is performed in such a way that the crack 

volume is correct for the current cycle.  The use of only ten groups has 

proved satisfactory in our experience.  The largest cracks at the end of 

the calculation are those that were nucleated first.  Since these first 

ones also contribute the most to the crack volume, it is important to 

represent them accurately.  The approximation entailed in the averaging 

of Eq. (240) should normally have a small effect on the computed crack 

volume, and hence on the stresses and damage parameters. 

The stress and pressure are computed, taking into account the pres- 

ence of the cracks.  When tensile stress is applied to a penny-shaped 

crack, the crack opens to the volume given by Irwin (Ref. 32) 

4TTR a 

3E 
(242) 

The total crack volume is the sum over all crack groups 

NCG 

TOT 

4na 
3E L c\^\y 

i=l 

(243) 

The crack volume is used in the same way the void volume is used in 

DFUACT to determine the specific volume of the solid.  The calculation of 

pressure, deviator stress, and stress follow the same relations as in 

DFRACT except that a rate-independent relation is used for deviator stress. 

To begin the iteration for stress, two estimates are made of the 

new stress: one based on strain, the other on expansion of the cracks. 

The first of these, labelled SCA, is based on the usual equation-of- 

state relations for the solid, plus the assumption that the crack volume 
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does not change during the cycle. The second estimate, labelled SCG, js 

based on the assumption that the existing cracks merely open or close to 

reflect the volume change. From Eq. (242), this e stimate is 

( 244 ) 

where 

= the stress at the beginning of the time step 

= crack volume at each end of the time ste p 

In the code nomenclature this equation is 

SCG SCO( 1 + DELV/ VVO) (245) 

As in DFRACT, the amount of crack volume increase that occurs in 

any one cycle is limited by DVVGMAX. 

'· . 
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2. CODE CHANGES TO ACC0~10DATE FRACTURING 

Several changes are required in initialization, printout, and call-

ing in any artificial viscosity code to permit use of the routines BFRACT 

and DFRACT. The changes required for SRI PUFF 3 ( Ref. 55 ) are described 

here as an example. 

a. Initialization 

Ductile and brittle fracture are implemented as material models 

6 and 7, respecively, that is, NSR = 6 or 7 (they are mutuall y exclusive ) . 

The new material data required for fracturing are inserted into 

the TSR array through READ statements, which are already present, Crack 

or void volume is £tared in NEM(J) and the number per cubic ce ntimeter is 

stored in NET(J): both are existing arrays. An auxiliary array, EXMAT 

(M, 10~ has been added. One element of this array is used as follows to 

store an elastic parameter 4rr/( 3E), used in BFRACT. 

IF CNSRCMI .cQ. 71 EXMATCM,ZI20.4b5~•Cl./EQSTCCMI+3./MUCMII GSR ld75 

·,: 

In BFRACT, EXMAT(M,2) is equivalent to the formal parameter FACT. 

b. Pr~ntout 

For ductile fracturing, the only new variables are the void 

volume and number of voids. These are stored in the NEM and NET arrays 

and are listed in each EDIT under the headings Pl and P2, respectively. 

In addition, the second SCRIBE listing prints the history of NEM and 

NET at the first six JEDITs. 
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In brittle fracturing  the same printout of NEM and NET occurs 

as   for ductile,   but  also the  CL and CN  arrays  are  printed  following each 

EDIT.     This  printing is  accomplished with   the following CALL  to BFRACT 

in   the EDIT routine: 

IF    (NSMM)    .EJ.   7   .AND.   LSU8U2)    .GT.   0)   CALL   BFRACT(2) EDI   0495 

The printing is controlled in BFRACT so that a listing is given only for 

cells in which fracturing is occurring. 

c.   Calling 

The  routines  DFRACT  and BFRACT have  the  function  of  equations 

of  state  and  therefore replace  the  call  to EQST after damage occurs. 

The  CALLs   are  from HSTRESS  and JSTRESS.     The following changes   permit 

both  routines  to be used simultaneously,   if desired.     In HSTRESS  replace 

HST  0260  and 0270 with   the following (this  is  the form that  would  be used 

in  a  one-step code): 

C 
51 

IF    <NS(UM)   .Eq.   7)   GU   TO   51 HST 0261 
DUCTILE   FRACTUKE   PATH HST 0262 

CALL   0FKACT(H( Jt3),SHL(J»,PHLt J),NEMIJ),NET(J)tDH,DÜLO,TSft(M,Uf HST 0263 
1 TSR(M,2)fTSR(M,3),TSKIM,*),TSK(M,5»,TSR(M,6),.5*«DTNH»ÜTNJ, HST 0264 
2 EQSTC(M),MUM,YHLIJI,YA00M,F) HST 0265 
L(5)=50 HST 0266 
GO   TO  TO HST 0267 

BRITTLE   FRACTURE   PATH HST 0268 
JS*J HST 0269 
CALL   BFRACTILSU8(12),HI JC3),SHLIJI,PHL(J),NEM(J),NET(JI,UHfUULL), HST 0270 

1 TSR(M,l»,TSRIM,2»,TSR(Mi3lfTSR(Mf4l,TSK(M,5),TSRIM,6l, HST 0271 
2 .5*IDTNH*0TN»,EaSTC(M),MU(M),VHLU)fVAD0(M),F,EXMAr(M,2IiJS» HST 0272 
LI5»»51 HST 0273 
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and  replace HST 0760 by 

IF   INSR(M)    .LT.   6   .OR.   H(Jf3»    .ÜT .   2)   Ciü   TU   100 HST   0761 

Note   that   the LSUB array  has   been  extended  to 12 elements.     It   provides 

control  of   initiali/ation   in   the BFRACT routine. 

In JSTRESS   the   line  JST  0280  is  replaced by 

BRITTLE   OR   DUCT1LL   FRACTURt JST OiSl 
IF   (NSRtMJ)   .tQ.   71   GÜ   TO   70 JST 02Ö2 
CALL   ()FRACT(HJ3,SIJJ»,P( JJ)tNEMH,NETH,UlJJJ,OULÜ,TSRIMJ,l), JST Ü2Ö3 

1 TSR(M.;,2l,TSR(MJf 3),TSR(HJ,4),TSR<MJ,bl,TSR(MJ,6l,0TNH, tUSTC(MJ)JST 02Ö'« 
2 ,MUM,YJ,YAODM,FI jST 02ö5 

d.       Rezoning 

The REZONE subroutine has not  been revised  to especially  accom- 

modate rezoning in  the regions undergoing fracture.    For ductile fracture, 

the usual mass-weighted averaging will  control computation of  void volume 

and number.    For brittle  fracture,  however,   the CN and CL  arrays are not 

rezoned;   if rezoning occurs   in cells undergoing brittlefracture ,   the re- 

sults will be  nonsense.     However,  normal rezoning can be  permitted  in any 

cells  that have not  begun  to  fracture.     In radiation  problems,   where re- 

zoning is most  important,   that rezoning should occur early,   generally 

before either front surface or rear surface spall.    Hence,   if  rezoning 

is  controlled carefully,   its  advantages can be gained even with  fractur- 

ing calculations. 
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3.       LISTING AND FLOW CHARTS FOR BFRACT 

In  the following pages  the BFRACT  subroutine   is given with  a  flow 

chart,   sample  input decks  for SRI PUFF   calculations  for brittle  fracture, 

and some  sample  printout. 

The  additional  input data required for fracturing  are  included as 

the first   six variables of  the TSR(M,   )   array.     These  six are used  as 

Tl,  T2,   ...   T6  in  the subroutine  and  are  given  in  the  nomenclature   list. 

Their   functions  are  described  in   the  derivation of equations   in  section 1. 

With   these   input  decks  it should  be  noted  that  the  cell  zoning   information 

is  provided at  the end,   rather  than  with  each  material.    This  reflects  a 

recent  change  to separate material  and  layer numbering,  a change   that   is 

not   in SRI PUFF  3. 
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C 
C 
c 
c 
c 
c 
L 
c 
c 
c 
c 
c 

10 

15 

20 
21 
C 

SUbRUUK1 (••!(.   bt-RALrUiiHiiSfP.NM.M ,ÜH lUbLD iTl, T2, T J, T^, r 5f T6, 01 
1       ,,   EUSTCM,MUM,Y.VuiF,FACT,JS» 

NtM   —   KELAriVt   VOLUME   Oh   CHALKS 
NET   —   NUMbbK   UF   CRACKS/UNIT   VOLUME 
11 —  CRACK   GROWTH   VELOCITY,    CM/StC 
12 —   FRACTURE   TüUGHNtSS,   K1C,   UYI*E »StRI (CM)/CM2 
T3   —   NUCLEATIüN  CKACK   RADIUS 
T4 —   NUCLEATIUN   RATE   COEFFICIENT 
T5 —   THKLSHOLU   STRESS   FOR   NUCLEATIUN 
16 --   OLNUMINATUR   UF   EXPONENTIAL    STRESS   FUNCTION 
CL ANJ   CLT   —   RAUIUS  OF   CRACK,CM 
CN —   CRACK   JENSITY,   NUMbtR/CM3 

OlMENiloN  CL(lO0,lO|,CLT(10),CN(IOC,ICI.CNTt10) 
REAL   NM.NT.MUM 
INTEbrR   H3 
DATA   A. F,SMF/2.'J, 1.88/ 
IF    ILS   . iT.   Ü)      f.O   TC   1& 
DU   lü   U = l,lOO0 
CLI IZ)=CN( U)»Ü. 
LS = i 
IF   US   .EJ.   2) 
IF    (Hi   .OH.   2o) 
NC = U      %     YT=Y'     » 
VVO=NH/L)OLU        % 

