UNCLASSIFIED

AD NUMBER

AD891403

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies only; Test and Evaluation; 23 JUN
1971. Other requests shall be referred to
Air Force Flight Dynamics Lab.,
Wright-Patterson AFB, OH 45433.

AUTHORITY

AFFDL 1ltr, 13 Mar 1981

THIS PAGE IS UNCLASSIFIED




ks 4 af*m.»:«uw gk ey
N N

AD 891403

AFFDL-TR-71-5
PART I, VOL |

SUBSONIC UNSTEADY AERODYNAMICS
FOR GENERAL CONFiGURATIONS

PART |, VOL I-DIRECT APPLICATION OF THE NONPLANAR
DOUBLET-LATTICE METHOD

J. P. GIESING
T. P. KALMAN
W. P. RODDEN

TECHNICAL REPORT AFFDL-TR-71-5, PART I, VOL I

NOVEMBER 1971

Distribution limited to U. S, Government agencies only; test and evaluation; state-
ment applied 23 June 1971. Other requests for this document must be referred to
Air Force Flight Dynamics Laboratory, (FY), Wright-Patterson Air Force Base,

Ohio. ¢/ 5¢.33

AIR FORCE FLIGHT DYNAMICS LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

T
=3
b




e tor ety

RECRH) LA

SRR IO N s ittt e e

BRSNS R S e o S e o
AT

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely related Government procure-
ment operation, the United States Government thereby incurs no responsi-
bility nor any obligation whatsoever; and the fact that the government may have
formulated, furnished, or in any way supplied the said drawings, specifica-
tions, or other data, is not to be regarded by implication or otherwise as in
any manner licensing the holder or any other person or corporation, or con-
veying any rights or permission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Distribution limited to U.S. Government agencies only; test and evaluation;
statement applied 23 June 1971. Other requests for this document must be
referred te AF Flight Dynamics Laboratory, (FY), Wright-Patterson AFB,
Ohio 45433,

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific

document.

AIR FORCE: 17-12-71/150

gl e R AR




et S INENOT Y GFITE

SUBSONIC UNSTEADY AERODYNAMICS
FOR GENERAL CONFIGURATIONS

PART |, VOL I-DIRECT APPLICATION OF THE NONPLANAR
DOUEBLET-LATTICE METHOD

J. P. GIESING
T. P. KALMAN
W. P. RODDEN

Distribution limited to U. S. Government agencies only; test and cvaluation; state-
ment applied 23 June 1971. Other requests for this document must be referred to
Air Force Flight Dynamics Laboratory, (FY), Wright-Patterson Air Force Base,
Ohio.




-
3
S
ke
Ex
s

eSSt e ey e

TERETT

R e R S s

AN RN LNt

FOREWORD

This report was prepared by the Douglas Aircraft Company, Long Beach,
California, for the Aerospace Dynamics Branch, Vehicle Dynamics Division, Air
Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio, under
Contract F33615-70-C-1167. This research was conducted under Project 1370,
"Dynamic Problems in Military Flight Vehicles," and Task 137003, "Prevention
of Dynamic Aeroelastic Instabilities in Advanced Military Aircraft." Mr. S.
J. Pollock of the Aerospace Dynamics Branch was Task Engineer.

This report consists of two parts with two volumes for each part. This
volume, Volume I of Part I is the method of direct application of nonplanar
lifting surface elements. Volume I of Part II, contains a method which uses
an image system and an axial singularity system to account for the effects of
the bodies. Volume IL of Part I is the Computer Program H7WC and Volume II
of Part II is the Computer Program N5KA. The volumes containing the computer
programs are available upon request from the Air Force Flight Dynamics
_aboratory/FY, Wright-Patterson AFB, Ohio 45433,

The work reported herein was conducted during the period of December
1969 to September 1970.

The Principal Investigator was Joseph P. Giesing. Mrs. Terez P. Kalman
was responsible for implementing the method on the computer. Donald H. Larson
aided in this implementation and acted as consultant for computer problems.
Dr. William P. Rodden, a McDonnell Douglas Company Consultant, contributed
many valuable ideas to the project. Others have made signi Zicant contribu-
tions to this project including Messrs. D. S. Warren and W. E. Henry.

The report was submitted by the authors in November 1970 for publication
as an AFFDL Technical Report.

This technical report has been reviewed and is approved.

WALTERJ KYTOW

Asst. for Research & Technology
Vehicle Dynamics Division
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ABSTRACT

Two methods of accounting for body~lifting surface interference in
unsteady flow are considered. The first method is described in Part I
of this report, while the second will be described in Part II to follow.

The first method is a direct application of nonplanar lifting surface
elements to both the lifting surfaces and the body surfaces. The body is
treated as an annular wing. This type of ideulization must be used with
an axial doublet introduced to account for body incidence effects. The
undesirable effects of the annular wing representation are then reduced.

The second approach, to be described in Part II, uses an image system
and an axial singularity system to account for the effects of the bodies.

This report also describes an improvement of the Doublet-Lattice Method
of Albano and Rodden. The improvement pertains to wing-tail problems where
there exists a small vertical (non-zero) separation between the wing and
tail planes. Such problems can now be handled with ease.

T'na: volume contains the development of the theory, correlation of

theory with experimental data, and the parametric study. Volume II is a
guide to the computer program and contains the FORTRAN listing.
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NOMENCLATURE

Reference total area
Matrix of box areas
Polynomial mode coefficients for mode i

Matrix of influence coeificients relating generalized ‘orces
to generalized deflections for submodes

Chord length

Reference chord length

moment
q AT
Yawing momant coefficient (_____moment
q As
moment
As

Pitching mornent coefficient ( ) , (+ nose up)
(+ nose right)

Rolling moment coefficient ( ) (+ clockwise)

Force coefficient in y-direction (_F_‘Q%g) (+ out right wing)
Force coefficient in z-direction (-—F—‘O—E%) (+ vertically up)
Local moment coefficient (mor:zen

Local normal force coefficient (norn;(a:d force )

Strip semi-width
Normalized deflection normal to surface (h/s)
Deflection normal to surface
Kernel

Reduced frequency, w&/2U,
Lift

Mach number;also moment
Gencralized force

Dynamic pressure
Generalized coordinates
Body radius

Jiy-m? + (a0
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s Semi-span

{ Uy, Free-stream velocity
W Unnormalized normalwash
3 w W /U,
wr W oWy
' X, Y,z Coordinates of receving points
Xvz Element coordinates of receiving points

Gust reference axis

P I Rl i aulm\ 2 3 PN M T
(o]

o Angle of attack;also a function defined by Equation 2.1-15
B .,1 - MZ ; also control surface deflection
Ef rg Gust dihedral angle. ( Fg = 0 if gust velocity is vertical)
Y Dihedral angle
ACP Lifting pressure coefficient lowerq- Pupper
) Symmetry index (right and left symmetry); also tab deflection
€ Ground effect index
A Wave length
§n,¢ Coordinates of sending points
2,71,}: Coordinates of sending points in element coordinates
p., Density at sea level
4 Lateral coordinate in the plane of the surface
w

Frequency

Subscripts and Superscripts

a body axis

B body

c center

£ Body or fuselage
g gust
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LL
LR

UL
UR

1/4
3/4

Deflection mode

Pressure mode

Leading edge

Lower left

Lower right

Axis about which moments are taken
Receiving

Sending

Upper left

Upper right

y~direction

z-~direction

One quarter chord point of a lifting surface box

Three quarters chord point of a lifting surface box
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1.0 INTRODUCTION

This report presents a direct application of the Doublet-Lattice Method to
problems involving body-lifting surface interference. The Doublet-Lattice Method
of Albano and Rodden1 which is used here,is an extension of the steady Vortex-
Lattice Method. Developments by Hedman, 2 Giesing, 3 and James4 have shown
that the Vortex-Lattice Method is (1) simple (2) accurate and (3) quite versatile.
Correlations by Kalman, Rodden and Gicsing5 show that the same attributes
apply to the unsteady Doublet-Lattice Methud. A survey of the development of

the steady and unsteady lattice methods is givern in Reference 5.

Two methods of accounting for body-lifting surface interference in unsteady
flow are considered. The first method is described in Part I of this report,

while the second will be described in Part II to follow.

The first method is a direct application of nonplanar lifting surface elements
to both the lifting surfaces and the body surfaces. The body is treated as an
annular wing. Such an idealization has been used by Woodward6 in the steady
case. This type of idealization must be used with an axial doublet introduced ¢~
account for body incidence effects. The undesirable effects of the annular

wing representation are then reduced.

The second approach, to be described in Part II, uses an image system and
an axial singularity system to account for the effects of the bodies. Basically it

will be an extension of the method of Reference 3.

This report also describes an improvement of the Doublet-Lattice Method
of Albano and Rodden. The improvement pertains to wing-tail problems where
there exists a small vertical (non-zero) separation between the wing and tail

planes. Such problems can now be handled with ease.
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2.0 THEORETICAL DEVELOPMENT

2.1 The Doublet-Lattice Method

The velocity normal to an oscillating surface, W = Uy, Re (w elwt), is

related to the lifting pressure 4&p = q Re(ACp emt, by the integral equation
wix,y,2) = -g{—r-./:/‘K(x-g, y-n, z-4,w, M) ACp 4§ do (2.1-1)
LS

where § is the streamwise coordinate, ¢ is the tangential spanwise
coordinate (see Sketch 2.1-1), w is the frequency of oscillation, M is the
Mach Number and K is the kernél. The limit L. S. indicates integration over
all the lifting surfaces. The integral in Eq. (2.1-1) can be approximated

as follows:

w(x,y,z) = _él—ﬂ Zs ACps /f K(x-§, y-n, z-{,w, M)d¢ d o (2.1-2)

Elements

where s is an index indicating the sending element A further approximation is

introduced in the Vortex- and Doublet-Lattice Methods. The integration of K

in the streamwise direction ( ¢) is done simply by lumping the effect into

A=

ISR
v}
=Y

Y

SKETCH 2. 1-1 WING AND ELEMENT COORDINATES
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a loaded line at the 1/4-chord line of the element.

wix,y,z) = Z AC At f K(x-§1/4, y-1,2-8, w, M)do (2.1-3)
s ps 81T
Elements

The result is an unsteady horseshoe vortex whose bound portion lies along
the 1/4-chord line of the element.

