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ABSTRACT 

A test was conducted in the 16-ft Transonic Wind Tunnel of the Propulsion Wind 
Tunnel Facility to determine the aerodynamic characteristics of a 0.5-scale .ejection seat 
escape system and to determine the stability effects of a stabilization parachute attached 
to the back of the ejection seat model. The results were obtained for both simulated 
rocket-off and rocket-on conditions through a model angle-of-attack range from 0 to 30 
deg and an angle-of-yaw range from 0 to 15 deg. High-pressure air was used to simulate 
the escape rocket jet plume at a sea-level altitude. Over the test range of this investigation, 
the results show that the ejection seat model was statically unstable but became 
longitudinally and directionally stable with the parachute using the three- and four-point 
bridle assemblies. Jet simulation and model yaw angle had little effect on the ejection 
seat longitudinal stability; however, jet simulation increased the parachute drag coefficient. 

Distribution HmMu to U.S. government agencies only; 
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SECTION  I 
INTRODUCTION 

A series of tests have been conducted in the Propulsion Wind Tunnel (16T) to 
determine the aerodynamic characteristics of an ejection seat escape system and to improve 
the escape seat stability after separation from the aircraft. In June and July 1969, a 0.5-scale 
ejection seat escape system was tested with a simulated catapult rocket over a wide range 
of model attitudes. The results of the investigation are presented in Ref. 1 and show 
the basic ejection seat aerodynamic characteristics and the aerodynamic interference effects 
of the simulated rocket plume on the ejection seat aerodynamic characteristics. In 
September 1970, the same model was tested to determine the flow field in the wake 
of the ejection seat and to determine the performance characteristics of a stabilization 
parachute attached to the ejection seat model at various trail distances. The results are 
presented in Ref. 2 and show that the ejection seat model was statically unstable (over 
the test range of that investigation) but became longitudinally stable with the parachute. 

The results reported herein were obtained with the 0.5-scale ejection seat model 
modified to accommodate different bridle assemblies attaching the parachute to the seat 
with the stabilization parachute trailing at a constant distance behind the model. The 
data were obtained during simulated rocket-off and rocket-on conditions at free-stream 
Mach numbers from 0.3 to 1.2 for angles of attack from 0 to 30 deg and angles of 
yaw from 0 to 15 deg. High-pressure air was used to simulate a sea-level altitude escape 
rocket jet plume. 

SECTION  II 
APPARATUS 

2.1 TEST FACILITY 

Propulsion Wind Tunnel (16T), Transonic, is a closed-circuit, continous flow wind 
tunnel capable of being operated at Mach numbers from 0.20 to 1.60. The test section 
is 16 by 16 ft in cross section and 40 ft long. The tunnel can be operated within a 
stagnation pressure range from 120 to 4,000 psfa depending on the Mach number. 
Stagnation temperature can be varied from an average minimum of about 80 to a maximum 
of 160°F. Perforated walls in the test section allow continuous operation through the 
Mach number range with a minimum of wall interference. 

Details of the test section showing the model location and support system arrangement 
are presented in Fig. 1 (Appendix). Installation photographs showing the model with and 
without a stabilization parachute in Tunnel 16T are presented in Fig. 2. A more extensive 
description of the tunnel and its operating characteristics is contained in Ref. 3. 

2.2 TEST ARTICLE 

The model tested consisted of a 0.5-scale representation of an ejection seat escape 
system occupied by a dummy crew member of average size in normal flying clothes and 
equipment. The model has a frontal area of 1.73 ft2 and a side area of 1.71 ft2. Major 
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dimensions of the model are presented in Fig. 3. The escape rocket was positioned in 
the lower aft portion of the seat and was attached to the sting in such a manner as 
to isolate the model from the jet reaction force. 