GO   TO   500 
RETURN 
NCG2=H3-J      »      Nl-0= 
VSü=l./DULU-VVu 

(NCG2*l)/2      * 
$        UfcLV»l./UH- 

SCü = S 
i./UULU 

25 
30 
C 
c  ♦• 
55 

73 
75 

»0 

UVVGKAX=1I.-ALr*NM)/(2.*ALF»UH) 
REiET   NO.   OF   CKACKS/CM3 

IF    {NCÜ   .LE,   0)   GU   TO   21 
DO   20   N=l,NCG 
CN( JS,N)=CN( JS,N)*UH/0OLL) 
COlMTINUE 

ESTIMATE   SCA   bASEU  UN   STRAIN   ANC   CRACK  EXPANSION 
:.CA=P-E0STCM*ütLV/VSlJ+AMAXUS-P-AMAXllMUM*(l.-SHF*NM),O.)*UbLV 

I •UH.-Y+F^tl.-NM)) 
IF   (ÜELV   .Lt.   0.)   GU   TO   30 
SCG = SCJ=SCA 
IF   (WO   .EU.   0.)   GO   TO   -.'5 
IF    (SCO   .GT.   0.)   GU   TO  25 
SCG=SCÜ*U.*üELV/VVO) 
SCA-AMAX1ISCA,SCG) 
CUNflNUE 

* UEGIN   ITERATION   LOOP   -   CUIPUtE   NUcLEAUON  ANU   GRChTH   OF   cRACK 
VC=uC=DVVG=0. 
NC=NC*1 
IF    (SCA   .LT.   T5)VC=-SCA*FACT*T3«»3*rA*EXPl((ScA*SCU)/2.-I5)/lo)» 

CUMPUTE   CRITICAL   CRACK   SUES   FUR   STRESSES   ÜURlNb  UT 
IF    (H3   .LE.    3   .OR.   SCA   .GE.   0.)      GO   TO   75 
CAS=CljS=CCS=l. 
IF    (SCO   .LT.   d.)   CAS=0.785<»'MT2/SCU)«'»2 
IF   (SCU + ScA   .LT.   0.)  CBS'UWdS^^d/;/(0.5*(SCU + SCA) l)*»2 
IF    (SCA   .LT.   O.t   CCS*0.7Ö5'»«(T2/SLA)»*2 
UO   73  N=1,NCG 
VELA=VELb=VELC=Ü. 
IF    ICL(JS,N)   .GT.   CAS)   VLL A=T1*(1.-CAS/CL(JS,N)) 
IF   (CL(JS,N)   .GT.   CdS)   VtL6=T l*( I .-CiiS/CL( JS ,N) J 
IF    (CLIJS.N)   .GT.   CCS)   VELC=Ti*(1.-CCS/CL(JS.N)) 
CLT«N)»CL(JS,N)*(VELA*4.«VtLa*VtLC)*DT/6. 
VC=VC-SCA*FACf*CN{JS,N)*CLT<NI«»J 
CONTINUE 
VC = VC/OH 
ÜVVG=AMINl(VC-VVO,DVVGMAX) 

COMPUTE   STRESS  CURRESPONUING   TO   ÜVVG  ANU  SCA 
RVV=NM*UVVG*OH 
PA=IP/ll.-ALF*NM|-2.*tJSTCM«(UbLV-UVVG)/t2.*VSU*UtLV-UVVGn 

I        »(l.-ALF^RVV) 
SÜH=S-P-AMAXl(MUM»(l.-SMF*RVV),0.)*ÜtLV*ÜH 
IF    (AUSISÜH)   .LT.   Y»F«(l.-RVV) I    GU   TO   100 

ÜFR 
öf-K 0°^ 
BFR 0030 
BFR U040 
UFR 00 50 
ÖFR 0060 
ÖFR OU/O 
BFR 00 00 
ÜFR UJ-VO 
BFR 0100 
BFK 0110 
BFR 0120 
bFR 0130 
BFR 0140 
BFR 0150 
BFR 0160 
BFR 01 70 
BFR OldO 
BFR 01^0 
BFR 0200 
UF« 0210 
BFR 022J 
BFR 0230 
BFR 0240 
BFR 0250 
BFR 0260 
BFR 0270 
BFR 02B0 
BFR 0290 
BFR 0300 
BFR 0310 
BFR 0J2Ü 
BFR O3J0 
bFR 0340 
BFR 0350 
BFR 036o 
BFR 0370 
BFR 0380 
BFR üHÜ 
BFR 0400 
BFR 0410 
BFR 0420 
BFR 0430 

S BFR 0440 
BFR 0450 
BFR 04ö0 

uTbFR 04 70 
BFR 04 BO 
BFR 0490 
BFR 0 5oO 
BFR 0510 
BFR 0520 
BFR 0530 
BFR 054U 
BFR 0550 
BFR 056o 
BFK 0570 
aFR o5ao 
BFR 0590 
BFR Ob 00 
BFR 0610 
BFR 0620 
BFR 0030 
BFR 0640 
BFR 0650 
BFR 0660 
BFR 0670 
BFR 0680 
BFR 0690 

SUBROUTINE BFRACT 
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100 

c 

120 

C 

c 

c 
c 
300 

320 
325 

3^0 

350 

YT = AMINl(ABb(SiJH) ,V*V0*AbSIJH   JOLO)) 
SDH=SION(YT*F*{i.-KVV),SUH) 
SA=PA+SUH 
IF    (NC.E0.1    .AMU.   VC.tw.O.   .AND.   SCU.Gt.C.)   ÜU   TU   3U0 
IF .    1)    (JU   TO   120 

Fuk   2NU   ITfckATlUN 
»        SA2=SA        %        StA=SCü 

(NC   ,GT. 
PKEt'ARt 

SCA2=SCA 
CONTINUE 
SCö=SCA 
INTErtPULATION   FUK   NEW  tSIIMATt   UF   bTKESS 
SCA=ISCA2*SA-iA2*SCA)/( SA-iA2*ScA2-Sl.A ) 

TEST   hUR   CÜMPLETIüN   OF   ITERATIONS 
IF    (NC    .OE.   10)   GU   IC   300 
IF    (AHS(SCa-SA)    .LT.    i.tl   I   GU   TU   30C 
IF    (AdS(SA-SCA)    .uT.   A1JSISA2-SCA) I    GU   TU 
SA2 = i>A        $        SCA2=SCU        t        GU   TO   •ib 

GJ   TU   55 

5'j 

KUUTINt 

GÜ   TÜ   325 

GC 
. LW. 

TÜ   35Ü 
1   .UK.   NCG2 ,EJ.    20)   uU   TU   i^U 

E NO I Nu 
NT = 0. 
IF    (NCG    .Lt.   0) 
DO   32J   N=1,NCG 
CL ( JS.NXLTIN) 
NT = NT + CM JS,N) 
CUNTINUt 
CUNT INUE 
IF    (SCA   .OT.   T5) 
IF    (MUGI -)CG2,2) 
HJ=H3*l 
CL(JSfNCG»))=T3 
CN« JStNCG*l) = T'.*EXP( < (SCA*SCU)/2.-T5)/T6)»JT 
NT=NT*CNIJSfNCG*!) 
VC=VC-SCA*FACT«f3**3»CN(JStNCo*l) 
GU   TO   350 
CNU=T4»tXP((ISCA*SLU)/2.-T5)/T6)*OT 
CLIJS,NtG) = ( (CN( JS,NCG)*CL(JS,NCu)**3+tNG*T3»*3)/Ii-^lJS,Nl,l))*l,NO) 

I ♦*(l./3.) 
CNIJStNCG)-CN(JS,NCG)*CNU 
IF    (NCG2   .LT.   20)   H3=H3*1 
NT=NT+CNU 
NM = VC 

TO IF    INM   . (jf.   0.6/ALF)   GO 
P=PA 
S=SA 
¥=YT 
RETURN 

c 
c km WITH   SEPArtATIÜN 
400 S=P=0. 