In this equation the normalwash boundary condition w(x, y, 2} is known
and the lifting pressure, ACpS, over each element is unknown. A set of
linear algebraic equations may be formed from (2.1-3) if the normalwash is
satisified at as many points as there are elements. Equation (2.1-3) can

then be written in matrix form

]

[D] {ac,] (2.1-4)

where a typical element of [D], D, is

Drs = f K(x-§1/4, y-m,z -4, w,M)de (2.1-5)
Elements

and where x,y,z (both for Drs and Wr) are the coordinates of the receiving
point "r'". There is one control or receiving point per element and the sur-
face normalwash boundary condition is satisfied at each ¢{ these points. The
control point is centered spanwise on the three-quarter chord line of the
elemen* (Sketch 2.1-2). This choice of control point location, shown by
James4 to be optimum for the two-dimensional case, results in a high degree
of accuracy. Sketch 2.1-2 also shows the idealization of the surface into
elements or boxes which are arranged in strips parallel to the free stream

so that surface edges, fold lines, and hinge lines lie on element or box boundaries.
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Sketch 2. 1-2. Idealization of a Wing Panel into Boxes

2.1.1 Integration Over an Element

The general form of the nonplanar kernel, K, used is given by Rodemich7

and Landah18 as:
K = 1T &8 1 o+ K, T,/ (2.1-6)

where Kl’ Tl’ KZ’ and T2 are given in Appendix A. The basic idea of the

Doublet-Lattice Method is to fit the numerator of K with a parabola and
integrate (2.1-5) analytically. Since the steady kernel can be integrated

exactly without the parabolic fit it is apparent that the accuracy will be

improved if only the unsteady increment is integrated using the approximating

e

ot SR 2 kR

> e
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parabola. Equation (2.1-6) becomes

K(X'§1/4, y-1, Z—(—,, w, M) =

w

w
i (x-§, ,,) -i (x-€, /4) 1
T, [e Ua ™ "1/4 Kl-Kl(s)] + T, [e Uo ™ 7174 KZ-KZ‘S)] }/r2

+ {Tlxl(s) 0T Kz(s)}/rz (2.1-7)

The superscript ''s" indicates the steady case (w = 0). The first of the
bracketed terms in the numerator of Equation (2.1-7) is fitted with a paratola

and integrated while the second of the bracketed terms is integrated analytically

without the use of a curve fit.

b - p M 4 p 6 (2.1-8)
rs rs rs
where .
(1) _ AXg --2 =
D il AN + 2'BTI + C d
et r
e —
p & - B f)r () o 4 g(s) dan_
rs 8w 1™ 272 2
- R

s W - Mg
and where ARC + B4 C =T (o * d/adk -k B4 1, (3 G474k, -8
1% Uy 171 2 2752

Here e'' is the semi-width of the element in the plane of the element. The
(s)

s
represents a steady horseshoe vortex and its evaluation is given in Appendix C

integration involved in Drs(l) is shown in Appendix B. The term Dr

The change in variable from ¢ to M indicates that element coordinates are to

5

RV N




(See Sketch 2.1-1) Element coordinates for a particular element

be used.
are centered on the sending element and rotated into the plane of the element.
The relations between element coordinates and the usual coordinates are
given as:
§ X = x -gc
d - ) ) .
o y = (v nc) cos Ys + (2 Z_,C) sin YS
z = (z- c,c) cos Ys - (y- nc) smYS
: Y= YT Y

R R T e

where §c, R and {. are the coordinates of the center of the 1/4-chord line

of the sending element and Ys is the dihedral angle of the element. The

expressions for —é, T‘l, and § are the same as above with x, y and z replaced

v

with &, M and §.

AN S e

The integration used to obtain Drs(l) works very well for all cases,
Consider the case where the

planar and nonplanar, with one exception.
When there exists a

receiving point is downstream of the sending element.
small vertical separation between the receiving point and sending element

then the numerator of the kernel has large variations with 7 and a parabolic

fit will not give accurate results.

The problem can best be understood by considering the nature of
It can be shown that the kernel is a semi-infinite line doublet
/U] aft of the point §1/4. This

the kernel.
whose strength varies like exp [-iw(§-§1/4)
semi-infinite line doublet is to be integrated in the Ti-direction (spanwise

When the receiving point is downstream of the

Slin Al g2 v

in the plane of the element).
sending point of the kernel with a small vertical and lateral gap, i.e.,

small Z and ¥, then the flow field is dominated by the local strength of the

semi-infinite doublet line.
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Expressions for the various parts of the kernel valid for small lateral

distances, and downstream of the sending point, in element coordinates,

are:
lim Kl -~ 2
ﬁzr/(x-é ) — 0 K. — -4
1/4 2
T1 = Cos Yr
x > §”4 TZ = (zzlx,z)cosTir '(E(-)?'?l)/rz)sin\(r
when NC y —_ﬁ)z v 78 (2.1-9)

These terms may be used to construct the unsteady increment given by the
first term in brackets on the right-hand-side of Equation (2.1-7). The
numerator of this term is to be fit with a pzrabola. Investigation of the
variation of this term with M will show why a parabolza is iradequate and

it will also suggest a way to remedy the situation.

Using Equation (2.1-9) above in the numerator gives:

‘T ["Ui(x‘gl/t;’y K (s)] . [ 'iﬁ%(x'gl/:ﬂ (s)]l_>
lim | T1i° SR AN KoKz
ﬁr/(x‘gl/‘}) 0 l‘*’ -2
it (x-§ )
—~‘{e U 1/4 ll ‘ZCOS—Y— -4005?; Z—Z +
+ 4siny, z (y-7) (2.1-10)

The terms that cause the trouble arise from the nonplanar term and are
the ones that are 4divided by x‘z. Flots of Ezlrz and -'5(?-71)/1‘2 (when'y

is zero) are given in Skatch (2. 1-3).

o e
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SKETCH 2.1-3

When the element length, 2e, is large compared with Z the variations across

the element are very large and a parabola is inadequate.

The obvious solution to this problem is to consider the nonplanar terms

separately from the planar. The nonplanar terms have basically a different

behavior than the planar terms. The planar terms vary like I/r2 but the

nonplanar terms vary like 1/r4. This suggests that the kernel should be

written as:

(%)
- (x-8 4)
K = e I 1/4 (K, T /r2 b K, TH ) (2.1-11)
171 2 2
where
2 . .
T?Zk = r? T3 = ((z-8)cos ¥, - (y-1) sin Yr} ((z-8)cos Y - (y-" sinY_)

o




Again the steady kernel should be considered separately to increase the

accuracy.

-i g (x-6) ) -1 g (-8 )
K =§T [e Uo 1/4K1-K1(s)]/r2 £ T [e Up = L4y

l

+ {TIKI(S)/rz + T3 KZ(S)/r‘}‘ (2.1-12)

2 2'K2(s)] /5t }

Of course, the steady kernel is integrated separately to a steady horseshoe
vortex. The numerators of each of the terms in the first bracket may now
each be fit with a parabola since they are very slowly varying functions of

N across an element.

i g, o6y ) (s) 2 7
T, {e Uo K-k | =27+ BA ¢ C

1 1 1 1
w
= (x-§, ,,) 2
Kk Uew /4", _ (S)]z T G -
’IZ [ e KZ KZ Azn + an + CZ (2.1-13)
Equation (2.1-5) then becomes:
p = p W ,p @ 4, p (2.1-14)
rs rs rs rs
where
AR% + BA + C
b W . 1 2 L g7
rs - 2
r
= dn

4
r

rs

D (s)
rs

L}

(s), 2 {s), 4, =
("1:11&1 /" + T’Z“KZ /r ) d7

/e
e

NG 3

(2)_f %4 B+ Cp

D

~e

/e

~e

The integrals Drs(l) and Drs(S) are the same as those encountered in Equation

(2.1-8) except that the coefficients A, B, C in (2.1-8) are not the same as
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Al’ Bl,and C1 in (2.1-13), The term Drs(Z) is new and represents the
. . @, ...
nonplanar unsteady increment. The evaluation of Drs is given in

Appendix II. The final expression is:

(2) (e/Z)A§ 2(')"2+722+e2) (.A.Ze?‘+c2)+4?re2 B,
gl [[Gre? + 7 (G- + 2]
a —
- = [G43h A, + 7B, ¢ cz]} (2.1-15)
(]
where
2 _2,-2 2 -
o = _97 1 . 74z7-e7) tan—lg 2e |z |
3 2elzl | G%422-¢5)

Appendix B gives an expansion for a valid for small values of Z and an
=2 2
Z

equation valid for small values of ')72 + - e’ .

2.1.2 Reflection Planes and Ground Effect

Most applications of the present method involve configurations with
one or two planes of symmetry. The X-Z plane is a plane of symmetry
for most cases, e.g., the right side of a lifting surface is the mirror
image of the left side. In other cases an additional plane of symmetry
(the X-Y plane) exists. For instance a lifting surface attached to a ground
plane (as in a wind tunnel) or in the proximity of the ground (aircraft in

ground effect) represents a configuration with two planes of symmetry.

All flow conditions can be split up into symmetrical and/or anti-
symmetrical parts in relation to either plane of symmetry. If the
configuration is symmetrical and the flow is either symmetrical or
antisymmetrical then a considerable savings in computational effort can

be realized. Consider the gencral case of two planes of symmetry. The

10
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entire lifting surface system is made up of segments in the upper right

(UR) quadrant, the upper left (UL), the lower right (LR) and the lower

left (LL). If the distribution of lifting pressure and normalwash are

each split into their component segments {one per quadrant) and so designated

by the subscripts UR, UL, LR and LL the rnatrix equation given by Eq. 2.1-4

can be written as:

(o \ i ] (
YUR dh o 92 43 4y ACpUR\
VoL dar de2 da3 dpy AC UL
< > = < }(2. 1-16)
YLR d3y 93z d33 dyy ACOLR
A
\ "LL ) | 432 433 d3q I35 \ ““pLL )

where dii are submatrices of Dij'

Let the flow symmetry betweer right and left be indicated by the term

I symmetry
) = -1 antisymmeiry

{ 0no symmetry

In addition let ¢ indicate symmetry between upper and lower.

1 symmetry

€ = -1 antisymmetry (ground effect)

0 no symmetry

11
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Then AC pUL = BACpUR
AC 1R = €4C g (2.1-17)
ACpLL = 6ACpLR BeACpUR

The distributions for all of the quadrants have been reduced to one
distribution for the upper right quadrant ACpUR' Using (2.1-17) in (2. 1-16)
gives

l

Wyp = [d“ + 6d), + <dj, + eédM] {ACPUR‘

Thus only that part of the configuration that appears in the upper right hand

quadrant needs to be considered.

Configurations such as T-tails present no special problems; however,
the results obtained by the present method for these cases must be properly
interpreted. The vertical surface of the T-tail is in reality two surfaces.

