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FOREWORD

This technical report presents the results of the water-
cooled segmen: test evaluations conducted as part of
Tasks I ana II of the Ozlll2 Advanced Mancuvering Propul-
sion Technology (AMPT) program, The work was conducted
by the Rocketdvne division of North American Rockwell
during the period 1 Decemter 1970 to 3 December 1971 as
part of United States Air Force Rocket Propulsion Lab-
oratory Contract F04611-67-C-0116,

The Air Force Program Manager was Mr, W, W, Wells,
Mr. H. G. Diem was the Rocketdyne Program ‘Manager,

‘r. D. Huang was the Rocketdvne Project Engineer.

This report, Rocketdyne report R-8906, was published
14 April 1972,

This technical report has been reviewed and approved,

K. W, WELLS
AFRPL AMPT Program Manager
LKDS
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ABSTRACT

This report describes the analysis, design, fabrication, and
test of water-cooled segments to define the most suitable
injector configurations and combustion chamber geometries for
25,000-pound-thrust, 02/H2. lightweight, aerospike thrust
chambers. Two-hundred and seventy-one hot-fire tests with
numerous injector and chamber configurations were conducted
at chamber pressures between 140 and 988 psi. The injector
development was supplemented with cold-flow tests of single
injection elements. High measured performance (nc,-99 per-
cent) was demonstrated in low-volume combustion chambers
(3.0-inch length from injector face to the throat). Favor-
able heat transfer characteristics were established which
will enable satisfactory coolant-circuit design for the re-
generatively cooled segments which are to be demonstrated

in the next phase of the progran.
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NOMENCLATURE

A area
B Ae nozzle exit area !
Alnj injector face area
annul annulus
AMPT A\dvanced Maneuvering Propulsion Technoiogy
At combustion chamber throat area
ax axial
BLC boundary layer coolant
BTU British Thermal Units
c contraction
cc combustion chamber
CRES corrosion-resistant steel
col. dist. collection distance
c* characteristic velocity :
c'vap characteristic velocity based upon propellant vaporization 1
c'nix characteristic velocity based upon propellant mixing
deg degrees ;
D¢ injector fuel orifice diameter )
dia diameter i
D, injector oxidizer orifice diameter '
Dy, mean drop size
e exit
€ area expansion ratio
EDM electrical discharge machining
EM mixing uniformity index ‘
eng engine
£ fuel }
F degrees Fahrenheit '
ft feet - i
GFz gaseous fluorine .
GHz gaseous hydrogen \!
GOz gaseous oxygen
"2 hydrogen
Hz Hert:z
hc coolant-side heat transfer film coefficient
: HF hot fire f
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SECTION I
INTRODUCTION

The Advanced Maneuvering Propulsion Technology (AMPT) Program is being conducted
to demonstrate the performance and weight potential of a 25,000-pound-thrust,
02/H2, aerospike thrust chamber.

Two aerospike engine system designs are being developed on this program (Fig. 1).
The first design, called single-panel because only the fuel is used as a regenera-
tive coolant, has an area ratio of 110:1 and a maximum chamber pressure of 750
psia. This design point corresponds exactly to the single-panel thrust chamber
demonstrator hardware being fabricated and tested on this program. Some addi-
tional performance cculd be obtained with the single-panel design by enlarging
the nozzle area ratio to the maximum possible value of 150:1 at the same chamber
pressure. However, the more conservative expansion ratio was selected to provide
an additional operating safety margin for the demonstration hardware.

The second aerospike design is called double-panel because both fuel and oxidizer
are used as regenerative coolants in the combustion section to provide additional
cooling capability. The optimum double-panel has a chamber pressure of 1090 psi
and a nozzle expansion ratio of 200:1. This design point defines thie maximum pos-
sible performance for the aerospike concept at a thrust level of 25,000 pounds.
Demons:rator hardware with slightly more conservative operating conditions (950-
psi chamber pressure and 190:1 expansion) is being bui!* and tested on this
progranm.

The 02/H2 AMPT program contains three tasks as illustrated in Fig. 2. Task I in-
cludes all design and analysis on the aerospike thrust chamber demonstration

hardware and engine system studies.
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Task II covers the fabrication and test of water-cooled segments and lightweight
regeneratively cooled segments and sectors ( a sector is an asscmbly of three seg-
ments). The Task Il effort includes both single- and double-panel segment/sector
evaluations. Based on the Task II test results, the final design approach will
be selected for the complete lightweight demonstrator thrust chamber hardware of
Task III. The date of this selection is 1 June 1972, ‘

Based on the results of Task II, two complete lightweight 25,000-pound-thrust
aerospike thrust chambers of the selected type will be designed, fabricated, and
demonstration tested under simulated altitude conditions at the Air Force Arnold
Engineering Development Center. Each of the thrust chambers will be assembled
from 24 regeneratively cooled segments of the basic configuration demonstrated
during the Task Il etffort together with a nozzle skirt, base closure, and thrust
stiucture with gimbal.