Y=YT      $ H3 = 26 
RE TURN 

c 
c FINAL PRINIOLf 
c 
500 IZEKl)=l 

400 

00   520   1=1, 100 
IF   (GLI I.D+G.MI 1,11    .bU«   0.)     GU   TU   520 
IF    IUERU   .EU.    1)      MRlTt   (ö,150U) 
IZERO»2 
CNT(1)=CN(I.1) 
DO   510   IN=2,10 

510        CNT(IN)=CNT(IN-1)*CN«I,IN) 
WKITE   (6,1510)    I,ICL(I.K),K-=1,10), (CN(I ,K) ,K=i,10), (GNTIK) ,K=1, 

i 10) 
520        CONTINUE 

RETURN 
1500     FURHATUHO,»     LISTING  OF   LKAGH   LENGTH  AND   NUMbER   FUR  cVERY   ♦, 

1 »FRACTURING  CELL*/) 
1510     FORMAT    (•     CcLL   NUMbER»I5/*        CL=♦loE11.3/»       CN=»lüE11 .3/*     tUM- 

l*10cll.3/) 
END 

SUBROUTINE BFRACT (Concluded) 
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dFR 0700 
bFR 0710 
bFR 0/20 
bFR G73J 
BFR 0740 
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dFR U7OJ 

bFR ^770 
BFR Ü7b0 
bFK 07>JU 
BFR ObOO 
bFR OblU 
dFR Od^O 
BFR OolO 
bFK 0d40 
bFK ja5u 
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bfR ub70 
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BFR lOt)J 
bFK 1060 
BI-K lv>/J 
BFK lüöj 
BFR 1090 
bFR UoJ 
bFR UiO 
bFR lUo 
BFR 1130 
bF« 1140 
dFR 1150 
BFR 1160 
UFR 1170 
BFK Udo 
BFR 1190 
BFK 1200 
BFK 1210 
HFR 1220 
dFR U.iO 
dFR 124J 
BFR 1250 
BFR 1200 
dFR 12/0 
BFK UoO 
BFR 1290 
BFK 1300 
bFK 1310 
BFK 1320 
BFR 1330 
BFK 1340 
BFR 1350 
BFK 1360 

»bFR 13/0 
bFK IJbO 
BFR 1390 

r^   —z 



orJOACT 

CAS, CBS, CCS 

~,nLH, :.::c: CL T, VC 

l 
y 

OVVG, PA, SDH, SA 18 

tEk 
SCA I 

Thill r nu tii.O! cont a ln a the 
~~qua tlon- ot -at a te ret a tlona 
f o r -terla l underto tna brittle 

and a I ao nuatHtr and 11 T.e o f 
c r lr;a u o•-.c::h c a ll. 

r o r LS • O, t nllla ltle t he CL 
and C!C •rray .. •ht c h wil l con tai n 
r adii and nuab.er a o f c r -c. lr.a. 
Po r LS • 2 10 t o pruuout ae.;• tl on. 

It Mla26 , aa,.ra t ll»n h• • occu rred 
and J trea•e• a re no l c nwe r co•putf!d. 

Cu.P\It C" a.ewera l qv&r~ t 11 te• .-h h- h 
are uJ«< throv~ehout l a u •r 
r alc ulat 1ona. 

k ec: o.putt• CH t o ~ruin to th e n
lll peclft c <tOlu- o f - t erlal. 

t:IU M te at r eaa f o r the ft r tt cyc le 
ba a t!d on 11' 1the r atr a tn on l y o r 
¥Ol d e:o.pa.n~l 011 0 1'11)'. 

Ra ted on th e ea t l .. ted at re-111, 
c'*""" te the c rtll c al CIIICIII radlt , 

Po r H Ch c raN;k r: r oup , c o.pute 
the 1teloc1t1ea o t trowth , new 
r HIUI, a nd t o t a l ¥Oiuae. 

COIIPUtl the C lui :'IC a In c r k 
vol~, and th e a tr,.aa q1.1antttlea. 

Po ll tnt the flnt Itera ti On 
cye lt (, • 1), Ill tiM ltre•• 
eatt-te t o .!CO, the pr~ v 1 oua 

st rea a , and r•turn Co r a no tber 

lite aiiMt e seA f ro- rea~o~l" 

o f 2 prettt OI.I!II t t eratl o na, 

Co.pa re eat 1-t.-d a t r ••• wu n 
11.-re •• reaul t l l\4j: fro. equati on 
ot 11 Utl t o det er•lne COftller•..nce. 

Fo r ne:~~t 1\e ra t t o n and Interpol a tion 
c hoo.11 belt re11.1ltl o f prev lou a 
iteratl o na . 

lllelet c rac.ll r.clll t o .Oi t 
r«..nt eo-puted va lue•. 

For nueJeetto • of n.- •roupa teat 
ltCC. tr there a .re 10 1 roupa 10 
to 340. 

Add pa.r ... tera f or a .... , , 
ftuel .. u d c rack 1roup . 

9 
<$>'-8 

P, s, y H RETVD I 

HlltT Cl. , CJf 

I 
I RnVL' I 
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JEOTTS  ■          2T       28 

23       2» 
NEDTM  .                  10000 
STOPS                              -" 
NMTRLS   .                         2 
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29       30 
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TSRIS) » -3.0nnE»09 TSH(6) ■ 
YO    ■   5.500E»09 MU » 
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7,850F»00 NSR»    7 NYAM »1       -n                  »0 
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-9.SO0E«O9 -0.                -(.. 
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NLAYE» « 
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3 JMAT • 12   3-0-0-0-0 -n  -0  -0 
10 CELLS IN 1,138F-01 CM      -0. -0. 
25 CELLS IN 3.1S6E-01 CM      -0. -0. 
22 CELLS IN ».«OOF-Ol CM. n» «  1.250E-02 RATIO •   1,050F»00 

INPUT DECKS FOR CALCULATION OF BRITTLE  FRACTURE IN ARMCO IRON 
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NOMENCLATURE 1'0|| APPENDIX VIII 

l'/\H ,cm ,CCti crltloal crack size at beHllinlng, middle, and end of 
time increment, cm/sec 

CL 

CLT 

CN 

CNT 

DH 

DOLD 

DT 

DWG 

DWGMAX 

E 

EQSTCM 

F 

FACT 

array containing crack radii of each crack group 

temporary array for crack radii 

3 
array containing no./cm for each crack group 

,     3 
cumulative no,/cm , summing from the large crack to 
the small 

3 

current density, gm/cm 

density at previous cycle, gm/cm 

time increment, sec 

3 
change in total crack volume, cm /gm 

maximum permitted change in crack volume 

2 
Young's modulus, dyn/cm 

, 2 
bulk modulus, dyn/cm 

thermal strength reduction factor 

4TT Wl  3\ 
27 ^K + nj  = 3E , cm /dyn 

H(J,3), a fracturing indication in SRI PUFF 

H3 = 2 for no damage 

H3 = 26 for full separation 

H3-3 = NCG, the number of crack groups 
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K 

K 
IC 

MUM 

N 

NCG 

NM 

NT 

P 

PA 

R 

R* 

S 

SA 

SCA 

SCG 

SCO 

SDH 

Tl 

T2 

T3 

T4 

T5 

bulk modulus, EQSTC, dyn/cm 

3/2 
fracture toughness in the opening mode, dyn/cm 

2 
shear modulus, dyn/cm 

3 
number of cracks, number/cm 

H3-3, the number of crack groups 

relative crack volume 

, 3 
number of cracks/cm 

, 3 
pressure, dyn/cm 

pressure computed from equation of state, dyn/cm 

crack radius in plan, cm 

critical crack radius, cm 

2 
stress (negative for tension) , dyn/cm 

2 
stress computed from equation of state, dyn/cm 

, 2 
estimate of stress for an iteration, dyn/cm 

stress estimate based on growth of crack volume, 

dyn/cm^ 

, 2 
S, stress at previous cycle, dyn/cm 

deviator stress 

limiting crack growth velocity, cm .. 

3/2 
fracture toughness, K , dyn/cm 

nucleation crack radius, cm 

3 
nucleation rate coefficient, no./cm /sec 

, 2 
nucleation threshold stress, dyn/cm 
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T6 nucleation  parameter , dyn/cm 

VC total crack volume,   cm /gm 

VELA,   VELB.   VELC crack growth velocity  at   beginning,   middle, 
and  end of   time   increment,  cm/sec 

VSO 

WO 

V 

solid specific volume, cm /gm 

3 
specific volume of cracks, cm /pm 

velocity of a crack, cm/sec 

limiting crack velocity, cm/sec 

Y 

YD 

yield  strength 

strain hardening  modulus,   defined   so that   the 
increase  in  yield  is  YD* |L)H-D0LU| ,   dyn-cm/gm 

time 

crack volume  per  unit volume  of  material, 
dimensionless 

3 
volume of a crack,  cm 

Y surface energy,   erg/cm 

shear modulus,   MU,   dyn/cm 

Poisson's ratio 

nO 

stress in the direction of propagation, dyn/cm 

, 2 
threshold stress for nucleation, dyn/cm 
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APPENDIX IX 

STATISTICAL ANALYSIS OF CRACKS 

It is necessary for the present study to determine the volume density 

of cracks as a function of applied conditions.  Our experimental knowledge 

of the crack distribution is derived from microphotographs of polished 

sections of the shocked specimens.  A crack is characterized by the trace 

length, 2c, of its intersection with the polished surface (the surface 

was always parallel to the shock propagation direction "z"), the trace 

width, w, and the angle of inclination, a,   to the intersection of the shock 

front with the surface.  Thus an areal cracK density function n(c,w,a,z) 

of cracks of c,w,o, and position z could be experimentally determined from 

the microphotograph.  The implicit assumption here of one-dimensional sym- 

metry is justifiable if only the central portions of the specimen are used 

to determine the density function (in our case it was roughly the central 

third), if only the first few reverberations of the shock wave have a 

significant effect upon the crack distribution, and if these reverbera- 

tions are planar.  To satisfy these requirements, only  the central, 

third of the specimen was used for analysis. 