Consider the configuration in Sketch 2. 1-4,

Plane of Symmetry

) ©

-y

Sketch 2.1-4. Symmetry considerations for T-tails
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The T-tail is formed in the limit as the dihedral of surface "a" (Ya)
approaches 90°. The vertical fin is then made up of surface "a" plus its
reflection a’. The present method determines the loading only on sur-

faces in the right hand sector and thus only half of the loading is determined
for the vertical fin. The lifting pressure distribution and the spanwise
loading and moment are off by a factor of two. (Program H7WC tests for this
condition and adjusts these distributions. See Vol II) The image lifting surface
is always accounted for when calculating stability derivatives or generalized
forces. Since the vertical fin surface "a'" has an image a' the derivatives are
calculated correctly. When dealing with aeroelastic problems the

structure s always cut in half along a symmetry plane. This cut splits the
vertical {in of a T-tail into two equal surfaces. Only half of the aero-
dynamic forces are applied to each half of the fin. Thus the AIC calculation,
to be described in Section 2. 5 for use in aeroelastic problems, is formed
properly by the present method.

2.2 Lifting-Surface/Body Interference

The treatment of lifting-surface/body combinations presented in this
report (Part I) is similar to that of Woodwardé. Woodward considered
only the steady case for a single body whereas the more general oscillatory
case for multiple bodies is dealt with here. The effects of the isolated
bodies are obtained using slender body theory. Body-lifting surface inter-
ference is obtained by placing lifting surface elements on the body surface

near the body-lifting surface intersection.

The order of solution again is similar to that employed by Woodward.
The slender body solution for the longitudinal force distribution on all
bodies is obtained first. The Slender body solution used (J. W. Milesg)
handles bodies of circular cress-section whose radius varies in the longi-
tudinal direction. The motion of the body may be arbitrary. The longitudinal
force distribution on the bodies causes a flow field which affects the lifting
surface elements. The normalwash due to this flow field is then determined
at all lifting surface elements except those on the body surfaces. The axial

singularities found for a single isolated body using the slender body theory
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divert the flow around that body. The resulting values of normalwash found

at the interference lifting surface elements, for that body, are therefore zero.
For the case of several bodies there is a small nonzero normalwash caused

by the singularity systems of the other bodies. E=xact solutions to the unsteady
compressible wave equation are used to determine the flow fields generated

by the bodies. Specifically,pressure doublet distributions are used. The
normalwash caused by the body axial force distributions is added to the normal-
wash generated by the mctions of the lifting surface. The resulting boundary

value problem is then solved exactly as outlined in the last Section (2.1).

2.2.1 Slender Body Force Distributions and their Resulting Flow Fields

The slender body theory of J. W, Miles9 is used for the unsteady case.
The longitudinal lift distribution for harmonic motion is given by Equation

16 of Reference 9 and is

13 (Um 5 * iw) (m(x)w‘f’(x)) et 2.2-1)

where mi(x) is the virtual mass of the cross section and w(x) is the normal-
ized upwash' (W(f)/Uco) in the direction of L.. For a circular cross-section
of radius Ro(:(), m(x) =Ugp nROZ (x). Introduction of this value of m(x) into

Equation (2.2-1) gives:

' wR

14
m{2R w(f)+R w o+ i

1 o (f)]
q ZRO [o] o) Um

w ‘ (2.2-2)

o=

The term on the left-hand-side of Equation (2. 2-2) may be regarded as a
lifting pressure coefficient, ACp(f), acting on the projected body area. The
force per unit length is obtained simply as this pressure multiplied by the /

local body diameter and dynamic pressure.

9L

(f)
2 q2R, AC] (2.2-3)
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and-thus from (2.2-2):

2 ) !

: AC 0 2 ‘R w(f) + w(f) R /2 + ik w(f R /El (2.2-4)
: P | "o o r o'~

: where the reduced frequency kr = 2:; € has been introduced.

3 L+ +]

The pressure AC (f) actually acts only on the body axis and thus

acts like a delta function whose integrated value is 2 R AC (f). Further-
ac ©
P

horizontal, ACy, as does the upwash to the fuselage w(f). Thus

more, has two components in general, a vert1cal, ACZ, and a

e o B e O

(0 _ ; - -.‘}
ACp = 6(y—1’]a,z {’a) {ACZk + ACYJ

where n, and (’a are the coordinates of the body axis. Also it can be shown that
if a pressure doublet is placed within a circular body the total integrated force
is 0.5 (ACp(f)
lies within a circular body, Thus, if the lifting surface theory is to be used to

, obtain the flow field due to AE;“) then ZAC—[;(f) must be used. A slight generali-
zation of (2. 1-1) gives:

AA); i.e., the pressure doublet is only half as effective when it

WB(XJ Y, Z) = :}1? ffKZ(X'gy Y-T\, z-{,,w, M) 6(Y"1ax z'éa) ACZ dgd"]
(2.2-4)

* TlFfny(x-g, y-N, z-5, 0, M) Sly=nyr2-t,) ACy asds

where the subscripts Z and Y on K indicate the direction of the pressure
doublet sheet, and the B subscript on w indicates that the normal wash is
caused by the bodies. Integration of the delta function, 6, in the M and §
directions gives

1

wolx,y,2) = - | K, (x-§ y-n,2-L ,0,M) AC, 2R df

Z

(2.2-5)
+ 411,/K (x-§, y-ny,z-4 ., M) ACy 2R d§

15
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Integration in the longitudinal direction is done numerically. Each body

axis is divided into a number of elements over which ROCY and RoCZ.

are assumed constant.

WB(x,y,z) = 21—" Z (ACZ R, / KZ (-, YT, Z-éa,w. M)dﬁ)
s s s

Elements
(2.2-6)

adm
3

g (ACYS ROS / KY(X"§, Y"na! Z"La)w; M)dg)

ElementS

Integration over each element is done by lumping the effect at the leading

edge of each element, i.e., at § = §as

(x'ga ’ Y"‘]a, Z-x:a,w, M)

S
wgx, y,2) = EZACZS Ro, 2y Kz .

S
(2.2-7)

1
+ _Z;i' Z ACYS Ros Ags KYS(X-gas, Y‘na:z't.:a)w; M)

The values of the normalwash at wing (or tail, etc.) lifting surface control

points and other body lifting surface control points may be assembled into

a column matrix WB Using (2. 2-7) this column matrix may be written as

{WB} = [F,] {Acz} + [F,] {ACY} (2. 2-8)
where typical elements of the non-square matrices [FZ] and [FY] are
F = s~ R Ay K (2.2-9)
Z . 2w o, T Z .o
]
Fy = 7o R, Ap Ky (2.2-10)
rs s rs

e e SBTESS
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where Kzrs Kz(x-gas. VALINE LS SPLR M) and KYrs = KY(x-ga Y=

z-—ga,w, M) are evaluated at the rth receiving point whose conordinates are

given by x, y, z.

Equation (2.2-8) may be written in a partitioned form as

{WB} = [F] {Acp(f)} (2.2-11)
where [F] = [FZ FY]
ac ] o [2%
e ac g

The boundary conditions at the lifting surfaces are obtained from
Specifically, the substantial derivative of the

the motions of the surfaces.
Both

surface deflection produces the required normalwash velocity w.
lifting surface and body axis singularities are introduced to produce this

normal velocity. If lifting surfaces alone are considered the matrix

formulation is taken from Egquation (2.1-4), i.e.,

{W> = [P] {ACP}

When axial singularities are introduced as in the present method this

formula becomes:

{w} - [D]{Acp} + [F] {Acp(f)} (2.2-12)

In this matrix equation only the boundary conditions on the lifting surfaces
The matrix [ D] represents the effect of lifting surfaces on

are considered.
The matrix [ F ] represents the effect of the body

themselves and is square.
axial singularities on the lifting surfaces and is rectangular,

17
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Using equation (2.2~11) in (2.2-12) gives

{WR}={W-WB} = [D] {Acp} (2.2-13)

This is the final matrix eqution to be solved for the unknown lifting pressures
{AC
P

2.2,2 Interference

The slender body theory satisfies the boundary conditions on bodies
undergoing general oscillatory motions. That is, the slender body theory

satisifies the upwash and sidewash boundary conditions given by w(f)‘ When

lifting surfaces (or other bodies) are introduced into the flow, the body
bBoundary conditions are no longer satisified. The region of greatest dis-
turbance is near the body-lifting surface intersection. An initial attempt

to account for this interference is presented here (Part I). The basic idea
is to apply lifting surface elements directly to the body surface in regions
where the body boundary condition is most seriously disturbed. Each lifting
surface element possesses its own wake. Each wake trails straight back
from the element in the x-direction (see Reference 10). Because of this
fundamental characteristic the configurations that may be considered are

limited. Specifically, placing lifting elements on the actual body surface*

is not acceptable since the wakes may thread in and out of the body surface
aft of the lifting element in question (see Sketch 2.2-1). The actual wake, if

any exists at all, springs from the separation regions of the body.

s

# Consideration of forward or rearward inclined surfaces requires a

kernel of the type developed by Berman 10.

18
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Sketch 2. 2-1

The shape of that section of the body on which lifting surface elements
are placed must be idealized. Specifically, the interference region of the

body must have a constant cross-sectional shape. Sketch 2.2-2 presents a

graphical example.

- v

Sketch 2.2-2
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The bedy, then, is made up of two separate components. (1) an
axial pressure potential doublet distribution whose strength is obtained

from slender body theory and (2) lifting surface elements placed on the

body surface whose strength is obtained by a solution of equation (2.2-13).




2.3 The Normalwash Boundary Conditions

The normalwash boundary conditions for the lifting surface elements
are determined by assuming the surfaces move normal to themselves with

a displacement distribution given by h. These normal motions are given

RIaiEt it e v o e

by a series of mode shapes, fi and generalized coordinates ﬁi

h = sy, £, q, (2.3-1)

RARGER Hy Sie i ks e o

The normalwash boundary condition is ¢iven by the substantial derivative

of h, i.e., Dh/Dt. The normalwash {or mode i is:

5
W af, ws
o — = W, = —Ll fi
Ue d (x/s) Uy,
af, 2s
= 1 + ikr (T) fi (2.3-2)
d(x/s) c
w?¢
where kr = 2 Ug

The mode shapes may be input numerically (both fi and dfi/d(x/s) may be
input) or as polynomials.

5

5
fi = coef E Z a.

-’f-)n (l)m (2. 3-3)
n=0 m=0 S

Here T is a lateral parameter representing the radial distance from the
x-axis to a point on the surface or the radial distance frcm the inboard
edge of a particular lifting surface panel to a point on the surface (see Input
Procedure, Part I, Vol II ). The constant coef is simply a scale factor.

21




The x-derivative of fi is used in Equation (2. 3-2) and is:

n-1 M
af/d(xls) = coefz Z" inm (—’5) (—) (2. 3-4)

n=0 m=0 s s

The upwash and sidewash to the bodies, i.e., w(f) are also determinad from

Equation (2. 3-2) exceptthatthere are separat: modes for the z and y-divections
of motion.

