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ABSTRACT 

- A wind tunnel investigation was conducted to determine the airloads on the SAGMI 
and HAST vehicles at the F-4C centerline carriage position. In the process of obtaining 
these loads, a limited amount of sting interference data on the SAGMI vehicle was obtained. 
Force and moment data were recorded at Mach numbers from 0.50 to 1.20 for angles 
of attack from -4 to 12 deg and angles of sideslip from -8 to 8 deg. Test results revealed 
that normal-force airloads experienced on the SAGMI and HAST vehicles while in the 
F-4C centerline carriage position at large angles of attack (8 to 12 deg) were orders of 
magnitude smaller than free-stream loads obtained on similarly shaped bodies. The addition 
of a dummy sting support at the base of the SAGMI vehicle resulted in a decrease in 
both normal-force and axial-force coefficients, with an increase in pitching-moment 
coefficient, at all subsonic test conditions. 
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NOMENCLATURE 

b Reference dimension, SAGMI 15.367 in., HAST 15.000 in.      frWel le«fft) 

CA Axial-force coefficient, axial force/q„S 

Q Rolling-moment coefficient, rolling moment/q.Sb 

Cm Pitching-moment coefficient, pitching moment/q^Sb 

CN Normal-force coefficient, normal force/q..S 

C„ Yawing-moment coefficient, yawing moment/qa>Sb 

Cy Side-force coefficient, side force/q„S 

NL, Free-stream Mach number 

q. Free-stream dynamic pressure, lb/ft2 

S Reference area, SAGMI and HAST = 0.00518 ft2       (    w,.Ji< o«,/ «*ft««/ a*«* ) 

Om Fuselage angle of attack, deg 

ß Fuselage angle of sideslip, deg 

VI 
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SECTION  I 
INTRODUCTION 

One step in the evolutionary process of qualifying an external store for aircraft carriage 
and separation is the determination of the inflight carriage loads. A comparison of these 
loads with the load carrying capabilities of the pylon is a prerequisite for initial flight 
testing. These loads are often obtained by examining load coefficients generated by similar 
store shapes in a similar flow field. Because of the canards and rather large wing areas 
associated with the Supersonic Air-to-Ground Missile (SAGMI) and High Altitude Super- 
sonic Target (HAST) vehicles, it becomes difficult to estimate their carriage loads based on 
some of the more conventional weapons. To this end, an experimental study was conducted 
in the Aerodynamic Wind Tunnel (4T) of the Propulsion Wind Tunnel Facility (PWT). 

The test was conducted to determine the inflight aerodynamic loads on the SAGMI 
and HAST vehicles at the F-4C centerline carriage position. With the technique used in 
supporting the store, it also became feasible to obtain a limited amount of sting-support 
interference data. 

Force and moment data were obtained at Mach numbers from 0.50 to 1.20 for angles 
of attack from -4 to 12 deg and for angles of sideslip from -8 to 8 deg. 

SECTION II 
APPARATUS 

2.1 TEST FACILITY 

Tunnel 4T is a closed-loop, continuous flow, variable density tunnel in which the 
Mach number can be varied from 0.1 to 1.3. At all Mach numbers, the stagnation pressure 
can be varied from 300 to 3700 psfa. The test section is 4 ft square and 12.5 ft long 
with perforated, variable porosity (0.5- to 10-percent-open) walls. It is completely enclosed 
in a plenum chamber from which the air can be evacuated, allowing part of the tunnel 
airflow to be removed through the perforated walls of the test section. A more thorough 
description of the tunnel is given in Ref. 1. A schematic showing the test section details 
and the location of the model in the tunnel is shown in Fig.  1, Appendix. 

2.2 TEST ARTICLE 

The wind tunnel models used in this test were 0.075-scale models of the F-4C aircraft, 
SAGMI vehicle, and HAST vehicle. Sketches showing basic dimensions of the models are 
shown in Figs. 2 and 3. A photograph of a typical model installation in Tunnel 4T is 
shown in Fig. 4. 