The problem discussed here is that of determining the volume density 

of cracks from the observed areal density n(c,w,ff).   If we assume that 

an individual crack is penny-shaped, it can be described by its size, 

shape, and orientation.  A convenient way to describe the orientation of 

For the calculations in this appendix, the variables z, x, a and t 

which are related to shock history and discussed in the test, are 

dropped because they do not enter into the transformation problem. 
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the  crack plane  is  by   the angle  of   inclination CD of  the crack normal  to 

the   tensile  axis   (or  shock direction)   and   the  angle of rotation  0  of  the 

normal  about   the  tensile axis.     The angular  relationships  of  6to,   and a 

are   shown  in  Figure   97  where   the   angle  y  is   also  defined.      In   the  special 

case of  spherical  voids  only    the   radius  c   is  important.     The     present 

statistical  analysis   for brittle  cracks will  contain  the  spherical  void 

mode   of   fracture  as   a   special   case. 

o 

i 

XZ PLANE IS PLANE OF POLISH 

a-b IS APPARENT CRACK LENGTH = 2c 

ANGLE a IS APPARENT CRACK ORIENTATION 

• CIRCULAR CRACKS 

• ALL 0     EQUALLY PROBABLE 

GA-8678-16 

FIGURE 97        CIRCULAR CRACK INTERSECTING  PLANE OF POLISH 
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In our work, observations have been made on only one polish plane 

in the specimens so that we have only the experimental variables cfw, anü 

a.     Until we have more extensive data (such as from sections on  planes of 

a  number of orientations) it is desirable to make assumptions on crack 

shape and orientation to reduce to two the number of parameters needed 

to describe the volume distribution.  A number of ways to do this are 

possible.  For example, an elliptical crack shape could be assumed in 

which the aspect ratio is a function of the angle cf.  In addition the 

orientation distribution could be assumed to have a direct relationship 

to the metallurgical structure and a measured distribution ol cleavage 

planes.  Although, within our experimental limitations, these assumptions 

might be the most physically reasonable, they also lead to a relatively 

complex analysis. Therefore, as elsewhere in this study, we have used 

the simplest assumptions consistent with experimental observation and 

physical intuition.  If these prove inadequate for the central problem 

of prediction of shock-induced damage, we can go back and refine the 

analysis further. 

The assumptions of the analysis described below are:  (l) cracks 

are circular and specified by crack radius R, (2) the crack distribution 

is axisymmetric with respect to o, and (3) the finite crack widtli w can 

be ignored in the statistical analysis.  Assumption (l) is not as un- 

realistic as it might first appear because of the qualitative observations 

that most cracks have small inclination angles c, and the stresses are 

high enough that the crack growth velocities are probably near the limit- 

ing value in most directions. Assumption (2) is plausible for polycrystal- 

line materials without texture. Assumption (3) will be satisfied if the 

crack width is a function of the crack radius for given stress conditions, 

as is the case for ideal penny-shaped cracks (Ref.32).  Thus the problem 

of this appendix is to compute the volume density of cracks P(R,CD) of 
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radius R and inclination w from a knowledge of the areal density n(c,~ ) 

of cracks with intersection trace lengths , 2c, and apparent inclination a. 

1. DERIVATION OF THE TRANSFORMATION EQUATION 

We first relate n(R, w,B), the number of cracks with specified R, w , 

and 9, which intersect the plane of polish, t o the volume densi ty p( R, m) . 

Then the observed areal density n(c,~ ) , wh i ch i s a f unction of appare nt 

length c and apparen t inclination~. is r e l ated to n ( R, w , B) . These rela

tions lead to an equation between areal d e nsi t y n(c,a ) and volume density 

p(R,m). This equation provides the required transformation. 

The surface density of cracks n(R, m, B) is related t o the volumedensity 

p(R, m) in two steps. If the crack is to be cu t by the plane of polish, 

that plane must fall within the length 2R cos y, the l ength of the crack 

normal to the plane of polish as shown in Figure 97. The number of cracks 

with centers in that volume is 2Rp (R, m, B) cos y per unit area, where 

p(R, w , B) is the volume density . which is not n ecessarily axisymmetric 

(independent of 9). Therefore 

n(R,m,B) = 2Rp(R, m, 9) cos y 

If all angles 9 are taken as equally probable, then 

p(R , m,B) = p(R ,w)P(B) = 
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T-.TX- 

where P(9)   is   the probability  of  finding  a crack of angle  Ö.     Therefore 

n(R,CD,e)     = -  p(R,ü)   COS  Y 
TT 

(248) 

From Figure 97   the  following  relations  can be derived: 

tan   Of = cos   0 tan  cp ) 

tan  y = sin  6 tan cp j 
2 49 ) 

Since w  and a  are sufficient to specify the crack orientation as long 

us the orientation of the polish plane is fixed, n(r,cc,9) can be trans- 

formed to n(R,CD,a) through the use of the following equations: 

n(R,CD,Q') = n(Rfcp,9) \daj 
? 

{250] 

cos Y = 1 + 
2      2 

cos ot   - COS CD 
1-1/2 

2     2 
cos a  cos CD 

(25i; 

The expression for cos Y can be derived from Eq. (249).  Combining those 

results with Eq. (248) leads to 

n(R,cp, 00 = 
R P(R,cp) 

TTM + COS &  - COS ffil 

2 _  2   ( 
cos Q cos CD  I 

(»l (252) 
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From the  first  öf  Eqs.   (249)  we can also compute  the Jacobian of the 

transformation. 

(dB \    _       - cos cp  
oaf          " '" ^ (      2 

'   CD          cos  OL     cos  OL   -   COS 
2   I   I (253) 

and  n(c,o)   can  be related  to n(R m ffj 

oo ff/2 

n(c,0!)   =1    IP(C| RC?a)  nCR.cp.oO   dRdc? 

c   a 

r254, 

where P(c|RcDa)is  the  probability   that   if  a  crack of R,u,   and o is  inier- 

sected,   the  trace will  be of  length 2c,   Now  the  probability   is derived. 

Suppose  r   is   the radial  distance  of  the  crack trace  from the crack 
6r 

center.     Since  the   probability of  intersection at  r ± — is  proportional 

only to  6r,   it   is  easy  to derive 

P(c  R.cp.tt) (255; 

R\ R     - 

Thus  from Eqs.   (252),   (253),   (254),   and  (255)  we  have  the desired  t.^ins- 

formation  equation: 

\ 
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n 
V/2 

n(c,a)  = 7T cos OC H 
c     a 

cos Cp p (R,cf)   dRdcp 

) /,      eos2a -  cos2cp\ .       2 2.22 
\ \1+ —^j (cos a-cos cp; i.R   -c 
I cos"cy cos cp 

e   ) 

(256) 

Equation  (256)   Is an  integral equation  for  P(R,CD),   and  a method   for   its 

solution  is described in the next  section. 

An equation, similar to Eq.   (256)   was  derived by Kaechele  and Telelman 

(Ref.   30)  who considered the same problem but adopted the simplifying 

assumption that  the probability  that  a crack will  intersect a polished 

surface parallel  to the tensile axis   is  independent of  the crack orienta- 

tion.     This assumption is equivalent  to assuming that a  tilted crack is 

elongated in such a way that  its  shape projected on the plane of the 

shock front remains a circle.     In terms of this analysis,   their result 

is  then obtained by dropping the cos y term from Eq.   (248).     The con- 

sequences of their convenient,   but  unrealistic assumption have  not yet 

been examined  in detail,  but can be expected to lead  to  appreciable 

error in materials where many cracks  of large inclination CD are observed. 
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2.        SOLUTION OF  THE   INTEGRAL EQUATION 

The objective   is  to determiae  the  volume  distribution  p(R,cp)  from 

the  surface distribution n{c,a)  by solution of   the   integral  equation, 

Eq.   (256).     The  procedure used  is  a generalization  to  two dimensions of 

the matrix  inversion method  reported by  Scheil   (Refs.   56,   57)  and Saltykov 

(Ref.   58)   for computing the volume density of   spherical   particles. 

To simplify  notation  in Eq.   (256),   define  for R > c  and tp > a 

c  c os cp 

G(a,c,R,cp)   = 

1   + 
cos^a 

V cos Oi 
;oszcp\ 

o 2        i   (cos a -  cos cp)(R  -c   )l  2 

cos a cos cp     / j 

c   sec 0! 

2 2 2 2 2     2   \   h 
fft   (1  + tan cp -  tan a) (tan cp  -  tan a) (R -c  ) 

(257; 

Define G(R>cp,c,a)   = 0  for R < cv.     Then  the  integral  equation  to be solved 

is 

oo     TT/2 

n(c,cy)    =    J   J        G(R,cD,c,a)p(R,cp)dRdcp 

c    a 

258 

The  solution  is   carried out  by discretizing  the  functions  n and  p  into 

matrices.     These matrices  are N       and p     ,   defined  as  follows 
ij Hrs' 

(X c 
.1+1   /.j+1 {1T1        -JXi. 

da  J   dc   n(c, a) (259) 

a. 
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rs 

ar+l    C
S+1 

j^j 
a 

dR p (R,9) 260 

that  is,   p       is  the number of  cracks  per unit volume with orientation tp 
rs 

between a    and a and  radius R between c     and c    , •    The  limits  are 
r r+1 s s+1 

expressed  in terms  of a    and c    to emphasize  that  the  same   intervals   are 
r s 

chosen for to and a,   and for c and R.  These matrices N  and p  are re- 
^ ij     rs 

lated through a tensor equation analogous to Eq. (258). 

p 
Ljrs rs 

(261) 

The elements of the tensor a    are found as follows. Replace n(c,a) 
ljrs 

in Eq. (259) by its value in Eq. (258) to obtain 

ij 

"i+l    Cj+1    oo    rr/2 

N   = J    da |    dc J dR J   dcpG(R,cp,c,cOp(R,cp) (262) 

a. c    a 

Now change the order of integration, discard terms that go to zero, and 

obtain 
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O.     ,     C CD R i+1     j+l    y K 

dcpj    dR j     da   rdc GCR.cp.c.a)   p(R,cp) 

^       CJ ai C 

71/2       CJ+1    a1+l     R 

dcp    f   dR   j     da   fdc   G(R,cp,c, a) p(R,cp) 

"'« C
J   

ai   «j 

01+1    « cp 
j+l 

+ J  dcp J dR Jda J  dc G(R^.c,a) p(R.cp) 
ai     Vi ai 

71/2       oo a c 

+ j dCP j ^ J   da J   dc G(R^'C'«> P(R^) 
"i+i    cj+i   "i       c. 