The slender body theory of Miles requires the derivative of W(f)

() £ a°, g, )
w 1 dw'; 1 i . Zs \ i
= 2 i = — + ik | == S6T5 (2.3-5)
dx 5 d(x/s) s ax/s) r( c j dix s)§
where :
2 5 5 )
df, n-2 m
—— =« Z Z n(n-1) (%) (1) (2.3-6)
d {x/s) n=0 m=0 s

If modes are input numerically (ii and dfi/d(x/s) then dzfi/dz(x/s) must be
determined numerically. An alternate procedure may be suggested here.
Instead of f and Jdf. /d(x/s) the terms f and d £, /d(x/s) could be mput The
term df, /d(x/s) is then obtained by r\umerlcal 1ntegrat10n of dzf /d(x/s)

which is more accurate than numerical differentiation*.

Also required for the slender body solution is dRoldx. This quantity
may be obtained numerically from the input Ro. An alternate approach may
again be suggested whereby dRo/dx is input and R is obtained by numerical

integration.

% Actually the first value of dfi/d(x/s) is input along with the second derivatives
to establish the proper level for dfi/d(x/s).
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2.4 Loads and Forces

2.4.1 Generalized Forces

The lifting pressures, ACP, on the lifting surfaces are given by the
solution of (2.2-13). The lifting pressures, AC_(), on the bodies are given
by (2.2-4). These two distributions may be combined into one partitioned

array, EEP as follows:

[A_cp} = N (2. 4-1)

(f)

The lifting pressure ACP is composed of two components, i.e., ACZ

and ACY’

AC
ac B { %
p

The lifting pressure ACZ acts on the area of the body projected onto the

z = 0 plane. The lifting pressure ACY acts on the area of the body projected
onto the y = 0 plane. All loadings are in the form of pressures acting on
areas and the calculation of the generalized forces may proceed on this basis.
There are as many lifting pressure distributions as there¢ are modes. The

subscript "i" identifying the rnode will be added to ACp.

. = 2, i T
p . p,

The generalized forces, Qi" associated with the generalized coordi-
nates, Ei’ are determined using the principle of virtual work. The virtual

work, 6W‘j associated with the jth mode is:

bW, = f/ §. AC sh ds (2. 4-2)
j P;
L. s.

,
RS

W.M,‘y.m.‘,‘
Fos
" b %‘;I;f
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The sarme virtual work is obhtained using the generalized forces

W, = -2 $3q 2 Q; o, (2 4-3)

1
Recalling, from (Z.3-1), tl at
h o= s D, f T

and equating (2. 4-2) and (2. 4-3) gives

-2 qu Z Qij 69, = qu {

1

Ljr‘s/. A fi ds Eiqi
Solving for Qij gives:

oo ]
Q.. = - = J aAC . {, ds (2. 4-4)

Y 252 L.S. P '

1 —
Q. = - = Z {Acpj £, }n As (2 4-3)

where Asn is the box area on the lifting surfaces and where As_ is

R, Agn on the projected body surfaces. The factor 1/2 is accounted for

by restricting the range of the subscript ''n" to the right-half of the aircraft.
(Even the projected area of the body is halved, i.e., Asn = RoAgn if it

lies on the plane of symmetry.)

2.4.2 Aerodynamic Parameters

It is desirable and sometimes necessary to generate conventional

aerodynamic data. Such data, in addition to being useful in themselves,

24
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provide an excellent check for the computer program and/or specific cases
to be run by it. For example, a check of the span loading for rigid body
pitching and/or plunging could bring to light some geometrical data error

in a particular case. Thus the aerodynamic data output acts as a program
monitor.

The local normal force coefficient and pitching moment coefficient
about the local leading edge is

. ,

¢, T T fACP d¢ (2. 4-9)
-1

Cm = —C—Z- / ACP (& - xL.E.) dé (2 4-7)

where ¢ is the local chord length. The total lift and side force c¢ efficients

are:
s
- (1 +9) -
c, = = c e dl+ g j R_AC, df (2. 4-8)
R.S. B.
c, = 4-9 ), cc_ di+ g R _AC, d§ (2.4-9)
Y A n o~ 7Y ’
R.S. B.
Here A is the reference area, 6 is a symmetry flag (6= 1, for symmetry,

5= -1, for antisymmetry and § = 0 for asymmetry). The limit, R.S.,indicates
that the integration is to be carried out over the right side of the aircraft and
the limit B. indicates that the integrals are to be taken along the lengths of the
bodies. The term g is defined in Eq. (2. 4-12). The pitching moment, yawing

moment and rolling moment coefficients are given by:

148 2
AT
R. S.
-g /ACZ(g—xR)ROd§ ( + nose up)
B.
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a-9 2 dg
Cn = - 2As f (c “m " (xL.E. ) XR) ¢ cn)

R.S. (2.4-11)

+ g .[ ACY(ﬁ-xR) R0 dé

( + nose right)

c, =-4-% ce_mdn
2As
R’S.
n f c e 4 dl (2. 4-12)
R.S

r
+ n,2 f AT, R dd  + {2 j AC, R dé
B. B.

where g =

where XR is the point about which moments are taken. The rolling moment

is taken about the x-axis.

Dynamic stability derivatives can be obtained from the complex
coefficients just described. Each complex aerodynamic coefficient
possesses an in-phase and an out-of-phase component, the real part being
the component in phase with the motion and the imaginary part the component

out of phase with the motion (90° out of phase). Reference 11 describes a

26
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- method for determining dynamic stability derivatives. Specifically, if C
represents any aerodynamic coefficient such as ¢, , S C o C 4 ete..

and if the subscripts @ and 0 represent modified plunging and pitching then: *

Co = Co (k. = 0) static derivative
Cos = -El— Im Co (k. = €) damping derivative
: r
9 1
g Cy = "é' Re { Cqo (kr =0) -~ Cq (kr = e)} acceleration derivative
s
4 The program must be run at two different values of reduced frequency
i kr = 0 and kr = ¢ to obtain these dynamic derivatives. The value of ¢
: is usually small (about 0.1). The dynamic derivatives will then be valid
j for aircraft motions in the frequency range 0 to ¢.
% The values of the q or pitch-rate derivatives are obtained as follows;
A Cq = TImCe(kr-e)-C&
3 r
1
C(-1 = kz Re { Ce(kr = 0)-Ceo (kr =c)}- Cy
r

Similar expressions for Cp, C['ﬂ, C"g, Cr and Clz are obtained if the
values of C, and Cq are replaced by values for modified sideslipping and

yawing. The expressions for the rolling damping and acceleration
derivatives are obtained as follows:

C = C (k. = 9)
P P r
1
Cp = 'E; Im Cp (kr = €)

where Cp is the complex aerodynamic coefficient Jue to unit rolling velocity.

e

* The term ""modified" indicates that the amplitude of translation (plunging
or sideslipping is normalized by the term (ikr)' The resulting derivatives,
then, pertain toaand P respectively.
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2.5 Aerodynamic Influence Coefficients and Harmonic Gust Coefficients

2.5.1 General Considerations

The aerodynamic influence coefficient matrix used in this method is

described in References 12 and 13, The basic idea is to produce a set of

influence coefficients that are independent of mode shape and smaller in
number than the number of elements or boxes. An obvious set of AIC's
would be [D]'l whereby lifting pressures are obtained directly from the

normalwash boundary conditions. A second example would be the matrix

\ SRR S T e s e

of generalized forces [Q], a typical element of which is Qi.A The advantage
of [D'].l is that it is independent of mode shape; the advantage of [ Q] is that

it is small and easily handled. A compromise between [D]"1 and [Q] is

Loy

pdiadbict i

the current [AIC]. A preselected set of "submodes" is selected for each

lifting surface strip or bay. The submode allows motion only on the strip

(Y

; or bay considered. A set of generalized forces is obtained from each of
% these submodes. For instance if the submodes are pitching and plunging
: and there are 15 bays then the AIC will be a 30 x 30 matrix of generalized

forces. It is assumed that the general mode shapes may be built up of
these submodes by superposition. The generalized force matrix for any

specific mode shape is then

Q; = {Fj}T [ac] {1}

- .th
where f, are components of the i mode shape in terms of the submodes.

The value of using AIC's lies in the fact that once the matrices of
AIC's have been generated for a specific planform, Mach number and
reduced frequency, any number of aeroelastic analyses can be performed
in which only the inertial and stiffness propertics are altered, since the
AIC's are independent of the aircraft vibration mode shapes and/or static

deflection modes.

28




TR e R R R PR L T T

i sl

Dl 3o R T £ €14 g

BN et s dtnc S KINIRORTNS 3 R A S T e e s b g ek

The aerodynamic influence coefficients, as derived in Reference 12,
relate the oscillatory aerodynamic moments and/or forces acting at the
specified AIC control points to the harmonic rotations and/or deflections
of these control points. By the definition of Reference 12 the equation for

the dimensional AIC matrix is

\ Uw

hla =2 % %
Ir

[C (/2) [B] D)} [w)] (2 5-1)

Ux
wherec/21s the reference semi-chord, 5

is the reference reduced
r
velocity, [ B] is the integration matrix described in Sec. 2.5-3, and

[W ] is the substantial derivative matrix described in Sec. 2.5-2.
A set of dimensional static AIC's [Chs]d may also be defined by

]

[Chely = 7 A E/2[B][D (k =0]

v [w ] (2.5-2)
These can be used in static aeroelastic analyses of lift effectiveness,

divergence, control surface effectiveness, reversal, and so forth.

The harmonic gust coefficients were also derived in Referencel2
for a gust in the plane of the surface. For a gust field in a plane with

arbitrary dihedral* I'g, Eq. (39) of Reference 12 is generalized to read

{x-x )

[¢)
—— )} (2.5-3)

{G} = —;‘- P g [B] [D]'1 { cos (I;;-Y) exp (-ik

where Uy is the aircraft velocity, Wg is the harmonic gust amplitude,
kr is the reduced frequency, Y is the local surface dihedral, and X5 is

the gust reference coordinate.