The SAGMI and HAST vehicles were located on the F-4C centerline pylon shown 
in Fig. 5. All other pylon stations were clean. The internal balance used in each store 
was supported through the centerline pylon, alleviating the conventional sting support at 
the base of each model. In an attempt to ascertain how the altered flow field induced 
by a conventional sting-support system would affect the force and moment data, provisions 
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were made for installing a dummy sting-support system. Figure 6 shows a sketch of the 
dummy sting-support system. With the sting attached to the F-4C fuselage undersurface 
and aligned with the store centerline, a gap of 0.030 in. existed between the store base 
and the sting. A photograph showing the dummy sting installed with the HAST vehicle 
is shown in Fig. 7. 

2.3    INSTRUMENTATION 

The aerodynamic loads on the model were measured with a six-component, internal 
strain-gage balance. Total forces and moments were measured directly from the balance 
sensing components. 

Aircraft angle of attack and angle of sideslip were calculated and set utilizing 
computer-controlled pitch and roll mechanisms. An absolute-angle transducer located in 
the F-4C model gave the true inclination of the fuselage centerline at any roll angle. 

SECTION III 
PROCEDURE 

3.1 GENERAL 

The normal testing procedure was to establish the tunnel Mach number and Reynolds 
number and initiate the automated pitch and roll routine. The computer would then 
automatically position the model through a predetermined sequence of angle-of-attack and 
angle-of-sideslip combinations. 

The tunnel dynamic pressure was maintained at a constant value of 500 psf for all 
Mach numbers. 

3.2 PRECISION OF MEASUREMENT 

The tunnel 4T Mach number calibration shows that the variation in Mach number 
in the test section region occupied by the model was no greater than ±0.005. 

The uncertainties in setting tunnel total pressure, fuselage centerline angle of attack, 
and sting roll angle were no greater than ±10 psf, ±0.1 deg, and ±1.0 deg, respectively. 

Uncertainties in the measured force and moment coefficients were calculated based 
on inaccuracies in balance measurements. The uncertainties are based on a 95-percent 
confidence level and are presented below. 

ACN ACY ACA AQ ACm AC„ 

±0.018 ±0.013 ±0.030 ±0.0006 ±0.003 ±0.004 
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SECTION  IV 
RESULTS AND DISCUSSION 

4.1    GENERAL 

The primary requirement for this test was tc define airloads on the SAGMI and 
HAST vehicles when carried at the F-4C fuselage centerline. In accomplishing this it became 
apparent that» because of the nature of the model suspension, an opportunity existed 
for obtaining much-needed transonic sting interference data. These data were obtained 
and are presented with the airloads data. 

4.2    SAGMI AIRLOADS 

Airload coefficients for the SAGMI vehicle are presented in Figs. 8 and 9 as functions 
of angle of attack and angle of sideslip, respectively. The data were obtained over a Mach 
number range from 0.50 to 1.20. Sting interference data are also presented in these figures. 
Inflight carriage loads and moments may be readily obtained from each of these plots 
by using the proper reference dimensions as defined in the nomenclature. The magnitude 
of the loads is astonishingly small compared to free-stream loads data obtained from 
similarly shaped bodies. At 12-deg angle of attack one would expect the free-stream 
normal-force coefficient to be an order of magnitude greater than those measured on the 
SAGMI model in the F-4C environment. 

Another area of interest in Figs. 8 and 9 is the apparent effectiveness of the SAGMI 
canards as depicted in the Cm and CN curves. At all Mach numbers and angles of attack, 
they appear to produce a negative lift indicated by the rearward position of the center 
of pressure. This would indicate an aircraft-induced downwash in the region of the canards 
even at the highest fuselage angle of attack. 