;263) 

™e next step ls  to perform the ^ outer ^^^^^ ^^  ^ ^^ ^^^^ 

er'"18  "^  t0  defl"e  %•     T'"".   ^  -Paring E(,s.    (26„,   (261),   a„d 

,263),   we find  the elements   of  a 
are  ratios  of   this   type ijrs 

h r1 ti I /   d<p   I     dR   I    da / 
^O J

C Jr.        J„ 
Ijrs 

c      "a     "c 

a r 
r+1    .C

s+i 

J+l 

dc G(R,cpIc,a)   p(R,cp) 

where r > i  and s  > 

264 

a.      •'c 
r s 

dR p(H,cp) 
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For terms in which i = r, the upper limit for the integral over a must 

be replaced by CO· Similarly, for terms in which j = s, the upper 1 imi t 

in the integral over c must be replaced by R. Formally, the problem is 

solved by evaluating Eq. ( 263 ) f or the matrix elements, computing the 
-1 

inverse matrix a . . , and writing the solution as 
1Jrs 

3. EVALUATION OF THE MATRIX ELEMENTS 

The a can be easily evaluated if the intervals 6a and 6c are 
ijrs 

( ~6 5 ) 

chosen small enough that over each interval p ( R,~ ) can be considere d to 

be constant. In this case p(R, co ) can be cancelled out of the terms in 

Eq. ( 264 ) , and we are left with integrals such as 

a = 
ijrs 

a c j':: t+l 1 r: r=~ oa oc r s 
a c a . c . r s 1 J 

2 
c sec a de 

{ 
2 2 2 2 2 21 rr (l+tan ~-t an a) (tan ~ -t an a) (R -c )! 

( 266 ) 

which are independent of the form of the distribution. This integral can 

be separated into two independent parts, one containing length variables 

and one with angle variables, as follows: 

F . G. 
JS 1r 

a.. = 
1Jrs 2noa 6c 

( 267) 
r s 
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where 

js 
/-'.,/ 

j+l 
2dc 

7R   - 
268. 

and 

a 

■..■! 

r+l 
a. 
i+l 

dcp 

a 
i 

2 
 sec    gdot  
~ 2 2     w        2       ~~       2      ,nl/2 
L (, 1  + tan    cp -  tan    a j I, tan    cp -  tan    aj\ 

269 

Equations   (268)   and   (269)   are written  for  the cases   s  > J   and  r > i.     For 

s  = j  and  r  = i,   the upper   limit  of  the  inner  integrals   are R  and cp, 

respectively.     F  and G  are   zero  for s < j   and  r  < i.     The  value  of  F can 

be obtained  analytically.     For  s  > j 

2 2 2 2 
F =:c /c -c-c/c-c 
js s+lV   s+1 j sV   s        j 

2 2 2 2 
-c /c     ,   - c ,   ,   + c     /c    - c .   . 

3+1^    S+1 J+l S,/    S J+l 

2 
c .  log 

.1 

2 2 

S+1        J     S+1 J 

/ 
+   /c2  - c2 

+ c log 
J+l 

c    ,   + /c     .   - c 
s+1       y     S+1 J+l 

■fi> 

c     +  /c 
s      ^   s j+l 

;270) 
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For  s   = j 

AT 
JJ 

c / c -  c     - c     log 
3+1 V     J+l 

/ 2 2 
c.  ,   +   /c - c. 
J+l      J    .1-1-1 j '271 

To  integrate Eq.   (289)   it   is convenient   to  replace a by   the  variable 

u     =    sm 
1/tan q 

tan cp 
272 ) 

With  this  transformation Eq.   (269)  becomes 

Of a. 

\r - j     **! 
r+1 iTi+l 

dcp 
du 

a \ [ 2 2 
1  + cos    u  tan .] 

1/2 
'273) 

When   th lor of   integration  is  reversed,   the  Inner   integral  can be 

evali lyticaliy. 

ir i 
arcsin(tana  /tana    .) 

1+1    r+1 

arcsin(tanQ' /tana  , ) 
i    r+1 

cp=cir 
r+1 

du  j 
sin u j 

d[arc sin (sin u sin cp, 

cp=a 

(274) 

The limits of integration and the meaning of the reversal of order of 

integration may be visualized with the aid of Figure 98.  In Figure 98a 

the region of integration in the a-cp plane is shown.  Each numbered tri- 

angle or square represents a region of integration for one element of the 

G  matrix.  The transformed areas are shown in Figure 98b in the 
ir 
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IN u - 0 PLANE 

tan aj+1 
sin u  = ~— 

tan Q. 

r+1 

tan Q, 
sin   u =  

tan a. 

tan a, 
sin  u  = : 

UL tan a r+1 

e.   A TYPICAL SEGMENT OF THE REGION OF 
INTEGRATION IN THE u - 0 PLANE 

GA-8e78-77 

FIGURE 98        REGION OF  INTEGRATION FOR COMPUTING  ELEMENTS 
OF THE ANGLE FUNCTION, Gir 
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u-cp plane.  A typical numbered element is shown In Figure 98c with its 

u-cp coordinates labeled.  The inner integral in Eq. (274) is evaluated 

over a strip such as B; then the outer integral is evaluated by adding 

together values from all strips.  It is apparent from Figures 98b and 98c 

that the simple limits given in Eq. (274) for the inner integral must 

be modified for strips such as A and D.  The combination of numerical 

and analytical integration required to obtain G  was written into a 

small computer program called ANGLINT; it is described in the next 

appendix. 

Following computation of F  and G  , a    was obtained from 
Js     ir  ijrs 

Eq. (267), and Eq. (265) was used to obtain p(R,cp).  The results of some 

sample calculations are given in the following subsection. 

EXAMPLE VOLUME DIST1 

FROM SURFACE DISTRI1 
ALCULATED 

The computer programs called BABS 2 and ANGLINT, which were written 

to compute the volume distribution of cracks n  i are described in 
ij 

Appendix X.  Here we give an illustrative example of results from such 

computations. 

The example is an artificial case selected to test the computer 

routines.  In Eq. (256) we see that the integral is appreciably simpli- 

fied if p(R,cp) is assumed to be 

p(R(cp)  = 
4R tan cp sec J£ 

m 
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a1- ..   - 

for   0  <  cp <;  45°   and 

p(R,cp)     =     0 (276' 

for  cp  > 45   ,   where  R     is   the   maximum   crack  radius.      In   this   case   Eq.    (262 
m 

can be easily integrated to yield 

iJ 
3TJR 

m 

3/2 / 
/ 2    2 \ / 2   2 
(R  - C -  R  - C 
\m        j I \ m   j+i 

3/2 

tana 

/ 
tana 

i+1 

i      2 2    1 
0,n\3   - 2y  +22- 3y  ^ y 

1/2 

|dy      (277) 

Furthermore, Eq. (261) can be integrated to yield the volume distribution 

of cracks 

ij 

j+1 

dRp(R(cp) 

cp. 

2 2 2 2 2 
-  R   ) (tan     cp -   tan" cp   )/R 

j+1 j i+1 im 
(27«) 

for R s R and cp S 45u, 
m 

Thus, we get a good test of the computer routine if we assume that 

we observed a surface distribution given by Eq. (277), and then compute 

the values of the volume distribution o  fi mi Eq. (265) with the computer 
ij 
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routines.  These results may then be compared with the "true" values ob- 

tained from Eq. (278).  This has been done; the results are shown in 

Figure 99.  In this figure we plot the crack angle distributions summed 

over all lengths, namely, 

E p. . :279) 

and 

= E N. . 
J  ^ 

(280; 

and the crack length distributions summed over all angles, namely, 

P •  = ^ P. (281; 

and 

N.  = E N. . 
J      iJ 

(282) 

Good agreement is attained between the computed and the "true" 

curves, indicating that the computer code functions properly. 

This example is particularly interesting because the angle distri- 

bution happens to be very similar to those discussed by Kaechele and 

Tetelman (Ref. 30) as being of the type expected in Armco iron because 

of the distribution of cleavage planes in that material.  However, 

Kaechele and Tetelman measured an^le distributions that differed from 

the expected ones; the normals to the crack planes were grouped at 

smaller angles to the major principal stress direction than expected. 

Our measurements in Armco iron also show this effect, and examples of 
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FIGURE 99        TEST CASE:    COMPUTED VOLUME  DISTRIBUTIONS COMPARED WITH TRUE 
VOLUME DISTRIBUTIONS.    The discrepancy is too small to be resolved in 
these graphs. 
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volume distributions calculated from observed surface distributions 

with the computer program BABS 2 are given in the text. 

Another test of the BABS 2 program is that it should yield results 

identical to the BABS 1 program, which was developed earlier (Ref. 12) 

for ductile spherical voids, if the cracks are assumed to be independent 

of angle and to have only a size distribution.  This case was computed, 

and the results were found to indeed agree with the results of the 

BABS 1 computation. 