* Vertical velocities are obtained when the dihedral angle is zero. If
the dihedral angle is -90° the gust velocities are in the lateral (+y) direction.
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2.5.2 The Substantial Derivative Matrix

The Doublet-Lattice Method requires the determination of the
oscillatory normalwash on the lifting surface at the 3/4-chord of each box
In the derivation of the substantial derivative matrix, [W ], we assume that
the aerodynamic idealization for the particular aeroelastic problem pro-
vides a sufficient number of (spanwise) strips on the lifting surface so that
the oscillatory normalwash on each box can be determined only by chord-
wise interpolation and differentiation of the assumed local deflection mode
shapes corresponding to each local aerodynamic degree of freedom. It is

assumed that an interpolation matrix, [WI]' can be found such that
{113(:/'4} = [WI] {h}

where 1'130/4 denotes the deflection at the 3/4-chord point of each box and
h denotes the AIC control point deflections. The matrix [WI] has the

partitioned form i

(1) (1|

h?>c/4

{2)

h
3c/4
- Lo - . (2.5-1)
l
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where the superscripts indicate strips in the aerodynamic idealization of
the lifting surface. The oscillatory normalwash at the 3/4-chord of each

box is given by

k
w(x) _ dh{x) ) R , -
——[E— = ———'—dx T 1 _E,/Z h ()x) (2 5 5)

Generalizing Eq. (2. 5-5) in matrix notation we have

{w} = [w] {n} (2. 5-6)
where
dwW | k
(W] = | — + o —— [w,] (2.5-7)
dx c/2

Several alternatives to the computation of the [ W ] matrix can be
used depending on the manner in which the deflection characteristics of
the aircraft are described. Ref. 12 describes three possible alternatives
for the [ W ] matrix; Alternative No. 1 is used in the generation of the AIC's
for planar surfaces by computer program HTWA., The nonplanar computer
programs, HTWB and HTWC have the capability of generating AIC's for non-
planar surfaces according to either of the two alternatives of the [ W ] matrix
described in Reference 13 in Appendices I and II, which are reproduced in

Appendix D.

The two alternatives describe two types of submodes that can be used.

The submodes for each bay are:

1) Alternative #1: plunging, pitching, control surface rotation and

tab rotation or control surface plunging.
2) Alternative #2. Three cambering modes, control surface rotation,
or tab rotation.

Alternative #1 makes available six degrees of freedom or submodes
per bay, while Alternative #2 furnishes seven. Of these available degrees

of freedom or submodes only four may be used at one time. The rcason
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for this restriction 1s the limited core capacity of the computer. More of
these available submodes may be made available if a core larger than 32K

1s available.

2.5.3 The Integration Matrix

The integration matrix, [ B], relates the pressures over the lifting

surface to the AIC control point moments and/or forces (Ref. 12)

{F},c q[B] {acp} (2 5-8)

where q is the dynamic pressure. It is assumed that there is a chordwise

interpolation matrix, [Z ], on each strip such that

(2 5-9)

ho,, = [z]{h}

c/4

where the hc/4 are the deflections at the 1 /4-chord of each box and h are

again the AIC control point deflections.

as the matrix [WI] (Eq. 2.5-4).

B 7
() \ L0 . /hm

[Z ] has the same partitioned form

| | |
hc/4 | | |
S S
(2) L (@ | (2)
he /4 0 | Z l 0 h
S R T

(n) , (1) (
\ hC74 L_._O - — \ hn) /
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The generalized forces acting at the 1/4-chord of each box are

given by
{F.u} = a [a]{acp} (2

where [AJ is the diagonal matrix of box areas. By applying the principle
of virtual work it is seen that

T
]

{Flae = (21 {F ) (2

By combining Egs. (2.5-10)and(2. 5-11) and comparing with Eq. (2. 5-8)we

have
(8] = [z]' [a] 2

The actual form of the [ B ] matrix depends on the manner in which the
deflection characteristics of the aircraft are described, and hence, on the
form of the [W ] matrix. The two alternatives for the [ B ] matrix are
described in Reference 12 along with the corresponding [ W ] matrix

forms.
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2.6 Matrix Solution

When modes are considered the matrix equation (2.2-13) must be

solved for each mode. The symbolic solution for multiple modes is

[ac,] = [DI7 [w= wy) (2.6-1)

where the matrices [ w - wB] and [ACP] are the normalwash and resulting

pressures for all of the modes. Each colurin of either [A Cp] or [w - WB]
represents one mode. For AIC's Equation (2. 5-1) must be solved:

—— (z/2) [B] [D]

r

-1

1
hla = 2

Po [w) (2 6-2)

In both cases the symbolic solution contains a term like [D]-] [ wr ] where
[wr]is[w = wg]in(2.6-1)and [W ] in(2.6-2). Define the term [D]"}
[wr]as[P].

pp-

[P] = [D]! [wr] (2.6-3)

In the present method the desired solution matrix [ P] is not obtained
exactly as shown in this equation. The inverse, in the usual sense of the

word, is not determined since this would be very inefficient for large matrices
The solution matrix [ P] is obtained directly from the equation

[wr] = [D] [P] (2.6-4)

by direct Gaussian Triangularization and back solution. This subroutine is
called SOLVIT and is described in Refcrence 14. The disadvantage of this
procedure is that future solutions can be obtained only by a repetition of the
triangularization and back solution (a (1/3)N3 + NZM process), where N is
the order c. the matrix [D] and M is the order of [Wwr ]). Also the solution

matrix [ P ] must fit into the computer core. When [ P] is small, as with the

34




ST A

T

TR

et Rttt o)

modal approach, this restriction is not important, However for AIC's

the solution matrix may be larger than the available storage.

A generalization of this method may be made to eliminate both
disadvantages discussed above (see Reference 14, page 37). The basic
idea is to save the instructions needed to triangularize the matrix [D].
It just so happens that these instyuctions come in the form of constants, the
number of which fit into the empty space generated in [ D] by triangulari-
zation. The triangularized form of [ D] {its into the upper triangular sector,
including the diagonal, while the constants of triangularization fit into the
lower triangular sector, excluding the diagonal. This matrix is termed
the Quasi-Inverse since both halves of the matrix can be used to {ind a
solution using only NZ operations per mode or submode. The Quasi-Inverse
requires identically the same number of operations as a direct solution,
i.e., /3N operations. In fact this modified form of SOLVIT works
exactly like SOLVIT if the solution matrix fits in core (except that the
Quasi-Inverse matrix must be read on tape as it is generated so that it can

be used in the future.)

The difficulty of running future solutions is thus solved Future
solutions are solved simply by calling back the Quasi-Inverse and performing

an NZM operation (where M is the number of modes or submodes).

The restrictive requirement that the solution matrix fit into core is
also climinated since the normalwash matrix may be split into, say, two or
more parts, each of which fit into the computer core. The first part of the
solution corresponding to the first part of the normalized matrix obtained
during the first pass through the computer((l/i’a)l\l3 + NZM operations).
Also formed during this pass is the Quasi-Inverse. The second and sub-
sequent passes through the computer generate the remainder of the solution
(MN2 operations each)., The second and remaining parts are thus considered
future solutions. This method is programmed in two parts QUAS and FUTSOL
QUAS forms the Quasi-Inversec and solves for the first part of the solution

and FUTSOL generates future solutions from the Quasi-Inverse.
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3.0 CALCULATED RESULTS
3.1 Convergence of Results

The number of boxes necessary to give a converged result is
dependent on the reduced frequency. For the steady case the comergence
1s very rapid. In fact, one box chordwise gives usahle results (the method

of Weissinger uses one box per spanwise station).

For the other extreme, many boxes are necessary for very
high reduced frequencies. As an example,Figure 1 presenis a conyergence
study for a reduced frequency (based on the span 2s, kr = -‘2"—3’%) of 1.5.

As shown in the figure the wave length corresponding to this frequency is
approximately the length of the wing-tail assembly. This means that the
effect of the wing on the tail is out of phase with the wing motion about '80°.
Thus the downwash of the wing on the tail is opposite to the wing motion.
This i1s a very severe case and many chordwise boxes are required. The
figure shows that approximately 25 boxes per wave length are required.
Thus for this case the box length AX is related to the reduced {requency by:

AXs < w¢C

ki
= = "2'—5-12'1_where kr = -?:-\7;

Actually the wing and tail box lengths are not equal for Figure 1,

The number of chordwise boxes for wing and tail are:

TOTAL WING TAIL
9 5 4
11 6 5
14 8 6
18 10 8
22 12 10

There are twelve spanwise strips for the case presented in Figure 1. A
case using eight spanwise strips is also shown for the case of 22 total
chordwise elements. The error for the real and imaginary parts is about
2. 5% and 0, 80%, respectively.
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3.2 Nearly Coplanar Wing-Tail Configurations

The difficulty encountered by the Doublet-Lattice Method of
Reference 1 for nearly coplanar wing-tail combinations is discussed in
Secvion 2. 1. The refinement of the method is also nresented there. Figure 2
presents results for a nearly coplanar wing-tail configuration using both the

original (unrefined) and the refined methods.

The wing-tail assembly is made to plunge with a reduced
frequency of 0.6 (based on a chord length of 0. 87424 s). The total lift
coefficient (wing plus tail) is given (based on total area of both sur{aces).

It can be seen that the original method starts to lose accuracy when the gap
to chord ratio 1s about 0.1. (Notice that the widths of the first eight strips
is 0.1). The refined Doublet-Lattice Method gives accurate resuits for
small z/¢. Appendix B explaine that a numerical limit must be taken in
the new or refined method. Any inaccuracies generated from this limit are
not apparent even at a value of 2/T of 0. 025. Thus the refined method is

valid for all practical cases of interest.

The wing-tail configuration of Figure 1 is used to present a
~econd '"gap'' study {see Figure 3). A much wider range of vertical separa-
tion {gap) between the wing and tail is used” Also the reduced irequency is
considerably higher. Again the 2.sembly is made to plunge and the total lift
coefficient (based on the area of the wing alone) is given versus vertical
spacing or ''gap'. Although not entirely evident the curves of real and
imaginary parts of the lift coefficient have horizontal tangents as z —~0 since

they are symmetrical with z.

3.3 Wing-Body Combinations

The methods of Woodward (Ref. 6) and Giesing (Ref. 3) handle
wing-body combinations in steady flow. A recent unpublished extension of
Reference 3 allows bodies of varying diameter to be handled. These methods
can be used to furnish test cases for the present method, at least for the

static case.

% The tail moves ait as it moves up along the line x = 0. 8752,
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Figure 4 presents the span loading (ccy/T) for a wing-fuselage
combination as calculated by the present method and the methods of
Woodward (Ref. 6) and Giesing (modified Ref. 3). The configuration shown
in the figure consists of a low aspect ratio wing attached at midplane to a
thick parabolic body of revolution. The center of the wing root 1> at the
center of the fuselage. The maximum diameter is 1/3 the span. The con-
stant section, upon which lifting surface elements are placed, 1s half the
length of the body and centered longitudinally. The span loadings shown in
Figure 4 are entirely fuselage induced since the wing is held at zero incidence.
In Figure 4(a) the fuselage is given an angle of attack of 1. 0 radian. It can
be seen that the present method agrees almost exactly with the method of
Woodward* since the idealization f{or these two methods i1s about the same.
The disagreement with the method of images (modified version of Ref. 3)
is due to the fact that a different idealization is used. The boundary condi-
tion on the fuselage surface is satisfied using a system of images. one for

each horseshoe vortex, plus an axial singularity system.