The water-cooled segment testing of Task Il has been completed and is summarized
in this report. This test program defined the best injector designs and combus-
tion chamber configurations for the single- and double-panel regeneratively cooled
segments of Task II.
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SECTION II
SUMMARY
The water-cooled segment evaluation program identified the best injector and
combustion chamber designs for both the single-panel and dcuble-panel aerospike
configurations. The primary demonstration criteria for the water-cooled segment

test program were:

Single-Panel Double-Panel

e Chamber Pressure at Full Thrust, 750 950
psia

o Throttle Ratio S:1 5:1

e Minirmum n_, Over the Throttle Range 97 97

(Fercent Theoreticel Shifting ¢*)

e Combustion Stability: Recovery and Stabilization Within 40 milli-
seconds after Pulsing at Least 50 Percent Above the Operating
Chamber Pressure

One-hundred and seventeen single-panel and 154 double-panel water-cooled segment
hot-fire tests were conducted. Triplet, concentric onrifice, and coplanar injector
types were evaluated for the single-panel using liquid oxidizer and gaseous fuel
propel iant injection. Triplet, concentric orifice, and trislot injector types
ware evaluated for the double-panel using gaseous oxidizer and gaseous fuel pro-
pellant injection. Variations in combustion chamber geomectry were evaiuated con-
surrent with the injector evaluations. The test program results are summarized
briefly in Table 1. As shown, the ranges of chamber pressure, mixture ratio, and
fuel injection temperature which were tested exceeded the design ranges in each

case.

Based on the criteria of high Nee and acceptable #- 4t transfer, injector/combus-
tion chamber configurations were defined for the single-panel and double-panel
designs. The segment combustors for both designs had constant convergent angle
chamber walls with a len;*h from injector face to throat of 3.0 inches and an in-
jecto. end width of 0.5 inch. The throat width (gap) for the single-panel and

{0 Wos o0 ¢
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TABLE 1. WATER-COOLED SEGMENT TEST SUMMARY
SDICLE-PANEL DOUBLE-PANEL
0, OF FIRDYG TISTS n 1%
DUICTOR MSIC TYPES COPLARAR TRILE?
CONCDITRIC CORCDMRIC
nInee mIswT
(20 dEsICM ‘1 pston
VARIATIONS ) VARIATIONS)
CHAGER COMBUSTION 3OWS LENGTR-IN, j0abom, 2.9, .04 3.3 D0,
CRAGIR DUXCTOR DO VDX - DI, 06809 In, 0.9 O

CONTDRIOUS CORVERGENT AND
STRAISHT * CONVEXCDN?

CONTINIOUS CONVIASDIT AND
STRAICNT ¢ CONVERGDNT?

-] 150 10 730 FIL 190 0 930 M

5T 340 10 1 A 150 10 980 MOIA
MIXIURE BATIO AUCE

ses o8 9.0 10 6.0 3.0 10 6.0

N 06 6.8 LI PGS
ATL DAICTION TDOTIANRS

sesice N8 10 Y000 $37 10 g9ar

ST 33 70 20000 % 10 20600

pun o

double-parel configurations were 0.125 and 0.085 inch, respectively, and corres-
ponded to chamber characteristic lengths (L°) of 7.94 inches and 10.20 inches,

respectively.

The seiected single-panel injector was a concentric orifice type that utilized
1iquid oxygen and gaseous hydrongen in 3 low thrust per element (13 pounds per
element at maximun Pc) configuration. The concentric injector eleacnt consisted
of a recessed, 0.07S-inch, oxidizer post with a 0.018-inch fuel annulus surround-
ing the oxidizer post. The face contained 80 elements arranged in three rows.
The injector-combustor assembly met the program Neo reauirement of at lcast 97
percent over the S:1 (750- to 150-psia chamber pressure) throttle range and was
compatible (heat transfer) with the combustor. The injector e 3t the 750-psia

chaaber pressure design point was 99 percent.

The selected double-panel injector was a triplet, hydrogen-oxygen-hydrogen type
that utilized gaseous oxygen and gaseous hydrogen in a low thrust per element

- Wy oy *
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(20.4 pounds per element at maximum Pc) configuration. The injector face had

S1 elements arrangedin two rows. The fuel and oxidizer orifice diamcters were
0.050 and 0.033 inch, respectively, with an included impingement angle between
the fuel urifices of 7S degrees. The injector Nee OVer the 5:1 (950 to 190 psia)
throttle range was approximately 99.5 percent.