The crew member, constructed of cloth impregnated with phenolic resin, was rigidly 
attached to the metal seat housing a six-component balance. The arms of the dummy 
crew member were simulating an ejection position holding the ejection handle control 
on the arm rests. The nozzle configuration used simulated the plume shape of a full-scale 
2174-518 rocket catapult at an altitude of sea level. The fixed-area-ratio nozzle was designed 
so that the initial turning angle of the jet plume simulated the initial turning angle of 
the 2174-518 rocket plume at sea-level altitude (Ref. 4). Details of the nozzle are given 
in Fig. 4. High-pressure air, supplied to the nozzle through the center of the sting support 
system, was controlled remotely. A hydraulic actuator was used to provide remote variation 
of the model angle of attack through the range of 30 deg. Model yaw angles were achieved 
by rotating the model and sting support system about the vertical axis with a roll 
mechanism installed in the wall of the test section. 

The stabilization parachute assemblies are shown in Fig. 5. The parachute riser line 
was affixed to the back of the ejection seat by a bridle-load link combination. A strain-gage 
load link was placed in each of the bridle legs, and a load link, measuring the total parachute 
drag, was placed between the riser line and the bridle assembly. A hemisflo parachute, 
constructed of 0.75-inch nylon ribbon with a nominal diameter of 2.50 ft and a geometric 
porosity of 15 percent, was used as the stabilization parachute. A dimensioned sketch 
of the hemisflo parachute is presented in Fig. 6. 

2.3    INSTRUMENTATION 

An internally mounted, six-component strain-gage balance was used to measure the 
model forces and moments. Strain-gage load links were used to measure the parachute 
drag loads exerted on each bridle leg at the model attachment points and another load 
link was used to measure the total parachute drag between the bridle and riser line. The 
jet chamber pressure and temperature were measured with a 0- to 3000-psi gage transducer 
and a copper-constantan thermocouple, respectively. 

The electrical output signals from the balance, load links, pressure transducer, and 
the thermocouple were transmitted through analog-to-digital converters to a Raytheon 520 
computer for final data reduction while the test was in progress. Also, the balance and 
load link outputs were continuously recorded on direct-writing oscillographs for monitoring 
model dynamics and parachute drag. Five motion-picture cameras and a television camera 
were used to document and monitor the test. 

SECTION III 
TEST DESCRIPTION 

3.1     GENERAL 

The deployment of the stabilization parachute was accomplished by permitting the 
parachute to hang freely from the ejection seat model and deploy as the tunnel conditions 
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were achieved. After the prescribed tunnel conditions were established, jet-off and jet-on 
data were obtained while holding the free-stream Mach number constant and varying the 
model angle of attack at discrete model yaw angles. Four different bridle assemblies were 
used to attach the stabilization parachute to the model at a trailing distance of X/D = 
7.8. The parachute steady-state loads were calculated by averaging the analog output from 
the load links and balance over 1-sec intervals. 

For the jet-on data, a continuous supply of high-pressure air was ducted to the model 
for rocket simulation. The nozzle design and jet pressure used during these tests simulated 
the full-scale rocket plume shape at a sea-level altitude. (It should be mentioned that 
the full-scale rocket catapult operates at a constant chamber pressure of 4000 psia, but 
in order not to exceed the load limit of the balance over the Mach number range it 
was necessary to reduce both the jet chamber and free-stream static pressures while 
maintaining the pressure ratio (pc/p,J constant. The jet chamber pressure was varied from 
1600 psia to M^ = 0.30 to 387 psia at M„„ =  1.20.) 

The ejection seat model was tested at free-stream Mach numbers from 0.30 to 1.20 
through a model pitch and yaw range from 0 to 30 deg and 0 to 15 deg, respectively. 
The dynamic pressure was varied from 175 to 302 psf, and the Reynolds number per 
foot was varied from 1.12 x 106  to 2.3lTx"T0~57~~"' 

3.2 DATA REDUCTION 

The model force and moment data obtained during this test were corrected for weight 
tares and reduced to coefficient form in the body-axis system as shown in Fig. 7. The 
moment coefficients are referred to the model reference center-of-gravity position shown 
in Fig. 3. All model force and moment coefficients are based on the seat height of 2 
ft and projected model frontal area of 1.73 ft2. The force and moment coefficients do 
not include the jet reaction force. 