The span loading across the fuselage is induced by the wing
loading (which was induced by the body incidence or camber) This loading
is the fuselage lift carry-through. Slender body theory predicts no net
load since the body closes.

Figure 4(b) shows the span load on the wing when the fuselage
possesses a parabolic camber with 2 maximum deflection equal to the

maximum radius. The agreement between the present method and Woodward's

method is almost exact.

Figure 5 presents a comparison of calculated spanwise load
distribution oblained using threec slightly different approaches to the
interference problem. The configuration and flow condition used is that of
Figure 4(a). The circles represent the present method and are the samec as
those in Figure 4(a). The squares represent a method that diffe~s only
slightly from the present method. The subtle difference between the iwo

methods is that the flow field due to * -~ body axial singularities is calculated

* The control point must be placed at 85% of the box to render Woodward's
results correct, See Reference 5.
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on all lifting surface panels, including the body panels, and not just on the
wing panel as in the present method. Since the body panels do not lie exactly
on the body surface,the total normalwash there is different from zero (since
the axial singularities were meant to cancel the normal flow only at the
exact location of the body surface). This slight difference is enough to
cause large differences in the spanwise loading on the body surface even

though the loading on the wing compares favorably with the present method,

A second alternative {method of Reference 5) is to use body panels
alone to simulate the body surface. For this method no axial singularities
are used. When the body possesses no angle of attack (boundary condition
of zero normalwash to the body surface) the results are accurate (see
Reference 5, Figure 12). However,when the body possesses an angle of
attack or camber,then the results seem to be very inaccurate especially
over the body surface. Figure 5 shows such a calculation. The reason for
this inaccuracy at angle of attack is that the body panels are simulating an
annular or ring wing. Such an annular wing is much more effective in lift
than the body it represents. If the body has no region of separation and if
no vortices are shed from the body then the only lift it can carry is the lift
carry-through which is induced by the wings. The spanwise distribution of
lift carry-through has the characteristic shape shown on Figures 4(a} and 4(b)
The lift, over and above the lift carry-through, is caused by the annular
wing cffect of the body elements. A possible solution to this problem
would be to use wakeless elements on the body surface. Such wakeless
elements can be generated using two steady or unsteady horseshoe vortices:

one placed behind the other such that the wakes cancel out.

Figure 6 presents an example of an unsteady wing-fuselage
calculation. The configuration used is that of Figure 4. The two modes
of oscillation are again the same as those used in Figure 4, for the static

case. Specifically:

Mode 1 (Figure 6(a)) z = (x - xc) e’“t
X o FE 2 et
Mode 2 (Figure 6(b)) z = 4.0 Rmax (_I_: 1____) ol
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Here X L and Rmax are the center, length and maximum radius of
the body respectively. The frequency of uscillation (based on the average
chord, ¢ = 7)1s kr = -2"35- = 1.0. The wing remains stationary while only
the body 1s in motion. The span loading across the wing is induced by the
body motions while the span loading across the body 15 induced by the loading
on the wing. The span loading across the fuselage does not include the

unsteady slender body components ard is just the hft carry-through.

A second wing-body case is presented in Figures 7, 8, and 9. The
specific configuratior considered, which 1s shown in Figure 7, 1s a wing
with an engine nacelle mounted at its tip. The wing nacelle combination is
made to plunge and pitch harmonically with a reduced frequency, (based on
the semispan), of 1. 72. The pitch axis 1s shown in Figure 7 The real and
imaginary parts of the distribution of hift coefficient are given for both
pitching and plunging. In addition, the distribution of hit coefficient for the
wing alone 1s presented for reference. Notice that the nacelle has a sub-
stantial effect on the distribution of Iift coefficient, This effect arises from
two sources; the first i1s the upwash generated by the motion of the nacelle

while the second 1s the end-plate effect of the nacelle or the wing tip.

The slender body simulation of the naccelle 1s accomplished using two
bodies. The axes of the bodies are centered within the nacelle spanwise
and given a vertical displacement of £0.108252. The radius of these bodies
1s 0.108252. Even though these two bodics do not quite {ill up the nacelle
cross-sectional area, 1t can be shown that this choice of center and radius
gives the best representation of the flow around the nacelle cross-section

{in two-dimensions).

Figures 8 and 9 present comparisons of experimental and calculated
lifting pressure coefficient. Specifically, Figure 8 gives the pressure at

two spanwise stations, y/s = 0.27 and 0.715 for the plunging case. The wing-

* Unsteady slender body theory gives a non-zero lifting force on a body
even if a closed body is considered.
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alone pressure distribution is alsv given at the spanwise station closest to

the nacelle; i.e., y/s = 0.715.

Figure 9 gives the pressures at the same two stations for the
pitching case. The test and theory correlate best at station y/s = 0. 27 for
both the pitch and plunge case. This may be due to flow separation on the
aft portion of the wing which seems to be present in the vicinity of y/s - 0.716.

The loss of lift aft of about the 807 chord point indicates that this 1s the case.
3.4 Conclusions

(1) The Doublet-Lattice Method 1s a sunple, versatile and
accurate lifting surface theory. The method 1s capable
of analyzing lifting surfaces with arbitrary planform and

dihedral. Control surfaces, <ither full- or partial-span,

may be included. Problems of intersecting and/or inter-
fering nonplanar configurations, such as a wing-pylon

combination, a T- or V-tail, a wing-{ail combination, etc.,

may be analyzed. The method documented here 1s also

R Bl R SISl A it

capable of solving problems involving lifting surfaces and
bodies where the bodies may be 1n motion Included in the

calculations are options for

(a) Aerodynamic data including lifing pressures, span-
wise 1lift and moment distribulions, aerodynanuc
center locations, tolal lift and side force coefficaents,

and total pitching, yawing and rolling moments;

(b) Generalized forces for polynermial moues of motion

specified by the nser;
(c) Acrodynamic Influence Coefficients;
{d} Gust loads from * harmonic gus! ficld:

{e) Symmetry and ground effects.
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2} A refined version of the original Doublet-Lattice Method
is required for nearly coplanar wing-tail combinations
The refinement consists of considering the planar and non-

planar parts of the <ernel separately. The details are

given in Appendix B. As a control point approaches the
plane of the sending element a liimit 1s taken numerically
This limiting procedure s accurate for all practical values

of vertical displacement.

(3) The number of chordwise boxes must increase 1n proportion

to the frequency; specifically, Axs/E < 11/2‘3~kr Other require-

et I —
R e e e b

ments exist for the placement of strips and boxes These

pocs

reguirements are discussed in Part I, Vol II.

T

(4)  The boundary condition on the hifting surface elements,

placed on body surfaces for wing-body interference purposes,

oL EE S g e

must be zero normalwash. The elements on the body surface

(b

b represent a ring or annular wing*. This annular wing must
be used for interference purposes only; any angle of attack g

will produce an undesirable annular wing lift. A slender body

theory for circular bodies 15 used to reduce the normalwash,

generated by a body in motion, to zcro.

{5)  The tube on which lifting surface elements are placed, to
generate wing-body interference, must have a constant cross-
section along 1its length. The cross-sectional shape may be
noncircular. The reason for this is that cach element has a
wake trailing straight back downstream to infimty If the
tube were of varying radius, element wakes would be thread-
ing in and out of the body surface. Such an idealization has

not been tried and its validity has not been proven.

The synthesis of a noncircular slender body theory out
of one for circilar bodies 1s accomplished by placing more

than one circular body in close prexammty. The distance

* Actually, the body cross-section may be of wrbitrary shape even though the
slender body theory 1s for a circular cross-section. A slender body theory for
cross-sections of different shape could replace this simple theory.
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between axes and the radius of the various bodies may
be obtained fron a two-dimensional analysis. This
approach, although only approximate, is reascnably
accurate. In general, the interference generated by

the body e¢lements 1s less than it should be by a small
amount. Convergence sfudies have shown that as the
number of elements on the body surface 1s incrcased the

results tend toward those obtained using the 1mage method

(6) The mnverse of the normalwash factor matrix [D] need not
be found to obtain a solution. Direct solution by triangu-
larization 1s always preferable If the same problem s
to be solved repeatedly, a method for saving the triangu-
larization instructions {these are numbers which may be
saved 1n the lower half of the {riangularized [D] matrix)

18 used.
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APPENDIX A, THE KERNEL FUNCTION FOR LIFTING SURFACES

The velocity normal to an oscillating surface, W = UwRe:(WeMt), is
related to the pressure difference, P = q Re(ACpelwt), across the surface by

the integral equation (Ref. 16)

- 1 v . .
w(xr, Yy Zr) =-8:rf-/1< (xo, Yor %gi @ M)ACps(g, n, L)dfdo (a.1)

where x or § is the streamwise coordinate and ¢ is the tangential coordinate
on the surface (see Figure A-1), w is the frequency of oscillation, M is the
Mach number, and subscript r denotes the downwash or receiving point and

the subscript s denotes the doublet or the sending point, and

Xg = X - § (A.2)
Vo = V-1 (A.3)
29 = z- ¢ (A.4)

The symbol f means that the inlegral in Equation (A.1) is defined in the sense
of its 'finite part" (Rei. 17).

Rodemich (Ref. 7) has derived an expression for the kernel function

for a nonplanar surface in the form

K = e %/ Uk 1 /% 4 1Y (A. 5)
1Ty P
where
ro= 5+ 2R (A. 6)
Tl =  cos{ Yr - Ys) (A.7)
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2
i
T2 = (z0 cos Y, - ¥y sin Yr) (zocos Ys - Yo smfys) (A. 8) t
H
(N.B., the definition of T; in Equations (A.5)and (A. 8)differs fromthatof T, in
Refs. 7 and 8 by the factor 2 )
and Landahll ®) has simplified the forms of K| and K, to read
-1k u
K, = I + [Mr /RITe ' la+ud)tf?) (4. 9)
ik M2t T
K = =3I, - - ;
2 2 R? (4 u)iie
3 1
(A. 10)
Mr ﬁzrz Mr u -ikyuy
o 1 2 1 e
3 - (1+a?) — + 24 R Yr
i R R (L) 1
; where
] .
: w, = (MR - XO'/p r (A. 11)
k, = or /U, _ (A. 12)
! L Y s | (4.13)
R = (g + pr0)/? (A. 14)
'
and
s © -iklu
i L (u, k) = / £ du (A, L5}
; 171 1 2.3/2 .
i u (1+u )3/
i 1
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Figure A-l

At zero frequency the planar part of the kernel is

K(s) = 1. + Mr 1
1 1 R (l+u%)1/2

® du
b P
ul ( +u )

= 1 - u (1+u?)'1/2

where

so that

Kl(s) L4 xy/R
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(A, 18a)