In summary, the BABS 2 program for converting observed surface dis- 

tributions of crocks to volume distributions has been tested and has been 

found to function satisfactorily. 

i 
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NOMENCLATURE FOR APPENDIX IX 

Js 

ir 

transformation factor dependent only on R and c, cm 

transformation factor dependent only on rp and a 

G(a,c,R,cp) 

N 
ij 

transformation factor 

areal density of cracks within the ith interval in 

CD and jL11 interval in c, number/cm 

radius of crack, cm 

a 
ijrs 

fourth rank tensor relatins areal and volume crack 

densities 

half length of crack trace on a surface, cm 

observed areal density of cracks, number/cm 

w observed crack opening, cm 

direction on plane of polish perpendicular to direction 

of propagation 

direction perpendicular to plane of polish 

direction of shock propagation 

a observed angle of inclination of normal to crack 

with respect to z axis 

inclination to x-y plane of line in crack plane 

perpendicular to crack trace on plane of polish 

6 a, a       -01 
i+1   1 

6c, c. . - c 
J+l      J 
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e 

p 

P 
rs 

angle of rotation about z axis 

volume density of cracks, number/cm 

th ,. volume density of cracks within the r  interval 

in a  and s  interval in c, number/cm 

cp actual inclination of normal to crack with respect 

to z axis 
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Appendix X 

Statistical Analysis Program:  BABS 2 

1.  LISTING AND FLOW CHARTS FOR BABS 2 

BABS 2 is a computer program that carries out the procedure outlined 

in Appendix IX.  It analyzes surface count data from partially fractured 

specimens and converts these numbers to volume count data. The storage 

required is about 31,500 (octal) words, and the running time per problem 

on SRI's CDC 6400 is about 7 seconds.  BABS 2 is an extension of the 

spherical void count program BABS 1 reported earlier (Ref. 12). 

Another small program, ANGLINT, evaluates certain integrals over 

the crack orientation angle intervals that are chosen in the original 

surface count.  The angle integrals are those appearing in Eq. (269) of 

Appendix IX.  The results from ANGLINT are punched on data cards and are 

used äs input to BABS 2.  If the chosen crack orientation angle intervals 

are the same for several different experimental specimens, the same 

ANGLINT results may be used as BABS 2 input for all these specimens. 

In the cases reported in this report, we have chosen either 10 or 20 

angle intervals between 0° and 90°. The storage required for ANGLINT 

is about 13,000 (octal) words, and the running time is about 20 seconds, 

or about three times that for BABS 2.  It is therefore efficient to 

maintain the same angle intervals from specimen to specimen and thus to 

minimize the number of times that ANGLINT must be run. 

The output of ANGLINT consists of a table of values for 0  of 
ik 

Eq.  (269)  in Appendix IX,  where G      is  called GS(l,K)   in the program 
ir 

listing.    To save memory location,  the matrix GS(l,K)  is relisted as 

the quantity GT(L),  a vector containing all  the nonzero  terms in GS(l,K). 
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In  this vector L = (l-l)   •   (K        -  1/2)   + K,  and where L runs  from 1  to 
max 

(I -l)   •   (K        -I       /2) + K 
max max      max max 

In  this appendix we give program  listings,  flow charts,  and  glos- 

saries  for BABS  2 and  for  the auxiliary  program ANGLINT. 

2.       SAMPLE COMPUTATION WITH ANGLINT AND BABS 

In the following pages are the printout  from an ANGLINT run  and  the 

printout  from a BABS  2 run for Armco  iron  shot 825. 

There  is no  input  to ANGLINT.     The output  is  simply the GT  array, 

which  is printed (as  shown) and punched on cards. 

The BABS 2 printout  includes a  list of all  input data,   in a  form 

similar  to  the  input  for convenience.     The  input  includes a  line of 

identification,   the GT array from ANGLINT,   the crack radius  information, 

the number of zones and number of photos.    Then for each zone,  the area 

of  the  zone on each  photo and the crack counts are  listed as  shown.     The 

table of  crack counts  contains elements  for each  angle  interval  (j)  and 

radius  interval (l).     These count  data are normalized according  to  the 

areas  and  smoothed  to produce  the NAG  table  shown  for the same  intervals 

of  angle  and radius.     The transformation produces  the NPR table,   the 

volume distribution.    For convenience  the NPR values  are summed over  all 

angles  to produce  the NPR (LBN)  vector at  the end of  the listing.     Only 

the printout for the  first  zone  is  shown. 
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PROGRAM   BASS2   (OUTPUT, I NP(JT,TAPE5=1 NPUT ,TAPE6=0UTPUTITAPE<») 
DIMENSION   FS(10.10).GS( lO«10)fAS(   55.55   ) .NPR( 10.10 ) .NACUO. 10 I, 

1GT(   55).A(10),C(11I.AREA(10).NACI(10.10,10).NACN(10,10,10) 
2 .AVGIIO.IO) 

NA   IS   NUMBER  OF   ANGLE   INTERVALS   BETWEEN   0   AND  PI/2 

NUMBER   OF   «AÜIUS   INTERVALS   IS   10 

GS,AS,NPR,NAC,GT,   ABOVE    SHOULD   BE   GS INA.NA).AS!NF.55), NPRINA,10), 
NAUNA.IO),   AND  GT(NF) 

REAL   NAC,NPRfNACN 
NA»10 
NF=NA*INA+l)/2 
A(1)=10H     DATE   = 
CALL  SOATE(DAT) 
At2)«DAT 

C READ   GENERAL   HEADING   CARD 
100       READ     (5,160^)(A(II,1=3,10) 

IF   (EOF,51    102,103 
10?   STOP   20102 

103        WRITE    (6,1611) 
WRITE   16,1604)    (Ad),1 = 1,2) 
WRITE   (6,1604)(A(I),I»3,10) 

C READ  ANGLE   FUNCTiaN   GS(I,KI   IN  A   LINEAR   ARRAY     (FROM   ANGL1NT) 
REAn(5,1600)(GT(L),LsllNF) 
IF   (NF   .LE.    10)    105,107 

105       WRITE   (6,1602)   IGT(L).L*l,NF) 
GO  TO   109 

107        WRITE   (6,1602)    (GT(L),L=1,10) 
WRITE   (6,1606)    IGT(L),LM1,NF) 

109       CONTINUE 
: READ   C(2)   -   FIRST   LENGTH   INTERVAL,   RATIO   -   THE   RATIO   UF   SUCCES- 
C SIVE   INTERVALS,   NZONES   -   NO.   OF   ZONES   UN   EACH  PHÜIO,   NPHOTUS. 

READ   (5,1601>A1,C(2),A2.RATIÜ,A3,NZ0NES,A4,NPH0T0S 
WRITE! 6, 1601)Al,C(2)fA?.RATIO,A3,NZUNES,A<«,NPHOT0S 
0A«3.1416/(2«NA) 
L=0. 
00   110   I>1.NA 
00   110   K«I,NA 
L*L + 1 

UO  GS(I,K)=GT(L) 
C( 1) = 0. 
0C=C(2) 
on m j=3, ii 
DC«OC*RAT10 

HI   C( J)«C(J-1)*0C 
PRINT   1609,(C(J),J=1,11) 

C SET   FACTORS   FUR   SMOOTHING  THE  RAW  UATA 
FA=0.7     t     FB=0.375 
WRITE   (6,1704)   FA.FB 

C COMPUTE   SIZE   FUNCTION  FS(J.M) 
SR1=SR2=SR3=SR4=SR5=0. 
DO   200   J=l, 10 
00   160 M=J,10 
CJ>C(J) 
CJP-CIJ*l) 
CM»C(MI 
CMP=C(M*l) 
IF(M.NE.J)   GO  TO   120 
IF   (CJ.NE.O.I   GO   TU   115 
FS(J,M)xCJP/DA 
GO   TO   150 

115   SR1»S3RT(CJP*CJP-CJ»CJ) 
FS(J,M)=(CJP*SR1-CJ*CJ*ALUG!(CMP*SK1)/CJ)l/(OA*(CJP-CJ)) 
GU   TO   150 

BAB 0010 
BAB i'OtQ 
BAB 0030 
BAB 0040 
BAB 0050 
BAB 0J60 
BAB 00 70 
BAd 00BÜ 
OAB 0090 
BAB 0100 
BAB 0110 
BAB 0120 
BAB 0130 
BAB 0140 
BAB 0150 
SAB 0160 
BAB 0170 
BAB 0180 
BAd 0190 
BAB 0200 
BAB 0210 
BAd 0220 
BAB 0230 
BAB 0240 
BAB 0250 
BAB 0260 
BAB 0270 
BAB 028J 
BAB 0290 
BAB 0300 
BAB 0310 
BAB 0320 
BAB 0330 
BAB 0340 
DAB 0350 
BAB 0360 
BAB 0370 
ÖAB 03d0 
BAB 0390 
BAB 0400 
BAB 0410 
OAB 0420 
BAB 0430 
DAB 0440 
BAB 04 50 
BAB 0460 
BAB 04 70 
BAB 0480 
BAB 0490 
BAB 0500 
BAB 0510 
BAB 0520 
OAB 0530 
BAB 0540 
BAd 05M 
BAB 0560 
BAB 0570 
BAB 05 80 
BAB 0590 
BAB 0600 
BAB 0610 
HAB 0620 
BAB 06 30 
BAB 0640 
BAB 0650 
BAB 0660 