3.3 PRECISION OF MEASUREMENTS 

An estimate of the precision of measurements is presented below: 

M„       ±M.       ±a       ±CA       ±CN       +cM       ±CD ±CY        ±Cn ±Cj 
'p 

0.6 0.005 0.1 0.008      0.05      0.008      0.020 0.020 0.003 0.006 
1.2 0.016 0.1 0.003      0.02      0.003      0.022 

SECTION  IV 
RESULTS AND DISCUSSION 

0.008 0.001 0.002 

The static stability characteristics of a 0.5-scale ejection seat escape system with a 
stabilization parachute were determined at free-stream Mach numbers from 0.3 to 1.2. 
The results were obtained for both simulated rocket-off and rocket-on conditions through 
an angle-of-attack range from 0 to 30 deg and angle-of-yaw range from 0 to 15 deg. 
High-pressure air was used to simulate the rocket jet plume at a sea-level altitude. 
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4.1     AERODYNAMIC CHARACTERISTICS 

The longitudinal stability characteristics of the escape seat model can be interpreted 
from the slope of the pitching-moment versus normal-force coefficient curves presented 
in Figs. 8, 9, and 10. These data are presented to show the effects of the stabilization 
parachute, bridle arrangement, rocket simulation, and yaw angles. Except for data obtained 
at M» = 0.3, the comparison data presented for the model without the stabilization 
parachute were obtained from Refs. 1 and 2. Also, the jet-on data presented do not include 
the jet reaction forces and reflect only the aerodynamic effect of the jet plume on the 
stability of the escape system and the performance of the stabilization parachute. 

The effect of' the various bridle-parachute arrangements on the ejection seat 
longitudinal stability is shown in Fig. 8 for jet-off and jet-on conditions. The bridle 
assemblies investigated included one-, two-, three-, and four-attachment-point bridles. The 
data obtained in previous tests of the escape seat model without the stabilization parachute 
(Ref. 2) indicate that the model alone was longitudinally unstable for the moment reference 
center selected. Addition of the stabilization parachute using the four- and three-point 
bridle assemblies resulted in a longitudinally stable escape seat system as shown in Fig. 
8a and b. The four- and three-point bridle assemblies were designed to trim the model 
at an angle of attack of 15 deg. The data presented in Figs. 8a and b show that the 
model trim angle would be near the design trim point. The one- and two-point bridle 
assemblies resulted in essentially a neutral longitudinally stable configuration at NL = 0.3 
and 0.6 and an unstable configuration at M„ = 0.9 and 1.2 as shown in Figs. 8c and 
d. 

The effect of the jet exhaust on the escape seat longitudinal stability is also shown 
in Fig. 8 for each of the bridle-parachute arrangements investigated. At the lower Mach 
number (MM = 0.3), there was a significant change in the model stability at model angles 
of attack near 0 deg for the four- and three-point bridle assemblies. At the other Mach 
numbers, and for the other bridle assemblies investigated, the nozzle exhaust flow had 
essentially no effect on the longitudinal stability of the ejection seat over the angle-of-attack 
range of this investigation. 

Figure 9 shows the effect of using the various bridle-parachute arrangements on the 
ejection seat longitudinal stability for the jet-off condition. These data show that for zero 
yaw angle, the three-point bridle assembly produced the best longitudinal stability 
characteristics of the four bridle assemblies over the Mach number range of this 
investigation. The one- and two-point bridle assemblies produced essentially the same results 
at any particular Mach number causing the ejection seat to become neutrally stable at 
the lower Mach numbers and to remain longitudinally unstable at the higher Mach numbers. 