(A. 18b)
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The zero frequency value of the nonplanar part of the kernel is easily

found from the planar part (Refs. 7 and 8),

3 3 1 810
KZ =T or (r ‘-5_1'—) (4.20)
where
o AL ZY)
ryall Kl/r (A2
1
so that
N T B [ W Zo
Kog = or 1-2 a+ R) (A.223)
= -2 - (x/R) 2+ BrP/RD) (A. 22b)

Although the integrals L and I [Equations (A.15) and (A.16)] are easily
evaluated at zero frequency, no explicit solution is possible for nonzero
frequency. However, the symimetry properties of the integrands permit

consideration of only nonnegative arguments u, since, for uy < 0, we note

that

B

Il (ul, kl) ZR.eI1 (0, kl) - Rell(—ul, kl) T+ ilmll(-ul,kl) (A.23)

and

n

I2 (ult, kl:) 2Re12(0, kl) - ReIZ(-ul, kl) + i'Iml2 (-ul, kl) (A 24)

4
o Amw.,,&»«%%’n&mﬂ
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The integration of Il by parts once gives

~-ik. u
_ 171 2.-1/2 .
I1 (ul' kl') = e [1- o, (1+ul) - 1k1 IO(ul' kl)] (A. 25)

where

o
ik, u ~ik,u
Ijtu, k) = e 1l / [n-ued M2 b (A. 26)
u

Integrating I, by parts twice leads to

-ik, u

_ 171 . 2.-1/2
312 (ul, kl) = e { (2+1k1u1) [ - u1(1+ul) ]
{A.27)
2,-3/2 . 2 }
- ul(l+u1) - lkllo(ul' kl) + kl Jo(ul, kl)
where
ik u ® -ik,u
Jolup ky) = e 1 / ufl - u(l+u2)-1/2] e ' du (A.28)
ui
. . . . 2,-1/2
The integrals Iy and J. can be evaluated using approximations to u(l+u )

0
Laschka( has obtained an extreme’y accurate approximation in exponential

form foruz 0

11

I TTR VC D Y a e "% (A. 29)
n=1

where ¢ = 0.372 and the a_ are given in Table I. The maximum error of

‘this approximation is 0. 135%. The integrals J, and Jo for u 2 0 then

become
-ncu,
11 z\re
Io(ul) kl) = Z —L 2 2 (nc - lkl) (A 30)
— nc +k
n=1 1
55
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and i
11 =ncu ‘3
(e, k) aze ! 22 2 "
R L L 22, .22 | "¢ N ,
_ (n"c” + k) :
n=1 1 v
(A. 31) 4
+ m‘.ul(nzc2 + ki) - ik[2nc + ul(nzc2 + k%) ]f
The desired integrals I, and I, then follow from Equations (A.25) and (A.27) ¥
for w2z 0, and from Equations (A. 23)-(A. 25) and (A.27) for v, < 0.
Table I - Coefficients in Laschka's Approximation
to u(l + uz)'l/2
n a
- 2 .8
I + 0,24186198
2 - 2.79189027
3 + 24, 991079
4 - 111.59196
5 + 271.43549
6 - 305, 75288
1 - 41.183630
8 + 545. 98537
9 - 644. 78155
10 + 328.72755
il - 64.279511
p
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APPENDIX B, INCREMENTAL OSCILLATORY DOWNWASH FACTORS

The planar part of the incremental downwash factor is approximated by

Ax e P (7) _
D(i)s = 8; 2—1——2- an (B-1)
- + z

-€¢

where Pl (M) is the parabolic approximation

- -2 - .
P, (M = AT + BA + C (B. 2a)
o (s)

~ {K1 exp [ -iwX-l tan A)/U] - K| }Tl (B. 2b)

If we denote the inboard, center, and outboard values of Pl (1) by Pl {-e),

P1 (0), ard Pl (e), respectively, the parabolic coefficients are

A = [P/(-e) - 2P (0) + P, (e) )/ 2% (B. 3)
B, = [P (e) - P (-e))/2e (B. 4)
c, = P0 (B. 5)

The integral of Eq. (B.1) is given in Ref. 1. However, some discussion of

the integral

F ——:——zd—n- (B. 68.)

1)
=
1
=
+
Ny
N

= L an” —————————-—:e I:l > (B. 6b)
'z‘ vy +z2 -e
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3 is warranrted. The value of the arctangent is taken in the range (-m -+ ).

é When ?2 + '52 = ez, Equation B. 6b is well behaved and approaches zero

f i s z approaches zero. Under these circumstances it is convenient to

£ introduce a parameter ¢ defined by

4 2

] = 2e ( Z )

L F 2 — 1 - «a (B.7)
2 ?2 78 - el o2

where

: 1

;_ 4t 1) 2en 2n-4

T2 22 Z 2 ) (8-8)
(75 + 2% - e9)% n=2 2n-1 \§° +3%-e°

- Syt =2 2 .

- Eq. (B. 8) has been used for lZez/(y +z°-e“)] 0.3 when

?2 + ‘z‘z > ez. Then the planar downwash factor becomes

Ax
D(l) - __S_ "y

) -
rs = 1[G -2 A + ¥B) + C|]F

1

2
5+ ZeAl (3.9)

(1 )1 (;;"9)2 + Z
+ (5B, + YA,) log
¢l ! ()7~!~e)2 + Z

The incremental nonplanar oscillatory downwash factor is approximated by

A > P, (M) _
p® - —%5- f > 22 =~ d7 (B. 10)
s w ‘e [(;"ﬁ) + -i ]

P
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where Pz('ﬁ) is another parabolic approximation .
¥
P(")"A"2 B,M + C B. 11
(M= AT+ By 2 (B.1la) |
.. - (s) *
~{K, exp[-iw@®-1 tan A )/U] - K, }T, (B. 11b)

Letting PZ(-e), PZ(O)’ and Pz(e) denote the inboard, center, and outboard

values of PZ('ﬁ), respectively, we have

A, = [Py(-e) - 2P,(0) + P,(e)]/2¢° (B. 12)
B, = [P,(e) - Py(-e)]/2e (B.13)

o
c, = P,0 (B. 14)

The nonplanar downwash factor is then evaluated to be

H)

AXs 2 _2
D, . ot { {(y +77)A, + VB, + cz] F (B. 15)

y ——— ([ G435 + §°-3)elA, + (42470 B, + (§r+e)c2)
(yie)” + z

. 21 5 ([(?2+52)? - (?2._;2)e]A2 + (;,2+52_;e)132 + (§-e) cz‘)}
(y-e) + 2
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Eq. (B.15) tends to lose significance for small values of Zz. Introducing
« into Eq. (B.15) thru Eq. (B.7) leads to
2) _ A% 2(V2+'22+e2) (eZA +C,) + 4’{((:2 B
Dis = =72z e 2
TE4E - - 2 n2qp - 2, _2
8m(y +z " -e) [(¥-e)" + 27)[(y-e)" 4+ 2" ]
o —l - -
- [ +z2)A2+ yB2+CZ]} (B.16)

e

The simplification of Eq. (B.15) via Eq. (B.7) is somewhat tedious but
results in the more accurate form above in which « is again given by

Eq. (B. 8).
|5%+2%-e%) 1267 |

Eq. (B.16) has been used in general except when
£0.1in which case Eq. (B.15) is used.

When ?2 + EZ < e2 then the expression for F is not well behaved but

approaches infinity as z—0. The-specific behavior is

2

lim

50 F — 7w/|Z| , for?2 + ’zz< e

Under these circumstances it can be shown that the term

lim - _2 .2 1 - 2.2
5 0 F C1 + yB1 + (y -2 )A1 +?'Z‘T (C2+yB2+(y 1z )AZ)
-0

even as F — o . Numerically, of course, this expression will lose accuracy
An example calculation has shown that for 27> = 0.5,

k=6.0and e =1/120,the gap, z/e, at which numerical difficulties “arose was

0. 0025.

be zero; i. e., the planar case.

at some value of Z.

Since e is small z = e (. 0025) is very small and can be assumed to
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APPENDIX C. THE STEADY NONPLANAR DOWNW ASH FACTOR ;

The steady nonplanar downwash factor is

e e ot e aradie o

(s) (s)_x
o) - wxssn  f [+ 22) a @

. rs *s 2 4 )
3 r r
¥ -e
3
The downwash factor has been given by Hedman (Ref. 2, App. C) and is
equivalent to Equation (C. 1), although it is derived from fundamental vortex
considerations rather than evaluating the inlegral in Equation (C.1). We
Y find it convenient to rederive Hedman's results in order to facilitate the
4
) programming of the equations.
: ,
] i
- The vector geometry for a finite-length, constant-strength vortex is {
3 shown in Figure C-1. The vector form of the Riot-Savart Law for this

segment is

Z vV o= —FL-&;- (cos ® - cos ¢) (C 2)
4w d°
where 1
d = R, - (T/TIR, coso (C 3)
) cos O = f(?P:l,f/ R})ﬁ . (F/l“—) (C.4)
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and

cos ¢ = (EZ/RZ). (T/ 1) (C. 5)

4

and where an arrow indicates a vector. The normalwash at the receiving

*‘ point, where the dihedral angle is Yy is

r‘ w = V . (jsin Y. - k cos 'yr) (C. 6)
E‘E

where

; v = ij + kV (C.7)

The general result desired for a horseshoe vortex system applies the
i foregoing equations to the bound and two trailing vortex components of

the horseshoe system. '

The physical geometry of a horseshoe vortex system is shown in
Figure C.2(a);the geometry modified by the Prandt-Glauert Transformation

is shown in Figure C.2(b). The transformations are

X xo/B ‘ (C.8)

and

tan A

(tan  7,) /B (C.9)

The Biot-Savart Law is to be applied using the geometry of Figure C. 2(b).
Let the origin of coordinates be the center of the bound vortex. Then the

distance -to the receiving point (XO, Yo zo) is

R = iXO + jyo + kzo (C.10)




A ok }.‘..,L*:‘W'af##?"‘v"“'“'!"'

and the distances from the inboard and outboard ends of the bound vortex
are

'r’i = - (-i-.tanA + Tcos 'Ys + K sin 'Ys) (C.11)
and
T = e (—{tanA + Tcos 'Ys + X sin 'Ys) (C.12)
)
respectively. The distance to the receiving point from the inboard end
is
R. = R - T (C.13a)
i i

_i.(XO + etan A) + _j*(y0 + e cos ’)’s) + _IZ(zo + esin'ys)

(C.13Db)
= iR+ 'j’RiY + kR, (C. 13¢)
from which
R, = (% + Rziy + RZ /2 (G.14)
The distance to the receiving point from the outboard end is
R, = R -T, (C.15a)

—{(XO - e tan A) +T(y0 - € CcOoSs ‘YS) +T€(zo - e sin ')'S) (C. 15b)

oy & s (C.15¢)
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from which

2 2 2
R = RO, *+ Roy + Roz)

1/2 (C. 16)

The vorticity vectors for the three components of the horseshoe vortex

complete the basic data required for calculation of the downwash factors.

r, = (i sinA+ § cosAcos 'YS + K cos A sin 'Ys) (C.17)
r, = 09 (C.18)
r = T (C.19)

We begin the final calculations by finding the cosines of 8 and ¢ and
the normal distance vectors d for the bound, inboard, and outboard vortices.