LISTING OF PROGRAM BABS2 
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120 

U0 

I5ü 
160 
?!)0 

DO 
IX) 
DO 
DO 

370 
380 
390 
*00 

651 

652 

653 

660 

705 

710 

730 

390 
380 
370 

A1,A2, 
Al,A2, 

SR2 = SQRT(Cm>»CMP-CJ»CJ> 
SR3«SgRT(CM*CW-CJ*CJ) 
SR4=SQRT«CMP*CMP-CJP»CJP> 
SUM»(CMP*SR2-CH*SR3-CMP»S''V-CJ«CJ*ALUG( »CMP + SK2»/(CM*SR3 I ) ) 
IFIH.NE.IJ + m   GO  TO   130 
FSJ JtM) = (SUM*CJP*CJP«ALÜGI t CMP*SR'» )/CM ) ) / I UA* (CMP-CMl) 
GO   TO   130 
SR5*SQRTICM*CM-CJP»CJPJ 
FS( JiM) = (SUM+C^»SR5*CJP*CJP*ALnf.l ( CMP* SR'.) / ( CM+SK5 ) ) )/, ÜAM 

1CMP-CM)» 
CONTINUE 
CONTINUE 
CONTINUE 

COMPUTE   TRANSFORMATION   MATKIX   AS(I,K,J,M) 
400   J'l. 10 

M=«J,10 
1=1,NA 
K«l,NA 

Lx|U(I-l»«NA-MI-UMI/2 
N=M*(J-H»10-(( J-l)»J)/2 
AS(L,N»=GS(I,K)*FS(J,M»/6.2BJ2 
CONTINUE 
CONTINUE 
CONTINUE 
CONTINUE 

CUMPUTE   VOLUME   OlSTRIÖUTIflN   OF  CRACKS   NPR(I,J) 
READ  AND  WRITE   DATA   FOR   EACH   ZUNt 

DO   1000   NZ=l,NZUNES 
PRINT   1611 
IFnPHOTOS.LE.7)   651,652 
READ  15,1802)   A1,A2,   I AREA!I),I = 1,NPHUT0S) 
WRITE(6tlS02)   A1,A2,   ( AREA! I ), I'l ,NPhUT(JS) 
GO  TO 653 
READ   15,1802) 
MRITE(6,1802) 
READ  15,1803) 
WRITE(6,1803) 
PRINT   1804,tM,M=l,10) 
DO   660   K=1,NPH0T0S 
READ   (4)   Al,A2,((NACUJ,I,K),I=l,NA),J = l,lO) 
PRINT   1805,   Al,A2,(J,|r4,ACI(J,I,K),    I = 1 ,NA) , J = I, 10) 

NORMALIZE   ALL   NACI   TO  NACN   FOR   AREA.AVCKAGE   OVER  PHOTOS 
DO  660   I«l,NA 
00   660   J*1,10 
NACNU,I,K)<NACIU,I,K)/ÄREA(K) 
CONTINUE 
DO   710   1=1,NA 
00   710  J=1,10 
SUMNACN^O. 
DO   705   K-l.NPHOTOS 
SUMNACN>SUMNACN*NACN(J,I,K) 
CONTINUE 
NAC(I,J)=SUMNACN/NPHUTOS 
CONTINUE 
00   730   I<1,NA 
DO   730   J«l,10 
AVG(I,J)«FA«NAC(I,J) 
IF    (I    .GT.   1)      AVGII,J) = AVG(I, J)*F8*NAC< l-l,J) 
IF   (I   .LT.   NA)      AVG(I,J)'AVG(I,J)tFtt«NAC(I*l,J) 
IF   IJ   .GT.   1)     AVG(I,J)'AVGII,J)«FB*NACII,J-1) 
IF   U   .LT.    10)      AVGn,J)«AVG(I,J)*Ftt*NAC(I,J*l) 
CONTINUE 
DO   750     I'1,NA 
0Ü   750  J»1,10 
NACII,J)aFA«AVGU,J) 
IF   (I   .GT.    1)   NAC(I,J)«NACII,J)»FB*AVG(I-1,J) 
IF    II    .LT.   NA)     NACH, J)>NACII, J)*FB*AVGI l«l,J) 
IF   U   .GT.    I)     NACI l,J)*NACn,J)*FB*AVGII,J-l) 
IF   IJ   .LT.   10)     NAC(I,.J)*NAC(t,J)*FQ*AVGI l,J*l) 

LISTING OF PROGRAM BABS2 (Continued) 
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(AREA|K),K=1,7) 
IAREAIK),K<1,7) 

IAREAIK),K«8,NPH0TQSt 
IAREA|K),K>8,NPH0TUS) 

UAtJ 06 fO 
i3Ab U6BU 
ÖAB 06S*0 
dAd oroo 
ÖA6 0710 
bAb 0720 
BAb 0730 
bib 0740 
BAb imo 
bAb OtbO 
bAb ono 
bAb 07dO 
bAb 07S0 
BAB UBOO 
BAb 08 U 
BAb 082U 
BAb 0B30 
BAB 0 840 
BAB 0B50 
BAB oauo 
BAB OB/0 
BAb JHM 
BAb OB^U 
bAB 0900 
BAb Ü^LO 
BAB 0920 
bAB 09 30 
BAB 0940 
BAb 0950 
BAB 0960 
BAB 0970 
BAB 0980 
BAB 09S»U 
BAB 1O0O 
BAB 1010 
BAb 1020 
BAB lOiO 
BAB IJ4Ü 
BAB lObU 
BAb 1060 
BAb 1070 
bAb U80 
BAb 10)0 
bAB UDO 
BAb 1113 
BAb 1120 
BAB 1130 
BAB 1140 
bAB llt>0 
BAB UoO 
BAB 11 10 
BAB HBO 
BAB 1190 
BAB 1200 
BAB 1210 
BAB 1220 
BAB 1230 
BAB 1240 
BAB 1250 
BAB 1260 
BAB 12/0 
BAb 12BÜ 
BAB 1290 
BAB 1300 
BAB 1310 
BAB 1320 
BAB 1330 
BAB 1340 
DAB 1350 
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750 

<»25 
430 

450 
460 

490 
500 

800 

1000 

1600 
1601 

1602 
1604 

1606 
IfcOR 
160') 
1611 
1612 
170? 
1704 
1705 
1802 
1003 

1S04 
1805 

CdNTINUE 
WRITE   (6,1705) 
WRITE   (6,1703)    ((NAC(I,J),    1=1,NAI,J=1,10) 
00   500   11=1,NA 
I=NA*1-II 
00   490  JJ=1,10 
J=11-JJ 
SI)M=0. 
If    (I   .EQ.   NA)   GU   TO  430 
KK=I+1 
N = J*(J-l)«10--( I J-l)»J)/2 
00   425   K=KK,NA 
L=K + (I-ll*NA-(( I-l)M)/2 
SUM=SUM+AS(L,N)»NPRIK,J) 
IF    (J   .EQ.    10)    GU   TO   460 
MM=J+1 
DO   450   M=MM, 10 
N=M + (J-l)*10-( (J-l)*J)/2 
DO   450   K=I,NA 
L = K*(I-l)*NA-( (1-11*1)/2 
SUM=AS(L,N)»NPR(K,M)*SUM 
L=I*(l-l)*NA-( (I-l)*I)/2 
N=J*(J-1)*10-((J-1I«J)/? 
NPKI I,JI = (NAC(I,J)-SUHI/AS(L,NI 
CONTINUE 
CONTINUE 
WRITE   (6,1705) 
WRITE   (6,1608)    ((NPR(I,J),    1=I,NA),J=1,10) 
Ü0   800   J=l,10 
OU   800   l=2fNA 
NPR( 1,JI = NP«( 1, J)*NPf<( I,J) 
WflTE   (6,1612)    (NPRU.JI ,J=1,10) 
CONTINUE 
GO   TO   100 
FORMAf(8E10.3) 
FORMAr(2(Alü,E10.3),2(A10,I10) I 
FURMATI/*   GT(L)    »      »,10£10.3) 
FURMAT(8A10) 
Ff)RMAT(10)(,10E10.3) 
FORMAT(2X, *NPR( ANG,LEN) = *, 10E12.3) 
FORMAT(*  C=*,11E11.3/) 
FORMATdHl,//) 
FURMAT(///2X,*NPR(LEN)=*,4X,10E12.3/) 
FORMAT(2X,*NAC(AN&,LEN)=♦, 10E12.3) 
F,1RMAT(20X,«FA   =»,   E12.3,      10X,    «FH   =♦,   E12.3//) 
FORMAT!///) 
FORMAT   (2A5,7F10.4) 
FORMAT   (8F10.4) 
FORMAT(//26X,*I=»,2X,10Il0/) 
F0RMAT(2X,2A10,5X,«J=*,15,10 110/9(27X,•J**,15, 10110/)) 
END 

BAU 1360 
BAb 1370 
BAB IJBO 
BAB 1390 
BAd 1400 
BAB 141U 
OAB 1420 
BAB 1430 
BAB 1440 
BAB 145Ü 
BAu 1460 
BAd 1470 
BAB 1480 
BAB 1490 
BAd 1500 
BAB 1510 
BAd 1520 
BAd 1510 
BAB 1S40 
BAB 1550 
BAB 1560 
BAB 15/0 
BAB 1580 
BAB 1590 
BAB 1600 
BAB 1610 
dAd 1620 
BAd 1630 
BAd 1640 
UAd 1650 
dAd 1660 
SAB 1670 
BAB 1680 
BAd 169J 
BAB 1/00 
BAd 1710 
BAd 1720 
BAB 1730 
BAd 1740 
BAd 1750 
dAB 1760 
BAd 17/3 
uAd 1780 
BAB 1/90 
BAB 1800 
BAB 1810 
t>AB 1820 
BAB 1830 
BAU 1840 
BAU 1850 
BAB 1860 

LISTING OF PROGRAM BABS2 (Concluded) 
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BABS  2 

■^ 

Thif  program  transforms  surface  crack counts 

to volume (ilstrlhutlons  of  cracks,   grouped 

according   to length  and  orientation. 