The effect of varying model yaw angle on the ejection seat escape system longitudinal 
stability is presented in Fig. 10 using a four-point bridle assembly. For these data, the 
most significant variation was obtained at the higher model angles of attack (a = 25 and 
30 deg) where the ejection seat became less stable as a result of increasing the model 
yaw angle. 
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The directional static stability characteristics of the ejection seat with and without 
a stabilization parachute using the four-point bridle can be interpreted from the 
yawing-moment and side-force coefficient data presented in Fig. 11. These data indicate 
that for zero deg angle of attack the ejection seat without the parachute is directionally 
unstable through the Mach number and angle-of-yaw ranges of this investigation. As would 
be expected, the parachute caused a restoring yawing moment which counteracted the 
unstable yawing moment of the ejection seat. In general, the magnitude of the restoring 
yawing moment of the parachute was sufficient to cause the ejection seat to be directionally 
stable at all Mach numbers investigated. The directional stability of the ejection seat 
decreased with increasing model angle of attack. 

The lateral, static stability characteristics of the ejection seat escape system can be 
interpreted from the slope of the rolling-moment coefficient with angle of yaw. These 
data, as shown in Fig. 11, indicate that for zero angle of attack, the ejection seat was 
laterally unstable without the stabilization parachute in the Mach number range from 0.3 
to 1.2. The addition of the parachute to the seat had the effect of either decreasing 
the instability or exhibiting neutral, lateral stability for the Mach number and angle-of- 
attack ranges of this investigation. 

4.2    PARACHUTE CHARACTERISTICS 

The hemisflo-type parachute was used as the stabilization device for the ejection seat. 
Visual analysis of television monitors and motion pictures showed that the hemisflo 
parachute exhibited full inflation at all test conditions. All the data with a parachute 
were obtained at a constant parachute trail distance, X/D, of 7.8. Other trail distances 
using the four-point bridle assembly were investigated in Ref. 2. Photographs of the model 
and stabilization parachute at various test conditions are presented in Fig.  12. 

The effect of the ejection seat angle of attack on the parachute drag coefficient 
is shown in Fig. 13 for jet-off and jet-on conditions. Generally, the parachute drag 
coefficient increased with increasing angle of attack with some adverse effects occurring 
at the high angle of attack. The effect of jet simulation on the parachute drag coefficient 
may also be seen in Fig. 13. The data obtained with the model at a = 0 deg show that 
the jet increased the parachute drag at each Mach number. However, motion-picture 
coverage obtained during jet simulation showed that the jet wake had essentially no effect 
on the dynamics or trailing angle of the stabilization parachute. Some typical results are 
presented in Fig. 14 showing the effect of a parachute as a retardation device for an 
ejection seat. The parachute increased the ejection seat axial-force coefficient for all test 
conditions. 

SECTION V 
SUMMARY OF RESULTS 

Tests were conducted in Propulsion Wind Tunnel (16T) to determine the aerodynamic 
characteristics of a 0.5-scale ejection seat escape system using a stabilization parachute 
at Mach numbers from 0.3 to 1.2 during rocket-off and simulated rocket-on conditions. 
The following is a summary of the results. 
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1. Over the test range of the investigation and for the moment reference center 
selected, the ejection seat model was longitudinally unstable but became 
stable with the parachute using the three- and four-point bridle assemblies. 

2. Jet simulation had little effect on the longitudinal stability of the ejection 
seat with the stabilization parachute for angles of attack greater than five 
deg. 

3. Increasing the model yaw angle from 0 to 15 deg had little effect on the 
longitudinal stability of the ejection seat escape system except at the high 
angles of attack. 

4. The ejection seat model was directionally and laterally unstable through 
the angle-of-yaw range from 0 to 15 deg but became stable or neutrally 
stable with the addition of the stabilization parachute. 

5. Jet simulation increased the parachute drag coefficient. 
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c.   Two-Point Bridle Assembly 
Fig. 8  Continued 
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Fig. 8  Concluded 
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Fig. 13   Effect of Model Angle of Attack on the Parachute Drag Coefficient, 
<// = 0, Four-Point Bridle 
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