For the bound vortex,

cosg, = (R;/Rj . (T,/D) (C. 20a)
= Rli (Rix sinA + Riy cos A cos Y + Riz cosAsin ‘)’s) (C.20b)

cos®, = (R /R) . (T,/T) (C.21a)
= R—lo (Rox sinA + Roy cosAcos v, + R__ cos A sin ')’S) (C.21b)

E’b = Ei - (T,/IIR, cos 6, (C. 22a)

1(Rix - Ri cos Ob sin A)
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iy

= . %%
+ J(Riy - Ri cos 6, cosAcos 'Ys) (C. 22b)
+ k(Riz - Ri cos Gb cos A sin ‘)’s)
= idbx + jdby + kdbz (C.22¢)
For the inboard vortex,
sos Oi = +1 {C. 23)
cos <Pi = (Ri/Ri’ . (L“i/r‘) (C. 24a)
= - Rix/Ri (C. 24bL)
- e -~ d
d1 = JRiy + kR, (C.25) .
Finally, for the outboard vortex,
cos 0 _ = (RO/RO) . (1“0/1') (C. 26a)
= Rox/Ro (C. 26b)
cos Q"o = ~] (C.27) )
d0 = jRQy + kRoz (C.28)
We next evaluate the velocity induced by each of the three vortices. The
bound vortex induces the velocity
. T, x ——éb
v = =" (cos 8, - cos ?) (C.29a)
b 2 b b
4md
b
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r sl .
= 4"d2 (cos Ob - cos ¢b) [i (dbz cos Acos ')'s - dby cos Asin 'ys)

e B Tl e JER

b
+ j(dbx cos Asin L dbz sin A) (C. 29b) k
¥ k(dby sin A - dbx cos Acos 'ys) ]
= F(iva + v, , + kaz) (C. 29c¢) ‘!
where
2 2 2 2
db = dbx + d}:-y + dbz (C. 30)
The inboard vortex induces the velocity
= ¥ % d
Vi = T (cos 6i - COS <pi) (C. 3la)
4ud,
i
(1l -cos ¢) _, -
- L GRr. -ER,) (C. 31b)
4nR%_+ RZ R v
1y 1z
= 1‘(jviy + kV,,) (C. 3lc)
and the outboard vortex induces the velocity
. T x 4
v = ——————— (cos § - coOs @) (C. 32a)
: ) I 0 o
. 4nd ‘
°
. r (ros 90 - 1) . .
,/ = I (RZ . Rz ) (-JR.OZ + kRoy) (C. 32b)
£ oy oz
“ = I‘(Jvoy + kVoz) (C. 32¢)
67
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The total velocity induced by the horseshoe vortex is

o omm e Sy

v = Vb + Vi + Vo (C. 33a) h
= Di(vy, + Vi + V )+ wj'(vby + Vi V)
+ k(Vbz + V¥ VOZ)] (C 33Db)
= r('i’vX + "j’vy + "Evz) (C. 33c)

The normalwash velocity is then given by

v . (-_-i.sin Y, - .k’cos 'yr) (C. 34a)

g
f

: \
I.“(Vy sin v, - Vz cos 'yr) (C. 34b) 8

which leads, finally, to the steady nonplanar downwash factor

D(S)
rs

Axswr/Zl" (C. 35a)

(Vy sin Y, - Vz cos ')'r) AxS/Z (C. 35b)

A numerical 1ifficulty arises when the receiving point is on an extension

of the bound vortex axis. The limit of Vb as db approaches zero is also
zero. Numerical accuracy can be preserved by utilizing a series expansion

of (cos Qb - cos <Pb). For small eb and ¢b

i akin A

; - - : 2
! cosvb-cos¢b ~(§0b-0b)/2 (C. 36)

AR A i e i
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where .
¢y =~ d /R (G.37) |
%
and ,
8, = dy / R, (C. 38)
so that
1 1
(cos 0, - cos o)/ di ~ 5 <-—2 - = (C. 39)
R R.
o i
If the angles are close to «
2 1 1 ]
(cos 8, =~ cos® )/ d = — [—- — (C. 40)
b b b 2 R? RZ
i )
In either case
2 1 1 1
(cos®, - cos®,)/ 4, =~ - |-~ - —=5 (C. 41)
b b |+ 2 R_2 RZ
i o
The program uses the apj - ximation if max ( [cos 8y l. lcos ?y [y > 0.999.
If eb ~ 0 and <Pb ~ w, the receiving point is close to the bound vortex This

case is only of interest in induced drag calculations. Then the bound vortex

induces no velccity on itself. The program sets (cos Gb - cos QOb) / di to

zero if cos 6, cos ‘Pb < 0 and max ( |cos 6y I, | cos Gl’b[) > 0.999.
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APPENDIX D. THE SUBSTANTIAL DERIVATIVE AND INTEGRATION MATRICES

D.1 The First Alternative

Alternative No. 1 for the substantial derivative matrix [W7 and the
integration matrix [B] assumes that the deflections of a given spanwise

division (aerodynamic strip) can be determined by the following degrees of

fraedom.
h - plunging of strip
a -  pitching of strip
f - rotation of primary control surface
6§ - rotation of secondary control surface
B - plunging of primary control surface
5 - plunging of secondary control surface

To describe the format of the matrices involved, we assume that a spanwise
division (strip) is idealized into 10 chordwise boxes as shown in Figure D-1.
Any number of boxes may be chosen; 10.are used only as an example. The
local deflection mode shapes corresponding to the local degrees of freedom
h, a, B, 6 f, and § are also shown in Figure D-1. The {W] and [B]

matrices are constructed from the following equations.

hy = b (- x))e (D.1-1)
xj< XZ
TR (D.1-2)
dx
h, = h+ (x, - + (%, - +f D.1-3
; ey - wak by - xg)BRB) (D-1-3)
2 < K< %y
dh,
o= «tp (D.1-4)
- , +5Y) :
hy = hi (xj-xli)rz+(xj-x3)(3+ﬁr—r (D.1-5)
+(x, - %x,)6+ 8 1
(xJ x4)6 7>—xj>x'4,
dh, 1 ,
—i= a+pts : (D.1-6)
dx .
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{T1YP) §; _' : I | :
(TYPICAL) x;
X.Z
X -
Xy _
Xe -
Xs -
“ £ - PLUNGING
l oL~ PITCHING
_ Rr\ﬁ
\\7 J
}\\
8
ﬁj - Typical distance to 1-/4 chord of “"box" ____‘,‘_g_______ -
xj - Typical distance to 3/4 chord of "box"
x) - Distance to reference axis .
X, = Distance to-leading edge of primary control surface :
x5 - Distance to hinge line of primary control surface ;
H
X4 - Distance to leading edge of secondary control surface ;
Xg - Distance to hinge line of secondary control surface :

Figure D-1. Strip-Geometry and Local Deflection Shapes for
Alternative 1
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The format of the [W] matrix which results from the above equations

for the example of Figure D-1 is shown in Table D-1. The format of the
[B} matrix is not shown, but can be determined by substituting gj for xj

in the [W] matrix and writing
\ [B] = =+ Im [W]T) [A] (D. 1-7) 3

where [A] is the diagonal matrix of box areas. The expression q [B], then
: represents lifts due-to h, B, §, and moments (about Xy Xg» XS) due to a, f, s
5.

The present version of HTWC generates AIC's only for lifting surfaces;

E fuselage elements or bays are ignored. (See Part I, Vol 1II). -
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TABLE D-1. MATRIX [W] FOR TYPICAL STRIP
ALTERNATIVE NO. 1
A o Y S B $
'T
i—’ ,i'o 0 0 0 0
r s (%-x)
4 4
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 )
1.0
ok 0 / -g-': 0
"5%(2}"‘ 5) r _
l L0 l s
v fige (%-%s) r
1.0 1.0 1.0 ; ky , K,
4K N L 5 b
17i b—:(xj_x,) 7 5 (%=X 5;(){,-,\'5) r T
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D.2 The Second Alternative

Alternative No. 2 which includes parabolic camber is shown in
Figure D-2. The Lagrangian interpolation formulas are used to describe
the deflections of the strip. The applicable formulas are:

(xj - XZ)(xj - x3) (xj - xl)(xj - x3)

j = (xlr - xz)(x1 - x3) hl + (x2 - xl)(x2 - x3) h2

4

(xj - xl)(x. - XZ) %x. < x., when control surface
) 73

3.
" is present;
(x3 xl)(x3 ) ) all xj with no control surface,

dhi ) ((xj - x2)+(xj - x3) )h . ((xj - xl)+(xj - x3)) -
dx (x1 - XZ)(xl - x3) 1 (x2 - xl)(x2 - x3) 2

4=

((xj - w1)+(xi - x2)> X, < Xg when control surface
h
3’

R, - %)% - %)) is present ;
3 1773 2 all xj with no control surface.

(D.2-2)

When the control surfaces are present, we assume that the deflections aft

of X, can be determined by linear extrapolation. We then have

(x, - x,)(x, - x,) (x, - x,)(x, - x,)
- 3 "2 7] 3 3 1Y% 3
h, = ((x3 TR, - x2)> h) + <(x2 "X, - x3)) h,

xl\+(x3 - XZ)

3 " ¥ )5 - %))

4
-
-+
P RS
—
"
w
1

B
1

) (Xj - x3) h,, X; > X5 (D.2-3)

dh, - I, - X
L I Tl PR Tl
Ix 1 (x1 - xz)(x1 - x3) 2 (x2 - xl)(XZ - x3)

(x5 = %) )Hxy - X))
h3 (x3 - Xl)(x3 - XZ) ) xj > Xq (D. 2-—4)
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Figure D-2, Strip Geometry and Local Deflection Shapes for
Alternative 2.
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The incremental deflections due to the control surface degrees of freedom

are given by the equations below.

Alhj = (xj - XS) 8, xj > Xy (D. 2-5)
B(Alh.)

= = B, %X > %y (D.2-6)

Ath = (Xj - x7) 5, xj >Xq (D.2-7)
a(s,h)

o = §, xj )x_] (D.2-8)

A3hj = B, X; > Xy (D.2-9)

A4hj = 9, xj > X (D.2-10)

The [W] and [B] matrices can now be constructed from Equations(D. 2-1)
through (D.2-10). Figure D-2 indicates in a qualitative manner the local

deflection mode shapes corresponding to the degrees of freedom shown.
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