Read   A(I),   GT(L),   C(2) 
RATIO,   NZONES,   NPHOTOS 

Compute GS(I,K) 

Compute C(J) 

T 
Compute  FSCJ.M) 

Compute  AS{L,N) 

Read   in problem  identification, 

GT(L)   arrary   from  ANGLINT,   smallest 
crack size,   ratio of successive 

crack  size  intervals,   number  of 

zones  and  number  oi   photos. 

Compute  GS matrix   from  the 

GT  array. 

Lav   out   crack   size   Intervals, 

Compute  tho  crack  length  portion 

of  the  traisformation matrix. 

Compute 4th   rank   tensor  AS  as 

a  product  of  GS  and  FS.     AS{L,N) 

is  a compacted   form of  the  full 

tensor. 

Read   AREA,   NACI 

Compute  and  print NAC 

Compute  and  print NPR 

END  of NZ loop 

Read   in data   for  one  zone  from  all 

photos.     Data  consists  of  area  of 

each  zone  and   counts   in each  length 

and  angle  interval. 

Count data,   NACI,   is  averaged  over 

photos  and   then  smoothed  twice   to 

produce  NAC  surface distribution. 

Compute  volume  distribution,   NPR, 

from surface  distribution,   NAC,   and 

transformation matrix,   AS. 

End of loop for each zone. Return 

to beginning to read drta for next 

zone. 

END 

FLOW CHART FOR PROGRAM BABS2 (Complete) 
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c 
c 

200 

900 
1000 

1150 

1300 
1310 

PROGRAM ANGLINTJOUTPUT,PUNCH) 
DIMENSION   GS120,20I,A(50),GT(210I 

PROGRAM  COMPUTES   THE   ANGLE   FUNCTION  GSII.K)   FOR   USE   IN   ttAti< 
(CHECK   DIMENSIONS OF   GT(NA*(NA*1)/i)   AND  GSINA,NAI   WITH  NA, 

NA*20 
NF"NA*(NA*l)/2 
PRINT   1300 
DA'3.l*l&/(2*NA) 
N=50 
DO   1000   I=l,NA 
DO  900   K«I,NA 
ALPHA»  DA»(I-1» 
TANA>TAN( ALPHA) 
PHI=OA*tK-l) 
TANP=TANIPHI) 
UU=3.U16/2. 
UL = 0. 
IF   ( I.NE.l.ANU.I.NE.NAI   UL^ASIN(TANA/TAN(OA*K)) 
IFtK.NE.I)   UU<ASIN(TANIDA«t)/TANP) 
G^O. 
DU''(UU-UL)/(2.*N) 
U1=UU 
IFtK.NE.I)   Ul = ASIN(TANA/TANl') 
US'UU 
IFtK.NE.I)U3=ASlNtTAN(DA»I )/TANIOA*K)) 
00   200  J=l,N 
IJ=UL*I2*J-l.)»0U 
SIN»SIN(U) 
PHIL=PHI 
IF   (U   .LT.   Uli   PH1L=ATAN(TANA/SINU) 
PHI«=OA«K 
IF   IU   .GT.   U5H   PHIR-=ATAN(TANtDA*I)/SINU) 
r,=G*tASINtSnu*SINtPHIR) ) - AS IN I S INU*S IN t PH U 1 I I/il NU 
GSt I,K)=(UU-ULl*G/N 
CONTINUE 
CONTINUE 
L=0 
00   1150   I« UNA 
00   USD  K'l ,NA 
L-«L*1 
GTtL)=GS(I,KI 
PRINT   l310,(GTtLI,l.= l,NF) 
PUNCH   l310,(GT(L),L=ltNF) 
FORMAT 
FORMAT 
END 

<1H1,*     PROGRAM   ANGLINT   •) 
ISFIO.Ö) 

ANG 010 
ANG 020 
ANG 010 
ANG 040 
ANG 050 
ANG 063 
ANG 070 
ANG 080 
ANG 090 
ANG 100 
ANG 110 
ANG 120 
ANG 130 
ANG 140 
ANG 150 
ANG 160 
ANG 170 
ANG löO 
ANG 190 
ANG 200 
ANG 210 
ANG 22C 
ANG 2 30 
ANG 240 
ANG 2 50 
ANG 260 
ANG 270 
ANG 2Ö0 
ANG 290 
ANG 300 
ANG 310 
ANG 320 
ANG 330 
ANG J40 
ANG 350 
ANG 360 
ANG 370 
ANG )do 
ANG 390 
ANG 400 
ANG 410 
ANG 420 
ANG 430 
ANG 440 
ANG 450 
ANG 460 

LISTING OF PROGRAM ANGLINT (Complete) 
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ANGL1NT 

Program evaluate:., double Integrals to provide GS array, 

a factor In the AS transformation matrix of BAHS 2. 

Set NA,   N 

Set  the number  of   angle   intervals 
(NA)k   and   the  number   of   sub- 
Inteivals   (N)   Into which  each 
angle   is   subdivided   for   integra- 
tion. 

Start   I   and   K        ! 
loops   for each 
angle interval     | 

* 

Set   Ul,   U2,   U3,   UU 

i 
p Star'   loop over N 

1 
Compute PHIL,   Pl.IR 

♦ 
Compute G           | 

t 
CT 

CS(I,K) 

\ 

END  loops for  I,   K 

During  each   pass   through   the 
loop,   one   item  of   the  GS  array 
is  computed. 

Set   U-coordinates   of   all   four 
bounrfing  points   of   the  quadri- 
lateral   in  the  u   -  (0    plane. 

Within  loop,   divide  quadri- 
lateral   into strips   and 
integrate over each. 

Compute  left  and  right    0 
values  for each  strip. 

Compute  integral  for  each  strip 
and  sum. 

Compute  array element   tor each 
quadrilateral. 

Compute GT Assemble GS Into a vector GT. 

Print and Punch 0T 
Punch GT array for use In 

BABS 2 

END 

FLOW CHART OF PROGRAM ANGLINT (Complete) 
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,*^- 

I 

PROSHtM »NüLIMT 

.2*«Z3314 
,ooi**9»e 
.00*25531 
.00*81393 
.00203735 
.0752322* 
.00079279 

,12057959 
,00020515 
,00152963 
,00170985 
,00020266 
0*161387 
,171*6699 

.05B20052 

.12258*76 

.00021592 

.000239'U 

.07823*5(4 

.012690111 

.02132680 

.035*7799 

.0R233709 

.096*16*8 

.09*3S80S 

.0*885218 

.00380851 

.00160207 

.02250678 

.0*1*2169 

.06605313 

.0562ft*09 

.01880188 

.000*9805 

.0633O'*77 

.0139T291 

.0250231' 

.0319S899 

.02*9)17** 

.0079*690 

.07373263 

.00779506 

.00806329 

.01517297 

.0181*651 

.01269586 

.00263*** 

.0328272* 

.03*10603 

.00*01032 

.00863217 

.00997320 

.00587723 

.00035820 

.00665216 

PRINTOUT FROM ANGLINT FOR NA =  10 
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NOMENCLATURE FOR APPENDIX X 

BABS  2   and ANGL1NT   INPUT   and  COMMON  TERMS 

A(I) 

ALPHA 

AREA   (I) 

Label  in ANGLINT referring  to  region of  integration, 
A(l)   appears   in output  as A,   B,   C,  or D corresponding 
to  junctions  101,   102,   103 and  104  in the  flow diagram 
for ANGLINT. 

angle a in Appendix  IX 

input-area of   I'th zone on a  photo,  cm2 

AS(I,K,J,M) transformation  matrix from  surface count  to  volume count 

C(I) crack  size  Cj^ 

FS(J,M) part  of AS(I,K,J,M)   referring  to   size distribution 

GS(I,K) part of AS(I,K,J,M)   referring   to  angle distribution 

C;T(L) 

N number of  intervals used  to evaluate  (G(I,K)   in ANGLINT 

NA 

NAC(I,J) 

NPH0T0S 

NPR(I,J) 

NZONES 

PHI 

PHIL 

PHIR 

re-listing of  GS(I,K),  L=(I-1)(K      -l/2)+K 
max 

number of angle intervals between 0 and TT/2 

surface crack distribution function, number'cm^ 

number of photos for a given zone 

volume crack distribution function, number'cm^ 

number of zones for a given specimen 

angle co in Appendix IX 

lower limit of integration over cp in ANGLINT 

upper limit of integration over cp in ANGLINT 
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u 

Ul 

U3 

UL 

UU 

u = sin--1- (tan ry^tan cp), variable in ANGLINT 

an intermediate integration limit for U in ANGLINT 

an intermediate integration limit for U in ANGLINT 

lower limit of integration over U In ANGLINT 

upper limit of integration over U in ANGLINT 
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