Following selection of the injector/combustion chamber designs for the single-
panel and double-panel segments, a series of stability evaluation tests was con-
ducted with each configuration. Pulse guns were utilized to create steep-fronted
overpressures in the combustion chamber. In all tests, the pressure surges damped
within 8 milliseconds, thus demonstrating that the stability demonstration criteria
(40 milliseconds recovery time) had been met.

The water-cooled segrant test results have provided all necessary design criteria

for single-panel and double-panel regeneratively-cooled segments and sectors which
will be fabricated and demonstration tested in the next part of the program.

7/8
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SECTION III
THRUST CHAMBER ASSEMBLY DESCRIPTION

The aerospike demonstration thrust ch-mber consists of an annular combustion
chamber with regeneratively cooled inner and outer bodies, assembled from com-
bustor segments, ard a regeneratively cooled nozzle extension. The demonstration
thrust chamber assembly is shown in Fig. 3. The major components of each thrust
chamber assembly type are described below.

COMBUSTION CHAMBER

The combustion chamber utilizes a segmented chamber approach in which 24 combus-

se ®

tor segments are stacked within a continuou¢ inner structural ring and a contin-

uous outer structural ring providing a 360-degree circular assembly. At each

- .

interface between segment combustors, called the baffle or tho side plate region,
bolts are installed to connect the inner and outer structural rings.

The design approach, illustrated in Fig. 4 , achieves an aerospike thrust chamber \
without bonding coolant panels to the pressure and thrist restraining structure,
thereby reducing thermally induced strains in the structures, and also avoiding
the processing associated with furnace braze joining of the segments and structure.

The resulting mechanicel assembly allows removal and replacement of individual
segment: if required. A drawing of the single-panel thrust chamber assembly is
shown in Fig. 5.

Single-Panel Regencrative-fooled Segments. The segments are assembled from a

single-piece, NARloy* investment casting to which NARloy closure sheets are ;
brazed to form the complete rectangular coolant passages, as illustrated in Fig. 6. ; F

The NARloy material was selected because of good castability, brazeability, high
thermal conductivity, and required materiz’ strength preperties at elevated F
temperatures. i

e

*NARloy is a silver-copper alloy (North American Rockwell trademark).
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The primary difference in the design approach between the single-panel or double-
panel segments is in the regenerative-cooling design. The single-panel coolant
cireuit is shown in Fig. 7, and is a single pass in which the nozzle is cooled
first and the segment combustor last. With this circuit, the hydrogen enters the
tubula: nozzle cooling passages at the nozzle exit. After single uppass cooling
of the nozzle and the segment combustor inner bodies, the segment combustor side
paneis are downpass cooled and, finally, the segment combustor outer bodies are
upp: 3s cooled to complet: the circuit. Uownpass designates an injector-to-throat
direction, and uppass is the reverse.

T0 INJECTOR

QA

/-COHBUSTION CHAMBER SEGMENTS

NOZZLE EXTENSION

Figure 7. Single-Panel Demonstrator Thrust Chamber Cooling Circuit
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Double-Panel Regenerative-Cooled Segment

The segment is assembled from a basic, two-piece (split), NARloy investment cast-
ing. The coolant passage closeout p-ocedures are slightly different than those
used for the single-panel combustor because of using oxidizer for secondary cool-
ing of the inner wall. The secondary cooling is accomplished as illustrated in
Fig. 8, with the oxygen absorbing heat from both the heated coolant hydrcgen and
from the combustor wall structure.

The outer wall has a brazed-on NARloy closeout sheet toe same as the sirgle-panel
chamber, but the inner wall utilizes an individual tube closeout for each coolant
passage, as shown in Fig. 9. The tubes are NARloy to obtain consistent mechanical
properties and high thermal conductivity.

The complete double-panel thrust chamter regenerative-cooling circuit is shown

in Fig. 10, and consists of a double-pass, combustor-first, nozzle-last type cir-
cuit. The hydrogen coolant enters the outer wall first and completes an up and
down traverse (adjacent coolant passages) followed by a downpass through the
side panels, an uppass and downpass tiirough the inner wall, and completes the
circuit by flowing single-pass down through the nozzle.

The oxidizer completes a single uppass circuit through the tubes that are attached
to the inner combustion chamber wall.

This report covers the develdpment of the specific corbustor geometry and injector
design criteria for the single-panel and the double-panei regeneratively cooled
segaents. This development was <.complished by hot-fire testing of water-cooled,
calorimetry segment combustors, of various combustor geometries, with nonlight-
weight, bolt-on injector configurations that permitted modifications.

Following this development, evaluation of regenerative-cooling capability and the
lightweight str<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>