A considerable amount of effort was expended attempting to resolve the nonzero 
side-force coefficients experienced with the model at zero angle of sideslip, Fig. 8. A 
data uncertainties band was defined based on balance precision and ability in setting 
fuselage angle. The uncertainties band covered a ACy of ±0.044. Attempting to locate 
some physical phenomenon which might induce a shift in Cy greater than the data 
uncertainties led to four possible culprits: a balance zero shift, a wind tunnel-induced 
crossflow, an asymmetric-induced flow field from the parent aircraft, and misalignment 
of the SAGMI vertical stabilizing fins. Balance zero shifts were insignificant below Mach 
number 1.05. At Mach numbers 1.05 and 1.20, a Cy shift of 0.09 occurred. The possibility 
of the side force originating from misalignment of the model vertical stabilizing fins was 
discounted following detailed checks of fin alignment. The remaining culprits would be 
the fuselage or tunnel-induced crossflow. It is interesting to note that if all the Cy shift 
is assumed to result from the above crossflow, the worst case (occurring at Mach number 
0.95) would only amount to 0.3 deg flow angularity. This is typical of measurements 
of empty tunnel flow angularities made in Tunnel 4T. 
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Care should be exercised in comparing the side-force and rolling-moment coefficients 
obtained during pitch runs (Fig. 8) and yaw runs (Fig. 9), as they have been plotted 
to different scale factors. 

4.3 HAST AIRLOADS 

Airloads data obtained on the HAST vehicle are presented in Figs. 10 and 11 for 
varying angle of attack and angle of sideslip, respectively. This presentation of data is 
identical to the SAGMI data with the exception that sting interference effects are not 
included. As in the SAGMI data, the HAST normal-force airloads experienced in the carriage 
position are much less than corresponding free-stream data (Ref. 2). The HAST canards 
also experienced a negative force resulting in a rearward center of pressure at all angles 
of attack. 

The nonzero side-force coefficients occurring with the model at zero angle of sideslip 
fall within the HAST data uncertainty band of ±0.05. 

4.4 STING INTERFERENCE 

Flow separation from the body at the model base creates a region of low-energy 
air immediately behind the base. Because of viscous mixing, the external free stream 
aspirates this region and lowers its pressure. This in tum directs the free stream inward 
with an accompanying increase in velocity. Farther downstream, the free stream must 
be turned to become horizontal again resulting in an increase in pressure. A steady-state 
base pressure is established when the two opposing effects are in equilibrium. The model 
wake region established from the above phenomenon normally possesses a pressure less 
than free-stream static pressure, thereby resulting in a positive axial-force contribution. 
By placing a sting at the rear of the model, the wake contraction is reduced, thereby 
resulting in a base pressure increase and a corresponding reduction of axial force. Figures 
8 and 9 provide an experimental verification of these effects. At all Mach numbers, the 
axial-force coefficient is reduced with the presence of the sting. 

The sting also has effects oh the body pressure ahead of the model base that are 
similar to the sting effects on the base pressure. These effects are transmitted through 
the body boundary layer and result in a more positive body pressure gradient. The reduced 
normal-force coefficients in Figs. 8 and 9 with the presence of a sting indicate that the 
model upper surface pressures are increased by this feeding upstream of a positive pressure. 

The apparent side-force discrepancy observed in the presence of a sting at Mach, 
numbers 0.S0, 1.05, and 1.20 in Fig. 8 is attributed to an observed shift in the balance 
zero reading on the side-force gage when testing the SAGMI without the dummy sting. 
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SECTION V 
CONCLUSIONS 

As a result of the test reported herein on the SAGMI and HAST vehicles in the 
F-4C centerline carriage position, the following summarizing statements are made: 

1. Normal-force airloads experienced on the SAGMI and HAST vehicles at 
large angles of attack (8 to 12 deg) were orders of magnitude smaller than 
free-stream loads obtained on similarly shaped bodies. 

2. The flow field of the F-4C aircraft resulted in a center-of-pressure location 
on the SAGMI and HAST very far aft corresponding to a downwash on 
the canards. 

3. The addition of a dummy sting support at the base of the SAGMI vehicle 
resulted in a decrease in both normal-force and axial-force coefficients, with 
an increase in pitching-moment coefficient, at all subsonic test conditions. 

REFERENCES 

1. Test Facilities Handbook (Ninth Edition). "Propulsion Wind Tunnel Facility, Vol. 
4." Arnold Engineering Development Center, July  1971. 

2. Carman, J. B.   "Static Stability and Inlet Characteristics of the HAST Missile at 
Transonic Mach Numbers." AEDC-TR-71-178 (AD887776L), September 1971. 
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